
27TH
 INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2018 LUND, SWEDEN)

Towards Effective and Efficient Data Management

in Embedded Systems and Internet of Things

Abstract

The majority of today low-end and low-cost embedded devices work in dynamic

environments under several constraints such as low power, reduced memory, limited

processing and communication, etc. Therefore, their data management is critical. We

introduce here a general method for data representation, storage, and transmission in

embedded systems based on a compact representation scheme and some heuristics. This

method has been implemented, tested, and evaluated within a vehicle tracking system

that uses an in-house very low cost microcontroller-based telemetry device, which

provides for near-real-time remote vehicle monitoring, energy consumption, ubiquitous

health, etc. However, our method is general and can be used for any type of low-cost and

resource-constrained embedded device, where data communication from the device to

the Internet (or cloud) is involved. Its efficiency and effectiveness are proven by

significant reductions of mobile data transmitted, as our case study shows. Further

benefits are reducing power consumption and transmission costs.

Keywords: mobile device; data storage, compression, and communication; telemetry; remote

monitoring; embedded systems; pervasive computing; Internet of Things.

1. Introduction

Information Technology and Communications have become ubiquitous in everyday life and

embedded systems have a prevalent role in this process. From smart cities, smart environment

and home automation, to industrial control, logistics, smart agriculture, and health and

wellness monitoring, to name just a few opportunities, it seems that under the pervasive

computing paradigm there is no limit on what we can do to improve various human activities

[6, 12, 14, 17, 21]. Ubiquitous sensing allows measuring, inferring, and understanding

environmental indicators, from delicate ecologies and natural resources to urban

environments. The omnipresent sensors provide for creation of a communicating–actuating

network that fuels the Internet of Things (IoT), wherein sensors and actuators blend

seamlessly with the environment around us, and the information is shared across platforms in

order to develop a common operating picture [12]. Under this paradigm, computers are

expected to know everything about things by making sense of the data they have collected

independently from humans and by being able to track and count everything, contributing this

way to significant reductions with regard to waste, loss, and cost. In terms of the scientist that

has coined the IoT term, we would know when things needed replacing, repairing or recalling,

and whether they were fresh or past their best. The IoT has indeed the potential to change the

world, even more than the Internet did [1, 25]. Building up on that, pervasive computing is

expected to make life simpler via digital environments that are able to sense, adapt, and

respond to human needs, and in which devices can act as portals into various application-data

spaces, not just as repositories of custom software to be managed by users. In such

environments, an application is a means by which a user performs a task, and not just

software for exploiting a particular device's capabilities. This way, a computing environment

becomes an information-enhanced physical space, not just a virtual one in which software is

AUTHOR ET AL. AUTHOR GUIDELINES FOR THE PREPARATION...

stored and run [19]. Pervasive computing will have a strong impact on members of human

societies with respect to both life and work styles, especially regarding information

exchanging and sharing [11, 13, 25].

Despite great expectations, nowadays pervasive computing supporting technologies face

significant technical issues. For example, many types of devices have strong limitations on

memory usage and processor performance, as well as tight constraints on power consumption.

In addition, they are expected to be able to handle power shortages, while the applications

must be able to resume seamlessly after a shutdown. Furthermore, the footprint of any kind of

running hardware and software is to be reduced as much as possible. Therefore, having the

two paradigms, i.e. pervasive computing and Internet of Things, in daily life is not yet easy.

The specific particular solutions in existence are not customizable, the costs are often

prohibitive, and dependability is generally limited. A good example gives the automotive

industry, where each car receives an ever-growing number of electronic control units (70-100

per car), and, as a result, software complexity escalates dramatically. Hence, the current

design, validation, and maintenance processes and tools can no longer ensure sufficiently

reliable systems, at affordable costs, and industries cannot capitalize on the huge potential that

emerging hardware and IT&C technologies offer [2, 14]. Moreover, the majority of nowadays

embedded systems work in dynamic environments, where the particularities of the

computational load cannot generally be predicted in advance. Hence, embedded systems are

inherently real-time systems that are required to work under several resource constraints

imposed by particular characteristics such as size, weight, energy consumption, equipment

cost, data communication costs, maintenance costs etc., showing therefore a dynamic

behavior. Still, timely responses to events have to be provided within precise timing

constraints in order to guarantee a desired level of performance. Consequently, efficient

resource management is critical for embedded systems [3, 16]. Many of these systems are

data-dominated and experiments have shown that a significant part of the power consumption

is due to data storage and transfer [4, 9]. The escalating need for high performance and huge

capacity memories of today embedded systems has led to the widespread adaptation of flash

memory as main data storage. Therefore, data management on this kind of storage has

become critical for mobile embedded applications. As reading, data writing or erasing on

flash memories is performed radically different from magnetic disks, new data management

approaches are necessary. However, complex compressions algorithms cannot be used due to

the limitations of the IoT embedded devices (low power requirements, reduced memory, and

extremely limited processing and communication capabilities). Hence, simpler but still

efficient and effective solutions must be worked out [3, 4, 5] [9] [15, 16, 17, 18] [20] [22].

Further on, we present related work that is somewhat similar to ours. In [16], the authors

introduce a scale-downed relational DBMS, called LGeDBMS, which has been specifically

designed for data management and easy access to data in embedded mobile systems that use

flash memories. LGeDBMS optimizes the flash memory based on the Log-structured File

System design principle, has a compact size that is appropriate for consumer electronics

appliances, and implements a transaction management mechanism that comply only with

atomicity and durability. In [5], the authors investigate the performance issues of flash-

memory storage systems by using a dynamic striping architecture and I/O parallelism to

speed-up a flash-memory storage system. A bold approach is taken in [17], where the authors

point out that traditional data base management systems are not suited for embedded systems

due their special requirements and limited resources. They propose to implement highly

customizable data management systems that can be created with a Software Product Line

approach, i.e. a concrete instance of a DBMS is derived by composing features of the DBMS

product line that are needed for a given application scenario. They show that in embedded

systems also non-functional properties, such as memory consumption, have to be considered

when creating a particular DBMS instance. Further details are available in [18]. Another

impressive effort is presented in [20], where the authors present a novel architecture for

underwater sensor networks to be used for long-term monitoring of coral reefs and fisheries.

The sensor network consists of static and mobile underwater sensor nodes that have various

sensing capabilities (cameras or devices to measure water temperature and pressure). The

ISD2018 SWEDEN

mobile nodes can locate and hover above the static nodes for data muling and perform

network maintenance functions such as deployment, relocation, and recovery.

Despite the significant challenges, the premises that the pervasive computing paradigm

becomes a reality exist, especially due to the opportunities provided by embedded systems

and IoT. On one hand, the technology evolves with an incredible pace, new architectures and

systems appear every day, while on the other, our society is more and more prepared for this

major paradigm shift, at various levels. This work aims to make a contribution to that by

introducing a general method for data representation, storage, and transmission in embedded

systems and IoT, which is based on a compact representation scheme and some heuristics. We

have already implemented, tested, and evaluated this method within a vehicle tracking system

developed in-house over the last years, experimenting through several iterations due to

advances in the supporting technologies [7, 8]. The system is in use on more than 500 cars for

over 10 years now and we are currently in the process of adapting it for other use scenarios,

i.e. access control, remote data and energy consumption monitoring. The system uses an in-

house developed very low cost microcontroller-based telemetry device that implements this

method and that provides for near-real-time remote monitoring of mobile vehicles, energy

consumption, ubiquitous health etc. The real data samples presented here are obtained while

monitoring remotely mobile vehicles, over long distances, using low bandwidth mobile data

communication. Having near real-time data from the mobile device and as much information

as possible about the vehicle, while keeping low the amount of data transmitted between the

device and the Internet have been some of our main goals. One of the biggest challenges in

developing this system has been to reduce the amount of transferred data while using a very

limited device (low computational performance, little available memory, low communication

bandwidth). Our solution consists of temporarily keeping the data on the device, transmitting

it when possible, allowing retransmission in case of communication errors, and storing it in a

compact/compressed form to avoid both wasting storage space and transmitting redundant

data. The basic idea is to carefully transform the data in such a way that a minimal number of

bits are necessary to encode it without losing any information. The method introduced here is

general and it can be adapted easily, using the appropriate heuristics, for any type of low-cost

and resource constrained embedded or IoT device, where sensory data communication from

the device to the Internet (or cloud) is involved. The same is true for the compact

representation scheme that reduces the amount of data stored and transferred, lowering this

way both the costs of data processing and transferring. Moreover, the time to transmit is also

reduced and, consequently, the total energy used for communication is reduced as well,

implicitly increasing the battery’s life time because it is a well-known fact that most of the

power is used during transmissions.The efficiency and effectiveness of the method are

illustrated with several evaluations based on real data samples.

The structure of the paper is as follows: the next section gives an overview of our system.

Section 3 and 4 include, respectively, our method for data representing, storing, and

transmitting and our compact data representation scheme. Several evaluations of the method

are included in Section 5. The last section includes some conclusions and future work ideas.

2. Overview of Gipix – a Vehicle Tracking System

In this section, we present briefly our vehicle tracking system (called Gipix). The system can

also provide statistical information about different aspects of the recorded data, e.g. the

driver’s acceleration, braking habits, and driving style, the speed variations, etc. More details

about Gipix and our experimenting with it may be found in [7, 8, 23, 24]. Gipix is a system

for near real-time vehicle tracking, which offers very accurate positioning based both on state-

of-the-art GPS technology and GSM/GPRS data transmission and, at the same time, it can

gather and process multiple sensor data from the vehicle. The system’s core consists of a data

server that processes the maps for the main cities and roads in our country, the monitored

vehicles and their tracks, the drivers’ related information, various critical events, some

predefined tracks, specific reports, etc. It can be used both for individual vehicles and fleets.

Gipix collects the data of interest by using a GPS-based embedded device installed on each

AUTHOR ET AL. AUTHOR GUIDELINES FOR THE PREPARATION...

monitored vehicle that is able to automatically transmit the vehicle positions and to signal

various critical events to both the server and the interested users. To overcome the limitation

of the commercially available GPS-based tracking solutions with regard to customization the

system has been developed in-house. Its main capabilities include one-second acquisition

interval (for position, speed, and heading), high sensibility (the antenna is able to work in

difficult conditions), interconnection with other applications or devices, adaptability to users’

needs, local storage of data for areas which are not GSM covered, and positioning without

GPS signal if the antenna fails based on the position of the GSM cells. A customized version

can be used for remote telemetry monitoring of different sensors in a fixed configuration

(position data is ignored and only sensor data is transmitted) that can be used in other

pervasive computing applications such as energy consumption or ubiquitous health

monitoring, access control, etc. The system’s architecture includes a large number of mobile

devices that communicate over the Internet to one or several data servers by sending near-

real-time data or by retransmitting lost data (Fig. 1). Data is sent over a low speed

communication channel, using GPRS, because it offers the best geographical coverage over

other communication methods at a reasonable price tag. The end user interacts with the

system over the Web using a graphical user interface. The Web server communicates directly

to the data server by means of a backend application. The architecture of the mobile

embedded device consists of a central microcontroller that is in charge with monitoring all the

connected sensors mounted on the device or connected to the vehicle (Fig. 2a). It also handles

the data storage and communication between the device and the Internet using a GPRS

modem. The accurate location of a vehicle is established once every second using a high-

sensitivity GPS receiver. The device is powered either from the vehicle battery (12/24V) or

from its own internal backup rechargeable battery, a high-capacity Lithium-Polymer battery,

which is capable of powering the device for several days in the absence of the car battery. The

device is able to detect situations in which a car has its own battery disconnected or it is

moved to a different location. Its current version called Gipix-112 is shown in Fig. 2b.

data

server

mobile

device

Web

server

user

mobile

device

Internet
.

.

.

 int.storage

micro

controller

power

management

GPRS

module

sensors

int.battery

power supply

clock

interfaces
GPIO,I2C,SPI,

CAN,UART

memory

a.

b.

Fig. 1. Gipix vehicle tracking

system – main architecture
Fig. 2. Gipix embedded device: a. architecture;

b. physical implementation.

The tracking device is built around a very low power 16-bit microcontroller from the PIC24F

Microchip family with integrated 256 Kbytes flash and all the necessary peripheral interfaces

embedded (inputs, outputs, serial ports, ADC converters, etc.). It has a number of sensors that

allow gathering of abundant information about both the vehicle and the driver, and also

detection of any abnormal situation. Some of the existing sensors determine or are concerned

with vehicle battery voltage and ignition, internal device temperature, RFID, 1-wire,

proximity, 3D acceleration, and internal tamper. The tracking device has one communication

modules that provide for transmission of information about position, sensor values, events,

etc. to the central tracking server or directly to the driver’s mobile phone. Alternatively, some

other means of communication are also supported. Low-range Bluetooth can be used to relay

different information to the driver’s mobile phone, while driving or to download all the

tracking data from the device in cases where either GPRS is not available or is missing from

the device. Using Wi-Fi communication can provide periodic synchronization or firmware

updates when the vehicle is in a garage. It also provides a power management mode that

enables a low power mode of the device necessary to save battery power when the vehicle is

not operating.

ISD2018 SWEDEN

3. Method for Data Representation, Storage, and Transmission

Based on our main goal of near-real-time remote vehicle monitoring using a very low cost

microcontroller-based telemetry device that provides for efficient and effective data

management, our system had to fulfill the following data management requirements:

 Dealing with a large number of mobile devices;

 Ability to store and manipulate various data like: device identifier, GPS data (position,

speed, latitude, longitude, altitude etc.), GSM data (cell information, error rate, etc.),

vehicle data (battery voltage, error sensors, etc.), sequence number, and so on;

 Capability to store and transfer near-real time data at very small time intervals (one

second), for a very long time;

 The time needed to process the current data (store, transmit, retrieve, retransmit) is

minimal, such that the device is available to process the data from the next time stamp;

 Minimization of data to be transferred, which resulted in three more low-level

requirements: data pre-processing at the device level; reducing the communication

overhead for data as the device identifier, source and destination addresses, and other

network and Internet related communication data; reducing the security/privacy

overhead, required by encryption and authentication.

As most existing solutions for embedded data storage and management require some sort

of lightweight file system or scaled-down database management system, the main drawbacks

of using them consist of adding to the complexity of the storage component, increasing the

time needed to store/retrieve the data, having a non-deterministic response time, and,

potentially, generating data inconsistencies (e.g. in case of a power loss). Since our device

need to store the data temporarily, without processing it further and due to its very critical

time constraints, such increased complexity is not justified. The solution currently in place in

Gipix implements a data storage and representation method that provides for:

 Reducing the data size by compression and/or applying an efficient encoding scheme

(i.e. not storing/transferring redundant or unnecessary data, using more compact

representations and using smarter sensors);

 Delaying the data transmission, i.e. the data from the sensors is not transferred

immediately after reading it;

 Transferring data in bulks to reduce communication overhead;

 Storing the data temporarily on the device’s internal storage memory;

 Transferring data while keeping track of packet sequence numbers for easy

management of retransmission;

 Using a minimal number of bits to encode the data without losing any information.

Further, we present detailed information about the data representation, storage, and

transfer between the embedded device and the main server of Gipix. All the tracking data

generated on the device is, at first, stored on its internal storage, a relatively large capacity

microSD flash memory card (2 GBytes). If the GPRS connection is available, the data is

further transmitted to the central storage server. In cases when the connection is not available

or any transmission errors occur, the data is re-transmitted at a later time (see Fig. 3).

According to the above method, the application running on the device includes two tasks

related to the data management: one for saving the current data and one for retrieving the

stored data. The first one creates the data packet to be stored on the local storage (the flash

memory) and to be further transmitted to the main server. If the transmission fails due to

various circumstances, for example an area with no mobile data communication coverage or

an error in transmission, the data can be later retrieved from the local flash memory and then

re-transmitted to the server (see Fig. 4). Each data packet is tailored to fit in one physical

sector of the flash memory for dual reasons: minimization of the data saving/retrieving time

and easiness of data retrieval. Additionally, each data packet is given a time stamp (sequence

number or packet number) to facilitate both data retrieving and identifying of missing packets.

AUTHOR ET AL. AUTHOR GUIDELINES FOR THE PREPARATION...

flash

central

storage

serverdevice

controller

sensors

database

storage

data

collecting

device

data transfer

 internal

storage

application

resent packetcurrent packet

save &

transmit

task

reload &

retransmit

task

RAM

flash memory

Fig. 3. Gipix–bird’s eye view:

data storage and transmission
Fig. 4. Application tasks for data

saving/retrieving on/from the device

The second task is responsible with data retrieving and retransmitting. Two scenarios are

possible. The first one is when a certain data segment was not transmitted at all, in which case

this task will try to resend it when a new connection to the server is established. This situation

mainly occurs after a period of time when there was no network coverage and no active

connection with the server could be established. Then the data sequences not marked as sent

are retrieved from the local memory and resent to the server. The second scenario happens

when even if some data was already sent, the server specifically asks the device to resend a

specific set of data sequences. This might happen because of either communication errors

occur or data is lost during transmission or data is received by the server with errors. The use

of appropriate data management techniques (to be presented in the next section) allows data

storing for a very long time. Depending on the sensory data and on the vehicle’s operating

time intervals for which the data is recorded and stored, the device’s internal flash memory

can store all recorded data for up to 10 years, thus acting like a very long term data recording

device. In special cases, all the stored data on the device can also be directly downloaded by

using a wired serial/USB connection between the device and a computer.

4. Compact Data Representation

We illustrate further on how the data is encoded and stored on the embedded device and how

it is transmitted between to the main server, exemplifying with particular data sets. The main

heuristics used and some lessons learned are also shown. The following information types are

of interest and, therefore, they are stored and also transferred from the device to the server:

device identification data (device ID or IMEI - the mobile equipment identification); time

stamp data: date and time; position data: latitude, longitude, altitude; movement data: speed,

heading, position error, number of satellites; other sensor data: battery voltage, temperature,

etc.; control checksum for data integrity verification; other data needed for the particular

applications, e.g. other sensor or fusion data. Further on, we consider the following smaller

set of data transferred between the device and the server: device identification (device id),

time stamp (tstamp), latitude, longitude, altitude (position), heading (direction of movement),

speed, positioning error (hdop - horizontal dilution of precision), number of satellites in view

(sats), and a valid fix for the position, if available (fix). This set could also include data from

additional sensors. Formatted as a text string, the sample data set for an interval of 3 seconds

(3 measurements) could look like in Table 1 (the first line is a comment describing the data

fields). Each line represents one set of measurements taken at the specified time stamp. The

length of each line can be different, depending on the representation of values as text strings

(larger numerical values require more digits to represent) and can vary approximately

between 68 and 78 bytes per line. In case of a better standard binary data representation for

the same data, we would have something similar to the representation in Table 2. Each data

set will describe the position for exactly one second (identified by the time stamp). If knowing

more than one position at the server is necessary, storing and sending this amount of data for

each of the required positions is needed.

ISD2018 SWEDEN

Table 1. Data with text representation Table 2. Data with binary representation

;type,device,date,time,latitude,longi
tude,altitude,speed,heading,err,sat

$DATA,1234578,2013-09-20,

13:40:20,40.123456,25.123456,345.0,55

,12,10.4,7

$DATA,1234578,2013-09-20,

13:40:21,40.124468,25.123589,346.0,50

,119,0.4,8

$DATA,1234578,2013-09-20,

13:40:22,40.124600,25.123600,345.0,45

,115,0.4,7

Data length: 3*≈72 bytes

descr. type dev_id tstamp latitude longit altit head speed hdop sats fix

bytes 1 4 8 4 4 2 2 1 2 1 1

type byte integer long int float float sh int sh int byte sh int byte byte

value1 1 12345678 1379684420 40.123456 25.123456 345 120 55 10.4 7 3D

value2 1 12345678 1379684421 40.124468 25.123589 346 119 50 9.3 8 3D

value3 1 12345678 1379684422 40.124600 25.123600 345 115 45 9.9 7 3D

Length = 3*30 bytes

In addition, each transferred data set has an additional communication overhead necessary

to be able to transmit that data to the specific server on the Internet (IP address, port number).

There are two types of Internet Protocols (IP): TCP (Transmission Control Protocol) and UDP

(User Datagram Protocol). TCP is connection oriented meaning that once a connection is

established data can be sent in both ways, while UDP is a connectionless protocol. TCP is

better suited for applications that require high reliability and transmission time is relatively

less critical, whereas UDP is suitable for applications that need fast and efficient transmission.

UDP's stateless nature is also useful for servers that answer small queries from huge numbers

of clients. One of the UDP’s downsides is that it has no inherent order as all packets are

independent of each other. Dealing with packet failures, packet re-ordering, or multiple

sources is made at the application level both on the mobile device and on the data server. TCP

is slower that UDP because in UDP error recovery is not attempted at protocol level, only

simple error checking and discarding. UDP is a small transport layer designed on top of IP in

which there is neither ordering of messages nor tracking connections. The choice of using

UDP instead of TCP is mainly because UDP is much more lightweight, the retransmission of

lost packets being handled at application level with better control. IP header is 20 bytes,

without options. TCP header is 20 bytes without options and UDP header is 8 bytes (Fig. 5.).

a.

b.

Fig. 5. Header format and size for a) UDP and b) TCP packets

In our case, UDP is used for transferring the data, so this overhead amounts to a total of

28 bytes. In the case of a mobile vehicle, the data for each second is required to be able to

accurately describe the status, movement, and behavior of the vehicle (speed, acceleration,

sensory data, etc.). Let us consider an amount of 30 bytes of data for each second. Then the

total number of bytes required for transmitting N data units using the binary representation is

(Dcomm is the communication overhead of 28 bytes and Ddata.bin is the actual data: 30 bytes):

Tbin(N) = N*(Dcomm+Ddata.bin) (1)

In such a case, the amount of data to be transferred would be very large – e.g. for a one

second resolution data, one needs a total of 2.6 million data sets per month (30 days*24

hours*3600 seconds). For each data set, one needs 58 bytes (30 bytes for the actual data and

28 bytes for the overhead), which is equivalent to a total of about 150 MegaBytes of data

transferred per month, i.e. Tbin(1 month) = 150 Mbytes. This amount corresponds just to the

transfer from the device to the server, but the confirmation packet backwards, for each packet

received, is also necessary. Having tens of thousands of devices sending data to the server, a

storage space in the orders of many TerraBytes would be necessary just to store the raw data.

Further on, we present a more compact data representation in accord with the method in

the previous section. One prerequisite is that the precision required by each data type will

dictate the number of bits necessary for each particular data. For example, considering that the

AUTHOR ET AL. AUTHOR GUIDELINES FOR THE PREPARATION...

timestamp for each packet has a resolution of one second and represents the date and time of

the event, one do not necessarily needs to represent it as seconds from January 1st, 1970

(Unix time), but as seconds since one particular version of the system is running (e.g. January

1st, 2006) – this could potentially save a few bits in representing the time. For representing

latitude information with a precision of six digits after the decimal point (e. g. 45.123456)

results in a worst case positioning error (depending on the position on Earth) equivalent to 0.1

meters. The full range of latitudes is -90.000000 ... +90.000000 that is equivalent to the range

0...180000000 (if one deletes the decimal point and converts to positive values). In this

approach, only 28 bits are necessary (2^28=268435456). Similarly, for representing

longitudes ranging from -180.000000 ... +180.000000, 29 bits are needed (2^29=536870 912).

The maximum ranges and compact encoding for the other data fields are shown in Table 3.

Table 3. Storage requirements for each data type

range min max bits range min max bits

tstamp 100 years 0 4294967295 32 30 seconds 0 31 5

latit. -90.000000 … +90.000000 0 268,435,455 28 -0.000500 ... +0.000500 0 1023 10

longit. -180.000000 … +180.000000 0 536,870,911 29 -0.000750 ... +0.000750 0 2047 11

altit. 8000 meters 0 8,191 13 -32 … +32 meters 0 63 6

head 0 … 360 degrees 0 511 9 not necessary -

speed 200 km/h 0 2,047 11 not necessary -

hdop 0.0 … 25.0 meters 0 255 8 0.0 … 25.0 meters 0 255 8

sats 0 .. 31 satelites 0 31 5 not necessary -

fix yes/no 0 1 1 not necessary -

data representation data variation - delta (per second)

The data to be stored (the measured values at time t) are first compacted as shown above and

this is the fixed part of the storage and transfer unit (fixed value stored in Table 4.). Instead of

sending the same data amount for each subsequent time stamp, only variations of individual

data fields are sent (value var1 stored, value var 2 stored, … in Table 4). The rationale behind

this is heuristic being based on the observation that for slow changing data one needs lower

data amount to represent the variations between adjacent values than to represent the data

itself. Therefore, only the delta variations from one time stamp to the next are computed and a

lower amount of bits to represent them is used. This is done differently for each data field

depending on both their meaning and possible ranges in variation. The corresponding

compact binary data representation for the previous 3 second interval data example and the

corresponding data transmission sequences are illustrated in Table 4 and, respectively, Fig. 6.

Table 4. Data with compact binary representation

descr. pack_no dev_id tstamp latit longit altit head speed hdop sats fix

bits 32 32 32 28 29 13 9 11 8 5 1

fixed value

repres.
102030 12345678 1379684420 40.123456 25.123456 345 120 55.4 10.4 7 2D

fixed value

stored
102030 12345678 1379684420 130123456 205123456 345 120 554 104 7 1

F = Length (fixed) = 25 bytes

descr.
delta

tstamp

delta

latitude

delta

longitude

delta

altitude
hdop

bits 5 10 11 6 8

value var1

repres.
1 0.001012 0.000133 1 9.3

value var1 1 1512 1113 33 93

value var2 1 0.000132 0.000121 -1 9.9

value var2 1 632 1121 31 99
V = Length (variation) = 2*5 bytes

header data fixed var1

28 bytes 25 bytes

communication

overhead

communication data

... vnv2 header data fixed v1 ... vnv2

5 bytes 5 bytes 5 bytes
Fig. 6. Data transmitted in the

compact format

5. Evaluation of the method

In the case of the compact binary data representation, for example, a total of 28+25+9*5

bytes=98 bytes needs to be transferred to send the equivalent of 10 consecutive positions at 1

second intervals (28 bytes for the communication overhead, 25 bytes for the fixed length data

for the first second, and 9*5=45 bytes for the variable length data of the remaining 9 seconds).

If we would send the data as independent packets, the total amount of data transferred would

be 10*(28+30) bytes=580 bytes in the previous standard binary data representation (28 bytes

for the communication overhead and 30 bytes for each data sent). As it can be seen, an almost

sixfold reduction of the amount of the data transferred (580bytes/98bytes=5.92) can be

ISD2018 SWEDEN

obtained just by using a more compact data representation. The total number of bytes

required for transmitting N data units using the compact binary data representation is:

Tcomp(N)=Dcomm+Ddata.fix+(N-1)*Ddata.var (2)

where Dcomm is the communication overhead (28 bytes), Ddata.fix is the fixed data for the

first second (25 bytes), Ddata.var is the variable data for each extra second (5 bytes). The plot

in Fig. 7 represents a comparison of the total data amount transferred for each of the two

binary representations, i.e. Tbin(N) and Tcomp(N). In the case of standard binary representation,

for a 60 second interval, one would need to transfer a total of 3480 bytes (=60 seconds*58

bytes), compared to only 348 bytes (= 28bytes + 25bytes + 59seconds * 5bytes) required for

the binary compact representation, therefore a reduction of 90% is possible.

For each time unit (one second in our case), the amount of data to be transferred

(corresponding to the same information) is significantly reduced in case of the compact

representation compared to the standard one as it can be seen below. In Fig. 8, one can see

that in case of the standard binary representation, exactly 58 bytes for each data unit are

needed, whereas for the compact binary representation, one would need a decreasing number

of bytes per unit, ranging from 29 bytes (when sending data for only two time units) to 5.8

bytes (when sending data for a total of 60 seconds). For even larger data units, for example

240 seconds (4 minutes), this will be further reduced to around 5.2 bytes per data unit (the

total data sent for 240 time units consist of 1248 bytes). The downside of this approach is that

all the data will be available to the server only after the time required to collect and send the

whole data, in our cases above of at least 60 seconds or 240 seconds. This means that the data

arrives at the server in bulk, at fixed time intervals, according to how much data is sent in one

packet. In the second case, the total amount of data transferred in one month would be:

Tcomp(1mo) = 30days * 24hrs * (15*4) * 60secs =

30days * 24hrs * 15 * Tcomp(240s) = 10,800 * 1248 bytes ≈ 13 Mbytes
(3)

For each of the two representations, the plots in Fig. 8 correspond to the next equations:

Tbin(N)/N = (Dcomm + Ddata.bin) and

Tcomp(N)/N = (Dcomm+Ddata.fix-Ddata.var)/N + Ddata.var
(4)

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

to
ta

l
d

a
ta

 l
e

n
g

th
 (

b
y

te
s)

number of data units (N)

binary format

compact format

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

a
v

e
ra

g
e

 d
a

ta
 le

n
g

th
 p

e
r

u
n

it
 (

b
y

te
s)

number of data units (N)

binary format

compact format

Fig. 7. Total amount of data transferred - standard

and compact representation

Fig. 8. Average size of data per time unit (second)

- standard and compact representation

The compression ratio between the standard and the compact format is shown in Fig. 9.

One can see, for example, that for the data required to transfer 10 time units (10 seconds), the

compression ratio is 5.92, meaning that we need to transfer almost six time less data in the

compact binary form compared to the standard binary format. This ratio is 10 for the data

necessary for 60 time units (60 seconds). The compression ratio is:

Rcompress(N)=Tbin(N)/Tcomp(N) =(Dcomm+Ddata.bin)*N/(Dcomm+Ddata.fix-Ddata.var

+N*Ddata.var) =1/(Ddata.var/(Dcomm+Ddata.bin)+1/N*(Dcomm+Ddata.fix-Ddata.var)/(Dcomm+Ddata.bin))
(5)

and for our example, Rcompress(N) = 58/(5+48/N), with Rcompress(10) = 58/(5+48/10) = 5.92

for a 10 sec interval and Rcompress(60) = 58/(5+48/60) = 10.0 for a 60 sec interval. This means

that the larger the time interval for which the data is transmitted the better is the compression

ratio. However, this cannot be applied ignoring the maximum transmission unit, as it can be

seen further here. In computer networking, the Maximum Transmission Unit (MTU) is the

AUTHOR ET AL. AUTHOR GUIDELINES FOR THE PREPARATION...

largest size data unit that can be transferred in a single transaction. For larger sizes, the packet

needs to be divided into smaller pieces (of at most MTU size) that are sent one after the other,

with additional communication overhead. For Ethernet, the MTU size is 1500 bytes, but for

mobile networks, including GPRS, it can be smaller, usually 1476 bytes. This means that in

order to send, for example, a total of 2000 bytes (28bytes overhead included), one would need

to send two data packets, with two overheads, one of 1476 bytes (28bytes overhead +

1448bytes data) and one with the rest of 552 bytes (28bytes overhead + 524bytes data), i.e.

each data set larger than the MTU will add more overhead to the transmission. Therefore, in

spite of the deduction above showing that the larger the time interval for which the data is

transmitted the better is the compression ratio, the time interval needs to be tailored so that the

number of packages to be transmitted is kept as low as possible. Furthering this reasoning, in

case of different data sets corresponding to different sensors the compact representation has

different values for both the fixed part (fixed value stored – F=Ddata.fix) and the variations part

(value var stored – V=Ddata.var) and, therefore, the compression ratio is different. In Fig. 10,

the compression ratio for such different data sets is shown (higher values mean better

compression). One can see that reducing the variations part for each time unit could result in

higher compression rates. This means that in order to improve the communication and reduce

the amount of data transferred, one has to minimize the size of the variations part.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

co
m

p
re

ss
io

n
 ra

ti
o

number of data units (N)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

co
m

p
re

ss
io

n
ra

ti
o

number of data units (N)

F=24 V=4

F=28 V=6

F=32 V=7

Fig. 9. Compression ratio for data transferred Fig. 10. Compression ratio for fix/variable data

Further on, we present the real traffic data for 3 particular devices (Table 5), which have

been collecting data for time intervals between 11 and 13 months, such as the total distance,

travel time, number of tracks and total number of packets. A more detailed traffic data

including the number of packets of different sizes, average packet size, packets per month, the

total data transferred, and monthly data average is presented in Table 6. All the devices are

configured to send data during driving at intervals of 20 seconds, so that their near-real-time

status is available to the user. In case of vehicles being stopped the devices send periodic

status data only once per hour. In Table 7, a comparison between uncompressed and

compressed data is shown. The compression ratio is varying between 1:6.0 and 1:6.6.

Table 5. Real traffic data for 3 devices

Device ID No. months Distance (km) Travel time (hours) No. of tracks Total pkt. no.

109915 12 2,070 90 375 52,100

660867 11 19,170 134 495 458,700

659549 13 17,136 330 1,400 191,950

Table 6. Detailed data traffic for 3 devices

Device

ID

Total

no. of

packets

No. of

packets
208 bytes

No. of

packets
80 bytes

No. of

packets
other size

Avg

bytes /

packet

Average

no. pck. /

month

Avg data

/ month

Mbytes

Total

compress

Mbytes

109915 52,100 25,650 21,336 5,114 144 4,342 0.6 7.5

660867 458,700 205,218 221,677 31,805 133 41,700 5.5 61.0

659459 191,950 108,513 63,337 20,100 151 14,765 2.2 29.0

Table 7. Real data traffic: compression ratio between uncompressed and compressed data

Device ID Compressed (Mbytes) Uncompressed (Mbytes) Compression ratio

109915 7.5 45.5 1:6.1

660867 61.0 367.1 1:6.0

659459 29.0 190.3 1:6.6

ISD2018 SWEDEN

As mentioned before, our system is in place for more than 10 years now, monitoring over 500

cars. During this time, a total of about 100 million data packets (about 80 Gigabytes) have

been transferred to the data center. The equivalent data in text format would have been around

6 TerraBytes, respectively around 700 Gigabytes in binary uncompressed format. Thus, the

system provides significant savings with regard to data transmission’s time. This contributes

also to important reductions in transmission costs and power consumption.

6. Conclusion and Future Work

The evolution of embedded systems and IoT towards their next-generation depends, to some

extent, on what the associated technologies will have to offer. However, the challenge of how

to implement applications that perform effectively and efficiently, on limited resources, while

fulfilling a rich variety of requirements both functional and non-functional, will remain on,

mainly because of their complexity and due to the “delicacy of touch” with which they need

to operate within our environment. In such systems, data management is critical from at least

two points of view. First, they have to operate with very constrained resources and low power

requirements and to make the most of what these resources have to offer, while providing for

basic database functionality (storage management, transactions, query processing, or

recovery) that is optimized in various directions (such as energy consumption, memory use,

etc.). Second, the presence of some sort of data management system is necessary to ensure

robustness, flexibility, timeliness, reduced costs, reliability, performance, but also safety of

the systems, their users, and the environment they operate within. However, complex

compressions algorithms requiring large memory footprint cannot be used due to their

limitations, so simpler but still efficient and effective methods must be devised.

In this paper, we introduced a general method for data representation, storage, and

transmission for embedded devices based on a compact representation scheme and some

heuristics. The core idea is to transform the data so that a minimal number of bits are

necessary to encode it without losing any information. The method can be easily adapted,

with the suitable heuristics, for any other type of low cost and resource constrained embedded

or IoT device and this is our main future work direction. The same is true for the compact

representation scheme, which is well suited for any kind of data that includes time and various

sensor readings. Slow variations of data from sensors imply small variations per time unit,

which, in turn, allows a more compact data representation by keeping only the variations,

which results in higher compression ratio. Such data types are very common to embedded and

IoT devices, where time, position, and different sensor values are sent periodically over the

Internet for monitoring purposes.

Using a more compact data representation, as the one introduced in this paper, reduces the

necessary for memory, processing power, and time required for data transmission, thus

reducing effectively the time-to-emit (generally very power-consuming, especially for

wireless communication). So, this method contributes to improving the use of both memory

and processing capabilities, but also to a significant increase of the battery life time, while

decreasing the costs of the mobile data transfers. Future work includes further optimizations

of data storing and transferring by using other statistical compression techniques.

References

1. Ashton, K.: That 'Internet of Things' Thing. RFID Journal 22 97-114 (2009)

2. Broy, M: Challenges in automotive software engineering. In: Proceedings of the 28th

International Conference on Software Engineering, pp. 33-42. ACM (2006)

3. Buttazzo, G.: Research trends in real-time computing for embedded systems. ACM

SIGBED Rev. 3(3), 1-10 (2006)

4. Catthoor, F., Wuytack, S., de Greef, G. E., Banica, F., Nachtergaele, L.,

Vandecappelle, A.: Custom memory management methodology. Kluwer Academic

Publishers Norwell, MA, USA (1998)

AUTHOR ET AL. AUTHOR GUIDELINES FOR THE PREPARATION...

5. Chang, L. P., Kuo, T. W.: An Adaptive Striping Architecture for Flash Memory

Storage Systems of Embedded Systems. In: Proceedings of the 8th IEEE Real-Time

and Embedded Technology and Applications Symposium, pp. 187-196. IEEE

Computer Society (2002)

6. Chui, M., Löffler, M., Roberts, R.: The Internet of Things. Mckinsey Quarterly 2010,

http://www.mckinsey.com/insights/high_tech_telecoms_internet/the_internet_

of_things Accessed July, 3, 2017

7. Constantinescu, Z., Vladoiu, M.:Challenges in Safety, Security, and Privacy of

Vehicle Tracking Systems. In: Proceedings of Int. Workshop on Systems, Safety and

Security for Automotive, Passengers and Good Protection (IWSSS’2013) (2013)

8. Constantinescu, Z., Marinoiu, C., Vladoiu, C: Driving Style Analysis Using Data

Mining Techniques. Int. J. of Comp., Comm. Control (IJCCC), 5(5), 654-663 (2010)

9. Culler, D., Estrin, D., Srivastava, M.: Guest Editors' Introduction: Overview of

Sensor Networks. Computer, 37(8), 41-49 (2004)

10. Ebling, M.R.: Pervasive Computing and the Internet of Things. IEEE Pervasive

Computing. 15(1), 2-4 (2016)

11. Gerla, M., Lee, E-K., Pau, G., Lee, U: Internet of vehicles: from intelligent grid to

autonomous cars and vehicular clouds. In: Proceedings of the IEEE World Forum

Internet of Things (WF-IoT 2014), pp. 241-246. IEEE (2014)

12. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): A

vision, architectural elements, and future directions. Future Generation Comp. Syst.,

29(7), 1645-1660 (2013)

13. Hansmann U., Merk L., Nicklous M. S. M., Stober T.: Pervasive Computing

Handbook, 2nd edition, Springer Verlag Berlin Heidelberg (2003)

14. Henzinger, T. A., Sifakis, J.: The Discipline of Embedded Systems Design.

Computer, 40(10), 32-40 (2007)

15. Kim, G. J., Baek, S. C., Lee, H. S., Lee, H. D., Joe, M. J.: LGeDBMS: a small DBMS

for embedded system with flash memory. In: Proceedings of the 32nd Int. Conf. on

Very Large Data Bases, pp. 1255-1258. VLDB Endowment (2006)

16. Noergaard, T.: Embedded Systems Architecture: A Comprehensive Guide for

Engineers and Programmers, 2nd edn., Newnes-Elsevier, Waltham, MA (2012)

17. Rosenmüller, M., Siegmund, N., Schirmeier, H., Sincero, J., Apel, S., Leich, T.,

Spinczyk, O., Saake, G.: FAME-DBMS: tailor-made data management solutions for

embedded systems. In: Proceedings of EDBT workshop on Software engineering for

tailor-made data management, pp. 1-6 (2008)

18. Saake, G., Rosenmüller, M., Siegmund, N., Kästner, C., Leich, T.: Downsizing Data

Management for Embedded Systems. Egyptian Computer Science Journal, 31(1), 1-

13 (2009)

19. Saha, D., Mukherjee, A.: Pervasive computing: a paradigm for the 21st century.

Computer 36(3) 25-31 (2003)

20. Schulze, S., Pukall, M., Saake, G., Hoppe, T., Dittmann, J.: On the Need of Data

Management in Automotive Systems. In: Proceedings of Datenbanksysteme in

Business, Technologie und Web, pp. 217-226 (2009)

21. Top 50 Internet of Things Applications, 2014, http://www.libelium.com/top_50_iot

_sensor_applications_ranking/ Accessed May, 3, 2018

22. Vasilescu, I., Kotay, K., Rus, D., Dunbabin, M., Corke, P.: Data collection, storage,

and retrieval with an underwater sensor network. In: Proceedings of the 3rd ACM

Conference on Embedded Networked Sensor Systems, pp. 154-165 (2005)

23. Vladoiu, M., Cassens, J., Constantinescu, Z: FACE – A Knowledge-Intensive Case-

Based Architecture for Context-Aware Services. Networked Digital Technologies,

Zavoral, F. et al. (eds) CCIS, 88. pp. 533-544, Springer (2010)

24. Vladoiu, M., Constantinescu, Z.: u-Learning within a Context-Aware Multiagent

Environment. Int. J. Comp. Networks & Comm. (IJCNC), 3(1), 1-15, January (2011)

25. Weiser, M.: The Computer for the Twenty-First Century. Scientific American. 2, 94-

100 (1991)

http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gubbi:Jayavardhana.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Palaniswami:Marimuthu.html

