
BULETINUL
Universităţii Petrol – Gaze din Ploieşti

Vol. LXI
No. 2/2009 49 - 58 Seria

Matematică - Informatică - Fizică

Adaptive Compression for Remote Visualization

Zoran Constantinescu*, Monica Vlădoiu**

* ZealSoft Ltd., str. Tg. Neamţ, nr. 11, Bucharest
e-mail: zoran@unde.ro

** Petroleum –Gas University of Ploieşti, Informatics Department, Bd. Bucureşti, 39, Ploieşti
e-mail: mmvladoiu@acm.org

Abstract

Remote visualization techniques that use client-server environments allow users to access large datasets.
One possible solution for remote visualization is the use of compression techniques, in which images are
generated and compressed at the servers’ side and then the encoded images are transferred over a data
network, decompressed and displayed at the clients’ side. In this paper we propose an adaptive algorithm
based on reinforcement learning for choosing one of the available compression methods in order to
maximize the frame rate. Our experiments show that such an algorithm can work in a dynamic and
uncertain environment, consisting of a visualization server, a visualization client, and a network for
transferring the compressed images between the server and the client.

Key words: adaptive compression, reinforcement learning, remote visualization

Adaptive Compression for Remote Visualization

Remote visualization techniques that use client-server environments allow users to access large
datasets. One possible solution for remote visualization is the use of compression techniques, in
which images are generated and compressed at the servers’ side and then the encoded images
are transferred over a data network, decompressed and displayed at the clients’ side. One of the
problems in remote visualization is how to increase the frame rate for the user [7, 11].
A possible solution is to reduce the amount of data transferred over the network, in our case to
choose an efficient compression algorithm. However, the better a compression algorithm is, the
more computing is necessary for both compression and decompression, increasing the time
needed to process the image. The choice of the most efficient compression depends also on the
content of the image [14]. Therefore we propose an innovative intelligent adaptive compression
method for selecting different image compression algorithms for remote visualization. The
selection is made based on the performance of previously compressed frames and network
transfer delays. A reinforcement learning technique to select the compression algorithm for each
individual frame is used. The algorithm was tested using the SGI OpenGL Vizserver [25], but it
can be easily adapted to other remote visualization systems.

Transferring the full data set to the researcher’s desktop for visualization purposes is most of the
time impossible, due to the lack of memory and storage space of local desktop computers [1, 2,
5]. Scientific Visualization research applies a client-server approach to this problem [10].
Remote visualization can be done using different strategies. In a first scenario, the server

50 Zoran Constantinescu, Monica Vlădoiu

renders the images and streams them to the client. In a second scenario, the server is doing some
of the rendering calculations, such as geometry transformations or visibility determination,
while the client is doing the final rendering. Another scenario has the client doing all the
rendering computations. Each of these scenarios has tradeoffs. For example, performing the
rendering completely on the client side requires high-end desktop computers, not always
available to researchers. Performing some of the rendering on the server can greatly improve the
visualization, however the low-end client resources may not provide sufficient power to finish
the rendering in time [12].

In the rest of this paper we consider only the first scenario, where the server is doing all the
computations including the rendering, and the client is responsible only with the display of the
final image. Image streaming makes possible remote visualization using low-end desktop
computers (thin clients), and can be made independently from any visualization algorithm used.
However, image streaming can require significant network bandwidth. For example, if the
resolution of displayed image is 640x512 pixels with 4 bytes for the RGB colors and the alpha
channel, then the size of such an image is 1.25 MBytes. The maximum theoretical frame rate,
which can be obtained using a 100 MBps bandwidth network, is 10 frames per second,
considering that the full bandwidth could be used. If we consider remote visualization over a
wide area network, then the achievable frame rate will be much lower.

One possible solution to this problem, when using image streaming over the network, is to use
compression algorithms. The server renders the image, then compresses that image and sends it
over the network. The client is then responsible for decompressing the encoded image and
displaying it. Using different compression techniques for the images, the amount of data
transferred over the network can be significantly reduced. How much an image can be
compressed depends essentially on the image content [13, 21]. This means that by using
different compression algorithm for the same image, different compression rates can be
obtained. The problem is to find an automatic way of selecting the right compression algorithm.
Different methods that are based on analyzing the image and on using the compression
algorithm that gives the best-compressed size are presented in the literature [14, 15, 16, 17].
However, most of these methods can be used only for certain types of images.

In this work we present an algorithm for selecting the compression methods during a remote
visualization session without analyzing the content of the image. We propose an adaptive
algorithm for dynamically selecting one of the compression algorithms to be used for each
individual frame. The selection is done using a reinforcement-learning algorithm, and it is based
on different performance measures from the environment: past and present frame rates,
compressed image sizes, compression times, estimated bandwidth. The compression method
that increases the overall frame rate is chosen. However, from time to time, other compression
methods are also used for short periods of time, in order to estimate the potential benefit of
selecting them.

Reinforcement learning is a computational approach to learning whereby an agent tries to
maximize the total amount of reward (the frame rate in our situation) it receives when acting
with a complex, uncertain environment [18]. As opposed to other machine learning methods, in
this method the learner is not told which actions to take, but instead must discover which actions
yield the most reward by trying them. In many cases, the actions may affect not only the
immediate reward, but also the next situation and, through that, all subsequent rewards.

Related Work

Renderer implementations exploiting image compression have mostly adopted relatively simple
lossless schemes, which rely on frame differencing and run-length encoding. While these
techniques can deliver acceptable frame rates over LANs, their compression ratios are highly

 Adaptive Compression for Remote Visualization 51

dependent on image content, and are insufficient in slower networks. SGI OpenGL Vizserver is
a product developed by Silicon Graphics, Inc., to enable remote-visualization applications [26].

Fig. 1. Remote Visualization

Specifically, OpenGL Vizserver is designed to provide users remote access to graphics pipelines
of Onyx2 Infinite Reality machines so that they may view rendered output from visualization
applications at geographically remote locations while utilizing the powerful pipeline and
memory of an Onyx2 machine located at a some centralized place. OpenGL Vizserver uses
programmable compression modules to compress and decompress frames of the rendered scene.
It comes with five standard modules (CCC, ICC, SCC, SICC, LCC) and an API that provides
the capability to develop new modules with user defined functionality. Each compression
module has the capability of taking advantage of frame-to-frame coherency inherent in most
visualizations by implementing an inter-frame compression scheme where only the changing
portions of each frame are compressed and sent to the clients. The CCC, ICC, SCC, and SICC
compression modules implement lossy compression algorithms. These four schemes are derived
from the Block Truncation Coding (BTC) algorithm that compresses a 4x4 pixel block down to
two colors plus a 4x4 pixel mask. In addition to lossy compressors, there is also a lossless
compression module called LCC. This preserves the original image quality while still saving
bandwidth. In many cases the savings are as high as 4x without any reduction in image quality.

A similar framework exists which provides remote control to Open Inventor or Cosmo3D based
visualization applications [4]. It allows transparent access to remote visualization capabilities
and allows sharing of expensive resources. A visualization server distributes a visualization
session to Java based clients by transmitting compressed images from the server frame buffer.
Visualization parameters and GUI events from the clients are applied to the server application
by sending CORBA (Common Object Request Broker Architecture) requests. Both of these two
solutions require the user to explicitly select the compression algorithm to be used. In most of
the situations, the user does not have any knowledge about the compression algorithm.

An adaptive compression algorithm for medical images was presented in [6]. The adaptive
algorithm presented is based on a classification of digital images into three classes and followed
by the compression of the image by a suitable compression algorithm. The content of the image
is analyzed based on a validation of the relative number and absolute values of the wavelet
coefficients. A comparison between the original image and the decoded image will be done by a
difference criteria calculated by the wavelet coefficients of the original image and the decoded
of the first and second iteration step of the wavelet transform.

Compression of images was used in [8, 9] for visualizing time varying volume data over a wide
area network. The rendering was done on a remote parallel computer and compression of the
images was used for significantly reducing the cost of transferring output images from the
parallel computer to the local display. They used lossy compression methods combined with
lossless compression methods, which were capable of providing acceptable image quality for

52 Zoran Constantinescu, Monica Vlădoiu

many applications, while retaining desirable properties such as efficient parallel compression
and fast decompression. They experimented with different combinations of the JPEG, BZIP and
LZO compression algorithms, and then selected the combination of JPEG and LZO as giving
the best frame rates for their system.

Image Compression

The use of image compression algorithms can significantly improve the amount of data
transmitted over the network. All compression algorithms are based on the same principle:
compressing data by removing redundancy from the original data. Any non-random collection
data has some structure, and this structure can be exploited to achieve a smaller representation
of the data, where no structure is discernible. This is the case of using lossless compression
algorithms. An important feature of image compression is that in many situations it can be
lossy, being acceptable to lose image features to which the human eye is not sensitive. Images
can be loss compressed by removing irrelevant information even if the original image does not
have any redundancy [15, 23, 24].

Different image compression algorithms can be used for different types of images. Each type of
image may feature redundancy, but they are redundant in different way. This is why any given
compression method may not perform well for all images, and why different methods are
needed to compress the different image types. The choice of the best algorithm is not trivial,
most of the time requiring a certain experience with the algorithms. During a visualization
session, the type of image can also change, making even more difficult to choose the
appropriate algorithm. One important factor, which is important in choosing the compression
algorithm, is the amount of computation needed for both compressing and decompressing the
image. More efficient algorithms, capable of generating smaller compressed images are usually
requiring more CPU power. This becomes very critical, especially for high-resolution images.
There is a tradeoff between the amount of computation time needed to generate the compressed
image and the amount of time used to transfer it over the network.

There are cases when an investment in a more efficient compression algorithm can result in a
higher frame rate, especially when the remote visualization is done over low bandwidth
networks. In many situations, the actual network bandwidth available, which can be used, is less
that the maximum bandwidth. This is the case when the remote visualization is done without
having a dedicated network connection between the visualization server and client, especially
when using wide area networks for visualization over long distance [20]. An additional problem
is that this available network bandwidth can change significantly during a remote visualization
session. This can be due to other data traffic in the network.

For our study, we used four lossless compression algorithms. The choice was mainly made
based on the performance of these algorithms for general image compression and the
availability of optimal implementations as software libraries. The first algorithm (ZLIB) is the
so-called ”deflation” algorithm, which is used in the popular programs zip and gzip. This is a
dictionary based compression method: it selects strings of symbols and encodes each string as a
token using a dictionary. It is based on the LZ77 compression method combined with static
Huffman encoding. The compression time and image sizes are pretty good, however for certain
image type compression can be very poor. The second algorithm called Lempel-Ziv-Oberhumer
(LZO), an optimized dictionary based method, which is more suited for real-time compression-
decompression. It offers pretty fast compression and very fast decompression, however it favors
speed over compression ratio. The resulting compressed images can be very large, thus
increasing the transfer time over the network. The third algorithm used (BZIP2) is based on the
Burrows-Wheeler method, which is a compression method using block sorting. The input
stream is read block by block and each block is encoded separately as one string. The main idea

 Adaptive Compression for Remote Visualization 53

is to start with a string S of “n” symbols and to scramble (permute) them into another string L,
which satisfies: (1) any area of L will tend to have a concentration of just a few symbols; (2) it
is possible to reconstruct the original string S from L. The method is a general-purpose method,
which works well on images and can achieve very high compression ratios. The disadvantage of
this algorithm is that it requires a lot of computing, both compression and decompression being
slow. Since the algorithm is compressing individual blocks independently, it is possible to use a
parallel version of the compression to reduce the time. The last algorithm we used is a simple
Run Length Encoder (RLE). The idea behind this approach is the following: if a data item d
occurs n consecutive times in the input stream, replace the n occurrences with the single pair nd.
This is well suited for certain types of images, with large areas containing the same pixel value.
The size of the compressed stream depends on the complexity of the image. The more detail we
have, the worse the compression is. The algorithm being extremely simple, very efficient
implementations could be implemented. It is also well suited for a parallel encoding.

Reinforcement Learning

Reinforcement learning is a computational approach for goal directed learning from interaction
[18]. The learner is not told which actions to take, but instead must discover which actions yield
the most reward by trying them. Reinforcement learning is different from supervised learning,
the kind of learning from examples provided by a knowledgeable external supervisor. In
interactive problems it is often impractical to obtain examples of desired behavior that are both
correct and representative of all the situations. In uncharted situations, where one would expect
learning to be most beneficial, an agent must be able to learn from its own experience.

In reinforcement learning, the learner and decision maker is called the agent. The thing it
interacts with, comprising everything outside the agent, is called the environment. These interact
continually, the agent selecting actions and the environment responding to those actions and
presenting new situations to the agent. The environment also gives rise to rewards, special
numerical values that the agent tries to maximize over time. More specifically, the agent and
environment interact at each of a sequence of discrete time steps, t. At each time step t, the
agent receives some representation of the environment’s state, st, and on that basis selects an
action, at. One time step later, in part as a consequence of its action, the agent receives a
numerical reward, rt+1, and finds itself in a new state, st+1. At each time step, the agent
implements a mapping from states to probabilities of selecting each possible action.

Fig. 2. The agent environment interaction

This mapping is called the agent’s policy. Reinforcement learning methods specify how the
agent changes its policy as a result of its experience. The agent’s goal, roughly speaking, is to
maximize the total amount of reward it receives over the long run. One of the challenges that
arise in reinforcement learning is the trade-off between exploration and exploitation. To obtain a
lot of reward, a reinforcement agent must prefer actions that it has tried in the past and found to
be effective in producing reward. But to discover such actions, it has to try actions that it has not
selected before. The agent has to exploit what it already knows in order to obtain reward, but it
also has to explore in order to make better action selections in the future. The agent must try a
variety of actions and progressively favor those that appear to be best.

54 Zoran Constantinescu, Monica Vlădoiu

Another key feature of reinforcement learning is that it explicitly considers the whole problem
of a goal-directed agent interacting with an uncertain environment. All reinforcement-learning
agents have explicit goals, can sense aspects of their environments, and can choose actions to
influence their environments. It is usually assumed that the agent has to operate despite
significant uncertainty about the environment it faces.

Adaptive Compression

The adaptive compression algorithm that we propose uses a reinforcement algorithm as
presented in the previous section. We consider the frame rates as the rewards for each time step.
An example of frame rate variation during a typical visualization session is shown in Figure 3.
The figure shows the current and average frame rates obtained by using the RLE (Run Length
Encoding) compression algorithm for two situations: one 100 MBps and one 10 MBps network
connection of the client to the LAN. There are large variations in the current frame rate,
especially when there is enough available network bandwidth (in the left and right regions of the
figure). The average is done using the last ten frame rates.

Due to these large variations, the algorithm is making the selection of the compression
algorithm based on these average values. For each selected compression method, at least 10
frames will be rendered using this method, providing this way a better estimate of performance
of the algorithm.

Fig. 3. Frame rate variations and average

The adaptive algorithm works as follows (see Figure 4): it starts with one of the compression
methods (LZO in our case) and it uses it for the next 10 frames to get an estimate of its
performance. After that, it tries in a similar way the other compression methods, and when all
the methods are tested it chooses the best of the algorithms. From time to time, another
compression method, different from the current one, is selected randomly and evaluated. If the
new method is providing a better performance, i.e. increased frame rate, then it is selected as the

 Adaptive Compression for Remote Visualization 55

next compression method. We used an interval of 50 frames between trying another
compression method.

Fig. 4. The adaptive algorithm

Experimental Results

We conducted tests using an SGI Onyx2 2400 parallel computer as the remote visualization
server. This computer consists of 32 R12000 RISC processors at 300 MHz, with a total memory
of 16 GBytes and two Infinite Reality3 graphic pipelines. For the local visualization client we
used a desktop PC with a Pentium 3 processor, running Linux (with a 2.4.19 kernel) at 500
MHz, with 256 MBytes of memory. As a remote visualization system, we used the SGI
OpenGL Vizserver software, which allows remote rendering of the images on the SGI server,
which are then compressed and sent over the network to the client for display (Figure 5). The
SGI Vizserver offers an API for writing additional compression modules. We implemented four
compression modules using the four lossless methods described in section 3. These modules are
basically wrappers for existing software libraries, which implement the compression methods.
The modules give a simple interface to both the compression and decompression, which is used
by the adaptive algorithm [3]. This is implemented as a compression module for the SGI
Vizserver using the development API provided with the software. The adaptive algorithm was
implemented using the C++ programming language.

Fig. 5. Vizserver architecture

We have chosen the SGI Vizserver for several reasons. Firstly, because we have had access to
an SGI parallel visualization server which had it available, and second, because the API used for
the compression modules is very simple, making it very easy the implementation of different
compression techniques. Another reason was that the use of the Vizserver is transparent to the
applications. There was however some problems we experienced. One of them is that the
version we have been using (3.1 beta) is quite unstable. We have experienced many crashes of
the server software while developing and experimenting with different compression algorithms.
One of the disadvantages in using SGI Vizserver is that the server hardware must be an SGI

56 Zoran Constantinescu, Monica Vlădoiu

computer. However, both the algorithm for the adaptive compression and the four compression
modules that we propose are very easy to adapt to other similar remote visualization systems,
due to the modularity of their implementation. One possible useful parameter we did not have
access to while using the SGI Vizserver framework was the effective time required for sending
each of the compressed frames over the network. The only available parameters we could use
were the compression time for the frames and the time between two consecutive calls for the
frame compression algorithm.

In our experiment, the size of each frame was 640x512 pixels with 4 bytes per pixel (RGB plus
alpha channels). We used the Volview program for visualizing a volume data set of 256x256x77
voxels of a CT scan. The Volview is part of the SGI Volumizer2 software, and uses hardware
accelerated 3D texturing for volume visualization. This is a direct data visualization technique
that uses textured data slices, which are combined in a specific order using a blending operator.
This technique takes advantage of graphics hardware and resources by using OpenGL
3D-texture rendering, allowing applications to obtain high interactive performances. The
experiments were conducted using two different network connections between the client and the
100 MBps LAN containing the server. In the first situation, we connected the client using a 100
MBps network card to the LAN. In the second situation, we used a 10 MBps network card for
connecting the client. Using a modified version of the Volview program, we recorded the
translation and rotation vectors of the volume data for each frame generated during a typical
interactive visualization session. We then played back the same session using the four different
compression methods and then the adaptive algorithm. Frame rate averages for the two network
connection situations, for all five situations are presented in Figure 6 and Figure 7.
In both situations, the adaptive algorithm (adap) is searching for the best algorithm in the
beginning, thus giving low frame rates. However, when it finds the best algorithm, it keeps it for
the rest of the visualization session.

Fig. 6. Average frame rate - 100 MBps network

 Adaptive Compression for Remote Visualization 57

Fig. 7. Average frame rate - 10 MBps network

Conclusion

In this paper we presented an adaptive algorithm based on reinforcement learning for choosing
one of the available compression methods in order to maximize the frame rate. Our experiments
show that such an algorithm can work in a dynamic and uncertain environment, consisting of a
visualization server, a visualization client, and a network for transferring the compressed images
between the server and the client. One of the problems we experience with the current algorithm
is that, in certain situations, one of the compression methods, which are evaluated by the
adaptive algorithm, is giving really poor frame rates. This affects the interactive responsiveness
of the application. One possible improvement of the algorithm would be to use a different
selection algorithm for evaluating the next possible method, by making actions, which give
small rewards to be less likely to occur. In this way, compression methods, which give poor
frame rates, will be less probable to be selected in the future.

The modules for the compression methods and the adaptive algorithm are available for

References

1. B e d e r s o n , B . , S h n e i d e r m a n , B . - The craft of information visualization: readings and
reflections, Amsterdam, Boston, Morgan Kaufmann, 2003

2. B o n n e a u , G . - P . , E r t l , T . , N i e l s o n , G . M . - Scientific Visualization: the visual
extraction of knowledge from data, Berlin, Springer-Verlag, 2006

3. C o n s t a n t i n e s c u , Z . - A Desktop Grid Computing Approach for Scientific Computing and
Visualization, PhD Thesis, Norwegian Univ. of Science and Technology, Trondheim, Norway, 2008

download, both as source code and binary at the following web site: http://www.unde.ro/zoran/vizserver/

58 Zoran Constantinescu, Monica Vlădoiu

4. E n g e l , K , S o m m e r , O . , E r t l , T . - A Framework for Interactive Hardware Accelerated
Remote 3D-Visualization, Proceedings of TCVG Symposium on Visualization – VisSym, 2000

5. H a n s e n , C . D . , J o h n s o n , C . R . - The Visualization Handbook, Boston, Elsevier-
Butterworth Heinemann, 2005

6. H l u d o v , S . , S c h r ö t e r , C . , M e i n e l C . - Adaptive Compression of Image Data,
Proceedings of SYBEN 1998, Broadband Networks, Zürich, Switzerland, 1998

7. K a u f m a n , A . , N i e l s o n , G . M . - Visualization '92: Proceedings, October, Boston,
Massachusetts, IEEE Computer Society Press, 1992

8. M a , K.-L. - Visualizing Time-Varying Volume Data, Computing in Science and Engineering, vol. 5,
no. 2, pp. 34-42, Mar./Apr. 2003

9. M a , K.-L., C a m p , D . M . - High performance visualization of time-varying volume data over
a wide-area network status, Proceedings of the 2000 ACM/IEEE conference on Supercomputing

10. N i e l s o n , G . M . - Visualization in Scientific and Engineering Computing, Computer, 21,
pp. 58-66, 1991

11. N i e l s o n , G . M . , B e r g e r o n , D . - Visualization '93: Proceedings, San Jose, California,
IEEE Computer Society Press, 1993

12. N i e l s o n , G . M . , H a g e n , H . , M ü l l e r , H . - Scientific Visualization: Overviews,
Methodologies, and Techniques, Los Alamitos, California, IEEE Computer Society, 1997

13. P a t r i k a l a k i s , N . M . - Scientific Visualization of Physical Phenomena, Tokyo, New York,
Springer-Verlag, 1991

14. R e e d , T . R . - Digital Image Sequence Processing: Compression and Analysis, CRC, 2004
15. S a l o m o n , D . , M o t t a , G . - Handbook of Data Compression, 5th ed., ISBN: 978-1-84882-

902-2, 2010
16. S a y o o d , K . - Introduction to Data Compression, 3rd Edition, Morgan Kaufmann Series in

Multimedia Information and Systems, 2005
17. S h i , Y . Q . , Sun, H. - Image and Video Compression for Multimedia Engineering: Fundamentals,

Algorithms, and Standards, 2nd Edition, CRC, 2008
18. S u t t o n , R . S . , B a r t o , A . G . - Reinforcement Learning: an Introduction, Cambridge,

Massachusets, MIT Press, 1998
19. U t n e s , T . , B r o r s , B . - Numerical Modelling of 3-D Circulation in Restricted Waters,

Applied Mathematical Modelling, 17, pp. 522-535, 1993
20. W a r e , C . - Information Visualization: Perception for Design, San Francisco, Morgan Kaufman,

2004
21. W r i g h t , H . - Introduction to Scientific Visualization, New York, Springer, 2007
22. T h a l m a n n , D . - Scientific Visualization and Graphics Simulation, Chichester England, New

York, Wiley, 1990
23. T u f t e , E . R . - Visual Explanations Images And Quantities, Evidence And Narrative, Cheshire,

Connecticut, Graphics Press, 1997
24. T u f t e , E . R . - The Visual Display Of Quantitative Information, Cheshire, Connecticut, Graphics

Press, 2001
25. * * * - Silicon Graphics, http:\\www.sgi.com, accessed 2009

Compresie adaptivă pentru vizualizare la distanţă

Rezumat

Tehnicile de vizualizare la distanţă care folosesc medii client-server permit utilizatorilor să acceseze
seturi de date de mari dimensiuni. O soluţie posibilă pentru vizualizarea la distanţă este folosirea
tehnicilor de compresie, în care imaginile sunt generate şi comprimate pe server şi apoi imaginile
codificate sunt transferate prin reţea, decomprimate şi afişate la clienţi. În această lucrare propunem un
algoritm adaptive bazat pe învăţare prin întărire pentru a alege una dintre metodele de compresie
disponibile pentru a maximiza numărul de cadre pe secundă. Experimentele efectuate arată că un astfel
de algoritm poate lucra într-un mediu necunoscut, dinamic, constând dintr-un server de vizualizare, un
client de vizualizare şi o reţea pentru a transfera imaginile comprimate dintre server şi client.

