
viztop – Intuitive Visualization of Remote

Real-Time Monitoring of Linux Processes

 Zoran Constantinescu

Dept. of Computer Science and Information Technology

UPG University of Ploiesti

Ploiesti, Romania

zoran@unde.ro

Monica Vladoiu

Dept. of Computer Science and Information Technology

UPG University of Ploiesti

Ploiesti, Romania

monica@unde.ro

Abstract—We introduce our tool for intuitive visualization of

remote monitoring of processes’ dynamic in a running Linux

operating system, in real-time. It provides for overcoming the

limitations of text-based process monitoring commands or tools

available in current Linux distributions. It can display, via a web

browser, the processes existing at any given time, in a running

operating system, using a graph of interconnected nodes

(processes, threads). Visual cues are used for representing

different information, a large amount being available to the user,

in a much easier way to understand than in text based tools.

As processes are created, terminated, or they change state, the

nodes in the process graph are added, removed, or change shape,

color, size, line type, etc. The relations between processes are also

shown. There is a strong correlation between the visual elements

and the features of monitored processes. This tool provides both

the big picture with regard to resources’ usage in a computer

system and plenty of useful details for improving system

administration and performance. It can be also a valuable

educational tool for learners, helping them to understand the

dynamics of processes in operating systems.

Keywords—visualization of processes’ dynamic in operating

systems; remote, real time monitoring; operating system education

I. INTRODUCTION

Visualization is an important asset to be used in instruction
and education, in general. It can significantly contribute to
increasing of both the efficiency and efficacy of the
educational processes. Computer Science education, in
particular, can benefit incredibly for incorporating
visualization tools, both generic and custom made, in day to
day teaching and learning activities [1-4].

Literature on this subject is abundant and shows using of
visualization in various aspects of CS education, such as
algorithm animations [2], theoretical Computer Science [3],
security [5], key concepts in learning programming [6],
computer architecture and organization [7], and many more.

In our department, we coordinate two study programs in
Computer Science (bachelor and master). Finding ways to
improve students instruction is a constant concern, and our
work presented here subscribes to this goal. We aim to provide
for improving understanding of dynamic of processes in
Operating Systems (OS) by means of an in-house developed
application, called viztop. It allows intuitive visualization of
remote monitoring of the dynamic of processes in a running

Linux operating system, in real-time. Viztop provides for
overcoming the limitations of the text-based process
monitoring commands or tools available in current Linux
distributions. Thus, it can display, from anywhere in the
Internet, via a web browser, the processes that exist at any
given time in a running operating system using a graph of
interconnected nodes (both processes and threads). Visual
cues are used for representing different information about
these processes and threads, such as shapes, colors, size, text,
lines, etc. These cues allow a large amount of information to
be shown to the user, in a much easier way to understand,
when compared to classic text-based tools from Linux (ps, top,
etc.). As processes are created, terminated, or they change
state, the nodes in the process graph are added, removed, or
change shape, color, size, line type, and so on. The relations
between processes are also shown. There is a strong
correlation between the visual elements and the characteristics
of the monitored processes. This tool can be valuable for
students and other learners, helping them to easily understand
the dynamics of processes in OS, in real time. Nevertheless,
the knowledge obtained can be used to improve system
administration and performance, because it offers both the big
picture, with regard to resources’ usage in a computer system,
and, at the same time, plenty of useful details.

The main contributions of this work are as follows:
a comparison between similar tools based on a list o specific
criteria (from which resulted the viztop’s requirements), and
the viztop tool itself, which goes significantly further other
similar tools, with its dual benefits for OS education and
administration. The next section includes the related work,
both in the literature and in practice, while the third one
presents the main aspects related to the development and use
of viztop. The last section is dedicated to the conclusions and
future work.

II. RELATED WORK

The work related closely with ours is rather scarce, up to
our knowledge, this being the main reason we have started the
current endeavor, in the first place. Nevertheless, intuitive and
comprehensive visualization of processes, connexions, traffic,
load, resource usage in computer systems and networks, in
general, is a hot topic in both the literature and the practice.
Both aspects will be addressed further on.

A. Related work in the literature

We present first related work, in which the authors have
been concerned with going further than just using existing
visualization tools for illustrating specific aspects of computer
systems and networks, either by developing new tools or by
enhancing existing ones.

In [8-10], the task of representing flows in networks is
approached, considering the multifold challenges, i.e. different
flows typically traverse the same edges, flows may split and
join again along their routes, and some flows may even go so
far as to traverse the same nodes and edges several times.
The authors acknowledge the limitations of traditional
2D visualization. For example, they tend to exhibit readability
problems, in case of many flows traversing a single edge.
To address these shortcomings, they propose a novel
2.5D metaphor that, instead of drawing flows as parallel
curves on the plane, uses the third dimension to stack the
flows one above the other. Their approach is implemented in a
tool, the latest version being BGPlay3D that is a web
application that allows change visualization in BGP routes
associated with an Internet number resource (IP prefix or
origin AS). It provides a graphical illustration of the links
across all AS paths between the BGP collection points and the
target resource(s). Without it, understanding the AS level
topology from data repositories would be really difficult.
A BGP hijacking simulation is also provided [9].

In [11], the authors show how graphs can be used as an
effective modeling tool in computer security. They survey a
large variety of fundamental security and privacy issues
(network traffic monitoring, intrusion detection, vulnerability
analysis, forensic analysis, authentication, access control,
privacy compliance, and trust negotiation) addressed in their
related work by several classic graph drawing techniques, such
as force directed, layered drawing, bipartite drawing, treemap,
circular, and 3D, and implemented in visualization prototypes.

Using process graphs for illustrating visualization
exploration is shown in [12]. Visualization exploration is an
iterative process of setting parameters, rendering, and
evaluating results. A case study on how visualization graphs
were used to improve a network visualization tool (the
OASCBrowser [13]) is also presented. The OASCBrowser is a
tool for visually detecting anomalies in internet routing
information. It displays different types of changes to
ownership of autonomous systems (called OASC events),
which are labeled with different colors. It allows browsing
through recorded dates with different types of AS changes
highlighted. Anomalies are found by visually searching the
dates for unusual patterns. The authors show that, trough this
analysis, redundant exploration has been quickly identified
and eliminated.

Rivet is a visualization system for studying complex
computer systems [14]. Its main design goal has been to
support the rapid development of interactive visualizations
capable of visualizing large data sets because it is a well-
known fact that computer systems analysis and visualization is
an unpredictable and iterative process. The main capabilities
are its support for many data sources, interactivity,
composition, and user-defined data transformations. Several

case studies of computer systems visualizations generated
within Rivet, including on parallel systems, superscalar
processors, and mobile network usage, are available as well.

Other related work is concerned with using visualization to
improve teaching and learning of operating systems. We
present further here some papers on this subject.

A very interesting original research is shown in [15]. First,
the authors acknowledge that the major challenge in teaching
operating systems is the complex, intangible, and
nondeterministic nature of an actual computer system
containing many cores operating in parallel. Under the
umbrella of constructivism, the students participating in their
study are invited to visualize the effect of running their own
programs at OS level. Participants can thus observe the
duration of underlying system calls and the actual scheduling
performed by the operating system that is otherwise hidden.

The authors also performed various experiments to make
the students aware on the impact of design choices on
performance. Before this study, simulators or programming a
small scale OS have been used to that outcome. However, the
time dimension of an actual system lacked. Using
visualization tools (control flow view being the main one) has
allowed construction of an abstract mental model of the
system, including the time dimension. The main shortcoming
of their approach is that students have been overwhelmed by
specific technical details related to usability of visualization.
In our view, this may be due to the fact that they used many
tools at once (such as Eclipse or LTTng), or even more
instances of the same tool (Eclipse as IDE and for tracing).

In [16], a comparison of using MLFQ and CAMERA
visualization tools in OS classes is provided, as well as an
evaluation of student performance in those classes. The learner
engagement with visual technology in this study at the
“viewing” (passive form of engagement), “responding”
(answering to questions about the visualization), and
“changing” (modifying the visualization) levels are compared.
Their results show that learning improves as the level of
student engagement with visualization technology increases.

B. Related work in practice – a discussion

This section includes a discussion on UNIX/Linux tools
used for system administration. More, a comparison between
similar tools, based on a set of specific criteria (that have been
the requirements for viztop) is also shown in Table 1.

General UNIX/Linux tools for statistics. One of the most
used tool for showing processes in Linux is ps, which displays
a snapshot of the current processes with detailed information
about them (process id, cpu usage, memory size, state, owner,
tty, etc.). There are plenty of tools giving details of different
resources used in the system: netstat for network connections,
routing tables, interface statistics, masquerade connections,
ss for dumping socket statistics, TCP and state information,
vmstat for reporting information about processes, memory,
paging, block IO, traps, disks and cpu activity, vnstat for
network traffic monitoring of each interface, iostat command
for monitoring system input/output device loading by
observing the time the devices are active in relation to their
average transfer rates, dstat for generating system resource

statistics allowing the view of system resources instantly, and
ifstat for network interface statistics, showing the difference
between the last and the current call. All these tools are part
of the operating system itself or come as open-source
applications. They are text-based and used for fast console
inspection, usually giving a snapshot of the system at the
execution time, and some of them offer also a simple periodic
display with updates of the parameters [17].

UNIX/Linux tools for real-time monitoring of system
parameters. The classic tool used is top that provides a
dynamic real-time view of a running system. It can display
summary system information as well as a list of processes or
threads currently being managed by the kernel. Over the time,
alternatives to this tool emerged: atop, htop, vtop, etc. There
are also similar tools for dynamic monitoring of I/O requests
(iotop, iptraf) or process based network traffic (nethogs),
network connections on each interface (iftop), or for
monitoring specific parameters for applications, e.g. databases
– mytop for MariaDB server performance, or innotop for
MySQL/MariaDB InnoDB transactions monitoring. There are
also tools for combined monitoring of more parameters like
glances (processes, I/O requests, networking) or tools capable
also of collecting performance data like nmon [17].

RRDtool is an open source integrable tool for handling
time series data such as network bandwidth, temperatures, or
cpu load, where the data is stored in a circular buffer-based
database with a fixed storage footprint over time. It can log
and graph different parameters in time [18].

Cacti is an open source, web-based, complete network
graphing solution designed to harness the power of RRDTool's
data storage and graphing functionality. It includes a fully
distributed and fault tolerant data collection framework,
advanced template-based automation features for devices,
graphs, and trees. It can be used not only as a performance
management tool, but also for fault management, log
management, device discovery, router configuration backup,
network mapping, and NetFlow data collection and display.
Similar tools are Observium (open source and commercial)
and LibreNMS (open source), as low-maintenance auto-
discovery network monitoring platforms supporting also a
large variety of devices. All these tools offer only limited
information about the processes in each of the monitored
systems, and only as high level load or number of processes,
without any detailed data about each of the running processes,
inter-relations, or their dynamics. Additional scripts or plugins
can be written to monitor specific applications [19-21].

PRTG is a network monitoring solution for a central
information point for all applications and services in a
network. It continuously monitors the performance of
applications by means of specialized software sensors, which
reports inconsistencies in the normal execution when a service
is unavailable, or over a specified threshold. PRTG has a lot of
in-built tools such as packet sniffing software, jFlow/sFlow
monitoring, firewall and IP monitoring, and even a network
discovery and diagnostic tool to automatically locate network
devices and optimize their troubleshooting [22-23].

Netdata is a system for distributed real-time performance
and health monitoring. It allows collecting real-time metrics,

such as CPU usage, disk activity, bandwidth usage, website
visits, etc., and displays them on-the-fly, in live, easy-to-
interpret, charts on web based dashboards, allowing the user to
obtain an overview of what is happening in their system or
application. The application plugin can break down system
resource usage to processes, users and user groups, and can
iterate through the whole process tree, collecting resource
usage information for every configured running process, then
present it in charts, and track them through time [24].

Grafana is an open source visualization and analytics
platform that unifies data sets into an interactive diagnostic
workspace. It is built on a plug-in architecture that allows
interaction with the underlying data sources without creating
data copies. Grafana provides charts, graphs and alerts in a
modern web interface [25].

EtherApe is a graphical network monitor for Unix with an
X-Windows user interface. It features link layer, IP and TCP
modes, and displays network activity graphically. Hosts and
links change in real time in size with traffic, while protocols
are displayed color coded. It can filter traffic to be shown, and
can also read packets from a file as well as live from the
network [26]. A similar tool is Kibana, a data navigation and
visualization application that is used with the open-source
ElasticSearch, and as part of the ELK (ElastiSearch, Logstash,
Kibana) stack. Kibana is the method through which users
control their ElasticStack, as well as visualize the data coming
from it, usually by means of analyzing systems logs that list
and describe system events [27]. Visualization is interactive
using histograms, line graphs, pie charts, sunbursts, time
series, etc. Both tools offer a modern web interface.

Nagios is one of the oldest network monitoring tools. It
has a free version, Nagios Core, and a payed one, Nagios XI.
Nagios monitors the network for problems caused by
overloaded data links or network connections, as well as
monitoring routers, switches and more, allowing users to gain
real-time visibility into the status of each network device. The
information is presented by means of a web server [28].

Solarwinds SAM (Server and Application Monitor) is a
server monitoring and reporting tool, providing server,
application, virtualization, and infrastructure monitoring
capabilities, through a single web console. It provides custom
collections of templates, application monitors, and alerts, to
intelligently monitor application status and issues, monitor
different application types including application servers,
authentication servers, database servers, etc. [29].

Further, a comparison between these tools is provided.
The criteria used to compare their features are rooted in the
services they provide (Table 1): (1) basic, text-based process
monitoring, (2) intuitive representation of information, using
rich visual cues, (3) representing the processes’ dynamic and
the relations between them (4), in real-time (5), (6) a bird’s
eye view and a close range one (7), potential for educational
use (8) and cost (9). These have also been the requirements
taken into account in viztop development because, as it can be
seen, none of them checks all the boxes.

http://www.rrdtool.org/

processes

monitoring
visual dynamics relations real-time bird's eye details education free

Linux tools

for statistics
yes

limited
(color)

snapshot no no partially yes limited free

Linux tools

for monitoring

yes

load, count

limited

(color)

periodic

updates
partially yes partially yes yes free

RRDtool load, count limited time plots no no no no not built-in free

Cacti,

Observium,

LibreNMS

load, count web time plots no no yes no not built-in free

PRTG load, count web
time plots

gauge
no yes yes no not built-in paid

Netdata possible web
time plots

gauge
no yes yes partial not built-in free

Grafana,

Kibana
load, count web

time plots
gauge

no yes yes no not built-in free

EtherApe no GUI graph no yes yes
network
only

yes free

Nagios Core,XI possible web
time plots
gauge

no yes yes partial not built-in
free
paid

Solarwinds

SAM

unable to
asses

web
time plots
gauge

no yes yes partial not built-in paid

Table 1. Comparison of the main tools for UNIX/Linux monitoring

III. VIZTOP – THE APPLICATION DEVELOPMENT AND USE

The main goal of the viztop application is to provide for
intuitive visualization of remote monitoring of the dynamic of
processes in a running Linux operating system, in real-time.
It has two components, a backend application for collection of
the information about running processes in the system, and a
frontend for the visualization of this information.

The viztop backend consists of an application written in
standard C for Linux, which periodically scans the /proc
filesystem for all the processes in the system. It stores in
memory information about all these processes, their states, and
different data about resource usage, open files, network
connections, etc. The backend contains also a websocket used
for sending updated data to the frontend. For optimization
purposes and to reduce the volume of transferred data, the
backend only sends relevant updates about the processes, e.g.
new processes, ended processes, changes or information of a
process’s state. Data is also compressed, to further reduce the
data transferred and to allow higher update rates to the user.
The backend allows multiple frontend connections from
different users, and it will only send relevant data to each user.

The viztop frontend consists of a single web application
written in JavaScript. It allows displaying the processes and
information about them in a visual interface by using a graph
of nodes and edges with annotations. Each node represents a
process in the system, while edges are used for representing
their dependencies (parent-child). The frontend receives
updated data about the processes from the backend using the
websocket. The user can visualize all this using a standard
web browser. Different users can connect to the backend over

the Internet from different locations. The viztop visualization
interface will be presented in details further on (Fig. 1).

Fig. 1. User interface for process visualization

Each process from the system is represented as a separate
node in the graph, which is connected to other nodes. As new
processes are created, new nodes will appear dynamically in
the process graph. If existing processes are ended, the
corresponding nodes will be deactivated and they will fade
away after a few seconds, allowing the user to get a feeling of
the process dynamics in the system.

Each node of the graph (a process) has a color associated
with it (Fig.2), which gives the user a clue of its state. For
instance, green nodes are kernel processes (kernel, kthreadd,
and the init/systemd startup), red nodes are processes in a run
state (R), yellow ones are in stop mode (T), gray ones are
zombie (Z), while blue nodes are in a sleep state (S).

Fig. 2. Processes in different states

. The kernel node has attached a number of nodes from 0
to the maximum number of processors in the system (virtual
cpus). Nodes for processes that contain multiple threads are
colored dark violet and include the number of threads.

Nodes in the visual graph are connected with each other
with red arrows, if there is a parent-child relationship between
the corresponding processes (Fig.3). In this image, we have
the init process created after the boot, which in turn starts a
shell script (zstart-vpn.sh) that starts two openvpn processes.
When processes are terminated, their connections in the graph
are also removed together with the associated nodes.

Fig. 3. Child and parent processes

In the visual graph, each node's size is directly related to
the memory used by the corresponding process (Fig.4). In the
depicted example, the mariadb process is using 43% of the
total memory in the system, java 17.1%, netdata 9.4%, etc.
This gives the user a quick overview of each process's
memory usage. For the nodes using more than a specified
minimum memory percentage (eg. 1%), this value is also
shown in the node's description. The size of each node is
dynamically adjusted in time according to the memory usage.

Fig. 4. Processes with different memory usage

Fig. 5 shows an example of how processes are created and
destroyed, as the user executes command line instructions.
Thus, a bash shell is created by the sshd process for a remote
user connection, then the user executes the su command, and a
new bash shell is created. The user then executes a man
command, which then calls the tbl, nroff, man, and less
commands, then the man process is stopped (T state – yellow
color) and a python3 script is executed, which in turn starts
three other php commands, and so on. This is an intuitive view
of how the dynamics of processes in a Linux operating system
happens, and how, by executing different commands in the
system, new processes are created or destroyed.

Fig. 5. Dependencies between processes

Another example is presented in Fig.6, where the init
system process starts an Apache web server, which consists of
a master httpd process that creates four more httpd child
processes, each of these containing 27 threads. In time, the
dynamics of the Apache web server can be monitored, as
requests from the web clients create new threads, new httpd
processes, or old ones are destroyed. Fig.7 shows how the
graph of process nodes can evolve over time, as new processes
and connections are created or deleted.

Fig. 6. Startup httpd server started by init

.

Fig. 7. Dynamics of processes in time

Another feature offered concerns the network sockets
available on each process, which are depicted as violet nodes,
including both the IP address and connection port number.
In Fig. 8, we exemplify with how a sshd server manages
network connections. The master sshd process is listening on
port 22 (LISTEN 0.0.0.0:22), then each new ssh connection on
the server creates a new sshd process, with an established TCP
connection on local port 22 with the remote client. Here, two
of the child sshd processes allow X-Forwarding for the clients,
by allowing listening on ports 6010 and 6011.

Fig. 8. Network connections for some processes

IV. CONCLUSIIONS AND FUTURE WORK

In this paper, we introduced a tool developed in house
aiming at improving the understanding of dynamic of
processes in operating systems. The main services provided
have been established after comparing the main tools used for
process monitoring in Unix/Linux, and taking into account
how these can be enriched, in order to provide extra potential
for both OS education and administration. We rooted our
decisions about this in our long experience (50+ years
combined) in OS instruction and Unix/Linux administration,
in particular, and in CS education, in general.

In our current view, further work is twofold. First, we
intend to use viztop next semester to perform some
pedagogical research together with our students, with regard to
its benefits in teaching and learning about processes in
operating systems. Second, development of further OS
visualization counterparts would be useful, such as memory
management, resource allocation, file system change, etc..

References
[1] E. Fouh, M. Akbar, and C. A. Shaffer, “The Role of Visualization in

Computer Science Education”, Computers in the Schools, 29:1-2, pp.
95-117, DOI: 10.1080/07380569.2012.651422, 2012.

[2] D. Schweitzer, W. Brown, “Interactive visualization for the active
learning classroom”, SIGCSE '07 - 38th SIGCSE symposium on CS
education, pp. 208–212, https://doi.org/10.1145/1227310.1227384, 2007

[3] T. Naps, S. Cooper, B. Koldehofe, C. Leska et al., “Evaluating the
educational impact of visualization”, ACM SIGCSE Bulletin, 35(4), pp.
124–136, https://doi.org/10.1145/960492.960540, 2003.

[4] D. Schweitzer, W. Brown, “Using visualization to teach security”,
Journal of Computing Sciences in Colleges, 24(5), pp. 143–150,
https://dl.acm.org/doi/abs/10.5555/1516595.1516626, 2009.

[5] F. W. B. Li, C. Watson, “Game-based concept visualization for learning
programming”, MTDL '11 - 3rd int’l ACM workshop on Multimedia

technologies for distance learning, pp. 37–42,
https://doi.org/10.1145/2072598.2072607, 2011.

[6] D. Chudá, “Visualization in education of theoretical computer science”,
CompSysTech '07 - 2007 int’l conference on computer systems and
technologies, 84, pp. 1–6, https://doi.org/10.1145/1330598.1330687,
2007.

[7] G. R.Garay, A. Tchernykh, A. Yu. Drozdov, S. N.Garichev et al.,
“Visualization of VHDL-based simulations as a pedagogical tool for
supporting computer science education”, Journal of Computational
Science, 36, September 2019, 100652,
https://doi.org/10.1016/j.jocs.2017.04.004, 2019

[8] M. Candela, P. Angelini, L. Antonetti Clarucci, M. Patrignani, M.
Rimondini, and R. Sepe, “BGPlay3D: Exploiting the Ribbon
Representation to Show the Evolution of Interdomain Routing”, in S.
Wismath, A. Wolff, (Eds.), 21st International Symposium on Graph
Drawing (GD '13), Springer-Verlag, Lecture Notes in Computer
Science, 2013, Poster, p 526.

[9] M. Candela, “Real-time BGP Visualisation with BGPlay”,
https://labs.ripe.net/author/massimo_candela/real-time-bgp-
visualisation-with-bgplay/

[10] M. Candela, “Adaptive and responsive web-oriented visualization of
evolving data: The interdomain routing case”, Master's thesis, Roma Tre
University, 2012.

[11] R. Tamassia, B. Palazzi, and C. Papamanthou, “Graph drawing for
security visualization”, in Tollis, I. G., Patrignani, M. (Eds.), Graph
drawing 2008 (LNCS 5417, pp. 2–13). Berlin Heidelberg, Springer-
Verlag, 2009.

[12] T. J. Jankun-Kelly, “Using Visualization Process Graphs to Improve
Visualization Exploration”, in Freire J., Koop D., Moreau L. (eds)
Provenance and Annotation of Data and Processes. IPAW 2008. Lecture
Notes in Computer Science, vol 5272. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-89965-5_10, 2008.

[13] S.T. Teoh, K.L. Ma, F. Wu, X. Zhao, “Case study: Interactive
visualization for internet security”, in 13th IEEE Conference on
Visualization (Vis 2002), pp. 505–508, 2002.

[14] R. Bosch, C. Stolte, D. Tang, J. Gerth, M. Rosenblum and P. Hanrahan,
“Rivet: A flexible computer systems visualization environment”,
Computer Graphics 34(1), February 2000, pp. 68–73, 2000.

[15] F. Giraldeau, M. R. Dagenais, H. Boucheneb, “Teaching Operating
Systems Concepts with Execution Visualization”, 2014 American
Society for Engineering Education Annual Conference & Exposition,
Indianapolis, Indiana, pp. 1-15, 10.18260/1-2—23101, 2014

[16] X. Yuan, B. Pioro, R. Archer, Y. Li, “Teaching Operating Systems
Using Visualization: A Comparative Study”, Iskander M. (eds)
Innovative Techniques in Instruction Technology, E-learning, E-
assessment, and Education. Springer, Dordrecht.
https://doi.org/10.1007/978-1-4020-8739-4_102, 2008.

[17] Linux man pages, https://www.kernel.org/doc/man-pages/, 2021.

[18] RRD tool - logging and graphing, https://oss.oetiker.ch/rrdtool, 2021.

[19] Cacti – the complete RRD-tool based graphing solution, https://cacti.net

[20] Observium – network monitoring platform, https://observium.org, 2021

[21] LibreNMS - network monitoring system, https://librenms.org, 2021

[22] Paessler PRTG – network monitor, https://www.paessler.com/prtg,2021

[23] D. Zobel, “Monitoring applications and services with network
monitoring, white paper,

https://hlassets.paessler.com/common/files/pdf/whitepaper/application-
monitoring_en.pdf, 2013

[24] Netdata – infrastructure monitor - https://netdata.cloud, 2021.

[25] Grafana - open observability platform, https://grafana.com, 2021.

[26] EtherApe - network monitor, https://etherape.sourceforge.io, 2021

[27] Kibana – visualization tool, https://www.elastic.co/kibana/, 2021

[28] Nagios – network monitor, https://nagios.org, 2021.

[29] Solar winds – server and app monitor, https://solarwinds.com/sam

