
FACE – a Knowledge-Intensive Case-Based
Architecture for Context-Aware Services

Monica Vladoiu1, Jörg Cassens2, Zoran Constantinescu3

1 PG University of Ploiesti, Bd. Bucuresti 39, 100680 Ploiesti, Romania

monica@unde.ro
2 University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

cassens@imis.uni-luebeck.de
3 Zealsoft Ltd., Str. Targu Neamt 11, Bucharest, Romania

zoran@zealsoft.ro

Abstract. Technological progress has made it possible to interact with
computer systems and applications anywhere and any time. It is crucial that
these applications are able to adapt to the user, as a person, and to its current
situation, whatever that is. Contextual information and a mechanism to reason
about it have demonstrated an important potential to provide solutions in this
respect. This paper aims at providing an integrated CBR architecture to be used
in context-aware systems. It is the result of our work to develop ePH, a system
for building dynamic user communities that share public interest information
and knowledge that is accessible through always-on, context-aware services.

Keywords: knowledge-intensive case-based reasoning, context-aware services,
user modeling, context modeling, knowledge base

1 Introduction

Within our digitized and integrated world, the way we interact with computers has
evolved so dramatically that we quite often have the impression that we live in a Star
Trek-like environment. From the ugly and heavy computer on our desks to the slick
and slim mobile devices that keep us connected all day around, the journey has been
and still is quite challenging. Anyone can interact with computer systems and
applications anywhere and any time. Though, there are some significant unknowns in
this paradigm: what should be done, when, how and why [1].

Case-based reasoning is a problem-solving paradigm that is able to use the specific
knowledge of previously experienced cases to solve new problems. A case refers to a
concrete problem situation, which has been either previously experienced (past case)
or newly occurred (new case). The new problem is solved by retrieving a similar past
case from the case base and by reusing it in this new situation [2]. CBR provides for a
mechanism of learning from experience, inspired by the way humans solve problems
in real world domains [3, 4]. In this context, the term problem solving is utilized in a
broader sense that complies with common practice in knowledge-based systems, i.e.
problem-solving does not necessarily consist of finding a solution to a given problem

and it can refer to any problem put forward by the user (the justification of a user-
proposed solution, the interpretation of a problem situation, the generation of a set of
possible solutions etc.) [2].

During the last few years, case-based reasoning has proved itself as being one
valuable approach for solving problems that occur in context-aware systems. Lee and
Lee have developed a music recommendation system, which utilizes demographics,
behavioral patterns and context of the user [5]. Kofod-Petersen illustrates the use of
CBR problem solving and learning within tourist and hospital ward domains [6].
Corchado et al. [7] and Kofod-Petersen and Aamodt [8] demonstrate the use of CBR
in health care environments. Benard et al. investigate the use of CBR as a mechanism
that is able to select the appropriate behavior within collaborative and dynamic
situations (virtual training environment) [9]. Kofod-Petersen and Mikalsen [1], and
Avila and Cox report on their CBR approach of the travel domain [10]. Ma et al. [11]
and Nguyen et al. [12] propose CBR approaches to smart home domains. Kwon and
Sadeh [13] report on applying CBR and multi-agent systems to context-aware
comparative shopping. Cassens and Kofod-Petersen investigate the importance of
explanations for both the reasoning process and user communication in ambient
intelligent systems [14]. Dong et al. adopt CBR to provide proactive component
selection for mobile context-aware applications [15]. Zimmerman uses CBR to
generate recommendations on audio to be listened in a mobile environment (art
museum) [16]. Coutand et al. [17], and Sadeh et al. [18] use CBR to personalize
location-aware services (message filtering).

This paper aims at providing an integrated CBR-based architecture to be used in
context-aware systems. This architecture is the result of our work to develop the ePH
system, which is a framework for building dynamic user communities that share
public interest information and knowledge that is accessible through always-on,
context-aware services [19, 20]. ePH is built around a user-centered digital library
(called ePH-DLib) that stores regional information and knowledge. Its content is
accessible through always-on context-aware services. Users can get it or enhance it,
according to their location: at home or office by using a computer, on road with a
specific GPS-based device in the car (called gipix, developed in-house), or off-
line/off-road via mobile phone.

The digital library contains public interest information (drugstores, hospitals,
general stores, gas stations, entertainment, restaurants, travel and accommodation,
weather, routes etc.), historical, touristic, and cultural information and knowledge,
users' personal "war stories" (tracks, touristic tours, impressions, photos, short videos
and so on), and their additions, comments or updates to the content. This content is
available to the ePH’s users based on their context. For example, for a tourist being in
a given area, the system may suggest several locations to go to (and actions to execute
to reach them): a place to see, a restaurant to have lunch at, a museum or memorial
house to visit etc. More, if a user is interested in something in particular, like mural
art, and s/he is located near a place where such artifact is accessible and s/he can
reach it within a reasonable time frame (having time to get back before dark), the
system could show the tasks to be executed to guide her to reach that place. In a
scenario that takes place in a remote mountain region, in which the fuel is going down
rapidly, ePH shows on the car device where the nearest gas station is.

The ePH architecture incorporates the Communications Server, the Location
Server, the CBR Engine, the Knowledge Base, the Context Middleware, and the
multi-agent action subsystems [20, 21]. The Communications Server (CS) provides
for the always-on kind of service, regardless of the location where the user is when
s/he needs that service. The Location Server (LS) makes available the correct service
according to the location. The CBR engine identifies the current problem situation,
retrieves the past case that is the most similar with the one in progress, suggests a
solution that uses that similar case, evaluates this solution, updates the system and
learns from the current experience. If the new situation cannot be classified above a
certain similarity threshold, then a new case is created and stored. The Knowledge
Base includes general domain-dependent knowledge and specific knowledge (that is
embodied by cases) that are used together to find the solution to a specific user’s
problem (therefore the ePH architecture is knowledge-intensive). The Context
Middleware provides for context management by gathering and maintaining
contextual information, and by freeing the agents and the applications of this chore.
When the current context changes, the new context triggers a multi-agent sub-system,
which contains various agents that deal with: the context, the CBR process, the task
facilitation and decomposition, and the application-specific activities [21]. As ePH-
DLib can be used both on- and off-line with ePH, it is not seen as strongly connected
within this architecture.

The current stage of the project is as follows: the geospatial engine unde.ro
provides the basic ePH functionality [19], the GPS car device, gipix, is in current use,
and the critical cores of both the CS and the LS are functional as well. Some
experimental results are also available [20, 21, 22]. Currently we are working on the
development of the following modules: the CBR engine, the knowledge base and the
context middleware. The rest of this paper is structured as follows: the next section
gives a brief description of how case-based reasoning works. Section 3 illustrates the
knowledge-intensive architecture of ePH’s CBR engine. Section 4 presents some
typical user scenarios and their related cases. The conclusions’ section briefly
summarizes the paper, and points out some future work ideas.

2 How CBR works

The CBR approach covers a large range of methods for organization, retrieval, use,
and indexing of the knowledge retained from past cases. Cases can be preserved as
concrete experiences or as generalized cases (sets of similar cases). They may be
stored as individual knowledge units, or as smaller parts of them that are distributed
within the whole knowledge structure. The cases may be indexed by a prefixed or
open vocabulary. With regard to the solution from a past case, this may be directly
applied to the current problem, or it may be adapted according to the differences
between the two cases. The processes of case matching, solution adaptation, and
learning from experience may be performed either by checking syntactic similarity or
by using a strong model of general and domain knowledge. More, the CBR methods
may be autonomous or they may interact heavily with the user, and past cases may be
serially or parallel retrieved [2].

The general CBR cycle is usually seen as a dynamic model having four sub-
processes: retrieve the most similar case(s), reuse the information and knowledge
from that case(s) to solve the given problem, revise the proposed solution, and retain
what is useful for future problem solving within the case-base [2, 23]. It all starts with
a problem, whose initial description defines a new case. Then, this new case is used to
retrieve a case (or more) from the stored previous cases in the case-base (provided
that it can be classified above a given similarity threshold - otherwise the new case is
stored as such). The solution of the retrieved case is adapted to match the peculiarities
of the new case through reuse, and a solved case is obtained, namely a proposed
solution to the current problem (suggested solution). During the revise process, this
solution is put into test for success, either by being applied to the real world
framework, or by being assessed by an expert. If the testing fails, the solution is
altered. Useful experiences are retained (as confirmed solutions) for future use either
in form of a new learned case or as modifications to already stored cases. To prevent
degradation of the performance of the CBR system over time or to enhance it,
maintenance has been identified as a key issue. Amongst the solutions that have been
put forward is the proposal is to add two more processes into the CBR cycle beside
retainment: review (monitoring the quality of the system knowledge) and restore
(maintaining the case-base) [24].

3 FACE – a Knowledge-Intensive Reasoning Architecture

The main tasks the ePH’s CBR engine has to deal with are as follows: identification
of the current problem situation, retrieval of a past case that is similar to the new one,
proposal of a solution to this problem, which uses that similar case, assessment of this
solution, and update of the system by learning from the current experience. General
domain-dependent knowledge and specific knowledge that is embodied by cases are
used together in order to find the solution to a specific user problem (that defines the
architecture as being knowledge-intensive). General domain knowledge may be
combined with case-based reasoning in various ways: it can be used as an alternative
problem solving method when the case-based method fails and/or it can be exploited
within the case-base method itself [25]. The architecture that provides for this
reasoning process is presented in Figure 1. We have called this architecture “FACE”
to emphasize our aspirations to provide a knowledge-intensive reasoning process
inspired by the way in which humans solve problems. For the rest of this section, we
present briefly the main components of this architecture along with considerations
with respect to their content.

Throughout this work we have considered the context definition from [1]: context
is a set of suitable environmental states and settings that concern a user, which are
relevant for a situation-sensitive application during the process of adapting the
services and the information that is offered to the user. The context term is used
dually here: first, it denotes what will be perceived from the real world (via Context
Middleware) and will be stored in cases as findings, and, secondly, it refers to the
available information when the problem is solved (leaving out what is not relevant to
the task to be executed) [6]. More, the context can be seen on two level of abstraction:

a base level, where the context that is defined by specific elements (location, objects,
persons etc.) resides, and a conceptual level, which focuses on the structure and
relationships of the contextual information. It is important to notice that some
knowledge may be context in one setting and domain knowledge in another [1, 27].

The CBR engine of ePH integrates the classical CBR cycle (Retrieve, Reuse,
Revise, Retain) [2] with other reasoning paradigms (rule-based systems, model-based
reasoning, deep models – like causal reasoning etc.), as well as other methods of
generating knowledge (data-, text- or knowledge-mining). There is still to be
evaluated whether ePH can benefit from the two extra-maintenance processes and in
what way. The knowledge base incorporates general domain knowledge and case-
specific knowledge. The general domain background knowledge can be acquired in a
typical way for knowledge-based systems. There is also possible to learn general
knowledge from the cases, in a case-based way or by induction [2].

Performance of (not only) context-aware systems could be improved if users were
treated as individuals who have distinct personalities, abilities, goals etc. Every
interactive computer system has a model of its users, being it implicit or explicit.
Making it explicit provides for easier adaptation to different users and change over
time. Therefore, before dealing with a person, the application needs to form a model
about that person, by collecting a few specific pieces of information and by
corroborating that with the knowledge it has about the groups to which the current
person belongs. User stereotypes provide a useful mechanism to build such
individualized user models. A stereotype is a cluster of characteristics (facets), which
are specific to a certain group (of users), along with their specific values. In order to
be useful in a computerized environment, stereotypes must be related to a set of
triggers, namely “those events whose occurrence signals the appropriateness of
particular stereotypes” [26]. Therefore, we need to keep user stereotypes and their
specific triggers within the knowledge base, as it can be seen in Figure 1.

The knowledge base includes also the initial cases, pre-classified situations that
have been acquired prior to first execution, the point cases, which are generated to
incorporate a new occurent situation, and the prototypical cases that are generalized
cases (aggregation of knowledge from previous point cases) [4, 6]. Once a new
context is identified, the CBR engine tries to retrieve a known case and to classify the
new situation relying on this case. After the successful classification of the current
situation takes place, the new case will be stored in the case-base as a tuple that
includes the contextual information that describes the situation, the problem that
corresponds to this situation, and the constructed solution. When the ePH system
makes a suggestion to its user, it implicitly predicts the user’s behavior in the short
term. As time goes by, and the system acquires new cases, it becomes possible to
check whether a new case validates or invalidates that prediction. Therefore, the
representation of temporal knowledge within the case base is necessary.

The contextual model subscribes to a meronomy that articulates various works
from the literature [1, 9, 27, 28, 29] and is enriched to fulfill ePH’s specific
functionality. Thus, the context can be personal (user’s interests, state of mind,
expertise, limitations – time interval, location area etc., preferences, and so on), social
(user’s friends, family, colleagues, acquaintances etc.), task (user’s activities, goals,
operating mode – static or dynamic, and so on), device (mobile phone, gipix, PDA,
laptop etc.), environmental (things, persons, services, weather etc. from user’s

surroundings), spatio-temporal (time, user’s location and movement), strategic
(something important for a planned effect) and historical (for keeping trace of the past
experience). These all relate to where the user is, when s/he is using the service, what
s/he is using the service for, who s/he is with, what s/he likes etc. However
considerations such as how young the user is, or whether it is snowing can be equally
important. The Context Interpreter is designed to try to predict future intentions and
actions of users. It gets one or more contextual entries and provides a single piece of
context. The Context Middleware provides an easy to use, generic context
management infrastructure that gathers and maintains contextual information, freeing
the applications of this chore.

The middleware implements a context space [1], which is essential to capture both
the transient (echoes the environment at a given point in time) and persistent context
(represents a recurrent pattern of transient context) [1, 17]. The context space includes
the context history, the current context and the context future. The context history
helps applications to predict intentions and actions of the user by taking into account
their previous contextual information. The results of this deduction process can be
stored into the context future.

The current context consists of the currently relevant elements. When the current
context “expires” it will be stored in the history for possible future reference. Each
element of a context is represented by an attribute (physical or abstract object), its
correspondent features (particular points of interest of the attribute within the given
context) and the most appropriate action to be executed in this context [9]. Both
attributes and features are described by a name, a value, a weight and a type (fuzzy,
string, compound, exact). The user context is encapsulated within the cases to enable
comparison between contexts, learning of user behavior and generation of case
similarities–based recommendations.

To avoid the potential for infinite definitions of context, aka “a situation where
everything is context”, the context representation is restricted to the context patterns
that comply with the context templates, which define contextual information in a
domain dependent way. The context validation ensures that a given context instance is
valid against a context template. More, the context that is gathered from various
sources can be amalgamated via the Context Merger provided that the representations
have the same structure [1].

The users can be part of some social network or they can be individual users, both
types being covered by context widgets that are able to acquire particular context
information and to make it available to the context-aware applications [1]. The
context widgets operate independently from the applications and hide the distribution
of the context sensing devices within the architecture from particular applications.
Once the current context changes, the new context activates a multi-agent sub-system,
which contains various agents that deal with: the context, the CBR process, the task
facilitation and decomposition, and the application-specific undertakings.

Fig. 1. FACE: a Knowledge-Intensive Reasoning Architecture for Context-Aware Services.

Retrieve

Reuse

Revise
 Other
reasoning

request

event

Social
Network

context
widgets

Multi-agent subsystem

Knowledge
mining Retain

Stereotypes Triggers

gen. domain
knowledge

(background) Representation

Validation

Context
Middleware

Template

Context
Middleware

Interpreter

Knowledge base

Context Model

proto-
typical
cases preclassified

situations

point
cases

gen. domain
knowledge
from cases

CBR engine

personal, task, social,
strategical, environmental

Merger

4 ePH User Scenarios and Cases

As shown briefly in the section that describes our system, ePH has a significant
potential to support users in various ways: enhancing tourist experiences [20],
enabling learning in multi-dimensional learning spaces [21], increasing traffic safety
[22] etc. In this section, we present in more details the way in which a user who is
interested in touristic attractions can benefit from interaction with ePH. The idea
behind this kind of support has been to help a person who is at a given time in a
certain location to experience as most as possible as a tourist, in a personalized and
effective way, both in the real world and in the virtual one.

There are two significant user scenarios, each of them involving the opportunity to
access whatever is relevant to one person’s current interest within a given (real or
virtual) area. First one is confined inside almost circular area (with a given radius),
while the second one takes place along a particular segment of a track (with a given
length). The system can support users to fulfill their specific goals in a context-aware
fashion, by making recommendations on what is worth to be seen within the specified
area, from a touristic point of view, and by showing the tasks to be executed to guide
the user to reach that place. Let us consider two scenarios: first one with a person who
is interested in visiting our county’s capital (called Ploiesti) and would like help to
organize and undertake a one-day personalized tour. The tour is supposed to take
place in the town and in its surroundings (more or less circular area). In the second
scenario, the user is interested in either a round-trip excursion or a trip along a main
road, both spanning on a one-day period of time and within our county (Prahova). We
assume that a distance that can be easily covered during daylight is around 150 km.

In the first situation, our user, let’s call her Sofia, will be provided with the main
Points Of Interest (POI) within the town area, along with their specific constraints
(appropriate time to visit, ticket availability, and special offers). These points are
grouped together in several one-day packages, from which Sofia can choose the most
appropriate one according to her personalized option. For example, she can visit The
Clock Museum, which is unique in Romania, The Art Museum, The History Museum,
and the traditional products market from the city center (Figure 2, tour 1). In the
market she can have a traditional snack, with sheep cheese and smoked mutton (by
accessing the available glossary service she can find more about these meals). While
moving from the History Museum to the market, Sofia will be passing by the Toma
Caragiu Theater and she can get notification that there are still tickets for the evening
representation. She can be pointed out that other online ePH friends are in the area
and she can ask them if they want to join her for one or more of the undertaken
activities. More, the POI specific restrictions are both displayed on her device and
considered when ePH builds the one-day package. Another possible package includes
The Memorial House of Nichita Stanescu (second major Romanian poet), The Central
Market Hall (where she can also eat), and the Saint John Cathedral (Figure 2, tour 2).
If she has interest in classical music, she can choose to close the day with a concert at
The Paul Constantinescu Philharmonic Orchestra. The cases that are related to these
scenarios are presented briefly in Fig. 2.

Case: Ploiesti 1
…
Context.task: 1 day town tour
Context.operating_mode: static
Context.device: laptop
Context.location: 44.9412,26.0213
Context.movement: no
Context.time: 2010.03.20
…
Context.interests: museum,tradition
Context.preferences: lunch,12pm-1pm
Context.interval: next day,9am-7pm
Context.location-area: around 10km
Context.weather: sunny day
Context.friends: yes
…

Case: Ploiesti 2
…
Context.task: 1 day town tour
Context.operating_mode: dynamic
Context.device: PDA
Context.location: 44.9412,26.1345
Context.movement: yes
Context.time: 2010.03.21
…
Context.interests: buildings
Context.preferences: concert,after 8
Context.interval: today
Context.location-area: around 10km
Context.weather: sunny day
Context.state_of_mind: joyful
…

Fig. 2. Two possible one-day town tours and the related prototypical cases

In the second scenario, the ePH user, Tudor, is offered more one-day trip packages.
Tudor may be planning the trip prior to the journey itself or he might adjust his
excursion dynamically, as he gets close to some POIs that are relevant to him. One
possible package (3) includes the wisent reservation (European bison) at Bucsani, the
Turnu monk monastery (where there are the ruins of five very old churches), and the
Vacarescu Calimachi Castle in Manesti. The POIs in this package must be visited in
this particular order, in any day but Monday, due to different constraints: the bison eat
around 10, therefore is better to be in the reservation before that time, the monastery
may be visited after the morning religious service is finished (after 12.30) and the
castle is open before 17.00 (except for Monday). Other packages contain: (4) the
haunted Iulia Hasdeu Castle, the memorial house of the painter Nicolae Grigorescu,

the Peles Castle in Sinaia, and the Dracula’s Castle in Bran (Figure 3, trip 4), (5) the
Muddy Vulcanoes in Berca, the Amber Museum in Scortoasa, and The Slanic Salt
Mine (Figure 3, trip 5), (6) the Monastery tour: Ghighiu, Zamfira, Suzana and Crasna
etc. While on road, the system can let Tudor know that in the vicinity there is a
traditional fair taking place and, if he is interested in, ePH can guide him to get to that
fair. The related cases are illustrated in Fig. 2.

Case: Prahova 4
…
Context.task: 1 day car trip
Context.operating_mode: static
Context.device: laptop
Context.location: 44.9412,26.0213
Context.movement: no
Context.time: 2010.03.20
…
Context.interests: castles, haunted
Context.preferences: take away food
Context.interval: next day,9am-7pm
Context.limitations: max 150km
Context.weather: good
Context.friends: no
…

Case: Prahova 5
…
Context.task: 1 day car trip
Context.operating_mode: dynamic
Context.device: gipix,mobile phone
Context.location: 44.9331,26.1345
Context.movement: yes
Context.time: 2010.03.20
…
Context.interests: natural phenomena
Context.interval: today
Context.limitations: max 150km
Context.weather: good
Context.friends: yes
Context.expertise: geological
…

Fig. 3. Two possible one-day trips and the related prototypical cases

5 Conclusions

Within this major shift from the desktop computer to the ubiquitous paradigm, the
computer systems and applications are expected to adapt the personality of their users
and to the current situation as opposed to the previous paradigm where the users were
expected to adapt to the systems. CBR provides the means to solve a new problem by
retrieving a previous similar situation and by re-using information and knowledge of
that situation. CBR is suitable for open and ill understood domains, as it gains its
expertise “through remembering the irregularities” [14], and it has proved its potential
to development of context-aware applications.

The FACE architecture integrates the basic CBR approach with other reasoning
paradigms, and subscribes to the general idea of unifying the problem solving and
learning within one integrated knowledge framework. Future research has to be done
into the quality of context information [29, 30], as an important parameter for
modeling context, and how to integrate this within our system. Efforts have to be
made towards the inclusion of an inference mechanism [31, 32] that enables
derivation of context.

From the three features of a context-aware application [1, 12], 1) presentation of
information and services to the user, 2) automatic execution of services, and 3)
tagging of context – FACE provides only presentation of information and services,
partially, for the automatic execution of a service for a user. Tagging of context to
information to support later information retrieval is still to be achieved.

Future work needs to be done for better understanding of the relationship between
problem solving and learning, and their integration into an autonomic framework,
which provides for the system’s ability to inspect its own behavior and to learn how to
change its structure, in order to improve its future performance.

References

1. Kofod-Petersen, A., Mikalsen, M.: Context: Representation and Reasoning. Representing
and Reasoning about Context in a Mobile Environment. Revue d'Intelligence Artificielle,
Vol. 19(3), pp. 479-498 (2005)

2. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Communications, 7(1): 39-59 (1994)

3. Anderson, J.R.: The Architecture of Cognition, Harvard University Press, Cambridge
(1983)

4. Schank, R.: Dynamic memory; a theory of reminding and learning in computers and
people. Cambridge University Press (1982)

5. Lee J. S., Lee J. C.: Context Awareness by CBR in a Music Recommendation System.
LNCS, Vol. 4836/2010, Springer Berlin/Heidelberg (2010)

6. Kofod-Petersen, A.: Challenges in CBR for Context Awareness in Ambient Intelligent
Systems. Int’l workshop on CBR and context awareness, CACOA 2006 (2006)

7. Corchado, J. M., Bajo, J., de Paz, Y.: A CBR System: The Core of an Ambient
Intelligence Health Care Application. Soft Computing Applications in Industry, pp. 311-
330 (2008)

8. Kofod-Petersen, A., Aamodt, A.: Contextualised Ambient Intelligence Through Case-
Based Reasoning. ECCBR 2006, LNAI, vol. 4106, pp. 211-225, Springer
Berlin/Heidelberg (2006)

9. Benard, R., Bossard, C., De Loor, P.: Context's Modeling for Participative Simulation. 9th
Int’l Florida Artificial Intelligence Research Soc. Conf. FLAIRS 2006, pp. 613-618 (2006)

10. Muñoz-Avila H., Cox, M. T.: Case-Based Plan Adaptation: An Analysis and Review.
IEEE Intelligent Systems 23(4), pp. 75-81, IEEE Press, New York (2008)

11. Ma, T., Kim, Tinghuai M., Yong-Deak K., Qiang M., Meili T., Weican Z., Context-
aware implementation based on CBR for smart home. IEEE Int’l Conference on Wireless
And Mobile Computing, Networking And Communications WiMob'2005 (2005)

12. Nguyen T. V., Woo Y. C., Choi D., CCBR: Chaining CBR in Context-Aware Smart
Home, 1st Asian Conf. on Intelligent Information and Database Systems (2009)

13. Kwon, O., Sadeh, N.: Applying case-based reasoning and multi-agent intelligent system to
context-aware comparative shopping, Decision Support Systems, Vol. 37(2), pp. 199–213
(2004)

14. Cassens, J., Kofod-Petersen, A.: Explanations and Case-Based Reasoning in Ambient
Intelligent Systems. Int’l workshop on CBR and context awareness CaCoA 2007 (2007)

15. Dong F., Zhang Li., Hu D. H., Wang C-L.: A Case-Based Component Selection
Framework for Mobile Context-Aware Applications. IEEE Int’l Symposium on Parallel
and Distributed Processing with Applications ISPA 2009, pp.366-373, IEEE Press, New
York (2009)

16. Zimmerman, A.: Context-awareness in user modeling: Requirements analysis for a case-
based reasoning application. In: Ashley, K. D., Bridge, D. G., eds.: ICCBR 2003, LNAI,
vol. 2689, pp. 718-732. Springer-Verlag, Heidelberg (2003)

17. Coutand, O. et al. : A CBR Approach for Personalizing Location-aware Services. Int’l
workshop on CBR and context awareness, CACOA 2006 (2006)

18. Sadeh, N., Gandon, F., Kwon, O. B.: Ambient Intelligence: The MyCampus Experience.
Technical Report CMU-ISRI-05-123, Carnegie Mellon University (2005)

19. Vladoiu, M., Constantinescu, Z.: Framework for Building of a Dynamic User Community
- Sharing of Context-Aware, Public Interest Information or Knowledge through Always-
on Services. 10th Int’l Conf. of Enterprise Information Systems ICEIS 2008, pp. 73-87
(2008)

20. Vladoiu, M., Constantinescu, Z.: Toward Location-based Services using GPS-based
Devices, Proceedings of Int’l Conference on Wireless Network ICWN 2008 - World
Congress on Engineering WCE 2008, Vol. I, pp. 799-804 (2008)

21. Vladoiu M., Constantinescu Z., Learning with a Context-Aware Multiagent System, 9th
Romanian Educational Network International Conference RoEduNet, submitted (2010)

22. Vladoiu M., Constantinescu Z., Driving style analysis using data mining techniques, in
Int’l Journal of Computers, Communications & Control (IJCCC), to be published (2010)

23. Shokouhi S. V., Skalle P., Aamodt A., Sormo F., Integration of Real-time Data and Past
Experiences for Reducing Operational Problems, Proceedings of International Petroleum
Technology Conference , Doha, Qatar 2009

24. de Mántaras R. L., et al.: Retrieval, reuse, revision and retention in case-based reasoning.
Knowledge Engineering Review, 20(3), pp. 215-240, Cambridge University Press (2005)

25. Sørmo F., Cassens J., Aamodt A.: Explanation in Case-Based Reasoning-Perspectives and
Goals. Artificial Intelligence Review, 24(2), pp. 109-143, Springer Netherlands (2005)

26. Rich E.: User Modeling via Stereotypes, Readings in intelligent user interfaces, Morgan
Kaufmann Publishers, pp. 329 – 342 (1998)

27. Brézillon P., Pomerol J.-C., Contextual knowledge sharing and cooperation in intelligent
assistant systems, Le Travail Humain, 62(3), pp. 223–246 (1999)

28. Göker A., Myrhaug H. I., User context and personalisation, In Workshop proceedings for
the 6th European Conference on Case Based Reasoning ECCBR 2002 (2002)

29. Chaari T., Dejene E., Laforest F., Scuturici V-M., A comprehensive approach to model
and use context for adapting applications in pervasive environments, The Journal of
Systems and Software, Vol. 80(12), pp. 1973-1992 (2007)

30. Bringel Filho J., Martin H., Towards Awareness of Privacy and Quality of Context in
Context- Based Access Control for Ubiquitous Applications, Journal on Digital
Information Management, vol. 7(4), pp. 219-226 (2009)

31. Qin W., Suo Y., Shi Y., CAMPS: A Middleware for Providing Context-Aware Services
for Smart Space, LNCS 3947, pp. 644-653 (2006)

32. Jih W-r., Hsu J Y-j., Lee T-C., Chen L-I., A Multi-agent Context-aware Service Platform
in a Smart Space, Journal of Computers, vol. 18 (1), pp. 45-59 (2007)

