

Abstract— We present here our taxonomy of desktop grid

systems and some hints on how to use it to solve real-world
problems. We have customized this taxonomy according to user’
perspective to counterbalance the existent taxonomies that are
mainly focused on the developers’ viewpoint. Our taxonomy is
three-level and hierarchical. The first level refers to
infrastructure and includes resource type, the platform that
runs at the provider, scalability and security issues. The second
one includes conceptual model, architecture and data model.
The last level concerns aspects related to software: application
type, administrator privileges, architecture of the support
operating system, and licensing. A table with the classification of
the main desktop grids according to this taxonomy is provided.
We have been applying here our experience in developing a
desktop grid system (QADPZ) in order to satisfy the demands of
the specialists in scientific computing and visualization wrt. user
goals, needs and restrictions. Examining few typical application
scenarios has eased crafting a user-centric taxonomy. We hope
that our approach will help promote the introduced taxonomy as
a practice for its potential users.

Index Terms— desktop grid taxonomy, grid computing,

parallel and distributed computing, user’s perspective

I. INTRODUCTION

 Continued exponential technology improvements, new
collaborative modalities enabled by the quasi-ubiquitous
Internet, and the demands of increasingly complex problems
have fuelled a revolution in science and engineering. The new
modes of inquiry (data-intensive science, simulation-based
science, remote access to experimental apparatus and virtual
community science) constitute an ambitious vision for the
future, which realization will require long-term investments
of financial resources and of intellectual resources by those
who must build and apply the necessary global information
infrastructure. With the rapid advances in IT, especially
supercomputing, commodity and grid computing, every
scientist and engineer will benefit from an advanced
simulation kit that will make analysis, product development,
and design both optimal and cost effective. Thus it becomes
possible to investigate incredibly complex dynamics by
means of ever more realistic simulations. However, this
brings with it vast amounts of multi-dimensional data. To
analyze these data is useful yet difficult and expensive.

Manuscript received March 22, 2008.
��������� 	��
��

�������� ��������� �	�� �
�
������ ��� !"�� ��������� �������#� �-mail:
(mvladoiu@upg-ploiesti.ro, monica@unde.ro).

Zoran Constantinescu is on leave from Norwegian University of Science
and Technology, Trondheim, Norway. (e-mail: zoran@unde.ro).

The remarkable performances of the major volunteer
computing projects, as SETI@home [1], clearly demonstrate
the usefulness of harvesting cycles over the Internet. The
attractiveness of exploiting such systems is further reinforced
by the fact that costs are highly distributed: every volunteer
supports his or her resources (hardware, power costs and
internet connections) while the benefited entity provides
management infrastructures (network bandwidth, servers and
management services) receiving in exchange a massive and
otherwise unaffordable computing power. Fortunately, the
usefulness of such computing is not limited to major high
throughput public projects. Many institutions, ranging from
academics to enterprises, hold vast number of desktop
machines and could benefit from exploiting their idle cycles.

The availability of several desktop grid platforms have
smoothened the setup, management and exploitation of
desktop grid systems. Currently, several platforms exist
ranging from academic projects such as BOINC [2],
XtremWeb [3] and SZTAKI [4] to commercial solutions like
Entropia [5], United Devices [6] and Platform Computing [7].
This plethora of platforms has contributed to the explosion of
new Desktop Grids (DGs) and related projects, not only over
the Internet but also at an institutional level (e.g. a university
campus). Nevertheless, DG computing is still under heavy
research conceptualization, and development. There are still
many aspects to clarify and solve: security issues, scheduling,
volatile environment, sabotage-tolerance, integration with
Grid, decentralization, taxonomies etc

We present here our three-level hierarchical DG taxonomy.
The first level refers to infrastructure and hosts resource type,
the platform that runs at the provider, scalability and security.
The second one includes conceptual model, architecture and
data model. The last level concerns software (SW):
application type, architecture of the support operating system
(OS), the need for administrator privileges, and licensing. A
table with the classification of the main DGs according to this
taxonomy is provided as well. We have developed this
taxonomy from the users’ perspective, as a result of our
interaction with the scientists from Scientific Computing and
Visualization during the development of QADPZ, an early
open source system for DG computing, which enables users
from a local network or Internet to share their resources [8].

II. RELATED WORK

DG systems are relatively new, therefore the need for
appropriate taxonomies wrt. infrastructure, computing model,
hardware architecture, communication mechanism, software
architecture, scheduling, resources, licensing etc. is still

A Taxonomy for Desktop Grids from
Users’ Perspective

��������	
������
��������������������

present. There are some valuable such works in the literature.
Hamscher et al. [9] proposed centralized, hierarchical, and
decentralized scheduling architectures for Grid. Sarmenta [10]
classified volunteer computing into application-based and
web-based. Krauter et al. [11] proposed a four-faceted
(scheduling organization, state estimation, rescheduling and
scheduling policy) taxonomy for describing resource
management architectures and a survey of grid resource
management systems. Grids can be computational grids
(distributed supercomputing, high throughput), data grids,
and service grids (on demand, collaborative and multimedia).
Chien et al. [12] see DGs as Internet grid and enterprise grid.
Ali et al. [13] characterized resource allocation heuristics for
heterogeneous computing systems according to workload,
platform, and mapping strategy. Yu and Buyya [14] proposed
a four-featured taxonomy of scientific workflow scheduling
for Grid computing: architecture, decision-making, planning
scheme, and scheduling strategies. Yeo and Buyya [15]
proposed a taxonomy of market-based resource management
system for utility-driven cluster computing, wrt to job model
(processing type, composition, QoS specification, QoS
update) and resource allocation model (domain, update and
QoS support). Venugopal et al. [16] proposed a scheduling
taxonomy for data grids according to application model,
scope, data replication, utility function and locality. Chu et al.
[17] classified DGs into the first (application specific
systems), the second (multi-application systems), and the
third generation (modular and service-oriented systems).
Choi et al., [18] categorize DGs to organization, platform,
scale, and resource provider properties.

Capello [19] provides a DG taxonomy from various points
of view: scale/connectivity (LAN, MAN, WAN), architecture
(scheduler – push/pull, data – P2P/data server/coordinator,
node – PC/cluster), application domain (computation, data,
communication, networking, multiple), resource discovery
(centralized, distributed), coordination (simple, multiple),
programming models (bag of tasks, master worker, MPI),
multi-user and multi-application, along with a classification
table for several distributed systems wrt to the taxonomy.

Choi et al. [20] present a DG taxonomy and its mapping to
some state-of-the-art systems to identify their distinctive
elements, strong points, weaknesses, and challenges. The
taxonomy emphasizes system, application, resource, and
scheduler. From the system viewpoint, DGs are categorized
wrt organization (centralized, distributed), scale (Internet or
LAN), platform (web- or middleware-based), and resource
provider (volunteer, enterprise). As for application, the
taxonomy includes type (data- or computation-intensive),
dependency (independent, flow- or execution-dependent),
divisibility (fixed, divisible), submission patterns
(deterministic, non-deterministic) and QoS (turnaround time,
result correctness, priority, price, restrictions and
preferences). Resources are classified wrt altruism (altruistic,
egoistic), dedication (dedicated, volatile), scale (LAN,
Internet), state change (static, dynamic), trust (trustworthy,
malicious), failure (reliable, faulty), heterogeneity,
registration patterns (deterministic, non-deterministic) and
QoS (price, load sharing or balancing). Finally, the scheduler
perspective is taken into account for various features:
organization (centralized, distributed, hierarchical), policy

(simple – FCFS or random; model-based – deterministic,
economy or mathematical; heuristics – reputation- or
state-based), grouping, object (application- or
resource-oriented), dynamism, mode (scheduler- or resource
provider-initiated), trust, incentive scheduling, load sharing
or balancing (work stealing/pull or redistribution/push), fault
tolerance, adaptive scheduling and goals (turnaround time,
deadline, throughput, price, security, load sharing and
balancing, trust, incentive and reliability). Particularly, the
proposed taxonomy deals with volunteer's key properties
(such as volatility, dedication, reputation, trust, etc.) in a DG
environment and considers the resource grouping
(construction of computational overlay network), result
certification, and reputation/incentive scheduling aspects.

III. HIERARCHICAL TAXONOMY OF DGS

One fair question to ask is Why a new taxonomy?… from
user’s perspective... The answer lies on this short fishing story
[21]: “to go fishing one needs, first of all, equipment – the
poles and lines, hooks, sinkers, floaters, and bait. Without this
fishing is .. impossible. Possessing equipment and knowing
how to employ it, however, does not guarantee success.
Choosing the wrong one from all that is available – the wrong
hook or an inappropriate bait probably means turning up
empty-handed, even if one handles that hook or bait
magnificently”. Learning from this, we introduce here our
three-layer hierarchical DG taxonomy. The first level refers to
infrastructure and includes the resource type, the platform that
runs at the provider, scalability and security issues. On the
second level we have the conceptual model, architecture and
data model. The last level concerns aspects wrt software:
application type, architecture of the support OS and whether a
license is needed or not. Further, a table with the classification
of the main DGs according to this taxonomy is provided.

L1. Infrastructure: resource, platform, scalability, security

Resource type specifies how resources are provided to the
system. There are two main trends: volunteer and enterprise.
Volunteer DG is based on voluntary participants, while
enterprise DG is based on non-voluntary participants usually
within a corporation, research lab or university. Mostly,
volunteer DG relies on Internet, while enterprise DG is
LAN-based. Volunteer DG is more volatile, malicious, and
faulty, whereas enterprise DG is more controllable because its
resource providers are located in the same administrative
domain. Typical examples of volunteer DG are SETI@home,
BOINC, XtremWeb, and Bayanihan [22], and enterprise DG
are Entropia and Condor [23]. Based on the platform running
on the resource provider, DGs can be web-based, where the
applications are run into the web browser (Java applets or
ActiveX controls), or middleware based, where the user must
install a specific middleware, that provides the functionality
and services required to execute computing applications on
the provider’s resource. In the former, the users only need to
load a specific web page, containing an applet, which is
automatically downloaded and executed by the resource
provider. Typical web-based examples are Bayanihan,
Javelin [24], while middleware-based are SETI@home,
BOINC, XtremWeb, Entropia and Condor.

Scalability divides DGs into two groups: Internet-based
and LAN-based. Internet-based DGs are characterized by
anonymous resource providers, connectivity issues (firewall,
NAT, dynamic addressing, possibly poor bandwidth and
unreliable connection), possibly malicious resources, and
high security risks. In contrast, LAN-based DGs show more
constant and reliable connectivity, lower security risks or
under certain degree of control. Mainly, volunteer DGs fall in
the first group, and enterprise DGs in to the second one.

Security in DGs deals with aspects of access to the
computational resources through authentication and
authorization techniques, and access to the computational
data, input and results, by providing data integrity and
encryption. Since computations are run in open and
non-trustable environments, it is necessary to protect the
integrity of data and to validate the computation results.
Hardware and software mishaps as well as malicious
volunteers can falsify the outcome of computations, rendering
the results useless. Thus, a major concern of middleware tools
supporting DG computation is to provide results validation
and sabotage tolerance mechanisms. Without a sabotage
detection mechanism, a malicious user can potentially
undermine a computation that may have been executing for
weeks or even months. In contrast, applications executed over
more controlled clusters offer some reliability and trustability.

L2. Models: computing model, architecture, data model

According to the computing model we can group DGs into
two main categories: one is the typical, master-worker
computing model, consisting of independent tasks, and the
other one involves parallel paradigms with communication
between the tasks. The master-worker (M-W) model includes
a master (server) process which sends tasks to a set of worker
processes, then each worker makes some kind of computation
on some tasks, a computation that generally requires a
variable and unpredictable time. The master then waits for the
answer from each individual worker before sending a new
task to that worker. This is a typical form of embarrassingly
parallel pattern, where tasks are mutually independent, and
can be executed in parallel. The other category involves tasks
which depend on each other: there is either an execution flow
between the tasks, such that one task needs to be executed
only after other tasks are finished (typically accomplished
using some sort of task-dependency graph), or the tasks are
run in parallel, with data communication between each task
(typical paradigms involved are PVM, MPI, BSP).

DGs can be categorized into centralized, hierarchical and
peer-to-peer (distributed) according to the architecture of
the components of each system. A centralized DG consists of
a central server, where resource providers donate computing
resources during their idle time, and job submitters send their
computing requests (jobs). Usually a job is divided into
smaller, independent computing units, called tasks, with their
own input data. The server distributes these tasks to the
available resources, based on some scheduling algorithm.
Typical examples are BOINC, XtremWeb, Entropia etc. In a
hierarchical DG, desktop grids on the lower level can ask for
work from higher level, or vice versa, DGs on the higher level
can send work to the lower levels. The control of work at the
higher level can be realized with priority handling at the lower

level. A basic DG can be configured to participate in a
hierarchy, that is, to connect to a higher-level instance of DG
(parent node in the tree of the hierarchy). When the child node
(a stand-alone DG) has less work than resources available, it
asks for work from the parent. The parent node can see the
child as one powerful client. An example of such hierarchical
DG is the SZTAKI. A somewhat similar approach is present
in the Condor, featuring a mechanism for sharing resources
among Condor pools (groups of computing resources), called
flocking. By using this technique, a Condor pool is able to
accept job requests that are forwarded from a remote pool.
However, the main drawback is the static configuration: to use
flocking, the Condor pools must be manually configured.

In a peer-to-peer DG, there is no central server, in contrast
with the centralized type. Resource providers have only
partial information of other providers. They are also
responsible for constructing the computational overlay
network and for scheduling a job in a distributed way,
according to each other capability, availability, reputation or
trust. The reliability and performance of such P2P systems
depend on how the overlay network is constructed, because
there is no reliable central server. Such systems are CCOF,
Messor, Paradropper, and Organic Grid.

Data model concerns classifying of DGs based on how
computational data (input/output data) is transferred between
the components of the DG. We are concerned here with data
communication between job submitter and resource provider
on one hand, and between different resource providers on the
other hand, in the situation when communication between
running tasks is required (parallel models). We identified
three data model types: middleware, data servers, and direct
communication. In the first situation, using the middleware,
which connects the two components, transfers data. This
could be the master (server) in a centralized configuration, or
all the involved nodes in a P2P configuration. The downside
of this approach is the bottleneck possibility in the case of
large data sets, which could affect other communication
between the components (control, discovery, status, etc.).

In the data server model, all the data is transferred using
another type of component, which is a repository of both input
and output data: a data server. In this case, the job submitter is
responsible for uploading the input data to the data server, and
for retrieving the results, while the job running on the resource
provider’s computer is responsible for downloading the input
data and storing the results on the server after finishing the
job. This model has the advantage of moving the burden of
data transfer (communication and complexity) from the
central node to a more dedicated, and optimized component.
However, there is a complexity added in maintaining such a
data server, which in some situations might not be necessary.

The third data model involves direct data communication
between the components. This could be done either by using a
common network file system, where each component has
access to it, by using a distributed file sharing mechanism
(P2P Bittorrent), or by using lower lever network based
communication for data transfer. The type of direct data
communication could be chosen based on the amount of data
transferred, and the frequency with which data transfers
occur. We can also have the situation when the submitted job
contains also the input data for the computation.

L3. SW: application, architecture, administration, license

SW applications to be run on the DGs can be of different
types. The SETI project is typical of the Internet computing
domain in that its application is both dedicated and vertically
integrated. In other words, no generic use of the computing
resources is or can be made, and all dataflow between the
computing resource and the data server uses proprietary APIs
(dedicated pre-defined applications). This includes legacy
applications, which already exist and are inherited from
languages, platforms, and techniques earlier than current
technology. Most enterprises that use computers have legacy
applications that serve critical business needs. In order to run
them some kind of virtualization could be necessary,
depending on the complexity of the application and the
resources it needs (third party applications or libraries, file
system access, specific OS, etc.). This could range from
simple, virtual file systems, to more complex virtual
environments (virtual machines emulating an OS).

Another class includes applications written in a high level
or interpreted programming language, like Lisp, Perl, Java,
where in order to run the program, a specific run-time
environment should be present. The computing jobs must be
distributed according to each processing resource’s
capabilities, and provide the appropriate starting mechanism.
Web-based and Java-based systems have their own
limitations. One of these is the historically slow execution
speed of the Java virtual machine (JVM) that executes the
platform-independent bytecode. Another problem comes
from the security restrictions imposed on Java applets that
prevent applets from accessing local storage space or
communicating with machines other than the host from which
they came. Together, these two problems may limit the
performance and scalability of Java-based systems.

A whole class of application includes those where the
programs could be compiled in a programming language
(C/C++, Fortran), and where additional support for desktop
grids could be included. This allows fine tuning the
application in term of computing performance, but requires an
API from the DG to be provided. This includes also parallel
applications, where different communication paradigms are
required (message passing, shared memory, etc.).

A last type refers to lightweight programs, highly optimised
for performance, and which are specific to each desktop grid.
For example, computational applications could be made in
form of plugins (or shared libraries), which contains only the
computational problem, the rest of the communication, file
access, and other access to resources are handled by the
supporting middle layer application running on the resource
provider. In this case, a more complex abstraction and API are
needed from the underlying DG system.

SW platform in DGs concerns with the OS that is running
on different system components. This could be Linux, or Unix
versions (BSD, IRIX, etc.) when resource providers are nodes
from a cluster, or Linux, Windows, Mac, if resource providers
are desktop computers. Thus, a DG should have support for
the different OS. Many DGs are based on Java for portability.

SW administration - during the QADPZ development, we
have learned that another restriction of existing systems,
especially middleware based, is that each resource provider

needs to install a runtime module as administrator. This poses
some issues regarding data integrity and accessibility on
providers computers. QADPZ tries to overcome this by
allowing the middleware module to run as a non-priviledged
user to the local system [25]. SW license can be necessary for
commercial DGs or not in case of open source DGs.

Our taxonomy is worthwhile both theoretically, as it
includes facets that other taxonomies ignore for the time being
(e.g. hierarchical architecture, fixed set of pre-defined
applications for volunteer computing projects, administration
privileges and so on), and practically, being an instrument for
choosing the most appropriate desktop grid for the problem to
be solved. Below we present some scenarios [26] for use of
desktop grids in real world situation and follow them with
some hints about how to choose the best solution.

Scenario 1. A holding that want decide on the placement of
a new unit invokes a sophisticated financial forecasting model
from an Application Service Provider (ASP), providing it
with access to appropriate proprietary historical data from a
corporate database that is kept at a storage service provider.
During the decision-making meeting, what-if scenarios are
run collaboratively and interactively, even though the division
heads are located worldwide. The scenarios must meet
desired security and performance requirements.

Scenario 2. An industrial consortium formed to develop a
feasibility study for a next-generation supersonic spacecraft
undertakes a highly accurate multidisciplinary simulation of
the entire spacecraft that integrates proprietary software
components developed by different participants, with each
component operating on that participant's computers and
having access to appropriate design databases and other data
made available to the consortium by its members.

Scenario 3. A crisis management team responds to a toxic
waste accident by estimating the spread of the waste (using
local weather and soil models), by determining the impact
based on population location, and creates a short-term plan,
and a task emergency response personnel by planning and
coordinating evacuation, notifying hospitals, etc.

Scenario 4. A large-scale Internet game consists of many
virtual worlds, each with its own physical features and laws.
Each world may have a large number of inhabitants that
interact with each other and move from one world to another.
Worlds may expand to accommodate population growth. New
simulation technology to model the physical laws of the world
will be needed. Simulations need to be coupled to see what
happens when worlds collide.

Hints to choose the most suitable DG for a given problem:
we first look at the first column, first entry (resource) and if
the project is requested to have robustness and reliability
(major issue for first 3 scenarios) we would better choose the
enterprise DG as it overcome the volatility of volunteer
computing. More, it has accountability and, depending on the
type of the organization, lacks anonymity (except for
universities or alike organizations). On the second choice
(middleware vs. web-based), if the ensuring of control and
security is crucial we should go for middleware platform (first
3 scenarios), while for the 4th scenario we could use both.
Though, we must remind that the enterprise desktop grid is
limited in power, and the volunteer computing has

Table 1. Classification of the main desktop grid systems according to the taxonomy

 Infrastructure Models Software

DG system Resource
Platform
Scalability
Security

Computing model
Architecture
Data communication model

SW application
SW platform
SW administration
SW license

distributed.net - volunteer
- middleware
- Internet
- trust

- master-worker (M-W)
- centralized
- data server

- set of dedicated only
- all OS
- non admin
- closed

Entropia - volunteer
- middleware
- Internet
- trust

- master-worker
- centralized
- data server

- set of dedicated only
- Windows
- non admin
- closed

SETI@home - volunteer
- middleware
- Internet
- trust

- master-worker
- centralized
- data server

- set of dedicated only
- Linux, Win, Mac
- non admin
- closed

Bayanihan - volunteer
- web-based
- Internet
- Java sandbox

- master-worker
- centralized
- middleware

- Java applet
- all OS (Java)
- non admin
- open source

Condor - enterprise
- middleware
- LAN, Internet
- authentication

- M-W, PVM, MPI
- centralized, (hierarchical)
- file system

- legacy, script, compiled
- Linux, Win, Mac
- admin
- license

XtremWeb - enterprise
- middleware
- LAN, Internet?
- authentication

- M-W, MPI
- centralized, (hierarchical)
- middleware

- Java applet
- all OS (Java)
- admin?
- open source

QADPZ - enterprise
- middleware
- LAN, Internet
- authentication

- M-W, MPI, PVM
- centralized
- file system, data server

- legacy,script,compiled, lightweight
- Linux,Win,Mac,Unix
- non admin, admin
- open source

BOINC - enterprise
- middleware
- LAN, Internet
- authentication

- M-W
- centralized
- data server

- legacy, script, compiled
- Linux,Win,Mac,Solars
- admin
- open source

SZTAKI LDG
(BOINC based)

- enterprise
- middleware
- LAN, Internet
- authentication

- M-W
- hierarchical
- data server

- legacy, script, compiled
- Linux,Win, Mac, Solaris
- admin
- open source

Javelin
Javelin++

- volunteer
- web-based
- Internet
- Java sandbox

- M-W
- centralized
- middleware

- Java applet
- all OS (Java)
- non admin
- open source

virtually unlimited resources. As for the scale and security,
probably the best option for the first two problems is the LAN
solution as it ensures privacy and keeps the secrets of the
application away from un-authorized eyes. The last two, on
the other hand can go both ways. The models from the second
column are strongly influenced by the nature and complexity
of the application. One choice would be suitable in the case of
an application that can be broken in small tasks that can run
parallel, with no communication between them
(master-worker), and another for a different type of
application, in which tasks can communicate with each other
(Message Passing Interface - MPI). Moreover, if the

application needs a huge computational power, we would
probably prefer a hierarchical DG, as it can borrow power
from third parties. As for the data communication model, one
has to consider the difficulty of developing the software that
will manipulate the data and the technical limitations (within a
virtual file system vs. “back and forth” from a data server).
The main difference in the usage of institutional DGs
relatively to public ones lies in the dimension of the
application that can be tackled. In fact, while public projects
usually embrace massive applications made up of an
enormous number of tasks, institutional DGs (much more
limited in resources) are better matched for small size

applications. So, whereas in public volunteer projects
importance is on the number of tasks carried out per time unit
(throughput), users of institutional desktop grids are normally
more interested in a fast execution of their applications,
seeking fast turnaround time.

The last column is easier to work with as many of the issues
involved here are known before starting to solve a given
problem: we have our own application or we want to run a
pre-defined one, if we have our own, which kind it is (Java
applet, legacy, script etc.), what platform we use (Linux,
Windows, Mac etc.), what are the needed administration
privileges (admin or user), whether we are interested in access
to the source code or not, and finally if we need a desktop grid
for which a commercial license is requested.

IV. CONCLUSIONS AND FUTURE WORK

Scientists are becoming familiar with desktop programs
capable of presenting interactive models of molecules. The
field of bioinformatics and the field of cheminformatics make
a heavy use of these visualization engines for interpreting lab
data and for training. Medical imaging is a huge application
domain for scientific visualization with an emphasis on
enhancing imaging results graphically, e.g. using
pseudo-coloring or overlaying of plots. Real-time
visualization can serve to simultaneously image analysis
results within or beside an analyzed (e.g. segmented) scan.
Data visualization techniques are now commonly used to
provide business intelligence. Performance metrics and key
performance indicators are displayed on an interactive digital
dashboard. Business executives use these software systems to
monitor the status of their business results and activities.

All users of scientific computing and visualization have an
interest in better hardware, software and integrated systems,
and much of what has being developed was shared by a
number of scientific and engineering disciplines up to a point,
but with very large costs that were accessible only to large
research facilities (e.g. SGI visualization servers and large PC
clusters). Because of the huge number of PCs in the world,
desktop grid and volunteer computing can (and do) supply
more computing power to science than does any other type of
computing. This power enables scientific research that could
not be done otherwise. This advantage will increase over
time, because the laws of economics dictate that consumer
electronics (PCs and game consoles) will advance faster than
more specialized products, and that there will simply be more
of them. Volunteer computing power cannot be bought; it
must be earned. A research project that has limited funding
but large public appeal (such as SETI@home) can get huge
computing power. In contrast, traditional supercomputers are
extremely expensive, and are available only for applications
that can afford them (for example, nuclear weapon design or
intelligence). Desktop grid and volunteer computing
encourage public interest in science, and provides the public
with voice in determining the directions of scientific research.

This paper emphasizes the need for appropriate taxonomies
to help the potential user to choose from the variety of DGs
that are now available for public use. We have applied here
our experience in developing QADPZ to satisfy the demands

of the specialists in scientific computing and visualization.
Their feedback has been carefully used in improving QADPZ
and the current taxonomy. We have customized it according
to user’ perspective to counterbalance the many existing
taxonomies that are focused on developers’ viewpoint. This
taxonomy could be further extended, as the desktop grids
evolve, with autonomic computing features (QADPZ presents
the following autonomic capabilities: self-management,
self-configuration, self-optimization and self-healing [8]).

Taxonomies continue to grow in importance as the DGs
mature. We have tried to think them in terms of user goals,
needs and restrictions. Examining few typical application
scenarios has eased crafting a user-centric taxonomy. We
hope that our approach will help promote the introduced
taxonomy as a practice for its potential users.

REFERENCES

[1] SETI@home (March, 2008) [online] http://setiathome.ssl.berkeley.edu/
[2] BOINC (March, 2008) [online] Available: http://boinc.berkeley.edu/.
[3] XtremWeb (March, 2008) [online] http://www.lri.fr/~fedak/XtremWeb
[4]SZTAKI (March,2008) [online] Availablehttp://szdg.lpds.sztaki.hu/szdg/
[5] Entropia (December, 2003), [online] Available: www.entropia.com
[6] United Devices (May 2007) [online] http://distributedcomputing.info/
[7] Platform Computing (March 2008) [online] http://www.platform.com/
[8] Z. Constantinescu, “Towards an autonomic distributed computing

environment”, in Proc. of 14th Database and Expert Systems
Applications Workshops, September 2003, Prague, Czech Republic

[9] V. Hamscher et al., “Evaluation of job-scheduling strategies for grid
computing”, in Proceedings of the First IEEE/ACM International
Workshop on Grid Computing (Grid 2000), LNCS 1971,
Springer-Verlag, pp. 191-202, (Dec., 2000), Bangalore, India

[10] L. F. G. Sarmenta, “Volunteer computing” Ph.D. thesis, 2001, MIT,
Cambridge, USA

[11] K. Krauter, R. Buyya, M. Maheswaran, “A taxonomy and survey of grid
resource management systems for distributed computing”, in Software –
Practice and Experience, 2002, 32: pp. 135–164

[12] A. Chien et al., “Entropia: architecture and performance of an
enterprise desktop grid system”, in Journal of Parallel and Distributed
Computing, 63, 5, May 2003, pp. 597-610.

[13] S. Ali et al., “Characterizing resource allocation heuristics for
heterogeneous computing systems”, in Advances in Computers:
Parallel, Distributed and Pervasive Computing, 2005, 63, pp. 93-129

[14] J. Yu, R. Buyya, “A taxonomy of scientific workflow systems for grid
computing”, in SIGMOD Record, Special Issue on Scientific Workflows
34, 3, pp. 44-49.

[15] C. S. Yeo, R. Buyya, “A taxonomy of market-based resource
management systems for utility-driven cluster computing”, Software:
Practice and Experience 36, 13 (Nov., 2006), pp. 1381-1419

[16] S. Venugopal, R. Buyya, R., K. Ramamohanarao, “A taxonomy of data
grids for distributed data sharing, management and processing”, in
ACM Computing Surveys 38, 1, March 2006, pp.1-53

[17] X. Chu et al., “Aneka: Next-generation enterprise grid platform for
e-science and e-business applications”, in Proceedings of the 3rd
International Conference on e-Science and Grid Computing (e-Science
2007), IEEE CS Press, pp. 151-159, Dec. 2007, Bangalore, India

[18] S. Choi et al., “Characterizing and Classifying Desktop Grid”, in Proc.
of 7th IEEE International Symposium on Cluster Computing and the
Grid (CCGRID 2007), pp. 743-748, May 2007, Rio de Janeiro, Brazil

 [19] F. Cappello, “3rd generation desktop grids”, in Proc. of the 1st
XtremWeb Users Group Workshop (XW’07), Feb. 2007, Hammamet,
Tunisia

[20] S. Choi et al., “A Taxonomy of Desktop Grids and its Mapping to
State-of-the-Art Systems”, in ACM Computing Surveys, [online]
Available www.gridbus.org/reports/DesktopGridTaxonomy2008.pdf

[21] SAGEPUB (March, 2008). A practical evaluation taxonomy. [online]
Available: www.sagepub.com/upm-data/5047_Chen_Chapter_3.pdf

[22] Bayanihan (March, 2008) [online] http://bayanihancomputing.net/
[23] Condor (March, 2008) [online] http://www.cs.wisc.edu/condor/
[24] Javelin (May 2005) [online] Available http://javelin.cs.ucsb.edu/
[25] QADPZ (March, 2008) [online] Available http://qadpz.sourceforge.net
[26] I. Foster, C. Kesselman, The grid : blueprint for a new computing

infrastructure, Boston, Morgan Kaufmann, 2004

