
It’s Magic: SourceMage GNU/Linux as HPC
Cluster OS

Jörg Cassens and Zoran Constantinescu
Norwegian University of Science and Technology (NTNU)

7491 Trondheim, Norway
{cassens|zoran}@idi.ntnu.no

May 26, 2003

Abstract

The goal of the presentation is to give an overview about how to build a com-
modity PC based GNU/Linux cluster for High Performance Computing (HPC) in
a research environment. Due to the extreme flexibility of the GNU/Linux operat-
ing system and the large variety of hardware components, building a cluster for
High Performance Computing (HPC) is still a challenge in many cases. At the
Division of Intelligent Systems at the Norwegian University of Science and Tech-
nology (NTNU), we have build a 40 node HPC cluster for research purposes using
the source-based GNU/Linux distribution Source Mage.

We describe a methodology for designing and installing a highly customized
GNU/Linux cluster.

Different types of Linux distributions will be mentioned, binary-based and
source-based, with their advantages and disadvantages.

The presentation will focus on using SourceMage for HPC, specifying the
’magical’ ideas behind it: the ease of upgrading to the latest available version of
the source code, a packaging system for keeping track of dependencies, optimized
compiles for the hardware architecture used, easy integration of new packages,
amongst others.

1 Introduction

High performance computing (HPC) has evolved into a small, stable, and high-priced
market. When looking at HPC systems, we see two developments:

• A reduced number of vendors supporting the traditional type parallel computers
and an

• increased performance and capacity of clusters based on off-the-shelf compo-
nents in terms of CPU power, storage capacity, OS abilities, network, and avail-
ability of parallel software.

1

The Beowulf class of parallel computing machines started as a small research
project at NASA in 1993, with the goal of building a one GFlops parallel workstation
for less than $50.000. The idea was to use commodity off-the-shelf (COTS) hardware
and software configured as a cluster of machines, and which exhibits excellent price-
performance, provides a robust environment and has broad applicability.

In June 2002, there were about 80 Beowulfs in the top500 (the list of most powerfull
computers, see see [8]), and the Beowulf population is estimated at several thousands.

Two are the main driving technologies for the success of Beowulf type clusters:
cheap hardware and open source software. Most Beowulfs use mass market commodity
off the shelf PC technology as hardware platform.

The main advantage is that by using no customized components it allows to buy the
hardware from multiple vendors. This approach exploits components that are widely
accepted by industry standards and benefit from prices resulting from heavy competi-
tion and mass production. Recent advances in performance of such components make
them even more appealing for such clusters. One big advantage is their rapid response
to technology trends. The latest advances in microprocessors, storage or other mass
market technologies tend to find their way into PCs much faster than to other plat-
forms. Technologies as old as only a few months can easily be integrated in Beowulf
class systems.

Beowulf exploits readily available, usually free software systems. The success
comes from the unification of public domain parallel tools and applications for the sci-
entific software community. Such tools and applications are the result of decades of
parallel processing research and on many attempts to use loosely coupled computers
for a variety of applications. Some of these components include: parallel communi-
cation libraries, parallel file systems, tools for configuring, scheduling, managing and
tuning parallel applications, higher level scientific libraries, etc. The quality of many
such publicly available software is comparable with that offered by many commercial
software vendors.

Most Beowulf class systems employ UNIX-like operating systems, with source
code availability and low or no cost. The cost issue is very important because paying an
OS license for each node of a large cluster (hundreds of nodes) could be prohibitively
expensive. Source code availability is important because it allows custom modification
to facilitate optimized performance. The most widely used operating systems in Be-
owulf clusters are Linux and BSD. There are also a few Beowulf clusters using Solaris
or Windows as operating system.

One other important feature of Beowulf type clusters is that they enable do-it-
yourself cluster computing, which fits perfectly for many academic and research en-
vironments.

The focus of most Beowulf class systems is science and engineering applications.
These applications are mostly floating point intensive and require substantial amount
of memory. There are many new applications in the area of data processing, especially
in the new biocomputing field, where such systems are beginning to be used. Beowulfs
are also finding significant use in computer science research, for the development of
new tools and environments, such as metacomputing. One of fastest growing area
of Beowulf use is in the computer science education. These systems offer flexibility
and price advantages over other commercial offerings, which makes them ideal for

2

pedagogical purposes.

2 Cluster Architectures

Not every Cluster is built as a High Performance Computing (HPC) resource. The two
most common cluster forms are:

• Load Balancer: Distribute uniform workload, e.g. web server farms.

• Computational Cluster: Conquer a computationally difficult problem by using
several machines.

In this paper, we take a look at the second type: A computational cluster as an
alternative to a conventional supercomputer.

The underlying architectural idea in computers like the common desktop PC is
the use of one instruction on one piece of data at any given time. For HPC, different
architectures were traditionally discussed and used.

Take for example one piece of data and apply different processing directives at any
given time, and you get the multiflow machine.

The most common form of traditional supercomputers used the same instruction
on different data at the same time. This can most easily be achieved by having several
CPUs working together. This type can additionally be divided into systems were all
CPUs share access to the same memory and systems where each systems sees a differ-
ent memory. Applications can be of a type where memory access is shared or of a type
where the teamworking is done by sending messages between them.

The theoretic step from a traditional supercomputer to cluster architectures seems
now not to be very far fetched: what if the different memories and the different CPUs
were not part of one single computer, but if one would take a collection of computers on
a network that can function as a single computing resource with a distributed memory
architecture.

2.1 ClustIS Architecture

For the original ClustIS project (see [2]), we have chosen simplified Desktop-PC’s from
one of our university’s regular hardware suppliers. The computers have AMD Athlon
CPU’s, 100Mbit/Sec ethernet cards, Hard disks, a simple graphics card and up to 2GB
of RAM. The cases are of standard Desktop type with a standard Power Supply and
no CD-ROM or Soundcards. They are placed side-by-side on workhop shelfs. This
reduced the costs considerably compared to rack servers.

One of the biggest advantages of specialized server hardware is the extendend mean
time between failures: the power supply is of bigger dimension, casing and cabling are
of better quality, and so one.

Downtime of computing nodes is no issue for COTS clusters: just replace it with a
spare one or wait for the repair. This is different for the master node, which is in charge
of tasks like job scheduling. Therefore, our master node is a server-type rack mounted
computer. We have a second, smaller rack mount PC integrated into the cluster. Under

3

normal operating conditions, it works as a file server (NFS-mounts) for both the cluster
and the Division of Intelligent Systems, offering an easy exchange of and access to
data for the users of the cluster. In case of a failure of the master node, it can take over
the jobs of the master node as well.

During the use of the cluster, a collaboration with another organizational unit of our
Department was established. Therefore, some rack mounted PC’s originally delivered
for another cluster were integrated into ClustIS. Our concept proofed to be flexible
enough to integrate these new systems despite of some hardware differences.

Per may 2003, ClustIS consists of the following systems:

• Master: AMD Dual Athlon MP 2100+ (1.66 GHz), 2GB RAM, 80+120GB IDE
HD, 1*Gigabit Ethernet, 1*100MBit Ethernet

• Node type 1: (16 nodes: 1. . . 16) AMD Athlon XP 1700+ (1.46 GHz), 2GB
RAM, 1*40GB IDE HD, 1*100MBit Ethernet

• Node type 2: (12 nodes: 17. . . 28) AMD Athlon XP 1700+ (1.46 GHz), 1GB
RAM, 1*40GB IDE HD, 1*100MBit Ethernet

• Node type 3: (8 nodes: 29. . . 36) AMD Athlon MP 1600+ (1.4 GHz), 1GB RAM,
1*18GB SCSI HD, 2*100MBit Ethernet

• Node type 4: (1 node: 37) AMD Dual Athlon MP 1600+ (1.4 GHz), 1GB RAM,
3*18GB SCSI HD, 2*100MBit Ethernet

• Storage: AMD Athlon XP 1700+ (1.46 GHz), 0.5GB RAM, 8+2*80GB IDE
HD, 1*Gigabit Ethernet, 1*100MBit Ethernet

Important for clusters is the network interconnect used. For ClustIS, we went for
a low cost alternative by using a private switched 100Mbit/sec Ethernet between the
nodes and giving both the Master and the Storage Node Gigabit Ethernet access to the
switch.

This network type seems suitable for the size of our cluster and the need of the
applications we run. For larger clusters or applications which depend on a high band-
with or low latency interconnect, other network types might be more usefull. These
solutions exist (see e.g. Myrinet), but are more expensive.

3 Linux

Most of Beowulf clusters are using GNU/Linux as an operating system because of its
performance, availability of source code, better device support, and wider user accep-
tance. The extremely low cost is also very important. The key features for GNU/Linux
in research are: sofistication, accessibility and low cost.

Currently there are many Linux distributions available. The choice of which dis-
tribution to use in a cluster environment is influenced by many factors. For example,
which software packages come with a distribution and/or the familiarity with a certain
distribution.

4

Binary Source
Bytes to download less more
Time to compile short long
Install time short long
Latest software versions no yes
Compilation logs no yes
Optimized binaries maybe yes
Architecture specific binaries maybe yes

Table 1:Small comparison table: Binary and source based distributions

3.1 Linux Distributions

There are basically two types of Linux distributions: binary based and source based.
A binary distribution consists of a certain number of precompiled software packages,
while a source based distribution is compiled at install time using the latest source code
of the software.

Most binary distributions offer support for cluster use by including the necessary
tools and libraries. System suppliers offers solutions based on existing commercial bi-
nary distributions like Red Hat or SuSE. Or Linux distributors offers complete systems
with hard- and software, like in the case of the PPC-based Yellowdog distributions.

These system suppliers often focus on stability. The setup might therefore include
older versions of software which is known to harmonize with each other and the hard-
ware. This is a perfectly valid goal and often suits the needs in e.g. engineering do-
mains or whenever the cluster is the tool, and not the resarch object.

Research systems, especially systems focusing on research in distributed or parallel
systems itself, might be in need for more ”bleeding edge” versions. It is not always easy
to combine a binary distribution in a stable way with newer software versions, given
the complexity of dependencies.

A source based distribution consists of the source code of the packages which are
compiled and configured at install time. The source codes for the packages are always
downloaded directly from the software authors’ homepages and mirrors. This means
that it will always be getting the latest and greatest version of software packages, unlike
other distributions that ship with outdated packages. Then, they are compiled with the
architecture and optimizations that the system administrator specifies. Finally, they
are installed, tracked, and archived for easy removal and upgrades. See table 1 for an
overview about the differences between source based and binary distributions.

A source based distribution offers the system administrator more control over the
GNU/Linux system. At the same time, if offers enhanced performance and customiza-
tion. The cost for this is the time required to compile the software packages. However,
time for compilation can be allocated from the computer when this is not used.

Having allways the latest version of the software, built from the current sources,
makes the operating system free of known vulnerabilities and exploits.

There are a few source based GNU/Linux distributions: Source Mage, Gentoo, Lu-
nar and Source Mage. They follow the same procedure of instalation, by downloading

5

the source code and compiling it. The major differences between these distributions are
the way software packages are described (source code location, compile options and
procedure, dependencies) and the number of available packages, i.e. which software
packages can be installed using one distribution.

3.2 Source Mage

We decided to use the Source Mage GNU/Linux (SMGL) distribution, a source based
distribution. It has many powerful features that set it apart from other distros.

Up-to-date packages can be auto-built using the optimization settings and build-
time functionality the administrator wanted, rather than what other distro creator thought
would be best for him. For example, if you don’t want GNOME on the system, the ap-
plications won’t have optional GNOME support enabled.

It has an advanced package management system, supporting a number of advanced
features including dependencies, fine-grained package management, path sandboxing,
safe unmerging, system profiles, virtual packages, config file management.

Source Mage is a simple yet powerful source based distribution for advanced sys-
tems administration. The package management system is called sorcery. Sorcery is
comprised of modular, easily modified, command line and menu driven BASH scripts.
A system administrator wielding sorcery can keep FHS 2.2 complaint Source Mage
boxes current with the latest stable software releases.

Source Mage offers most of the features of modern GNU/Linux distributions. There
is a menu driven installer on the Installation/Rescue CD image which simplifies the
creation of a new box. After installation Source Mage has both command line and
menu driven source management programs, making it easy to use both for beginners
or more advanced administrators. It can also be used in automatic scripts.

Software installed by sorcery, with few exceptions, are the authors’ latest stable re-
lease. Compiling software with the optimizations, options, and architecture that the sys
admin specifies is how a Source Mage box achieves excellent run-time performance.
Sorcery can discover and automatically fix broken library dependencies caused by an
upgrade or removal of a library.

The Grimoire contains all of the ”spells” that Source Mage uses. Each of these
spells contains the instructions for downloading the source code, for compiling, and for
installing a certain software package. By ”cast”-ing the name of a program, the system
will download, compile and install the program. For the first step, ”wget” is used to
download the source code from its web or ftp site. Next, following the instructions
contained in the spell, the program is configured and compiled. Some of the spells,
notably the kernel, require user input for further configuration options. Most spells are
configures automagically, without needing human input beyond the initial command.
The last step is the installation. The spell also contains instructions about where to put
the compiled files. Logs documenting the filenames and locations of all these files are
written to /var/log/sorcery/ so they can later be reversed, either manually or using the
”dispel” command.

There are several cases in which casting of individual can become more compli-
cated:

6

1. Dependencies:One spell may depend on another. Fortunately, cast takes care of
dependencies automagically. You will be prompted to cast dependencies, which
come in two flavors: required and optional. The dependencies you select will be
cast before the main spell, so that everything will work right. You can say ”no”
to a required dependancy, but it’s not recommended for the faint of heart. Say
”yes” to required dependencies unless you know what you’re doing!

2. Post-Install setup:Sometimes spells require post-install configuration and test-
ing that can’t be taken care of by cast. An example is Free Type2 – after casting
this spell, you will be reminded that you need to specify the font path of your
X server manually, and run ttmkfdir in your True Type font directory. Because
there is no agreed-upon standard location for True Type fonts in X-windows, cast
cannot do these things for you. It doesn’t know where you’ve decided to install
your fonts.

3. Supported Spells:Sometimes you will need to recompile a spell that is a depen-
dancy for other programs. After the spell is recast, you may be prompted to recast
the spells that depend on it in order to make certain they function with the new
version. This is important for programs that are statically linked against common
libraries, and particularly necessary when taking care of security vulnerabilities.
For example, following the discovery of a severe vulnerability in the commonly
used library zlib, a sorcery update recompiled zlib, and then prompted to recom-
pile affected programs, thereby ensuring that the vulnerability was eliminated on
that box.

4 Cluster Software

We use a job scheduling system in oder to share the resources fair between the users.
The OpenPBS (see [5]) is such a general job scheduler: let’s say you need 5 nodes for
15 hours, you describe that in your job script, then submit it to the scheduler. When
the requested number of nodes are available (i.e. not used by other jobs), your job (i.e.
script) will be started. You will get also at that point a list of nodes ‘dedicated’ to your
job (no other jobs will be scheduled on those nodes by PBS). If your job doesn’t finish
after the ‘time’ you specified when submitting the job, it will be stopped by the PBS.
The same applies to memory limits and other resources.

On the cluster now, the PBS is scheduling jobs on nodes 9 and up. The first 8 nodes
can be used freely for testing purposes, running small programs, debugging etc., and
are not touched by PBS. User are discouraged to run ‘long‘ jobs on those nodes (i.e.
for more than a few hours).

Clusters are NUMA (Non-Uniform Memory Access) architectures. When we want
to run some kind of parallelization, the first question that arises is: How does Informa-
tion flow in Parallel Programs?

When fully implemented, ClustIS will offer three different answers to this problem:

1. Message Passing

2. Distributed Shared Memory

7

3. Distribution instead of Parallelization

4.0.1 Message Passing

The application consists of different process running on the different nodes. In order
to exchange information with the other parts, they exchange messages. Two standards
are important in this respect:

• MPI (Message Passing Interface):proposed as a standard for writing message
passing programs.

• PVM (Parallel Virtual Machine): library enabling collection of heterogeneous
computers to be used as one concurrent computational resource, see [6]

Today, the most common used form for parallel computing on ClustIS is the use
of the MPICH implementation of MPI, see [3]. MPICH is heavily used in student
assignments in courses on parallel computing.

4.0.2 Distributed Shared Memory

The underlying idea here is to implement a kernel extension distributing applications
transparent to the user. This technique is not implemented on ClustIS yet, but we plan
to use it least on a part of the cluster because of its ease of use for programmers not
used to parallel programming.

We cite the general idea from the openMosix website (see [4]): ‘openMosix is a
Linux kernel extension. [. . .]

Once you have installed openMosix, the nodes in the cluster start talking to one
another and the cluster adapts itself to the workload. Processes originating from any
one node, if that node is too busy compared to others, can migrate to any other node.
openMosix continuously attempts to optimize the resource allocation.

There is no need to program applications specifically for openMosix. Since all
openMosix extensions are inside the kernel, every Linux application automatically and
transparently benefits from the distributed computing concept of openMosix. The clus-
ter behaves much as does a Symmetric Multi-Processor, but this solution scales to well
over a thousand nodes which can themselves be SMPs.’

4.0.3 Distributed Computing

The third answer is not to parallelize a program at all, but to distribute it. Many ap-
plications have the need for high computing power, but it is sometimes sufficient to let
the same algorithm run on different data sets instead of parallelizing an algorithm. We
have an solution developed in-house for this kind of applications.

Q2ADPZ [’kwod ’pi: ’si:] is a modular C++ implementation of a free,
open source, multi-user, multi-platform system for distributing computing requests in a
TCP/IP network. The users of the system can submit, monitor, and control computing
tasks (grouped into jobs) to be executed by computers participating in the Q2ADPZ

8

system in form of dynamic shared libraries, executables, or interpreted programs (in-
cluding Java applications).

Users can provide software, hardware, and platform requirements for each task and
the proper computer is automatically selected. The system automatically delivers the
input and output data files. Computers executing tasks detect users logging in, and
the tasks are terminated or moved to other computers to minimize the disturbance of
regular computer users. Q2ADPZ can operate both in conditions of an open Internet
environment or of a closed local TCP/IP network.

The internal communication protocol is based on optionally encrypted XML mes-
sages. The system provides basic statistics information on usage accounting. Several
user modes are supported: from novice users submitting simple binary executable pro-
grams to advanced users who can alter the internal communication interfaces for their
special needs. We are currently using the system for research tasks in the areas of
large scale scientific visualization, evolutionary computation, and simulation of com-
plex neural network models.

4.1 Application Areas

ClustIS is used both in education and research. The Division for Complex Datasystems
(KDS) is using it in its undergraduate courses on parallel and distributed computing.

The Division of Intelligent Systems (DIS) developed the setup and is maintaining
the cluster primarily for research purposes. In Intelligent Systems research, there are
several areas in need for computational power:

• Data Mining

• Bioinformatics (Protein Folding)

• Large Scale Visualization

• Machine Learning (Cross Validation)

• Genetic Algorithms and Genetic Programming

• Artificial Life

An application domain on ClustIS with a huge need for computational power is
data mining in real medical data. The task is to identify the role of different proteins
in gene expression. A rough set approach to data mining is used with the in-house
developed ROSETTA C++ library, a collection of C++ classes and routines that enable
discernibility-based empirical modeling and data mining (see [7]).

Another domain is empirical work on machine learning algorithms. We use Weka,
[9], a framework for Machine Learning written in Java Implements which implements
all common ML algorithm. Its distributed version enables the cross validation step
(multiple testing of the performance of algorithms on different learning and test data
sets) to be distributed to the cluster nodes. We included our own framework CREEK
(a knowledge intensive Case-Based Reasoner, [1]) into the range of algorithms to com-
pare its performance with other approaches.

9

ClustIS is, amongst others, on a daily basis also used for computation intensive
tasks in Genetic Algorithms, Visualization, and simulation of distributed systems.

References

[1] Agnar Aamodt. Knowledge Acquisition and Learning by Experience – The Role
of Case-Specific Knowledge. In G. Tecuci and Y. Kodratoff, editors,Machine
Learning and Knowledge Acquisition – Integrated Approaches, chapter 8, pages
197–245. Academic Press, 1995.

[2] http://clustis.idi.ntnu.no/. Website, May 2003.

[3] http://www-unix.mcs.anl.gov/mpi/mpich/. Website, May 2003.

[4] http://www.openmosix.org/. Website, May 2003.

[5] http://www.openpbs.org/. Website, May 2003.

[6] http://www.epm.ornl.gov/pvm/. Website, May 2003.

[7] http://rosetta.sourceforge.net/. Website, May 2003.

[8] http://www.top500.org/. Website, May 2003.

[9] http://www.cs.waikato.ac.nz/ml/weka/. Website, May 2003.

10

