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Abstract— This paper presents a system for the prediction
of the necessary energy for selected trips of electric vehicles
(EVs), which can be used for various EV assistants like range
estimation. We use statistical features extracted from crowd-
sourced speed profiles for the energy prediction, since they
consider the varying impact factors of the individual driving
style and the prevailing traffic condition. A statistical prediction
model uses these features in order to predict the deviation
from the mean energy consumption of the EV. Hence, the
model predicts the variance of energy consumption caused for
example by individual driving behavior. The results show an
improvement of the energy prediction by 5.4 percentage points
if the statistical features are considered. The prediction of the
propulsion energy for EVs before the start of a given route has
a relative mean error of 6.8%.

I. INTRODUCTION AND MOTIVATION

The limited driving range and long recharging times are
two major barriers against the market penetration of electric
vehicles (EVs). A reliable prediction of the necessary energy
along specified routes is an important information to reduce
the drivers’ range anxiety [1]. Thus, various applications
for EVs depend on an accurate energy prediction: eco-
routing [2], [3], the calculation of the residual range [4],
travel and journey planning [5], information for charging
service providers [6] or advanced driver assistance systems
for minimizing the energy consumption along the route [7].
The energy consumption of EVs consists of two parts:

• power train energy consumption depending on vehicle
parameters and the speed profile along the route

• energy consumption of the auxiliaries depending on
weather conditions (e.g. heating), status of the electric
devices and the expected travel time

The vehicle parameters, which are known in advance or are
estimated during the trip, mainly influence the level of energy
consumption, whereas the speed profile especially influences
the variance around the average energy consumption [8]. The
uncertainty factor to be considered most for the estimation
of auxiliary energy consumption is the travel time, since
weather conditions usually are predictable for a short forecast
period. Hence, the knowledge of the future speed profile
along a route is essential for an accurate energy prediction.
The prediction is a hurdle since various impact factors such
as vehicle parameters (e.g. maximum acceleration), route
(e.g. traffic signs), traffic flow and the individual driving
behavior influence the future speed profile.
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In the next years, the amount of vehicles being connected
to a server in the back-end will increase. Thus we use
a cloud-based approach to collect the speed profiles from
different vehicles and drivers. Prediction models use the
stored statistical features being extracted from the previous
collected speed profiles to predict the variance of the energy
consumption along given routes before the start of a trip.

This paper is organized as follows. Section II gives an
overview about related work. Section III describes the used
data, which are analyzed for their influence on traffic condi-
tions or individual driving behavior in Section IV. Section V
presents the statistical prediction model and an evaluation.

II. RELATED WORK

The impact of individual driving behavior on speed pro-
files and on the energy consumption of vehicles has been
analyzed by several studies. In [10] and in [11] the future
speed profile was predicted for only a limited horizon of a
few kilometers by using real time infrastructure information
or driver characteristics. [12] and [13] used a cloud-based
framework to calculate the optimal speed profile for a limited
prediction horizon in the back end to minimize the fuel
consumption of Plug-In Hybrid Vehicles (PHEV).

In [14] and [15] methods for the characterization of the
driving style are introduced. The authors used statistical
features of speed profiles in regression models or clustering
algorithms in order to calculate an aggregated indicator and
significant clusters related to the individual driving style.

Several studies consider the individual driving behavior
depending on the occurring maneuver situation. In [16]
statistical features of speed profiles were used for the dis-
crimination of driving conditions. Based on the determined
conditions, the energy management strategy of Hybrid Elec-
tric Vehicles is adapted. The authors of [17] used defined
maneuver classes along the navigation route for the con-
sideration of the driver-specific influence. A self-learning
algorithm adapts the parameters of the maneuver classes
(e.g. average velocity), if the driver-specific values differ
from the predefined ones. In [18] the complete future speed
profile along a specified route is predicted by the usage of
map attributes, whereas individual driving patterns are not
considered.

III. OVERVIEW OF THE ENERGY PREDICTION SYSTEM

The proposed energy prediction system consists of a
vehicle-specific part and a cloud-based part (see Fig. 1).
The crowd-sourced information has to be used for the
prediction of various types of EVs with different vehicle
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Fig. 1. Overview energy prediction system

parameters. Extracted statistical features from speed profiles
as for example the mean acceleration or the mean speed
are used for the cloud-based part, since they are comparable
within certain limits. The propulsion energy Es of a road
segment s has to be normalized (EN

s ) for the cloud-based
prediction system. The cloud-based part predicts a normal-
ized propulsion energy value ÊN

s , which can be transformed
according to the vehicle-specific energy consumption into Ês

depending on the vehicle parameters.
The regenerative braking strategy varies even for the same

type of vehicle and can often be changed by the driver
himself (e.g. choose of eco-mode). Hence, we separate the
powertrain energy in acceleration mode Epos from the one
by using the regenerative braking mode Eneg . The prediction
of the energy consumption of the auxiliaries Êaux is also
vehicle-specific, but is not considered in this paper (Êaux =
0). The energy for n segments of a route can be calculated:

Êtot =

n∑
s=1

Ês,pos + Ês,neg + Ês,aux (1)

A. Vehicle-specific prediction system

In the vehicle-specific part of the prediction system the
vehicle parameters are considered. We use a characteristic
power consumption map (PCM) of the drivetrain to describe
the necessary power to overcome the driving resistances. The
PCM takes into account all the necessary power including
the drivetrain efficiency at the various operating points. A
recursive least square algorithm adapts the PCM during the
trip according to occurring parameter changes [19].

The occurrence of operating points (vehicle speed and
acceleration) depends on the driving condition (e.g. urban
road, highway). We defined twelve road classes according
to the speed limits and road types. A probability density
function (PDFk) exists for the frequency distribution of
vehicle speed and acceleration of every road class k. PCM
and PDFk are used to calculate a mean powertrain energy
consumption ∅Ek for k (see Fig. 2). A detailed description
is given in [19]. ∅Ek depends only on the vehicle parameters
and is independent from the prevailing acceleration and speed
values along a certain route, since we use a fixed PDFk for
every road class. As result, the vehicle specific impact factors
as for e.g. the additional load are independent from the ones
related to the speed trajectory, which are predicted separately
by the cloud-based part of the system.

∅Ek is due to the fixed probability density function
PDFk independent from the speed profile in a segment s,
so that ∅Ek can be used for normalization of the measured
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Fig. 2. Normalization propulsion energy

energy consumption of the powertrain Es in s (a detailed
description is given in [20]). τ is a fixed parameter for each
type of vehicle to increase the accuracy of the normalization
depending on the vehicle parameters.

EN
s =

Es

τ ∗∅Ek
(2)

B. Cloud-based prediction system

We divide the road network in fixed segments s for
the calculation of the statistical features from the collected
speed profiles. The segments s are longer than the ones
in navigatable maps, because a minimum segment length
of 150s of travel time is necessary for the extraction of
appropriate statistical features [16]. The road network is
segmented according to speed limits and road types. Hence,
every segment s consists of road sections belonging to the
same road class k. In [20] the criteria for the segmentation
of the road network are described.

The normalized energy consumption EN
s for every seg-

ment s can be divided in the mean value ∅EN
s and the

corresponding deviation ∆Es from the mean value:

EN
s = ∅EN

s ∗ (1 + ∆Es) (3)

Segment-specific impact factors like traffic signs, speed
limits or road curvature are considered in the mean value
of ∅EN

s , since this value is updated each time the segment
is traversed. According to (2), the mean energy consumption
on a segment s is higher than on an average segment of the
corresponding road class k, if the value for ∅EN

s is higher
than 1 (see Fig. 3). The deviation ∆Es from the normalized
mean value ∅EN

s of s takes into account the variation of
the speed profile from the average speed profile in s. ∆Es

is comparable for various segments, which is necessary for
cloud-based systems.
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Fig. 3. Overview cloud-based part of the energy prediction system
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C. Energy prediction

The system provides three prediction values, which can be
converted into one another:

1) Êtot,∅k: based on the mean energy per road class ∅Êk

2) Êtot,∅s: based on the normalized mean energy per
segment ∅ÊN

s

3) Êtot,∆k: based on the deviation from the segment
average value ∆ÊN

s

The number of considered impact factors and the accuracy
increases with the order in the list above. However, the
complexity and the necessary information also rises. The
three-step modular system can be used for a prediction with
lower accuracy in case only a part of the necessary inputs
for the corresponding prediction model is available.

In this paper, we introduce a statistical model to predict
∆ÊN

s , which considers the influence of traffic, driving
behavior and further impact factors. The prediction methods
(Êtot,∅k and Êtot,∅s) are used for evaluation purposes.

IV. COLLECTED DATA

In this section, we give an overview about the collected
speed profiles. Since we do not have access to real-time
traffic information systems, the collected speed profiles have
to be classified afterwards in order to get information about
the prevailing traffic condition at the time of the recording.

A. Speed Profiles

16, 000 tracks with a length of more than 300, 000 km of
real world speed profiles have been collected in the urban
area of Munich. GPS position and speed are sampled at
one second timestamp and transmitted to the database in
the back-end. We match the collected speed profiles with
an OpenStreetMap (OSM) map [21], so that existing map at-
tributes can be used and the speed profiles can be partitioned
according to defined fixed segments s. The consideration of
various driving styles and traffic conditions is guaranteed by
the usage of a huge amount of real world speed profiles.

We use a simulation model consisting of validated compo-
nent models (e.g. battery, electric drive) to calculate the en-
ergy consumption of different EVs according to the recorded
speed profiles. Significant vehicle parameters can be varied.

B. Traffic Information

We apply a simple and efficient spatio-temporal method
for the segment-by-segment identification of traffic condi-
tions, which is described in [22]. This algorithm requires only
GPS-data and achieves accurate results after 15-20 existing
vehicle trajectories without a continuous data stream.

The method compares the temporal mean speed with
the spatial mean speed in a segment s. Thresholds for the
temporal and spatial speed cluster the vehicle trajectories in
four quadrants (see Fig. 4). The temporal threshold considers
the 5th percentile of traversal time and the average red light
duration on s. The locations of the traffic lights and the
corresponding red light durations are taken from the OSM-
data or are estimated via crowd-sourcing from the recorded
vehicle trajectories. In [22] the spatial threshold is defined

Fig. 4. Traffic index for a segment

as the 5th percentile of spatial mean speed in the right-sided
subspace. Since we also use the method in non-urban areas
with hardly any stops, we additionally use the speed limit
and the 85th percentile of the mean spatial speed in s for
the definition of the threshold.

A traffic index TI is calculated for every vehicle trajectory
of s depending on the distance from the intersection point
of the two thresholds, whereby all vehicle trajectories in the
right upper quadrant have the value 0 (free-flowing status).
TI is an indicator for the approximate traffic congestion. A
comparison of the calculated TI and the corresponding speed
profiles on a chosen segment is shown in Fig. 4. A detailed
description and evaluation is given in [22]. We observed in
our own analysis on the plausibility, that the calculated TI
can be used for the development of our prediction system.

C. Data acquisition for deviation prediction

In [9], [14], [16] and [23] the influence of various statisti-
cal features of speed profiles on fuel consumption is shown.
We use some of these features (see Table I), since they can be

TABLE I
STATISTICAL FEATURES

fi explanation

a% part of segment s in acceleration phase
d% part of segment s in deceleration phase
c% part of segment s in cruising phase
am ∗ a% mean acceleration combined with acceleration part
dm ∗ d% mean deceleration combined with deceleration part
astd standard deviation of acceleration
stopcnt number of stops in segment s
vm,run mean run velocity
vm,spat mean spatial velocity
vstd,run standard deviation of vm,run

PKE positive kinetic energy related to segment s
RPA relative positive acceleration related to segment s
RNA relative negative acceleration related to segment s
am,low, dm,low mean accel. / decel. at low speed difference
am,mid, dm,mid mean accel. / decel. at medium speed difference
am,high, dm,high mean accel. / decel. at high speed difference
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Fig. 5. Collected data for each road segment

used for statistical or machine-learning approaches to predict
∆ÊN

s . We have evaluated these features concerning their
correlation to ∆ÊN

s in [20].
The statistical features Fs are extracted from the recorded

speed profile and the consumed or regenerated energy is
normalized with Ek of the corresponding road class k after
an EV has passed a segment s. We only store the features
in the database in case they have been recorded with free-
flowing traffic. The database provides the mean value and the
standard deviation of the collected data of different vehicles
(∅Fs, σFs,∅Es, σEs) for each segment (see Fig. 5). It is
important for the deviation prediction, that the statistics of
Fs and EN

s are updated simultaneously. Map features like
traffic lights or the road classes are also available and in
future real-time traffic information will be added.

V. DATA ANALYSIS

We analyze the impact of possible factors on ∆ÊN
s as

we compare the extracted statistical features Fs with the
corresponding mean values ∅Fs of the segment s:

∆Fs = Fs −∅Fs (4)

The number of features has to be reduced for an efficient
data analysis due to the length of the vector ∆Fs. Some of
the features correlate with each other. For example, if the
part of acceleration is above the average (∆a% > 0), then
probably ∆d% or ∆vm,run are below the average. Similar to
the approach in [24], a principal component analysis (PCA)
is applied. The PCA transforms the correlated elements of
vector ∆Fs into a smaller number of uncorrelated variables
∆PCs, which are called principal components.

∆PCs = PCA(∆Fs) = [∆pc1,s, ...,∆pcn,s]
T (5)

The results of the PCA show that the first seven principal
components represent 95% of the information of ∆Fs. Thus,
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Fig. 6. Deviation database for various impact factors

Fig. 7. Distribution of principal components of a segment

the 16 elements of Fs can be reduced to ∆PCs with seven
elements. The principal components of each segment are
approximately normal distributed around the mean value,
which is usually zero, since the mean value of ∆PCs of s is
usually zero (see Fig. 7). We distinguish between following
impact factors for the analysis of ∆PC:

• traffic condition
• driving-behavior
• contextual situations (daytime, weather condition, etc.)
The elements of ∆PCs are comparable, so that we can

cluster several segments for the analysis. Usually we cluster
the data according the road classes k. The mean deviation
of the principal components ∅∆PC for every cluster is
calculated and the results of the analysis are used for the
energy prediction.

In our approach, a driver-specific model always implies the
usage of the same car; in case the user drives a different ve-
hicle another user-specific model and database is necessary.
For this reason we do not have to consider the vehicle-related
influence in the speed profiles (e.g. it does not matter if the
mean acceleration is lower due to the driving style or due to
the limited acceleration power of the vehicle).

The necessary user-, traffic- or situation-specific data
(∆PCu, ∆PCt or ∆PC1,...l) can either be stored in the
back-end or on an electronic device in the vehicle (especially
driver-specific data). Possible system architectures are not
part of this paper and have to be discussed in future research.

A. Analysis traffic condition

The values of the principal components ∆PCs are an-
alyzed for an exemplary chosen segment (motorway with

Fig. 8. Analysis traffic condition of 1 segment

1072



speed limit 120km
h ) considering the calculated traffic index.

We distinguish only between free-flowing (TI = 0) and non-
free flowing status (TI > 0). The distribution of the first
four principal components is given in Fig. 8. The reason for
the lower values of ∆pc2 is the high impact of the speed
on ∆pc2 which is usually lower during traffic congestion
(TI > 0). ∆pc3 also varies, whereas the mean value of
the approximated normal distribution of ∆pc4 is equal in
both cases. The differences of ∆PCs between the two traffic
conditions depend also on the attributes of the segment and
on the kind of traffic congestion.

B. Analysis of driver-specific impact

The data sets ∆PC are clustered according to the existing
road classes k for the analysis of the individual driving
behavior. We only use data recorded in the free-flowing
traffic state (TI = 0) for comparability reasons. As example,
we compare the mean value of two principal components
of several drivers on segments of a certain road class
(motorways with speed-limit between 100km

h and 120km
h ).

We group the drivers by their average deviation of energy
consumption from the mean value. Fig. 9 shows the relation
between ∆EN

pos and the mean value of ∅∆pc1 or ∅∆pc2.
However, the variance of ∅∆pc1 or ∅∆pc2 is for most of
the drivers equal to the variance of all drivers. Only driver
17, 18 or 19 have a smaller variance than the average.

We analyzed the data from the participants of the fleet-test
e-Flott [25], in which about 20 participants drove both an
AUDI A1-TDI (ICE) an AUDI A1-etron (PHEV) for several
months. The two vehicle types have a different acceleration
behavior. Fig. 10 shows the mean values of two principal
components, which have been calculated of ∆Fs of all
segments in a certain road class. The values for ∆pc2 of the
drives with the A1-TDI are for all drivers higher than the

Fig. 9. Analysis driving behavior

Fig. 10. Impact of different vehicles types

ones with the other vehicle. The driver-specific impact on
∆pc2 is still visible, since for example the values for driver
6 and 8 are lower than the average of all drivers (∆pc2 = 0),
whereas those of 2 and 7 are higher. ∆pc3 is independent
of the type of vehicle. The mean values do not vary despite
the usage of two different vehicles.

The results of the analysis show that the mean values of
the principal components ∅∆PCu, which are calculated of
the deviation of the extracted features ∆Fs from the mean
values of each road segment, can be used for the prediction
of ∆ÊN

s . ∅∆PCu of every road class k is stored for every
driver in a user-specific database.

C. Analysis of situation-specific impact factors

The impact of further situation-specific attributes on the
distribution of the principal components is analyzed. Map
attributes are not analyzed, since they are considered already
in ∅EN

s . If possible, the data is clustered in several groups
(e.g. road classes), so that the impact of the situation-specific
factors on ∆PC can be described in a general manner. All
situation-specific factors are described with categorical vari-
ables (e.g. daylight / no daylight). We perform an one-way
ANOVA-test at the 5% level if there is a significant difference
of ∅∆PC for the two categories. We have identified the
following situation-specific impact factors, which are at least
significant for two principal components:

• daylight
• above-average stop likelihood at traffic lights
• rainfall
• temperature < 5◦C
• time window (peak traffic hours, non-peak hours on

weekdays, weekends, night-hours)

The light condition influence the driving behavior [26]
and is exemplary analyzed in this paper. Fig. 11 shows
the mean values of six principal components depending on
daylight or darkness. For comparability, only measurements
between 6pm and 10pm and under free-flowing traffic con-
dition (TI = 0) are considered. Especially ∅∆pc1 shows a
significant difference between the two categories. We have
analyzed this effect for various user-groups, which used the
different type of vehicles. The difference of ∅∆pc1 between
daylight and darkness lies for all user-groups between 0.4
and 0.5 despite the variation caused by the usage of different
vehicle types. We use the recognized deviation caused by the
condition of daylight ∅∆PCi for the prediction model.

Fig. 11. Impact of daylight on principal components
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VI. ENERGY PREDICTION

We develop a prediction model based on the results of the
principal components, which describe the deviation from the
mean values of the collected features of each segment. The
accuracy of the energy prediction is evaluated both segment-
by-segment and for complete trips.

A. Statistical prediction model

In [20] a regression model is introduced, which uses
most of the elements of the vector ∆Fs to predict the
energy deviation ∆ÊN

s . If the statistical features (∆F̂s)
can be predicted, ∆ÊN

s can be predicted precisely, since
the accuracy of the regression model is high (for e.g. the
absolute mean error is around 6% for ∆EN

s,pos). A new
regression model Mreg can be defined, which uses the first
seven principal components ∆PC:

∆ÊN
s = Mreg(∆P̂C) (6)

Map features M such as turn-lefts or the gradient of the
road are additionally used as already described in [20]. The
accuracy of the new regression model decreases only by
1%. The prediction of the principal components ∆P̂C is
necessary as input for the regression model. We use as
prediction for ∆P̂C the mean values of the stored clusters
of the different impact factors (∅∆PCu, ∅∆PCt and
∅∆PC1,...,l).

The impact of the user-specific deviation is bigger com-
pared to the situation-specific deviation. The estimated
driver-specific deviation ∆P̂Cu is the basis for the realized
statistical model, since the user-specific database is updated
only under free-flowing traffic condition like ∅Fs and ∅EN

s .
The impact of traffic congestion is considered additionally.
The weighting factors αu and αt are used to weight the
traffic and user-specific impact (see Fig. 12). αu for the
user-specific deviation ∆P̂Cu decreases with increasing
traffic congestion. The expected deviations ∆P̂Ci of further
situation-specific impact factors like the weather condition
are taken into account additionally to the driver-specific
impact. The corresponding weighting factors βi depend on
the frequency of the situation i in the calculation of ∅Fs

and ∅EN
s .
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Fig. 12. Prediction model

B. Evaluation methodology

The described energy prediction model is evaluated based
on the segments of 1000 randomly chosen tracks. We have
only chosen trips with a minimum length of 20km for the
evaluation, so that short trips consisting of only a few seg-
ments are not considered. The consumption of the auxiliaries
depend extremely on weather conditions and is not taken into
account, since we consider only impact factors concerning
the speed profile in the proposed prediction model. We
evaluate the prediction accuracy at the beginning of the trip,
since most of the applications for EVs require a prediction
in advance.

The energy prediction Êtot,∆s is compared with the mean
energy per road class Êtot,∅k and the one based on the mean
energy per segment Êtot,∅s. Currently available EVs often
use road classes and map attributes for the initial prediction
before the start of a trip. A map-based approach, in which all
relevant map features of the segment are considered will not
be more accurate than Êtot,∅s. Hence, Êtot,∅s and Êtot,∅k

are possible comparative values for the evaluation of the
introduced deviation prediction system.

The relative error (RE) between consumption Eact and the
various prediction methods Êtot,m is calculated with regard
to the mean energy consumption of the road class ∅Ek, that
the results are independent of vehicle attributes. We refer
the difference between prediction and consumption Eact to
∅Ek instead of Eact, since Eact is often zero in regenerative
braking mode. We assume that ∅Ek is known exactly.
RE only considers the error resulting from the deviation
prediction based on the collected speed profiles:

RE =
Êtot,m − Eact

∅Ek
(7)

We calculate the mean absolute percentage error (MAPE)
for the evaluation of all n segments or n tracks:

MAPE =
100%

n

n∑
i=1

∣∣∣∣ Êtot,m,i − Eact,i

∅Ek,i

∣∣∣∣ (8)

C. Evaluation of the prediction based on segments

Fig. 13 shows the distribution of the RE for each segment
of the chosen trips. The consideration of the driver- and
situation-specific impact increases the accuracy in compari-
son to Êtot,∅s. The RE is higher for Eneg than for Epos,
since the RE increases with small deviations due to the
low absolute values of Eneg . The accuracy of Epos is
more important for consideration of the complete energy
consumption. The distribution of Êpos,∅k shows a peak at
RE = 1. This result occurs, if the regenerated energy on a
segment s is zero, whereas the prediction with Êpos,∅k is
never zero due to the used mean value of the road class.

Table II shows the MAPE of all segments for the pre-
diction variants. The consideration of the driver-specific and
situation-specific impact decreases the prediction error from
21.3% for Êtot,∅s to 14.9% for Êtot,∆s for each segment.

The speed profile of several measurements of a segment
vary due to the randomly prevailing impact factors like
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Fig. 13. Relative error RE of different methods of energy prediction

TABLE II
EVALUATION PREDICTION SEGMENT-BY-SEGMENT

MAPE Ês,pos Ês,neg Ês

Êtot,∅k 29.1% 62.8% 33.4%

Êtot,∅s 19.4% 46.4% 21.3%

Êtot,∆s 14.8% 36.4% 14.9%

traffic lights, whose influence is considered on average with
the expected mean values of the concerned impact factors
∅∆P̂C. In the next section, we evaluate complete trips, so
that the variance of the segment-by-segment prediction is
compensated.

D. Evaluation of the prediction for complete trips

Apart from the expected consumption for a complete
trip, we calculate the maximum necessary energy Êmax.
We define Êmax as the limit to ensure, that the energy
consumption E will not exceed Êmax in 95% of the cases.
Êmax is important for EV users to guarantee to reach the
destination with a high probability.

The stored variance of the normalized energy or the
variance of the principal components can be used for the
prediction of Êmax. According to the definition of the normal
distribution, we use 1.6 times the standard deviation σ above
the expected value Êact for the calculation of Êmax for one
segment. The multiple of σ decreases with the number of
segments of the trip. As result of an experimental simulative
study, the multiple of the standard deviation can be reduced
to 0.6 in case the trip has more than 25 segments.

As result, Fig. 14 shows the various prediction variants and
the maximum necessary energy for the deviation prediction
Êmax,∆s and the consumed energy Eact, which is predicted.
The variance of the prediction of the single segments is
balanced along the whole trip. For the exemplary chosen trip
more energy is needed as on average, since Êtot,∆s is higher
than Êtot,∅k or Êtot,∅s. The proposed prediction Êtot,∆s has
an relative error of less than 1% for this exemplary chosen
trip.

Fig. 14. Energy prediction for a whole route

TABLE III
EVALUATION PREDICTION FOR WHOLE TRIPS

MAPE Êpos Êneg Ê ∅ Êmax
Eact

Êtot,∅k 14.7% 50.3% 19.0% 1.40

Êtot,∅s 10.9% 35.0% 12.2% 1.25

Êtot,∆s 6.0% 23.8% 6.8% 1.20

We evaluate the proposed prediction method for complete
trips also with the 1000 chosen tracks. Table III shows the
results for the mean values of MAPE of all trips. Compared
to the results of the evaluation of single segments the MAPE
is lower for all prediction variants, since the errors of the
single segments are compensated. Êtot,∆s reaches a high
accuracy with an average MAPE of 6.8%. The consid-
eration of the individual driving behavior and situation-
specific impact factors in Êtot,∆s improves the results by
5.4 percentage points compared to Êtot,∅s, which is based
on the normalized mean energy of the segments along the
route.

The mean value ∅ Êmax

Eact
is also given in Table III, which

indicates the additionally necessary energy to ensure to reach
the final destination with a 95% probability. The mean value
of this quotient decreases up to 1.20, which means that on
average 20% of the needed energy has to be additionally
reserved to prevent running out of battery. The proposed
energy prediction system in this paper reduces the necessary
reserved energy compared to the other prediction methods.

VII. CONCLUSION AND OUTLOOK

The impact of individual driving behavior or prevailing
traffic conditions on energy consumption of EVs was con-
sidered in prediction methods, which are based on statistical
features from collected speed profiles of different vehicles.
Relevant features were used to predict segment-by-segment
the deviation of the energy consumption from a vehicle-
specific average value. We analyzed the processed statistical
features regarding individual driving behavior, traffic impact
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factors and prevailing weather conditions. The deviation
prediction model improved the energy prediction for trips
on average by 5.4 percentage points, which resulted in a
mean relative error of 6.8%.

The results of the prediction model are the basis for
several applications of EVs. The prediction can be shown
as information for the driver before the start of a trip if
a desired destination is reachable without running out of
battery. Furthermore, the prediction can be used for energy
management strategies (especially for PHEVs) along the
desired route of the driver. The computation time for the
prediction depends mainly on the data request for the needed
data of the desired route, because the application of the
regression model is quite fast compared to other data-mining
methods. Thus the prediction of the segments can be used
as link weights for navigation algorithms for the calculation
of the range estimation or for the solution of eco-routing
problems.

In future research, we will compare the results of this
paper with the one from machine-learning algorithms, which
can also used for energy prediction. Furthermore a deploy-
ment in a real fleet-test with different vehicles is necessary
instead of the simulation environment used for the evaluation
in this paper.
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