
Visualization of Multidimensional Data on
distributed mobile devices using interactive video

streaming techniques

M. Pańka1, M. Chlebiej2, K. Benedyczak2,3 and P. Bała2,3

1 UCNTN, Nicolaus Copernicus University, Torun, Poland
2 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Torun, Poland

3 ICM, University of Warsaw, Warsaw, Poland
maciej.panka@umk.pl

Abstract - Remote visualization of large datasets has been a
challenge for distributed systems for a long time. This
challenge is getting even bigger when visualization refers to
devices with limited capabilities, like CPU and GPU power,
number of RAM or screen size. In this paper we present a
distributed system we have developed for interactive
visualization of remote datasets on variety of modern mobile
devices, including laptops, tablets and phones. In our system
all the data are rendered on dedicated servers, compressed
on-the-fly using a video codec and pushed to client as a
single video stream. Based on this model we have taken off
most of the computational power from client’s devices,
leaving them with a video decompression. We were also able
to achieve very high frame rates and video quality,
dynamically adapted to device capabilities and current
network bandwidth of a client. Our system can be used with
almost any kind of data, including 2D, 3D and even
animated 3D data. All of them are being processed in real
time based on user inputs, with minor latency, allowing
interactive visualization. At the end of this paper we also
present some preliminary results of system performance
gained using sample, multidimensional medical datasets.

I. INTRODUCTION

Many scientific experiments, simulations and
measurements of today produce large amount of digital
data, usually stored in different formats specific to each
discipline. Most of these scientific activities are very
often generated by dedicated laboratories, technically
prepared to handle large data volumes. For example,
numerical computations are usually so complex that they
must be realized on dedicated clusters. On the other
hand, some empirical experiments require long-term
measurements by means of variety of digital sensors
connected to the storage system.

Obtained data are usually so large that they cannot be
easily transferred between systems and have to be stored
centrally in a place where they were generated. On the
one hand this model simplifies data management,
browsing and searching, but also can cause many
difficulties, mostly because of the size of the data. One of
the biggest challenges is remote visualization of large
data without need of downloading the whole sample to a
local machine. Internet visualization can be difficult not

only because of the size of remote data, but also because
of computational power needed to process the
information in real time.

There are many effective ways to visualize remote 2D
data, like for example compression or image streaming,
but the problem is getting more complex when it comes
to 3D or animated 3D data. Every frame of a 3D object
consists of thousands of pixels, while in animations these
frames additionally evolve in time, giving millions of
elements that have to be visualized on remote machine in
real time. Desktop computers and cable networks are
already advanced enough to process these data, although
if volumes are large there still could be some sort of
latency in client-server communication, even if
compression is used. The problem is getting much bigger
when visualization is done on mobile devices with the use
of a wireless connection. Even though modern laptops,
tablets and cell phones have gone a long way in the last
couple of years, they still have many limitations
compared to desktops computers. The most important are
CPU and GPU power, number of RAM, small screen
sizes or battery capacity. Moreover, wireless networks,
especially 3G standard, are still much more vulnerable on
interferences than cable connections. Both limitations
cause huge drawbacks in adapting interactive
visualization techniques to mobile devices.

In this paper we propose a sample approach to the
mobile visualization problem by means of interactive
video streaming techniques. The whole system consists of
two parts: a distributed server side application and a
client program which runs on mobile device. Server
modules are responsible for handling user inputs, data
processing, video encoding and transferring compressed
stream through the Internet. The client’s applications’
only job is to receive these data, decompress them and
display on the screen. This model takes off most of
computational power from mobile users, allowing thereby
running a client application even on very thin devices.
Based on this architecture we were able to achieve very
high levels of video quality and frame rates. We were
also able to significantly reduce network latency, which
makes remote visualization interactive for mobile users.
The general idea has been explored in the past by various

MIPRO 2011, May 23-27, 2011, Opatija, Croatia

246

research groups but no effective implementation has been
yet developed.

The rest of this paper is organized as follows. Section
2 briefly overviews related works covering remote
visualization of large datasets. In the section 3 we are
describing system architecture, including technologies
that we have used for its implementation. In the section 4
we are presenting some preliminary results of system
performance obtained using medical datasets. The last
section concludes the paper and draws up further work.

II. RELATED WORK

There are many different approaches to the remote
visualization problem. One of them is the idea of building
dedicated visualization rooms where users can
manipulate distance data in an interactive and
collaborative way [1]. These rooms are always equipped
with dedicated hardware and software, and have access to
the broadband Internet connection. The biggest
inconvenience of this approach is expensiveness and lack
of mobility. With a variety of mobile devices commonly
available today, users are used to have unlimited access
to global information resources and they expect the same
from the visualization system. Therefore one of the
biggest challenges of today is to develop more ubiquitous
solutions for remote visualization.

Existing techniques for remote visualization can be
divided into four main categories. The first one is image
streaming technique. In this model all the data are
rendered remotely on a dedicated server and are sent to
user as a series of digital images. Every modern mobile
device is able to read commonly used digital image
formats. To reduce network bandwidth it is recommended
to use some sort of compression methods instead of
sending RAW data. An exemplary approach to this
problem would be making use of one of available
algorithms, like ZLIB, LZO, BZIP2 or RLE [2, 3]. Some
authors are additionally choosing compression algorithm
dynamically, depending on current data source [2].

On the other hand [3] suggests using dedicated image
compression algorithms, like JPEG or JPEG 2000, which
has already become one of the most popular standards on
the Internet. D. Dragan and D. Ivetic introduced an
exemplary system which derives from this model to
visualize remote medical images on mobile devices [4].
Based on JPEG 2000 standard the authors were able not
only to increase compression level, but also to improve
overall system efficiency with the use of a JPIP image
streaming technique. Image streaming is a great solution
when data are visualized on the mobile devices, which
are usually equipped with very small screens. Image
based visualization could also be adapted to visualize 3D
and animated 3D data with the use of Motion JPEG 2000
standard [5], although in this area there are available
more effective techniques.

The second approach to remote visualization is to
make use of 3D objects streaming [6]. In this concept,
dependent on a chosen algorithm, single objects or whole
scenes are progressively sent to users’ devices where they

are successively rendered in real time. This model allows
for user interaction with remote data even without the
need of waiting for an entire scene to be downloaded. To
reduce network traffic it is also possible to replace the
client-server communication with peer-to-peer
connections, which in some situations can increase an
overall efficiency [7].

Unfortunately, in most cases the computational power
required to render 3D scenes excludes this technique
from being effectively used on the mobile devices
because of the lack of enough CPU and GPU resources. It
is also difficult to adopt this method into scientific
visualization, mostly because of large sizes of data
volumes, which have to be transferred to clients’ devices
without any latency.

A much better way to visualize scientific 3D data on
the mobile devices is use of Virtual Reality Modeling
Language (VRML). The VRML is a standard for
representing 3D scenes using text files, where every
object can be described by means of specially formatted
markups. This approach was effectively used to visualize
data on the mobile devices [8, 9]. K. Engel and T. Ertl
showed how performance of this technique could be
additionally improved with the use of GZIP compression
and advanced data clipping algorithm [10]. Even though
the VRML can be successively adapted to mobile
devices, it still has some major limitations constraining
visualization interactivity, mostly because of its network
bandwidth consumption and computational power needed
to process the data.

The fourth category of the remote visualization
techniques involves systems that use a video codec to
compress the rendered data. In this model everything is
rendered on dedicated servers, compressed on the fly and
broadcast to users as a single video stream. This solution
does not involve objects rendering on the clients’ devices,
leaving them only with video decompression. Most of the
modern mobile devices have built-in support for common
video formats available today. That is probably one of the
main reasons why recent videos streaming techniques
became a very natural and promising solution to the
remote visualization problem.

An exemplary system implementing this model was
introduced in [11]. The authors presented a framework
for Open Inventor application, which allows interactive
visualization of remote datasets using a video codec. This
solution has been additionally extended in [12] where
most of the data were generated on a client’s device using
a low profile configuration, and only the last frame was
rendered server-side and sent to a client in higher
resolution. A generic solution to this problem by means
of GLX, dynamic linking and VNC protocol has been
proposed [13]. Thanks to using one of the commonly
available VNC clients their system could still cooperate
with most of today’s mobile devices. Unfortunately, one
of the biggest inconveniences of their system was poor
frame rate level, which had bad impact on visualization
interactivity.

According to the current studies it seems that a much
better solution would be to make use of a dedicated video
codec for data compression. With the use of a video

247

codec every frame in a sequence is encoded using some
sort of prediction, relevant to a chosen algorithm. This
technique allows achieving much better quality, frame
rate and compression level of an output stream. The video
sequence is afterwards streamed to a client’s device,
where it is decoded and displayed on a screen. Sample
applications based on this model are described in [14],
where authors used an H.261 standard to encode the data.
Another approach to this problem would be to use an
MPEG-4 format [15, 16], which is also supported by
many mobile devices available today. Unfortunately, one
of the main problems with the MPEG-4 is its very
complex motion estimation algorithm, which lengthens
the encoding time and can have a very bad impact on
system interactivity.

The solution we propose in this paper derives directly
from the fourth category of remote visualization
techniques. Being aware of potential problems we have
decided to use much less power consuming video codec
and distribute most complex tasks between different
servers. Based on this model we are able to effectively
visualize 2D, 3D and even animated 3D data on variety of
mobile devices, including cell phones.

III. SYSTEM ARCHITECTURE

A. Overview
Our system consists of a lightweight client program

and a distributed server application. The server side
application is divided into modules, each of them playing
a different role in the system, as shown in the Fig. 1.
Visualization session begins when the user launches the
client’s application on his device. It automatically
connects at the startup to a session management module
of a server. This module is responsible for handling all
user activities during a session, including zooming,
moving and rotating of the remote objects. Users’ inputs
intercepted on their devices are automatically sent to a
session management module, where they are translated
into adequate server directives and passed to a rendering
module. Depends on the received data the rendering
module generates successive frames of the visualized data
and passes them to an encoding module. At this point

every received frame is encoded in real time and is
broadcasted to the client’s device as a single video
stream. The only job left for the client’s application is to
receive this video stream, decode it and display on the
screen. Fig. 2 presents in details a complete workflow of
our system.

B. Server modules
All server modules can be run on a single machine,

although the system yields the best results when it is
launched in a distributed environment, where all its main
modules are deployed on the different computers.

Rendering module is completely transparent in the
sense of source data, which means that they can be either
read from disk, database or rendered in real time using a
dedicated machine. Depends on the user’s choice the
rendering module generates successive frames of a
visualized object and sends them using socket
communication to the encoder, without any compression.
We have developed our own robust protocol to stream
raw byte arrays between these two servers, which
minimizes the latency of network traffic. Because we are
not using any compression at this point, it is
recommended that both servers communicate using
broadband connection.

Encoding module receives these data, compresses
them using a video codec and forwards to the client using
a dedicated streaming protocol. Every user receives their
own video stream, individually customized to suit
capabilities of the user’s device and currently available
network bandwidth. Based on this information, the
encoding module can automatically adapt video broadcast
using varying quality, frame rate and resolution of the
output stream. Video bit rate is automatically decreased
during user interaction with an object (zooming, spinning,
rotating), as there is no need to overload network
communication at this point. Only the last frame in each
sequence is sent to client being compressed using a
higher bit rate. This way user saves network bandwidth
and device’s battery lifetime.

Figure 1. A general schema of the system architecture

Figure 2. Communication workflow between the client’s application

and server modules

248

C. Visualization interactivity
In our system the term interactive visualization means

that user can manipulate remote video streams in real
time, using mouse or touch gestures, and receives almost
immediate feedback from a server, automatically adapted
to taken action. Our system can work this way with 2D,
3D and even animated 3D data, all of them being
processed on a remote server in real time and broadcast to
user as a single video stream. Depends on the source data
user can take different actions, like zooming, moving,
rotating and animating a remote object.

Two-dimensional images are usually generated only
once in the rendering module, and are buffered in encoder
for rest of the session. When user wants to zoom in / out
or move to the different part of the image he selects an
appropriate region on the screen and sends its coordinates
to the server. Based on the user’s choice an adequate
portion of the source image is cropped and added to an
output sequence, as shown in Fig. 3. This sequence is
encoded as a video stream and broadcasted back to the
user. This way a full image is never downloaded to user’s
device, and only its smaller regions are successively
streamed from the server, giving the effect of zooming
and movement. This technique gives great results,
especially when high-resolution images must be
visualized on the mobile devices, which are usually
equipped with very small screens.

Remote visualization of 3D data works very similarly
to 2D images, however besides zooming and moving,
server objects can be additionally rotated along the X and
Y axes. The main difference is that successive rotation
frames are dynamically generated in the rendering
module depends on user’s choice, without the need of
buffering them in encoding block. Generated frames are
streamed in real time to encoder, where they are turned

into video sequence and broadcast to client. Only the last
frame of each rotation sequence is buffered in encoding
module, so it could be later zoomed in / out and moved
similarly to 2D images.

Visualization of animated 3D data derives directly
from the above technique. Animated objects can also be
zoomed, moved and rotated, however, every frame can
additionally evolve in time. Depending on a current
viewing angle, the rendering server passes adequate
frame sequence to encoding block, which compresses it
and broadcasts to user in a loop, giving the effect of an
infinite animation. User can pause the animation at any
moment and swap its frames one by one. Every frame
explored this way can be additionally manipulated using
previously mentioned techniques, including zooming,
moving and rotating effects.

D. Technologies
We wanted to create a visualization system, which

would be completely multiplatform and compatible with
a variety of modern mobile devices. That is why we
planned to develop client side application in either Java
or Adobe Flash technology, which so far has been
available on most popular desktop operating systems,
including Windows, Linux and Mac OS X. We have
tested both solutions extensively, checking their strengths
and weaknesses in context of mobile multimedia
applications. At last we have decided to use Adobe Flash
technology.

For the last couple of years Adobe has been
cooperating with top mobile manufacturers under the
Open Screen Project [17]. The main goal of this project is
to develop a unified runtime environment, which will
allow launching the same Action Script 3.0 code on
different mobile operating systems. As a result, full Flash
Player 10.1 has already been ported to Android and Palm
OS devices. According to the project’s website, Flash
Player should also be available on Blackberry and
Windows Mobile soon. Additionally, with the use of
Adobe’s iPhone packager, Action Script 3.0 code can be
very easily run on Apple’s iOS devices.

On the other hand, number of mobile Java
applications is developed using J2ME SDK, which is
completely different from the desktop distribution.
Additionally, J2ME virtual machines vary a lot among
manufacturers, which accounts for the fact that at least
some parts of the Java code needs to be rewritten before
being used on different mobile devices.

The second reason why we have chosen Flash over
Java was that presently it has a much better support for
Internet video streaming. According to different sources
over 75% of video clips available on the Internet is
published using Adobe’s technology [18]. Additionally,
Adobe’s Real Time Messaging Protocol seems to be
much more functional than RTSP supported by J2ME.
Java Media Framework, which used to be the best API
for video processing in Java unfortunately stopped
evolving long time ago, and currently does not support
most of modern video formats.

Figure 3. Outgoing video stream is generated from the successive
sectors of an input frame, cropped based on user’s selection

249

On the other hand, our server side application has
been written almost completely in Java. We have also
used Wowza Media Server as a video streaming solution,
mostly because its built-in support for RTMP, re-
streaming functionality and available API, which allows
to develop server-side applications using Java. Network
communication between Flash clients and server
application is realized using Adobe’s Real Time
Messaging Protocol.

Server’s encoding module uses FFMPEG for video
compression, which presently is one of the best open
source solutions for manipulating video files. We have
also used Xuggler framework to call FFMPEG libraries
directly from our Java application. Adobe’s Flash Player
currently supports three video codecs: Sorenson Spark,
VP6 and H.264. The current version of our system uses
Sorenson Spark, which derives directly from an H.263
standard. We have decided to use Sorenson’s solution
mostly because of its low CPU requirements for both
encoding and decoding, which plays a crucial role in
performance of our system. We have run some
preliminary tests using X.264, which is an open version
of H.264 codec. So far we have left it under experiments
because of its high requirements for CPU power.
Unfortunately, we couldn’t experiment with a VP6 codec
because of its license limitations. In the future we are also
planning to run tests on other popular video formats,
including VP8, which should be supported by one of next
releases of Flash Player.

IV. RESULTS

We have already run a series of preliminary
performance tests of our system using sample
multidimensional medical data. We have tested server’s
video encoding module efficiency, because this is the
most computational power consuming part of our system.

Testing procedure was run in a distributed
environment consisting of two different servers and
variety of clients’ devices. Server modules were launched
on dual core Intel Xeon X5355 2.6 GHz, responsible for
data rendering, and quad core Intel Xeon E5420 2.5 GHz,
which encoded live video streams. On the client side we
used desktop computers running Windows Vista, laptop
with Mac OS X, as well as tablet and cell phone, both
equipped with Android 2.2 system. The number of
servers can be increased with the number of clients.

We have measured the CPU usage and encoding
speed during object zooming, moving, rotating and
animating. Outgoing video parameters were set at 25 fps,
and bit rates of 2 mb/s and 4 mb/s respectively for user’s
interaction and last frame encodings. We have run
simulation for three different screen resolutions
(320x240, 800x480, and 1366x768) and different number
of concurrent connections (5, 10 and 20). Tables 1, 2 and
3 present obtained results.

Our early experiment proved that even while having
many simultaneous users connected to a single server,

Table 3. System performance for 20 simultaneous users

Screen
size

Zoom
fps

Move
fps

Rotation
fps

Animation
fps

Top CPU
usage

320 x 240 240.0 264.8 331.7 498.0 11%
800 x 480 55.6 53.3 64.9 138.8 42%

1366 x 768 5.8 5.5 17.6 15.1 80%

Table 2. System performance for 10 simultaneous users

Screen
size

Zoom
fps

Move
fps

Rotation
fps

Animation
fps

Top CPU
usage

320 x 240 252.5 278.9 348.4 491.1 7%
800 x 480 62.2 66.7 82.5 170.2 20%

1366 x 768 20.0 16.0 21.3 60.2 60%

Table 1. System performance for 5 simultaneous users

Screen
size

Zoom
fps

Move
fps

Rotation
fps

Animation
fps

Top CPU
usage

320 x 240 254.7 271.6 369.5 493.6 3%
800 x 480 70.2 70.9 99.2 186.5 10%

1366 x 768 29.3 21.6 36.0 82.8 23%

250

video compression speed was very fast. Screen
resolutions of 800x480 and 320x240 pixels, which
presently are the most typical sizes of modern cell
phones, produced very promising results, never
descending below established 25 fps level. The results
could be even better if we set smaller bit rates of the
outgoing videos, adequate to the 3G network’s
capabilities rather than WLAN.

The lowest acceptable encoding speed is 15 frames
per second. Below that value video display looses its
smooth and could have a very bad impact on the
visualization interactivity. In our case the encoding server
slowed down below that level only when we set a very
high resolution of video stream, which is typical for
desktop computers rather than mobile devices. However,
even then, despite lower fps results, we were still able to
successfully visualize all data, achieving gratifying
reception of the whole session.

V. CONCLUSION AND FURTHER WORK

In this paper we have presented a distributed system
for remote visualization of large datasets on mobile
devices. In the proposed solution all the data are rendered
on dedicated servers, compressed using video codec and
broadcast to users as an interactive video streams. Users
can view and manipulate remote objects using different
types of mobile devices. Our system works with 2D, 3D
and animated 3D data, which can be zoomed in / out,
moved and rotated over X and Y axes in real time.
Performance tests showed, that this system is able to
effectively visualize remote data on mobile devices, even
with many concurrent server sessions.

In the future we are planning to experiment more with
different video formats, including X.264 and VP8
standards. We also want to extend functionality of our
system with the collaboration module, which should let
many concurrent users to cooperate over remote data in
real time. All the results obtained from our early
experiments prove that we should further split modules
over different machines, which should further increase
overall performance of our system.

REFERENCES
[1] N. T. Karonis, M. E. Papka, J. Binns, J. Bresnahan, J. A. Insley, D.

Jones, and J. M. Link, “High-resolution remote rendering of large

datasets in a collaborative environment”, Future Generation
Computer Systems 19, 2003, pp. 909-917.

[2] Z. Constantinescu, and M. Vladoiu, “Adaptive compression for
remote visualization”, Buletinul Universitatii Petrol – Gaze din
Ploiesti, vol. LXI, No. 2/2009, pp. 49-58.

[3] K. Ma, and D. M. Camp, “High performance visualization of time-
varying volume data over a wide-area network”, IEEE, 2000.

[4] D. Dragan, and D. Ivetic, “Architectures of DICOM based PACS
for JPEG2000 medical image streaming”, ComSIS, vol. 6, no. 1,
June 2009.

[5] N. Lin, T. Huang, and B. Chen, “3D model streaming based on
JPEG2000”, http://graphics.im.ntu.edu.tw/docs/tce07.pdf.

[6] S. Hu, “A case for 3D streaming on peer-to-peer networks”,
Web3D 2006, Columbia, Maryland, 18-21, April 2006.

[7] W. Sung, S. Hu, and J. Jiang, “Selection strategies for peer-to-peer
3D streaming”, NOSSDAV, Braunschweig, Germany, 2008.

[8] M. Mosmondor, H. Komericki, and I. S. Pandzic, “3D
visualization of data on mobile devices”, IEEE MELECON 2004,
Dubrovnik, Croatia, May 12-15, 2004.

[9] R. R. Lipman, “Mobile 3D visualization for steel structures”,
Automation in Construction 13, pp. 119-125, 2004.

[10] K. Engel, and T. Ertl, “Texture-based volume visualization for
multiple users on the World Wide Web”,
http://wwwvis.informatik.uni-stuttgart.de/eng/research/pub/
pub1999/EGVE99.pdf.

[11] K. Engel, O. Sommer, C. Ernst, and T. Ertl, “Remote 3D
visualization using image-streaming techniques”,
http://www.vis.uni-stuttgart.de/ger/research/pub/pub1999/
ISIMADE99.pdf.

[12] K. Engel, P. Hastreiter, B. Tomandl, K. Eberhardt, and T. Ertl,
“Combining local and remote visualization techniques for
interactive volume rendering in medical applications”,
http://www.vis.uni-stuttgart.de/ger/research/pub/pub2000/
engel_vis00.pdf.

[13] S. Stegmaier, M. Magallon, and T. Ertl, “A generic solution for
hardware-accelerated remote visualization”, IEEE TCVG
Symposium on Visualization, 2002.

[14] M. Hereld, E. Olson, M. E. Papka, and T. D. Uram, “Streaming
visualization for collaborative environments”,
http://www.mcs.anl.gov/uploads/cels/papers/P1512.pdf.

[15] L. Cheng, A. Bhushan, R. Pajarola, and M. E. Zarki, “Real-time
3D graphics streaming using MPEG-4”, July 18, 2004.

[16] Y. Noimark, and D. Cohen-Or, “Streaming scenes to MPEG-4
video enabled devices”, IEEE Computer Graphics and
Applications, January / February 2003.

[17] http://www.openscreenproject.org/
[18] Comscore – Video Metrix Report, August 2009
[19] M. Chlebiej, K. Benedyczak, and P. Bała, “Technologie

strumieniowe”, November 2009.
[20] M. Chlebiej, “Urządzenia mobilne w szpitalach – wizualny system

multimedialny”, December 2008.

251

