
Proximity-Aware Resource Discovery Architecture in Peer-to-Peer based Volunteer
Computing System

Toktam Ghafarian-M.
Ferdowsi University of Mashhad

Department of Computer Engineering,
Khayyam Institute of Higher Education

Mashhad ,Iran
ghafarian@stu-mail.um.ac.ir

Hossein Deldari
Ferdowsi University of Mashhad

Department of Computer Engineering,
Azad University of Mashhad

Mashhad ,Iran
hd@ferdowsi.um.ac.ir

Mohhamad-H. Yaghmaee-M.
Ferdowsi University of Mashhad

Department of Computer Engineering
yaghmaee@ferdowsi.um.ac.ir,yaghmaee@ieee.org

Abstract— Volunteer computing which benefit from idle cycles
of desktop PCs over the Internet can integrate power of
hundreds to thousands desktop systems to achieve high
computing power. Centralized volunteer computing system has
dedicated servers to maintain information about the resources.
However, in the decentralized system resource information is
distributed in the system. Resource discovery architecture is a
key factor for peer-to-peer based volunteer computing system.
Usually, there is a complex relationship between the
distribution of resource information and performance of a
system. The main contribution of this paper is to develop a
proximity-aware resource discovery architecture for peer-to-
peer based volunteer computing system. This architecture has
simplicity of a centralized system and can achieve close
performance compared to this system, and it is scalable.
Furthermore, proposed architecture distributes jobs among
the resources fairly. Two resource discovery algorithm with
and without proximity-aware feature are compared. The
proximity-aware resource discovery algorithm can gain a
better result.

Keywords- resource discovery; peer- to- peer network;
volunteer computing system; proximity-aware; Cycloid; load
balance.

I. INTRODUCTION
Desktop grid in which cycles are taken from idle desktop

computers is an attractive cost efficient platform for running
scientific projects with the significant computational
requirement [1]. Some of these projects are SETI@home
[11], Folding@home [13], EDGes project [2],
Climateprediction.net [3] and World Community Grid [14].

Centralized volunteer computing (VC) system needs
dedicated servers which keep resource information in the
system. Server provides jobs to a set of volunteer machine
distributed across the internet. The server must guarantee the
robustness and reliability of the system by keeping the status
of all jobs running on unreliable volunteer resources. Some

of the volunteer computing systems are BOINC [3, 20, 19],
condor-like grid system [26, 27, 29], Entropia [4],
XtremeWeb [28], Aneka [21], SZTAKI [20] and QADPZ
[15]. In order to build VC system, which relies only on
volunteer and non-dedicated resources a decentralized and
self-organized VC system needs to be developed. Peer-to-
Peer (P2P) based VC systems exhibit self-adjusting and
scalable properties, which make them able to deal with the
limiting characteristics of non-dedicated resources. These
systems distribute resource information on the P2P network
so that resource discovery architecture is a key factor for the
efficient P2P based VC system. The main idea of this work is
to introduce proximity-aware resource discovery architecture
in the P2P based VC system. It is named CycloidGrid. The
Proximity-aware feature of CycloidGrid can decrease the
communication overhead and increase system performance.
Since in the VC system, millions of heterogeneous resources
are disseminated across geographically distributed nodes,
consequently running a job on the node with lower delay
time to requester can decrease communication overhead.
Other works in this area often use logical proximity derived
from the P2P overlay; meanwhile logical proximity doesn't
match physical proximity, in reality. CycloidGrid distributes
computational jobs on volatile nodes in such a way load
balance exists between these nodes. In this architecture, a
resource discovery algorithm running on each volatile node
chooses a node with shorter round-trip time (RTT) among
capable nodes for running a job in the system. The proposed
system can acquire a reasonable result compared to the
centralized systems. However, it reduces maintenance cost
and risk of single point failure of a centralized system and is
scalable. It can tolerate against the churn and have better
behavior compared to the similar system without proximity-
aware feature.

The remainder of this paper is organized as follows:
Section 2 presents a literature review. Section 3 discusses
proposed P2P based proximity aware resource discovery

2011 11th IEEE International Conference on Computer and Information Technology

978-0-7695-4388-8/11 $26.00 © 2011 IEEE

DOI 10.1109/CIT.2011.37

83

2011 11th IEEE International Conference on Computer and Information Technology

978-0-7695-4388-8/11 $26.00 © 2011 IEEE

DOI 10.1109/CIT.2011.37

83

architecture (CycloidGrid), section 4 represents performance
evaluation, and finally section 5 contains a conclusion.

II. LITRITURE REVIEW
In [5] a desktop grid system based on CAN [6] has been

introduced. In this system, a structured P2P overlay CAN has
been customized in order to handle the complex query of
available resources according to the job constraint. Each
resource attribute has been associated with a distinct
dimension in the CAN. Resource discovery algorithm has
been considered as routing problem in the CAN space. It
searches a node whose coordinate in all dimensions satisfies
or exceeds the job’s constraints. All the jobs are independent
and are injected to the system from any available nodes in
the system. The matchmaking algorithm distributes jobs
between capable resources fairly so that load balance exists
in the system. The Proximity-aware feature is neglected in
this work, and the system can’t handle a job with many
constraints because the dimension of customized CAN
increase. It causes degradation of overall system
performance.

PastryGrid [7] has been suggested for management of
institutional desktop grid over a fully decentralized P2P
network. A distributed application in this system consists of
one or more modules with precedence constraints between
them. Each application has a rendezvous node in the system
which contains modules and necessary data of them. This
node initializes the execution phase of application. The
resource discovery protocol has based on pastry routing
algorithm. When a machine receives one task for execution,
it contacts a rendezvous node of its application to receive
necessary data. After it completes a task, it can participate in
the discovery process for the successor of this task and so on.
Resource discovery algorithm only found capable nodes for
running a task, but there is not any load balance between
nodes in the system. Communication overhead among the
nodes is neglected in the resource discovery algorithm, and
their resource discovery algorithm is not proximity-aware.

In another system [9] a super-peer based [10] volunteer
computing system has been proposed. Nodes have different
roles such as job manager, data cache nodes, data sources,
super-peer nodes and workers. Resource discovery algorithm
consists of two phases: job-assignment and data-download
phase. In the job assignment, job manager generates a
number of job's advert and sends them to the local super-peer
and some of the other super-peers in the system. Workers
generate a job query. Then job query travels the network
through the super peer interconnections until the time-to-live
parameter decreases to zero or job query finds matching job
advert. In the data-download phase, the worker sends a data
query and downloads the data file from data centre. In this
work, data file of each job is downloaded with regarding to
distance and available bandwidth, but load balance didn’t
exist in the system.

Abdullah et al [30] has been suggested a dynamic, self-
organizing model for ad hoc grid. In this work, three types of
agent named customer, producer and matchmaker are
introduced. The whole identifier space has been divided into
zones, which have a responsible matchmaker. The

matchmaker uses a continuous double auction to perform
resource allocation and looks for the matches between the
producers and consumers. It is done by matching offers
(starting with lowest ask price and moving up) with requests
(starting with the highest bid price and moving down). Load
balance only exists between matchmakers, not among the
producers. Physical distance and bandwidth consideration
has not been studied in this work, and it is not proximity-
aware algorithm.

As stated in [25] a hybrid of epidemic information
dissemination [22, 23] and P2P structured overlay chord [24]
has been used. In this work, a regular multicast is applied for
resource discovery. Each node that attends in the multicast
distribution halves its sending interval after every contact.
This distribution scheme causes a spanning tree covering all
the nodes in the system. In this work, a resource discovery
algorithm has not studied job constraints. They supposed all
the resources can run every job. Furthermore, load balance
didn’t exist in this work among peers. Only logical distances
used to determine closeness. Meanwhile logical distance
doesn’t match physical distances. The Proximity-aware
feature has not been considered.

In [16] three main agents have been defined in their
system. These agents are worker, client and matchmaker. A
worker sends advertisement to the multiple matchmakers in
the system. When a client needs resources, it asks
matchmaker and matchmaker search between advertises in
order to find possible matches. In this work load balance
didn’t exist in the system between workers. Furthermore, the
resource discovery algorithm has not been studied proximity-
aware feature. Communication overhead has not been
studied in this work.

The proximity-aware feature that is studied in this paper
is a novelty of proposed approach comparing to another
works in this area. Also the proposed algorithm considers
load balancing feature. This feature is studied in a few works
in this domain.

III. CYCLOIDGRID:PROXIMITY-AWARE RESOURCE
DISCOVERY ARCHITECTURE IN PEER-TO-PEER BASED

VOLUNTEER COMPUTING.

A. Basic Framework
CycloidGrid is built on cycloid [12]. Cycloid is a

constant-degree structured P2P overlay with ddn 2.= nodes,
where d is a dimension. It takes a time complexity O (d)
hops for the lookup request with O (1) neighbors per node.
Each node in the cycloid is presented by a pair of indices

)...,(021 aaak dd −−
 where k is a cyclic index and

021 ...aaa dd −−
 is a

cubical index. The cyclic index is an integer number from 0
to d-1 and the cubical index is a binary number ranging from
0 to 12 −d . All nodes are classified into some clusters. These
clusters are differentiated by 021 ...aaa dd −− and inside the
cluster the nodes are identified by k. However, all clusters
ordered by their cubical indices mod d2 on a large cycle
while inside each cluster the nodes are ordered by their
cyclic index mod d. Each node keeps a routing table and two
leaf sets with seven entries to sustain its connectivity to the

8484

rest of the system. The largest cyclic index in a local cycle is
named the primary node of the local cycle. The Cycloid
DHT assigns keys onto their ID space by applying consistent
hashing function. For a key or node, its cyclic index adjusts
to its hash value of key or IP address modulated by d, and the
cubical index adjusts to hashing value divided by d. A key
will be assigned to a node whose ID is closest to its ID. In
the proposed framework cycloid is chosen for two reasons:

 First: Cycloid has small constant size routing table.
This routing table doesn’t increase with the growing number
of peers unlike other P2P overlay such as Chord [24], CAN
[6], Pastry [8] and Tapestry [31]. Consequently, a small
constant size routing table can help CycloidGrid in
consuming disk space of a volunteer node and more space
can be used for running a job.

Second: Cycloid classifies peers into some clusters. As it
is discussed in the next section, proposed architecture
classifies resources into some clusters by using a decision
tree. In consequence, cycloid with cluster based structure
prefers to other P2P systems in this research.

B. CycloidGrid
CycloidGrid is a proposed architecture for resource

discovery in P2P based VC system. It has three types of
node. These nodes are called reporting node, host node and
client node. Reporting node is a node responsible for keeping
resource information in the system. Host node is a node
which donates its resource for running a job. Client node has
a request for running a distributed application. Each
distributed application consists of multiple independent jobs
in this research.

Each resource in the system is described by a set of
attributes. In this research, these attributes are CPU speed,
the amount of RAM size, the amount of hard disk space
available, operating system type, and model. The first three
attributes are continuous statistical variable; meanwhile the
last two ones are discrete variable. A decision tree is made
on these attributes to classify resources into some clusters as
shown in Fig. 1. A decision tree is a tree-structured plan of a
set of attributes to test in order to predict the output. In the
decision tree, non leaf nodes are labeled with attributes and
the arcs out of a node are tagged with possible attribute
values for that attribute. The leaves of the tree are labeled
with classification.

In Fig. 1 model and operating system type are discrete
statistical variable and exact value of them is tested. Hard
disk space, RAM size and CPU speed are continuous
variable and divided into four discrete ranges. These
attributes are static and don’t change during the life time of a
resource. Four attribute values are selected in each level.
This number of attribute values is a trade off between the
number of clusters and cover of various values for these
attributes. Consequently, the number of clusters in the DT is

102445 = clusters. Information of all resources with the
same attribute values is gathered in the same cluster of DT.

Clusters in the CycloidGrid are grouped into two types of
clusters.

Figure 1. Decision tree for classification of resources

The first one is called reporting clusters, and the second
one is called host clusters. Each cluster in the DT of Fig. 1 is
assigned to one reporting cluster in CycloidGrid. However,
there are 1024 reporting clusters and the other clusters are
reserved as host clusters.

Reporting clusters consist of reporting nodes and host
clusters contain host/client nodes. Resource information of
similar host nodes is kept in the same reporting cluster. Each
reporting cluster contains one primary node and some of the
replica nodes. Primary reporting node is a node which cyclic
index is greater than others and keeps all the resource
information of host nodes belongs to this cluster. Replica
reporting nodes have a snapshot of resource information
from primary node. When a primary node leaves the system
one of the replica nodes can get the role of a primary node
based on election procedure. The role of primary and replica
nodes is discussed in detail in the next section. The
organization of clusters in CycloidGrid is shown in Fig. 2.

C. Churn Management in CycloidGrid
When a node joins to the system, it should be determined

it is a client node or host/reporting node.

Figure 2. The organization of clusters in the CycloidGrid

Model

Operating
System

Hard Disk
space

RAM size

CPU Speed

…..

…..…..

…..

…..

0

...

 1023

1

 1024

...

2

One cluster in
CycloidGrid

Reporting
clusters Host

clusters

8585

If it is a client node, a node identifier will be assigned to
it according to the consistent hashing of its IP address. Client
node can start the execution of its application by sending
lookup requests to active host nodes for each of independent
job.

If a node wants to donate its resource it will be a host
node or reporting node. At first, resource attribute values of a
new node will be imported into the DT. DT determines the
reporting cluster in which this node should report resource
information. If its reporting cluster is empty or the number of
reporting node in this cluster are lower than a replica factor,
this node is inserted to the system as reporting node
otherwise it is inserted to the system as a host node.

 If a node is inserted as reporting node and its reporting
cluster is empty, it will be a primary node otherwise it will be
a replica node. Primary node periodically sends a state
request to the host node belongs to its cluster. Those host
nodes respond to this request by sending current queue
length. However, primary node modifies resource
information with last queue length and deletes unavailable
resources from its resource information. This node sends a
snapshot of the resource information to the replica nodes
after each update.

 If a node is inserted as a host node, it will get a node
identifier by consistent hashing of its IP address. Then, it
should report resource information to the primary node of its
reporting cluster.

When a node leaves the system, the behavior of the
system is different from host node to reporting node.

If a host node leaves the system, all the jobs in the queue
should be rerun by another active host node in the system.
Client node sends heartbeat messages to the host nodes
responsible for running its jobs. If a host node leaves the
system, Client node will recognize it and rerun its job on
another node.

 If a reporting node leaves the system, the behavior of the
system is depending on it is primary node or replica nodes.
As we discussed earlier primary node periodically sends a
snapshot of its resource information to the replica nodes.
When a primary node sends a snapshot, it will receive an
acknowledgment message. After the primary node finds the
replica node leaves the system, one host node is selected
randomly. Host node changes its role from host node to
reporting node. All the jobs on its queue will be run on this
new reporting node, but this new reporting node doesn’t
accept any new job from now on. New replica reporting node
gets a snapshot of primary node and act as the reporting node
from now on.

Replica nodes periodically receive a snapshot from
primary node .if they don’t receive a snapshot in a constant
period of time they understand primary node leaves the
system. Then they will start election. Election procedure is
discussed in the next section. After the election is finished,
the winner of election among the replica nodes accepts the
primary node’s role. Replica node which changes its role to
primary node is replaced by an active host node later.

The system can guarantee reporting clusters always have
primary and replica nodes. Because leaving these nodes from

the system is replaced by leaving an active host node as soon
as it is recognized.

1) Election Procedure
Distributed election runs in each replica reporting node in

two steps. In the first step, replica node sends the election
start message to other replica nodes in its reporting cluster.
Each election start message has timestamp with cyclic index
of its replica node. In the second step of distributed election,
each replica node receives some election start messages. If
the replica node gets the election start message with a
timestamp higher than its cyclic index, it leaves the election
and waits for election end message from new primary node.
However, if the replica node receives the election start
messages with lower timestamp of its cyclic index, it will be
a winner of election and send an election end message to
other replica nodes. In other words, replica nodes with higher
cyclic index always win the election.

D. Resource Discovery Architecture of CycloidGrid
 A job in the system is a computation to be performed

and is modeled by a job's profile and data file. Job's profile
includes the client identifier that submitted it and minimum
resource requirements of this job. A job constraint can
consist of minimum CPU speed, minimum hard disk space
requirement, minimum RAM size, model and operating
system type. Fig. 3 shows the overall resource discovery
architecture of CycloidGrid. The steps of job executions are
as follows:

Client enters to the CycloidGrid as a client node. Client
node sends a lookup request for each job to the active host
nodes in the system randomly. These host nodes are called
injection node. Injection node is responsible for finding
capable host node for running a received job (step 1).

Injection node uses DT to find which reporting clusters
can be useful to search. In this phase reporting cluster with
attribute values have minimum or higher resource
requirement of the job are found. Host nodes with the
minimum resource requirement may be overloaded, while
the host nodes with higher values may be under loaded.
These reporting clusters are called selected reporting
clusters. As it is mentioned, reporting cluster has primary
and some replica nodes. Primary or replica nodes can
respond to a lookup request from injection node. Injection
node computes a prediction of RTT between itself and
reporting nodes in each selected reporting cluster. Then a
reporting node with the minimum predicted RTT is selected
in each selected reporting cluster. Lookup request is sent to
these reporting nodes. Prediction of RTT value between two
nodes is done by Vivaldi algorithm [32] in this research.
Vivaldi is a simple, adaptive, decentralized algorithm, which
computes synthetic coordinate for internet host. In this
algorithm, an Internet host can compute synthetic coordinate
in some coordinate space. Distance between two host’s
synthetic coordinates predicts the RTT between them in the
Internet. In this research Euclidean distance between two
synthetics coordinates is used for prediction of RTT between
two nodes (step2).

Selected reporting node searches among all resource
information which is hosted locally. A ranking algorithm is

8686

done in each selected reporting node. In this ranking
algorithm, resources get a rank in the terms of the queue
length, CPU speed and ticket parameters. Ticket is a
parameter assigned to each resource in the reporting node.
As it mentioned earlier, reporting nodes refreshes resource
information periodically so that queue length of each
resource is refreshed. If a resource is recommended by
reporting node to the requested injection node, the ticket
value of this resource will be incremented locally. In fact, the
role of this parameter is controlling a convergence to the
lowest load resource in the time slice between two update.
Ticket is reinitialized to zero after each updates. The rank of
each resource is computed by weighting function as is shown
in "(1)".

321

321

www
twswlwr

++
++= (1)

l is a queue length, s is scaled value of inverse CPU speed
and t is ticket value for every resource. 321 ,, www are the

weighting coefficients and are selected with respect to the
importance of that factor. After computing the rank of each
resource, a resource with the lowest rank is selected. Since
each reporting node searches among resources
independently in parallel, so that a distributed search is done
in this phase (step3).

Each selected reporting node sends a recommended host
node identifier with its rank to the injection node (step 4).

Injection node collects this information. A new rank
assigns to recommended host nodes in this phase as it is
stated in "(2)".

βα
βα

+
+=′ drr (2)

r is a previous rank sent by selected reporting node and d is
a summation of Euclidean distance between synthetic
coordinate of itself and recommended host nodes and
Euclidean distance between synthetic coordinate of its client
node and recommended host nodes. βα , are the weighting

coefficients. Consequently, a host node with the minimum
predicted RTT from client node and injection node is
preferred to other capable host nodes in this phase. Selected
host node is called run node. Selection of a host node with
the minimum predicted RTT can help to decrease
communication overhead and proposed resource discovery
architecture is proximity-aware (step 5).

Job's profile is sent to run node. It is added in the run
node’s queue in FIFO order and waits for execution. Run
node sends a job request message to the client node and asks
job and its data file. Heartbeat message are exchanged
between a client node and run node periodically (step 6).

When the job is finished, a result is returned to the client
node (step 7).

IV. PERFORMANCE EVALUATION OF CYCLOIDGRID

A. Experimental setup
CycloidGrid simulator is written in Java to evaluate the

proposed resource discovery architecture. This simulator is
extended version of Cycloid simulator to emulate the P2P
volunteer computing system. Cycloid simulator is developed
to store files in the P2P environment. Physical network in
CycloidGrid is emulated by brite topology generator [17].

A physical network with n computers which are
connected by Waxman model and different link bandwidth is
generated by brite. Nodes are distributed in the physical
network randomly. Vivaldi algorithm [32] is used to
compute synthetic coordinate of each node in the physical
network to predict RTT between two nodes in the system. A
2-dimensional Euclidean model with height vectors is used
in this research. Predicted RTT between two nodes in the
system varies from one millisecond to 1.2 seconds.

In order to emulate resources in the CycloidGrid
simulator Xtremlab trace [18] is used. Xtremlab trace is
exported from BOINC database, and their information is
collected by client or server. To evaluate a performance of
the system a workload of mixed job is generated. These jobs
are grouped into light and heavy jobs. The number of job
constraints is 0 to 2 in light jobs; meanwhile this number is 3
to 5 in heavy jobs. Job's constraints are selected randomly
among model, operating system type, minimum CPU speed,
minimum hard disk space and minimum RAM size. These
constraints are different from one job to another job.

Events in the system include job submission, and node
joins/departure. These events are generated by Poisson
distribution with an arrival rate of

τ
1 (τ is an average event

inter-arrival time).
If a job needs the computation time w, w will be scaled

on a computer with higher CPU speed.
In this work, two parameters are computed for evaluating

performance of the system. The first parameter is job’s wait
time.

Wait time is considered as time slag between importing a
job until the start of its execution. Wait time of the job is
computed by "(3)".

)2/)()max(2/)(
1
����

=

+−+−+−=
S

l
lripiicwait wvvvvvvt

k

Rk ..1= (3)

In the above equation ric vvv ,, are a synthetic coordinate
of the client node, injection node and run node respectively.

Cycloid P2P overlay has time complexity)(dO for a
lookup request where d is a dimension. Consequently,
Euclidean distance between two nodes in CycloidGrid equal
to a summation of Euclidean distance between nodes in the
path between those nodes in the P2P overlay. Sigma operator
is used to show this summation.

8787

Figure 3. Resource discovery architecture of CycloidGrid

Predicted RTT is divided by 2 for one-way
communication.

kpv is a synthetic coordinate of the thk
reporting node in the pool of selected reporting nodes. R is
the number of selected reporting nodes. The maximum of
communication overhead between the injection node and
selected reporting nodes is added to wait time of the job.
Since, injection node contacts selected reporting nodes in
parallel. lw is a run time of any job in the run node 's queue
and s is the number of jobs. The second parameter is a
current run node’s queue length when a job is inserted in its
queue. This parameter can show load balance state in the
system.

CycloidGrid is compared with centralized desktop grid.
Centralized desktop grid has a database for keeping up-to-
date resource information. Resource discovery algorithm
searches within this database to find the capable resources. A
weighting function is used to ranking resources in the terms
of queue length and CPU speed as the same as "(1)" with no
ticket parameter. The weighting coefficient is equal to
CycloidGrid. CycloidGrid is considered with two options:
with the proximity-aware feature (ProxCycloidGrid) and
without it (NoProxCycloidGrid). These two systems have
some differences as discussed below. Reporting node in
NoProxCycloidGrid is selected randomly in step 2 of section
3.4. Furthermore, run node is selected only in the terms of
queue length and CPU speed in step 5 of section 3.4.

B. Experimental Results
In the experiment, at first 1000 nodes join to the system,

and then 10000 jobs submit to the system with an arrival rate
of 1.0=τ s. The execution times of jobs are selected
uniformly at random with 110 seconds on average. Weighing
coefficient is initialized to 2.0,1.0,7.0 321 === www in "(1)".

5.0,5.0 == βα in "(2)" of ProxCycloidGrid; meanwhile
0,1 == βα in NoProxCycloidGrid.

In the first experiment, the system is relatively static and
no nodes join or leave during the experiment.

Fig. 4, 5 indicates a cumulative fraction of queue length
for heavy and light jobs respectively. The maximum queue
length in three systems is different from 5 to 7. Behavior of
these three systems is almost similar. It is indicated that
although in CycloidGrid decision making on selection of
capable run node is distributed, but the functionality of three
systems is equal and load balance exists in the system.
ProxCycloidGrid is better than NoProxCycloidGrid in these
figures. Because local matchmaking in ProxCycloidGrid is
based on queue length and distance in each host node, while
in the NoProxCycloidGrid it is based only on queue length.
Distance parameter in ProxCycloidGrid adds randomness to
selection and precludes convergence to the least loaded node
in the system. Fig. 6, 7 shows a cumulative fraction of wait
time for heavy and light jobs. Wait time is computed by "(3)"
in CycloidGrid; meanwhile it is equal to prediction of RTT
between server and run node and summation of job’s
computation time in the run node’s queue in the centralized
system. It is shown by equation "(4)".

�
=

+−=
S

l
lrswait wvvt

1
2/)((4)

In the above equation rs vv , are a synthetic coordinate of
a server node and run node.

The overall wait time of CycloidGrid is more than a
centralized system because of communication overhead of
P2P system. In the P2P system, a message is delivered hand
by hand, so that the RTT between two nodes in the system is
computed as summation of RTT between all of the nodes in
the path between two nodes in the P2P overlay. Cycloid have
time complexity o(d) , with d is a dimension. It means that a
message at most travel on P2P overlay d steps to find a
destination. It causes performance degradation compared to
the centralized system. Meanwhile in the centralized system
only direct RTT between two nodes are computed.

Wait time of ProxCycloidGrid is less than
NoProxCycloidGrid.

Host Node

Distributed
Matchmaker

Local
Matchmaker

Injection
Node

1

Queue

Client
Node

Reporting
Node

Reporting
Node

Reporting
Node

.

.

Reporting
Node

Reporting
Node

CycloidGrid

Host
Node

Host
Node

Host
Node

2

3

4

5

6

7

8888

Figure 4. Queue length at job insertion in heavy jobs

Figure 5. Queue length at job insertion in light jobs

 It means that the percentage of jobs with wait time is
lower than the specified value in ProxCycloidGrid is higher
than NoProxCycloidGrid. As it is discussed earlier,
ProxCycloidGrid selects run node based on queue length,
CPU speed and minimum RTT. Meanwhile in the
NoProxCycloidGrid run node is selected only based on
queue length and CPU speed. In the P2P system a message is
delivered hand by hand and summation of RTT between all
of the nodes along the path is computed, so that selection of
minimum RTT is caused to select shorter path and decrease
in communication overhead. It also increases the system
performance.

In the second experiment, nodes join or depart from the
system by Poisson distribution. In this experiment, three light
workloads with 10000 jobs are studied. In these dynamic
workloads after 1000 nodes initially join to the system, some
nodes leave while some nodes join to the system. The
departure rate of nodes in these three workloads is
between10% until 30% of all nodes in the system, in such a
way, Third workload has highest node departure rate.

Since different sets of the node are available in the
system in these three workloads; comparison against the
workload is not correct so that only average wait time for
light jobs is measured and compared with.

Figure 6. Wait time in heavy jobs

Figure 7. Wait time in light jobs.

In Fig. 8, a comparison of average of wait time is shown
in the centralized and two P2P systems. In this experiment,
the average of wait time of ProxCycloidGrid is better than
NoProxCycloidGrid. In this figure, the more leaving rate
increases, the more wait time increases. Some of the jobs
should be reassigned increase with leaving rate increasing,
and it will influence the wait time.

V. CONCLUSION
In this paper, CycloidGrid is introduced. This system is a

proximity-aware architecture for resource discovery in P2P
based volunteer computing system. A Proximity-aware
feature is considered in this research; meanwhile in most of
the works this feature is neglected. CycloidGrid can gain a
reasonable result with lower overhead compared with the
similar system without proximity-aware feature. The
performance of the system is very close to the centralized
system and load balance exists in the system. In the future,
we will decide to extend our system to run a larger class of
distributed application with precedence between tasks. This
group of distributed application increases the application of
volunteer computing in the scientific applications.

8989

Figure 8. average wait time of three light workload

REFERENCE
[1] D. Kondo, B. Javadi, P. Malecot, F. Cappello, D. P. Anderson,

"Cost-benefit analysis of cloud computing versus desktop grids,"
Proc. IEEE International Symposium on Parallel & Distributed
Processing (IPDPS 09) , IEEE Press , May 2009 , pp. 1-12, doi:
10.1109/IPDPS.2009.5160911.

[2] http://www.edges-grid.eu/
[3] http://climateprediction.net/
[4] A. Chien, B. Calder, S. Elbert, K. Bhatia," Entropia: architecture and

performance of an enterprise desktop grid system," J. Parallel
Distrib. Comput., vol. 63, May 2003, pp. 597-610 , doi:
10.1016/S0743-7315(03)00006-6.

[5] J. S. Kim, B. Nam, P. keleher, M. Marsh,B. Bhattacharjee, A.
Sussman, "Trade-offs in matchmaking job and balancing load for
distributed desktop grids," Future Gener. Comp. Sy. ,vol. 24 , May
2008 , pp. 415-424, doi:10.1016/j.future.2007.07.007.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp,S. Shenker," A
scalable content addressable network," Proc. ACM SIGCOMM
(SIGCOMM 01),ACM Press, Aug. 2001, pp. 161-172,doi: doi:
10.1145/383059.383072.

[7] H. Abbes, C. cerin, M. Jemni, "PastryGrid: decentralisation of the
execution of distributed applications in desktop grid, " Proc.
International Workshop on Middleware for Grid Computing (MGC
08), ACM Press, Dec. 2008 , doi: 10.1145/383059.383072.

[8] A. Rowstran, P. Druschel, "Pastry: scalable, distributed object
location and routing for large-scale peer-to-peer systems,"Proc.
IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware '01), Springer, Nov. 2001, pp. 329-350, doi:
10.1.1.28.5987.

[9] C. Mastroianni, P. Cozza, D. Talia, I. Kelley, I. Taylor, "A scalable
super-peer approach for public scientific computation, "Future Gener.
Comp. Sy. ,vol. 25 ,Mar. 2009, pp. 213-223 ,
doi:10.1016/j.future.2008.08.001.

[10] B.Yang, H. Garcia-Molina, "Designing a super-peer network," Proc.
International Conference on Data Engineering (ICDE 03), IEEE
Press,Mar. 2003, pp. 49-62 , doi: 10.1109/ICDE.2003.1260781.

[11] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer,
"SETI@home: an experiment in public-resource computing, "
Commun. ACM ,vol. 45 , Nov. 2002, pp. 56-61, .doi:
10.1145/581571.581573.

[12] H. Shen, C. Xu, G. Chen, "Cycloid: a scalable constant-degree p2p
overlay network, Perform Evaluation ," vol. 63 ,Nov. 2006 ,pp. 195-
216, doi: 10.1016/j.peva.2005.01.004

[13] http://folding.stanford.edu
[14] http://www.worldcommunitygrid.org

[15] M. Vladoiu, Z. Constantinescu, "QADPZ - A desktop grid computing
platform," Int. J. of Computers,Communications & Control, Vol. IV ,
Mar. 2009, pp. 82-91.

[16] D. Lazaro, J. M. Marques, X. Vilajosana," Flexible resource
discovery for decentralized P2P and volunteer computing systems,
Proc. Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises(WETICE 10), IEEE Press, Jun. 2010 ,pp.
235-240, doi: 10.1109/WETICE.2010.44.

[17] Brite topology generator. http://cs-pub.bu.edu/brite.
[18] XtremLab Trace. http://xtremlab.lri.fr/traces.
[19] D. P. Anderson, K. Reed, "Celebrating diversity in volunteer

computing,"Proc. the Hawaii International Conference on System
Sciences (HICSS 09), ACM Press, Jan. 2009, pp. 1-8, doi:
10.1109/HICSS.2009.105.

[20] A. C. Marosi, G. Gombas, Z. Balaton, P. Kacsuk, T. Kiss, "SZTAKI
desktop grid: bulding a scalable , secure platform for desktop grid
computing," Making Grids Work,vol. VII, 2008, pp.365-376,doi:
10.1007/978-0-387-78448-9_29.

[21] X. Chu, K. Nadiminti, C. Jin, S.Venugopal, R. Buyya, "Aneka: next-
generation enterprise grid platform for e-science and e-business
applications, "Proc. IEEE International Conference on e-Science and
Grid Computing(eScience 07), ACM Press , Dec. 2007 , pp. 151–
159, doi: 10.1109/E-SCIENCE.2007.12 .

[22] M. Portmann, A. Seneviratne, "Cost-effective broadcast for fully
decentralized peer-to-peer networks, "Comput. Commun. Vol. 26 ,
Jul. 2003, pp. 1159–1167, doi: 10.1016/S0140-3664(02)00250-5.

[23] M. Jelasity, M. Preuss, B. Paechter, "A scalable and robust
framework for distributed applications,"Proc. IEEE Congress on
Evolutionary Computation(CEC 02) , IEEE Press , May 2002, pp.
1540-1545, doi: 10.1109/CEC.2002.1004471.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan,
"Chord: a scalable peer-to-peer lookup service for internet
applications,"Proc. ACM SIGCOMM (SIGCOMM 01), ACM Press,
Aug. 2001, pp. 149-160, doi:10.1145/964723.383071.

[25] P. Merz, K. Gorunova, "Fault-tolerant resource discovery in peer-to-
peer grids," J Grid Computing ,vol. 5 , Sep. 2007 , pp. 319–335 ,doi:
10.1007/s10723-006-9057-1.

[26] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, J. Pruyne, "A
worldwide flock of condors: load sharing among workstation clusters,
" Future Gener. Comp. Sy., vol. 12 , May1996, pp. 53-65,
doi:10.1016/0167-739X(95)00035-Q.

[27] M. J. Litzkow, M. Livny, M. W. Mutka, "Condor - a hunter of Idle
Workstations," Proc. International Conference on Distributed
Computing Systems(DCS 98),IEEE Press Jun.1998, pp. 104-111, doi:
10.1109/DCS.1988.12507.

[28] F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. Neri ,
O. Lodygensky ,"Computing on large scale distributed systems:
XtremWeb architecture, programming models, security, tests and
convergence with grid, Future Gener. Comp., vol. 21 , Mar. 2005, pp.
417-437 , doi:10.1016/j.future.2004.04.011

[29] D. Thain, T. Tannenbaum, M. Livny, "Distributed computing in
practice: the condor experience," Concurrency Computat. Pract.
Exper. ,vol. 17 , Feb. 2005,pp. 323-356, doi: 10.1002/cpe.v17:2/4.

[30] T. Abdullah, L. O. Alima, V. Sokolov, D. Calomme, K. Bertels,
"Hybrid resource discovery mechanism in ad hoc grid using
structured overlay ," Lect. Notes Comput. Sci.,vol. 5455 ,Mar. 2009,
pp. 108-119, doi: 10.1007/978-3-642-00454-4_13.

[31] B. Y. Zhao, J. Kubiatowicz, A. D. Joseph," Tapestry: an infrastructure
for fault-tolerant wide-area location and routing, " Technical Report:
CSD-01-1141, University of California at Berkeley,ACM Press ,
2001.

[32] F. Dabek, R. Cox, F. Kaashoek, R. Morris, " Vivaldi: a decentralized
network coordinate system, "Proc. ACM SIGCOMM (SIGCOMM
04), ACM Press, Aug. 2004, pp. 15-26, doi:
10.1145/1030194.1015471.

9090

