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Behavior of the delta algorithm of autonomic switch between two component 

implementations is considered on several examples of a client-server systems involving, 

in particular, periodic change of intensities of requests for the component. It is shown 

that in the cases of some specific combinations of elementary requests costs, the number 

of clients in the system, the number of requests per unit of time, and the cost of switch 

between the implementations, the algorithm may reveal behavior that is rather far from 

the desired. A sufficient criterion of a success of the algorithm is proposed based on the 

analysis of the accumulated implementations costs difference as a function of time. 

Suggestions are pointed out of practical evaluation of the algorithm functioning 

regarding the observations made in this paper.  

 
 
Introduction. 

 

One of important modern issues of software engineering is development and description 

of distributed, pervasive computing systems consisting of various, heterogeneous resour-

ces, critical to the computer power usage, enabling reconfiguration and scaling the 

environment [1]. In a number of special cases reconfiguration must be dynamic. 

 

The idea of dynamic reconfiguration of the systems gave rise to the concept of autonomic 

computing letting computing systems manage themselves (like autonomic nervous 



system governs the human body parameters) depending of high-level objectives from 

administrators. Autonomic systems should involve such fundamental principles as self-

configuration, self-optimization, self-healing, self-protection. The principal architectural 

structure of an autonomic element involves an autonomic manager responsible for 

communication of the element with the outer part of the general system, and a set of 

autonomic components coordinated by the autonomic manager by means of persisting 

policies, facts, and rules [2-3]. 

 

The success of an autonomic system behavior is essentially determined by ability 

to detect or predict overall performance that is actually the ground for 

management of autonomic components, in particular, for activation of an 

appropriate component implementation. For this, establishing of 

mathematical abstractions and models giving criteria governing the sequence 

of switches between component implementations is an important point of 

autonomic computing [2-5].  

 

The delta algorithm 

 

The delta algorithm of the switch between two component implementations, 

described and studied in [6] can be considered as one of such models. The key 

abstractions of the algorithm are the costs of both implementations (they may 

be treated as time intervals needed to send a request for the implementation 



and to obtain a response), and costs of switches between them (time needed to 

handle the switch request). 

 

One of the most important moments pointed out as open issues in [6] is the question 

about work of this algorithm in concrete conditions. The present paper analyses the 

algorithm behavior for several important classes of the sequences of requests for 

component implementations. 

 

Before this analysis, following [6], we are going to describe the way the algorithm 

chooses the moment to switch between the implementations in two forms. 

 

Mathematical description.  

 

If we have two implementations }2,1{i,I i ∈  and designate the non-active one iI , and if 

for the sequence of k requests r i, i = 0,..k  there is  j,  j ≤ k,  such that for the total costs of 

both implementations accumulated during the j – k subsequence of these requests 

 

SC)I),r,..,r((Cost)I),r,..,r((Cost ikjikj −≤  

 

where SC=SC1+SC2 is the so-called round trip switching cost, i.e., the sum of costs of 

switching from one implementation to the other and vice versa, then the algorithm makes 

a decision to switch to a non-active implementation. 

 



Description in terms of a program code.  

 

This idea may be implemented in terms of Java or C++ code as follows (cf. [6]): 

 
            impl1Cost = 0; 
  impl2Cost = 0; 
  minDelta = 0; 
  timeToSwitch = false; 
  while (!timeToSwitch) 
  { 
   impl1Cost += Cost(r, impl1); 
   impl2Cost += Cost(r, impl2); 
   temp = impl1Cost – impl2Cost; 
   minDelta = min(minDelta, temp); 
   if(impl1Cost – implCost2 – minDelta >= SC)                       
     timeToSwitch = true; 
    
  } 
                        // making switch from the first  
            // to the second implementation 
 

 
The code for the second-first implementation switch is quit analogous.  

 

The distributed pub/sub problem. 

 

Also concretize implementations for the so-called pub/sub model, introduced in [6]. This 

model involves a server holding a database and one or more clients that can read from the 

database and update it. Two implementations are just nonsubscription mode when any 

read or write request is being directed to the server database, and subscription mode when 

each client has a local copy of the database residing on the server, with the data being 

read from the local database, and elementary writing consisting in a request to the server 

to update its database and in notification from the server to all the clients (except the one 

that writes) to update their local database images. 

 



Again following [6], it is quit natural to assume the elementary read and write operations 

costs to be as follows:  

• Nonsubscription mode: 

Cnw = 1  

Cnr = 2 

• Subscription mode: 

         Csw = 2 + (Ncl –1)     (Ncl is the total number of participating clients) 

 Csr = 0                       (assume that reading from the client local database image 

costs negligibly little). 

 
Also it is natural to suppose that the cost of switch from nonsub to sub mode is equal to 

the cost of sum of reading requests covering all the database because actually what we 

need for this switching is reading the whole of the database from the server to form its 

local image: 
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Besides, evidently SCns >> SCsn and therefore 

 

SC ≈ SCns 

 

To investigate the delta algorithm work with this model, let us make a supposition that 

the number of requests to the implementations is big enough so we can describe the 



“intensity” of the requests, i. e., the number of requests per unit of time, by sufficiently 

“smooth” mathematical functions (we will concretize the requirement to these functions 

later). Now let the numbers of read and write requests per unit of time are given by 

formulae: 
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That may take place, for instance, in the case of some distributed system for 

accumulation and processing of information from a scientific experiment. We may 

suppose that at the beginning of a cycle (which may be a working day or the some stage 

of an experimental program) writing requests dominate (active accumulation of 

experimental data obtained), whereas closer to the end of the cosine’s semi-cycle the 

processing and treatment of the data obtained by the system clients begin to prevail, so 

intensity of reading reaches its maximum W (the time length of the cycle can be regulated 

by phase factor ω).  

 

The increments to the costs of nonsub and sub modes are therefore  

 

wnwrnrn nCnCI +=  

(3) 

wswrsrs nCnCI +=  

 

Assuming Ncl = 2 (some small model system consisting of a server and two clients), we 

can find the difference between accumulated costs of nonsub and sub modes: 
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Now let λ be the part of database size (items) that is covered by the read requests during 

one period of functions (2). Then, according to our suppositions about the switch cost and 

great number of requests per unit of time, we are passing from summation in (1) to 

integration: 
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It can be easily seen from (4)-(5) that if the database size is such that the whole of the 

readings throughout the cycle covers 6.12 ≈π  portion of the database then SC is exactly 

equal to double amplitude of the accumulated costs difference, i. e., the distance between 

horizontal lines on Fig. 1. 

 

Looking at Fig.1, suppose now that at the initial moment of time nonsub implementation 

is active. Then the cost difference function monotonically decreases up to point A, which 

means that the nonsub active implementation is cheaper and we have an optimal 

situation. But after passing point A the sub implementation gets cheaper since the curve 

rises. But the delta algorithm will evidently decide to switch to the sub implementation 

only upon the curve’s coming to point B (the difference between accumulated costs 

became equal to SC, that is the distance between the curve’s maximum and minimum). 



What happens then is quit evident. Our function decreases again; we have more 

expansive sub implementation active, and cheaper nonsub implementation passive. But 

again the delta algorithm can figure out this only after the curve reaches point C. Then, 

apparently, the situation repeats. So the algorithm chooses wrong implementation every 

time even though we started with correct implementation! 

 

This is, however, an extreme case. If SC has smaller value than the one considered above, 

i. e., 

0 < SC < 2W 

 

then for the accumulated cost we have 
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The left limit corresponds to ideal behavior when a cheaper implementation is always 

active (in this case the first, the third, and the fourth terms in (6) are not equal to zero, so 

the falling parts of the Fig. 3 graph involve nonsub mode, the rising parts have the sub 

mode active). The right limit provides the worst opportunity when we always have a 

more expensive implementation active (the first, the second, the fourth terms are not 



zeros, the falling graph parts have nonsub mode, the rising parts have the sub mode 

active). This is actually the situation examined above.  

 

We can observe the same behavior of the delta algorithm, for instance, in the case of 3 

clients  (see Fig. 2). In this case, evidently, the accumulated costs difference  
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and in the case when the read requests cover the database 8.43
9

8 ≈π  times during one 

period of functions (2) the round trip switching cost SC again equals  double amplitude of 

the accumulated costs difference and the situation with wrong choosing of the compo-

nents actually repeats. 

 

Apparently, for such “wrong algorithm’s behavior”, the accumulated costs difference is 

to be a purely periodic function. Besides, some “coherence” between elementary costs, 

number of clients, number of requests per unit of time, and the switch cost is needed. 

This does not necessarily occur for each instance of the system considered. For example, 

in the case of ten clients the accumulated costs difference is 
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(see Fig. 3). This is “almost” monotonic function and evidently the algorithm either 

won’t make a switch at all (if we start from the cheapest implementation) or will switch 

to the cheapest implementation once as soon as the function reaches the value –SC. In 

both cases we will obtain ideal or close to ideal behavior. 

 

Summarizing this part of the delta algorithm behavior observations, we can say that in an 

important particular case of cyclic intensities of requests to the component this algorithm 

often reveals behavior rather far from the desired, so further improvement of the forecast 

method or accurate clarification of cases when the algorithm can or cannot be applied 

may be needed here.  

 

On conditions of correct work of the algorithm. 

 

Establish a certain class of time dependencies of the implementations accumulated costs 

difference with which the algorithm involved will work correctly. First, it should be 

pointed out that, since the function of accumulated costs difference is a by-linear form (3) 

of requests intensities and elementary requests costs, we could think of its second 

derivative (determining the function plot curvature) as the rate of the changeability of the 

requests per unit of time, or intensity of change of the requests costs which may depend 

on the network stability in the case of a distributed system with remote components. 

 

So we can consider the involved function second derivative absolute value as some basic 

quantity that can be estimated either by direct analysis of the system performance, or by 



numerical processing  (interpolation) of the curves obtained from previous system 

sessions. 

 

If the implementations accumulated costs difference function, whose second continuous 

derivative is less or equals some value d2 , has at some initial consideration point t=0 first 

derivative d1>0, it’s curve will be located over the parabola whose derivatives at the 

initial point are also d1, d2 at t>0 :  
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Evidently, such a parabola reaches its maximum (in this case d2<0), which is greater or 

equals 2SC, if 

 

21 2 dSCd ⋅>                                                        (7) 

 

Apparently, this is a criterion of the considered difference function monotonic increase 

by a value SC2 . During this growth, if the system’s cheaper implementation is not active 

the algorithm instructs the application to switch to it as soon as the function increases by 

SC. Then another increase by SC follows, so the algorithm’s decision is correct because 

the newly activated implementation turned out to be cheaper by at least the switch cost! 

Had we a cheaper implementation active at the initial moment, we would observe the 

optimal performance without the switch. 

 



It the case d1<0 at the initial consideration point, our curve will be located below the 

parabola having minimum, d2 being more than 0. So monotonic decrease of the function 

involved by a value 2SC will be provided and we can observe the same result as in the 

previous paragraph. 

 

Conclusion and open issues 

 

We may suppose now that taking into consideration criterion (7) using the delta 

algorithm, may increase the overall efficiency of its work. It might be even more 

important to emphasize that both diminishing of medium absolute value second 

derivative of the implementations accumulated costs difference function (by increase of 

the network connection stability and growth of the requests restructuring characteristic 

time) and increase of the absolute medium value of first derivative (via growth of the 

mean requests activity) can raise the overall efficiency of the delta algorithm performance 

on any system using dynamic switch between implementations. 

 

Finally it should be mentioned that since real distributed computer systems are often very 

complicated and varied it may be of great interest and importance to observe the 

efficiency of the criterion (7) in concrete cases as well as real systems performance in the 

case of cyclic requests activity considered in the first part of the paper. 
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Figure 1. Difference between accumulated costs of nonsub and sub implementations for the system 

consisting of a server and two clients as a function of time. Both time and costs here are defined to be 

dimensionless in the scale of ω  and W respectively. 



 

 
Figure 2. Difference between accumulated costs of nonsub and sub implementations for the system server - 

three clients as a function of time. Both time and costs here defined to be dimensionless in the scale of ω 

and W respectively. 

 



 
Figure 3. Difference between accumulated costs of nonsub and sub implementations for the system server - 

ten clients as a function of time. Both time and costs here defined to be dimensionless in the scale of ω  and 

W respectively. 
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