
Incremental Evolutionary

Methods for Automatic

Programming of Robot

Controllers

Thesis for the degree philosophiae doctor

Trondheim, November 2007

Norwegian University of Science and Technology

Faculty of Information Technology,

Mathematics and Electrical Engineering

Department of Computer and Information Science

Pavel Petrovic

I n n o v a t i o n a n d C r e a t i v i t y

NTNU

Norwegian University of Science and Technology

Thesis for the degree philosophiae doctor

Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Computer and Information Science

© Pavel Petrovic

ISBN 978-82-471-5031-3 (printed version)

ISBN 978-82-471-5045-0 (electronic version)

ISSN 1503-8181

Doctoral theses at NTNU, 2007:228

Printed by NTNU-trykk

Abstract

The aim of the main work in the thesis is to investigate Incremental Evolution
methods for designing a suitable behavior arbitration mechanism for behavior-based
(BB) robot controllers for autonomous mobile robots performing tasks of higher com-
plexity. The challenge of designing effective controllers for autonomous mobile robots
has been intensely studied for few decades. Control Theory studies the fundamental
control principles of robotic systems. However, the technological progress allows,
and the needs of advanced manufacturing, service, entertainment, educational, and
mission tasks require features beyond the scope of the standard functionality and
basic control. Artificial Intelligence has traditionally looked upon the problem of
designing robotics systems from the high-level and top-down perspective: given
a working robotic device, how can it be equipped with an intelligent controller.
Later approaches advocated for better robustness, modifiability, and control due
to a bottom-up layered incremental controller and robot building (Behavior-Based
Robotics, BBR). Still, the complexity of programming such system often requires
manual work of engineers. Automatic methods might lead to systems that perform
task on demand without the need of expert robot programmer. In addition, a robot
programmer cannot predict all the possible situations in the robotic applications.
Automatic programming methods may provide flexibility and adaptability of the
robotic products with respect to the task performed. One possible approach to
automatic design of robot controllers is Evolutionary Robotics (ER). Most of the
experiments performed in the field of ER have achieved successful learning of
target task, while the tasks were of limited complexity. This work is a marriage
of incremental idea from the BBR and automatic programming of controllers
using ER. Incremental Evolution allows automatic programming of robots for more
complex tasks by providing a gentle and easy-to understand support by expert-
knowledge — division of the target task into sub-tasks. We analyze different types
of incrementality, devise new controller architecture, implement an original simulator
compatible with hardware, and test it with various incremental evolution tasks for
real robots. We build up our experimental field through studies of experimental
and educational robotics systems, evolutionary design, distributed computation
that provides the required processing power, and robotics applications. University
research is tightly coupled with education. Combining the robotics research with
educational applications is both a useful consequence as well as a way of satisfying
the necessary condition of the need of underlying application domain where the
research work can both reflect and base itself.

Preface

When the robots will start going skiing of their own will, the age of robots
will have come.

My first meeting with programmable robots occurred as an instructor in the summer
camp for talented young children in the early 90s where we were programming
a simple LEGO-built scanner and greenhouse using a dialect of Logo running on
Macintosh Classic.

Later on, professor Sam Thangiah introduced me to real mobile robots (B12 from
the Real World Interfaces) that we programmed in assembly and C as the assign-
ments for his Machine Learning course at Slippery Rock in Pennsylvania. He also
introduced me to the capabilities and applications of Evolutionary Computation.

Arriving to NTNU threw me into more unavoidable hands-on LEGO experience
and hacking, where I was lucky to remain part of the increasing interest in robotics
and robotics contests at all age levels.

The studies in the field of artificial intelligence give me strong arguments to
believe that there is a good chance for the robots being able to start sharing a
common environment with us while being at our service soon. The realization
is the job for the industry. In academia, we ought to overcome the scientific
and technological barriers, develop algorithms, and methods. It is now the most
interesting time when such technologies get born, and this work is a tiny contribution
into that area.

During my graduate studies, I happened to get involved in several different
projects cooperating with different people and groups, while keeping work on my
own lonely thesis thread at the same time. In this paper, I would like to share with
you all of that, keeping the main focus on my own original ideas, while including
all the cooperative work, which relates to it and joins into one common theme
Evolutionary Robotics.

Acknowledgments

First of all, I would like to express my appreciations to the institute and the faculty
for providing me with a creative, inspiring, and friendly working environment for an
extensive period of time.

Several colleagues contributed to the outcome. The most valuable feedback
and care was always received from my adviser, professor Keith Downing. Thanks
to his strong principles and dedication, and due to the scientifically appreciating
environment created by the group and division leader professor Agnar Aamodt,
the laboratory for sub-symbolic artificial intelligence existed at our department
throughout the whole duration of this work, and served as a wonderful place to
exchange the ideas among us, the students.

I thank to Zoran Constantinescu Fülöp for productive cooperation on the
distributed computation tools and projects, and for sharing a lot of valuable work
and time.

A special thanks belongs to the technical group of the department. Without their
support, running the experiments in the student laboratories would be impossible.

I am very grateful to professor Henrik Hautop Lund from Maersk institute in
Odense and his colleagues, who allowed me to spend one semester with them and
who contributed with a very useful feedback.

I am thankful to the members of Robotika.SK, namely Dušan Ďurina, Richard
Balogh, Andrej Lúčny, and Jozef Omelka, who provided a great robotics learning
environment during my civil service year in Slovakia.

I am committed to my parents and sister, who sought for my personal happiness
especially during my visits at home, as well as for my comfort (a special thanks for
all those warm hand-made wool pullovers).

And finally, big hug to all the Norwegian, Greek, Spanish, Italian, French,
Dutch, German, Finish, American, African, Portuguese, Danish, and even Czech
and Slovak, and other girls I met during the years, they were a great inspiration,
and it was all worth just that. :)

Disclaimer

LEGO, LEGO Mindstorms, LEGO Mindstorms NXT, BlueTooth, SONY, Aibo,
Khepera, and other trademarks appearing in the text are owned by the respective
owners.

Contents

1 Introduction 11
1.1 Research Questions Addressed in the Thesis 15

2 Background 17
2.1 Introduction and Social Implications 17
2.2 Robotics and Artificial Intelligence 18
2.3 Evolving Robotics . 19
2.4 Embodiment, Situatedness, Environment 20
2.5 Planning and Reactivity . 25
2.6 Navigation . 26
2.7 Sensors and Actuators . 28
2.8 Vision . 29
2.9 Controller Architectures . 30
2.10 Finite-State Automata as Representation for Evolutionary Algorithms 32
2.11 Robot Programming Formalisms . 34
2.12 Behavior-Based Robotics . 35

2.12.1 Representing Behaviors in a Controller 36
2.12.2 Arbitration Mechanisms . 36
2.12.3 Team Robotics with Behavior-Based Architectures 38

2.13 Evolutionary Robotics . 39
2.13.1 Evolvable Tasks . 40
2.13.2 Fitness Space . 42
2.13.3 Co-Evolution . 42
2.13.4 Evolving the Robot Morphology 43
2.13.5 Evolving Behavior Arbitration 43
2.13.6 Incremental Evolution . 45

2.14 Simulation and Real Robotic Experiments 48
2.15 Chapter Summary . 51

3 Research Goals and Hypotheses 53
3.1 Introduction . 53
3.2 Evolving Robotics . 55
3.3 Robotic Task Complexity . 56
3.4 Arbitration Mechanisms . 57
3.5 Embedded Evolution . 58
3.6 Evolutionary Adaptive Mechanisms 58

2 Contents

3.7 Aspects of Incremental Evolution . 59
3.7.1 Sequential vs. Structural . 61
3.7.2 Population Transition . 63
3.7.3 Emergent vs. Engineered Steps 66
3.7.4 Automatic Division into Incremental Stages 66

3.8 Controller Architecture Goals . 67
3.9 Simulation . 70
3.10 Chapter Summary . 71

4 Supporting Technologies 73
4.1 RCX as a Research Hardware Platform 73
4.2 Distributed Computing . 76
4.3 Q2ADPZ - Tool for Distributed Computation 77

4.3.1 Motivation . 77
4.3.2 Features . 78
4.3.3 User Modes . 78
4.3.4 Inter-Platform Operability . 79
4.3.5 Architecture . 79
4.3.6 Utilizing the Q2ADPZ for EC Experiments 83

4.4 Evolutionary Computation and Distributed Computing 84
4.5 Distributed Evolutionary Algorithm 85

4.5.1 Utilizing the Cluster Computing for EC Experiments 85
4.5.2 Universal Solution . 86

4.6 Chapter Summary . 89

5 Supporting Studies 91
5.1 Role of Robotics in Education . 91

5.1.1 Robotics in Elementary and Secondary Schools 92
5.1.2 Guidelines for Educators: Curriculum, Skills and Philosophy . 93
5.1.3 Teaching-Learning Materials 95
5.1.4 Robotics Contests . 96

5.2 Creative Educational Platforms . 96
5.3 Ten Educational Projects . 100
5.4 Evolve with Imagine – Educational Evolutionary Environment 103

5.4.1 Recombination . 103
5.4.2 Mutation . 104
5.4.3 Selection and Other Parameters and Features 105

5.5 Evolution of Shape and Form . 106
5.5.1 Representational Aspects of Evolving Form and Shape 106
5.5.2 Experimental Setup . 112
5.5.3 Results . 113

5.6 Chapter Summary . 118

6 Comparison of FSA and GP-tree Representations 119
6.1 Introduction and Aims . 119

6.1.1 Representations . 120

CONTENTS 3

6.1.2 Search Space . 123
6.1.3 Sensitive Operators . 124

6.2 Experimental Setup . 125
6.2.1 Experiment “bit collect” . 125
6.2.2 Experiment “(abcd)n” . 126
6.2.3 Experiment “switch” . 127
6.2.4 Experiment “find target” . 127
6.2.5 Experiment “dock” . 130

6.3 Results . 130
6.4 Chapter Summary . 156

7 Design and Implementation Considerations 157
7.1 Simulation Framework . 157

7.1.1 Lazy Simulation Method . 157
7.1.2 Simulation Time and Multithreaded Scheduling 160
7.1.3 Functional Requirements for the Simulator 162
7.1.4 Detailed Simulation Procedure 165

7.2 Controller Architecture . 166
7.3 Evolutionary Algorithm . 168

7.3.1 Representation . 170
7.3.2 Operators . 170
7.3.3 Scaling . 173
7.3.4 Checkpoints . 175

7.4 Chapter Summary . 176

8 Experimental Work 177
8.1 Simple Adaptive Autonomous Robot 177
8.2 Incremental Evolution . 179

8.2.1 Embedded Incremental Evolution 179
8.2.2 Structured Task for Incremental Evolution 180

8.3 Results . 187
8.3.1 Embedded Incremental Evolution 187
8.3.2 Cargo Transporting Task . 190

8.4 Chapter Summary . 201

9 Discussion and Conclusions 203
9.1 Discussion . 203

9.1.1 Extensibility of the Controller 203
9.1.2 Evolution Modeled as Phenotypic Process 204
9.1.3 From FSA to Recurrent NN Architectures 206
9.1.4 Lessons Learned about Simulating Robotic System Time . . . 207
9.1.5 Symbolic and Sub-Symbolic Viewpoints 207

9.2 Main Contributions of the Thesis . 210
9.3 Conclusions . 212

9.3.1 On Educational Robotics . 217

4 Contents

Appendix A – List of EI Parameters 220

Appendix B – Example of Specification of Environment for the
Simulator 225

Appendix C – Example of Specification of Evolutionary Run 233

Bibliography 251

Index 265

List of Figures

2.1 Emergence robotics experiment, implementation with RCX robots. . 22

2.2 Importance of the relation between robot morphology and controller,
program fragment. 23

2.3 Importance of the relation between robot morphology and controller,
phases of ball following. 24

2.4 Importance of the relation between robot morphology and controller,
changing the angular range. 24

2.5 Influence of the robot morphology on performance, drawing of a
sensor installation. 25

2.6 A motor schema for 2D environment with 4 obstacles 27

2.7 Stimulus-response diagram and functional notation of behaviors. . . . 36
2.8 Behavior arbitration general framework. 37
2.9 An example of a controller built using the Subsumption Architecture

of Brooks. 38
2.10 Robotics simulation by means of emulating robot controller. 50

3.1 An example of scenario consisting of sequential incremental steps:
window-cleaning robot. 62

3.2 An example of scenario of incremental steps following a tree-structure:
basketball playing robot. 62

3.3 An example of scenario of incremental steps that form a directed
acyclic graph: berry-collecting robot. 63

3.4 Population mixing in an incremental scenario. 65
3.5 Extensibility of the controller. 68
3.6 Single behavior module with its arbitrating post-office finite-state

machines. 69

4.1 Reliable post-office protocol for PC-RCX communication. 74
4.2 Infra-red / Bluetooth conversion module for RCX. 75

4.3 Q2ADPZ: A simple library-type project file. 79
4.4 Q2ADPZ: Simple executable-type project file. 80
4.5 Q2ADPZ: Slave status message. 80
4.6 Q2ADPZ architecture. 81

4.7 Q2ADPZ communication layers. 82
4.8 List of slaves – status information provided by master. 83
4.9 Overall architecture of the distributed evolutionary system. 85

4.10 Utilization of two versions of distributed algorithm. 86

6 List of Figures

5.1 Students from secondary school in Trondheim preparing their robot
for the RoboCup Junior contest in Bremen, June 2006. 94

5.2 Viewing the remotely-accessible robotics laboratory in a web-browser. 98
5.3 Interfacing the robots in the remotely-accessible laboratory from C. . 99
5.4 Solution to the example 1. 101
5.5 Solution to the example 2. 101
5.6 View from the top-mounted camera, the same image recognized by

the image recognition plug-in for Imagine, drawing a convex hull. . . 102
5.7 Voronoi representation genotype and phenotype. 107
5.8 Holes representation with various geometric shapes creates more

natural shapes using less shapes than rectangular-holes representation.108
5.9 Standard LEGO bricks used in layer layouts. 110
5.10 Shapes used in the topological optimum design experiment. 112
5.11 Comparison of the performance of the roulette-wheel selection and

steady-state GA. 113
5.12 Best individual fitness with standard deviations (random 3D models

20x20x5) for layer 4. 114
5.13 Example runs of 16x16 TOD shape with different genotype represen-

tations. 115
5.14 Best fitness (average of 20 runs) for the four different representations,

8x8 shape. 115
5.15 Best fitness (average of 20 runs) for the four different representations,

16x16 shape. 116
5.16 Best fitness (average of 20 runs) for the four different representations,

32x32 shape. 116
5.17 The first two layers evolved with steady-state GA. 117
5.18 Shapes with evolved brick layouts, from [Na, 2002]. 117
5.19 Comparison of the performance of the improved GA that has features

of indirect representations (repetitive brick placements), [Na, 2002]. . 117

6.1 Illustration of GP-tree representation. 121
6.2 Illustration of FSA representation. 122
6.3 Environments for the find target task. 128
6.4 Viewing the progress of simulation in a web browser using a viewer

implemented as Java applet. 129
6.5 Average of the fitness of the best individuals in the find target task. . 131
6.6 Example trajectories of evolved individuals using the GP-tree and the

FSA representations in find target task. 133
6.7 Trajectories of the best individuals from all generations in find target

task. 133
6.8 Trajectories of the best individuals from final generation in find target

task, complex environment. 134
6.9 Generalization of the evolved solutions when started from different

starting locations in find target task, complex environment. 134
6.10 Performance of the FSA and GP-tree representations in find target

task, environment ten around. 135

LIST OF FIGURES 7

6.11 Trajectories of the best individuals from final generation in find target
task, environment ten around. 136

6.12 Generalization of the evolved solutions when started from different
starting locations in find target task, ten around environment. 136

6.13 Performance of the FSA and GP-tree representations on simple ver-
sion of task bit collect. 137

6.14 Performance of the FSA and GP-tree representations on more com-
plex version of task bit collect. 138

6.15 Performance of the FSA and GP-tree representations on task abcdn. . 140
6.16 Average of the best fitness on a switch task with four symbols for

both representations. 141
6.17 Average of the best fitness on a switch task with three symbols for

both representations. 142
6.18 The best evolved FSA in the switch task with three symbols. 144
6.19 Average of the best fitness on a 4-symbol switch task, comparison of

incremental and non-incremental runs. 145
6.20 Average of the best fitness on a 4-symbol switch task, comparison of

fully incremental and non-incremental runs. 146
6.21 Average of the best fitness on a 4-symbol switch task, comparison of

fully incremental with freezing FSA and non-incremental runs. 146
6.22 Average of the best fitness in the 4-symbol switch task, comparison

of incremental runs with restricted terminal set and non-incremental
runs. 148

6.23 Performance of the GP-tree and FSA representations on simulated
dock task. 149

6.24 A final evolved FSA in the dock task. 152
6.25 Trajectories for the evolved individuals in typical runs, dock task. . . 153
6.26 Trajectories for the evolved individuals in selected runs, dock task. . . 154
6.27 Role of the crossover operator for the FSA representation in switch

task with three symbols. 154
6.28 Comparison of two selection methods in experiment find target with

environment experiment fence and the GP-tree representation. 155
6.29 Comparison of two selection methods on experiment find target with

environment ten around and the GP-tree representation. 155
6.30 Comparison of two selection methods, difficult version of the experi-

ment bit collect and FSA representation. 156

7.1 Simulated robot topology and features. 159
7.2 Simulation implementation method. 161
7.3 Loading station is specified using two active areas (top view). 164
7.4 Unloading station is specified using three active areas. 164
7.5 Movement types for differential drive robot used in experiments. . . . 167
7.6 Example controller architecture for a mouse acquiring cheese task. . . 167
7.7 Controller architecture and genotype representation 169
7.8 Example of crossover operator functionality. 171
7.9 Crossover operator. 175

8 List of Figures

8.1 Simple adaptive autonomous robot. 178
8.2 Setup for the embedded evolutionary experiment. 180
8.3 Environments for the embedded evolutionary experiment. 180
8.4 Camera setup for building the table of real-world actuator effects. . . 181
8.5 Robot setup and environment for the cargo transporting task. 182
8.6 Experimental environments for 6 incremental evolutionary steps of

creative incremental scenario. 185
8.7 FSA arbitrators for modules cargo-loader, avoidance, and explore. . . 186
8.8 Automatic detection of incremental step, analysis. 188
8.9 Automatic detection of incremental step, complex environment. . . . 189
8.10 Embedded evolution task, complex environment and evolution of best

fitness. 190
8.11 Cargo transporting task, environment and real-robot setup. 191
8.12 Cargo transporting task, plot of the best fitness in steps of the creative

incremental scenario. 193
8.13 Cargo transporting task, finite-state machines evolved in each step of

creative scenario. 195
8.14 Cargo transporting task, plot of the best fitness in steps of the

sequential scenario. 197
8.15 Contribution of mutation operators to evolutionary progress. 198
8.16 Positive rate of mutation operators. 199
8.17 Examples of evolved misbehavior in cargo transporting task. 200

9.1 A re-planning controller for a pick-and-place robot enabled with a
camera and image recognition. 208

9.2 A prototype of LEGO pick-and place robot. 209

List of Tables

6.1 The number of binary trees of depth 1-10. 124
6.2 A final evolved GP-tree and FSA for the environment experiment fence.132
6.3 A final evolved GP-tree and FSA for the environment ten around. . . 136
6.4 A final evolved GP-tree and FSA, task abcdn. 139
6.5 The number of states in the evolved FSA and the number of states

that are reachable in the switch task with three symbols. 141
6.6 Evolved frozen individuals in the incremental steps 1–4, switch task

with four symbols. 147
6.7 The best evolved GP-tree solution in the dock task without penalty. . 150
6.8 Selected evolved individuals with the best performance for the dock

task. 151

8.1 Message interfaces for behavioral modules. 184
8.2 Cargo transporting task, number of evaluations in steps of the creative

scenario. 192
8.3 Cargo transporting task, number of evaluations in steps of the se-

quential scenario. 196

10 List of Tables

Chapter 1

Introduction

The job of a research worker is similar to the one of a concerting musi-
cian. The music itself controls every single movement of the musician in
order to elude a beautiful harmony of sounds prescribed by the composer.
Similarly, the nature controls every single movement of the researcher in
order to unveil the secrets of its own harmony.

In order to utilize ever advancing technological developments of materials, power
supplies, computer technology, sensors, and actuators in the field of robotics, suitable
controller architectures at a correspondingly advanced level need to be developed
for these devices. Mobile robots could perform complicated tasks in unknown,
non-deterministic, changing, noisy, and unpredictable environments, if methods for
designing robot controllers could be developed. Successful completion of tasks will
require the controllers to be adaptive and sometimes learning. Systematic research
efforts to study possible methods for building such controllers are to be spent.

Researchers and engineers have been designing and studying controllers for au-
tonomous mobile robots since the 1950s (the famous Grey Walter’s Tortoise robot).
Mainstream robotics systems are built upon the principles of the Control Theory.
Artificial Intelligence traditionally approached the problem of designing robotics
systems with the philosophical motivations of building machines that can think. The
AI scientists acquired a working robotic device, and studied the problem of making it
intelligent, their approach was clearly a top-down one. The naive attempt to design a
complete system in this manner, i.e. to specify the whole system from the top to the
bottom layers meets various constraints that make the approach at least difficult and
not very efficient. The complexity of interactions of a mobile robotic system implies
a structured (non-monolithic) controller architecture. Traditional AI approaches
based on centralized-processing and Sense-Plan-Act cycle have difficulties dealing
with simultaneous robot activities that have different priorities. Even if a purely-
planning controller would be successfully designed, its maintainability, modifiability,
and performance would be compromised. Mobile agents must behave according to
the outcome of several independent threads of reasoning. This requirement is implied
by the highly parallel nature of events and processes in the real world. The controller
architecture can meet this requirement if it is modular, and when the modules can
act simultaneously in a coordinated cooperation.

12 Introduction

A new wave of AI robotics (as a part of Nouvelle AI) was started by the
proponents of behavior-based systems. In these systems, the path to an intelligent
being starts with building simple concrete functional creatures. Their behavior is
controlled by a set of interacting modules. On the bottom side, these modules are
as simple as direct reactive connections between sensors and actuators. On the top
side, these modules might perform long-term reasoning inferences running in the
background with a low priority. These ideas are reflected well in various behavior-
based and hybrid architectures, [Arkin, 1998]. Many studies focus on designing
a framework, which possibly allows integration of higher-level functions and AI
theories into BB architectures. We support this view, and we aim at studying
particular aspects of the BB controller design.

A BB controller consists of a set of relatively independent modules. Each of
these modules is responsible for making sure that the robot will successfully perform
certain behavior. The behavioral modules typically have control over the robot
sensors and actuators, but their activation (arbitration) and combination of their
outputs (command fusion) is a difficult challenge. One of the main challenges of
the BB design is how the individual modules will be coordinated. This is referred
to as action selection problem or behavior arbitration, see [Pirjanian, 1999] for an
overview.

Different action selection methods were studied before. On the side of arbitra-
tion, these include priority-based, state-based, and winner-take-all. On the side of
command fusion, these include voting, superposition, fuzzy, and multiple-objective.
The coordination mechanisms can be divided into state-based and continuous, where
the state-based can work using either competitive or temporal sequencing principles.
For tasks that involve learning, the action selection problem is deeply studied by
research in Reinforcement Learning [Sutton and Barto, 1998], one of the most
popular methods for automatic design of robot controllers. In these cases, the
behavior arbitration or command fusion is a function to be learned based on the
requirements of the task. In this thesis, we will work with BB systems without a
predefined arbitration and command fusion mechanisms. On the contrary, these will
be designed using Evolutionary Algorithm (EA), with the help of simulation of the
robot performing in its environment. In particular, we will study how Incremental
Evolution (IE) can be applied to the problem of the design of suitable action-selection
mechanisms in BB controllers. Since the EAs proved to be successful in creating
novel designs in various domains, our hypothesis and planned research contribution
is to demonstrate how EAs can be used in this domain.

Another strong motivation comes from the viewpoint of the field of Evolutionary
Robotics (ER) itself. Approximately 15 years of research in the field brought
successful robotic systems that can perform relatively simple low-level tasks, such as
obstacle avoidance, wall following, or target tracking. The controllers are often based
on arbitrarily-connected neural networks, [Beer and Gallagher, 1992]. Adaptive
behaviors on a different level could possibly be achieved by approaches [Floreano
and Urzelai, 2000] that evolve the neuron learning rules instead of the connection
weights, which are changing dynamically during the task execution. Nevertheless,
it appears that evolving more complex behaviors in a single evolutionary run is not

13

plausible due to a complex search space, and becomes impossible without additional
guidance of the EA.

Few researchers addressed tasks of a higher complexity. ER uses a bottom-up
approach. The evolution typically starts at a complete bottom and has to discover
the low-level control mechanisms. On one hand, this attributes to a very high
flexibility in possibilities for the robot behavior that is formed. On the other hand,
it severely limits the complexity of the task, which is to be performed. ER cannot
reach beyond the low-level behaviors without a supporting framework, if it is to start
at the bottom level. In the natural evolution, such framework was provided by the
immense richness of the species, niches, and the environments, and the millions of
years of evolutionary development. When artificial evolution is to serve as a design
method, the framework must be replaced by other means. The evolved controller is
not very likely to benefit from the structural properties of a BB-type controller, if
such form will not be enforced.

One way of self-guiding of an evolutionary algorithm is the use of co-evolution,
[Hillis, 1990]. Co-evolution, however, applies best to that class of problems where
two entities are competing for the same resource, or fight. In addition, it can
be vulnerable to possible cyclic loops in the relation of strategy dominance in
effect causing stagnation of the algorithm instead of progression. Another possible
guidance, adopted also in this work, is dividing the target task into more simple
incremental steps, [Harvey, 1995]. This strategy is more general; however, it requires
a scenario of incremental evolutionary steps. How to devise such incremental steps,
and how to setup such incremental EAs is the focus of this and future work.

Designing a controller for a particular task for a mobile robot requires detailed
knowledge of the robot hardware and software and an experienced engineer. We are
seeking an alternative: automatic design of the controller. Our aim is to minimize
the efforts and maximize the quality. The approach we promote in this thesis is to
use ER with BB-type controller. We don’t put any particular constraints on how
the individual behavioral modules are designed. Typically, engineers who designed
the robot will provide the low-level control mechanisms, which will be well-tuned
and efficient for the hardware the robot is equipped with. Alternately, low level
behaviors can be learned or evolved.

Given the set of low-level behaviors, and a particular task for the robot, the goal
is to complete the design of the robot’s controller using EAs. The work lays at the
intersection between BB Robotics and ER. By the means of EA, the design of the
BB-controller adapts to the constraints of the specific task, robot, and environment.
Higher complexity of the controller, when compared to other ER approaches, is
achieved by the use of a BB-type controller with a set of predefined behaviors. We
are dealing here with an adaptation at the level of the design process, where the
resulting controller is adapted to the target task. Run-time adaptability of the robot
itself can be achieved by learning in the individual behaviors, flexible arbitration or
command-fusion mechanisms, and/or Embedded EC [Petrovič, 2001b], similar to
Anytime Learning approach of [Grefenstette and Ramsey, 1992].

In this work, we aim at evolutionary design of behavior arbitration for a controller
of a mobile robot performing a non-trivial task, where simple reactive controller

14 Introduction

would not be sufficient. The controller has a particular BB architecture, while the
arbitration is based on a set of finite-state automata. The design is the output from
an incremental evolutionary algorithm.

During the work on the project, we were exposed to different projects, ideas, and
environments. This brought us to the understanding that as advanced field as the
field of robotics is, can hardly be studied without learning and taking into account
a wider background — both from the AI-theoretical side that regards planning,
optimization, evolutionary computation, machine learning, from the robot-design
point of view that includes learning about sensors, actuators, building and low-
level programming of robots, and from the educational point of view that includes
bringing the world of robotics down to the schools at all levels — either to
promote the computer and natural sciences among youngsters, or to provide modern
motivating learning tools and technologies for students and researchers. This report,
in addition to addressing the main research questions listed at the end of this chapter,
reflects the work done and lessons learned in various aspects of this broader context.

The thesis is organized into several chapters. The following chapter reviews
the theoretical background and presents the approaches of the fields where this
work attempts to make contributions. The third chapter analyzes and discusses the
goals and hypotheses we set to reach and verify in more details. We describe the
technologies we employed in the fourth chapter. We add to our arguments through
a series of supporting studies, which we all describe in the fifth chapter including
the results obtained. The representation formalism of the behavior arbitration
mechanism, finite-state automata, are analyzed as a genotype representation and
compared to Genetic Programming in a preliminary study in the sixth chapter. The
following two chapters lay down a more detailed specification on how we prepared our
experiments and studies on theoretical and more practical levels. The last chapter
before the conclusions of the thesis describes and discusses the experiments we have
performed as well as the results obtained.

1.1 Research Questions Addressed in the Thesis 15

1.1 Research Questions Addressed in the Thesis

The main research question of the thesis asks by which ways can Evolutionary
Algorithms provide useful solutions to the problem of automatic design of controllers
for mobile robots. Previously, EA have been successfully applied to designing
robotic controllers with simple architectures based typically on Neural Networks.
These approaches were applied to relatively simple navigational or operational tasks.
As indicated by previous works, Incremental Evolution can increase evolvability
when designing robot controllers for mobile robots. The design methods for robot
controllers in the traditional Artificial Intelligence usually deal with symbolic rea-
soning mechanisms and make emphasis on planning, often involved in a centralized
architecture. Alternately, the Nouvelle AI methods rely on incremental bottom-
up design of robot controllers that consist of independently executing behavioral
modules with possibly conflicting intentions, desired actions, and effects.

The particular concern of this work is whether and how the EA method could be
successfully applied also to the controllers with architecture inspired by the Nouvelle
AI, the behavior-based controllers. Is Incremental Evolution a useful method in
this context, and what are the caveats of its application? The thesis will address
the questions of which controller architectures suit the evolutionary behavioral
approach particularly well and why. The thesis will work toward providing a
complete functional solution and may include studies into related fields, building and
implementing tools that may be required to reach satisfactory solution of automatic
design of mobile robot controllers.

16 Introduction

Chapter 2

Background

There is a noticeable difference between the national parks in Slovakia
and Norway: In Slovakia, the visitors follow the well-prepared hiking
trails and must not leave them. In Norway, the trails are often missing
or very hard to find, while the tourists are free to choose any of their
ways.

In this chapter, we set on a path to explore the various topics related to robotics. The
main aim of this work lies in incremental evolutionary robotics experiments. And
we shall always keep in mind that it is there our path leads. It would be a somewhat
unbalanced approach to jump right into a subject that is just a small flavor on top of
something that is difficult to build, understand, implement, and grasp – successful
robotic systems. In the spirit of bottom-up approaches, our journey started in the
simplest form of robotics-experience encounters – robotics educational systems and
efforts, which are explained in the fifth chapter together with supporting technologies
we used for the experimental work in our thesis explained in the fourth chapter. This
chapter touches upon the issues that are interesting and relevant for our perspective,
although it is not meant to provide a comprehensive overview of the respective fields.
In that spirit, we will gently cover the AI’s viewpoints on robotics and its challenges,
arriving at Evolving Robotics, which is where our target lies all the long way ahead.

2.1 Introduction and Social Implications

Typical tasks, where robots can be useful, share common properties, such as
hazardous or uncomfortable for humans, requiring heavy manipulation or tools,
which are awkward to handle, or necessitating repetitive execution. Robots could
be useful also in tasks, which can be carried out by humans, while performing with
higher reliability, cheaper, faster, longer or even perpetually, or more efficiently.
Some opponents of technological progress could claim that robots are taking the work
from humans. And they are right, but we must comment on it that given the above
conditions we do not find it a negative tendency, just the opposite. There are always
many more things to be done than people available, and always many challenges to
be worked on, and a long path for all of us ahead. Obviously, the enormous challenge

18 Background

will be finding and implementing a suitable economical and social model that can
provide for distribution of resources according to the new situation: the profit (or
at least the value) will not anymore be generated by the human work on majority,
but by the work of robots. In turn, larger amounts of financial profit will flow to the
accounts of the owners of the automatic production systems and factories. These
owners, however, will not be generating any (or sufficient) demand for the human
work that will be available (and indeed needed for the progress and sustaining of
mankind), but not useful for these owners. A failure of traditional market models
must follow, because those in demand will have no value to offer in exchange, and
those who will be producing (automatically), will have no value to demand. Today,
we are already witnessing such tendencies, and intensive changes in the structure of
the society occur. We should be prepared for more of this happening in the coming
decades. Unless we admit and alleviate the tabu put upon the correctness of the
market economy models, we will face very thin bottlenecks on the way to come, and
risk major crises. Studying, analyzing, and addressing these issues are important
tasks for economists and sociologists, and we must leave this interesting area for the
rest of this paper. We however forward the moral disputes regarding the progress on
the field of robotics further away to the mentioned fields, and claim that the progress
in robotics is important, needed, and full of positive contributions for mankind if
attention to the above mentioned issues is paid.

Whereas some jobs are suitable for robots fixed on a factory production line,
other tasks require mobility, flexibility, and adaptation to dynamic environment.
To a certain extent, it is possible to use remotely controlled or human operated
robots (tele-operation). However, the amount of information sent from sensors
and to actuators can be too large for the bandwidth of the transmission, or the
mission can be too distant for controlling each step of the robot in real time, and
the connection can be lost easily in certain environments. Some responses to events
in the environment might have to be performed very quickly. In all such cases, it
is inevitable and/or more cost efficient to equip the robot with its own controller,
which makes it autonomous.

2.2 Robotics and Artificial Intelligence

Can there be an intelligence without a body? Some researchers argue opposite.
We could claim that the study of artificial intelligence, when moved from a virtual
world inside of computers out to an embodied form, existing and operating in a real
world, ceases to be artificial. We are not anymore dealing with beings existing in
artificial worlds created entirely by human engineers, but with real beings existing
and performing in the same world as we humans do. If they do it with certain
degree of success, their intelligence is real, not artificial1. In each case, Robotics is

1Some may claim that the term artificial still applies to these creatures, since it comes from the
fact that they were designed by engineers, however this leads to a philosophical discussion about
who designed the human, and on the other extreme, whether those artifacts that are designed by
human should be called artificial, if they are part of a large image of a long-term evolution, and
thus we can disregard such an argument and insist that the robots posses the real intelligence at

2.3 Evolving Robotics 19

an important testing platform, motivation, and source of inspiration for many AI
theories.

In addition to standard classifications, we recognize two different flavors of
Artificial Intelligence. In the first flavor, the efforts within AI field are dedicated
towards building systems that display certain level of intelligence while performing
some more or less specific task. In that case, the AI is confronting the task
directly. The intelligence can be an integrated general mechanism, or a simple hard-
coded wiring. The implementation is transparent to an external observer, who only
classifies the observed behavior as intelligent. In the second flavor, another stream
of efforts uses AI during a design process. The outcome of the design process is
possibly, but not necessarily an intelligent system. Here, AI is confronting the task
indirectly, or in other words, the output from the AI system is another system that
has to perform some task. The performance of the system can again seem to be
intelligent, but this is absolutely not a requirement. In this approach, AI replaces
an intelligent engineer who would otherwise be required to implement the details of
the performing system.

Suitable labels for the two approaches could be an on-line and an off-line
intelligence. In our work, we are mainly concerned with the off-line intelligence,
although the goals are to achieve a certain level of on-line intelligence as well, if
possible. This, however, surely remains below the animal-level of intelligence, and
therefore often does not involve symbolic reasoning and planning in the output
system, as it is not necessary.

2.3 Evolving Robotics

The traditional approaches to robotics and AI robotics generated a broad set of
projects, implementations, and platforms, with a more or less limited performance.
These architectures are generally based on the SENSE – PLAN – ACT cycle, where
the centralized planning unit collects information from the environment, builds a
model of the world, and performs high-level reasoning to select the next action (or
construct a plan of atomic actions). The traditional research, however, up to date
provides a large base that is subject to further developments and studies. Many of
these developments grow along the traditional pillars of the established fields. In
addition, novel, innovative, sometimes revolutionary, visionary, untested, promising,
or just new and different approaches exist simultaneously, and ought to be given its
space in order to guarantee progress. All the “alternative” approaches contribute to
evolution of the Robotics research field. Let us call them here Evolving Robotics, and
interestingly enough, Evolutionary Robotics is one of them. Evolving Robotics is
very challenging to work in while it lacks the rigidity and structure of an established
field. However, it provides (but also demands) large amounts of inspiration, and
research joy.

their own level.

20 Background

2.4 Embodiment, Situatedness, Environment

Some traditional definitions of the embodiment and situatedness state that a system
is embodied when it has a physical body, and that it is situated when it exists in an
environment. See for example [Pfeifer and Scheier, 1999] for in-depth treatment. In
this philosophical section, we discuss the aspects and limitations of such definitions.

For the first, it can make sense to talk about a body even if the system exists in a
completely simulated or artificial environment that is not part of our physical world.
For the second, all systems that perform any meaningful activity do exist in some
environment. Should then all the systems be considered embodied and situated?

Every autonomous system that performs any actions must have input and
output. The input and output interface of the system forms its interaction with
the environment. In the cases when the system itself is part of that environment, or
when it is recognizable (can be identified and detected) by other systems that share
the same environment, and when the interaction with that part of the agent that
is part of the environment can have consequences on the future performance of the
agent, we say that the system has a body.

Systems without bodies can take no direct action in their environments. An
example of such a system is an oracle that can answer questions in a natural language
about the departures and arrivals of local buses. For another example, a temperature
controller senses and affects the environment, and it does have a body (the heating
body that is located in the environment) even though some would argue that it has
no intelligence. Systems without a body are passive, and as such cannot acquire their
own intelligence, which is naturally based on interactions, generating and verifying
hypotheses, world models, and constructing the knowledge based on the experience.
Body-less systems are limited to imitating intelligence of existing systems, providing
intelligent queries into a knowledge base that was constructed and maintained with
the help of an external intelligence.

An agent that has a body is situated in its environment as long as it takes
at least one input from that environment. Robotic agents obviously have bodies,
which occupy space in their environments, and allow them to take actions in those
environments and to perform active sensing – focusing their sensors on relevant
source of information in the environment. An agent can possibly be situated and
still be without a body. In that case, the agent can receive direct input from the
environment, and control which inputs it acquires and when. However, it cannot
be “seen” (detected, recognized) by other agents that share its environment, it is
not part of it and therefore cannot take actions in its environment (to prove this is
straight-forward: if the agent had any means to take actions in its environment it
would have to perform them using some actuators that would then be part of the
environment, hence it would have a body).

The importance of the situatedness for natural intelligence have been demon-
strated by the cases when an organism was disconnected from a particular sensory
input. If this occurred in the early stages of the individual’s lifetime, the particular
mental function did not develop for the rest of the life. For instance, if an eye of a
young kitten is closed for as little as 3-4 days during the period of high susceptibility

2.4 Embodiment, Situatedness, Environment 21

in the fourth and fifth weeks, the performance of the cat’s visual system is sharply
reduced for its whole lifetime [Hubel and Wiesel, 1970].

Robots often modify their environment to communicate with each other or to
ease or progress their task or navigation. For example, in [Batalin and Sukhatme,
2002] a robot is exploring an unknown environment. Such task is achieved without
access to any global navigational information thanks to signposts that the robot
drops off in its environment.

Another example is a famous experiment with emergence, [URL - Didabots].
Robots follow a very simple algorithm – move forward until the bumper sensors are
pressed, then backup, turn and start over again. Their special topology is the reason
that the robots perform a useful task of grouping objects into few piles: whenever
the robot meets an object in the center, its bumper sensors will not be affected, and
thus the object will be pushed by the robot – until another object is encountered
that will hit the bumper. Following the collision, the robot will backup and turn,
and leave the object at the place of another object – in result bringing two objects
together. Several robots running in an arena with many objects will group all objects
into one or several groups, possibly loosing some objects along the walls. Figure 2.1
shows the implementation of our group using LEGO robotics construction sets. It is
well-known that the natural intelligence has evolved through processes that involved
similar simple interactions in the collonies of cells and organisms. However and more
importantly, due to this evolutionary history, such interactions are very likely to be
inevitable for the natural intelligence as we know it in our era. With the respect
to the nature, we believe embodiness is thus necessary for any system with on-line
intelligence.

Both the environment and the body of a robot are equally important as its
program. Another interesting example that demonstrates this is a soccer-playing
robot with its ball-fallowing algorithm: the robot is moving forward and slightly
turning. Whenever the ball comes out of the sight, the robot toggles the direction
of the turning. Figure 2.3 shows a trajectory of a robot during the ball-following
experiment using the program in Figure 2.2. When the robot is approaching the ball,
even though the program is correct, the robot misses the ball in 90% of the cases
on one or another side. This is due to the fact that the sensors see the ball in wide
angle (giving the maximum reading), and thus the robot turns “too much” before
it toggles the direction of turning. A simple modification of the robot morphology
– adding an extra LEGO brick in front of the sensor as shown in the Figure 2.4
leads without modifications of the program to a successfully working solution, see
Figure 2.5. Building robots and programming them are activities that need to
be performed simultaneously. Technical specifications of the sensors, and robot
parts are never detailed enough to allow for software implementations without the
testing, adjusting, and sometimes reimplementing both the program and the robot
morphology.

Environment, in which an agent performs is static, when no changes in the
settings occur. It is dynamic or changing when changes can occur, for example
objects can be moving, changing its shape, light or magnetic conditions may
change. Deterministic environments are known in advance, while the details of

22 Background

Figure 2.1: Implementation of the emergence experiment using LEGO Mindstorms.
The view of the rectangular arena before and after the experiment is shown at
the top, the simple program in Robotics Invention System in the center, and
LDRAW/MLCAD drawing of the robot at the bottom.

2.4 Embodiment, Situatedness, Environment 23

while (true)

{

old_value = current_value;

current_value = SENSOR_1;

search_dir = OUT_C; // will start searching the ball right

if (current_value > threshold) // see the ball?

{

if (current_value < old_value)

{ // is the ball less bright than last time?

while (true) // follow it , until it gets lost

{

Fwd (OUT_A + OUT_C);

On (OUT_A + OUT_C); // drives forward

until (SENSOR_1 < threshold) {} // until ball cannot be seen

Rev (search_dir); // turns towards ball until

ClearTimer(1); // sees ball or timer (1) > 2

until (SENSOR_1 > threshold || Timer(1) > 2) {}

if (SENSOR_1 < threshold) // if can’t see ball , change

{ // direction

Toggle (OUT_A + OUT_C);

//and remember to look for the ball

//in the opposite direction next time

search_dir ^= OUT_A + OUT_C;

ClearTimer(1);

until (SENSOR_1 > threshold || Timer (1) > 5) {}

if (SENSOR_1 < threshold) // if can’t see the ball

return; // return and start all over

}

}

}

}

}

Figure 2.2: A program fragment in NQC for a soccer playing robot, which seeks
and follows an infra-red ball using a single IR sensor. When the program segment
is entered, the robot is already spinning left. It keeps spinning at the spot until the
ball is seen. Then it still keeps spinning until the sensor reading will start to decline,
i.e. it has already passed the exact direction towards the ball, when the reading has
been highest. Consequently it starts driving forward towards the ball, while it is in
the sight. Then it starts adjusting the direction towards it by turning to the right
while moving forward, and resumes forward motion when the ball is visible again. If
the ball is not found on the right-hand side, the robot toggles turning now to the left,
and resumes the forward movement, when the ball is found on the left-hand side. If
the ball is lost and cannot be seen neither on the left nor on the right, the routine
fails, and returns. Note: Another sensor was responsible to detect whether the ball
was already close to the robot. Another task running in parallel was monitoring that
sensor and activated either the dribbler and the kicker as appropriate depending on
the position and orientation of the robot. Better ball-following performance can be
reached by using two sensors, or another sensor that can detect direction towards
the IR ball, as we did in the forthcoming year. This experience provides a nice
example of how morphology and code depend on each other.

24 Background

A

E

B

F

D

H

C

G

Figure 2.3: Phases of ball following of a soccer-player robot. Each phase shows
the new direction of the robot from that point of time as well as where the ball is
currently rolling.

Figure 2.4: Changing of the robot morphology influences the sensory capabilities.
In this case, LEGO brick placed in front of the sensor reduces its sensitive angle.

2.5 Planning and Reactivity 25

Figure 2.5: The original setup that consists of an IR sensor (the five black IR photo-
transistors) and a single LEGO brick is shown on the left. An improved setup is
shown on the right.

non-deterministic environments are a surprise for an agent. Agent performing in
static and deterministic environments are naturally simpler to build and program,
however, given the task, it can still be a hard engineering challenge. We (and most
of AI) are concerned with agents performing in dynamic and non-deterministic
environments. Having confirmed that, we can still perform studies in static or
deterministic environments to learn about the methods in general.

2.5 Planning and Reactivity

A robot (or an agent) that is performing some activity or task in certain environment
typically has some goals. When the agent is working itself on setting up, updating
or modifying these goals, it is planning. Some agents do not plan: their behavior is
constant and does not change based on the input they receive from the environment.
Thus planning is an optional component of an agent. Agents, which are not
planning may achieve their (fixed) goals, if their behavior is pre-configured for
their environment. They can even modify their environment gradually in order to
achieve more complicated goals and to trigger different parts of their fixed behavior.
Planning can be performed with different degree of complexity. Some agents may be
planning only a very short-term actions, while other may form complex long-term
plans. Agents can perform planning of different degree of complexity simultaneously
with mutual feedback between the different levels.

If an agent shall perform in a dynamic and non-deterministic environment
successfully, it must perceive its environment and take actions based on the percepts
acquired using its sensors. Some agents may reflect to their sensory inputs based on
the output of their planning module. If an agent utilizes more direct links between
the sensory inputs and actuator outputs, it is reactive. Extreme view on the reactive
agents requires that they do no planning, and there indeed are many examples
of agents that achieve their goals without planning. These are purely-reactive
agents. Agents solving more complex tasks would usually both plan and be reactive,
these are often called hybrid-architecture agents in the literature as they typically

26 Background

contain features of both the traditional robotics planning systems and the features
of behavior-based controllers. For an example of an architecture that is completely
behavior-based, even though it performs higher cognitive functions (mapping), see
the work of Mataric [Mataric, 1992]. More about the robotic architectures is in the
section 2.11.

2.6 Navigation

The spatial characteristics of an agent and its environment influence the strategy
for selecting and performing actions in order to move around the environment and
achieve the agent’s goals: the agent navigates in its environment. These strategies,
or navigation algorithms, form a separate research subarea. From simple maze-
exploration strategies such as wall-following, and left/right-hand rule, to complex
stochastic strategies intertwined with map-building, localization, and exploration
tasks.

The navigation strategy is deterministic, when the agent always chooses the same
action in the same situation, and it is stochastic when the agent actions are chosen
randomly (at least include some degree of randomness).

Probably the most simple stochastic strategy is random movement used for
environment exploration or area-cover. The robot moves for some distance along
a straight line, turning randomly, bouncing or turning randomly on the area
boundaries and obstacles. A nice example is one of the first autonomous lawn mower
robots built by Husqvarna [Hicks II and Hall, 2000], which moves randomly on a lawn
surrounded by inductive wire dug few centimeters under the ground. Such behavior
results in virtually all lawn of an arbitrary shape mowed without the need of specific
deterministic strategy. The cost of such a solution is a lower efficiency. However,
given the robot being powered from the solar panels, this becomes a less important
issue, and (as the feedback from customers suggests) it gives some entertainment
value to the robot.

A simple deterministic strategy for locating a target at unknown location is the
depth-first search. If the location of target and the map of the environment is known,
a simple shortest-path algorithm can be used.

An interesting class of navigation algorithms deals with avoiding obstacles and
constructing a smooth trajectory of a robot without complicated equations. In a
2D environment, a potential-fields map is constructed. Each obstacle is a source
of a repulsive force vector, whereas the goal is a source of an attractive force. A
composition of the force vectors in each point results in a vector of the direction of
robot movement in that point. Increasing the repulsive force close to the obstacles
guarantees they will be avoided, while the attractive force of the target guarantees
the goal will be reached. An example of such a potential-field map is shown in
Figure 2.6.

A crucial role in most higher-level navigation algorithms play the landmarks.
Landmarks (according to [Nehmzow, 2000]) are objects or signs that should be

• Visible from various positions;

2.6 Navigation 27

Figure 2.6: A motor schema for 2D environment with 4 obstacles generated according
to [Arkin, 1998] using [URL - Schemas]. The robot follows the direction of the vectors
in the vector field, which is a composition of attractive force towards the target and
repulsive forces from the obstacles. Motor schemas are not immune to local minima
and cyclic behavior: there are locations where the robot can stall at one point, or
even areas which may lead to such points.

• Recognizable under different light conditions, viewing angles, etc.;

• Either stationary throughout the period of navigation, or its motion must be
known to the navigation mechanism.

The landmark appearance should preferably provide some unique navigational
information (at least when combined with other sources of navigational information).
For instance, a same kind of post on top of each hill will bear no information, while
a uniquely shaped TV-tower would provide a useful landmark.

In addition to local landmarks found at various locations in the environment,
global landmarks – such as the Sun, stars, or stationary satellites are very useful,
and biological organisms take benefit from most of them.

An important theory for a class of navigational and planning algorithms are
Markov Decision Problems (MDPs). MDPs are extended finite-state automata,
where the transitions between states occur with certain probabilities, asserting that
the probabilities of transitions in each state depend only on that state (Markovian
assumption). Such a stochastic model allows for modeling the environment, sensory
readings and outcome of actuator actions when these are not deterministic. States
correspond to locations in the environment represented as grid-based or topological
map. Alternately, states can correspond to the states of a dynamic environment,
task completion progress, or the planning strategy states of an agent (for instance
when modeling a behavior of an animal). In some of the states, the agent can receive

28 Background

positive or negative reward. The problem is to find a good policy for traversing the
state automaton so that the reward is achieved with the highest probability. MDPs
are thus closely related to the field of Reinforcement Learning, a method for learning
an action-selection policy to achieve agent’s goal.

Navigational algorithms often utilize the sensors for the feedback about the robot
movements (this is referred to as local navigation in the literature). For instance,
rotation sensors can provide information about the speed of spinning of the wheels
for odometry. Using dead-reckoning, the agent estimates its location based on its
own measurements of the wheels revolutions. This information can alternately be
obtained or supported also using distance sensors, compass, landmark detection, or
vision.

Once the robot knows how much it travels, it can possibly try to locate itself
within a map of the environment or try to follow, or even construct such a map
(this is referred to as global navigation in the literature). An example of a global
navigation algorithm used by robot Xavier [Koenig and Simmons, 1998] for pose
estimation in an office environment is based on the theory of Partially Observable
Markov Decision Problem (POMDP). The environment is divided into locations
(states), and at each time, the robot resides at each location with a determined
probability. Given the sensor and motion report, and the desired directive applied
to the actuators, the probability of being at each location in the next discrete step
is computed from the prior and learned model of the environment.

In real robot implementations, navigation usually utilizes a combination of
multiple sensory inputs (sensor fusion). For example, in [Thrun et al., 1998], the
output from sonar sensors which detect the presence of obstacles is supported by
scene analysis from stereo-vision. Thrun et al. demonstrate how the sonar sensors
alone tend to overlook objects absorbing sound, while the vision system itself misses
obstacles, which are not distinguished by their optical properties – such as glass
doors, or white walls.

2.7 Sensors and Actuators

Sensors are an important source of information about non-deterministic environ-
ments. Robots operating in such environments must therefore utilize the use of
sensors, which is often a difficult task given that sensory readings are usually noisy
or unreliable. The robot controller thus cannot rely on a single sensory reading or
it has to employ a stochastic behavior governed by stochasticity of the sensors.

The most simple sensors are tactile sensors used in combination with mechanic
bumpers to avoid obstacles or other objects in the environment and avoid their or
robot’s damage. They however demand a physical contact. A feasible alternative
are infra-red (usually short-range, 2-15 cm) or ultra-sound (usually long-range, up
to several meters) proximity detectors, which detect the amount of reflected signal
they emit. They are vulnerable to non-reflecting surfaces, spurious echos due to the
reflections and other unexpected fluctuations in the physical properties of objects.
Better precision can be achieved with laser range sensors, which can operate well
also in outdoor environments.

2.8 Vision 29

Shaft encoders, or rotation sensors are used to determine the rotation speed
of wheels, and can be applied to measure the distance traveled by a robot and its
rotation (odometry). However, this information suffers from accumulating errors and
thus has to be confronted with feedback from other sensors to align the prediction
with reality. For instance, the magnetic compass sensor provides global robot
orientation and thus can compensate for angular errors of robot turning. When the
robot operates in large environments, GPS sensors can be used to obtain global
positioning information. Another strategy for position estimation is to use the
accelerometers, thus determining the actual speed of the robot in all directions.

Gyroscope and tilt sensors can provide information about the robot balance,
and are suitable for advanced applications, where the robot performs in three-
dimensional space (flight, rough terrain).

Many other types of sensors exist providing usually task- or environment- specific
information, such as color, temperature, humidity, atmospheric pressure, sound,
radiation, altitude, etc. Of distinguished importance are visual sensor systems.

Actuators allow the robot to take physical actions in the environment, or to
indicate its state. These include motors, and linear elements, such as solenoids.
Sound and light actuators can be used as feedback to the user, or for communication.
While the most typical role of the actuators is the source of propelling movement,
various specialized actuators can perform useful actions, such as welding, drilling,
sweeping, gripping, lifting, etc.

The basic types of motors that are suitable for experimental robotics include
usual DC motors that can be driven by H-Bridge drivers, stepper motors, which
allow high precision of movements, and usual modeler servomotors (often modified
for full-rotation operation), which include the encoders and necessary electronics so
that they can be driven by logic-level signals.

2.8 Vision

Vision is the most informative sensor system with the largest bandwidth of infor-
mation. Advanced specialized algorithms have to be used to process the vision
input. In its simplest form, vision can be used to trace objects discriminated by
their color. Usually, however, the image must be segmented into uniform areas
that form objects, their topological information together with pattern recognition
and reasoning about the overall scene may eventually result in understanding of the
image. Image itself provides only two-dimensional information, which itself is not
sufficient for determining the distance of the observed objects. Stereo-vision uses
two cameras viewing the same scene from two viewpoints, and thus allowing for
distance estimation. With some drawbacks, this can be achieved by taking frames
from different locations using a single camera that is moving. Computer vision
is very difficult and computationally demanding, however a very active research
field. Most of our experiments did not utilize any vision system as our purpose is
to investigate the algorithms from their bottom application level. An up-to-date
overview of relevant vision algorithms can be found in [Davies, 2005].

30 Background

2.9 Controller Architectures

A traditional approach of Artificial Intelligence (AI) uses the top-down design
method, where the overall goal of the system is partitioned into sub-modules that
are developed individually. When putting such modules together, there is a certain
risk that the interfaces, although theoretically compatible, will in practice suffer
from some unforeseen mismatch. The complexity of the robotics system is too
high for a prototype-designer to be able to predict the behavior of all components
accurately. It may be found during the implementation phase that a particular
module cannot satisfy the physical constraints of some robot parts implied by the
top-down design. Moreover, the internal architecture typically consists of a large
centralized planning module with symbolic reasoning mechanisms. This module
receives the sensory information, and should generate next action of the robot in
every time step. However, symbolic reasoning mechanisms are generally too slow
for reactive behaviors that each mobile robot tackles, in particular in case of more
complex systems, where the reasoning takes into account hundreds or thousands of
facts and rules. In addition, a discrete symbolic model does not necessarily suit
random physical dynamic interactions that resemble natural reflexes in animals as
contrasted to wise actions or answers produces by humans after a thorough logical
reasoning process. Even if the technological possibilities allow building a robot
according to a top-down plan, the system is very difficult to debug and maintain.

In the literature, the traditional architectures are called the Hierarchical Paradigm.
The controller is divided into three parts - SENSE, PLAN, and ACT. SENSE – the
input component is responsible for collecting the data, ACT - is a component that
drives the actuators, and PLAN is the centralized logic, sometimes monolithic, not
even divided into further modules. A well known example is the robot Shakey
[Nilsson, 1984]. The architectures that include planning components are sometimes
called deliberative.

A robot controller is responsible for selecting actions for the robot to perform,
based on the current and past sensory readings and its knowledge. It is usually
a combination of specialized hardware and a software running on some embedded
microprocessor. In our scientific view, we are interested only in the conceptual
(logical) view abstracting from the platform, implementation or other technical
details.

The architectures of our concern are those of bottom-up design and reactive type.
Many experimental robot controllers are built as some sort of neural network. The
simplest is perhaps a feed-forward NN, see for example [Floreano and Mondada,
1994]. Direct sensory inputs are fed into the layered network, the values propagate
through weighted connections, and the sum of inputs in each node is usually
transformed by non-linearity before the node outputs the signal to the next layer.
The output signals from the last layer are sent to the robot actuators. Since this
type of network cannot have an internal state, it is limited to tasks and environments
that are tractable with completely reactive behavior. The connection weights can
either be evolved or trained by a learning algorithm.

A feed-forward NN can be extended to contain an internal state by appending

2.9 FSA as Genotype Representation 31

memory units as additional input units. They contain a copy of the outputs of
nodes from previous iteration. In general, this type of architecture – recurrent NN,
can achieve any type of behavior with respect to the set of computable functions.
An interesting analysis of dynamics of a network that solves a simple counting task
(predicting elements of sequences anbn) can be found in [Wiles and Elman, 1995].

In ER, more popular architectures are such types of recurrent NN that contain
arbitrary connections leading from any node to any other node. These include for
example dynamical neural networks of Gallagher and Beer [Beer and Gallagher,
1992], in which the neuron excitations are updated in continuous time. Each neuron
has its memory constant that determines the speed of activation change. The group
in Sussex [Harvey, 1995] also used fully interconnected recurrent NN with binary
inhibitory connections.

NN were also used in modular architectures. One possibility is to allocate a
separate NN for each module. In another solution (an emergent modular architecture
of [Nolfi, 1997]), a single NN embraces all the modules, but the outputs consist of
two values produced by selector neurons and output neurons. The function of the
selector neurons is to indicate whether the situation is appropriate for the output
neurons value to be taken into account. Modular NN architectures can be evolved the
same way as traditional NN, or the modularity description can be contained in the
genotype. A good start to the field of modular neural architectures is the overview
of [Ronco and Gawthrop, 1995]. For a criticism of the use of neural architectures as
a representation for EA, see for example [Steels, 1994].

Classifier Systems (CS) compose an extensive group of controller architectures
for adaptive robots. They typically consist of three levels. The lowest level is
an immediate control of the robot actuators based on the sensory readings and
a memory. The actions are usually selected by IF-THEN rules. Second level is
a learning mechanism responsible for assigning the credit to those rules that lead
to a successful behavior. Rules with higher credit survive, unsuccessful rules are
eliminated. CS are in this way a version of reinforcement learning and use, for
example, the Bucket-brigade algorithm to propagate the credit backwards through
the sequence of rules that result in the useful action of the robot. The third level is
responsible for finding new promising rules and is implemented using a GA. For a
review of CS, see [Wilson and Goldberg, 1989].

A very popular way of automatic controller design is Genetic Programming,
[Koza, 1992b]. Typically, an action of a robot is determined by an output of one or
more lisp-like S-expressions consisting of arithmetical operations and mathematical
functions, constants, and special operators for sensory readings. These S-expressions
are evolved by evolutionary algorithm. Special recombination operators are used,
such as tree-crossover. A very first example of application of GP to robot control is
in [Koza, 1992a].

Instead of S-expressions, GP techniques can be used with sequential assembler-
like programs, sets of IF-THEN or fuzzy rules [Braunstingl et al., 1995] or programs
in any language, for which it is possible to generate them from definition grammar
rules. More on architectures is described below in section 2.11.

32 Background

2.10 Finite-State Automata as Representation for

Evolutionary Algorithms

[Fogel et al., 1995] draw a strict distinction between evolutionary approaches where
the evolution is modeled as a genetic process and the approaches where the evolution
is modeled as a phenotypic process. The question is the one of the representation
of the individuals. Strictly seen, and pertaining to a biological relevance, the
genetic processes deal with genotypes, i.e. encoding of genes that influence the
shape, behavior, or other properties of the individual, whereas the phenotypic
representations attempt to encode directly the complete individual, its shape,
behavior and other properties in their final form. See the section 9.1.2 for a
philosophical treatment of this topic.

FSA or FSMs2 have been used as genotype representation in various works,
although this representation lies on the outskirts of the evolutionary algorithms
research and applications.

Evolutionary Programming , [Fogel, 1962, 1993, 1964, Fogel et al., 1966, 1995]
is a distinguished evolutionary approach that originally used FSA as the genotype
representation3. EP does not utilize recombination operators4, and relies on muta-
tions. The original EP works addressed the tasks of prediction, identification and
control.

[Chellapilla and Czarnecki, 1999] introduce modular FSMs, which are in fact
equivalent to non-modular FSMs, except that the topology is restricted – in par-
ticular, the FSMs are partitioned into several encapsulated sub-parts (sub-FSMs),
which can be entered exclusively through their starting states. The authors use
modular FSMs to evolve controllers for the artificial ant problem that was previously
successfully solved by evolving binary-string encoded FSA in [Jefferson et al., 1992].
They provide evidence that modular FSMs perform better on this task than non-
modular FSMs, and they also provide evidence that direct encoding with structural
mutations of non-modular FSMs perform better than binary-string encoding used
in [Jefferson et al., 1992]. This idea of modular FSMs has been adopted also by
Acras and Vergilio [Acras and Vergilio, 2004], who develop a universal framework
for modular EP experiments and demonstrate its use on two examples.

[Angeline and Pollack, 1993] are experimenting with automatic modular emer-

2The difference between FSA and FSMs in the evolutionary literature seems to be that the
former refer strictly to the formal computational model as originated sometimes in the middle
of the twentieth century and intensively formalized and studied for example by [Hopcroft and
Ullman, 1979], while the latter usually refers to models where control actions are performed when
transitions are followed. Other computer science literature, however, often makes no distinction
in these two names, while various other names (Moore, Mealy) are used for different flavors of the
formalism. The core of all representations, however, are the FSA, and we refer to the extensions
in this article as augmented FSA, or FSA for simplicity. When referring to previous work, we
attempt to use the same term as the author.

3Further developments of EP moved from the FSA to real-value parameters representation,
where the Gaussian mutation is applied to alter the parameters from generation to generation.

4Even though later the annual EP conferences included all works relevant for Evolutionary
Algorithms, and later have been integrated into Congress on Evolutionary Computation – CEC.

2.10 FSA as Genotype Representation 33

gence of FSA. They suggest to freeze and release parts of the FSA so that the
frozen (or “compressed”) parts cannot be affected by the evolutionary operators.
The compression occurs randomly and due to the natural selection process, it is
expected that those individuals where the compression occurs for the correctly
evolved sub-modules will perform better and thus compression process interacts
with the evolutionary process in mutually beneficial manner. Indeed, the authors
document on the artificial ant problem that the runs with compression performed
better than equivalent runs without compression. They reason: “An explanation
for these results is that the freezing process identifies and protects components that
are important to the viability of the offspring. Subsequent mutations are forced to
alter only less crucial components in the representation.”

[Lucas, 2003] is evolving finite-state transducers (FSTs), which are FSA that
generate outputs, in particular, map strings in the input domain with strings in the
output domain. FSTs for transforming 4-chain to 8-chain image chain codes were
evolved in this work, while three different fitness measures for comparing generated
strings were used: strict equality, hamming distance and edit distance.

An interesting piece of work by [Frey and Leugering, 2001] considers FSMs as
controllers for several 2D benchmark functions and the artificial ant problem. In
their representation, the whole transition function is represented as a single strongly-
typed GP-tree – i.e. a branching expression with conditions in the nodes that direct
execution either to the left or to the right sub-tree, and finally arriving to a set of
leaves that list the legal transition pairs (old state, new state).

In his PhD thesis, [Hsiao, 1997] is using evolved FSA to generate input sequences
for digital circuits with the purpose of their verification, and fault detection. The
author achieves best fault detection rate on various circuits (as compared to other
approaches), except of those that require specific and often long sequences for fault
activation.

[Horihan and Lu, 2004] are evolving FSMs to accept words generated by a regular
grammar. They use an incremental approach, where they first evolve FSMs for
simpler grammars, and gradually progress to more complex grammars. They use
the term genetic inference to refer to their approach of generating such solution.

[Clelland and Newlands, 1994] are using EP with probabilistic FSA (PFSA) in
order to identify regularities in the input data. The PFSA is a FSA, where the
transitions are associated with probabilities as measured on input sequences. The
EP is responsible for generating the topology of the FSA – number of states and
how they are interconnected, and the transitions in PFSA are labeled according to
their “fire rate”. This combination can be applied for rapid understanding of an
internal structure of sequences.

[Ashlock et al., 2002] are evolving FSMs to classify DNA primers as good and
bad in simulated DNA amplification process. They evolve machines with 64 states
in 600 generations. They used the weighted count of correct/incorrect classifications
as their fitness function. However, they sum the classifications made in each state of
FSM throughout its whole run. They argue that if only the classifications made in
the final state were taken into account, the performance was poor. In addition, this
allows the machine to produce weighted classification – how good/bad the classified

34 Background

primer is. The best of 100 resulting FSMs had success rate of classification of about
70%. Hybridization, i.e. seeding 1/6th of a population of an extra evolutionary run
with the best individuals from 100 previous evolutionary runs improved the result
to about 77%. This work was continued in [Ashlock et al., 2004], where the FSM
approach was compared to more conventional Interpolated Markov Models (IMMs),
which outperformed FSMs significantly.

In an inspiring study from AI Center of the Naval Research Laboratory, [Spears
and Gordon, 2000] analyze evolution of navigational strategies for the game of
competition for resources. The strategies are represented as FSMs. Agent moves on
a 2D grid while capturing the free cells. Another agent with a fixed, but stochastic
strategy is capturing cells at the same time, and the game is over when there
are no more cells to capture. Agents cannot leave their own territory. Authors
find that the task is vulnerable to cyclic behavior that is ubiquitous in FSMs, and
therefore implement particular run-time checking to detect and avoid cycles. They
experiment with the possibility to disable and again re-enable states (as contrasted
to permanent and complete state deletion). They also compare evolution of machines
with fixed number of states and evolution of machines, where the number of states
changes throughout the evolutionary run. They discover that in the case of varying
number, the machines utilize the lately-added states to lesser extent, as well as that
deleting states is too dramatic for performance, and thus suggest to merge or split
states instead of deleting and creating states. Due to the stochastic algorithm of
the opponent agent in the game of competition for resources, the fitness function
must evaluate each individual in many different games (G). Authors disagree with
others claiming that keeping G low can be well compensated by higher number of
generations and conclude that it results in unacceptable sampling error. The authors
therefore evaluate all the individuals on fewer games (500), and if the individual
should outperform the previous best individual, they re-evaluate it on many more
(10000) games.

Some further FSM-relevant references can be found for example in the EP
sections in the GECCO and CEC conferences.

2.11 Robot Programming Formalisms

Various formalisms were developed for programming robots. Some are based on
standard programming languages with extensions, others are trying to look at
what is special about programming robots first, and derive a formalism from such
viewpoint.

One of the first formalisms (used also to program the famous robot Shakey)
designed as early as in 1960s that dealt with robot actions similar to behaviors were
triangle tables [Nilsson, 1985]. Triangle tables are an extension of standard rule-
production systems. They arrange the actions in a sequence, each having a list of
preconditions that need to be satisfied, in order for the action to be performed. An
action results in new facts to be inserted into the memory. A limited support for
hierarchical organization is provided. Hierarchical organization is a weak side of the
rule production systems that tend to be flat.

2.12 Behavior-Based Robotics 35

EusLisp of [Matsui and Inaba, 1999] is an object-based extension of Common
Lisp with support for solid 3D modeling, concurrences, and robot manipulators. It
can be conveniently used also for programming mobile robots.

Task Definition Language (TDL) of [Simmons and Apfelbaum, 1998] is an
extension of C++ that allows task specification and manipulation. It has been used
in numerous CMU and NASA robotics projects. A compiler translates TDL code
directly to C++ code. TDL features very rich set of synchronization commands,
which are expressed in straight-forward manner. This makes TDL unique compared
to other task-control languages. TDL is working with task trees, where nodes are
associated with actions that can succeed or fail. These are either goals or commands
(leaf nodes). In addition, TDL utilizes constructs for exception handling, and task
monitoring (actions performed repeatedly). The programs themselves manipulate
the task trees, thus the same program can generate various task trees in different
runs.

Microsoft Robotics Studio is a recent addition to the family of robotics languages
and formalisms. It is based on Microsoft Visual Programming Language (VPL) and
supports most of the currently used research architectures as well as a physics-based
simulation.

2.12 Behavior-Based Robotics

A modern approach of the Nouvelle AI relies on building robots incrementally. The
most trivial reactive behaviors, such as obstacle avoidance, are fully implemented,
tested, and debugged first, before carefully appending higher-level behaviors. These
ideas are applied in the Subsumption Architecture [Brooks, 1986]. Individual
behaviors that formed the controller communicated using a fixed network, wires
of which conducted simple signals. Fixed mechanisms of inhibition and suppression,
and behavior priorities were used to resolve conflicts between the behaviors. Its
disadvantage of hard-wiring the behaviors was addressed later in [Maes and Brooks,
1990], where individual behaviors compete for robot control and the robot can
learn the conditions of applicability of each behavior in different situations. The
precondition lists were learned by random trial-and-error method, and updated using
relevance and reliability measures that were computed from correlation of positive
(resp. negative) feedback and activity of the behavior.

The research challenge that has not been studied satisfyingly well yet is whether
the robot controller can be designed automatically so that it would perform some
nontrivial useful task, and whether the automatic method can provide some advan-
tages over a human-engineered solution.

According to Miriam Webster dictionary, behavior is “anything that an organism
does involving action and response to stimulation”. It is important that this
anything, a series of interactions of the individual with its environment, is viewed
from the point of view of an external observer. He or she would ask the question
What will the agent achieve by doing this? This is in a sharp contrast with a point of
view of an engineer who would ask the questions as: What functionality is provided
by the bottom light sensor? Which components of the robot form the navigational

36 Background

pickup_a_cup

navigate_to_cup

search_cup

coordinate_behaviors [

 search_cup(analyzed_scene),
 navigate_to_cup(cup_location)] = gripper and engines action

 pickup_a_cup(cup_graspable),

cup_graspable

analyzed_scene

cup location

engines

engines

gripper action

Figure 2.7: Stimulus-response diagram (top) and functional notation (bottom) of
behaviors.

unit? What are the different menu-options of the user interface? It is also important
to see that this behavioral different point of view does not apply only at the very
high conceptual level. Rather contrary, it is found all the way down to the signal
layer of the robot controller. One can truly appreciate this when considering the
automatic design of robot controllers, where the target behavior is a product of an
emergent and possibly learning process instead of a result obtained by following
rigid engineering standard methodologies.

2.12.1 Representing Behaviors in a Controller

A behavior-based robot controller consists of behaviors. The behaviors can be rep-
resented in different ways [Arkin, 1998]. Very common are graphical representations
called stimulus-response diagrams, while functional notation is their textual counter-
part. See Figure 2.7 for an example. In other formalisms, behaviors can correspond
to states of a finite-state automaton (FSA), which describes sequencing of behaviors
based on environmental percepts. Examples of FSA representations can be found
in [Arkin and MacKenzie, 1994]. Brooks’ Subsumption Architecture also supports
behaviors that are represented as augmented FSA.

2.12.2 Arbitration Mechanisms

Simultaneously performing behavioral modules all access the robot sensors and
actuators. Their internal logic assumes the immediate access to the sensors and actu-
ators. Mutual coexistence of the modules in a single robot controller must eventually
lead to conflicting output values, or, perhaps, competition for bandwidth-limited
inputs, or inputs that require calibration, focusing, positioning, etc. Regardless
the good efforts of the designer of each individual behavioral module, combination

2.12 Behavior-Based Robotics 37

Behavior
SELECT IN OUT

Behavior
SELECT IN OUT

Behavior
SELECT IN OUT

Behavior
SELECT IN OUT

Behavior
SELECT IN OUT

Behavior Arbitration

Group of behaviors (higher−level behavior)

SELECT

SENSOR1 SENSOR2 . . . SENSORN ACTUATOR1 ACTUATOR2 . . . ACTUATORM

Figure 2.8: Behavior arbitration general framework. The coordination module
synchronizes and prioritizes access of the behavioral modules to the robot sensors
and actuators. In addition, it can send control messages to the behavioral modules
(for example to turn them on and off, or to select a particular mode. Even though
the diagram suggests that behavior arbitration is a centralized component, it is not
necessarily so. For instance, each sensor and actuator can have its own module
that synchronizes access. Similarly, each behavior can have its own arbitrator that
pays attention to the overall context of the robot’s behavior and makes sure its
own behavior is performing as required, receives the required inputs and delivers its
output to proper destinations. That is also the approach we adopt as described in
the later chapters.

of several separately functional modules in one whole will very likely result in a
non-functional controller. Naturally, such a combination must be equipped with
a coordination mechanism, which will enable, disable, suppress, or prioritize the
input and output signals of the individual modules. The problem of action-selection
or behavior arbitration must be solved in each functional behavior-based robotic
controller. Figure 2.8 shows a general framework for behavior arbitration.

The first proponents of the Behavior-Based Robotics suggested a fixed topology
coordination with three basic coordination primitives that allow either to stop
(inhibition) or replace (suppression) output signal from a behavior module on the
same or lower layer in order to take priority and override the actuator output.
The last primitive allows to reset the behavior to initial state. An example
on Figure 2.9 shows a famous Brooks’s controller designed using Subsumption
Architecture [Brooks, 1986].

Brooks’s behaviors are implemented as augmented finite-state automata (gen-
erating output, reset, inhibition, and suppression signals). As mentioned earlier,
two important works on coordination mechanisms are those of [Brooks, 1986] and
follow-up by [Maes and Brooks, 1990]. The combination of several behaviors can take
different forms, such as independent sum, combination, suppression and sequence as
studied in [Colombetti and Dorigo, 1993]. Substantial work and an overview have
been done by [Pirjanian, 1999].

38 Background

Figure 2.9: An example of a controller built using the Subsumption Architecture of
Brooks, [Brooks, 1987].

2.12.3 Team Robotics with Behavior-Based Architectures

Certain tasks can be completed much faster and more efficiently when a single
robot is replaced by a team of multiple cooperating robots. For instance, multiple
robots might observe or spot the target from different directions, they can explore
environment in parallel, and they can even cooperate on transporting or capturing
a large or heavy object, which would be impossible for a single robot.

Unless the robots are working in a rare and precious cases of emergence, where
they do not need to cooperate and when the target behavior emerges unintentionally
from their simple usually random interactions, in most cases, the robots must
communicate. For the same reasons as in the case of single robot system, behavior-
based architectures are suitable also for multiple robot systems. In addition,
situations can occur when some behaviors run or are active simultaneously in
several of the performing robots, whereas some of the robots would be taking
different roles and have different behaviors active at the same time. This role
distribution can take place either automatically, for example derived from the angle
the robot is approaching an object to be transported, or it can be communicated and
negotiated. In the latter case, the behaviors within multiple robots might use the
same mechanisms for coordination across multiple robots with taking into account
possible communication delays and errors.

For example, in [Stroupe and Balch, 2003], a team of behavior-based robots is
mapping and tracking target objects in their environment. Each robot independently
determines in which direction to travel based on the current situation. Locations
and observations by other robots may be communicated, but could also be inferred if
teammates are detectable and their sensor models are known. When communication
is absent, the full advantage of team cannot be taken until information is later

2.13 Evolutionary Robotics 39

combined. Substantial amount of work on multi-robot systems can be found in the
volumes of proceedings of the International workshop on multi-robot systems.

2.13 Evolutionary Robotics

Our efforts are to combine and integrate the ideas from several independent fields.
Different approaches to automatic design of robot controllers were studied. Most
known are Reinforcement Learning [Sutton and Barto, 1998], [Humphrys, 1997],
Neural Networks, Classifier Systems (CS) [Wilson and Goldberg, 1989], Genetic
Programming (GP) [Koza, 1992b], and artificial evolution used with various con-
troller architectures. The latter three use some form of evolutionary technique and
roughly compose the sub-field of AI labeled Evolutionary Robotics, which is the
main area of our interest [Beer and Gallagher, 1992], [Nolfi and Floreano, 2001],
[Harvey, 1995], [Lee et al., 1998].

Most of the work in the ER field is focusing on adaptive mobile robots with
neural controllers. Inspiration from biology means application of the laws of natural
Darwinian evolution and motivates towards long-term evolution of individuals that
successfully perform in their artificial life environment. In these cases, the focus
is not on building systems that can be directly useful today or tomorrow, rather
on the study of how the natural principles observed in the living species apply
to the artificial robotic systems built by us. It is often not important what the
agent will be able to do when the evolution completes, rather how the evolutionary
process progresses, and how it interacts with the agent learning abilities. Aim is
at answering the questions of how we could imitate the clever and very effective
animal behavior that relies on imperfect and irregular patterns, and how to build
artificial control systems that would have similar properties of the animal brains.
Naturally, researchers with such motivations study controllers based on artificial
neural networks, and explore various neural architectures. The systematic research
efforts start and still progress with the early systems capable of obstacle avoidance,
wall-following, target recognition and following, box pushing, simple autonomous
flight, or survival of agents in artificial environment. It is important to point out
that most (if not all) of the resulting evolved controllers perform a behavior that
can easily be achieved by a manually programmed controller of small or moderate
difficulty. However, the researchers in the field counter that argument by stressing
their interest in adaptive and self-organizing systems, and the early stages of the
research field.

Briefly, ER (and EC in general) relies on evolution of population (set) of
individuals (solutions to a problem). This set is usually of a fixed size. Solutions
are not only good or bad, their quality (fitness) can be measured by the objective
evaluation function. Objective function returns a number, which determines the
quality of a solution. In the beginning of EC run, a random population is created
(generation zero). Next generation is created from the previous by combining higher
quality solutions and introducing few random changes into them (mutations). This
requires the solutions to be encoded in some uniform way (genotype). For example,
bit-strings are used in Genetic Algorithm (GA) [Holland, 1975], lisp S-expressions in

40 Background

GP or sequences of machine instructions, C-language programs [Ryan et al., 1998],
etc. in other methods. EC run goes on for many generations, and the result is
the best individual found during the evolution. Therefore a problem of designing a
robot controller using ER method has typically the following steps (not necessarily
performed in this order!):

• Define the target behavior(s) that the robot will have to accomplish — the
task for the robot.

• Design the physical body of the robot and its hardware, decide on the sensors
and actuators that the robot will use. Create a specification of signals coming
from sensors and to actuators.

• Decide on the controller architecture, modularity, and software platform.

• Choose which of the modules and their parts can be easily designed manually
and identify those which are suitable for automatic design. If there are more
parts for automatic design, choose whether they will be evolved simultaneously
or individually.

• Find uniform encoding for automatically designed parts and define fitness
(objective) functions.

• Based on experience and some experiments, set up the parameters for partic-
ular evolutionary algorithm and run the evolution.

• Optimize, analyze, and test the evolved parts (ideally, prove their correctness),
integrate with the other parts of the controller.

There are remaining open research questions. One problem is how to formally
specify behaviors so that this specifications could be used automatically to generate
an objective function. Another problem is how to analyze and verify the correctness
of the evolved controller based on that definition later.

Some researchers argue for simultaneous evolution of the robot physical topology
(body) or hardware and its controller (brain) [Brooks, 1992], [Lund and Miglino,
1998].

We are mainly concerned with application of the Evolutionary Computation to
the problem of design of robot controllers, as mentioned earlier in the section 2.2.
A possible alternative, or rather extension, is using the EC for further adaptations
during the individual’s lifetime. A systematic study of such approach can be found
in the doctoral thesis of [Walker, 2003].

2.13.1 Evolvable Tasks

Although ER has been tested on many different tasks, most of them were simple.
These include the following:

2.13 Evolutionary Robotics 41

• Wall following, where the robot is placed in a closed environment and has to
learn navigation along the walls without collision. Robot is usually equipped
with laser, sonar, or infrared proximity sensors and sometimes has a vision.

• Obstacle avoidance is typically a part of some more complicated task. The goal
for the robot is to navigate in the environment without running into obstacles.
The environment can be static or contain moving objects.

• Docking and recharging, where the robot has to find its docking station and
successfully approach it.

• Artificial ant following, a standard Artificial Life simulation problem. Robot
is trained to follow a chemical trace by using its smell sensor.

• Box pushing has several variations. A robot or a group of them are given a
task of pushing box(es) to the wall, corners or specified positions.

• In lawn mowing task, the robot has to move around inside of a defined arena
and cover the largest possible area. The environment may contain obstacles,
irregularities and moving objects.

• Legged walking is used with 2,4,6,8-legged robot. The task is to train the
controller to synchronize the movements of the robot.

• T-maze navigation is a standard benchmark task. The robot first reads the
direction at the entrance to a corridor. It has to follow the corridor to the
crossing and turn right or left based on the initial instruction.

• Various foraging strategies are related to Artificial Life, where the artificial
environment contains food sources and the robot has to learn the strategies
for finding the food.

• Trash collection, is another example of searching. The robot has to pick up
the trash objects, and carry them to an assigned area to drop them.

• In various vision discrimination and classification tasks, the controller is
trained to steer the robot depending on the vision sensory inputs.

• In target tracking and navigation, the robot has to follow the target so that it
remains in its vision system.

• Various aspects of pursuit-evasion behaviors were also analyzed and the co-
evolution method was usually applied (see below).

• Soccer playing robots, where the robot navigates inside a closed and determin-
istic environment, but interacts with other robots and the soccer ball, which
has to be placed in the opponent’s gate.

• Navigation tasks, where the robot needs to successfully negotiate a maze,
or keep navigating in an environment with environmental clues, landmarks,
beacons, etc.

42 Background

2.13.2 Fitness Space

[Floreano and Urzelai, 2000] describe a classification system for ER objective
functions along three axes:

• functional – behavioral axis describes whether the fitness of the individual is
measured using functional properties (for instance actuator pulse frequency,
robot arm position, alignment with a line, etc.) as contrasted with behavioral
properties (for instance the distance traveled, number of objects collected,
number of points scored, etc.)

• explicit – implicit axis corresponds to the number of factors taken into account
by the objective function – i.e. how much the designers tend to influence the
evolutionary process towards the wished behavior (more explicit function),
or leave the proper behavior to emerge naturally by keeping the number of
involved criteria as low as possible.

• external – internal axis refers to the types of the values utilized by the objective
function: if the values can be measured directly by the sensors and internal
state of the robot, the function is internal. If external observers, installations,
and tools are needed, the function is external.

It is claimed and we support this observation that objective functions in the aim of
the designers should be as behavioral, implicit, and internal as possible. Following
that advice makes the specification of the target task more human understandable,
less vulnerable to errors, the search is less prone to local optima, the function
is easier to implement and can be used in embedded (on-line) evolution without
modifications. In addition, it appears to correspond better in an analogy to natural
evolution. However, it may be more challenging to achieve good results.

2.13.3 Co-Evolution

Another common method used in ER for arranging the gradual increase of the
task difficulty is the co-evolution [Cliff et al., 1992, Reynolds, 1994, Smith and
Cribbs III, 1996, Juillé and Pollack, 1996, Floreano et al., 1998]. In this approach,
two simultaneous competing populations of individuals are evolved. The individuals
share the same environment during their lifetime (fitness run). The individuals may
have opposite goals, they can compete for the same resource, they can have the
same or different roles, and optionally, they can even depend on one another in
cooperation. As a consequence, the environment complexity is gradually increased
over the generations as the evolution finds better individuals in both populations.

The main advantage of co-evolution is that it works automatically, without the
need to specify the incremental steps by a human (or machine) designer.

The range of tasks amenable to co-evolution is limited. In particular, there is an
inherent assumption of mutual direct or indirect interactions between the individuals
in the same environment. Therefore, co-evolution applies only to evolving solutions
to multi-agent problems (where the word agent is used in a broader sense, anything
that actively changes its environment).

2.13 Evolutionary Robotics 43

Furthermore, co-evolution is vulnerable to stagnation due to strategy cycles,
where a series of strategies relatively outperform each other in a loop. This is related
to the Red Queen Effect/Hypothesis that roughly states that for an evolutionary
system, continuing development is needed just in order to maintain its fitness relative
to the systems it is co-evolving with. It was proposed by the evolutionary biologist
[Valen, 1973]. Another issue is that co-evolution tends to generate specific solutions,
which are tailored for specific strategies of the competing population, and often fails
to generate robust agents that are able to perform a general strategy.

2.13.4 Evolving the Robot Morphology

The natural intelligence in the natural environment resulted after many millions
of years of natural evolution. The genotype of the natural organisms influence to
a large degree not only the mental and reasoning capabilities, but their physical
properties alike. The intelligence of the living organisms is highly dependent on
the percepts from the environment, which again are completely dependent on the
mechanics, dynamics, and shape of the organisms.

When the ultimate goal is a design of intelligent robots performing in natural
environments using EA, it is obvious that these will have to be evolved including
their morphology. The current state of the field is not yet that far due to the
physical limitations (we are not yet capable of assembling robots with an arbitrary
morphology), however some interesting attempts and simple experiments have been
performed. A very important tool in this respect is simulation. It is therefore part
of the work of evolutionary roboticist to study the possibilities of the evolution of
shape, a field often called Evolutionary Design.

For instance [Pollack et al., 2001] evolve various LEGO structures for a given
purpose (such as crane) using a GA, later use the 3D printing machine to generate
arbitrary shapes of a robotic agent, and finally evolve 2D modular locomotion
machines with the help of generative grammatical representation based on L-
systems. The most interesting, as Pollack et al. show in the latter two examples, is
the combination of evolving controllers and morphologies simultaneously (sometimes
the term co-evolution is used also for this process). Another example is [Marbach
and Ijspeert, 2004], where the morphological configuration of agents that perform
locommotion is evolved together with parameters of PD controllers. Yet another
interesting example are Framsticks, 3D life simulation project, developed by a group
in Poznan, [Komosinski, 2003].

2.13.5 Evolving Behavior Arbitration

There have been only few attempts to generate arbitration mechanisms automati-
cally based on the required task or robot purpose. For example, Koza [Koza, 1992a]
evolves a robot controller based on Subsumption Architecture for wall-following task.
He writes: “The fact that it is possible to evolve a Subsumption Architecture to solve
a particular problem suggests that this approach to decomposing problems may be
useful in building up solutions to difficult problems by aggregating task achieving

44 Background

behaviors until the problem is solved.” The usefulness of these approaches can be
supported by the following reasons:

• They are inovating: Automatic method might explore unforeseen solutions
that would otherwise be omitted by standard engineering approaches used in
manual or semi-automatic design performed by a human.

• They can provide robot controllers with higher flexibility: Mobile robots can
be built for general purpose, and the arbitration mechanism for different
achievable tasks might have to be different, either for reasons of critical limits
on their efficiency, the bounds on the controller capacity, or conflicting roles in
different tasks. In such a case, generating the arbitration mechanism based on
task description might be required. Having the option of automatic arbitration
generation might save extensive amounts of work needed to hand-craft each
arbitration mechanism.

• They can cope with complexity: Manual arbitration design might suffer from
the lack of understanding of the real detailed interactions of the robot with its
environment. These interactions might be difficult to describe analytically
due to their complexity. Automatic arbitration design might capture the
undergoing characteristics of the robot interactions more reliably, efficiently
and precisely.

Learning action selection (term sometimes used interchangeably with behavior
arbitration) studies in his thesis Humphrys [Humphrys, 1997]. His focus is on the
“communication” of agents that together form a controller; in fact, his agents are so
simple that they correspond to the nodes in a recurrent neural network, with very
few control actions generated by output nodes. Input nodes receive discrete sensing
of an artificial ant moving on a rectangular grid. The topology and connection
weights are evolved and the communication of the very few nodes in the network is
studied on a standard artificial ant seeking food in a rectangular grid problem.

The most valuable inspiration for our work stems from the work of Lee et al. [Lee
et al., 1998], where the more complex, high-level task is decomposed hierarchically
and manually into several low-level simple tasks, which can further be decomposed
to lower-level tasks. The reactive controller consists of primitive behaviors at lowest
level and behavior arbitrators at higher levels, both with the same architecture of
interconnected logic-gate circuit networks. The evolution proceeds from the lowest
level tasks up the hierarchy to the target complex task. We see several possible
improvements:

• avoiding the centralized architecture,

• allowing for easier modification of task by introducing a new module without
affecting substantially the existing controller hierarchy, and

• removing the limitation to purely reactive tasks.

2.13 Evolutionary Robotics 45

The work has been continued on by the master thesis [Ostergaard, 2000], where
a football player has been evolved with the use of co-evolution. The qualitative
change is in the ability to work with internal state (as contrasted to purely-reactive
controllers), and more complex architecture allowing two types of arbitration: 1) a
sequence of several states, and 2) selecting the module with the highest activation
value; where the activation value is exponentially decreasing over time, and reset
to maximum on request of the module. Even though extensibility has been slightly
improved from [Lee et al., 1998] and internal state was introduced, still only a limited
subclass of finite-state automata taking the arbitration role was supported. Reactive
modules are not general, but have to follow with the simple unifying architecture
providing only the activation level, and being based on the winner-take-all principle.
Co-evolution that was used for increasing the difficulty of the evolutionary task could
be applied due to the game character of the task, however it does not scale up to
more general classes of tasks.

2.13.6 Incremental Evolution

A challenge of evolving a robot controller for a complex task is too difficult for a
simple evolutionary algorithm. However, EC can be used for automatic controller
design for more complex behaviors, if the task is divided into smaller sub-tasks.
These sub-tasks can be either independent, for example individual modules that
can be tested separately, or depend to some extend on other tasks – thus creating a
dependence hierarchy (i.e. arranged in a tree, or in a graph). In this case, one can
incrementally evolve the behaviors from the bottom of the hierarchy, and later add
upper layers. This is a general framework, but various researchers already executed
more concrete and specific experiments.

This section’s aim is to catch most of the current and past uses of the incremental
evolution. We believe that even though it is extensive, it will provide a good
starting point for studying the related work about this topic. We also avoided a
possible classification of the papers since there are many different viewpoints and
classification criteria.

An exercise of incrementally evolving a simple NN mapping of 4-bit binary
vectors was presented in [de Garis, 1993]. After evolving weights for a 12-node
NN for 3 binary vector pairs, 4 nodes and 1 vector pair were added to the evolved
networks and the evolution continued. In the incremental case (4 vector pairs and
16 nodes), the resulting solutions had lower fitness than in a non-incremental case,
which was also faster. The task was easy even for a standard GA and there was
high redundancy in learning after the 3 vector pairs were already learned by part of
the network.

The behavior language BL for Brooks’ Subsumption Architecture was extended
to a version suitable for EA called GEN. [Brooks, 1992] reasons that the robot
should be initially operated with only some of its sensors, and perhaps only some of
its actuators. Once the fundamental behaviors are present, additional sensors and
actuators can be made available. The fitness function can vary over the time.

Inman Harvey’s Species Adaptation Genetic Algorithm (SAGA) of [Harvey, 1992]

46 Background

is a modified GA that allows genotypes with variable (growing) length. The Sussex
group used SAGA in experiments with incremental evolution of NN architectures
for adaptive behavior, [Cliff et al., 1992]. Harvey points out that contrary to a GA,
which is a general problem solving optimization and search tool working with a
finite search space, SAGA fits for evolving structures with arbitrary and potentially
unrestricted capabilities that require genotypes with unrestricted length. In SAGA,
incremental refers to the fact that the length of the genotype increments over the
evolutionary run. Typical Sussex group controllers are arbitrary interconnected
networks with inhibitory and excitatory connections. Internal uniform noise is added
to node’s excitation. Inhibition is binary: once a node receives at least one inhibitory
signal, it does not produce any excitatory output. Certain level of excitation sets the
inhibitory output of a node. Network connections are found by the evolution. SAGA
has been tested on simple visually guided robot that had to remain in the center of
the arena. Later, the Sussex group experimented also with increments in the task
difficulty. A visually guided gantry robot learned to navigate towards a triangle in
four steps: forward movement, movement towards a large target, movement towards
a small target, distinguishing a triangle from a square, [Harvey et al., 1997].

Lund and Miglino incrementally evolved a Khepera robot with recurrent NN
controller that performed a detour behavior [Lund and Miglino, 1998]. The task
for the robot was to reach a target placed behind a U shaped obstacle. They failed
to evolve such a controller non-incrementally, but succeeded with two-step process.
The robot was first trained for a rectangular obstacle, which was later replaced by
one of a U shape.

In [Floreano, 1992], changing environment lead to better results than a static one.
Authors experiment with nest-based foraging strategies of feed-forward reactive NN
controllers. An environment with a constant amount of food was compared to one
with decreasing amount of food, thus making the task incrementally more difficult.
Environmental change caused a drastic improvement in the quality and efficiency
of the foraging strategies. In the later work at Lausanne [Urzelai et al., 1998], an
advanced modular architecture was trained using Behavior Analysis and Training
(BAT), [Colombetti et al., 1996], [Dorigo and Colombetti, 1997]. Evolution as a
global search was combined with the Reinforcement Learning during the individual’s
lifetime. The robot learned to move around the arena as long as possible avoiding
obstacles and regularly recharging batteries. Later the robot had to collect and
deliver objects. New modules were added to the controller architecture and the
genotype was augmented. Evolved parts of the genotype were masked so crossover
and mutation operators did not affect them in the later stage.

A group at the University of Texas, [Gomez and Miikkulainen, 1997], used
incremental evolution in combination with Enforced Sub-Populations (ESP) to
evolve recurrent NN architectures. Members of the population were individual
neurons segregated into sub-populations. The network was formed by randomly
selecting one neuron from each sub-population. Prey capture behavior of a mobile
agent was evolved in 8 incremental steps. The prey, first static, was later allowed to
perform several initial steps, to be finally made mobile with incrementing speed
in consecutive evolutionary steps. Authors formulate heuristics for devising an

2.13 Evolutionary Robotics 47

incremental sequence of evaluation tasks. (i) Increasing the density of the relevant
experiences within a trial so that a network can be evaluated based on greater
information in a shorter amount of time. (ii) Making the evaluation-task easier
so that the acquisition of fundamental goal-task (final task) skills is more feasible.
Results of the prey capture experiments showed significantly better fitness in the
case of incrementally evolved controllers compared to the direct evolution.

Perkins and Hayes [Perkins and Hayes, 1996] argue that evolving NN controllers
incrementally is too difficult. Their arguments are: networks with internal states are
not suitable for breeding; there are difficulties with using the converged population
of the previous incremental step as an initial population for the next step; protecting
parts of the network responsible for behaviors learned in previous steps is impossible
because these parts are not identifiable. Their Robot Shaping method is closer to a
classifier system. A population of neurons that compete and cooperate to produce
a behavior of a robot is evolved. The network is made up of several different species
of neurons, which have different connectivity characteristics and different mutation
operators. Neurons are evaluated by an analogue to the bucket-brigade algorithm
from CS. In their later experiments [Perkins and Hayes, 1998] and Perkin’s Ph.D.
thesis [Perkins, 1998], they evolved a target following behavior for B21 mobile robot.
The task was to keep the brightest object in front, centered in its visual field. Robot
was trained in two incremental steps: first only turning towards its target and later
also focusing on it (pan and tilt axes). The controller consisted of several tree-like
programs (agents) evolved with GP. Agents had two outputs: validity and value and
they competed for the control over their assigned actuator. Before proceeding to
the next evolutionary step, the current agents in the controller were frozen and the
evolution continued only with appended agents. The incrementally shaped controller
performed significantly better than a non-shaped, although handcrafted controller
was simpler and better.

A systematic study of incremental evolution in GP is in [Winkler and Manjunath,
1998]. Authors distinguish between the true incremental evolution, such as in [Lund
and Miglino, 1998] from other techniques where the controller is trained in steps and
previously evolved parts are held constant in subsequent steps. Authors experiment
with two different termination criteria: fixed number of generations and achieving
the performance limit. They employ two different population organization strategies:
standard undivided population and demetic grouping, where the population consists
of several isolated sub-populations that exchange the genotypes only occasionally.
They statistically compare named methods applied to target tracking task of pan
and tilt controlled mobile robot.

Incremental evolution was used with GP in [Fukunaga and Kahng, 1995]. They
evolved programs for 2 tasks. A controller for evasion in pursuit-evasion game was
evolved in 2 steps: in the first step, the speed of the evader was different. They give a
detailed analysis of various speeds (both slower and faster than in the final task) and
time moments when the shift between the two steps occurs. They show that even a
more difficult task when used as a first step, can sometimes speed-up the evolution.
The reason for (problem of) this approach is that by giving a more difficult task
in the beginning, the selection pressure is altered thus speeding up the evolution.

48 Background

Most likely, a similar effect can be obtained also by changing other GA parameters.
In the second experiment, a controller for an artificial ant following a food trail
is evolved. Authors use 2 steps: in the first step, a simpler (more difficult) trail is
used. Again, authors’ results indicate that more difficult task as the first incremental
step can speed up the evolution. In both experiments, they were able to evolve the
required behaviors in a shorter time using incremental evolution compared to a non-
incremental GP.

The issue of determining effective function nodes for GP was addressed in
[Naemura et al., 1998]. They successfully compare their method to ADF GP on
a simulated incremental evolution on parity problem.

Controllers based on fuzzy rules are evolved using incremental evolution strategy
in [Hoffmann, 1998]. Evolution starts from a knowledge base containing single rule.
Later, the rules are allowed to expand by either partitioning the domain of some
input variable or by adding a linear term to the consequence part of the rule.

More recently, active research on incremental evolution is done in AnimatLab,
[Filliat et al., 1999] and [Juillé and Pollack, 1996]. Their SGOCE paradigm evolves
tree-like programs that generate recurrent NN controllers incrementally for different
versions of the problem. Good solutions to a simpler version are frozen and used to
seed the initial population for harder problem, where also inter-modular connections
to other parts of the controller are created. For example in [Chavas et al., 1998],
the group evolved a robust obstacle avoidance behavior with Khepera mobile robot
in two steps, the second with a higher environmental difficulty.

Impact of combining the evolution with learning in order to maintain population
diversity during incremental evolution was analyzed shortly in [Eriksson, 2000] on a
binary mapping task.

Incremental evolution where several populations from the earlier evolutionary
step are merged was used in [Desai and Miikkulainen, 2000] on the domain of the
theorem proving. Neural networks were evolved to provide heuristics for constructing
proofs of theorems from a simple set of axioms and two inference rules. Incremental
case performed better compared to non-incremental evolution.

Researchers in the field of Evolvable Hardware are facing the problem of high
complexity tasks (and thus long genotypes) as well and incremental evolution comes
very handy in this domain. The advantage here is that it is relatively easier to
divide the task (typically a binary function) into sub-tasks. This approach (divide
and conquer) was suggested and later elaborated on by [Torresen, 1999]. It was
further built upon by [Kalganova, 2000], where the incremental evolution is running
in two directions: from complex system to sub-systems and from sub-systems to
complex system.

2.14 Simulation and Real Robotic Experiments

The proper use of simulation is a strategic topic in ER. Evaluation of evolved
controllers on real robots is very time consuming. In addition, it is difficult to
ensure the same conditions for evaluating the individuals in a population. Several
researchers successfully demonstrated that evolution on real robots is possible

2.14 Simulation and Real Robotic Experiments 49

[Floreano and Mondada, 1994], [Floreano and Mondada, 1996]. See [Joanne Walker,
2003] for a recent comprehensive overview of evolution on real robots. Nevertheless,
even very simple tasks required too many evaluations to make this approach
feasible beyond trivial tasks (each individual program in each generation should
be tested, preferably from several starting points, different world configurations,
etc.). For example, Marc Ebner demonstrated at the EvoRobot’99 [Ebner, 1998] a
wall following mobile robot equipped with sonars, with an evolved controller. GP
evolution was running for two months. More reliable and human-designed program
for the same task was created in few minutes! The use of simulation is accordingly
necessary in most cases. The problem lies in modeling and simulating the real world
accurately. The simulated sensory inputs will always differ from those obtained in
the real world by real sensors. Real sensors are usually not ideal and may require
calibration. In addition, EC techniques are known to be very good in finding and
exploiting any unwanted regularity, and thus creating fragile solutions, which hardly
transfer from simulation to reality.

The traditional solution to this problem is based on adding the noise to the
simulated sensory readings and combining the evaluation of individuals in simulation
with evaluation on real robots. Usually, the controllers are first evolved in simulation,
and later tested, tuned, or even evolved further on real robots. Real world tests
can provide feedback for the simulator to modify the simulation [Brooks, 1992].
In [Lund and Miglino, 1998], the simulated sensory readings were not computed
mathematically from the sensor parameters, but retrieved from look-up tables that
were created by measuring the real sensors in different situations. More details
on the issue of simulation in Evolutionary Robotics can be found for example in
[Meeden and Kumar, 1998].

Two standard approaches to simulation can be distinguished: in a discrete event
simulation, the simulation progresses in discrete steps – events, when the state of
the system changes. The simulation time in discrete event simulation progresses
either with constant time intervals (fixed-increment time advance simulation, also
called time-slicing), or only at the occurence of state change events (next-event time
advance). In the former, the events can occur only at the start of distinct units
of time during the simulation – events (such as collisions, sensor readings, actuator
actions) are not permitted to occur in between time units. The shorter the time unit,
the more accurate is the simulation. The fixed-increment time advance simulation,
however, always bears a risk for conceptual errors in the simulation outcome. For
instance, when the detailed order of the occurring events is decisive, the step size
must be as small as is the smallest time difference between two important events
occurring. However, such short interval may be too small for the simulation to
be feasible. In that case the next-event time advance simulation would be more
suitable. Its disadvantage, on the other hand, is that the simulation is not updated
unless some event occurs, and thus it may be difficult to follow/view the progress
of the simulation.

The second approach, a continuous simulation system is trying to model the
exact behavior of the simulated system, its state, and the outcome of the simulation
using mathematical formulas analytically, often using differential equations. In other

50 Background

Simulator of
Environment

START
STOP
PAUSE

OS

Robot OS emulator

Emulated program

Figure 2.10: The simulations in Evolutionary Robotics must simulate both the
environment and the robot controller. One method is to emulate the robot controller
features on the operating system of the simulating machine.

words, prediction and computation is used instead of pure observation. Analytical
description of simulated system is not always possible or computable in reasonable
time and thus the discrete time simulation can provide a good approximation.

Simulations in ER are more complex than usual, because we simulate the
behavior of a robot in its environment as contrasted to a simulation of some process
that is an integral part of the simulated environment. The behavior of robot depends
not only on the physical processes in the environment, but also on its own actions
generated by its program – i.e. there are two simultaneous systems to be simulated.
The simulation of the robot controller can be performed through direct emulation of
the robot hardware/OS on the simulating hardware and OS, see Figure 2.10. That
is the approach we take, more details appear in the next chapter.

2.15 Chapter Summary 51

2.15 Chapter Summary

• Robotics is a multi-disciplinary field in the overlap of the sciences and tech-
nologies of mechanics, electronics, and informatics.

• Robotics has a history of more than 50 years, and it reached its very advanced
stage, where robots need to act autonomously in real-world environments, and
feature artificial intelligence.

• Throughout the development of the field, researchers realized that building so
complex systems as robots are must be done in incremental stages of multiple
prototypes of increasing complexity.

• Robots are performing in their environments and thus they are situated, and
embodied.

• A natural building block of a robotic controller is a behavior – a complete
autonomous part of robot’s functionality that typically can perform on its
own, and can be built, tested and debugged independently.

• Behaviors share access to sensors and actuators and therefore do need to be
coordinated. This coordination can take different forms.

• Automatic programming of robots has been attempted either using Rein-
forcement Learning, or using Evolutionary Algorithms (forming the field of
Evolutionary Robotics).

• Simple robot behaviors have been successfully evolved.

• Limited amount of work has been done on evolving the behavior coordination
(behavior arbitration).

• Using evolutionary algorithms to design robot controllers is very time-consuming,
and therefore simulators are required. In addition, single incremental run is
very limiting with respect to the task complexity. This can be overcome using
co-evolution or incremental evolution.

52 Background

Chapter 3

Research Goals and Hypotheses

W: Fiskeboller?
P: Your smell sensor is working well.

— from a conversation in the corridor of the department at 10:30 p.m.

In this chapter, in the light of the assumptions described in the previous chapter,
we discuss the research agenda that we seek to contribute to in the later chapters.
We start with the main goals of the thesis, in particular, issues related to evolving
robot controllers incrementally.

3.1 Introduction

Where does Robotics meet Computer Science? Robotics is a highly engineering
and focused field with the aim to deliver compact systems capable of performing a
meaningful physical activity in the real world, often with the goal to perform a useful
work. The requirements for a physical entity imply that robotics is widely multi-
disciplinary, bringing together experts from mechanical and electrical engineering, to
name the two most important. As soon as the task of the robot involves processing
of any information (contrasted to a simple wired circuitry), Computer Science enters
the scene. The intersections of Computer Science with Robotics thus include:

• Signal Processing and Filtering

• Data Clustering

• Numerical Algorithms, Geometric Algorithms, Algebraic Algorithms

• Pattern Recognition and Classification

• Optimization

• Data Compression, Communication Algorithms, Error-Correction

• Search Algorithms

• Planning

54 Research Goals and Hypotheses

• Simulation

• Machine Learning

• Knowledge Representation and Processing

• Human-Computer Interaction

• Image Processing and Computer Vision

• Embodied AI, and other fields.

It is important to understand the challenge that the high-level areas such as
Artificial Intelligence, and Knowledge Representation come at the end of this list
and imply mastering of the earlier fields – they can be successfully applied only after
the whole thick layer of the previous sub-fields is mastered. On the other hand, they
are inevitable when working on robots performing in unpredictable, dynamic, and
unknown environments. Thus the AI-robotics researchers must work tightly together
with the experts mastering all the areas as well with the experts in mechanical and
electrical engineering, when they wish to work or research on real products.

One possibility for the AI researchers to overcome the hurdle and difficult
organizational challenge is to use out-of-the-box solutions of robotics systems. The
option is to take a robot – an existing working finished product, and to tweak its
behavior on the high level.

An example of such a successful research is the work with the SONY Aibo robots.
These are entertainment robots with a very advanced behavior-based controller
containing about 2000 elementary behaviors that are coordinated in a message-
passing architecture – not unlike the one used in our experiments. Fortunately,
SONY made the basic architecture open for user-programming, creating a splendid
research platform where behaviors with access to robot sensors, vision, and actuators
can be written directly in C++ and run on the robot. An interesting work has been
done for instance on the language acquisition experiments [Steels and Kaplan, 2001].

Other successful and popular example of this kind is the Khepera robot [Mondada
et al., 1993] that is built by experts for the purpose of research experiments. Its
overall architecture is thus modular, open and prepared for experimenting with
research algorithms.

Our choice for a research platform, the LEGO RCX comes from the industry of
entertainment and educational robotics. Its strength is in the low-cost and high-
flexibility of the robotics construction sets.

Once the Computer Science challenges in Robotics are identified, computer
scientists may revert to solving them in pure simulation, or simulation combined
with testing on real robotic platforms.

3.2 Evolving Robotics 55

3.2 Evolving Robotics

Our work clearly can be categorized as Evolving Robotics1. As contrasted to teams
trying to master some robotics system completely, we are interested in narrow and
innovative area that could possibly enhance robot use and design in the future.
We take the starting assumption that a reasonable useful robotic system is already
built and programmed. We are concerned with studying particular aspects of the
adaptivity of the programming and design of the controller to make the robot
successfully perform various non-trivial tasks according to user requirements. Users
should be able to use our system to automatically program an existing robotic
application. Our system aims at achieving this by the means of Evolutionary
Computation, and maintains that the controller architecture is behavior-based.

Our work classifies in the field of Evolutionary Robotics, and studies how
controllers for mobile robots could be programmed in non-conventional way: au-
tomatically using task specification in form of objective function. The advantages
of such an approach are:

• Higher flexibility. Instead of specialized one-purpose robotic systems, more
versatile systems can be produced. However, still without the requirement
for a general intelligence engine, which is difficult to produce, especially with
restricted resources that are available at embedded devices, such as robots.
Instead, users could train their robots to perform various particular tasks,
while the robot controllers would then be adjusted using an evolutionary
approach.

• Extensibility. Due to the behavior-based architecture and high modularity, it
should be relatively simple to extend the functionality of the robotic system
with additional functional modules, actuators, sensory systems, and behaviors.

• Modifiability. Once the robot controller is programmed, it should be easy to
switch back to learning mode and let the system generate a different controller
based on the same or extended set of behaviors.

• Higher efficiency. Since the robot controller is specified for a particular task,
it does not have to be equipped with a general-purpose reasoning mechanism
and knowledge base. It rather consists only of relevant behavioral modules in
an efficient coordination.

• Lower cost. The controllers designed automatically under the user’s supervi-
sion could save the time of engineering experts who would otherwise have to
produce all the specialized controllers. Production costs also decrease when the
same system can be applied to different tasks (i.e. larger market) as contrasted
to many specialized products.

• Large degree of customization. Since the users are allowed to design and train
their robotic systems, they have better possibilities to design them in a manner

1See previous chapter

56 Research Goals and Hypotheses

that suits their particular needs. This would not be possible if fixed systems
would be produced for the whole users group.

• Open platform. The modular architecture and the possibility to add new
components and modules allow for excellent open-source and open-platform
availability, harnessing the potential of various contributing parts, modules,
and behaviors providers. Open platforms are more likely to be robust,
provide more user-friendly functionality, and have better prospects for further
development, error discovery and correction.

While we study the design of robot controllers mainly in simulation, for a greater
relevance, we do employ the algorithms on a real platform. This can be done only
with a very limited accuracy, and using prototyping. We believe that testing our
algorithms on prototypes running in the real-world can still give us valuable feedback
on their performance and the issues to be carefully considered when performing the
design experiments in simulation.

Further sections elaborate on the flavors of Evolving Robotics in more details.

3.3 Robotic Task Complexity

Historically, the robots attached to production lines required only simple sensors
and actuators, where the direct connections between them, with simple fixed control
algorithms were sufficient. The more realistic the environment, the more difficult
it is for the robot to exist and perform in it, perceive its state, and react to the
events. Thus the complexity of the task is, for the first, influenced by the degree to
which the environment is realistic – and in consequence non-deterministic, dynamic,
and unpredictable. The second aspect relates to the activity the robot is required
to perform – does the activity require processing a lot of input information? Is
it time critical? Does it require long-term planning? How many information
sources are involved? Are they conflicting or interfering? Are other agents –
humans or robots involved in the activity and does the outcome depend on them?
Finally, an interesting aspect of the task difficulty – especially in our context is
the difficulty to describe a task: even though the environment is simple and the
activity relatively easy, it might be difficult to describe. By the task description we
mean the possibilities of its formalized transcription, which could be processed by
an algorithm, for instance for the purposes of computing the fitness – a quantitative
measure of robot performance. Another, more standard measure of task complexity
could be the Kolmogorov complexity, in our case adapted as the size of the smallest
FSA arbitrators that perform the required task on a BB-controller. In this context,
we should notice that for each FSA (or transducer) there exists a minimal equivalent
FSA (or transducer), i.e. an automaton with the minimal number of states2.

2This can further be hyper-minimized ??, if we can give up a limited (finite) part of the FSA
functionality. That, however, is not useful in our context. We usually do not even minimize the
FSA before the final population in order not to remove a potentially useful genetic material.

3.4 Arbitration Mechanisms 57

3.4 Arbitration Mechanisms

We assume that the robot builders and designers equipped the robot with a set of
simple primitive behaviors. However, the robot is not [yet] able to perform any
complicated tasks, where the behaviors would need to be coordinated. This is the
goal of the behavior arbitration. A successful arbitration mechanism:

• Should allow fast reactive responses controlled by behaviors. This implies
that the modules should have as direct as possible access to the sensors and
actuators. If the arbitration must coordinate their access, there must be a
provision for a fast high-priority access for the critical behaviors.

• Should allow confidence level for generated actions (i.e. the priority of an
action will depend on how urgent it is) and this priority should provide
flexibility. A behavior that may be critical in one situation may be less critical
in a different situation. Various actions initiated by the same behavior may
have different importance. The coordination mechanism should allow for a
flexible priority.

• Should be capable of taking temporal aspect into account – the actions are
not instant, but take certain time – once some behavior is started, it should be
finished unless an action with a higher priority overrides it. For instance, when
an exploration behavior is about to perform a sequence of several movements
in order to scan the environment from the current robot position, it would be
undesirable to preempt it by another behavior of about the same priority (for
instance a gripper positioning action, which could follow after the scanning is
completed).

• Behaviors should receive control feedback from arbitration – i.e. whether they
were allowed to control the robot or not. The control behaviors usually depend
on the feedback from their actions. This feedback can be obtained ‘cheaper’
within the arbitration than from the robot sensors.

• Should allow easy modification of the existing controller by adding new
functionality or exchanging some module for a similar alternative. This can
be useful when robot moves to other environments or gets some part changed
or upgraded.

• Should ideally provide ways for easy analysis and verification. For instance,
verifying that all of the parts are active and utilized during testing may exclude
hidden features that could activate in novel situations, which did not occur
during training and testing.

• Should be easy to represent, implement in embedded devices, and amenable
for evolution.

58 Research Goals and Hypotheses

3.5 Embedded Evolution

The nature of many tasks where robots might be useful requires adaptivity, learning,
and dealing with unpredictable, changing and unstructured environments. It is
therefore almost impossible to predict situations that the robot will have to handle
during the execution of its task. Robots should be able to learn new operations and
skills. Particular learning algorithms for this purpose are needed.

It is becoming a real possibility to equip mobile robots with high-performance
computers on-board. Their computational power can be used for much better vision
and signal processing algorithms, better planning, reasoning, processing natural
language commands, etc. In addition, we propose to include a simulator of the
robot itself to test robot’s planned actions without the risk of failure in the real
world. The simulator is used by an embedded evolutionary algorithm to evolve a
good strategy or actual program code that performs a required operation. In this
way, the robot can learn new skills when they become needed. A similar approach
by [Grefenstette and Ramsey, 1992] is called Anytime Learning. Our approach is
slightly different, namely we evolve a program for the robot instead of a set of
rules; the learning component is started on demand when the novel situation is
experienced and is not running all the time in the background; we don’t require
real-time performance of the simulator since the robot can wait before continuing
the execution of its task, although high performance of the simulator is desired as
the simulation is used to compute the fitness; our model is simpler, for example it
doesn’t require a feedback to simulation module provided by an execution module
(which in turn requires the execution module to be fairly complex since it has to
know the details of the simulation module).

3.6 Evolutionary Adaptive Mechanisms

The modern AI approaches often take inspiration from or reflect upon various
processes that take place in the nature, in the biological world, and which display
some similarity to the artificial problems we are attempting to solve, when an analogy
can be drawn.

The Evolutionary Computation as a search method takes inspiration from the
search for fitting genotypes of the species living in the biosphere. In this sense, we
can talk about a long-term adaptivity of species in nature, where the parallel search
maintained by the whole population adapts to the changing conditions and modifies
the genotype in order to improve the performance of the individuals. Most of the
time, the change of the conditions occurs continuously, or at the very least, it is
perceived by the species as continuous. When adopted to Evolutionary Robotics,
the parallel is somewhat skewed, as it very seldom is the case that the individuals
coexist together during their lifetime in a real-world environment and interact with
other species, which are also experiencing a long-term adaptation. On the contrary,
in most of the cases, a single individual is being tested in some simulated world with
some fixed artificial conditions and discrete environment. The environment and the
overall conditions typically do not change throughout the course of the evolution at

3.7 Aspects of Incremental Evolution 59

all.
Exposing the individuals to changing conditions throughout the evolutionary run

thus better imitates the natural processes. This suggests better performance of the
incremental algorithms.

The evolved individuals in nature are adapting to the changing conditions in
two basic ways. In addition to the long-term adaptation mentioned above, the
individuals are exhibiting a short-term adaptation, or learning. This is in most
species supported by the neural system of the individual based on a neural network
with high degree of plasticity of the connections. Some of the short-term adaptation
can become encoded into genotype in order to produce even more fit individuals
[Baldwin, 1896]. However, it is important to notice that the long-term adaptation
occurs in discrete steps – the genes functioning like binary (or n-ary) switches are
in concert with the environment shaping the individual’s phenotype (phenotype
plasticity). In this context, evolving the weights or topologies of artificial neural
networks has little biological plausibility. Considering the gene-copying and protein-
production chemical processes and mechanisms, we argue that if a genotype encodes
a set of finite-state automata that govern the behavior of the individual together
with the individual behavior modules that are predefined (corresponding to fixed
reflexes) and may optionally contain a learning component, we are staying closer to
the ways of nature, and achieve somewhat more reasonable biological plausibility.

At the same time, it has to be pointed out that the complexity of the interactions
of all biological processes is so extremely high and difficult to grasp, describe and
fully document and understand, that all inferences drawn from the similarity with
the biosphere have to be accepted with reservations and possible objections.

3.7 Aspects of Incremental Evolution

Researchers observed in the past [Harvey, 1995] that evolving robot behavior is a
hard challenge for any EA. The fitness landscape tends to be rough, and evaluation of
each individual typically takes a long time. Trying to evolve more complex behaviors
is often too difficult. Some groups, such as [Harvey, 1995, Lee et al., 1998] advocated
the use of incremental evolution, where the complexity of the target task is decreased
by decomposing it to several simpler tasks, which are easy enough to solve by an
evolutionary algorithm (see [Petrovič, 1999] for an earlier overview of incremental
evolution). We have identified five different ways, in which an evolutionary robotic
algorithm can be incremental:

Environment (where is the robot performing?): the earlier incremental steps
can be run in a simplified environment, where the frequency and characteristics of
percepts of all kinds can be adjusted to make it easier for the robot to perform the
task. For instance, the number of obstacles or distance to the target can be reduced,
the environment can be made more deterministic, the noise can be suppressed,
landmarks can be made more visible, etc. An example of this type of incrementality
is [Lund and Miglino, 1998], where box-shaped obstacles were replaced by more
difficult U-shaped obstacles after the avoidance behavior for the former was evolved.

Task (what is the robot doing?): the earlier incremental steps can require only

60 Research Goals and Hypotheses

part of the target task to be completed, or the robot might be trained to perform
an independent simple task, where it learns skills that will be needed to successfully
perform in the following tasks. An example of this type of incrementality is [Harvey,
1995], where the gantry robot evolved forward movement first, followed by stages
that required movement towards a large target, movement towards a small target3,
and distinguishing a triangle from square. For another example, we might first
require a football playing robot to approach the ball, later we could require also to
approach it from the right direction.

Controller (how is the robot doing it?): the architecture of the controller changes.
For example, the final controller might contain many interacting modules, but
the individual interactions can be evolved in independent steps, where only the
relevant modules are enabled. In the later steps, the behavior might be further
tuned to integrate with other modules of the controller. This type of evolutionary
incrementality occurs seldom in the literature, but an example could be a finite-state
machine-controlled robot negotiating a maze. The controller can be extended with
a mapping module that is able to learn the maze topology, however, the output
of the module has to be properly integrated with the output of the FSA. Non-
evolutionary controller incrementality can certainly be seen in the Subsumption
architecture and its flavors [Maes, 1990], and many later BB approaches. The task
for the robot might require a complex controller, for example one with an internal
state. Evolution can start with a simple controller that is sufficient for initial task
and the controller can be extended later during the evolution. The change can be
either quantitative, i.e. incrementing the number of nodes in a neural network, or
qualitative, i.e. introducing a new set of primitives for a GP-evolved program.

Robot sensors/actuators (with what. . . ?) the dimensionality of the search space
might be reduced by disabling some of the robot sensors and actuators before they
are needed for the task evolved in each particular step. An example of this can be
seen in Incremental Robot Shaping of [Urzelai et al., 1998], where the Khepera robot
had first evolved the abilities of navigation, obstacle avoidance, and battery recharge,
before a gripper was attached to it and the robot had to evolve an additional behavior
of collecting objects and releasing them outside of the arena. A subset of robot’s
equipment can be used in the early steps and more specific sensors and actuators
added later.

Robot morphology (what form does the robot have?): the shape and size of the
robot can be adjusted to make its performance better and reshaped according to final
design in the later incremental steps. This kind of incrementality is also seldom seen
in the literature. On the other hand, there are examples where the robot morphology
itself is evolved [Lund, 2001]. We performed some work in the area of evolutionary
design, which is relevant for morphology evolution. The motivation is to understand
representational issues of how to efficiently encode shapes for EA. An example of
morphological incrementality would be a vacuum-cleaning robot with the shape of
an elliptical cylinder that needs to turn in proper direction to pass through narrow
passages. It could be simplified to a circular cylinder to evolve basic navigation
strategies and later updated to its final shape to achieve the proper target behavior.

3The change of size and shape of target is environmental incrementality.

3.7 Aspects of Incremental Evolution 61

Another example is evolving the particular target shape layer by layer. We elaborate
on this type of incrementality in one of our experiments.

From the implementation point of view, incrementality can be achieved by
modifying the simulated environment, the objective function, the genotype rep-
resentation and the corresponding controller implementation, and the configuration
of the simulated robot.

3.7.1 Sequential vs. Structural

When evolving the target task in multiple steps, we do not necessarily require that
the steps form a linear sequence. The behavior can be partitioned into simpler
behaviors in various way, and the evolution progress will follow an incremental evo-
lution scenario graph. We provide three examples with different structure scenario
graphs. These are not intended to be realistic examples rather an illustration.

For example, consider a robot capable of navigating in the corridors of an office
building, entering and exiting rooms through doors, and navigating within the office
including climbing at clean and flat surfaces such as chairs and tables. Imagine the
robot was equipped with a window-cleaning and glazing unit and we would like to
automatically generate a controller that will successfully clean all windows on some
floor of the office building.

The robot has a set of pre-programmed behaviors that need to be coordinated
for the target task. The Figure 3.1 on the left shows the predefined behavioral
modules. On the right of the same figure, a possible sequential scenario for evolving
the coordination of the behaviors is shown. Each next step builds on the previous
step by adding new functionality. The task for the automatic design of coordination
between each two steps is to activate the behaviors on the left in the proper order
and dynamics to generate the behavior rewarded in the respective step.

In the second example, we consider a basketball playing robot, which has the
basic skills, such as dribbling, shooting, and passing implemented as behavioral
modules, however, a good strategy of the player is yet to be programmed. We
could generate it automatically by figuring out an effective coordination mechanism.
Figure 3.2 shows the list of pre-programmed behaviors. On the right of the same
figure is a possible scenario of incremental steps arranged in a tree structure. For
example, the “offensive behavior” incremental step attempts to generate a good
player strategy for offense depending on the number of players detected by the
“track opponents” elementary behavior. It should utilize different strategies evolved
in previous steps, but it can also smoothly pass from one strategy to another when
the situation on the field changes. Therefore, some parts of the structures designed
in the earlier steps may still be left subject of evolution in the later steps.

Yet another example investigates a universal berries-picking robot that can
navigate in the open-air nature with the purpose of collecting berries. There are
two kinds of berries of interest – raspberries, and cloudberries – which look very
similar, but grow on completely different types of plants. While raspberries grow on
bushes, cloudberries grow on a 5-25 cm small plants. The robot is equipped with a
small gripper, and a camera, it can navigate with the help of the vision and detect

62 Research Goals and Hypotheses

avoid furniture

detect window location

navigate inside of a room

glaze glass

soap glass

climb chair

climb table

pass door

open door

navigate inside of a corridor

locate room

locate, enter room, move to window

locate and enter room

wash and glaze it, and leave the room
locate and enter room, move to window,

wash and glaze it
locate, enter room, move to window,

clean windows on the whole floor

Figure 3.1: An example of scenario consisting of sequential incremental steps:
window-cleaning robot.

dribble

shoot

pass ball

catch ball

avoid defender

defend

track ball

track opponents

track team−mate

positioning in the pitch

defense against one

defense two against one

defense two against two

offense two against two

offense two against one

offense against two deffenders

offense against one deffender

offense without an oponent
from the field centre

defense against two

defensive behavior

offensive behavior

general player

Figure 3.2: An example of scenario of incremental steps following a tree-structure:
basketball playing robot.

3.7 Aspects of Incremental Evolution 63

picking up cloudberry

navigating around raspberry tree navigating at cloudberry site

picking up a small round objectlocating beries in the view

picking up raspberry

navigating in the open−air nature site

determining berry types in the location

universal berry picking

detect objects in the camera view image

detect free space

move around

operate the gripper

pattern−recognition learning
berry detection with

Figure 3.3: An example of scenario of incremental steps that form a directed acyclic
graph: berry-collecting robot.

objects in its view. We first suggest to train the robot on picking any small objects.
This behavior can then form a “seed” for both raspberry and cloudberry picking
behaviors, where it merges with the respective behavior capable of navigation around
the particular kind of plant. Locating berries in the view is also shared both by the
navigational behavior that simply searches for berry localities, and by the picking
berry behaviors. However, all behaviors are merged when the target behavior of a
universal berry-picking robot is evolved – the robot navigates in the terrain, locates
places with berries, navigates around and applies a correct collecting procedure.
Figure 3.3 shows the list of pre-programmed behaviors and a possible scenario for
automatic design of coordination.

The above examples are imaginary. They are supplied only to support our
explanation of how the target task can be partitioned into easier sub-tasks, where
each of them can be reached by an evolutionary algorithm, while the target behavior
itself would be too complex.

3.7.2 Population Transition

Another important issue is how to transfer a population from the end of one
incremental step to another step. Incrementing the difficulty can be achieved either
by changing the experimental setup or the fitness function. When entering a new
step, already learned parts of the genotype can either remain frozen or continue to
evolve. A population that converged to a solution at the end of one step might

64 Research Goals and Hypotheses

need to be reinitialized before entering another step with preserving what is already
learned. Sub-parts of the problem can be either independent, for example individual
modules that can be tested separately, or depend to some extent on other parts
— thus creating a dependence hierarchy (i.e. arranged in a tree, or in a graph
as explained above). In case of dependencies, one can incrementally evolve the
behaviors from the bottom of the hierarchy, adding upper layers and parallelize
the algorithm later. This is a general framework. Various researchers have already
executed more concrete and specific experiments.

In order to find plausible solutions, EAs require that the initial population
randomly samples the search space. However, the population at the end of one
step is typically converged to a very narrow area, and thus it cannot be used as an
initial population in the next step. We therefore propose to generate a new initial
population from several ingredients:

• some portion of the original population containing the best individuals is
copied,

• another part is filled with copied individuals that are mutated several times,
and

• the remaining individuals are randomly generated.

However, it is also possible to blend the populations of two or more previous
incremental steps. In principle, we propose that the evolutionary incremental
algorithm will take for each incremental step a full specification of blending, copying,
and mutation ratios for all genome sub-parts (such as finite-state automata) and all
preceding incremental steps.

For example, let us examine an incremental scenario with six incremental steps.
The target genome in the last incremental step consists of three finite-state automata
each corresponding to one of the behavioral modules that are subject to evolution,
see Figure 3.4. In addition, there may be other modules in the controller, which
are already designed and which are not evolved in the particular step – these are
shown filled at the figure. In our example, the second incremental step continues to
evolve the automaton corresponding to the first module, and begins with evolving
the automaton corresponding to module II. The third and fifth steps are completely
independent, and evolve the automata for module III, and for modules I and III,
respectively. The fourth and sixth step merge populations from multiple steps.
Whereas the fourth step simply combines the automata for the module III coming
from step 3, and automata for the modules I and II from the second step into
common controller, the sixth step blends the populations from the fourth and fifth
steps for both modules I and III, and further evolves the automata for the module
II from the fourth step.

A more complicated example could be merging one automaton from two previous
steps, and another automaton in the same incremental step from two other previous
steps.

3.7 Aspects of Incremental Evolution 65

��
��
��
������

��
��
��
������

4

����
����

����

3
��
��
��
��

��
��
��
��

��
��
��
��

2

1

I II

I

III

��
��
��
������
��
��
��
������

��
��
��
������

6

II
I III

actuatorssensors

II
I III

actuatorssensors

����

����
����5 I III

actuatorssensors

���
���
���
���

������

I (FSA for module I)

II (FSA for module II)

III (FSA for module III)

��
��
��
������

sensors
actuatorssensors

actuatorssensors

actuators

Figure 3.4: Population mixing in an incremental scenario.

Formally, for each module m separately, the initial population of genome parts
(automata for the module m) in the i-th step, P init

m,i , originates from three types of
sources:

P init
m,i =

i−1
⋃

j=1

(P init,copied
m,i,j ∪ P init,mutated

m,i,j ∪ P init,random
m,i,j)

which are generated based on three types of ratios describing the portion of the
evolved population from step j to be copied (qbest

m,i,j), the portion of the initial

population in step i that the copied individuals will occupy (qcopied
m,i,j), and the portion

of the population in step i that will be occupied by the mutated individuals from
step j (qmutated

m,i,j):

P init,copied
m,i,j = extract(m, scale(best(P evolved

j , Njq
best
m,i,j), Niq

copied
m,i,j))

P init,mutated
m,i,j = mutate(extract(m, scale(best(P evolved

j , min(Nj , Niq
mutated
m,i,j)), Niq

mutated
m,i,j)))

P init,random
m,i,j = rnd automaton(m, Ni(1 − qcopied

m,i,j − qmutated
m,i,j))

where Ns is the number of individuals in the population of step s, scale(S, N)
enlarges or shrinks the set S to cardinality N by sampling the individuals uniformly,

66 Research Goals and Hypotheses

best(P, N) takes the N best individuals of population P , extract(m, S) takes a set
of genomes and extracts the automata for the module m, mutate(S) mutates all
automata in the set S, and rnd automaton(m, N) generates N random automata
for module m.

Next, all the module-specific populations P init
m,i are combined into the initial

population of step i, P init
i simply by combining the automata from the corresponding

individuals (in the order of generation of the sets as defined above).
That is, the whole incremental scenario is defined by:

• the number of incremental steps: s,

• the population sizes in each step: Ni, i = 1, . . . , s,

• the number of modules that are subject of evolution in each step i: ki, and
their lists: mi,1 . . .mi,ki

, for i = 1, . . . , s,

• the ratios for copying and copying with mutation, for each pair of steps i, j,
and for each module m: qbest

m,i,j, qcopied
m,i,j , qmutated

m,i,j .

In this way, one can design an evolutionary incremental process following a
scenario with a topology of a complex directed acyclic graph. However, in most
of the situations, the incremental scenario does not need to be complicated and thus
the number of the parameters to specify can remain manageable.

3.7.3 Emergent vs. Engineered Steps

The above scheme for specifying the incremental steps assumes that the steps are
fully described and specified. The scenario is fully engineered. However, some
parts of the scenario specification may be kept open. Consider, for example, a
scenario with a sequential topology of incremental steps, some assignment of tasks
and controller parts that are subject to evolution for each step. The algorithm
will start the evolution at the highest level (target task), and recursively spawn the
earlier steps when required. In this way, the algorithm may regulate the amounts
of individuals copied and mutated from the earlier steps based on the need and
measured learning performance of each step. In fact, the incremental steps may run
in parallel, and the flow of the individuals can be perpetual as contrasted to the
initial population only as our model above assumes.

3.7.4 Automatic Division into Incremental Stages

Our aim is the automatic design of the controllers. Our discussion until now did
not question where does the incremental evolutionary scenario consisting of the
incremental steps originate.

An idealistic automatic system should provide an easy to use interface and should
not require the user to specify many details or parameters. We would wish that the
system would allow entering the target task in form of few sentences written in
a natural language. These should be parsed and analyzed to construct a semantic

3.8 Controller Architecture Goals 67

representation referring to the robot primitive abilities, the task goals, and structure.
The system should contain an extensive knowledge base that could map its concepts
against the parsed representation of the target task, and allow reasoning over the
target task in the terms of

• constraints implied by the robot sensors, actuators, topology, and physical
properties

• temporal state diagram of the target task pursue

• identifying the set of activities to be performed and the qualitative relations
between them (reasons and consequences)

The reasoning process should select a set of elementary competencies, which involve
multiple modules that are to be coordinated. Depending on the granularity of
the reasoning process, higher- or lower- level competencies should be generated
thus devising a possible hierarchy of incremental steps, and the wished incremental
scenario.

Such a system would be an ultimate goal of the efforts. For the time being, we
must revert back to the manually-designed prescription described in the previous
sections. However, the process shall be similar in the sense of identifying the
constraints and relations.

3.8 Controller Architecture Goals

In this section, we address the question of our choice of controller architecture.
A task of an autonomous robot usually consists of many interactions occurring,

starting, or ending at various time points. Between these events, the robot remains
in some particular state. In more complex systems, this state is a juxtaposition of
states of multiple simultaneous activities, which are started and finished at various
times. We consider state and event to be the crucial concepts for the controller
architectures of mobile robots.

Many researchers advocated the use of neural network based controllers, pri-
marily for the reasons of their high degree of flexibility, plasticity, and adaptivity.
Wide class of feed-forward neural networks does not have an internal state and
can only be trained for reactive behaviors, signal processing, pattern recognition,
or similar. Requirement of internal state implies recurrent connections. However,
the representation of states in the recurrent networks is very poorly understood.
Furthermore, responsiveness of neural networks to particular events is hard to asses
and analyze, and the current learning mechanisms require thousands of interactions
to learn even very simple behaviors. Controllers aiming at more complex tasks must
have modular architectures, but it is yet unclear how this modularity can efficiently
be achieved with neural networks, and what consequences it might have on their
learning rules and algorithms, see also section 2.9. We suggest studying alternative
architectures, which better reflect the concepts of robot state and environmental
events.

68 Research Goals and Hypotheses

bumper
sensor

upper light
sensor

random
walk

avoidance
obstacle

line
following

bottom
light sensor

motor
driver

context
switching

Figure 3.5: Extensibility of the controller.

Our controller architecture is strongly inspired by BB robotics. The large
numbers of interactions, which can occur at any time of robot execution arbitrarily,
mean that many different activities can be triggered at any time; many different
sensory inputs and their various aspects have to be monitored continuously. Instead
of having one centralized learning module, BB robotics suggests distributed control
in multiple behavioral modules. Our controller also consists of several independent
modules, which are running simultaneously. Many of the individual interactions have
to be coordinated, and the modules might need to exchange relevant information
about their states. The modules communicate by sending asynchronous messages,
which can be either broadcasted or sent to a specific target module. In principle,
each module can access the robot’s low-level hardware (sensors and actuators), but
a careful design approach leading to multiple abstract layer architectures should be
taken. As a result, only very few modules (ideally one) should access each robot
hardware resource and extract the relevant sensory information or synchronize the
access to an actuator for all other modules. For instance, instead of having three
modules access the same light sensor, we suggest there should be a single module
that will do all low-level communication with the sensor, detect possibly configurable
events, and inform other modules about all relevant events.

The competition for robot actuators can be implemented using fixed or dynamic
module priorities: the robot actuator executes an action requested by some module
that has the highest priority, or becomes idle, if no module requests an action.

One of the main motivations for BB robotics is the incremental building of the
robot and its controller (bottom-up design). This implies the qualities labeled in the
fields of software architecture as “modifiability” and “extensibility”. Indeed, to add
new functionality to a working controller, it is sufficient to add a new module, and
integrate it into the controller by modifying the message interface for all relevant
modules to respond to the new interactions. Figure 3.5 shows an example of module
addition. With the original controller, the robot randomly explores environment
turning more likely towards more illuminated regions, while avoiding obstacles, until
it enters the line, which it starts to follow. The added dashed module introduces
new functionality: the robot will start following the line only if it is located in an
area, which is illuminated. To achieve this change, the whole existing controller

3.8 Controller Architecture Goals 69

can be preserved, but the line-following controller will need to introduce a new state
outside illuminated area, which can be triggered by the context switching behavior
module. In this state, the line following module will not start following a line.

Ideally, the message interfaces of the modules should be defined as simple and
as general as possible so that each module can easily be integrated into a controller.
In this way, modules can be reused across different controllers, which are built for
different purposes and tasks. To extend this idea further, hardware modules, such
as sensors and actuators can have certain level of intelligence and be accessed with
unified interfaces so that they can be easily interchanged and configured. This idea
is well adopted by LEGO robotics sets [Lau et al., 1999], and there exist other similar
toolkits, such as Microbric [URL - Microbric], Parallax robotics [URL - Parallax], or
[URL - Handyboard]. The idea of easy integration of intelligent sensors into larger
networks is at focus for large players like Intel, or for as small groups as InnoC with
their Simple Sensor Networks [URL - InnoC].

One could argue that the robot controller should be general and give the robot all
the possible functionality by including all the possible behavior modules. However,
the memory and CPU capacities of practical robotic systems are always limited,
and thus, using separate programs (controllers) for each task, instead of insisting
on one general-purpose controller, can be more feasible. To achieve generality, all
the modules might be stored in a long-term memory, and only the relevant modules
might be retrieved into an operational memory when a particular task is being solved.
The controller thus contains a set of specific behavior modules with clearly defined
message interfaces, and a coordination mechanism, which makes these modules talk
together as required by a particular task.

Many previous approaches to the action-selection or behavior arbitration prob-
lem are either centralized, for example [Lee et al., 1998] or too limiting, for example
[Maes, 1990]. Our aim is to design a general architecture, which can cope with
different design challenges in a systematic rather than an ad hoc manner. In
addition, this mechanism should be easy to integrate into the set of modules that are
exchanging asynchronous messages. We propose each module to have its own post-

Behavior
module
implementation

messages from
other modules and sensors messages to other

modules and actuators

(finite−state
automaton)

Post office

Figure 3.6: Single behavior module with its arbitrating post-office finite-state
machines.

70 Research Goals and Hypotheses

office module, which filters and translates the incoming messages into the messages
recognized by the module itself, and which also monitors and possibly filters or
modifies the messages being sent by the module. Since the state is a central concept
in the controller, we chose to first study the post-offices that have the form of finite-
state automata. The state transitions are triggered by messages being received
or sent by the module owning the post-office. Each state transition can result in a
message being sent to the module or to other modules, see Figure 3.6. Please see also
Figure 8.13 for examples of evolved FSAs and the representation of the transitions.

We design our coordination mechanism as distributed, and thus gain the standard
advantages of the distributed systems: robustness, modularity, better communica-
tion throughput, better encapsulation and modifiability. In particular, adding a
new module to an existing controller requires only designing a new post-office for
the added module and the minimum set of changes in post-offices of other modules,
instead of inferring with all modules and modifying a centralized coordination mech-
anism. This is thanks to minimalistic interfaces, one of the standard information
systems design criteria.

3.9 Simulation

Due to the need of extensive CPU resources of the Evolutionary Robotics experi-
ments, we ought to design a simulator or use an existing one. Unfortunately, none
of the existing simulators satisfied our needs, and we chose to implement our own.
The following goals need to be maintained regarding simulation:

• All parts of the environment that are relevant for the simulation should be
included.

• Simulation should be as accurate as possible.

• Simulation should be as fast as possible, in order to speed-up the evolutionary
run.

• Simulator must provide means of quantitative feedback that can be used by
the objective function to compute fitness.

• The simulator must be configurable in order to perform experiments with
different:

– environments,

– robot starting locations,

– robot morphologies,

– sensory capabilities of the robots,

– active elements that are also part of the environment (such as changing
lights).

Based on these requirements, we have designed a simulator as described in the later
chapters.

3.10 Chapter Summary 71

3.10 Chapter Summary

• The ultimate goal of our work is to automatically generate controllers for mo-
bile robots performing in unstructured, changing, non-deterministic, dynamic,
unpredictable environments.

• The method we work with are Evolutionary Algorithms, thus we work in the
field of Evolutionary Robotics.

• Instead of evolving complete robot controllers, we focus on evolving the specific
task functionality given the set of pre-designed behavioral modules.

• Evolutionary Robotics, if it should be successful, needs some guidance, because
one evolutionary run would have to deal with too large search space.

• Our method for reducing the search space size is the Incremental Evolution.

• The use of Incremental Evolution is not straight-forward and requires careful
preparation and investigation of issues, in particular: organization of the incre-
mental scenario, understanding the different incremental fronts: environment,
task, morphology, sensors/actuators, and controller.

• We attempt to evolve the arbitration mechanism for existing behaviors, ideal
arbitration should be: fast and reactive, provide priorities and other confidence
mechanisms, take temporal aspect into account, provide feedback to behaviors,
allow easy modification, be amenable to analysis and verification, easy to
implement and evolve.

• The chosen formalism for the arbitration representation are finite-state au-
tomata.

• The chosen controller architecture consists of simultaneously executing behav-
ioral modules that communicate with robot hardware and with each other
using message passing.

• The method of studying the Incremental Evolution is by performing several re-
alistic experiments with the chosen representation and controller architecture.
These form the main focus of this thesis work.

72 Research Goals and Hypotheses

Chapter 4

Supporting Technologies

In this chapter, we describe the technological domains which laid on the path to
our experiments in Evolutionary Robotics. Let us look at the background technical
work that was part of our efforts. In order to perform the evolutionary robotics
experiments, we had to master distributed computing and RCX hardware platform.
We have contributed to these fields with research work, and we gently touch these
issues in this chapter.

4.1 RCX as a Research Hardware Platform

With the aim of entertainment and education, LEGO company has released a
construction set containing a tiny autonomous programmable computer with sensor
and motor ports and infrared serial communication port - RCX. The computer
is built into a LEGO brick and thus can become a part of creative designs of
various kinds that contain some degree of autonomous control. These include mobile
robots that perceive their environment and decide on their actions using more or
less advanced programmed controller. Software included in the set is suitable for
simple programs, however, third-party programming systems allow to fully utilize
the potential of the embedded CPU running on 16 MHz, and having 32KB RAM
available for program and data.

Stretching the original concept of the construction set a little bit, it becomes
a suitable simple platform for a researcher who attempts to verify the results
of the robot-simulation experiments on real hardware without extra cost and
investment into particular tailor-made mechanics, hardware, or high-cost research
robotic platforms. High flexibility grounded by several hundreds construction pieces
allows building prototypes of virtually any robotic system. In addition, combining
the set with third-party sensors and parts (compass, IR-proximity, bend-sensor,
sonar, sensor multiplexer, motor-multiplexer, photo-cell, IR-light sensor) results in
a sufficient set of basic parts for robot building. Low cost and the communication
capabilities allow building multiple-robot systems, and trying out simple multi-robot
emergent algorithms.

We have designed several simple tools (programmable finite-state-automata, IR-
communication for C, Java, and original RIS software) as well as communication

74 Supporting Technologies

Figure 4.1: Reliable communication protocol between PC and RCX over an
unreliable IR communication link based on confirmation, and packet-numbering
as used in [Soerby, 2003]. The tokens are permanently exchanged between the
communicating peers. When any side needs to send a message, it is bundled together
with the next outgoing token.

protocol in a student project, where RCX was integrated together with Aibo robotics
platform for a prototype for a plant safety and security analysis [Soerby, 2003],
Figure 4.1.

As part of another student master project, we have designed, built, and pro-
grammed a converter of IR-communication signal to radio signal transmitted over
BlueTooth radio protocol, [Petrovič and Balogh, 2006], Figure 4.2. This allows
communicating with the RCX brick in longer-range and without the requirement
of visibility with the IR-tower connected to the workstation. For the reasons of
unreliable IR communication of Lejos, we have designed and implemented a simple
error- and erasures- correcting protocol [Petrovič, 2006].

Four times, we attempted to organize a nation-wide robotics soccer contest for
primary and secondary schools, and sent a team or two to participate at world
championship, [URL - RoboCup].

The RCX has been used in our institute as well for studies of the human-natural
interfaces and for introducing the technology to pre-school children.

We have done research on how RCX can interact with other entertainment
robots, in particular several different robots of the WowWee family: RoboSapien,
RoboPet, RoboRaptor, and others. We have designed several unique tools that
allow interaction of the two robots [URL - Sapien]. These can be useful also in the
educational or research contexts (for example, we used the RCX in combination with
RoboSapien, web camera, and OpenCV computer vision library for target locating
and chasing application [URL - CyberCamp]).

4.1 RCX as a Research Hardware Platform 75

Figure 4.2: Infra-red / Bluetooth bi-directional conversion module. The signals from
the RCX are transmitted over virtual serial Bluetooth connection to PC, and vice-
versa. The module at the figure is connected with BlueSmirf module from SparkFun,
and 9V battery (upper-left), it is shown in detail (upper-right), and the schematic
designed in cooperation with Ing. Richard Balogh is shown below.

We believe, that the potential of RCX has not yet been fully discovered. The
embedded CPU provides a fantastic educational platform for learning about the
principles of embedded devices programming – it facilitates all usual concepts – A/D,
D/A converters, timers, watchdogs, interrupts, oscillators, serial port programming,
control register, rich instruction set, etc. Once present in many college and university
laboratories, it can provide an excellent platform for practical exercises in embedded
devices and control.

Recently, we have designed a prototype of a Logo programming language (dialect
of Lisp) for the new NXT programmable brick [Petrovič, 2007]. This moves the
LEGO robotics technology to higher level, allowing interactive applications that
interface Logo applications running on a PC with LEGO robotics projects.

76 Supporting Technologies

4.2 Distributed Computing

Distributed Computing harnesses the idle processing cycles of the available work-
stations on the network and makes them available for working on computationally
intensive problems that would otherwise require a supercomputer or a dedicated
cluster of computers to solve.

A distributed computing application is divided to smaller computing tasks, which
are then distributed to the workstations to process in parallel. Results are sent back
to the master that has the role of a server, where the data are collected and delivered
to the client, in the cases of master-slave client-server architectures. Alternately, the
results are sent to other nodes that need them for further processing, in the cases
of peer-to-peer distributed architectures. The more PCs in a network, the more
processors available to process applications in parallel, and the faster the results are
returned. As far as the granularity of parallelization of the application allows, a
network of a few thousand PCs can process applications that otherwise can be run
only on fast and expensive supercomputers. This kind of computing can transform
a local network of workstations into a virtual supercomputer.

Several public and popular systems for distributed computing appeared early in
the 90s [Pearson, 2007]. Most of these systems, however, are either focused on some
specific problems, they require dedicated hardware, or they are proprietary, offering
little flexibility to developers.

One class of distributed systems comprises large scale distributed computing
based on thousands to millions of voluntary CPU-time donators available throughout
the Internet. The users download specialized clients for their particular software
and hardware platforms, and let their computers work during the unused CPU time
on a particular distributed computing project, thus making their CPUs consume
maximum power possible. However, these systems are typically closed for the user,
who usually has little control over the code or the data being processed on his or
her machine. On one hand, this is required to guarantee validity of the submitted
results; on the other hand, it is a potential threat to the user’s security and trust.
Such systems typically try to solve or prove some hard mathematics, bioinformatics,
cryptographic or other search challenges. Examples include Folding@home, Find-
a-Drug, or D2OL, helping to find oral drugs which could fight Anthrax, Smallpox,
Ebola, SARS, deadly diseases for which there is currently no cure, and Malaria, a life-
threatening disease for which 40% of the World’s population is at risk. An example
of a multi-purpose platform of this kind is BOINC (Berkley Open Infrastructure for
Network Computing), [Anderson, 2004]. Distributed.net [URL - Distributed.net] is a
very large network of users all over the world, using their computers’ idle processing
cycles to run computational challenge projects, which require a lot of computing
power. Examples of projects are RC5-64 secret-key, DES or CS-Cipher challenges.
Another similar project is Seti@home, [URL - SETI], a scientific experiment that
uses Internet- connected computers in the Search for Extraterrestrial Intelligence
(SETI), by analyzing radio telescope data. The focus on very specific computational
problems, and the closed code of the client makes the above mentioned systems
difficult to use for our research projects.

4.3 Q2ADPZ - Tool for Distributed Computation 77

World Community Grid [URL - World Community Grid] is a similar, but
commercial version of distributed computing over the Internet. They offer a robust
technology and assistance with expertise in a seamless integration into existing
network environments and in a deployment of custom applications. However, many
of our academic research projects cannot afford such a high cost.

Another class of distributed computing systems is utilizing specialized clus-
ters. These are typically Linux-based network-installed and booted rack-mounted
powerful PCs or other workstations running software that supports distributed
computing either in form of message passing, threading, sockets-based, or batch
submission system. Clusters of powerful computational nodes are available to users
for submitting distributed applications. An example of such cluster is the Clustis
at IDI, NTNU [Cassens and Constantinescu, 2003].

A Beowulf cluster [Sterling et al., 1995] is built out of commodity hardware
components, running a free-software operating system like Linux or FreeBSD,
interconnected by a private high-speed network. It is a dedicated cluster for running
high-performance computing tasks. The nodes in the cluster do not sit on people’s
desks, they are dedicated to running cluster jobs.

Distributed applications can be run on large parallel-architecture computers
containing tens to thousands of CPUs. An example of such is the NTNU High-
Performance Computing project [Aerts and H. P. Lüthi, 2004].

Yet another class of distributed computing systems is utilizing idle CPU time of
a particular institution for general purpose CPU-intensive computational tasks of its
own authorized users. Universities, banks, and many other institutions are equipped
with enormous unused CPU time, which they could benefit from, if they run such
a system. A popular example of such a system is Condor, [Litzkow et al., 1988], a
high-throughput computing environment put in force for example at the University
of Oslo. The environment is based on a layered architecture that enables it to
provide a powerful and flexible suite of resource management services to sequential
and parallel applications. The maturity of Condor makes it very appealing for our
projects, however the complexity and the restrictive license of the software make it
too difficult to adapt to our requirements.

A distinguished class of distributed computing is grid computing. Grids aim to
give answer to all possible needs. Their approach is to provide a general-purpose
environment combining all possible platforms and uses. This term is sometimes
used as synonym to distributed computing, when it refers to a particular site that
integrates distributed computing resources of different types under single concept.
An example of such a grid is UK’s National Grid Service.

4.3 Q2ADPZ - Tool for Distributed Computation

4.3.1 Motivation

In order to be able to complete the evolutionary runs required for our experiments,
we must utilize multiple computers. An inexpensive way of achieving this is through
the computers available in the student laboratories that are running permanently

78 Supporting Technologies

in 24 hours operation, but being used only some portion of the day. We started by
running the experiments manually on the individual computers, however, a group
of graduate students who all were in the need of computational power set to specify,
and implement a tool that can be shared among us and others. After a summer or
two, we have reached a working prototype that has various strong qualities described
below.

4.3.2 Features

The design goals of the Q2ADPZ system are ease of use at different user skill levels,
inter-platform operability, client-master-slave architecture using fast message-based
communication, modularity and modifiability, security of computers participating
in Q2ADPZ, and easy and automatic install and upgrade.

In Q2ADPZ, a small software program (slave service) runs on each desktop
workstation. As long as the workstation is not being utilized, the slave service
accepts tasks sent by the server (master). The available computational power is
used for executing a task. Human system administration required for the whole
system is minimal. We will now describe the features in detail.

4.3.3 User Modes

Each installation of the system requires a local administrator, who is responsible for
configuring the system and installing the slave service on desktop computers, and
the universal client on user computers. Individual users, however, do not need to
have any knowledge about the system internals. On the contrary, they are able to
simply submit their executable or interpreted (such as Lisp or Java) program from
a menu-driven command-line application, where they can specify

• number of runs of the application,

• file path to the executable and command line arguments,

• input and output files (their names are automatically generated from the run
number) – either for all runs or for specified subset of runs,

• directories where the files reside,

• utilities to be run after individual tasks (typically to process the output files
before another task is started),

• maximum time allowed for a task to execute,

• in what order ought the task groups be executed,

• hardware (disk, memory, CPU type and speed) and software (operating
system, and installed programs) requirements of the application.

4.3 Q2ADPZ - Tool for Distributed Computation 79

<Job Name="example">

<Task ID="1" Type="Library">

<RunCount>1</RunCount>

<TaskInfo>

<Memory Unit="MB">64</Memory>

<Disk Unit="MB">5</Disk>

<TimeOut>3600</TimeOut>

<OS>Linux</OS>

<CPU>i386</CPU>

<URL>http://server/lib-example.so</URL>

</TaskInfo>

</Task>

</Job>

Figure 4.3: Q2ADPZ: A simple library-type project file.

These project configuration parameters are saved into XML-structured file. The
executable can be taken from a local disk or downloaded from any URL-specified
address. The input and output data files are automatically transferred to slaves
using a dedicated data www-server. The progress of execution can be viewed in any
www-browser, see the Figure 4.8.

Each run corresponds to a task – the smallest computational unit in Q2ADPZ.
Tasks are grouped into jobs – identified by a group name and a job number.
System allows control operations on the level of tasks, jobs, job groups, or users. If
preferred by advanced users, the project file may be edited manually or generated
automatically, see the Figure 4.3 and the Figure 4.4 for examples.

More advanced users can write their own client application that communicates
directly with the master using API of the client service library. This allows
submitting tasks with appropriate data dynamically.

Finally, advanced users can write their own slave libraries that are relatively
faster than executable programs and very suitable for applications with many short-
term small-size tasks, i.e. with a high degree of parallelism.

4.3.4 Inter-Platform Operability

Inter-platform operability is achieved by the pool of computers in a network that can
run different operating systems and have different hardware architectures. Q2ADPZ
handles task submissions with platform specifications, and the appropriate library
or executable is automatically used. At the time of writing, we have successfully
tested the system on the following hardware platforms: Linux/iX86,sparc,sparc64,
FreeBSD/iX86, SunOS/sun4m,sun4u, IRIX64/IP27, and Win32/iX86. Most of the
code is ANSI C++ and POSIX.1 compliant and therefore porting to a new platform
does not require too much efforts. We use the POSIX threads API (emulated by
Windows threads on WIN32 platform).

4.3.5 Architecture

The system consists of a central process called “master”, a variable (high) number
of computing processes on different computers in the network called “slaves”, and

80 Supporting Technologies

<Job Name="brick">

<Task ID="1" Type="Executable">

<RunCount>15</RunCount>

<FilesURL>http://server/cgi-bin/</FilesURL>

<TaskInfo>

<TimeOut>7200</TimeOut>

<OS>Win32</OS>

<CPU Speed="500">i386</CPU>

<Memory>64</Memory>

<Disk>5</Disk>

<URL>http://server/slv_app.dll</URL>

<Executable Type="File">../bin/evolve_layer.exe

</Executable>

<CmdLine>sphere.prj 2 50</CmdLine>

</TaskInfo>

<InputFile Constant="Yes">sphere.prj</InputFile>

<OutputFile>sph/layout/layout.2</OutputFile>

<InputFile Constant="Yes">sph/sphere.1</InputFile>

<InputFile Constant="Yes">sph/sphere.2</InputFile>

<InputFile Constant="Yes">sph/sphere.3</InputFile>

<OutputFile>sph/logs/evolve_layer.log.2

</OutputFile>

<InputFile>sph/layout/layout.1</InputFile>

</Task>

</Job>

Figure 4.4: Q2ADPZ: Simple executable-type project file.

a number of “client” processes, user applications, which generate tasks grouped in
jobs. Figure 4.6 has a diagram with the overall system architecture.

Slave component is run as a daemon or Windows service. Its first role is to notify
the central master about its status and the available resources. These include:

• operating system type

• processor information: CPU type, CPU speed

• physical memory available

• local disk available

• existing software on the local system

<Message Type="M_SLAVE_STATUS">

<Status>Ready</Status>

<SlaveInfo>

<Version>0.5</Version>

<OS>Win32</OS>

<CPU Speed="500">i386</CPU>

<Memory Unit="MB">32</Memory>

<Disk Unit="MB">32</Disk>

<Software Version="1.3.0">JDK</Software>

<Software Version="2.95.2">GCC</Software>

<Address>129.241.102.126:9001</Address>

</SlaveInfo>

</Message>

Figure 4.5: Q2ADPZ: Slave status message is sent from all computational nodes in
regular intervals.

4.3 Q2ADPZ - Tool for Distributed Computation 81

www data
server

output file
executable

input file

input file

www server

status

post office

slave service

slave library

universal

Executable

slave library

universal

interpreted
user program

interpreter

post office

slave service

slave library

universal

user slave
library

executable

www server

UDP socket

UDP confirm

users
database of

crypter

post office

slave service user slave
library

user client
application

post office

client
service library

post office

client
service library

universal
client

project file

manual
editor

universal
client

executable

input file

output file

OS networking (Win32/UNIX)

SLAVE 2

SLAVE 1

post office

MASTER

SLAVE M

CLIENT N

CLIENT 1

Figure 4.6: Q2ADPZ architecture.

An example of slave status message is shown at the Figure 4.5.
Another role of the slave is to launch an application (task) as a consequence of

master’s request. The application, in form of a library, executable, or interpreted
program, is transferred from a server according to the description of the task, then
it is launched with the arguments from the same task description.

In case of executable and interpreted tasks, universal slave library is used.
After it is launched by the slave service library, it first downloads the executable
or interpreted program, either from an automatic data store (now implemented
on top of www-server in Perl), or from a specified URL location. The universal
library proceeds with downloading and preparing all the required input files. After
the executable or interpreted program terminates, the generated output files are
uploaded to the data store to be picked up later by the universal client, which
originated the task.

On Win32 platform, the user (or universal) slave libraries come in form of DLL
module, while on UNIX platform they are dynamic libraries (this makes it difficult to
port the application for example to Darwin/Mac OS, which doesn’t support dynamic
libraries).

The master is listening to all the slaves. This way, it has an overview of all the
resources available in the system, similar to a centralized information resource center.
It accepts requests for tasks from clients and assigns the most suitable computational
nodes (slaves) to them. The matching is based on task and slave specifications and
the history of slave availability. In addition, master accepts reservations for serial or
parallel groups of computational nodes: clients are notified after resources become
available. Master generates a report on current status of the system either directly
on a text console – possibly redirected to a (special) file, or in form of an HTML
document.

82 Supporting Technologies

queue
outgoing

client service
library

slave service
library

OS OS

slave user library
or universal slave

client user application
or universal client

post office

UDPConfirm

UDPSocket

post office

UDPConfirm

UDPSocket

post office

UDPConfirm

UDPSocket

OS

protocol

Q ADPZ
2

user application protocol

or Q ADPZ universal service protocol2

Q ADPZ
2

protocol

queue
incoming

launch lib/exe
upgrade slave
system info

master

Figure 4.7: Q2ADPZ communication layers.

The client consists of the client service library and a client user application or
the universal client application. The client service library provides a convenient
C++ API for a communication with the master, allowing controlling and starting
jobs and tasks and retrieving the results. Users can either use this API directly
from their application or utilize the universal client, which submits and controls
the tasks based on an XML-formatted project file. In version 0.6 of the system,
each job needs a different client process, although we are working on extending the
client functionality to allow single instance of client to optionally connect to multiple
masters and handle multiple jobs.

Q2ADPZ is a free, open-source, multi-platform system with limited security
for distributed computing in an IP network. It allows users to submit tasks to be
computed on idle computers in the network.

Q2ADPZ design goals include user-friendliness, inter-platform operability, client-
master-slave architecture using XML message-based communication, modularity
and modifiability, and security of the computers participating in Q2ADPZ.

The latest version was successfully applied using a set of student lab comput-
ers at our department with research projects in Visualization and Evolutionary
Algorithms. The structure of the implementation of the system is modular and
encourages reuse of useful system components in other projects.

Future development of the system will include improved support for user data
security. Computation results data can be encrypted and/or signed so that the user
of the system can be sure the received data is correct. This is especially useful if
the system is used in an open environment, for example over the Internet.

For faster performance, slave libraries can be cached at slave computers – in the
current version, they are downloaded before each task is started. A flexible data
storage available to other computers in Q2ADPZ is provided by slave computers.
The scheduling algorithm of the master allows for improvements. We aim at
supporting more hardware platforms and operating systems.

4.3 Q2ADPZ - Tool for Distributed Computation 83

Figure 4.8: List of slaves – status information provided by master.

The current user interface to the system is based on C++. Possible extensions
of the system would be different interfaces for other languages, e.g. Java, Perl,
Tcl or Python. This can easily be done, since the message exchanges between
different components of the system are based on an open XML specification. The
communication of the components is performed at several different layers: at
the very bottom, peers exchange IP datagrams, which are inherently unreliable
thus the second layer provides a reliable communication link based on packet
confirmation, while the packets are optionally crypted or signed using the OpenSSL
security algorithms. At the high level, the components exchange XML messages
according to a protocol described in the Q2ADPZ documentation, and the user
interface provides API or program menu functionality for controlling the tasks
and jobs through the user application protocol. The Figure 4.7 profiles the stack
of the communication layers. We invite the interested developers in the open-
source community to join our development team and we appreciate any kind of
feedback. The current implementation is available from the project’s home page
http://qadpz.sourceforge.net/.

4.3.6 Utilizing the Q2ADPZ for EC Experiments

To evaluate the system, we employed the version 0.6 of the system in artificial
evolution of layers of 3D LEGO models [Petrovič, 2001a], see section 5.5. A
3D model was decomposed into individual layers. The layout of each layer, i.e.
the placement of LEGO bricks was evolved by a separate task. The input and
output files were automatically transferred by the universal client as specified by
the project file shown at the Figure 4.4). To obtain statistically significant data,

84 Supporting Technologies

tens of independent runs were required. Q2ADPZ installation included 70 high-
performance PentiumIII/733MHz workstations located in a student laboratory.
Their status is on and idle during the night, and except of the exercise deadline
season approximately 30-50% idle also during the day.

The Figure 4.8 shows an example status of computational progress. We received
results worth many weeks of single computational time within approximately 3
days time with no configuration overhead, by simply submitting our executable
to Q2ADPZ.

4.4 Evolutionary Computation and

Distributed Computing

Evolutionary algorithms (EA) are highly parallel stochastic search methods for
finding approximate solutions useful when no deterministic algorithm generating
good solutions is known. They are inspired by the Darwinian natural evolution
principles, and work with a population (a set) of solutions that survive, mate and
get mutated from generation to generation based on their performance (fitness). In
each generation, all individuals in the population have to be evaluated independently.
That is where it is natural to parallelize the execution of the evolutionary algorithms.
Some flavors of EA work on multiple populations that evolve independently (island
models) – and for them another natural place for parallelizing is allocating one (or
several CPUs) for each sub-population. Alternately, evaluating a single individual
can also be performed in parallel on several CPUs, if the objective function is suitable
for parallelizing. Some existing EA packages support parallelization on various
levels. One example is the ECJ package [Luke et al., 2005] running on the Java
platform thus offering high portability across platforms. Among other features, it
supports platform-independent checkpointing (which stands for automatic saving of
the state of the computation for the purpose of restarting the computation from a
given checkpoint) and logging, multithreading, multiple subpopulations and species,
inter-subpopulation breeding, inter-process or inter-machine transfer of individuals
(even across different platforms), asynchronous island models. Another popular
package is the EO (evolutionary objects) implemented in C++ with templates
[Keijzer et al., 2001]. It provides its own extension ParadisEO for parallelization
supporting the cellular model, parallel evaluation functions, parallel evaluation, and
island model. Another distributed evolutionary system DREAM [Arenas et al., 2002]
is based on JEO (Java brother of EO). Its distributed computation core, DRM is
independent of the EA field and can run any distributed application. Instead of
master-slave or client-server architecture, they base the distributed engine on an
epidemic protocol, where each node keeps a database of some of the peers in the
computational network. The user of DREAM can work on several different levels
depending whether the standard set of features satisfies his needs, or whether a
more low-level application interface is required. For instance the user can specify its
evolutionary application using simple EASEA high-level description language that
is compatible also with GaLib or EO.

4.5 Distributed Evolutionary Algorithm 85

When setting up a distributed EA, one typically uses a combination of a
package for distributed computation and a package for EA. The distributed com-
putation package will be responsible for delivering the inputs/outputs to/from the
computational nodes, and submitting the tasks to the nodes automatically. The
user has to configure which code and data have to be processed. Usually the
user specifies at how many nodes he runs a particular application, or optionally
what would be the topology of the parallel virtual computer. The user can
implement the communication between the computational nodes either through the
shared file system, message-passing, or sockets, or simply rely on the parallelization
features provided by the chosen EA package. In our case, the evolutionary robotics
experiment was based on the GaLib package, which does not support parallelization,
and thus we needed a distributed computing package. We chose to implement our
own for the reasons of the simplicity, modifiability, control, low maintenance and
installation costs, and because of the other requirements that are described in the
next section.

Figure 4.9: Overall architecture of the distributed evolutionary system.

4.5 Distributed Evolutionary Algorithm

4.5.1 Utilizing the Cluster Computing for EC Experiments

We have performed some of the early experiments using the group cluster ClustIS,
[Cassens and Constantinescu, 2003]. This cluster utilizes a batch system for
submitting tasks. The restrictions on the cluster implied that a user can submit
a job that simultaneously occupies 10 CPUs, and even this was not available at
various times due to multiple users in need of the computational time. In addition,

86 Supporting Technologies

our simulator used the real-time scheduling mode of Linux operating system, which
is only available in the super-user mode, which in turn is not available at the common
cluster. We therefore had to abandon both the idea of utilizing the group cluster
and the Q2ADPZ and seek another solution, which we describe below.

4.5.2 Universal Solution

The solution is based on the GAlib library and MySQL database. It can run
either on a single computer or using any number of computational nodes, which are
PCs in the student laboratories with a tailored live Linux CD (based on Knoppix
3.4 distribution). The submission of tasks to nodes and their maintaintenance is
supported by UNIX shell scripts, described in [Petrovič, 2004].

Figure 4.10: Utilization of two versions of distributed algorithm, evaluated on
53 computational nodes on real experimental run (average of total utilization
throughout all incremental steps of sequential experiment). Standard deviation for
early algorithm was 0.16%, whereas only 0.05% for the improved algorithm. The
utilization of the nodes is influenced by several factors: in the early algorithm, the
master assigns more individuals to the same faster computational nodes (when the
number of nodes does not divide the population evenly), however the speed difference
does not necessarily have to be so high, and slower nodes need to wait for the faster
nodes to complete the extra individual; another extreme is when the population is
evenly divided and the faster nodes need to wait for the slower nodes to complete;
finally, in the second algorithm, the faster nodes are doing more work, but not on
the centralized request of master, but naturally thanks to their higher speed; they
are therefore not necessarily more utilized, as they take on more individuals only
when there is still time for it.

The stand-alone implementation is using a database table with cached genomes
and corresponding fitness values that were already evaluated. The distributed
implementation is using a similar table for the genomes that need to be evaluated,

4.5 Distributed Evolutionary Algorithm 87

and possibly interacts with the cache, see Figure 4.9. In addition, a table listing
the computational nodes that are available for computation – i.e. evaluating the
genomes is used. In the distributed scenario, the evolutionary algorithm is started
at N machines, where one of them works as the master node and all other machines
work as slave nodes (multiple evolutionary algorithms can run simultaneously and
independently – they only need to have a different identifier). The master machine
has the GA object, the population, and does all the evolutionary part of work,
whereas the node machines are responsible only for evaluating individuals, although
they are started in the same way (except of telling them to run as slaves), and read
the same configuration files. Before evaluating the population in each generation,
the master machine saves all genomes to the database and marks them by ids of
the slaves that should evaluate them. If cache is used, the genomes that already
have been evaluated earlier are removed from the list first. Next, the slave nodes
retrieve the genomes to be evaluated, and save the results back to the database.
When there are no more genomes to evaluate, each slave marks that it has finished
its part of the work. As soon as all the slaves have finished the work, the master
node determines this and either moves all results to the cache and runs its standard
fitness function, or – if cache is not used, it retrieves the newly computed fitness
values from the database, and removes the records. The checkpoints, which prevent
evaluation of non-promising individuals, are communicated to the slaves from the
master through separate CHCKPT table – it is refilled with values in the beginning
of each incremental step by master. In detail, the algorithm for the master node
is as follows: run the evolutionary algorithm as the stand-alone version, with the
following additions:

1. On start-up, create the slave table and TODO table

2. When the population is ready to be evaluated, it is dumped to the TODO
table, and records are marked as “temporary” since they are not yet ready for
evaluation by slave nodes.

3. If cache is used, remove those records from TODO table that already exist in
the cache.

4. If at the beginning of new incremental step, save new checkpoint times and
values to the checkpoints table

5. Retrieve list of on-line slaves and assign each slave proportional amount of
remaining genomes to be evaluated (as the future work, this can be improved
by assigning the amount of genomes proportional to the slave performance
– thus allowing to use machines with different CPU power in the same
evolutionary run).

6. Set the counts of genomes to be evaluated for all slaves in the slaves table (set
the REMAINING GENOMES field)

7. Assign slave identifiers to the genome records in the table and mark them as
“to do” so that the slaves start evaluating them.

88 Supporting Technologies

8. Monitor the REMAINING GENOMES values in the slaves table, as soon
as they all become 0 in all records, the evaluation is finished and either all
records are moved to the cache if it is in use, or they are retrieved to the
memory and removed from the database. The retrieved values are collected
by the master’s objective function, which returns the proper value either from
the cache or directly.

9. Maintain the average time of evaluation of genomes. If some slave reaches
5-times longer time and still have not evaluated its assigned genomes, remove
it from the table and assign its genomes to another slave, and continue
monitoring.

10. When the evolution is finished, all records in the slave table are marked, which
results in the termination of the computational nodes.

11. During the run, the algorithm state values (such as the incremental step
number) are passed to the slaves through the records in the TODO table.

The algorithm for the slave node is more straight forward:

1. The evolutionary algorithm is not run, only the configuration files are parsed
and parameters are set.

2. After start-up, the slave waits until the slave table is created, after which it
puts a record to identify itself in the slaves table.

3. It monitors the value REMAINING GENOMES in the slave table, until
it becomes non-zero.

4. The slave retrieves the checkpoints from the checkpoints table.

5. The slave retrieves the genomes from the TODO table, evaluates them, and
saves the fitness value back to the table, marks the genome as done, and
decrements the REMAINING GENOMES counter in the slave table.

6. When the REMAINING GENOMES counter becomes zero again, continue
with point 3.

7. When the slave record is deleted, terminate.

Later, we have modified the distributed scenario in order to test if an improved
algorithm would have a higher throughput. Instead of assigning the individuals to
particular computational nodes, the master only publishes all unevaluated individu-
als through the database. The computational nodes individually take the individuals
to be evaluated and save the fitness back to the database on the one-by-one basis.
There is a little bit of communication overhead, and a little time wasted before
each individual is evaluated as the slaves must make short breaks while querying
the database perpetually and waiting for new individuals. On the other hand, and
more importantly, slaves that proceed faster, and finish their package of individuals

4.6 Chapter Summary 89

early, are not utilized again in the earlier version of the algorithm until all slaves
deliver their results. However, there still may be some individuals for which the
evaluation has not been started yet. Difference lies also in the handling of the faulty
slave nodes – these could be simply ignored in the new version of algorithm without
the resource-demanding detection process, because the initiative is coming from the
nodes, not from the master. If the result will not have been delivered back within a
fixed time constant, the individual that is being evaluated by a faulty node becomes
considered unallocated after that time, and another computational node will allocate
it, that is, starts its evaluation. We compared the utilization of CPU nodes of the
two algorithms, as shown at the Figure 4.10.

The algorithm was adopted and further improved for the case of pool with
computational nodes with large differences in performance by [Plavčan, 2007] in his
master thesis that utilized distributed computing for experiments in evolutionary
design.

4.6 Chapter Summary

• The hardware platform used in our experiments is the LEGO programmable
sets. We have mastered this technology, made use of it for various purpose
and contributed to the wide user community with several utilities.

• In order to perform the evolutionary experiments, we ought to utilize Dis-
tributed Computing, in particular:

• We design a distributed system for harnessing the CPU power of computers
in the computer labs that we use for some of our evolutionary experiments.

• For the purpose of the incremental evolution experiments, we design a special-
ized distributed system based on database and Unix scripts.

90 Supporting Technologies

Chapter 5

Supporting Studies

In this chapter, we describe the scientific domains which laid the path to our
experiments in Evolutionary Robotics. In order to better understand possible
applications of Robotics – including Evolutionary Robotics and automatic design
of controllers, we examine one of the application domains, Educational Robotics, in
higher detail. We performed, and later discuss several studies and experiments in
Educational Robotics.

In our work, we are particularly interested to asses how much robotics can
contribute to educational school and after-school activities, whether it is useful at all,
and what are the requirements on such systems in order to bring more positive than
negative outcome. Is robotics due to its costs and demands on high technological
skills suitable only for the real-world applications? Can the robotics educational
systems make the school classes more effective, and reach the educational goals?
If yes, what form these activities can take and how they can be integrated into
curriculum, who can provide the necessary instruction to meet pedagogical goals?

These are serious questions that put the area into very suspicious light. Our aim
in this work is to indicate several interesting ways of successful integration of the
robots to curriculum and schools.

As part of the overall goal of evolving robot controllers, evolving robot morphol-
ogy is an important part of the problem as explained in the previous chapters. In
order to be able to evolve morphology, we must first understand how to represent
the shapes in evolutionary algorithms. We have contributed to these fields with
research work, and we gently touch these issues in this chapter.

5.1 Role of Robotics in Education

As modern technology advances in an ever-accelerating pace, especially in the crucial
fields such as computer and automation, there is a continuous demand for skilled
and highly motivated workers. To ensure that this demand could be met, technology
curriculum is needed at the school level to give students insight into engineering fields
and attract students to technology studies. As opposed to the traditional vocational
education approach, technology curriculum at the school level should discard the
confined professional bias and provide an insight into engineering science [Waks,

92 Supporting Studies

1995]. Therefore, new approaches are needed to design an appropriate modern
strategy for implementing high quality technology program at school level. Robotics,
being a multifaceted representation of modern science and technology, fits into this
planning perfectly.

Realizing the potential and importance of robotics, the LEGO group has launched
a range of programmable robotics products called Mindstorms in September 1998,
followed up with much more powerful version in August 2006. The Mindstorms
robotics base set consists of touch sensors, light sensors, rotational sensors, motors
and a main building block that houses a microprocessor, which is programmable
via an infrared communications port, linked to a PC. In the new version (NXT),
performance and robustness have been improved, infrared communication medium
was replaced by BlueTooth radio, new sensor types (sound, and ultrasonic distance
sensors have been introduced) and motor actuators are more powerful with built-in
encoders. Educational software RoboLab has been completely rewritten based on
the collected experiences. And perhaps the most important is that the platform is
open and well documented down to the low-level hardware layer.

5.1.1 Robotics in Elementary and Secondary Schools

Robotics is an engineering art combing electrical and mechanical technologies. It
is widely used nowadays and has been part of our daily life. In the industrial
area, robots are widely used to increase productivity and hence production capacity.
Various robotic home appliances – such as vacuum cleaners, floor sweepers, lawn
mowers are available on the market for competitive prices. However, due to the
complexity of robotics studies, it is hard to attract and pass the knowledge to
students. This can be overcome by developing interest in students at younger years
by introducing the simplest robotics knowledge to them. To date, many methods
have been adopted by institutions around the world to teach and develop interest
in robotics among the students.

However, a robotics program at school level should not only focus on the
introduction of engineering skills, but should also aim to bring out the best of
scientific concepts and technological principles through active, creative and mean-
ingful learning. Robotics projects should also be able to stimulate critical thinking,
communications and teamwork among students.

Robotics is fundamentally an applied field and its applications affect everyday
life. Focus on robotics can be an effective and exciting way for students to
learn about the problem-solving strategies used by engineers in practice. In this
context, the LEGO Mindstorms robotics system poses a model for creative and
innovative problem solving to the complex problems attuned to contemporary
industrial approaches of computer system, automation, machinery and general
engineering.

The potential application of Mindstorms is unlimited, as it is open-ended. To
successfully manipulate the various functions of the robotics set, users need to
possess integrated skills e.g.

• Computer Acquisition – Programming the robot with modern computer soft-

5.1 Role of Robotics in Education 93

ware to achieve an assigned task, while addressing issues of object components
interface, addressing modes, handling events, and communications.

• Internet Usage – using the Internet to participate in on-line Mindstorms
activities

• Structuring Skill – materials, robot frames loads and stability, robot motion
and collision worthiness.

• Mechanics Understanding – forces and torque, differential gear, robot motion,
motor shaft loading and motor control.

• Electronics Understanding – light and touch sensors feedback, motor current,
current loop and impedance.

• Other Generic Physics Theories Understanding

Mindstorms curriculum should be structured into a cooperative learning environ-
ment where small groups of students work together to maximize their own and each
others’ learning. Robotics project assigned to the students could consist of multiple
tasks and components, where students are given the chance for collaboration
among themselves to produce work that interface and integrate well as a whole
project, resembling true industrial teamwork spirit. To ensure the success of the
group project, students hold each other personally and individually accountable for
assigned share of the work, and appropriately use the interpersonal and small-group
skills needed for cooperative efforts to be successful [Johnson et al., 1991, Smith,
1995]. Also, as Mindstorms is highly unstructured, students are encouraged to be
creative in implementing solutions to complex problems that can be easily related
to the real life equivalent of robotics usage or even daily automation and machinery
applications.

5.1.2 Guidelines for Educators: Curriculum,
Skills and Philosophy

The family of programmable LEGO products from LEGO Mindstorms and LEGO
educational division (formerly known as LEGO Dacta) provide a rich set of learning
materials that can encompass a wide variety of curricular activities and thinking
skills. With such a wide variety of activities, students from kindergarten through
college are all able to learn something from an experience with these technological
tools. All students are able to dream-up an invention that is personally meaningful to
them regardless of their background or gender. Teachers and researchers have used
programmable bricks and their related hardware and software tools with curriculum
units that include classroom systems engineering projects such as a recycling center
or a town [Erwin et al., 1998], designing robotic animals [Papert, 1999], kinetic
sculptures [Resnick, 1993], robotic competitions ([Oppliger, 2002], [Sklar et al.,
2000], [URL - World Robot Olympiad]), scientific experimentation, and many more.
Many activities fall outside the range of what people normally consider “robotics”,

94 Supporting Studies

Figure 5.1: Students from secondary school in Trondheim preparing their robot for
the RoboCup Junior contest in Bremen, June 2006.

which should broaden the appeal of the LEGO system to more teachers of different
disciplines ranging from art to science to technology and engineering.

There are numerous thinking and social skills that are developed by designing,
building, and programming with these LEGO robotics systems in a classroom
setting. By using motors and sensors, students are building intuitions about such
concepts as feedback and control. By programming the behavior of a robot, the
student has to get inside of the mind of the RCX, and think about thinking! In
other words, the student has to become an epistemologist. By constructing the
mechanics of a robot, students build intuitions for concepts such as structural
stability, gear ratios, and mechanical advantage. Working in groups offers an
opportunity to build communication skills between partners of a project. A large-
scale systems engineering project involving the entire classroom can build a sense
of community among the students, and touch upon diverse academic areas from
researching, writing, and presenting, to science, math, architecture, and technology
[Erwin, 1998].

A theoretical basis for a design-based curriculum goes back to the early progres-
sive movement in education and such work continues today. John Dewey, famous
philosopher and educational theorist, believed that a child’s natural impulses and
personal interests to create, construct, and invent should provide the motivation for
learning, investigating, and thinking. He laid down the foundation of a philosophy
of experience. His simple yet far-reaching idea that learning happens best when
beginning with direct experience is the basis for much of the “hands-on” curriculum
that we see today. Constructing and creating are within the experiences of every
young child, and thus is connected to their lives in a meaningful way. The
LEGO system provides the perfect environment for creating the opportunities for
meaningful learning. In recent years Seymour Papert and others at the MIT Media
Lab have coined the phrase “constructionism” to talk about a related philosophy of

5.1 Role of Robotics in Education 95

learning. Taking the idea from constructivism that knowledge in constructed inside
ones head (and not transmitted into the head like a pipeline), constructionism adds
that such knowledge construction inside the head is facilitated by constructions
outside of the head, be it computer programs or physical models [Papert, 1999]. In
this type of education, the learning takes place in the problem-solving, ”debugging”,
and engineering designing and testing [Papert, 1999].

5.1.3 Teaching-Learning Materials

Throughout the recent years, many countries adopted the vision of using robotics
in schools. Robotics construction sets were purchased to thousands of primary
and secondary schools, and hundreds of teachers went through series of seminars
where they received first-hand experience and assistance in using the sets in the
classrooms. Robotics sets are useful both at the lessons of Physics, Mathematics, and
technology/IT/programming. In addition, they increase the students’ and pupils’
motivation and learning satisfaction.

To program the intelligence into the Mindstorms robotics set, students would re-
quire to use computer software to design their program to be run on the robotics set.
The default standard computer software that comes with the original version of the
Mindstorms is RCX Code. RCX Code is a simple visual programming environment
that caters for basic capabilities of Mindstorms. It enables user to visually plug
programming module into each other to form a program. The educational version
of Mindstorms set comes with the software ROBOLAB. There are many other
high-end advanced Mindstorms programming environments developed by individual
enthusiasts and groups. Most of these programming software are distributed on the
Internet. Below are a few examples of these software packages:

• NQC – A text-based Mindstorms programming tool based on the popular
programming language C.

• Bot-Kit – An interactive object oriented environment for the RCX using
Smalltalk programming language.

• TalkRCX – A programming interpreter for programming Mindstorms in Linux
environment

• Mind Control – A Visual Basic program that interprets user command text.

• LegOS (BrickOS) – A real C-compiler (based on GNU GCC) that provides
complete access to all RCX’s functionality and hardware, and fastest possible
code.

• LejOS – A Java compiler and virtual machine for RCX. RCX as an embedded
device suffers from performance and memory limitations, and therefore is not
very suitable for Java programming that inherently implies overhead and is
not suitable for real-time performance, nevertheless, LejOS is a great tool for
Java fans and programmers.

96 Supporting Studies

Educators could choose to develop their own Mindstorms software for their
curricular needs since the manufacturer made available a software development kit
(SDK) that makes this possible (http://www.legomindstorms.com/sdk).

There are a few curricular materials available at the moment, from the official
manufacturer channel and third party channel. Examples include the project of
London Grid for Learning and work of [Rosenblatt and Choset, 2000]. LEGO pro-
vides a set of inspiration booklets on mechanics, buildings, energy, and robots, and
a set of 16 activities with worksheets and supporting CD: Science and Technology
Activity Pack. Extensive work of LDAPS team (LEGO Design and Programming
System), which was at the start of RoboLab system, produced multiple creative
project ideas [URL - LDAPS]. These are described also in the book [Erwin, 2001].
In her the recent book, Barbara Bratzel, a teacher at Shady Hill School, a preK
through 8 independent school in Cambridge, Massachusetts, has developed a project-
based course that teaches classical mechanics through engineering [Bratzel, 2005].
Comprehensive set of materials is provided by CMU Robotics Academy [URL - CMU
Robotics Academy]. Yet, there is a large potential for more curriculum material that
would be easy to use for teachers without extensive previous experience and technical
competence.

At the college and university level, Robotics can be found not only in the study
directions of automation, and robotics, but more often finds a place in other study
programs, including Computer Science. For instance, at Indiana University, LEGO
Robotics sets have been used in the undergraduate computer science course, [Jadud,
2000].

5.1.4 Robotics Contests

A very useful drive in the progress of robotics outside of the doors of advanced
research laboratories has the origin in robotics contests. These exist at all levels
– from simple local hobbyists’ meetings to large international events (for example,
[URL - RoboCup], [URL - Fira], [URL - Eurobot]) and from simple-tasks such
as line-following (for example, [URL - Istrobot]) to complex tasks requiring intel-
ligent reasoning, planning, and complex navigation (for example, AAAI robotics
competition). A short overview can be found for example in [Balogh, 2005], and
an exhaustive list is maintained at [URL - Contests]. The competitive atmosphere
of the contests contributes strongly to motivation. Figure 5.1 shows a team of
Norwegian students at RoboCup Junior World championship.

5.2 Creative Educational Platforms

The importance and impact of robotics and automation systems as part of the
evolution of mankind is obvious and inevitable. In order to achieve sustainable
and steady progress of the technology, supply of the qualified workers is essential.
In a democratic society with the freedom of choice, this can be achieved only
through promoting the interest of young people in technology, and maximizing
their possibilities for hands-on experiences and small scientific and technological

5.2 Creative Educational Platforms 97

projects. At the same time, researchers and teachers at the universities and other
higher education institutions need suitable platforms and “microworlds”, which
will allow them to easily setup student projects as well as develop and test their
research contributions. As mentioned above, very popular approaches to achieve
both of these goals are robotics competitions. An example is the robot football,
which contributes significantly to research in the areas of multiagent systems, sensor
technologies, navigation, coordination, localization, vision, and other fields. One of
the advantages, but also disadvantages of many robotics contests is that the same
artificial problem gets solved again and again by various groups, often reaching only
a moderate level compared to already existing systems and thus limiting the positive
outcome to the learning experience of the participating team. The contests have a
particular engineering goal set by the rules. This restricts the student, researcher
or teacher in the free experimentation. A good alternative to the contests poses
the exploratory and experimental classroom work with robotics construction sets.
Construction sets typically contain multitudes of tuned and well-fitting parts, sensors
and actuators, which put a flexible and open tool for experimentation right on the
desk of a student or a researcher. In addition to the mentioned popular LEGO
Mindstorms Robotics Invention System [Lau et al., 1999], other examples include
Fischertechnik [Schlottmann et al., 1997] at the level of a toy, or Parallax Robotics
[URL - Parallax], or Microbric [URL - Microbric] at the level of a hobbyist or
student, or Khepera robots and accessories at the level of the researcher [Mondada
et al., 1993].

We propose an approach that is an alternative to the contests and construction
sets: an open educational and research toolkit based on an extensible and modular
drawing robot Robotnacka [Ďurina et al., 2006]. Our aim is to provide a platform
for learning and experimentation on the introductory level, which could allow to
setup interesting educational projects, and use a finally-made, precise, and well
tuned robot, additional hardware accessories, and integrated software solutions –
“microworlds” for constructionist learning in the subjects of mathematics, physics,
algorithmics, and robotic control. Multiple instances of such robots can be exposed
for free use by educators, hobbyists, and researchers in the robotics laboratory
accessible through the Internet thus making the platform widely accessible for no
cost. We suggest to run the robots in perpetual operation in a robotics laboratory
[Petrovič et al., 2006], 24 hours, 7 days a week. The robots should be autonomous,
powered from a rechargeable battery, and controlled remotely using built-in radio
communication. The robots should perform in a maintenance-free operation.

In the project of remotely-operated laboratory [Petrovič et al., 2006], [URL -
Virtuallab], see Figure 5.2, robots that were designed in cooperation with our partner
were installed and are running successfully for almost 2 years of time. Robots in
the laboratory are automatically recognized and connected by the server, which
monitors their operation, and provides extensive functionality for both user control
and protected administrator maintenance. Night operation of the laboratory is
possible by means of a network-controlled light source that can be turned on and off
on demand. The power source of the robot is a 6V/2.3Ah lead acid maintenance-
free battery and lasts for about 2-3 hours of continuous operation. The battery

98 Supporting Studies

Figure 5.2: Viewing of the remotely-accessible robotics laboratory in a web-browser.
The scene contains three robots and geometric shapes that can be detected by the
camera.

is recharged automatically. With its open architecture, the laboratory has good
possibilities to be used both in research educational projects [Petrovič, 2005] for
primary and secondary schools, as well as research and project platform for both
undergraduate and graduate students. It can be employed in distance learning. The
laboratory is used for several undergraduate semester and diploma projects, e.g.
analysis of the power sources for mobile robots, platform for development of multi-
agent architectures, as well as for experiments of graduate students with evolutionary
and BB robotics. In the educational projects, the robots in the laboratory can
be attached to the software turtle objects in the Logo programming language of
a student sitting anywhere around the world. In combination with the top-view
camera, the laboratory can be used as an educational tool in lessons of mathematics,
physics, and programming. For instance, the software is able to detect polygon
shapes, and provides a creative environment for solving constructive geometry tasks
in a novel and exciting way. With the ability to move objects in the arena, the
robots are a perfect platform for experiments with computer vision and artificial
intelligence. The robots can work as a physical instantiation and testing platform
for planning and reasoning algorithms. The exploitation of robots is also made
through the Robotics introductory course at the Faculty of Electrical Engineering
and Information Technology STU, [Balogh, 2007].

The programming of the robots is designed to be easy to understand and learn.
For an example, Figure 5.3 depicts the portion of a C/C++ program used to make

5.2 Creative Educational Platforms 99

int r = robot_init(1); // create robot object

robot_user(r, "john", "turtle"); // provide user/ passwd

if (! robot_connect(r, "147.175.125.30")) // connect the lab

{

printf ("Could not connect \n");

return 1;

}

robot_alwayswait(r, "on"); // set synchronous mode

for (int i = 0; i < 5; i++)

{

robot_fd (r, 500); // move forward 500 steps

robot_rt (r, 1152); // turn 144 degrees right (144*8=1152)

} // (the precision is 8 steps/ degree)

robot_close(r); // close the connection

Figure 5.3: Interfacing the robots in the remotely-accessible laboratory from C.

the remote robot draw a star (if the pen is inserted). Other example projects allow to
control the robots with joystick, or computer mouse and even with the movements
of the user’s head when looking into a camera with the use of a face recognition
software.

During its normal operation, the robot monitors the battery power level. When
the voltage falls below an indication threshold, it notifies the server. The server
chooses to wait until the user finishes the current operations, or possibly interrupts
the current user and using the calibrated image navigates the robot towards deter-
mined recharging station. If there are any robots on the way, they are automatically
moved away, or avoided, if they do not respond. The parking software automatically
turns on illumination light and adjusts the camera settings. After the robot is
docked, the parking software monitors the power level, and in the cases of a missing
contact, attempts to remedy the situation by turning and re-docking. If all attempts
fail, the administrator is notified by an e-mail so that a possible manual docking
could be performed. The locations of the robots are determined according the
yellow marks placed on tops of the robots. The parking software detects the
yellow components in the image that are placed inside of black components, while
it attempts to filter-out irrelevant information (the administrator can adjust various
sensitivity settings so that an accurate operation is reached at various daylight
conditions as well as with artificial illumination at night). Since the camera is not
permanently attached to the drawing surface, but rather mounted on an independent
stand, the software automatically detects the position, and zooming aspect of the
camera relative to the surface in order to calculate proper locations and thus the
distances and angles in the position commands given to the robots when approaching
the recharging station. All parts of the server side software are open-source and
publicly available at the project website [URL - Virtuallab]. Interested developers
are encouraged to contact us and join the development team.

100 Supporting Studies

5.3 Ten Educational Projects

The technological progress, our robot attempting to be an example of, can be mean-
ingful, only if the technologies improve our lives, and work. Our way of improving the
lives of the students is increasing their chances for learning the curriculum material
by making it more understandable, motivating, active, entertaining, closer to the real
world, challenging, suitable for group project learning, and stimulating constructive
and exploratory thinking. For this purpose, we have developed 10 one-lesson projects
and curriculum materials that can be used by teachers and students without any
technical knowledge.

Math Projects

Circles. Even though the geometric precision of a turtle when drawing straight lines
is limited by natural laws (a difference of 0,01 mm in the wheel diameter results in
an error in the magnitude of centimeters when the robot draws only a square with
the side length 1 m; imprecision can be somewhat compensated by robot calibration,
but imperfections have to be expected), this does not apply to circles. Indeed, the
turtle can draw quite precise circles. To many of us, it can be surprising to learn
that the result of the command r’ltspeed 30 70, which sets the speed of the left
and right wheels to -30 and +70 respectively, results in a clean circle. In the circles
projects, the students learn the circle properties, and in a sequence of exercises draw
circles of arbitrary diameter with their robot turtle.

Triangles. Triangles are the simplest closed shapes a turtle can draw, but they
provide a plethora of interesting challenges and exercises, where the students test
their knowledge of triangles. From computing the angles and sides given various
parameters (thus employing various theorems), constructing tangents and heights,
lesson continues through drawing and understanding circumscribed and inscribed
circles. Triangles can be constructed of colored insulating tape on the whiteboard
surface, if the camera system is installed, or alternately, defined on the student
screen only.

Sets of points. Line is a half of a set of points that have a constant distance
from another line, a circle is a set of points with a constant distance from a point,
a parabola is. . . In this lesson, students acquire scene using the vision system and
construct various sets of points that share certain property, such as distance to a
vertex, distance to multiple shapes, and difference of distances. Students work with
high-level concepts, shapes, and points when constructing programs to navigate the
drawing robot.

Constructive geometry. This lesson is based on a micro-world environment that
defines a set of geometric construction operations. These differ from the standard
constructive geometry with ruler and compass. The program can acquire the scene,
label the points, divide line segments, determine the distances, and angles. The
micro-world environment allows the teacher to define his or her own tasks, and
to specify the set of available commands for each task separately. Therefore the
students are required to find a creative solution given a very simple command set,
instead of directly computing the target location, for instance.

5.3 Ten Educational Projects 101

Figure 5.4: Solution to the example 1.

Figure 5.5: Solution to the example 2.

Example 1: Construct a quadrangle, given the side a=650, all internal angles
α = 67o, β = 90o, δ = 105o, and the diagonal e = 800. The robot pen is down. Use
the commands lt, fd, defpoint, and fdupid (fd until point is in certain distance).

Example 2: Given is a point A and two non-parallel lines that intersect outside of
the whiteboard. Draw a line that connects A with the intersection of the two lines.
The robot pen is up, and it is located somewhere outside the lines, heading towards
both of them, intersecting them sufficiently far from the area boundaries. Use the
commands fdul (forward until line), defpoint, fd, heading2pt, followline.lt,
fduhtp (fd until heading to point), pd, moveto.

The micro-world environment provides more than 30 high-level predefined com-
mands that can be selected for particular tasks. The teacher users are very welcome
to define more operators. More examples and the commands reference can be found
in the Logo application for Robotnacka.

Algorithmic Projects

Convex hull. The camera system and cv4logo detects the list of points of all polygons
placed on the whiteboard. Students are instructed to construct programs that draw

102 Supporting Studies

Figure 5.6: View from the top-mounted camera (left), the same image recognized
by the image recognition plug-in for Imagine (middle), drawing a convex hull (right)

convex hulls in cooperation with teacher and using high-level constructs – from
specific and simple cases towards a general case that concludes the exercise, see
Figure 5.6

Depth-first search. A maze formed of black insulating tape attached to the
whiteboard contains marked locations. Robot uses the sensors to read the marks
encoded in binary notation (number and position of black stripes). The task for the
students is to make the robot locate the target location (place for the robot parking,
or unloading an object) by writing a simple Logo program that will negotiate the
maze.

Minimum spanning tree. The vision system detects locations of cities depicted
by circles placed over the whiteboard. Students learn about the problem of the
minimum spanning tree construction and develop a Logo program for the robot
that makes it draw the minimum spanning tree. Students experiment with and
evaluate the heuristics for tree-drawing sequencing.

Polygon triangulation. In this advanced project, the students construct a single
algorithm for arbitrary polygon triangulation. The task for the robot is to draw the
triangulation of a polygon detected by the vision system. The exercise starts with
simple convex polygons and extends to general non-convex polygons.

Physics Projects

Collisions. A turtle robot moving at a controlled constant velocity meets an object
in an elastic or inelastic collision. In this laboratory exercise the students learn about
the collision physics, measure the velocities using the camera after they calibrate it,
and compare their measurements with the computed prediction. At the end, they
produce a polished lab report.

Force, power, friction, and work. The more slowly the robot is moving, the
stronger force it can generate. For instance, it can push a heavier object, or extend
a spring of a Newton-meter (and the more battery power it consumes as well). This
is the property of the stepper-motor drive. Students measure the velocity decline
either by marks drawn by the robot, or using the top-mounted camera. In this lesson,
they review their previous knowledge of force, power, and energy physics laws and

5.4 Evolve with Imagine – Educational Evolutionary Environment 103

apply it in the set of exercises. Using the computations based on measurements,
they compute the friction coefficients for different materials, speeds, and pressures.

5.4 Evolve with Imagine –

– Educational Evolutionary Environment

Imagine Logo is a full-fledged functional interpreted programming language – a
dialect of Lisp developed for teaching programming in the schools. As such, it has
strong support for graphics and visualization, objects, and easy data manipulation,
and therefore it is suitable as fast prototyping tool. Since one of our goals is to study
the use of robotics in the educational process, and another – more central goal is to
study the evolution of robot controllers, Imagine Logo provides an excellent platform
to combine the two goals. It contains the support for controlling both LEGO
robots (RCX), and the Robotnacka platform that we used in other experiments
(see section 5.2).

EI implements the two representation types described in the section 6.1.1, as well
as the third representation type – weighted FSA (labeled HMM due to its similarity
to Markov Models), where each transition is associated with a real number wt, the
weight that implies the probability that the transition will be followed. In the case
of FSA, the transition that is satisfied and has the lowest order is always followed,
even if there are multiple satisfying transitions. In case of HMM, each satisfied
transition in the current state can be followed, and it is stochastically chosen based
on its weight. The probability for a transition to be chosen is linearly proportional
to the weight of that transition.

5.4.1 Recombination

EI provides a recombination operator – crossover for both GP-tree (usual GP-tree
node exchange crossover), and for FSA representation. For the FSA representation,
the crossover is the same as we used in our Evolutionary Robotics experiments, see
Figure 7.9. We randomly select states in both parents for the first genotype, the
remaining states form the second genotype. All transitions that can be preserved
are preserved. The remaining transitions are redirected according to a random
projection from the states that were given up to the states that are imported. For
more details, please see section 7.3.2.

In the GP-tree representation, the crossover operator exchanges two random
sub-trees of two selected individuals (or with a probability pcross combine it simply
merges the two individuals in one sequence (using the seq non-terminal)1. Individ-
uals that exceed the maximum allowed depth are always trimmed immediately.

In addition to the standard GP-tree crossover, EI implements GP-tree homologic
crossover, which exchanges only nodes in the two program trees that are topologi-
cally at the same location. This takes the inspiration from nature, where crossover
occurs in highly topological way – only the genes of the same type can be exchanged.

1if the seq non-terminal is not used, pcross combine should be set to zero

104 Supporting Studies

It reduces the bloat (useless offspring), and smooths the fitness landscape – although
also slightly decreases the discovering potential of the search. The ratio of the
homologic crossover can be controlled using phomologic crossover parameter.

In both representations, EI supports brooding crossover, i.e. generating several
broods of offspring from each selected pair of parents, and evaluating them only
on a stochastically selected subset of testing sample (in order to avoid too high
growth of CPU demand). Only the best two of all the generated offspring are
chosen for the new generation. The parameter crossover brooding determines the
number of offspring pairs generated, and the parameter cross brood num starts q
determines the relative size of the subset of the training set for the brood evaluation
(i.e. 1.0 means to use the whole set). Brooding increases the success rate of the
crossover, since GP-tree crossover usually generates several times more junk than
useful genotypes. On the other hand, brooding decreases the creativity of the search
slightly, while some innovative offspring will perform worse than some other offspring
of the same parents – in particular those that perform almost or exactly the same
as their parent. When they perform the same, it is often due to the fact that
the difference in the genotypes of the parent and the offspring is irrelevant for the
resulting behavior of the offspring. And while the parent already has a relatively
high fitness, the new useful innovative genotypes with somewhat smaller fitness than
the parent are not accepted. Therefore the brooding crossover can either be limited
by pbrooding crossover parameter, or the user may require that the offspring with
the same fitness as the parent genotypes be discarded (parameter strict brooding),
which, however, works well only for deterministic objective functions (i.e. the same
genotype always has the same fitness).

5.4.2 Mutation

For the GP-tree representation, EI utilizes the following operators:

• mut change: changes a random node (terminals → terminals, non-terminals
→ non-terminals), or changes an argument of terminal/non-terminal, if any;

• mut exchange: exchanges two arbitrary nodes within the individual;

• mut insert: inserts a non-terminal node with a full random sub-tree some-
where inside of the individual;

• mut remove: removes random node/sub-tree within individual;

• random node: replaces the whole individual with a completely new individual;

For the FSA representation, EI utilizes the following operators:

• mut change: changes a random transition: either by changing terminal,
destination state (either randomly or by following another transition from
the original destination state), changing relation, or splitting the transition to
two and inserting new state in the middle; alternately, it randomly reorders
the transitions in a single random state;

5.4 Evolve with Imagine 105

• mut exchange: picks two states A, B, and redirects all transitions leading to
A and to B to point to the other one of the two states instead;

• mut insert: either inserts a new random transition between two existing states
or inserts a new state randomly connected to existing states by at least one
incoming and one outgoing transition.

• mut remove: removes a random transition or a random state;

• random fsa: replaces the whole individual with a completely new individual;

The probability of each mutation type is by default the same, except that the
mut insert is by default applied with 3-times higher probability. However, if the
selected mutation operator can not be applied to the genotype (for instance the
maximum number of transitions has been reached), another operator is selected
(and this is repeated at most three times).

5.4.3 Selection and Other Parameters and Features

EI supports tournament selection with adjustable tournament size and the proba-
bility of selecting the tournament winner (if less than 1.0, there is a chance that the
best individual of the selected group will not be selected – this is to make the search
more stochastic, and improve chances to escape local extremes). The user can also
require that the selected individuals are removed from the population to ensure that
all members of the population participate in the selection.

Alternately, fitness-proportionate selection (i.e. roulette wheel) can be used.
Optionally, the fitness can be normalized to interval [0,1] and squared in order

to increase selection pressure. The squared normalized fitness is obtained by the
following formula:

NormalizedF itnessi =

(

Fitnessi − MinFitness

MaxFitness − MinFitness

)2

EI supports two types of elitism – either the best num elitism individuals
are automatically copied from the previous generation, or alternately the best
num elitism different individuals are copied. Requiring that the elites be different
improves the performance of the algorithm significantly, especially in the cases
when the objective function is not deterministic, and the training set used by the
fitness function is random. In those cases, the better individuals can temporarily
in one or very few generations perform worse, and be lost when defeated by a
lucky genotype tailored for a set of the random special cases chosen for evaluation
in those generations. This requirement of difference contributes also to premature
convergence prevention.

The EI package has support for pretty-printing of genotypes, loading and saving
environments, and easy addition of new experimental platforms. It allows saving
and restoring the state of the evolution anytime during the run, and this can be
performed automatically periodically.

106 Supporting Studies

EI was designed for easy extensibility with new experiments. Please consult the
software documentation for more details. The software is an open-source project,
freely available from [URL - Evolve with Imagine]. The list of all parameters appears
in chapter 9.3.1.

5.5 Evolution of Shape and Form

All experience when building and programming robots suggests that during the
design, programming and building has to be performed simultaneously. In other
words, while designing the code, modifications of the hardware are required, and
while designing the hardware, the tests of the working prototypes have to be
performed. This is best achieved in an incremental fashion.

Our work deals with constructing the controllers, however, ultimately, the whole
robotic system would have to be designed including the robot morphology. We
thus perform the studies in the area of Evolutionary Design to pass the necessary
milestones, and prepare for the mutual evolution of the body and the controller,
which is beyond the scope of this paper.

We analyze two problems: what is the performance of representations in a design
of a 2D shape of a cantilever, if it needs to carry certain force, as well as comply
with other optimization criteria, such as low production cost, low consumption of
material, and low weight. We propose a new representation based on an existing
one, which achieves better performance. The second problem is the problem of
building 3D structures using standardized LEGO building elements (plastic bricks).
The algorithm is to generate exact building instructions to fit into a specified 3D
shape. We employ an Evolutionary algorithm to generate the shape layer-by-layer
in an incremental fashion. We study the possibilities to use indirect representations,
which might be smart for repetitive filling of patterns.

5.5.1 Representational Aspects of Evolving Form and Shape

Topological Optimum Design

In the work of Topological Optimum Design that was performed at EvoNet summer
school, we focus on the analysis of EA for shape design. We are interested in evolving
shapes and evaluating their fitness to suit the proposed problem constraints. This
is an important step before the analysis of the mechanical properties of the shape
proposed. Apart from other representations (Voronoi and Tree dividers), we worked
with holes representation and evaluate its performance to evolve suitable shapes.
The rectangular holes representation for solving TOD was originally proposed in
[Schoenauer, 1995]. It did not prove to perform better than Voronoi representation.
We adopted this representation and made it more general by representing also other
sets of elementary shapes in addition to rectangles. (i.e. rectangles, regular polygons
and multiple polygons). To compare the performance, we focus on the number
of evaluations of the fitness function. The quality is also compared in terms of
subjective visualization. As a fitness function, we use that of similarity, which

5.5 Evolution of Shape and Form 107

Figure 5.7: Voronoi representation genotype and phenotype, [Schoenauer, 1995].

means that we evaluate how close is the evolved shape to the desired one. Similarity
could be defined as the number of bits matched divided between the total numbers
of bits. This is a normalized fitness function between 0 and 1.

In the Voronoi representation, we consider a finite number of points V0 . . . Vn

(sites) of a given subset of Rn (the design domain). With each site Vi, we associate
a set of all points of the design domain for which the closest Voronoi site is Vi,
termed cell. The diagram is the partition of the design domain defined by the cells.
Each cell is a polyhedral subset of the design domain, see [Preparata and Shamos,
1985] for a detailed introduction.

Genotype is a variable length list of Voronoi sites, each site being labeled 0 or 1.
The corresponding Voronoi diagram represents a partition of the design domain into
two subsets, if each Voronoi cell is labeled as its associated site. The corresponding
phenotype is the shape with corresponding black and white cells, see Figure 5.7.

The initial population is of size 100 for each shape. The algorithm is using an
Evolutionary Strategy (N , 3N) with weak elitism, crossover ratio 0.7, and mutation
ratio 0.7.

In the Holes representation, the genotype consists of a set of elementary shapes.
The corresponding shape is obtained from a full 2D plate of material by clipping
out the shapes listed in the genotype, see Figure 5.8. In our experiments, we have
experimented with three different kinds of holes representation: rectangles, regular
polygons, and regular polygons with repetitions. In the first, rectangles of random
real-valued dimensions are placed at random real-valued locations. In regular
polygons representation, equilateral polygons with random real-valued lengths of
sides are placed at random real-valued coordinates and have random number of
vertices (N ≥ 3). In the last representation, regular polygons are clipped out from
the plate several times (count) with regular horizontal or vertical spacing.

The genotype, similarly to Voronoi representation consists of a list of labeled
points (sites). In contrast to Voronoi representation, the site labels are not simple
bits determining presence or absence of a material, but they describe the particular
elementary shape(s). In case of rectangles representation, the site label is simply a

108 Supporting Studies

Figure 5.8: Holes representation with various geometric shapes creates more natural
shapes using less shapes than rectangular-holes representation.

pair (width, height), dimensions of the corresponding rectangle. Labels in regular
polygons representation consist of tuples (N , r, tilted), where N is the number of
vertices of the polygon, r is the radius, i.e. the distance of the vertices from the
center (site), and tilted is a binary flag determining the placement of the polygon.
Polygons can be placed either by having one (or two, if N is even) of their vertices
horizontally aligned with the center (a), or by having the center of one (or two)
of their sites aligned with the center (b). Labels in case of the regular polygons
with repetitions representation contain a triple (count, spacing, orientation) in
addition, where count is the number of times that the polygon is clipped out (real-
value), spacing is the distance between the centuries of consecutive polygons, and
orientation is either vertical or horizontal.

The genotype is converted to phenotype — a mesh with a particular resolution.
The conversion is performed with 3 different discretization operators.

The genotype is initialized with uniformly distributed number of points (the
number is uniformly distributed from 1 to maximum number of sites) labeled with
random shapes. In case of rectangles, the dimensions of the shapes are randomly
distributed in the interval [0,κ · plate width], [0,κ · plate height], where κ is a
parameter from [0,1].

The holes representation uses the same geometric crossover as is used in the
Voronoi representation. A random line is drawn over both individuals and the
offspring is formed by combining geometric sub-parts of the crossed genotypes.
The genotypes in the holes representation are altered using the following mutation
operators:

• AddSite adds a new site (rectangle, polygon, or set of polygons). The number
of sites is limited by a parameter maxsize.

• RemoveSite removes one of the existing sites

• MoveOne moves one of the sites by a random displacement (the standard
deviation for the normal distribution from which random displacement is

5.5 Evolution of Shape and Form 109

sampled is encoded in the genotype, similarly to Evolutionary Strategy)

• MoveAll moves all sites by random displacement

• AddVertex in the case of polygonal representations adds 1 vertex to a random
polygon

• RemoveVertex in the case of polygonal representations removes 1 vertex from
a random polygon

• AlterSize changes the dimensions (width, height, or radius resp.) by adding a
real number sampled from normal distribution with standard deviation λ·dim,
where λ is a parameter and dim is the dimension of the plate (either its width
or height).

• AlterCount changes the number of repetitions in the case of polygons with
repetitions by either incrementing or decrementing it by 1

• AlterSpacing changes the spacing between polygon repetitions by a real-value
sampled from a normal distribution with standard deviation β · dim, where β
is a parameter and dim is a dimension of plate.

The crossover and mutation ratios used in the experiments were the same as for
the Voronoi representation. Individual rates for different mutation types were tuned
empirically.

LEGO Brick Layout

In the work of evolving layer layouts for specified 3D structures, the system receives
a specification of each layer of the structure. It is allowed to use the basic building
bricks shown at Figure 5.9. The evolutionary algorithm encodes positions and types
of bricks that form the layout, and computes the fitness of each layer based on the
previous layer and heuristic function that maximizes the estimated stability of the
model:

Fitness = cnn + cpp + cee + cuu + coo + cnbnb

Where:

• n is the number of bricks in the layout. This term rewards the use of large
bricks.

• p is the total sum of ratios through all bricks describing how well (0 – 1) each
of them covers the previous layer perpendicularly: for all unit squares that the
brick covers, p counts whether the brick at the corresponding unit square in
the previous layer contains perpendicularly placed brick; 2x2 brick, L brick,
and 1x1 brick do not contribute to this variable.

110 Supporting Studies

Figure 5.9: Standard LEGO bricks used in layer layouts.

• e is a penalty representing the total sum of ratios through all bricks describing
how much (0 – 1) is each of them aligned with the brick edges at the same
locations in the previous layer.

• u is also a penalty describing the total sum of squared ratios through all bricks
describing how large area of the brick is uncovered in the previous and following
layers.

• o is the total sum of ratios (1
xi

– 1) through all bricks, where xi is the number
of bricks in the previous layer that the brick i covers. The more bricks in
previous layer a brick covers, the better is the overall stability of the model.

• nb is the total sum of ratios through all bricks describing how much is the brick
misaligned with its neighbors in the same layer (misalignment is appreciated
so that the edges are not aligned and cracks in the overall model cannot follow
along the edges of multiple bricks).

The weight constant parameters were tuned empirically and the following values
were used in the experiments: cn = 200, cp = -200, ce = 300, cu = 5000, co = -200,
cnb = -300.

In this work, we apply a direct genotype representation, where the genotype
consists of the x and y coordinates of the brick placements as well as their type.
In the future work performed by [Na, 2002] in cooperation, this has been improved
to repetitive structures represented as a tuplet (pos, type, rep, disp), where pos rep-
resents brick position (coordinates), type represents the brick type and orientation,
rep is the number of repetitions of the respective type of brick, disp is the relative
displacement between individual brick placements.

We design the evolutionary operators as follows:

• CarefulInitializer processes the input pattern from top row to bottom and
each row from left to right (or from bottom to top and from right to left, the
chances of both possibilities are 50%). Each time it finds a unit that is not
yet covered by some brick, it stochastically selects one of the bricks, which fit
at this location, with larger bricks having higher chance to be selected (the
chance is proportional to the area of the respective brick).

• EdgeFirstInitializer is inspired by the hint provided by LEGO engineers: first
are covered the edges of the model. Afterward comes the ’inside’ of the model.
This initializer first collects those units that lie on the border of the model

5.5 Evolution of Shape and Form 111

and fills them in a random order with random bricks (using larger bricks with
higher probability) and thereafter fills the rest in a random direction.

• RectCrossover operator, which chooses random rectangular area inside of the
layer grid. The offspring is composed of all bricks from one parent that lie
inside of this rectangle, and all bricks from the other parent that don’t conflict
with already placed bricks. In this way, some of the areas of the input pattern
might become uncovered. They are covered in the objective function, see
below.

• ReplaceMutation, where a single brick is replaced by other random brick (larger
bricks are used with higher probability); bricks that are in the way are removed.

• AddMutation, where a single brick is added at a random empty location, larger
bricks are used with higher probability; bricks in the way are removed.

• ShiftMutation, where a single brick is shifted by 1 unit square in 1 of the
possible 4 directions (with respect to keeping the borders); all bricks that are
in the way are removed.

• RemoveMutation, where a single brick is eliminated from the layout.

• ExtendMutation, where a single brick is extended by 1 unit in 1 of the possible
4 directions; all bricks that are in the way are removed.

• RandomRectangleMutation, where all bricks that are in a random rectangle
are removed and the area is filled with random bricks (larger bricks are used
with higher probability).

• ReinitMutation simply generates the whole layout anew using MultiEdgeFirs-
tInitializer.

Each mutation type was assigned a probability: 0.1 for ReplaceMutation and
RemoveMutation, 0.15 for RandomRectangleMutation, ReplaceMutation, ShiftMuta-
tion, and ExtendMutation, and 0.2 for AddMutation. The initializer operators were
always repeated 5 times and the best generated layout was used. The objective
function, before actual computation of fitness, first finishes the layout by randomly
filling all of the empty places with fitting bricks (larger bricks are used with higher
probability). Thanks to this feature, it was possible to disable the use of 1x1
brick in initializers and other operators. Empty gaps 1x1 are always filled in the
objective function. In addition, it seems that more transformations when generating
phenotype from genotype can be useful. For example, the evolution often generates
solutions, where two neighboring bricks can be directly merged (i.e. they can be
replaced by a larger brick). The merging operation has been carefully implemented
into genotype to phenotype transformation before computing the fitness of each
individual.

112 Supporting Studies

Figure 5.10: Shapes used in the topological optimum design experiment.

5.5.2 Experimental Setup

Topological Optimum Design

Our experiments with the topological optimum design are focused on determining
the strengths of various representations. In our experiments, we study how well a
particular representation can approximate a target that is specified. In other words,
the fitness function is not based on mechanical properties of the evolved shape,
rather on a simple similarity to a specified shape.

We use three different shapes of different sizes and properties, and we compare
three representations: Voronoi representation that was shown earlier to outperform
the rectangular holes representation [Schoenauer, 1995], with our proposed holes
representation that considers regular polygons of various degrees. The third rep-
resentation is derived from the second (holes with polygons) by adding a feature
of possible repetitions of the polygons. The shapes used are shown at Figure 5.10.
We employ the software package that was designed for the original experiments and
extended during an intensive EvoNet’2001 summer school.

The main goal of these experiments is to study the genotype representations for
evolutionary design.

LEGO Brick Layout

Our experiments with evolving the 3D shapes using LEGO bricks start with
comparing the performance of the initialization operators. We utilized our own
program that generates random continuous 3D layered model, implementation of
the Genetic Algorithm with operators as described in the previous section, and a
simple viewer, which allows to display an evolved solution layer-by-layer either when
the evolution is finished or during the progress of evolution. Early runs were used
to tune the GA parameters, and the values pmut=0.5, pcross=0.5, popsize=500, and
numgen=4000 provided a reasonable performance.

The structure of the task allows for a large variation of brick placements in the
good-quality solutions. This suggests the use of multiple-deme GA (see [Cantú-Paz,

5.5 Evolution of Shape and Form 113

Figure 5.11: Comparison of the performance with the roulette-wheel selection (left)
and steady-state GA (right). The fitness of the best individual against the generation
number for an example run. The actual computational time spent on one generation
of steady-state GA is much shorter than on one generation of single-population GA.
The total times for 4000 generations were 41311 seconds for roulette-wheel selection
and 17391 seconds for steady-state selection. The charts show that the progress
is more continuous, smoother, faster, and better converging in case of steady-state
selection.

1998] for a survey on parallel GAs). A comparison of the standard roulette-wheel
selection and steady-state GA showed that steady-state GA performed much better,
see Figure 5.11, and Figure 5.12. We therefore used the steady-state GA as well as
demetic GA.

We experimented with randomly-generated connected models that fit into a box
with the base of 20x20 units and with the height of 5 layers. In the case of demetic
GA, we used 5, 10, or 20 populations with 5, 10 or 20 migrating individuals. A
stepping-stone migration scheme was used, i.e. the individuals migrate only to a
neighboring population arranged in a cycle. The main goal of the experiment is to
see if the layouts can be evolved, and whether we can find reasonable representations
for representing the shape. In addition, we are interested to see how the layers
connect in the incremental fashion.

5.5.3 Results

Interesting results were obtained in both problems where we studied the representa-
tions for shapes. This is particularly important in our context of situated embodied
self-organized intelligence that is in the very focus of this thesis. Even though
combining evolution of robot morphology with controllers is beyond the scope of
this thesis, representing the shapes is very central to the main theme.

Topological Optimum Design

For all three shapes, 8x8, 16x16, and 32x32, both of the new representations (polygon
holes, and polygon-holes with repetitions, labeled modular) outperformed both the
original Voronoi and rectangle-holes representations as expected – the advantage of a
much stronger flexibility of polygonal shapes, where sides are not necessarily aligned

114 Supporting Studies

Figure 5.12: Best individual fitness with standard deviations (average of 20 different
random 3D models 20x20x5) for layer 4. Steady-state selection is compared to
both roulette-wheel selection (left) and multiple-deme with 5 populations of 1/5
size of population size of steady-state GA and 10 individuals migrating after each
generation (right). Both comparisons show that the steady-state GA performs
better.

with the grid, outweighs the disadvantage of larger search space. See Figure 5.13
for visualization of partial results and Figure 5.14, Figure 5.15, and Figure 5.16 for
plots of fitness average from 20 runs for different shapes. The difference between the
polygonal holes and modular representations is not very significant at the sample
shapes that were used in the experiments. Our results suggest that evolution of
shapes requires a richer set of operators and richer representations, which better
adapt to specific details and features of the evolved shape in a particular design
problem. However, attention needs to be paid to avoid too large search spaces, or
redundant options which can hinder the progress of the evolutionary design runs.

LEGO Brick Layout

We have successfully evolved simple test shapes with direct genotype representation
consisting of ten layers with 20x20 square profile. See Figure 5.17 for an example
evolved layout of the first two layers. We studied the performance of the algorithm
depending on the number of populations and the number of migrating individuals.
We found that in our case, multiple-deme GA did not outperform single-population
steady-state GA. See [Petrovič, 2001a] for more details, where we also proposed
extensions of the direct representation with indirect features. This was taken further
in the cooperation with the group at Maersk institute in Odense, and an improved
result was obtained with a representation where the bricks could be placed with
repetition. The genotype was extended with the number of placements and a relative
displacement between the repetitions. The Figure 5.19 plots average of best fitness
from 20 runs and shows that the representation with indirect features outperforms
the direct representation. The functionality of the algorithm has been verified on
evolving larger structures, examples of a hollow cyllinder and a Chinese bridge are
shown at Figure 5.18. The challenge of deciding a good genotype representation of
shapes is an important one. Using indirect representations can have several strong

5.5 Evolution of Shape and Form 115

Figure 5.13: Example runs of 16x16 shape (see Figure 5.10): Top-left: Voronoi
representation after 100 generations with fitness around 1.7 (fitness is minimized),
top-right: Rectangles representation after 150 generations with fitness around 0.082,
bottom-left: Holes representations after generation 150 with fitness around 0.02,
and bottom-right: Holes with repetitions representation after 120 generations with
fitness around 0.16.

Figure 5.14: Best fitness (average of 20 runs) for the four different representations,
8x8 shape.

116 Supporting Studies

Figure 5.15: Best fitness (average of 20 runs) for the four different representations,
16x16 shape.

Figure 5.16: Best fitness (average of 20 runs) for the four different representations,
32x32 shape.

5.5 Evolution of Shape and Form 117

Figure 5.17: The first two layers evolved with steady-state GA. Notice the low
number of edges common in both layers, which makes the layout more stable.

Figure 5.18: Shapes with evolved brick layouts, from [Na, 2002].

Figure 5.19: Comparison of the performance of the improved GA that has features
of indirect representations (repetitive brick placements), [Na, 2002].

118 Supporting Studies

advantages:

• Information can be compressed – it is not required to create one-to-one
blueprint of the whole shape in the genotype. This allows for coping with
the curse of dimensionality.

• Indirect representations can focus on details, which are important and need
to be described with finer resolution, while covering larger plain areas with
several bits of the genotype.

• The internal structures, symmetries, repetitions, and modularities of shapes
can be exploited only using indirect representations.

• Indirect representations are better prone to local optima: small modifications
in the genotype can represent large changes in the target shape, and thus bring
a locally converged population to a new promising areas.

• Indirect representations are more likely to create shapes with higher aesthetic
value due to the symmetries and regularities.

• Shapes created using indirect representations can be easier to analyze by
analytical methods thanks to higher uniformity of their structure.

5.6 Chapter Summary

• The robots that we work with throughout the whole thesis are educational
robotics sets.

• We find it important to understand how these are used for their original
purpose in order to understand their potential.

• It allows us to make contributions in that area as well as create links with our
field, Evolutionary Robotics.

• In addition, we work with a robotics educational platform of drawing robots,
and see its functionality being extended to research platform.

• On the tasks of evolving 3D structures from LEGO bricks and 2D topological
optimum design, we study the role of representations in evolutionary design.
Indirect representations have important properties that make them more
suitable for evolutionary design. The evolutionary design is important for Evo-
lutionary Robotics that should ultimately involve evolving robot morphologies.

Chapter 6

Comparison of FSA and GP-tree
Representations

6.1 Introduction and Aims

Some of our experiments in this thesis are based on augmented finite-state automata
(FSA) used as behavior arbitration in behavior-based mobile robot controllers. Our
aim is to design these controllers by the means of evolutionary computation. The
main motivation for choosing the state-based representations is their structural
similarity to the structure of the robot controller tasks: the robot performing some
activity is always in some state while it reactively responds with immediate actions
or it proceeds to other states also as a response to environmental percepts – thus
the activity of a robotic agent can be modeled by a state diagram accurately. We
believe that state-diagram formalisms can in fact steer controllers themselves and
be the back-bone of their internal architecture. Secondly, we believe that the state
automata are easier to understand, analyze, and verify than other representations,
for example neural networks. Thirdly, we believe that state automata are more
amenable to incremental construction of the controller, because adding new func-
tionality involves adding new states and transitions, and making relatively small
changes to the previous states and transitions. On the contrary, neural network
architectures often need to be dramatically modified, unless some modular approach
is used. However, research in modular neural approaches is still in its very early
stages. For an example, see the work of the group at university in Essex [Baldassarre,
2001], or a little bit older overview in [Ronco and Gawthrop, 1995].

While the focus of the experimental work in the following chapters of this
thesis lies in the issues of incremental evolution and evolving the arbitration itself,
this preliminary study pays attention to evaluating the performance of the state-
based representations as such. The purpose is to analyze the performance of
the state-based representations and compare it to the performance of the GP-
tree representation. See section 2.10 for an overview on FSA as a genotype
representation. We study the performance on several artificial tasks of various kinds
with the intention to understand the set of tasks, where the state-representation
might outperform the GP-tree representation, but also to identify the tasks, where

120 Comparison of FSA and GP-trees

the state-representations are less efficient. For the purposes of performing these
experiments, we have designed a package for evolutionary computation experiments
for educational programming environment Imagine Logo [Kalaš and Hrušecká, 2004]
that has an interface to control both simulated and real robots [Petrovič et al., 2006],
see section 5.4 on Evolve with Imagine1.

6.1.1 Representations

In the GP representation, the evolved program is a binary tree with non-terminals
in the nodes and terminals in the leaves. The growth of trees is restricted either
by the maximum number of nodes or the maximum tree depth. Non-terminals and
terminals are symbols with the semantics of a procedure (not a function as often
is the case in GP implementations; here, the state of the computation is contained
completely in the registers and in the state of the environment). Non-terminals have
two sub-trees2, which themselves are binary GP-trees. Both terminals and non-
terminals may contain additional arguments: constants of various ranges, register
references, predicates (or conditions). Each problem domain is thus defined by the
syntax and semantics of, see also Figure 6.1:

• Set of terminals T , |T | = NT .

• Set of non-terminals N , |N | = NN .

• Number of registers NR, and possibly their semantics (such as coupling to
some sensors).

• Set of binary relations Rel, for example <, >, ==, etc. that can be used by
non-terminals.

• Definition of terminals arguments, a function3 ArgT : T → ArgTypes∗,
where ArgTypes is a set of possible argument types: {constant, interval,

register reference, relation}, where constant can be instantiated to
any integer number given globally specified range, interval is specified as
[min max] and can be instantiated to any integer from this interval, register
reference can be instantiated to any of the registers R1, . . . , RNR

, and
relation is instantiated to a member of Rel. For example, a non-terminal if
typically has arguments (register relation constant).

• Definition of non-terminals arguments, a function ArgN : N → ArgTypes∗.

1A secondary objective for producing this software package was to provide an educational
platform for popularizing and experimenting with evolutionary computation, which is supported
by wide use of Imagine in the schools on elementary and secondary level. This objective is treated
in a separate report [Petrovič et al., 2007].

2For the reasons of better topological compatibility of all nodes with respect to evolutionary
operators, our system currently supports only non-terminals with two sub-trees.

3With the notation M∗, we refer to the set of all the possible tuplets (m1, m2, . . .mk), k ∈ N,
∀i(1 ≤ i ≤ k → mi ∈ M), including tuplets with no members.

6.1 Introduction and Aims 121

(and its arguments)
non−terminal

if reg1 > 7

non−terminal
...

non−terminal
...

terminal
(and optional arguments)

write1

terminal
...

right

terminal
...

left

terminal
...

done

Figure 6.1: Illustration of GP-tree representation: nodes contain non-terminals that
have two sub-trees, terminals are in the leaves.

In all our symbolic experiments, we used the following set of non-terminals {if,
while, seq}, and in the navigational experiments (“find target”, “dock”) we also
used the repeat non-terminal. while takes a condition and executes its left sub-
tree repeatedly while the condition is satisfied. Later, it proceeds with the right
sub-tree. The if non-terminal executes the left sub-tree if the condition is satisfied,
otherwise it executes the right sub-tree, and the seq non-terminal always executes
both the left and the right sub-trees. The repeat non-terminal takes a number as
its argument, which specifies the number of executions of the left sub-tree, it then
proceeds with executing the right sub-tree.

In our FSA representation, the programs are augmented state automata, formally
defined as, see also Figure 6.2:

A = (NS, NR, NTrans, Rel, T, ArgT, condition syntax, F, max steps), where

• NS, is the number of states of the automaton, states are numbered
S = {1 . . .NS}, and 1 is always the starting state

• NR is the number of registers of the automaton

• NTrans : {1, . . . , NS} → N is a function returning for each state the number of
transitions leading from that state

• Rel is a set of binary relations that can be used in the transition condition

• T is a set of terminals, |T | = NT

• ArgT : T → ArgTypes∗ defines terminals argument types

• condition syntax ∈ ArgTypes∗ is a tuplet defining syntax of conditions that
can trigger the transitions between states, for example (register relation

[0 3])

122 Comparison of FSA and GP-trees

state K

[reg2 == 1]

state L

transition condition

transition condition

state M

terminal (and optional args)

rt

terminal (and optional args)

fd

[reg1 > 0]

terminal (and optional args)

fd

transition condition

[reg2 < 10]

Figure 6.2: Illustration of FSA representation: transition conditions correspond to
GP-tree non-terminals, however each transition has also an associated terminal.
The state transitions can lead to the same state where they originate, and multiple
transitions between the same two nodes are allowed (although only one is used).
Sequences of state transitions can create loops.

• F : S × N → ArgV alues∗ × S × T × ArgV alues∗ is the transition function
specifying transitions in all states, including the conditions and actions. By
ArgV alues∗ we mean the set of all possible argument tuplets that can be used
as condition or terminal arguments, i.e. ArgV alues is a set of all possible
constants, intervals, register references, and relations. One condition and one
action are associated with each transition. The transitions leading from states
are ordered. Each transition leads from some state to another state and can be
followed, if its associated condition is satisfied. When the program is in state
s, only one of the transitions leading from the state s can be followed, and it
is the one that has its condition satisfied and has the lowest order. Transitions
terminating in the same state as they originate are allowed. When a transition
is followed, the associated action represented by a terminal and its arguments
is performed.

• max steps – the maximum number of steps of the automaton to execute. In
our FSA, there are no final states, anytime the automaton arrives at a state
when none of the outgoing transitions is satisfied, the automaton terminates.
Otherwise, it terminates only after max steps are performed (or for another
reason defined by the problem domain).

6.1 Introduction and Aims 123

6.1.2 Search Space

The size of the search space for the FSA representation is influenced by the maximum
number of states NS,max. If the number of possible conditions that trigger transitions
is Ncond (in our case determined by the condition syntax, the size of the relations set
|Rel|, and the number of registers NR), the maximum total number of executable
transitions is then NTrans,max = NS,max · Ncond, since every state can react to all
possible types of conditions. Each of these transitions can lead to any of the NS,max

states and trigger any of the possible actions of T (let us assume for this derivation
that the terminals do not take arguments). Thus each of these transitions can take
NS,max · |T | + 1 forms (extra 1 for the case the transition is not present), and thus
the number of possible different automatons that can be constructed is:

|SpaceFSA| = (NS,max · |T | + 1)Ncond·NS,max ,

while we still counted only potentially functionally different state machines, i.e. not
including the ‘shadowed’ redundant transitions (those with duplicit conditions in the
same state), which bear genetic material that can become active after recombination
and mutation evolutionary operators.

The genotypic search space obviously allows for a large redundancy, both synony-
mical (which makes the fitness landscape smoother) and non-synonymical (which is
not so beneficial) – see [Rothlauf, 2002]. However, the non-synonymical redundancy
is compensated for by crossover operator being dissimilar to the standard GA 1-point
or 2-point crossovers and preserving the locality with higher probability. Therefore
the conclusions in [Rothlauf, 2002] that render non-synonymical redundancy as
unsuitable do not apply that well to our FSA genotype representation4.

For example, if NS,max = 4, NR = 1, Rel = {==},
condition syntax = (register relation [0 1]), NTrans,max = 4 · 2 = 8,
T = {write0, write1, left, right, done}, ArgT (term) = {}, ∀term ∈ T ,
i.e. a very small-sized problem, the number of automata that can be generated is
bounded by (4 · 5 + 1)2·4 = 218 ≤ 3.7 · 1010.

In case of GP-tree representation, the number of general binary trees Nbin(dmax)
of maximum depth dmax is getting huge very early too, table 6.1, [The On-
Line Encyclopedia of Integer Sequences]. In our case, this number is increased
exponentially further. In particular, if a tree has Nint internal nodes and Nleaves leaf
nodes, the number of different trees is |Nonterm|Nint · |Term|Nleaves, where Nonterm
is the set of all possible non-terminals including the arguments according to the
values of NN and ArgT , and Term is the set of all possible terminals including the
arguments according to NT and ArgN .

4The crossover is considered not so beneficial in general in the evolutionary computation
community and literature, and contributes well only in a limited set of problem classes, whereas
the mutation is essential, often sufficient, and usually more beneficial evolutionary operator.
Therefore, the claim that non-synonymical redundancy is unsuitable has a general shortcoming
that it considers only the standard GA-like algorithms and representations. This observation of
Rothlauf does not transfer well to all types of EA, particularly those that do not rely on the
crossover, rather on such mutation operators that preserve the locality.

124 Comparison of FSA and GP-trees

1 1

2 3

3 21

4 651

5 457653

6 210065930571

7 44127887745696109598901

8 1947270476915296449559659317606103024276803403

9 3791862310265926082868235028027893277370233150300118107846437701158064808

916492244872560821

10 143782197800152462818187108795511676975961937676637364970897255243860876

573905561522930787193614311130874047969884281363789163383178491456121380

35273593140724388243970453865496952651

Table 6.1: The number of binary trees of depth 1-10.

For a comparable example, if the tree has a maximum depth of 5, NT = 5,
NN = 3, NR = 1, Rel = {==}, the number of trees is bounded by
515 ·516 ·457653 = 2.131112851202487945556640625 ·1027, or for tree with maximum
depth of 4, the bound is 57 · 58 · 651 = 1.9866943359375 · 1013. On one hand, a
GP-tree of depth 4 or 5 can contain more terminals (i.e. elementary statements),
but the FSA with 4 states can express more complex loop structures.

6.1.3 Sensitive Operators

Evolutionary computations are based on very simple principles, however the actual
application always requires specialized operators that are suitable for the particular
application domain. Such specialized operators of crossover, mutation, initialization,
and optionally selection, can be enhanced when additional statistical information is
collected during the evolutionary progress. We aim at studying these additional
operators in order to improve the convergence and help the search escape local
minima. For instance,

• we will extend the representation of the FSA by counters, which count how
many times each transition and state has been used;

• a FSA normalization operator is applied each time (with probability ptrim) to
all FSAs before evaluating an individual. This operator removes all transitions
and states that were not used in runs from any starting location;

• the mutation operator that creates new transition will create it (with prob-
ability pnewinlast) in one of the states which were the terminal states of the
mutated FSA (this might have happened either by accident, or – in many
cases, because there was no reasonable transition leading out of that state,
and FSA converged in this state).

6.2 Experimental Setup 125

6.2 Experimental Setup

In order to asses the performance of the state representations we have designed five
tasks of different nature, falling in two categories: controlling a robotic agent in
a two-dimensional environment, and processing symbolic sequences prepared on a
one-dimensional bi-directional, possibly infinite tape.

6.2.1 Experiment “bit collect”

This task is designed to verify the ability of the evolutionary algorithm to encode
algorithmic structures in the chosen representation. The input to the system is a
word consisting of bits (0s and 1s) printed on a tape. The start and the end of the
word can optionally be marked by surrounding -1. The tape can either be infinite,
or finite. In the latter case, moving outside of the tape causes the program to
terminate. There is a current read/write pointer that points to one symbol on the
tape. The evolved program can perform the following operations:

• left – move the current read/write pointer one symbol to the left

• right – move the current read/write pointer one symbol to the right

• write0 – write zero to the tape at the current read/write pointer

• write1 – write one to the tape at the current read/write pointer

• done – task completed, terminate

The program has at disposition the symbol of the tape at the position of the
current read/write pointer (register R1). The task for the program is either to fill
all holes (tape positions containing zeros) with ones – in the easy version, or in a
difficult version to pack – move the symbols at the tape in such a way that the
remaining word will consist of a continuous sequence of ones, the same number as
the total number of ones in the input word. The program can write arbitrary number
of zeros on both sides of the output word. For example, the input:

10111001010001

would be transformed by a correct program to:

11111111111111

in the easy version, or to (for example):

11111110000000

126 Comparison of FSA and GP-trees

in the difficult version of the task. The computing platform in this task is similar
to the Turing Machine. The performance of the program is measured in terms of
the number of errors – each extra “1” as well as each missing “1” is penalized by
one point. In addition, all remaining holes – symbols “0” – are penalized by one
point each. Fitness function:

fitness = B − s · qs −
nstarts
∑

i=1

(ri · qr +
hi

Hi

· qh +
oi

Oi

· qo)

where nstarts is the number of random input words presented to the program, Hi

and Oi is the number of holes and ones in the ith input word respectively, hi is the
number of holes remaining in the output word, oi is the difference in the number of
ones expected (either too much or too little), ri is the number of execution steps, s
is the size of the genotype, and qs, qr, qh, and qo are weight constants. Coefficients
qh and qo were strictly more significant than qs and qr, and in balance (we used
qo = 2qh).

6.2.2 Experiment “(abcd)n”

In this task, we test the ability of the representation to encode repetitive structures.
Using the same computational model of the tape state machine as in the previous
task, the goal is to replace a continuous sequence of symbols “1” on the tape of
random length with a repeating sequence of symbols a, b, c, d. For instance, the
input:

11111111111111111111

would be transformed by a correct program to:

abcdabcdabcdabcdabcd

The allowed operations are the same as in the previous task, with the addition
of the operations that write the symbols a, b, c, and d. In a simplified version of
this task, we require the sequence (abc)n. Fitness function:

fitness = 1 − s · qs −
nstarts
∑

i=1

(
ei

li

nstarts

− ri · qr)

where ei is the number of incorrect symbols in the output word (including extra
placed or missing symbols) in the ith input word, li is the number of symbols in the
input word, and the meaning of the other symbols is the same as in the previous
task.

6.2 Experimental Setup 127

6.2.3 Experiment “switch”

This is a task with a structure that shares properties with the structures of robotic
tasks where the robot reacts to environmental percepts depending of its current
state, and enters other states when triggered by some input data. The computational
platform – a tape machine – is the same as in the previous two tasks. The task for
the program is to replace all zeros on the tape with numeric symbols 1, 2, 3, and 4.
The input sequence on the tape determines how the zeros are to be replaced: the
input contains random symbols 1, 2, 3, and 4 that are interleaved with sequences
of zeros, each 0-sequence containing up to 10 zeros. The program should replace
the zeros with the closest non-zero input on the left. When the program leaves the
tape, it is automatically terminated. For instance, the following input:

100040300002000130040000000003000020

should be transformed to:

111144333332222133344444444443333322

The performance of the program is measured as the sum of errors from the
expected string. The allowed operations are the same as in the previous tasks,
except that the program is allowed to write the symbols 0, 1, 2, 3, and 4. In a
simplified version of the task, the input may contain (and the program can write)
only the symbols 0, 1, 2, and 3. The fitness function is the same as in the task abcdn.
We have experimented with incremental versions of this task, which are described
in the results section below.

6.2.4 Experiment “find target”

In this experiment, a robotic agent is placed in a 2D environment. It understands
the following primitive control commands:

• fd – move forward a little bit (usually 20 steps)

• bk – move backward a little bit

• fdlong – move forward longer distance (usually 100 steps)

• bklong – move backwards longer distance

• lt – turn left a little bit (different angle values result in different behaviors:
90◦ results in a square grid along which the agent can move, 60◦ results in a
hexagonal grid, which is a very efficient navigational environment, other values
that are not divisors of 360◦ result in the ability of the agent to turn to many
different directions by repetitive turnings and thus exploit the environment to
higher degree – on the cost of more complex navigational sequences).

• rt – turn right a little bit

128 Comparison of FSA and GP-trees

Figure 6.3: Different environments for the “find target” task (from top-left:
experiment fence, complex environment, ten around). In the first two, the
robot (depicted by a turtle) navigates the environment towards target marked by
the cross, there are two different starting locations. In the last one, there are no
obstacles, and 10 different starting locations, all heading upwards.

• done – task completed, terminate

In addition, the agent is equipped with three binary sensors: short distance
wall detection, long distance wall detection, and target-direction sensor. The wall
detection sensors indicate whether the agent will hit an obstacle with the next fd,
or fdlong command, while the target-direction sensor indicates whether the agent
is heading towards the target. The sensor readings are always available to the agent
in form of three registers R1, R2, R3.

The task for the robotic agent is starting from an arbitrary starting location in
the 2D world to find a path to the target that does not collide with the obstacles.
Each collision is penalized. The performance of the agent is evaluated based on its
distance from the target location at the moment it stops moving (see below). When
the agent arrives at the boundary of the 2D world, it is not penalized, but it slides
along the boundary when it tries to move in a direction that is non-perpendicular
to the boundary. Since the robot should arrive to the destination from different
starting locations, it has to develop strategies that are at least somewhat general.
For instance a simple linear sequence of left and right turns and forward movements
would be a satisfactory solution in case of one starting location, but conditional
branching that results in different trajectories is essential when two or more starting

6.2 Experimental Setup 129

Figure 6.4: Viewing the progress of simulation in a web browser using a viewer
implemented as Java applet.

locations are used. Eventually, when the agent is trained at many starting locations,
it might develop a general strategy applicable to an arbitrary starting point of the
2D world. What is the limiting number of starting locations that leads to general
behavior is an interesting question to study. We have performed tests with both
types of environments: with and without obstacles. The Figure 6.3 shows three
different environments used in our experiments.

The fitness function used in this experiment:

fitness = B − s · qs −
nstarts
∑

i=1

(d2(T, Pi) + ri · qr + hi · qh)

where nstarts is the number of starting locations, d(X, Y) is a function returning
the distance of two points X and Y , T is the target location, Pi are the locations
where the robot stopped moving, s is the size of the genotype, ri is the number of
execution steps – either state transitions, or evaluated nodes in GP-tree, and hi is
the number of times the agent crosses the edge of the pond. The weight coefficients
qs, qr, qh are chosen to comply with strict significance relation:

hits ≫ squared distance ≫ size ≫ number of steps

130 Comparison of FSA and GP-trees

B is a sufficiently large number to keep the fitness positive – and maximizing.

6.2.5 Experiment “dock”

In this experiment, we utilize the ability of the Imagine software environment to
connect to simulated and real robots. A round robot is placed in a rectangular
environment. It understands the same set of primitive operations as in the task
“find target” above. In addition, the robot is equipped with bottom light sensors
in the front and in the back that can distinguish white and black color on the floor.
The primitive operations stopON and stopOFF turn on the sensitivity to the black
color: whenever the front or rear part of the robot – depending whether it is moving
forward or backwards – enters or remains above the black surface, the movement
commands are canceled. The rotation commands lt and rt are not suppressed.
The feedback to the program is passed through the register R1, which is set to 0,
if the robot stopped moving because it entered black surface, and it is reset to 1
otherwise.

The task for the robot is to navigate to a target location, which is marked by
a black rectangle. A pair of lines parallel to the longer side of the arena rectangle
that are extensions of two opposite sides of the rectangle pass though the whole
width of the environment. The starting locations of the robot are in a quadrant
“under” these two parallel lines and “to the left” of the rectangle, see Figure 6.4,
which shows the simulated environment as viewed by an applet in a web browser.

The performance of the program is measured as the distance of the center of the
robot from the center of the rectangle when it stopped moving.

fitness = B − s · qs −
nstarts
∑

i=1

(d2(T, Pi) + ri · qr)

6.3 Results

In this section, we review and analyze the experiments we performed in order to
evaluate the FSA representation – in particular by comparing it to the usual GP-
tree representation. The tasks are described in the section 6.2, the representations
in section 6.1.1, and other details in the section on the software package Evolve with
Imagine in the section 5.4.

Various flavors of the “find target” task with GP-tree representation were used
to build and test the software engine, and find starting feasible set of parameters.
The GP-trees were successful in quickly encoding specific trajectories. While the
number of the starting locations remained low, only a couple of sensor conditions
in a resulting program were sufficient to generate different and correct5 trajectories.
Utilizing the seq non-terminal, the trajectories represented as GP-trees are easy
to extend with preceding or succeeding trajectory segments. Encoding trajectories,
which have random and non-repetitive shapes using FSA representations is far less

5By correct we mean that the agent both successfully avoids collisions with obstacles and
navigates from the assigned starting location to the target.

6.3 Results 131

 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 0 100 200 300 400 500 600

fit
ne

ss

generation

Task find_target (environment experiment_fence), comparison of GP-tree and FSA representations

FSA representation
GP-tree representation

Figure 6.5: Average of the fitness of the best individuals in the “find target” task,
environment experiment fence, comparison from 13 FSA and 17 GP-tree runs.
The maximum possible fitness is 5000.

suitable. Almost each new trajectory segment requires assembling a new fragile state
with a very specific structure (number of transitions, their destinations, and actions
on the transitions). The new state is, during the continuation of the evolution,
subject to further disruptive changes. Chart at Figure 6.5 shows the progress of
the evolution – best individuals for both GP-tree and FSA representations in an
environment with two starting locations and 16 obstacles arranged in a row. We
required that the agent arrives to the target location (in a distance less than one
short step). The state-representation evolved solution in 21, 70, 77, 105, 120, 148,
157, 182, 197, 211, 486, 520, and 558 generations, while the GP-trees evolved in 19,
21, 21, 24, 32, 33, 43, 43, 43, 46, 47, 50, 73, 73, 73, 73, 75, and 98 generations. The
fastest-evolved GP-tree and FSA are shown in table 6.2.

The Figure 6.6 shows the trajectories of best individuals from all generations
for both representations. Characteristic features of the GP-tree trajectories are
branching, and easy extensions, while the FSA trajectories are good at making
loops and traveling long distances where the sensor conditions do not change.

Both representations evolved solutions for complex environment – an environ-
ment with two starting locations, and 40 obstacles. Tree representation used 57
generations, while FSA representation used 109 generations (both with population
size 250, probability of mutation 0.7, probability of crossover 0.5, strict brooding
crossover with brood size 4, tournament selection with size 4 and prob. 0.8, 15
unique elite individuals). Figure 6.7 shows the trajectories of the best individuals
in all generations for both representations. We can observe from the figure that
FSA representation evolved first an individual that was avoiding the obstacles from
the left, and only later preferred the direction towards the center. In comparison,

132 Comparison of FSA and GP-trees

[seq ()

[seq ()

[seq ()

[if (R1 > 1)

[rt]

[repeat (1)

[seq ()

[seq ()

[repeat (4)

[longfd]

[lt]]

[lt]]

[bk]]

[fd]]]

[repeat (6)

[fd]

[repeat (2)

[fd]

[lt]]]]

[if (R1 > 1)

[nop]

[repeat (1)

[repeat (10)

[fd]

[bk]]

[seq ()

[rt]

[fd]]]]]

[fd]]

6 states

—state 1 with 2 transitions

[R3 < 0] 2 [fd]

[R3 < 1] 2 [bk]

—state 2 with 1 transitions

[R3 < 1] 3 [bk]

—state 3 with 1 transitions

[R2 < 1] 4 [bk]

—state 4 with 1 transitions

[R3 < 1] 5 [bk]

—state 5 with 2 transitions

[R3 > 1] 6 [rt]

[R1 > 0] 5 [fd]

—state 6 with 2 transitions

[R1 > 0] 2 [rt]

[R1 < 1] 5 [longfd]

Table 6.2: A final evolved GP-tree and FSA (after trimming) for the environment
experiment fence from one evolutionary run.

6.3 Results 133

Figure 6.6: Example trajectories of evolved individuals using the GP-tree
(left) and the FSA (right) representations, task “find target”, environment
experiment fence. The set of trajectories resembles the internals of the
representations: loops are easier to be formed in FSA representations, the GP-
tree representation that is subject of crossover and structural mutation often takes
a part of a solution and extends it with further trajectory segments.

Figure 6.7: Trajectories of the best individuals from all generations in one evolu-
tionary run, task “find target” with complex environment. GP-tree representation
is on the left-hand side, FSA representation is on the right-hand side.

the tree representation approached the target location in gradual approximation,
coming somewhat closer each time. The tree representation encoded the trajectories
more directly, extending them slowly by successfully appended segments. The FSA
representation encoded strategies, which either performed well – in a lucky case,
or took the individual astray en route to the target. This is supported also by
the trajectories of the evolved best individuals in both representations (Figure 6.8):
the FSA individual arrives to the target and remains circling around it, while the
GP-tree individual arrives to the target and terminates. However, both runs failed
to evolve a general solution, the Figure 6.9 shows their performance when started
from 7 random starting locations. It yet remains to see under what circumstances
a general strategy could be evolved. We tried evolution using all starting locations
shown in Figure 6.9, but we terminated the experiment after several days of no
progress.

134 Comparison of FSA and GP-trees

Figure 6.8: Trajectories of the best individuals from final generation in one evolu-
tionary run, task “find target” with complex environment. GP-tree representation
is on the left-hand side, FSA representation is on the right-hand side.

Figure 6.9: Performance of the best individuals from final generation in one
evolutionary run when started from 7 other starting locations, task “find target”
with complex environment. Small crosses depict the final location the individual
achieved. GP-tree representation is on the left-hand side, FSA representation is on
the right-hand side.

6.3 Results 135

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 0 10 20 30 40 50 60 70

fit
ne

ss

generation

Task find_target, environment ten_around, comparing GP-tree and FSA representations

GP-tree representation
FSA representation

Figure 6.10: Performance of the FSA and GP-tree representations on task
“find target”, environment ten around. Average of 25 (GP-tree) and 23 (FSA)
runs. FSA individuals quickly learn to arrive close to the target, but take longer
time to fine-tune the solution to arrive exactly to the target location than GP-tree
individuals.

In ten around environment with 10 starting locations and no obstacles, we
expected a general navigational strategy to arise. Both representations evolved
solutions very quickly, examples are shown in table 6.3. Most of the time, FSA
representation reached a correct solution faster, but the difference is not significant
(see Figure 6.10).

Figure 6.12 shows the performance of the evolved individuals from randomly
selected runs for 132 different uniformly distributed starting locations. The agents
were restricted with 50 execution steps (same parameter was used during the
evolution). The size of the circle corresponds to the performance from the given
starting location – the smaller the final distance of the agent from the target
the larger the circle. The lines correspond to the trajectories of the agents. We
can see that FSA performs better, because the execution steps are more powerful:
each execution step corresponds to a single state transition, when the agent either
performs a move, or a turn. In the GP-tree representation, execution steps
correspond both to executing the nodes containing terminals and non-terminals.
If the number of execution steps was not restricted, both representations reached
target in an optimal way from any location.

We have experimented with both flavors of the “bit collect” task: an easy version
where the holes (zeros) in the input word need to be filled with ones, and a much more
complex one, where the holes need to be “moved away”. In the easy version, both

136 Comparison of FSA and GP-trees

2 states
—state 1 with 2 transitions
[R3 < 0] 2 [longbk]
[R3 > 1] 2 [fd]
—state 2 with 2 transitions
[R3 > 1] 2 [fd]
[R2 > 0] 2 [lt]

[repeat (4)
[while (R2 < 1)

[if (R2 < 0)
[nop]
[while (R3 < 1)

[rt]
[fd]]]

[nop]]
[lt]]

Table 6.3: A final evolved GP-tree and FSA (after trimming) for the environment
ten around from one run of simple “find target” task.

Figure 6.11: Trajectories of the best individuals from final generation in one
evolutionary run, task “find target” with ten around environment. GP-tree
representation is on the left-hand side, FSA representation is on the right-hand
side.

Figure 6.12: Trajectories of the best individuals from final generation in one
evolutionary run, task “find target” with ten around environment, starting
locations that were not used in training. GP-tree representation is on the left-hand
side, FSA representation is on the right-hand side.

6.3 Results 137

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 0 10 20 30 40 50 60 70

fit
ne

ss

generation

Task bit_collect, only filling holes

GP-tree representation
FSA representation

Figure 6.13: Performance of the FSA and GP-tree representations on simple version
of task “bit collect”. Average of 19 (GP-tree) and 22 (FSA) runs. The programs
were presented 20 input words of length 5 to 30, containing about 75% of ones, and
were allowed to make at most 200 execution steps. Other parameters: population
size: 250, prob. crossover: 0.5, brooding crossover (number of non-strict broods 3,
30% of training samples used for brooding), combining crossover (GP-trees): 0.25,
prob. mutation: 0.7, 7 elite individuals, tournament selection (tournament size 4,
probability 0.8), max. GP-tree depth: 12, max. number of FSA states/transitions:
22/10, FSA shuffle mutation: 0.4.

representations evolved correct solutions quickly, although the FSA representation
was quicker on average, see Figure 6.13.

The difference of performance is larger in the more complex version of the task,
see Figure 6.14. None of the runs evolved correct solution in 600 generations. A
correct solution required the general strategy to be acquired – that is repeatedly
search the input word for a hole, then move or propagate it to the end or the start
of the input word. This strategy is difficult to discover in approximating steps.
Evolved solutions were thus typically only estimating an average number of holes
to be compensated for. Thus, we have still not sufficiently answered the question
whether the GP-tree or FSA representation is more successful in acquiring [this kind
of] algorithmic solutions, this remains for future investigations, the task was either
easy or too difficult for both.

The task (abcd)n, proved to be a challenging one for both representations. The
programs replacing the whole input word with the same symbol quickly appeared
scoring high as they filled 25% of tape slots correctly. Gradual modification of this
dominant strategy appeared to be non-trivial, because our computational model

138 Comparison of FSA and GP-trees

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 1550

 1600

 1650

 1700

 0 100 200 300 400 500 600

fit
ne

ss

generation

Task bit_collect, with requirment to move holes, tournament selection

GP-tree representation
FSA representation

Figure 6.14: Performance of the FSA and GP-tree representations on more complex
version of task “bit collect”. Average of best individuals in each generation from
9 (GP-tree) and 13 (FSA) runs. Other parameters were the same as in the simple
version of the task, we terminated the runs after 600 generations if the solution did
not evolve.

requires the program to first write the symbol and then move to the next tape
slot with a separate instruction. Thus producing an individual that alternates two
symbols already requires 4 correctly-tuned transitions, while filling with one symbol
needs only two. GP-tree representation performed somewhat better on this task,
see Figure 6.15. The while non-terminal used in GP-trees is very powerful in this
task. The programs need to keep writing the repeated sequence and moving right
while there is a non-zero symbol in the input. Only 17 out of 23 FSA runs (74%)
evolved a correct solution, while 23 out of 25 GP-tree runs (92%) succeeded within
2000 generations. The remaining 2 GP-tree runs placed only 2 symbols incorrectly,
while the incorrect FSA erred on 7–14 symbols. The table 6.4 shows the shortest
evolved GP-tree and FSA, they are both easy to trace and understand.

The task switch is an example, where state representation outperforms the
GP-tree representation, and here we have performed several experiments. We
started with experiments with four symbols 1,2,3,4, however, we found the task
to be too difficult – none of the GP-tree runs found anything better than “doing
nothing” solution, and only 3 out of 10 runs with FSA representation found a
complete solution within 2000 generations, see Figure 6.16. Thus we reverted to
a simpler version of the task with 3 symbols 1,2,3. Figure 6.17 shows the best
fitness progress for both representations. The convergence of FSA runs varied very
much – the fastest run found solution after 77 generations, the slowest after 1887
generations, and on average the solution was found after 594 generations (median
383). One possible explanation of this local-optimum traps could be our using of the

6.3 Results 139

6 states

—state 1 with 5 transitions

[R1 == 1] 2 [write2]

[R1 == 5] 2 [right]

[R1 == 3] 3 [write2]

[R1 == 2] 2 [right]

[R1 == 4] 2 [right]

—state 2 with 3 transitions

[R1 == 5] 1 [write4]

[R1 == 1] 4 [write4]

[R1 == 2] 4 [right]

—state 3 with 6 transitions

[R1 == 0] 3 [left]

[R1 == 4] 2 [write3]

[R1 == 2] 2 [write2]

[R1 == 5] 2 [left]

[R1 == 3] 2 [right]

[R1 == 1] 3 [write5]

—state 4 with 5 transitions

[R1 == 3] 1 [done]

[R1 == 5] 1 [right]

[R1 == 2] 5 [right]

[R1 == 1] 6 [write4]

[R1 == 4] 5 [right]

—state 5 with 1 transitions

[R1 == 1] 4 [write5]

—state 6 with 3 transitions

[R1 == 2] 1 [write2]

[R1 == 4] 3 [write3]

[R1 == 0] 6 [right]

[while (R1 == 1)

[while (R1 == 1)

[seq ()

[while (R1 == 1)

[seq ()

[write2]

[seq ()

[right]

[write3]]]

[seq ()

[right]

[write4]]]

[seq ()

[right]

[write5]]]

[right]]

[right]]

Table 6.4: A final evolved GP-tree and FSA (after trimming), task “abcdn”.
Symbols a, b, c, d are represented as 2, 3, 4, 5.

140 Comparison of FSA and GP-trees

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

fit
ne

ss

generation

Task abcdn, performance of GP-tree and FSA representations

GP-tree representation
FSA representation

Figure 6.15: Performance of the FSA and GP-tree representations on task “abcdn”.
Average of 25 (GP-tree) and 23 (FSA) runs. The programs were presented with
input word containing 32 ones, and had 150 execution steps for writing the output
word. Population size 300, prob. crossover 0.6, 15 strict-elite individuals. Other
parameters were the same as in the “bit collect” task, we terminated the runs after
2000 generations if the solution did not evolve.

fast-converging tournament selection (we used tournament size 2, and probability
of selecting winning individual 0.8), however, since fitness-proportionate selection
seems to perform worse, and since all runs eventually evolved a target solution, we
did not try to replace it with different selection mechanism in this case. How to
escape these local optima remains for future studies.

With one exception, all runs with the FSA representation evolved a correct
solution6, while no runs with the GP-tree representation found a correct solution,
both within 2000 generations. All parameters common for both representations were
the same. The smallest evolved FSA contained four states, but used only three, and
it is shown at the Figure 6.18 after pruning redundant transitions and state. The
distributions of the sizes of the best individuals in the final generations and their
useful parts are shown in table 6.5. In our runs, we did not prune the FSA during
the evolution in order to keep the possibly reusable genetic material in the states
that are not reachable from the starting state.

Even though this task has been designed with having the FSA representation in
mind, we believe that many tasks in various domains, including autonomous robot
control, may have similar structure. We believe and our results suggest that the
GP-tree and FSA representations are to high degree complementing each other.

6In one run, the evolved solution produced usually no errors, but still failed on some input
strings.

6.3 Results 141

total num. of states FSA count
4 1
6 1
7 1
8 4
10 6
11 1
12 4
13 2
14 3
15 11

num. of reachable states FSA count
3 2
4 1
5 2
6 5
7 6
8 6
9 5
10 3
11 2
12 1
13 1

Table 6.5: The number of states in the evolved FSA (left) and the number of states
that are reachable (right) in the 34 runs of the “switch” task with three symbols.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

fit
ne

ss

generation

Task switch with 4 symbols

GP-tree representation
FSA representation

Figure 6.16: Average of the best fitness from 14 (GP), or 10 runs (FSA) on a “switch”
task (four symbols) with tournament (FSA), or fitness proportionate (GP-trees)
selection, population size 300, prob. of crossover 0.5, crossover brooding of size 3,
with 30% test cases used to evaluate brooding individuals, probability of mutation
0.9, 15 elites, each individual evaluated on 10 random strings, input word length
randomly varying from 10 to 60 with maximum 10 continuous 0-symbols, maximum
number of GP-tree or FSA execution steps 300, FSA: pshuffle=0.4, number of
states 1–15, number of transitions: 1–15, GP: pcross combine=0.25, maximum tree
depth=15. The number of evaluations is proportional to the generation number.
The error bars show the range of fitness progress in all runs.

142 Comparison of FSA and GP-trees

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

fit
ne

ss

generation

Task switch with 3 symbols, comparison GP-tree and FSA representations

GP-tree representation
FSA representation

Figure 6.17: Average of the best fitness from 15 (GP), or 34 runs (FSA) on a
“switch” task (three symbols) with tournament selection, population size 300, prob.
of crossover 0.5, crossover brooding of size 3, with 30% starting locations used to
evaluate brooding individuals, probability of mutation 0.9, 15 elites, each individual
evaluated on 10 random strings, input word length randomly varying from 10
to 60 with maximum 10 continuous 0-symbols, maximum number of GP-tree or
FSA execution steps 300, FSA: pshuffle=0.4, number of states 1–15, number of
transitions: 1–15, GP: pcross combine=0.25, maximum tree depth=15. The number
of evaluations is proportional to the generation number. Also notice that due to
the randomness of the testing input strings, the performance in the succeeding
generation can decrease, even though the quality of the individual remains or even
increases. The error bars show the range of fitness progress in all runs, notice
that the partial overlap is only due to the randomness of strings, but the evolved
individuals in all FSA runs outperform those with GP-trees.

6.3 Results 143

Tasks where FSA perform well may be difficult for GP-tree representation. This
hypothesis, however, needs to be studied in more depth, and verified on more cases.
This is also why we use FSA representation in our experiments described in the later
chapters.

A win/win compromise could be hybrid representations – either GP-trees with
state machines in the nodes, or state machines with GP-tree code on the state
transitions, or inside of the states. The choice between the two should again depend
on the task structure.

We observe and conclude that the tasks where FSA representation is suitable
deal with processing streams of data, where chunks of data of the same type repeat
in many instances, irregularly, or randomly, and where the sequence of interactions
of the evolved program with the input contains specific patterns and reactions.
In this context, it would be very interesting to compare the performance against
other representations. For instance, for the purposes of automatic target detection
classification problem, [Benson, 2000] developed EMMA representation, which is a
FSM that contains GP-trees in each state. Also of a high relevance is the work of
Koza [Koza, 1994] on automatically defined functions.

Incremental Evolutionary Experiments

We were not satisfied with the low performance on the 4-symbol version of the
“switch” task, and studied if it could be evolved incrementally – starting with simpler
task and when solved, increasing the task difficulty, and optionally modifying the
set of terminals.

We started with a simple idea of first evolving “switch3” (using the write1--3

terminals) and then proceeding to “switch4” by adding the write4 terminal, and
modifying the fitness function and input words generator. We wanted to verify if the
number of evaluations required for evolving the complete solution will be less than
in a non-incremental “switch4” task. We let the evolution proceed in the first step
for 30 extra generations after the solution has been found in order to optimize it
and spread more in the population. Figure 6.19 compares the incremental and non-
incremental runs: the line for the first incremental step plots the average from all
runs – if the run proceeded to the 2nd step, we assume the final fitness from that run
in subsequent generations; the line for the second incremental step averages in each
generation all the runs that already proceeded to the second step. The evolution
progressed to the second incremental step in generations 1228, 563, 797, 172, 307,
1749, 616, 1192, 229, 924, 918, 1071, 681, 126, 728, 1476, 1679, 852, 327, 556, 788.

From the chart, we can read that the incremental runs did not perform better
in this case, and in fact the correct solution was found only in 4 out of 21 runs
within 2000 generations. Our analysis attempts to explain this as follows: in the
incremental runs, we forced the evolution to progress in one particular direction
(evolve “switch3” first). However also the fitness function in the non-incremental
case rewarded the partial “switch3” solutions. Thus the selection pressure in
the direction of such partial solutions was similar in both cases. However, non-
incremental cases allowed and rewarded also other partial solutions that solved

144 Comparison of FSA and GP-trees

21 4

0, write3

1, write1

2, write2

3, write3

0, write2

1, right

2, write2

3, write3

−1, left

0, write1

2, right

1, write1

3, right

Figure 6.18: The best evolved FSA in the switch task with three symbols.

other 75% of the complete task, and these partial solutions might lay on shorter
or simply different path to the complete solution, omitting to pass through the
complete “switch3” solution “gateway”. This disadvantage exceeded the advantage
of dealing only with write1--3 terminals in the first incremental step – most of the
difficulty lay in the final step, where all four symbols were involved.

In the following experiment, we organized the evolution into four incremental
steps – requiring first evolution of task dealing with one, then two, three, and finally
four symbols. From the above analysis, we could expect that the runs would not
outperform the non-incremental ones. Figure 6.20 confirms this. The transitions to
the next incremental step occurred in 31st generation after first step, i.e. solution
was found in the first generation, 71st–113th generation after second step, and 183rd–
958th (avg. 517) generation after third incremental step.

In the last two experiments, we considered other options for helping the evolu-
tionary process in order to make the incremental method more efficient. After each
incremental step, we have frozen the evolved best individual that was a complete
and correct solution to the task in that step, and continued the evolution. In later
steps, more states and transitions were added, keeping the frozen part unmodified,
and dominant. By dominant we mean that the frozen transitions in each state were
placed on top, and were chosen first. As a consequence, the later evolutionary step
could not change the frozen evolved behavior, only add transitions and states that
reacted to new input – novel symbols that were not part of input word or terminal
set in earlier steps.

On the other hand, in the first of the two experiments, once a new symbol appears
on the input, the FSA could enter another state and react to the old symbols in
a different way, and thus disturb the frozen behavior strongly. In other words, the
terminal set in later incremental steps still included the terminals to write the old
symbols, for instance, the terminals write1, write2 in the third step.

In the second of the two experiments, the terminal sets in respective incremental
steps contained only the new symbol – thus write1 was only possible during the
first step, write2 during the second step, write3 in the third, and write4 in the
last.

6.3 Results 145

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

fit
ne

ss

generation

Task switch with 4 symbols compared to incremenal 3 to 4

1st incremental step (3 symbols)
2nd incremental step (4 symbols)
non-incremental runs (4 symbols)

Figure 6.19: Average of the best fitness from 21 (incremental) and 10 (non-
incremental) runs on a 4-symbol switch task with FSA representation and
tournament selection, population size 300, prob. of crossover 0.5, crossover non-
strict brooding of size 3, with 30% starting locations used to evaluate brooding
individuals, probability of mutation 0.9, 15 elites, each individual evaluated on 10
random strings, input word length randomly varying from 10 to 60 with maximum
10 continuous 0-symbols, maximum number of execution steps 300, pshuffle=0.4,
number of states 1–15, number of transitions: 1–15, The number of evaluations is
proportional to the generation number.

In both experiments, before freezing the FSA, we have removed all unused
states and transitions, and we always increased the number of allowed states when
proceeding to the next incremental step. We have also changed the number of
generations used to fix the solution after it has been evolved in each step to be more
gradual, in particular e = (10 · s), where e is the number of extra generations added
in step s.

Figure 6.21 shows an evolutionary progress from the first of the two experiments.
The transitions to next incremental steps occurred in 11th, 36th–54th and 82nd–211th

(avg. 132) generation. Table 6.6 shows the evolved frozen individuals from the run
that evolved after lowest number of generations.

As expected, the second of the two experiments evolved faster, the performance
of the best individuals in each generation is shown at Figure 6.22. The transitions
to the next incremental step occurred in 11th, 32nd–46th, and 65th–298th (avg. 132)
generation. Both of the last two incremental experiments performed significantly
better than the non-incremental experiment.

Finally, we run the “dock” experiment, which was at the very start of the

146 Comparison of FSA and GP-trees

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

fit
ne

ss

generation

Task switch with 4 symbols compared to incremenal 1 to 4

1st incremental step (1 symbol)
2nd incremental step (2 symbols)
3rd incremental step (3 symbols)
4th incremental step (4 symbols)

non-incremental runs (4 symbols)

Figure 6.20: Average of the best fitness from 11 (incremental) and 10 (non-
incremental) runs on a 4-symbol switch task with FSA representation and
tournament selection. Same parameters as in 3 to 4 incremental task.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

fit
ne

ss

generation

Task switch with 4 symbols compared to incremental 1 to 4

1st incremental step (1 symbol)
2nd incremental step (2 symbols)
3rd incremental step (3 symbols)
4th incremental step (4 symbols)

non-incremental runs (4 symbols)

Figure 6.21: Average of the best fitness from 10 runs on a 4-symbol switch task with
FSA representation and tournament selection. Individuals were frozen at the end of
each step, and full set of write-terminals was available. Same parameters as in 3 to
4 incremental task.

6.3 Results 147

step1: 1 states

—state 1 with 2 transit.

[R1 == 1] 1 [right]

[R1 == 0] 1 [write1]

step 2: 3 states

—state 1 with 4 transit.

[R1 == 1] 1 [right]

[R1 == 0] 1 [write1]

[R1 == 2] 2 [right]

[R1 == -1] 2 [left]

—state 2 with 4 transit.

[R1 == 1] 3 [done]

[R1 == -1] 1 [left]

[R1 == 2] 3 [write2]

[R1 == 0] 3 [write2]

—state 3 with 3 transit.

[R1 == 2] 3 [right]

[R1 == 0] 1 [left]

[R1 == 1] 3 [right]

step3: 4 states

—state 1 with 5 transit.

[R1 == 1] 1 [right]

[R1 == 0] 1 [write1]

[R1 == 2] 2 [right]

[R1 == -1] 2 [left]

[R1 == 3] 3 [right]

—state 2 with 5 transit.

[R1 == 1] 4 [done]

[R1 == -1] 1 [left]

[R1 == 2] 4 [write2]

[R1 == 0] 4 [write2]

[R1 == 3] 4 [right]

—state 3 with 4 transit.

[R1 == 2] 2 [left]

[R1 == 3] 4 [right]

[R1 == 0] 4 [write3]

[R1 == 1] 2 [write3]

—state 4 with 4 transit.

[R1 == 2] 4 [right]

[R1 == 0] 1 [left]

[R1 == 1] 4 [right]

[R1 == 3] 4 [right]

step4: 5 states

—state 1 with 6 transit.

[R1 == 1] 1 [right]

[R1 == 0] 1 [write1]

[R1 == 2] 2 [right]

[R1 == -1] 2 [left]

[R1 == 3] 3 [right]

[R1 == 4] 4 [right]

—state 2 with 5 transit.

[R1 == 1] 5 [done]

[R1 == -1] 1 [left]

[R1 == 2] 5 [write2]

[R1 == 0] 5 [write2]

[R1 == 3] 5 [right]

—state 3 with 5 transit.

[R1 == 2] 2 [left]

[R1 == 3] 5 [right]

[R1 == 0] 5 [write3]

[R1 == 1] 2 [write3]

[R1 == -1] 2 [right]

—state 4 with 5 transit.

[R1 == 4] 2 [write1]

[R1 == 1] 2 [done]

[R1 == -1] 2 [write1]

[R1 == 3] 2 [write4]

[R1 == 0] 2 [write4]

—state 5 with 5 transit.

[R1 == 2] 5 [right]

[R1 == 0] 1 [left]

[R1 == 1] 5 [right]

[R1 == 3] 5 [right]

[R1 == 4] 4 [right]

Table 6.6: Evolved frozen individuals in the incremental steps 1–4, switch task with
four symbols.

148 Comparison of FSA and GP-trees

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

fit
ne

ss

generation

Task switch with 4 symbols compared to incremental 1 to 4

1st incremental step (1 symbol, write 1 only)
2nd incremental step (2 symbols, write 2 only)
3rd incremental step (3 symbols, write 3 only)
4th incremental step (4 symbols, write 4 only)

non-incremental runs (4 symbols)
4th incremental (4 symbols, all terminals)

Figure 6.22: Average of the best fitness from 10 runs on a 4-symbol switch task with
FSA representation and tournament selection. The incremental runs had restricted
set of terminals. The curve from the previous experiment (full set of terminals) is
also plotted for comparison. Same parameters as in 3 to 4 incremental task.

motivation for this work. We tried several different angles for one turning step,
and different moving steps. Finally, we attempted to evolve a solution with
turning angle=90o, short moving step=20, and long moving step=400. Since
we have only one installation of the simulator of the remotely-operated robotics
laboratory, and the simulator performs only couple of times faster than the real
robot, one evolutionary run takes several days. We therefore set to implement a
simulator of a simulator directly as part of EI, speeding up the runs by several
orders of magnitude. We ran the algorithm with both representations for 2000
generations, with population size 300, tournament selection (4, 0.8), 10 different elite
individuals, strict brooding crossover with 2 broods, 0.5 crossover probability, 0.7
mutation probability. Figure 6.23 shows that the GP-tree representation performed
better than the FSA representation.

Here, another important difference between our implementations of the GP-tree
and FSA representations comes to the surface. The GP-tree representation can
execute commands in a predefined sequence ignoring all sensor readings. On the
contrary, each state transition in the FSA representation is triggered only when
its transition condition is satisfied – i.e. a particular register contains the required
value, i.e. the sensor reading gives that required value. This has two consequences.

First, the FSA representation is more likely to evolve solutions, where the
sensitivity to environmental events is important. If in addition there is a possibility
of approximating the solution to a large degree using a predefined deterministic

6.3 Results 149

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0 500 1000 1500 2000

fit
ne

ss

generation

Task dock, comparison of GP-tree and FSA representations

FSA representation
GP-tree representation

Figure 6.23: Performance of the GP-tree and FSA representations on simulated
“dock” task. Best individual fitness from each generation, average from 10 runs.
Error bars show range.

sequence of commands, the FSA solutions may achieve a better quality (utilize the
sensors instead of deterministic sequences). In this particular experiment, one of
the GP-tree solutions is shown in table 6.7.

This solution is exploiting the feature of robots being allowed to push against
the wall without punishment, which helps them in aligning. The robot aligns itself
at the bottom edge of the rectangular area first: it travels backwards, more than the
available space allows. Thus, regardless of the y-coordinate of its starting location,
it always becomes “horizontally” aligned with other runs started from other starting
locations. Next, the robot travels forward to acquire the correct y-coordinate, and
then turns right, where again, it travels all the way forward, until it pushes against
the right edge, and becomes aligned also “vertically”, having the same x-coordinate
regardless the x-coordinate of its starting location. Finally, the robot travels back
to acquire the requested target location.

The second consequence regards the set of registers available for the FSA
representation in a particular experiment. In cases, when the task might require
deterministic sequences that do not depend on the sensory input, the set of registers
that are used in FSA transitions should include constant registers in addition to those
mapped to sensor values. In that way a set of states can be connected by transitions,
which are always satisfied and a deterministic piece of behavior can be evolved.
However, even if the constant registers are available, the GP-tree representation is
more suitable for evolving deterministic sequences of commands thanks to the seq

non-terminal.

150 Comparison of FSA and GP-trees

[seq
[repeat (6)

[longbk]
[repeat (10)

[longfd]
[rt]]]

[repeat (7)
[longfd]
[repeat (8)

[longfd]
[repeat (3)

[longbk]
[bk]]]]]

Table 6.7: The best evolved GP-tree solution in the “dock” task when the robots
are allowed to push towards wall without penalty.

Finally, we aimed at finding solutions that are not utilizing the “aligning on
the border” feature, because this may contribute to a mechanical damage of the
wheels and engines of real robots. We therefore ran the experiment again, giving
a penalty (qh = 3) for each movement, which collided with one of the edges of the
rectangular area. The overall performance of individuals evolved in 2000 generations
dropped slightly, and typical solutions were unable to utilize sensors, only moving
the robot somewhere close to the target, see Figure 6.25. However, in few cases, the
solutions did utilize the sensors and successfully navigated inside of the target square,
FSA representation finding a better solution than the GP-tree representation, see
Figure 6.26. Individuals for both representations are shown in table 6.8 (GP-tree
representation individual achieved fitness 9.67399 and FSA representation individual
achieved fitness 9.77089).

Role of the Crossover Operator and Selection Methods

We were curious about the contribution of the crossover operator to the evolutionary
progress. We repeated the “switch3” experiment with the probability of crossover
equal to zero, thus relying only on the structural mutation operators. Figure 6.27
plots the average of the best fitness for both types of runs, with and without the
use of crossover. The performance is approximately the same when plotted against
the generation number, however, the runs with crossover used extra evaluations due
to the use of brooding crossover (num evaluations = population size · pcross · 2 ·
crossover brooding · num starts · cross brood num starts q). This suggests that
the mutation operators are sufficient for evolutionary progress, and/or that too few
reusable and easy-to-combine modules emerged throughout the evolution. This,
however, could be the case in other tasks or in general, and therefore we have used
the crossover operator in our experiments, believing that a richer set of operators
should lead to higher potential of the algorithm even at the cost of slower convergence

6.3 Results 151

15 states (unused states not shown)

—state 1 with 1 transitions

[R1 == 1] 3 [longfd]

—state 2 with 1 transitions

[R1 == 1] 11 [longfd]

—state 3 with 1 transitions

[R1 == 1] 6 [stopON]

—state 5 with 2 transitions

[R1 == 0] 2 [longfd]

[R1 == 1] 7 [longfd]

—state 6 with 1 transitions

[R1 == 1] 12 [bk]

—state 7 with 2 transitions

[R1 == 1] 8 [longbk]

[R1 == 0] 5 [stopOFF]

—state 8 with 1 transitions

[R1 == 1] 5 [longfd]

—state 10 with 1 transitions

[R1 == 1] 3 [rt]

—state 11 with 1 transitions

[R1 == 1] 10 [longfd]

—state 12 with 1 transitions

[R1 == 1] 5 [fd]

[repeat (1)

[repeat (3)

[longfd]

[seq ()

[lt]

[repeat (6)

[longbk]

[stopON]]]]

[repeat (1)

[repeat (2)

[seq ()

[rt]

[repeat (4)

[longfd]

[longfd]]]

[if (R1 == 0)

[done]

[stopOFF]]]

[seq ()

[seq ()

[lt]

[longfd]]

[longfd]]]]

Table 6.8: Selected evolved individuals with the best performance for the “dock”
task. The FSA individual is also shown at the Figure 6.24.

152 Comparison of FSA and GP-trees

11 210

7 58

1 6 123
longfd

longfd

longfdlongfd

longfd

longfdlongbk

fd

rt

bk

stopOFF

stopON

transition when robot did not stop on line or "stop is OFF"

transition when robot stopped on line because "stop was ON"

no transition, FSA terminates if the robot stopped on line

Figure 6.24: A FSA that evolved in the “dock” task. The robot first moves forward
in the loop of states 5–7–8 until it arrives to line, then it moves forward three
more times (states 2–11–10), turns right, and proceeds again until it stops at line
(the left line of the target square). Next, it moves into the square (states 2–11–10
again), turns right facing now down, and finally the FSA terminates when the robot
attempts to move back in the state 6 when it encounters a line (top line of the target
square as the robot is facing down).

rate.
In the following experiment, we compared the performance of two different

evolutionary selection methods: tournament selection and fitness-proportionate
selection. Figure 6.30 and Figure 6.28 show the performance on two different tasks
and two different representations. In all comparisons we performed, the tournament
selection converges faster and leads to either best or better final evolved solution.

We have also performed several experimental runs with the HMM representation
on the “abcdn” experiment, however we either did not find a correct set of param-
eters, or the representation was not capable of better performance than the FSA
representation. This remains for the further study.

6.3 Results 153

Figure 6.25: Trajectories for the evolved individuals in typical runs: GP-tree
representation on the left-hand side, FSA representation on the right-hand side.
Starting locations are marked by a small cross in a circle, and final positions are
shown by a small cross. Trajectories for 4 starting locations are shown. The GP-tree
individual simply moves forward and right the same distance regardless its starting
location. The FSA individual loops several times in a square and terminates in the
corner closest to the target, thus exploiting the feature of terminating the individual
after certain number (80) of steps – i.e. the individual correctly times its loop that
consists of several forward and backward movements (only the resulting trajectory
can be seen at the figure, not the individual movements). The robot on the bottom-
right is shown for illustration: it is using a downwards-oriented light sensor that
detects black line. The sensors are placed both at the very front and the very back
of the robot.

154 Comparison of FSA and GP-trees

Figure 6.26: Trajectories for the evolved individuals in selected runs for both
representations. The 4 starting locations are marked by a small cross in a circle and
the final positions are marked by a small cross. Individuals in both representations
utilize the light sensor, however the FSA solution is cleaner – moving straight in the
middle between the two horizontal lines, turning right and finding the target square.
The GP-tree representation is approaching the target in a stair-like movement
and faces difficulties to align with the target location correctly when the sensory
experiences in the final segments of the trajectories vary.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

fit
ne

ss

generation

Task switch with 3 symbols, comparing with runs without crossover

Runs without crossover
Crossover prob=0.5

Figure 6.27: Role of the crossover operator for the FSA representation, experiment
“switch” with 3 symbols. Average from 20 (no crossover) and 34 (switch3) runs.

6.3 Results 155

 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 0 100 200 300 400 500 600

fit
ne

ss

generation

Comparison of fit.prop. and tournament selection (experiment_fence)

Tournament selection
Fitness-proportionate selection

Figure 6.28: Comparison of two selection methods in experiment “find target” with
environment experiment fence and the GP-tree representation. Average from 14
(fit-prop) and 17 (tournament) runs. Same parameters as in the comparison in
experiment “bit collect”.

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 0 100 200 300 400 500 600

fit
ne

ss

generation

Task find_target, environment ten_around, GP-tree representation

Tournament selection
Fitness proportionate selection

Figure 6.29: Comparison of two selection methods on experiment “find target” with
environment ten around and the GP-tree representation. Average from 20 (fit-prop)
and 12 (tournament) runs. Same parameters as in the comparison in experiment
“bit collect”.

156 Comparison of FSA and GP-trees

 1400

 1450

 1500

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 1900

 0 100 200 300 400 500 600

fit
ne

ss

generation

Performance of selection methods, task bit_collect, with requirment to move holes

Fitness-proportionate selection
Tournament selection

Figure 6.30: Comparison of two selection methods, difficult version of the experiment
“bit collect” and FSA representation. Average from 13 runs (both). The
tournament selection used tournament size of 4 individuals, and probability of
choosing the best individual 0.8, the individuals were not removed from the
population after being selected. Error bars show the range.

6.4 Chapter Summary

• FSA share the structure with robotic tasks and behaviors, we therefore
conclude that they are suitable for their internal representation.

• We perform an analysis of FSA as a genotype representation and compare it
to GP-tree representation on various tasks.

• Both representations outperform each other depending on the type of task.

• In those of the attempted tasks that have structural similarities with the
behavior arbitration for robot controllers, the FSA representation performs
good or better.

• We notice the presence of incremental bias in incremental symbolic experi-
ments with FSA representation. The incremental evolution can be beneficial
for the performance of the evolution only if its advantages outweigh the
disadvantage resulting from the incremental bias of the evolutionary search.

Chapter 7

Design and Implementation
Considerations

In this chapter, we discuss how we set to test our hypothesis described in the previous
sections in several research experiments. We discuss the details of the proposed
algorithms and architectures to be investigated.

7.1 Simulation Framework

It is not the speaker who controls communication, but the listener.
—proverb

The aim is to design controllers for real robots. Our current testing hardware
platform is the LEGO Robotics RCX equipped with 32KB RAM, up to 3 sensors and
3 motors, running programs built using GNU C compiler and binutils with LegOS
[Noga, 1999]. Testing the performance of each individual in hardware would be
completely infeasible, and therefore a simulator is essential. The objective function
of our evolutionary algorithm evaluates individuals in simulation; each individual is
started from several starting locations. We upload the final evolved controller on
the real hardware to verify its real-world functionality.

7.1.1 Lazy Simulation Method

Recall from the section ?? the two standard approaches to simulation: discrete event
simulation and continuous simulation. Continuous simulations apply to various
dynamic systems. We are concerned with discrete actions and state changes occuring
in the environment, thus we employ descrete event simulation. However, we make
use a combination of next-event time advance with emulation of the controller (which
follows the CPU clock, i.e. is a kind of fixed-increment time advance). The simulated
controller generates events at discrete time units on the granularity of the CPU clock
frequency of the simulating computer (for example, start the motor A, determine
the value of sensor 1), but its environment is updated “continuously”, i.e. at any
time the event occurs (an event can occur also for other reasons than due to an

158 Design and Implementation Considerations

action of the robot controller). Thus events in the environment can occur at an
arbitrary time and place. Typical events include robot running against an obstacle,
or over some pattern drawn on the floor, scheduled light switching, or robot entering
monitored area of the environment.

Our lazy simulation approach (inspired by lazy evaluation in functional program-
ming languages) updates the state of the simulated system only when the robot
controller interacts with the robot hardware. At that time instant, we suspend
the emulated program, compute the current exact state of the simulated system
(environment and robot) by mathematical formulas, and determine the outcome
of the interaction that triggered the update. The temporal granularity is thus
limited only by the CPU or bus frequency of the simulating machine. The emulated
program is not interpreted by the simulator. It runs almost independently within the
operating system of the simulating computer, see Figure 2.10. Instead of accessing
the robot hardware, it accesses the simulator that is waiting in the background. For
example, the robot controller program might be computing without interacting with
the robot hardware for some time, during which the robot crosses several lines on
the floor, triggers switching of the light by entering an active area, passes below a
light, and bounces to a wall, where it remains blocked for a while. At that point in
time, the robot controller wants to read a value of its light sensor, for instance, and
only at that point in time the simulator becomes active and computes the whole
sequence of the previous events that occurred, and the current location and situation
of the robot and the environment. Finally, the required value of the sensor reading
is determined and returned to the program, which resumes its execution. To achieve
better performance, the simulator pre-computes expected events before resuming the
simulated program. The pre-computed information helps to test quickly whether the
state of the robot or environment has changed since the last “interrupt”, without
processing all the data structures of the simulator. We call this approach lazy
simulation because it uses maximum possible abstraction from the environment and
performs simulation computation only when very necessary.

None of the existing robot simulators satisfied our needs. We chose to implement
our own simulator in language C, now available as open-source project [URL -
Eval]. The simulator is designed to cope with any program written in LegOS
(later renamed to BrickOS) system, which controls an experimental robot with a
compatible topology (Figure 7.1, 8.4 right). This allows us to use it both with our
controller architecture, and with virtually any C-program that can control the robot.
Small modifications would allow simulating robots with different topologies.

There are several issues related to simulation. First of all, many researchers
pointed out that simulating robotic systems accurately is almost impossible. Each
sensor and motor part has somewhat different characteristics, and the outcome of
each sensory or motor action depends on imperfect interactions with the real world.
In order to achieve a comparable performance of the simulated and real robotic
system, noise has to be applied both to sensory readings, and motor actions. In
addition, the outcome of the motor action is hard to compute and it appears to be
more feasible to measure it and construct a table of basic motor actions and their
outcomes as proposed by Miglino et.al. [Miglino et al., 1995]. Figure 8.4 left shows a

7.1 Simulation Framework 159

light sensors: one pointing upwards (in the centre)

one pointing downwards (in the front)

two wheels with differential drive

"cylindrical" shape

bumper in the front

high−lifting fork in the back

top view side view

frontback

front

back

Figure 7.1: Simulated robot topology and features.

camera setup in the computer vision laboratory in Maersk institute in Odense that
we used to measure the outcome of basic robotic actions in real-world. These values
can be used to setup the simulator.

Another important issue is the execution speed of the simulated controller. By
default, the controller runs at a real-time speed (1-to-1 ratio). Even though the
CPU speed of the simulating hardware is higher than the CPU speed of RCX, the
resulting behavior is compatible, since the modules of the controller are typically
spending their time waiting for some event to occur to change their state in response.
Obviously, the running speed on a fast simulating hardware can be increased.
However, after some threshold, further speedup is impossible even though the CPU
utilization remains about 0.0%. This threshold is reached when the frequency of
events exceeds the response frequency of the controller. For instance, when the
robot is crossing a line drawn on the floor, one of the modules must detect the line
in order to turn the robot and make it follow the line. Once the controller misses
the line, because the thread of the line follower module does not always get a time
slice between the time the robot enters and leaves the line, the simulation speedup
is too high – albeit the controller still spends most of the time waiting for some
event, and keeping CPU utilization very low, i.e. the bottleneck is the size of the
time-slice the OS scheduler is assigning to the threads and the time OS needs to
switch between threads2. Even though the accuracy of the simulator was somewhat
compromised due to different CPU and OS architectures between the HW of the
real robotic system and the simulating computer, and some of the delay constants
used in the controller had to be adjusted for different speed-up ratios, we find the
simulator accuracy satisfiable. This is due to the fact that all behaviors in our
controller are event-based: events trigger changes of the internal state or actions.
Thus if the ratio (measured in simulation) between the emulation speed of the robot
controller and the simulation speed of the environment is higher than the ratio
between the real robot CPU and the real speed of the environment, the simulation
is still accurate. More precisely, if the emulated program runs speedupemu-times

2Here it is interesting to note that upgrading from the old LinuxThreads to new pthreads library
(NPTL) and utilizing the round-robin real-time scheduling in superuser mode allowed a speedup of
more than one order of magnitude (100-500-times faster than real-time as contrasted to 10-times
faster with older LinuxThreads).

160 Design and Implementation Considerations

faster than on a real robot, and the simulated time is speedupsim-times faster, then
if speedupemu > speedupsim, the simulation is accurate. When we reach a simulation
speed when these ratios are about equal, we reach accurate timing, and the limit
of how much the simulation can be speeded up. However, the simulated time can
flow even faster, as many times as the real robot program can be slowed down
while robot still performing the task successfully. If the simulated system would
be more sensitive to correct timing of events, the emulation approach could not
be used and the behavior of the controller with respect to its computational speed
compared to the speed of environment would have to be simulated! This is an
important issue when simulating any computer system performing in the real world.
In order to simulate the real world environment, its time has to be simulated with
respect to the CPU time of the computer system that is simulated. This applies
to most ER experiments. Another issue with emulation in a multitasking OS (we
used GNU Linux) is that the tasks are interrupted at any time by the scheduler.
We minimized this disturbance by using the real-time scheduling mode. Even more
precise simulations could be achieved using a real-time operating system, although
it would make it even more difficult to run the simulations in a distributed cluster.

7.1.2 Simulation Time and Multithreaded Scheduling

A man with a watch knows what time it is. A man with two watches is
never sure.
—proverb

In the previous section, we have described the simulation mechanism. In summary,
the robot controller consists of multiple simultaneously executing threads (corre-
sponding to behavior modules). Some of them might be sleeping or waiting on a
semaphore or user event1. Whenever the controller accesses sensors or actuators, all
threads of the controller are suspended, and the simulator updates the world model.

Usual process environment on Unix operating system does not contain support
for this functionality. One possibility would be using a special light-weight threads
library, such as PTL [URL - PTL]. Another option would be using some real-
time operating system (this however would create further hard implementation
challenges with respect to running our application in a distributed system on
multiple computational nodes). We chose to utilize the standard environment with
an alternate scheduler that is available only to super-user processes and threads:
real-time scheduler. Unix real-time scheduler offers two policies:

• Round-robin, which is equivalent to the process execution environment on our
embedded hardware robotic platform RCX, where the threads periodically get
a time-slice for execution, and

• FIFO, where the threads and processes are never preempted until their com-
pletion.

1BrickOS allows defining such events with an arbitrary predicate. For example, a thread might
wait until sensor reading will have a particular value or the value falls into a certain value interval

7.1 Simulation Framework 161

waiting on
semaphore

running

running

waiting on
semaphore

sleeping

SCHED_RR
(Round−robin)

SCHED_FIFO
(all other threads wait)

simulator

controller threads

se
ns

or
s

ac
tu

at
or

s

one thread enters

Figure 7.2: Simulation implementation method. During the simulation, only the
simulated controller threads are running. Whenever any single one of them accesses a
sensor or an actuator, it enters the simulator and all the other threads are suspended
due to the switch of the scheduling policy.

Our simulated system consists of the threads of the controller running with the
Round-robin policy. Whenever any single thread calls the simulator (accesses sensors
or actuators), the policy is changed to FIFO, and thus all the controller threads are
in effect suspended until the simulator updates the world model, switches the policy
back to Round-robin, and returns control to the calling controller thread. Figure 7.2
illustrates this scenario.

Since there are no discrete time units in our simulation, the only means for the
simulator to determine the progress of the simulation is to use the real time clock.
The execution times of the threads or processes are available from system kernel
only with a very poor time resolution.

The simulated environment has its own sense of time – we refer to it as the
simulated time. The physics laws in the simulated environment behave according
to this simple continuous simulated time. The simulator determines the simulated
time at the instant of the call from the controller thread as:

tsimulated = tsimulated,last + κ(treal − treal,last),

where tsimulated,last is the simulated time when the control was returned to the
controller thread last time, treal is the current real time clock, treal,last is the real

162 Design and Implementation Considerations

time clock when the control was returned to the simulator, and κ is the speed-
up constant. The κ parameter describes the ratio between the simulated and real
time. For instance, κ = 1 represents a simulation, where the simulation time flows
together with the real time (except of the interruptions by simulator, which are not
seen from inside of the simulated world), and κ = 200 (a typical setting) represents
a simulation speed-up by 200-times.

The described simulation procedure can handle multiple simulated controllers in
a multiple-robot simulation, provided that the threshold of the critical frequency of
events discussed above would not be exceeded.

7.1.3 Functional Requirements for the Simulator

In order to have a tool for experimenting with interesting tasks, we formulated the
requirements for our simulator as follows:

• The simulator should update the location, heading and speed of one robot in
compliance with the robot morphology shown in Figure 7.1. The morphology
allows for different movement types, see Figure 7.5 for details.

The robot will be navigating in a rectangular area with movable rectangular
objects (obstacles). The robot’s bumper sensor will indicate when robot pushes
forward against an obstacle;

• It should be possible to define:

– marks on the floor of various shades of gray in the shape of lines of certain
width or rectangles (or polygons), the robot’s bottom light sensor readings
will depend on the marks;

– top-mounted light sources of various intensity, the robot’s top light sensor
readings will depend on the accumulated light amount in the current
position of the robot;

– cargo loading locations (loading stations), which are automated service
points, which detect the robot on arrival and notify the robot by sending
an IR message. The robot should respond with a navigation maneuver
consisting of 1) turning, 2) setting the lifting fork down, 3) approaching
the station thus moving the fork under the cargo, 4) lifting the fork with
the cargo, and 5) leaving the station. See Figure 7.3 for an illustration.
Loading stations are specified with the help of scripts and active locations
(see below). In real setup (as described below), the conveyer belt, the
loading and unloading stations are operated by a separate RCX unit
that also sends the ‘welcome to (un)loading station’ IR messages to the
robot after it has been detected by a photo cell sensor. This RCX unit
is connected through the IR link also with a PC controlling the lamps
through X10 modules.

– cargo unloading locations (unloading stations), another type of automated
service points, which also notify the robot on arrival. The robot should

7.1 Simulation Framework 163

respond with 1) turning, 2) approaching the station, 3) moving the lifting
fork with cargo down, and 4) leaving the station as it delivered the cargo
it was carrying. See Figure 7.4 for an illustration. Unloading stations are
specified with the help of scripts and active locations (see below).

• During the run, the simulator keeps and updates the values of several system
registers: fork state (up or down), fork position (exact vertical position of
the fork), carrying cargo (YES, NO, PUSHING, UNLOADING1, UNLOAD-
ING2)2, and other 224 user registers.

• The lights, loading and unloading stations can be dynamically controlled
during the simulation by:

– timers – generating periodical or one-time events;

– active locations – which are rectangular areas that trigger an event on
robot entry. They can be activated either one time only, or on each
exclusive entry3. Activation of the active locations can be constrained by
requiring certain value in one of the registers.

Both kinds of events can trigger a script consisting of a sequence of commands.
The allowed commands are:

– turn a light on or off,

– reinitialize an active area (so that it can be activated again),

– send an IR message,

– set the current register

– write a value to the current register

The scripts are used to model the loading and unloading stations, see Fig-
ure 7.3, and Figure 7.4, and can be used to model other dynamic features of
the environment. See the Appendix B for an example of a file that specifies a
simulation run.

• The simulator computes and stores the trajectory of the robot (it can be used
for replay of the simulation and logging).

• As the simulator can be used to compute the fitness, it should measure and
update variables for the evolutionary objective function.

• The simulator should stop simulation after certain timeout or on another
terminating condition (such as when the progress is unpromising).

2When robot is pushing a cargo and moves forward (i.e. away from cargo), it looses it. The
state UNLOADING1 changes to UNLOADING2 when the fork is moved down, and the register is
updated accordingly to the robot and fork movements with expected interpretations of YES, NO,
and PUSHING.

3By exclusive entry we mean that the robot must leave the area completely and enter it again.
In addition, it is possible to specify a minimum time period between two activations.

164 Design and Implementation Considerations

active area − activated when
 a) robot enters the area
 b) the heading of the robot is towards the station
 (with some tolerance)
 c) robot is not carrying cargo
and it triggers a script that sends message to the robot

cargo ready
to be loaded

 b) robot heading is away from the station

and it triggers a script that sets the carrying cargo to PUSHING

 c) fork is down and in the bottom third of its range

more cargo waiting
on the conveyer belt

active area − activated when
 a) robot enters the area

 d) robot is not carrying cargo

Figure 7.3: Loading station is specified using two active areas (top view).

cargo
unloading
location

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

active area − activated when
 a) robot enters the area
 b) robot heading is towards the station
 c) fork is up (in upper two thirds of its range)
 d) robot is carrying cargo
and it triggers a script that sends an IR message to the robot

active area − activated when
 a) robot enters the area
 b) robot heading is away from the station
 c) robot is carrying cargo
and it triggers a script that sets the register carrying_cargo to UNLOADING1

active area − activated when
 a) robot enters the area
 b) robot heading is away from the station
 c) fork is down(in the bottom third)
 d) carrying_cargo register contains value UNLOADING2

walls

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 7.4: Unloading station is specified using three active areas.

7.1 Simulation Framework 165

7.1.4 Detailed Simulation Procedure

The simulation procedure consists of the following detailed steps.

1. Initializing a simulation:

• load environment description from project file,

• initialize:

– registers for simulation,

– sensor and motor states,

– objective function data,

– semaphores for thread synchronization,

– objective function information.

2. Starting a simulation:

• set robot starting location, heading, and speed according to the config
file or objective function requirement,

• reset active areas,

• reset lights to default state,

• start simulation time,

• initialize trajectory memory,

• initialize viewer, if requested,

• execute time events scheduled for time 0.

3. On each simulator access (sensor/actuator access) perform:

• update simulation to the access time point (see below),

• take the requested action/determine sensor reading,

• update simulation and state variables based on the action (robot speed,
info variables for viewer, etc.),

• preprocess simulation for the next access.

4. Updating the simulation to the access time point:

• stop the simulation time,

• process global list of time events and select relevant time events to be
considered,

• process relevant time events including estimated collision location and
active areas, execute triggered scripts,

• update position of the robot and its heading,

166 Design and Implementation Considerations

• determine obstacle in front of and behind the robot,

• update fork position and state variables.

5. Preprocessing simulation:

• if there was a change in the robot movement or a time event occurred,
we preprocess the simulation:

– clear local time events,

– update local time events:

∗ find closest obstacle or wall intersecting the robot trajectory and
compute its distance from the current robot location – i.e. how
long time it will take for the robot to reach the intersection point,

∗ compute intersections with active areas,

– update trajectory memory,

• start the simulation time again.

Terminating of modules:

• modules that don’t have thread: just calling the mp goodbye() method of
the message passing environment, which sends them MSG SHUTDOWN to
request the memory and resources cleanup,

• modules that own a thread4

– Calling the mp goodbye() causes a message MSG SHUTDOWN to be
sent to thread-owning modules as well, but always in a direct mode (that
is not to the executing thread, which may be waiting for a message to be
delivered through the message queue, but using an explicit callback. If
the thread is waiting, the mp receive() call in which the thread would be
blocking will return. Thus the main routine of the module thread should
terminate immediately, and do a cleanup based on the mp receive()
return value. Thus the modules need to be careful to check the return
value of all mp receive() calls.

7.2 Controller Architecture

Let us explain the controller architecture on a simplified artificial example of a
mouse robot acquiring a piece of cheese from a room and bringing it back to its
mouse hole. The controller is shown at Figure 7.6. The mouse explores the room
in random movements, and whenever it smells or sees the cheese, it moves in the
direction of the smell, grasps the food, and drags it back to its home.

4Most modules define their particular STOP message. However the purpose of such STOP
message is to stop the module activity, not to terminate it. The termination of the modules is thus
not based on STOP messages (read on).

7.2 Controller Architecture 167

Figure 7.5: Differential drive results in one of the eight possible movement types,
from left to right: straight forward, straight backward, rotating counter-clockwise,
rotating clockwise, moving along a circle forward right, backward left, forward left,
backward right. When the polarity of motor directions is opposite on the two wheels,
the resulting movement type is determined by the one of the two motors that is more
powered.

close to
object

away from
object

not avoiding
(cheese)

finding
cheese

dragging
cheese grabbing

cheese

looking
for cheese

approaching
cheese

not looking
for cheese

moving
cheese

smell
sensor

GP
NN

 ...
}

int run()
C

{

FSA

exploring
without cheese

not exploring

approaching
cheese

transporting
cheese

exploring
near cheese

whiskers

vision

muscles

random
turning avoiding

collisions

movment
sequencer

locating
cheese

grabbing
and dragging

Figure 7.6: Example controller architecture for a mouse acquiring cheese task.

168 Design and Implementation Considerations

The core of the controller is formed by several modules, which are implemen-
tations of simple competencies (grayed boxes). These competences alone do not
give the robot any purpose or any intelligent behavior yet. While performing their
specific activity, they simply react to a predefined message interface and produce
status messages whenever their actions or the incoming message of interest produce
or indicate a significant outcome. For example, the “locating cheese” competence
receives inputs from the vision and smelling sensor and produces a desired direction
of movement, if the cheese is detected. Whenever the cheese is detected, it reports
the event by an outgoing message. The competencies might be provided by the
robot builders, or programmed in any programming language. Alternately, they can
be hand-designed or evolved finite-state automata, GP program trees, or neural
networks. The architecture does not limit their internal architecture. Most of
the competencies have their own thread of execution. The competencies might be
understood as an “operating system” of the robot that provides higher-level interface
for controlling the low-level robot hardware.

The intelligence and a particular purpose of the controller are encoded in a set
of post-office modules, at most one post-office for each competence (post-offices
are encircled by dashed boundaries at Figure 7.6). The post-office modules are
the communication interfaces of competences with their peers and the remaining
parts of the controller: sensors, and actuators. All messages received and sent by
a particular competence module pass through its post-office module. The post-
office modules in our architecture are finite-state machines, but other languages or
formalisms could be used in place, as long as it is capable of filtering/transorming
the incoming and outgoing messages of the module as needed for the specific robot
task. Transitions can optionally result in generating new messages. In this way,
the functionality of the competence module is turned on, or off, or regulated in a
more advanced way, depending on the current state of the task, environment, and the
robot performance represented by the state of the post-office finite-state automaton.
The post-office simply filters or modifies the messages so that the competence module
takes actions that are suitable in a particular situation. For example, the random
turning competence will be activated only while the robot is exploring the room and
searching for the cheese, or when it accidentally dropped and lost the cheese on its
way back. The post-office module of the random turning competence follows with
the events performed by other modules that are relevant for it, and adjusts its state
to represent the current situation. Please refer to the section 8.2.2 below for another
specific example.

7.3 Evolutionary Algorithm

The goal of this work is to design controllers for mobile robots automatically by
means of artificial evolution. We take the assumption that the hardware details
of sensors and actuators are quite specific and the low level interactions of the
controller with the robot hardware can be implemented efficiently and without much
effort manually, before the target task is known: the behavior modules can be
written in any available language or formalism manually. However, they can even

7.3 Evolutionary Algorithm 169

FSAFSAFSA
 msg | ...

 msg | ...
state2 msg | ...

stateK msg | ...

state1 msg | newstate | msgin | datain | msgout | dataout

 ...

...

module 1

fsa arbitrator

2
1
2
88 2 21 0 0
23 1 22 0 23
24 1 21 0 24
1
1
88 1 22 0 24
23 2 22 0 24

module 3

module 4

no arbitrator
module 2

fsa arbitrator

modules exchange
broadcasted or direct
messages

other arbitrator

genotype:

module 5

fsa arbitrator

Figure 7.7: Controller architecture and genotype representation: left oval shows
actual numeric genotype representation (it is a vector of numbers containing the
number of states in FSA, number of incoming and outgoing transitions in each
state, and detailed transition specifications as described above in the text), bottom
oval shows symbolic representation as viewed by a viewer utility (used to analyze
the evolved post-office modules); right oval shows the genotype structure for both
incoming and outgoing messages for better explanation. Note that the outgoing
messages in an FSA are irrelevant when no other module is reacting to those
particular types of messages.

be evolved automatically, if suitable. The part of the controller that we aim to
design automatically here is the behavior coordination mechanism, in particular, a
set of finite-state automata (FSAs).

We use the standard genetic algorithm (based on the GALib from MIT), with
our specific initialization, crossover, and mutation operators. In the first stage,
the designer prepares individual modules. For each module, he or she specifies the
module message interface: the messages the module accepts and the messages it
generates. In the second stage, the designer selects the modules for the controller
and specifies lists of messages that can trigger incoming and outgoing transitions of
the FSAs associated with each module. The remaining work is performed by the
evolutionary algorithm.

170 Design and Implementation Considerations

7.3.1 Representation

The genotype representation consists of blueprints of FSAs for the set of modules
for which the FSAs are to be designed automatically (some modules might work
without post-offices, other might use manually-designed post-offices, or some post-
offices are held fixed because they are already evolved). An example of a genotype
is in Figure 7.7.

The number of states and the number of transitions in each state vary (within
specified boundaries). Transitions are triggered by messages (incoming or outgoing)
and have the following format (please see Figure 8.13 for examples, and the appendix
C for example of specification of the EA parameters including the specification of
states, and transitions):

(msg type, new state, msg to send out, [msg arguments],
msg to send in, [msg arguments])

7.3.2 Operators

The GA-initialization operator generates random FSAs that comply with the sup-
plied specification. The crossover operator works on a single randomly selected
FSA. It randomly divides states of the FSAs from both parents into two pairs of
subsets, and creates two new FSAs by gluing the alternative parts together. A
simple example is shown at Figure 7.8, where two FSAs with partial functionality,
each having 2 states, are combined by the crossover operator to form a new FSA
that has three states. Later, the transition in the state labeled “close to object”
is mutated: the message produced by the transition is changed from steer right to
backup.

The following paragraphs describe the crossover operator in detail.
Let the states of the first parent be S = (S1, . . . , SK), and the states of the

second parent be T = (T1, . . . , TL). The operator randomly picks a set of states that
will be inherited by the first offspring from the first parent, O1fromS, and a set of a
possibly different cardinality, containing states that will be inherited by the second
offspring from the second parent, O2fromT . The first offspring will then consist of
states O1fromS + (T − O2fromT), and the second offspring will consist of states
O2fromT + (S − O1fromS). The state transitions cannot be always preserved,
because the number of states and their numbering changes. Figure 7.9 visualizes
the crossover operator in a diagram.

The following transitions are preserved:
O1fromS to O1fromS, S − O1fromS to S − O1fromS,
O2fromT to O2fromT , T − O2fromT to T − O2fromT .
The states are renumbered according to the new state numbers.

The transitions leading to states that are now part of the other offspring would
point nowhere, therefore we randomly generate mappings between the exchanged
states of the two offspring. Since the numbers of states in these four sets are different,
bijection is not possible and we need all four mappings – one in each direction for
both parts. Mapping M1 of states in S − O1fromS to states in T − O2fromT ,
mapping M2 of states in T − O2fromT to S − O1fromS, mapping M3 of states in

7.3 Evolutionary Algorithm 171

steer_left

object_right

object_left
steer_right

_of_object
in_proximity

object_proximity
_abandoned

whiskers_right

avoid_left

whiskers_left
avoid_right

whiskers_frontaway from
object

close to
object steer_right

backup

whiskers_any cheese_aquired

home_reached

avoiding not avoiding

cheese_aquired

_of_object
in_proximity

object_proximity
_abandoned

whiskers_right

avoid_left

whiskers_frontaway from
object

close to

avoid_right
whiskers_left

backup

not avoiding

object_left
steer_right

steer_left
object_right

home_reached

steer_rightobject

Figure 7.8: Example of crossover operator functionality (revisiting the mouse task).
The two finite-state automata on the left are combined into a single resulting
automaton (one of the two offspring) on the right. The state not avoiding is inherited
from the parent shown above top, together with both states of the parent shown
above bottom. The states carry with them all their outgoing transitions from the
parent to the offspring. The transition destinations are pointed to randomly chosen
states of the part of the offspring inherited from the other parent, see text for details.
The mutation is shown by striking line over the previous message label, where it was
replaced by another message, see text for the list of mutation types. Notice that
FSAs do not descirbe the actual behavior of the robot here – that is implemented
in behavioral competence modules. The FSAs simply map and control the context
these modules operate in.

172 Design and Implementation Considerations

O1fromS to O2fromT , and mapping M4 of states in O2fromT to O1fromS. The
new numbers of states are taken into account when generating M1, M2, M3, and
M4.

The transitions are then modified using the generated mappings, the mappings
M1 and M4 are used to generate the first offspring, the other two to generate the
second offspring:

Transitions that lead:

• From x ∈ O1fromS to y ∈ S − O1fromS are changed to M1(y),

• From x ∈ O2fromT to y ∈ T − O2fromT are changed to M2(y),

• From x ∈ S − O1fromS to O1fromS are changed to M3(y),

• From x ∈ T − O2fromT to O2fromT are changed to M4(y).

The above transformation is attempting to maximize the genetic information
passed from the parents to offspring by conservative approach, where the transitions
originally pointing to the same state will point to the same state also in the offspring.

The implementation of the crossover procedure:

1. choose the index of FSA to work on

2. randomly generate bits O1fromS[1..K] and O2fromT [1..L],

3. based on O1fromS and O2fromT , generate SRENUM [1..K]
and TRENUM [1..L],

4. randomly generate M13[1..K], and M24[1..L] that represent M1, M2, M3, and
M4,

5. form O1 by copying states from O1fromS and T − O2fromT , and updating
all transitions based on M1, M4, SRENUM , TRENUM ,

6. form O2 by copying states from O2fromT and S − O1fromS, and updating
all transitions based on M1, M3, SRENUM , TRENUM .

The mutation operator works upon a single FSA. One of the following opera-
tions is performed (the probabilities of the mutation types are parameters of the
algorithm):

• a new random transition is created,

• random transition is deleted,

• a new state is created (with minimum incoming and outgoing random transi-
tions); in addition, one new transition leading to this state from another state
is randomly generated,

• a random state is deleted as well as all its incident transitions,

7.3 Evolutionary Algorithm 173

• a random transition is modified: (one of its parts new state, msg type,
msg to send out, msg to send in is replaced by an allowed random value),

• a completely random individual is produced (this operator changes all FSAs),

• a random transaction is split in two and new state is created in the middle,

• the initial state number is changed.

In our experiments, we use the roulette wheel and the tournament selection
schemes combined with steady-state or standard GA with elitism. Other parameters
of the algorithm include (with these default values): pcrossover (0.3), pmutation
(0.7), probabilities of all 8 mutation types that sum up to 1:
pnew random transition (0.25), pdelete random transition (0.1), pnew state (0.2),
prandom state deleted (0.05), prandom transition mutated (0.25), pnew random individual (0.05),
psplit transition (0.05), pchange starting state (0.05); population size (100),
gen number (60), ppopulation replace (0.2), number of modules in the controller (10),
specification of the message interfaces and trigger messages for all modules, initial
and boundary values for number of states and transitions, number of starting
locations for the robot for each evaluation, timeout for the robot evaluation run,
specification of the fitness function parameters, input, output, and log file locations,
details in appendix.

7.3.3 Scaling

Due to the unnatural range of fitness values produced by the objective function, the
evolutionary algorithm applies a scaling method before using the particular selection
mechanism in each generation.

The GALib distinguishes two basic ways for treating the fitness values – raw and
scaled fitness score and it keeps two index arrays for both viewpoints.

Various scaling schemes are supported:

• GANoScaling(), where the fitness scores are identical to the objective scores.
No scaling takes place.

• GALinearScaling(linearScalingMultiplier), where the fitness scores are de-
rived from the objective scores using the linear scaling method described in
([Goldberg, 1989]). Negative objective scores are not allowed with this method.
Objective scores are converted to fitness scores using the equation

f = a ∗ obj + b

where a and b are calculated based upon the objective scores of the individuals
in the population as described in [Goldberg, 1989]. This is the scaling scheme
we use in the experiments, the individuals with fitness lower than 0.001 are
assigned fitness 0.001.

174 Design and Implementation Considerations

• GASigmaTruncationScaling(sigmaTruncationMultiplier).
This scaling method can be used if the objective scores are negative. It scales
based on the variation from the population average and truncates arbitrarily
at 0. The mapping from objective to fitness score for each individual is given
by

f = obj − (objavg − c ∗ objdev)

where objavg is the average and objdev is the standard deviation.

• GAPowerLawScaling(powerScalingFactor) is the power law scaling that
maps objective scores to fitness scores using an exponential relationship defined
as

f = objk

• GASharing(comparator, sharingCutoff, alpha), is a scaling method used for
speciation. The fitness score is derived from its objective score by comparing
the individual against the other individuals in the population. If there are
other similar individuals then the fitness is derated. The distance function
is used to specify how similar to each other two individuals are. A distance
function must return a value of 0 or higher, where 0 means that the two
individuals are identical (no diversity). For a given individual,

f =
obj

popsize
∑

j=0

s(d(j)))

s(d(j)) =

{

1 − d(j)
σ

α
if d(j) < σ

0 if d(j) ≥ σ

where d(j) is a distance function with respect to individual j. The default
sharing object uses the triangular sharing function described in [Goldberg,
1989]. It is possible to specify the cutoff value (σ in [Goldberg, 1989]) using
the sigma member function. The curvature of the sharing function is controlled
by the α value. When α is 1.0 the sharing function is a straight line (triangular
sharing). If a comparator is specified, that function will be used as the distance
function for all comparisons. If comparator is not specified, the sharing object
will use the default comparator of each genome.

The sharing scaling differs depending on whether the objective is to maximize
or minimize. If the goal is to maximize the objective score, the raw scores will be
divided by the sharing factor. If the goal is to minimize the objective score, the raw
scores will be multiplied by the sharing factor. It is possible to explicitly specify
the sharing object to perform minimize- or maximize-based scaling by using the

7.3 Evolutionary Algorithm 175

minimaxi member function. By default, it uses the min/max settings of the genetic
algorithm that is using it (based on information in the population with which the
sharing object is associated). If the scaling object is associated with a population
that has been created independently of any genetic algorithm object, the sharing
object will use the population’s order to decide whether to multiply or divide to do
its scaling.

changed according to M1 and renumbered

changed according to M2 and renumbered

changed according to M3 and renumbered

changed according to M4 and renumbered

Original state transitions are modified:

preserved
(renumb.)

M1: S − O1fromS T − O2fromT

M2: T − O2fromT S − O1fromS

M3: O1fromS O2fromT

M4: O2fromT O1fromS

Random transformation of state numbers for new fsa:

States randomly selected for crossover:

O2fromT

T−O2fromT

S − O1fromS

O1fromS

selected fsa
from parent 1

selected fsa
from parent 2

new fsa for
offspring 1

new fsa for
offspring 2

parent 2

parent 1

offspring 1

offspring 2

select automaton (module)

FSACrossover

Figure 7.9: Crossover operator.

7.3.4 Checkpoints

In order to speed up the progress of the evolution, those individuals that are
unpromising are stopped soon after they exhibit poor behavior. Our evolutionary
algorithm supports two kinds of checkpoints: manually specified, or automatically
determined. Manually specified checkpoints are pairs (tsim(i), fitexp(i)), where
tsim(i) specifies the simulated time of checkpoint i, and fitexp(i) specifies the ex-
pected fitness. If the fitness of the running individual at the simulated time specified
by the checkpoint is lower than fitexp(i), the individual is terminated prematurely
(thus keeping only the fitness earned until it was terminated). Automatically
determined checkpoints work the same way, except that the pairs (tsim(i), fitexp(i))
are obtained from the average performance of the best p-portion of the population
(p ∈ 〈0; 1〉), 0 means to take only the best individual into account) – and they are
scaled by a multiplicative constant q (q ∈ 〈0; 1〉).

The actual checkpoint algorithm is as follows:

176 Design and Implementation Considerations

1. read the checkpoints from configuration file (if manually specified), or con-
struct the checkpoint times from parameters tsim(0), dt, i.e.
tsim(i + 1) = tsim(i) + dt,

2. (only automatic) at the beginning of each generation, for all checkpoints,
construct the fitexp(i) by averaging the measured fitness from the best p-
portion of the population,

3. during the run of each individual, at the checkpoint times, compare the
achieved partial fitness to the checkpoint fitness scaled by q, and stop the
individual, if the partial fitness is lower. At each checkpoint time also store
the checkpoint fitness for the case this individual will reach the best p-portion
of the population. After each individual run, compare the final fitness to the
list of best p-portion fitness. If the individual reached better fitness, insert it on
the list of the best individuals fitness checkpoints, and update the best-fitness
list.

See Appendix C for an example of a file specifying an evolutionary run.

7.4 Chapter Summary

• We design our specialized simulation method based on emulating the controller
on high-performance workstations with Linux operating system running in
real-time scheduling mode.

• We specify a specialized simulator that we use for the experiments with
Incremental Evolutionary Robotics.

• Inspired by Behavior-Based Robotics, we design our own controller archi-
tecture that is based on message-passing communication of independent be-
havioral modules with distributed communication mechanism based on the
finite-state automata formalism.

• We design the representation for this chosen architecture as well as the
evolutionary operators.

Chapter 8

Experimental Work

If you look at the rotating robot when you are tired,
the robot will seem to rotate in the opposite direction
after it will have stopped.
— robotika/robot/ReadMe.txt

8.1 Simple Adaptive Autonomous Robot

Our world is a very complex system with many interactions, changes, unpredictable
events, failures, and coincidences. If we ever wish to use robots for more advanced
tasks than performing predefined tasks in deterministic environments (such as
factory production line robots mounting screws), the robots will have to deal with
changes, they will have to learn about their environment and they will need to adapt
to it.

This project is an example of perhaps the most simple robot ever made that
can learn. The robot can move back and forth, and it can turn left and right. It
can also sense an obstacle in front of it – using left and right independent tactile
sensors. We will use the sensors for a slightly different purpose: the left tentacle will
provide positive feedback, whereas the right tentacle will signal negative feedback
for the robot. The robot will try various things, and each time it receives a positive
reinforcement, it will retain in its memory.the most recently demonstrated sequence.
Each time it receives a negative reinforcement, it will dismiss its last idea and try
something else instead.

The behavior our robot will learn will be sequences of left and right turns. The
robot will repeat the following piece of code 10-times, for i = 1 . . . 10:

1. move forward 20 steps

2. turn left or right |Ni| steps, the direction is determined by the sign of Ni.

The robot should be started from the same initial location. The sequence of
the moves brings the robot to some target location. Each time before the robot
demonstrates the movement represented by the sequence Ni, i = 1 . . . 10, it will
alter this sequence randomly in 3 of the 10 turnings. If the user of the robot finds

178 Experimental Work

Figure 8.1: Mobile robot from Parallax with BASIC STAMP processor and two
tentacle sensors.

the change to be an improvement of the robot behavior, he or she should tick the
left tentacle (and thus give the robot a positive reinforcement). Otherwise, if the
change was contra-productive, the user should tick the right tentacle (and thus give
the robot a negative reinforcement). When the behavior accidentally becomes very
useless, the user can press both tentacles, and the robot will start over with a straight
movement with no turns. Once the behavior that the robot was about to learn is
achieved, the user can press both tentacles for a longer time (hold them pressed
for more than a second), and the robot will store the current behavior (sequence of
turns) permanently.

Robot that learned the correct sequence will always move along the same learned
trajectory, regardless of which tentacle will be pressed until the robot is reset.

The implementation allows to monitor the learning process on the console: the
robot sends the whole sequence and the operations it performs to the debug console.

This little demonstration project was developed under Robotic Holidays’2004
at my visit at Faculty of Electrical Engineering of Slovak Technical University in
Bratislava.

8.2 Incremental Evolution 179

8.2 Incremental Evolution

8.2.1 Embedded Incremental Evolution

Experimental Setup

Consider a delivery task (similar to a taxi driver) for a robot placed in a grid maze.
Robot starts at initial location [xi,yi], picks an object at source location [xs,ys] and
delivers it to a destination at [xd,yd]. The plan for the maze (each grid cell is either
free or contains an obstacle) and the initial location are known to the robot, which is
controlled by a sequential program consisting of simple self-explanatory commands:
forward(n), back(n), right, left, turn180, nop, stop. The challenge is to find a
program that will safely navigate the robot to execute the task after the source
and destination locations are disclosed. This can be done either manually, using a
deterministic algorithm, or using some stochastic search. In our experiment, this
challenge is solved using an embedded evolutionary algorithm with a simulator of the
grid environment. We have chosen this task for the following reasons: it is suitable
for tests with different environmental difficulty, it allows making the incremental
steps in the task difficulty, it is very simple and allows a small set of primitives
in the program, which can be easily represented in a genome, and its practical
implementation with LEGO Robotics sets is straight-forward. A similar, single
target task was addressed by work of [Xiao et al., 1997], where the environment was
continuous and combines off-line and on-line learning for changing environment.

Practical experiments were performed with a two-wheeled vehicle built from the
parts of the LEGO Mindstorms construction set. The robot contained two motors
to propel independent wheels, a third motor to load and unload cargo (8.2 left),
one light sensor to perceive the environment, and two rotation sensors to measure
and compensate the built-in differences of the motors’ drive (another solution we
used was an adder/subtracter differential, but the rotation sensors were more precise
since a lower number of loosely connected gear wheels were used).

At the start of the experiment, the robot first learned about the current situation
using its light sensor (Figure 8.2 right): the coordinates were encoded in binary
(black and yellow color) in the wall constructed from 12 LEGO bricks. Next, the
robot spent some time evolving a program (for 100 generations and 90 individuals
in a population, evolution took ca. 3 min on LEGO RCX computer). Each program
in the population was evaluated with a fitness function (see below) based on the
simulated performance in a simple simulator that contained the environment map.
Finally, after the simulated evolution produced a solution, the robot executed the
task in the real world.

The robot program was a sequence of instructions described above (the prob-
ability of forward instruction was double). Maximum program length was limited
and a standard GA with 50% truncation selection was used (mainly because of
the implementation reasons: truncation selection requires space for only 1 copy
of the population in the memory). The crossover operator exchanged parts of the
programs of the same length at random positions in the parent individuals. Mutation
worked on a per-instruction basis: one half of mutations replaced a single instruction

180 Experimental Work

Figure 8.2: Experimental robot lifting an object at source location (left) and reading
the task from the colored wall (right).

Figure 8.3: Robot’s grid world environments. Initial position of the robot is marked
with i, source location s, destination location d, and t is a temporary source location.
Grid cells with obstacles are black.

by any random instruction; in the remaining cases, only an instruction argument
was mutated (applies only to forward and back instructions). The following fitness
function was used: f = max − 10(d1 + d2) − (len/2) + α(s1 + s2) − βhit, where
d1 (d2) was the length of the shortest straight vertical or horizontal line without
obstacles connecting the source (destination) location with the robot, i.e. the robot
could “see” the source (destination) in a distance d1 (d2) from some point on its
trajectory, len was the length of the program until the stop instruction (shorter
programs were preferred by evolution), s1 (s2) were 0/1 flags that were set, if the
robot stopped at source (destination) location to (un)load the cargo, hit was the
number of times that the robot hit the wall, and α, and β were weight parameters.
The software was written in C using LegOS by Markus Noga [Noga, 1999].

8.2.2 Structured Task for Incremental Evolution

Our goal was to evaluate the controller architecture and the incremental evolution
method proposed in the previous chapters and compare them to a manual design
of the arbitration mechanism in the controller. The RCX hardware platform offers
high flexibility and a multitude of possible configurations for laboratory robotics
experiments. We tested the implementation of our controller architecture on a high-

8.2 Incremental Evolution 181

Figure 8.4: Camera setup for measuring the actual real-world outcome of the
individual robot movements (left), the detail of the robot covered by black surface
with 2 white marks detected by the calibrated software (center), an experimental
robot with high-lifting fork (right): its topology of the robot is compatible with a
cylindrical shape with two independent motors propelling the wheels on the sides,
one motor operating the high-lifting fork, front bumpers, and two light sensors
pointing upwards and downwards.

lifting fork robot built around a single RCX (Figure 8.4 right). The task for the
robot is to locate a loading station, where the cargo has to be loaded, and then
locate an unloading station to unload the cargo, and repeat this sequence until the
program is turned off. The robot exists in a closed rectangular arena with obstacles
to be avoided. Both loading and unloading stations lie at the end of a line drawn on
the floor. The start of the correct line to be followed at each moment is illuminated
from above by light (an adjustable office lamp). The light source located over a
segment of the line leading to the loading station is automatically turned off when
the robot loads the cargo, and it is turned on when the robot unloads the cargo at
the correct location. The reverse is true for the light located over the line leading to
the unloading station. Other lines might exist in the environment as well. Figure 8.5
right shows a screen-shot of a simulator with an example environment.

The environment is defined by a configuration text file, which specifies the
shape and size of the environment, robot, obstacle, floor drawings, loading and
unloading stations as well as light position, and intensity. In addition, the simulator
software allows defining simple control events based on (possibly periodic) time,
robot heading, location, and fork and cargo positions.

We chose this task for four reasons: 1) compared to other evolutionary robotics
experiments, it is a difficult task; 2) it is modular, in terms of the same behavior
(finding and following line) being repeated two times, but with a different ending
(either loading or unloading cargo), and therefore has a potential for reuse of the
same code or parts of the controller; 3) it can be implemented both in real hardware
and in our simulator (for the implementation of the switching lights, we used two
standard office electric bulb lamps controlled by two X10 lamp modules and one X10
PC interface connected to a serial port of a computer that received an IR message
from RCX brick when the robot loaded the cargo, which was in turn detected

182 Experimental Work

TURN180TURN180

TURN180

TARGET_MARK
LNFLWER_STOP

LNFLWER_FOLLOW

LNFLWER_STOP
TARGET_MARK

TARGET_MARK
LNFLWER_STOP

NAVIGATE_FINISH
LINE_ENTER

outside light
outside line
exploring (1)

LNFLWER_FOLLOW

light
searching line (2)

start

below light (3)
follow line

LIGHT_ENTER

outside light (4)
follow line

LINE_LOST

line lost (5)

LINE_ENTER

after lost (6)
follow line

LINE_LEAVE
turning (7)

LINE_LEAVE

LINE_ENTER

LIGHT_LEAVE

LINE_ENTER

LINE_LEAVE

LINE_LOST

LINE_ENTER

LIGHT_ENTER

LINE_LOST

LIGHT_ENTER

LIGHT_LEAVE

LINE_ENTER

LINE_LEAVE

Figure 8.5: Robot executing the target task in a simulated environment (right), and
an example of a manually designed FSA arbitrator for the line follower module (left).
The illuminated area on the right is depicted by a large filled circle; dark squares
represent obstacles; thick lines are drawn on the floor and detectable by robot;
loading and unloading stations are marked by rectangles at the end of line, and the
thin line shows the trajectory for an example run. The transitions between states
on the left are labeled by messages that trigger them, and in cursive by messages
they generate. The robot first travels randomly until it enters light (state 2). Then
it looks for line and follows it in states 3 and 4, with recovery in states 5, 6, and
7. Whenever it reaches the loading station, it stops following the line and resets
to random walk in state 1. Module explore queries the sensor module to see if the
robot is moving towards or away from light and controls the turning of the robot in
order to reach the light more quickly.

by an infrared emitter/detector from HiTechnic); 4) the task consists of multiple
interactions, and behaviors, and thus is suitable for incremental evolution.

Our robot comes with a set of preprogrammed behavioral modules. We have
coded them directly in the language C:

Sensors — translates the numeric sensory readings into events, such as robot
passed over or left a line, entered or left an illuminated area, received an IR message
from a cargo station, bounced into or avoided an obstacle.

Motor driver — accepts commands to power or idle the motors. The messages
come asynchronously from various modules and with various priorities. The purpose
of this module is to maintain the output according to the currently highest priority
request, and fall back to lower priorities as needed. All motor control commands in
this controller are by convention going through the motor driver.

Navigate — is a service module, which provides higher-level navigational com-
mands — such as move forward, backward, turn left, as contrasted with low-level
motor signals that adjust wheel velocities.

Avoidance — monitors the obstacle events, and avoids the obstacles when
encountered.

8.2 Incremental Evolution 183

Line-follower — follows the line, or stops following it when requested.
Explorer — navigates the robot to randomly explore the environment. It turns

towards illuminated locations with higher probability.
Cargo-loader — executes a procedure of loading and unloading cargo on demand:

when the robot arrives to the cargo loading station, it has to turn 180o, since the
lifting fork is on the other side than the bumpers, then it moves the fork down,
approaches the cargo, lifts it up, and leaves the station; at the unloading station,
the robot turns, approaches the target cargo location, moves the fork down, backs
up, and lifts the fork up again.

Console and Beep — are debugging purpose modules, which display a message
on the LCD, and play sounds.

The input and output message interface of all modules is shown in table 8.1. The
arbitration mechanism, which is our focus, consists of FSA post offices attached to
individual modules. Figure 8.5 left shows the hand-made FSA for the line-follower
module. Other modules that use FSAs are cargo-loader, avoidance, and explore.

Figure 8.6 shows the six incremental steps and their respective environments for
our main incremental scenario (we refer to it as creative). Throughout the whole
experiment, the robot morphology and the set of sensors and actuators remained
unchanged. In the first three incremental steps, the task, the environment, and the
controller were simplified. In the fourth and the fifth incremental steps, the task
and the environment were simplified, but the controller already contained all its
functionality.

Evolution progressed to the next incremental step when an individual with a
satisfactory fitness was found and the improvement ratio fell below a certain value,
i.e. the evolution stopped generating better fit individuals. The improvement ratio
mn in generation n was computed using the following formula:

mn = φ · mn−1 + (best fitnessn − best fitnessn−1)

where best fitnessi is the fitness of the best individual in population i, φ is a
constant (we used φ = 0.2), and m0 is initialized to 0.9 · best fitness0.

The simulator takes care of the current position of the high-lifting fork using a
state variable

fork state ∈ {UP, DOWN, MOV ING UP, MOV ING DOWN}

It also takes care of whether the robot is carrying any cargo at each moment using
a state variable carrying cargo ∈ {Y ES, NO, PUSHING}. Y ES means that the
high-lifting fork is up and carrying the cargo. PUSHING means that there is cargo
on the fork, but the fork is down. NO represents all the other cases.

The state is updated to carrying cargo == PUSHING, if the following proce-
dure is performed by the robot at the cargo loading station:

• robot enters the area close to the cargo loading station

• an IR message is sent to the robot

184 Experimental Work

Module Recognized incoming messages Generated outgoing messages

Avoidance

AVOIDANCE START

SENSORS BUMP PRESSED

SENSORS BUMP RELEASED

-

Sensors

(Bumpertracker,

Lighttracker,

and Linetracker)

SENSORS LIGHT QUERY

SENSORS BUMP PRESSED

SENSORS BUMP RELEASED

SENSORS LIGHT ENTER

SENSORS LIGHT LEAVE

SENSORS LIGHT INCREASE

SENSORS LIGHT DECREASE

SENSORS LIGHT NOCHANGE

SENSORS LINE ENTER

SENSORS LINE LEAVE

SENSORS TARGET MARK

Cargoloader
CARGOLOADER LOAD

CARGOLOADER UNLOAD

CARGOLOADER OK

CARGOLOADER FAIL

Explore
EXPLORE START

EXPLORE STOP
-

Linefollower

LINEFOLOOWER FOLLOW

LINEFOLLOWER STOP

SENSORS LINE ENTER

SENSORS LINE LEAVE

LINEFOLLOWER LINELOST

Motordriver
MOTORDRV POWER m, pwr

MOTORDRV NOPOWER m
-

Navigate

NAVIGATE FORWARD t

NAVIGATE BACKWARD t

NAVIGATE RIGHT t

NAVIGATE LEFT t

NAVIGATE AROUNDLEFT t

NAVIGATE AROUNDRIGHT t

NAVIGATE TURNRND t

NAVIGATE STOP

NAVIGATE FAST

NAVIGATE SLOW

NAVIGATE FINISHED

NAVIGATE INTERRUPTED

NAVIGATE BUSY

Beep BEEP BEEP x -
Console CONSOLE PRINT x -

Table 8.1: Message interfaces for behavioral modules defined by the module designer.

8.2 Incremental Evolution 185

Figure 8.6: Experimental environments for 6 incremental evolutionary steps of
creative incremental scenario, from left A – C, and D – F in the first and the second
rows. A: avoidance — the robot is penalized for time it spends along the wall; B:
line following — the robot is rewarded for the time it successfully follows the line; it
must have contact with the line and should be moving forward; C: cargo-loading —
robot is rewarded for loading and unloading cargo in an open area without lines or
obstacles; D: cargo-loading after line following — follow-up of B and C, the robot is
rewarded for loading and unloading cargo, but it has to successfully follow line to get
to the open loading/unloading area; E: starting line-following under light — robot
learns to start following the line that is under the light (it is started from different
locations in order to make sure it is sensitive to light and not, for instance, to number
of lines it needs to cross); F: final task — robot is rewarded for successfully loading
and delivering the cargo, it uses the avoidance learned in A and behavior E.

186 Experimental Work

unload

load

start

to unload (3)unloading (4)

to load (1)

TARGET_FOUND

TARGET_FOUND

FAIL

OKOK
FAIL

loading (2)

BUMPERS_PRESSED

STOP

avoiding (1)

start

STOP

exploring (1)

start

Figure 8.7: FSA arbitrators for modules cargo-loader, avoidance, and explore. The
avoidance FSA forwards only the BUMPERS PRESSED message, while the
explore FSA forwards all messages to the module.

• robot turns so that the fork is facing the cargo (i.e. it needs to turn 180 degrees
after it followed the line)

• robot must put the fork down (if it was up)

• the robot must approach the loading station (it needs to move in a correct
orientation - with tolerance specified by the description of the loading station
in the environment file; and it needs to move at least half of the fork size also
specified in the environment file). Thus it changes state to carrying cargo ==
PUSHING

The state is changed from carrying cargo == PUSHING to carrying cargo
== Y ES, if the fork is lifted at least to 1/3 (i.e. fork state == UP) of the height
at any place.

The state is changed from carrying cargo == Y ES to carrying cargo ==
PUSHING, if the fork state becomes DOWN .

If the robot is in carrying cargo == PUSHING and it moves backwards the
fork size distance, the state is updated to carrying cargo == NO. Once the
carrying cargo == NO, it can change back to carrying cargo == PUSHING
only when at a loading station.

The actual implementation of the cargo loading and unloading stations is done
using the active areas specification in the file describing the environment.

The loading station consists of two active areas: one active area that only causes
the IR message being sent when the robot nears the station, and another area that
is conditional, and tests the robot’s orientation in addition and its script is activated
only if the robot successfully loads the cargo.

Analogically, the unloading station contains the one active area that is to send
the IR message, and a second conditional type of active area that requires proper
orientation of the robot and its script is activated only if the robot unloads cargo.

8.3 Results 187

8.3 Results

8.3.1 Embedded Incremental Evolution

Early experiments with the task described in section 8.2.1 completely in simulation
were used to tune the GA parameters: crossover rate 0.75, mutation rate 0.3,
population size 90, 100 generations, α = 5, and β = 60 performed satisfactorily well
on simple environments with 9 obstacles (Figure 8.3 left). The same performance,
using the same program, was measured in real robot experiments (Figure 8.2).

To work with a more interesting task, we used a more complex environment: it
contained 15 obstacles and the robot had to travel double the distance and turn a
few more times to find both source and destination locations (Figure 8.3 middle).
Since the fact whether the remaining experiments were performed in simulation or
on a real robot was not relevant to our argument and observations, we performed
them in simulation to save time.

Even with a larger population size (120) and a higher number of generations
(350), the same GA found the solution only in a few cases. Therefore we temporarily
moved the source location closer to a robot for γ generations in the beginning of the
evolution, thus making our EA incremental. Figure 8.8 left shows the development
of the best fitness (average from 500 runs) for a non-incremental case, γ = 25 and
γ = 200. First of all, we can see that non-incremental evolution was not able
to find a very good solution. The drop of the best fitness after moving the source
location results from the fact that the programs were not able to find the new source
immediately, but they were not worse than programs evolved in the non-incremental
case. Besides, the population contained enough genetic material to evolve quickly
towards programs that could find the new source location. Further we studied the
appropriate time moment for incremental change. Figure 8.8 right shows the final
fitness for various γ (again, average over 500 runs). The final fitness was highest
when the incremental change occurred just before the best fitness ceased to improve.
Figure 8.8 left shows that if the evolution continued with incremental source longer,
even though the recovery from the shift was faster, the final fitness would not exceed
the γ = 25 case. However, the problem was too difficult in this experiment and even
350 generations were not enough to evolve programs that could reach both the source
and the destination locations. We repeated the same experiment with a simplified
environment (3rd at Figure 8.3) and the Figure 8.9 shows a similar result.

In both cases, the generation when the source was moved had to be specified in
advance. This is not possible, when an adaptive robot is solving a novel problem. We
therefore sought a method to determine this generation automatically. In addition,
we made the environment difficult enough (Figure 8.10 left) so that more than one
incremental change was needed. Inspired by the results from previous experiments,
we measured the improvement of the best fitness. If its momentum was lower than
a certain threshold and the best fitness had improved since the beginning of this
stage, then the evolution progressed to another incremental stage. Precisely, we
introduced 2 new parameters: discount φ, and threshold η, and we measured the
improvement µ(t) (initialized to some low constant µ(0)) using the rule: µ(t + 1) =
φ · µ(t) + (fbest(t + 1)− fbest(t)), where fbest(t + 1) is the best fitness in the new and

188 Experimental Work

Figure 8.8: Influence of the moment of source shift, second environment in 8.3. In
case of γ = 25, the standard deviations of the best fitness (s25−best) were 15.03,
13.65, 81.10, 118.04, and 123.02 in generations 10, 25, 50, 250, and 350 respectively.
The complete solution was found in 5.6% of runs and in 29.4% of runs, no points for
seeing the destination were earned. In the case γ = 200, s200−best were 15.58, 14.06,
9.31, 0.04, and 102.52 in the same respective generations. The complete solution
was found in 0.4% of runs, and only the source was seen in 31.8% of runs. In the
non-incremental case, the respective standard deviations of the best fitness were
28.36, 37.53, 45.35, 88.06, and 102.17, complete solution in 1.2% of runs, only the
source in 69.2% of runs.

8.3 Results 189

Figure 8.9: Influence of the moment of source shift, third environment at Figure 8.3.

190 Experimental Work

Figure 8.10: Environment with several incremental source locations and correspond-
ing evolution of best fitness. Evolution found the target in 22% of 100 runs. The
average generation numbers of incremental steps and their standard deviations were
132, 259, 488, 802, 1171, and 13.75, 21.25, 254.17, 328.40, 427.49.

fbest(t) in the previous generation. The evolution entered a new stage, when µ < η.
In other words, the evolution naturally proceeds to another stage when the learning
starts to cease.

The robot found the path to execute the task after ca. 2000 generations, with
200 individuals in the population and φ = 0.9, η = 0.001. Figure 8.10 right shows
the development of the fitness for an example run. Each drop corresponds to one
shift of an incremental source location. The final steep improvement corresponds to
discovering the target location.

8.3.2 Cargo Transporting Task

We have successfully designed the arbitration using our incremental evolutionary
algorithm. According to the Fitness Space guidelines (see section 2.13.2), we
attempted to keep the fitness function as implicit, internal, and behavioral as
possible. In particular, in the later steps, we are only counting the number of
correctly delivered cargo objects, whereas in the earlier steps, we measure the total
distance traveled, the time the robot runs over the line, the quality of the line
following (that is how much is the robot interacting with the motors and sensors
while it follows the line), and how much time it spends colliding with obstacles. In
addition, we favor FSAs with less states and transitions.

To verify the controller architecture and task suitability, we have first designed
the post-office arbitrators manually. The most complex arbitrator is shown at the
Figure 8.5 (left), while the remaining three arbitrators are simpler and are shown
at Figure 8.7.

This controller performed well and resulted in reliable cargo delivery behavior.

8.3 Results 191

Figure 8.11: Setup for the real robot: bottom view of the robot (top left), loading
station (top right), robot carrying cargo (bottom left) and the environment with
obstacles, lamps, loading and unloading stations. The cargo loading and unloading
is handled automatically by two RCX modules that use the HiTechnic photo-sensor
to detect the presence of the robot and send IR signal both to the robot and to the
computer that switches the lights using the X10 lamp modules.

We have also tested the controller on the real robot. Figure 8.11 shows the real-
world setup, robot and its environment. The transition to the real-world settings
was straightforward, except of the calibration of the sensors and timing of motoric
actions. Still, in this experiment, the exact quantitative dimensions and distances
played minor role, for the performance of the controller (except, perhaps, for the
line-follower module), and therefore the distances and timings in the realistic actions
did not need to correspond to the simulated one with 100% accuracy, and actual
tuning of the timing could be performed separately for the simulated and realistic
runs. We experimented with a framework for obtaining a better correspondence as
shown at Figure 7.6. The real robot with the diameter of 12 cm took ca. 430 seconds
for completing the full task of a single loading – unloading sequence.

In the evolutionary experiments, we have tried to see if the evolutionary al-
gorithm described above could evolve the target task by automatically designing
all four FSA arbitrators in a single evolutionary run. We ran the program for 20
times with a population of 200 individuals and 200 generations, and with a fitness

192 Experimental Work

Run Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 All steps
1 12 /961 24 /2850 9 /813 15 /3776 19 /4561 9 /1666 88 /14627

2 9 /740 22 /2581 6 /611 9 /2477 58 /12291 18 /2924 122 /21624

3 7 /586 11 /1483 7 /709 12 /3122 42 /9353 42 /6227 121 /21480

4 5 /450 16 /1955 11 /955 14 /3618 52 /11584 74 /10761 172 /29323

5 8 /665 16 /1953 6 /614 12 /3099 27 /5998 9 /1688 78 /14017

6 7 /562 15 /1905 9 /842 6 /1852 24 /5424 7 /1378 68 /11963

7 7 /594 5 /794 6 /600 19 /4570 23 /5427 16 /2599 76 /14584

8 8 /638 17 /2048 7 /683 22 /5240 45 /9867 46 /6784 145 /25260

9 11 /855 17 /2070 8 /749 14 /3495 56 /12052 20 /3218 126 /22439

10 11 /858 13 /1663 6 /610 18 /4373 19 /4526 25 /3856 92 /15886

Avg. 9 /691 16 /1930 8 /719 14 /3562 37 /8108 27 /4110 109 / 19120

Table 8.2: Generations/evaluations in each incremental step, creative scenario,
10 different simulated runs. The relation between the number of generations and the
number of evaluations is not direct: the algorithm evaluates only new individuals,
and among them only those that are not found in the cache.

function rewarding line-following, cargo-loading and unloading, distance traveling,
and penalizing obstacles. However, none of the runs evolved the target behavior.

To save computational effort, we have stored all previously evaluated genotypes
with their fitness to the database. The objective function first checks if the genotype
has already been evaluated and starts the simulator only in case of a new genotype.
Furthermore, during the simulated run, we measure the fitness obtained by the
best (or average of several best) individuals, and later, we automatically stop all
individuals that achieved less than q% of the best measured fitness (q = 5%) in one
of the periodically occurring checkpoints. All evaluated FSAs and the trajectories
of best-fitness improving runs were saved to files and extensive logs were produced
for further analysis.

Later experiments followed the creative scenario with 6 incremental steps shown
at Figure 8.6. The general fitness function used in this task had a form

f = α + wobstacle time · tobstacle + wbelow light time · tbelow light+

+ wfollowing line time · tfollowing line + wfollowing below light time · tfollow below light+

+ wtotal distance · dtotal + wrobot moving changed · timesmoving changed+

+

num scripts
∑

i=1

wscript count(i) · num script started(i)+

+
num active areas

∑

i=1

wactive area count(i) · num area started(i)+

+ wnum states · num states + wnum trans · num trans

Where α is an offset value, watribute are weight constants of specific self-explanatory
attributes. In addition, if wsupress score before load is set to 1, no scores are accummu-

8.3 Results 193

Figure 8.12: Best fitness for all incremental steps (average over 10 runs), creative
incremental scenario. In the incremental step 5 (geom), the assigned fitness is
geometric mean of fitnesses achieved from the three different starting locations.
This step was followed by 5 (worst), where the assigned fitness is the worst fitness
achieved in the three runs from different starting locations.

194 Experimental Work

lated before cargo is first time loaded successfully. See Appendix C for typical values
of the weight constants that were established empirically. In various steps, many of
the constants were 0, i.e. the actual fitness function was simpler.

Table 8.2 shows the number of evaluations used by each incremental step for
10 different runs. Figure 8.12 plots the best fitness average from 10 different runs.
Each evaluation took into account the worst fitness for the three different starting
locations and robot orientations, except of step 5, where we had to use the geometric
mean of fitness from all three runs. This ensured that the behavior evolved in step
4 was not lost as the successful individuals from run 4 at least performed well when
started close to the line that was leading to the loading station. Using the worst
fitness resulted in loosing the behavior learned in step 4 before the sensitivity to
light was evolved. On the other hand, this step was repeated with the same settings,
except for the use of worst fitness instead of geometric mean, before proceeding to
step 6, in order to eliminate the cheating individuals from the population (so step 5
in table 8.2 refers to evaluations in both steps).

In order to obtain a better evaluation of our approach, we compared the runs
against an alternative scenario (which we in fact designed first, and we refer to it
as sequential) of incremental steps: The robot is rewarded in different incremental
steps for:

1. avoiding obstacles

2. following a line

3. following a line under light (while being penalized for following line outside
light)

4. loading cargo

5. loading cargo, and for following a line under light after it has loaded cargo

6. loading and unloading cargo (one time unloading is sufficient)

7. for loading and unloading cargo (multiple deliveries are required)

This sequential scenario corresponds to the sequence of skills as the robot
needs them when completing the target task, being thus a kind of straight-forward
sequential decomposition. Contrary to the creative scenario, here the input material
in each step consists only of the individuals from the final population of the directly
preceding step. Another important difference is that the environments in all steps
of sequential scenario were the same as in the final task, with the exception of the
third incremental step, where the line originally leading to the loading station was
changed to a loop, being illuminated by light along full its length; for this purpose
we also removed one of the obstacles and introduced an additional light source.

We tried to evolve the target behavior with sequential incremental scenario
without simplifying the environment. However, even after spending several weeks
of efforts and years of computational time, and exhausting the parametric space
of the configuration options, and various fitness functions, the correct controller

8.3 Results 195

A −> B: (m), in: m1, out: m2

Meaning that transition from
state A to state B occurs,
when message m arrives.

Then message m1 is sent to
the module and message m2 is
broadcasted to other modules.

The relevant messages are:

Transition tables describe
transitions in format:

SENSORS_BUMPERS_PRESSED
SENSORS_BUMPERS_RELEASED

SENSORS_LINE_ENTER
SENSORS_LINE_LEAVE
SENSORS_TARGET_MARK

SENSORS_LIGHT_ENTER
SENSORS_LIGHT_LEAVE

LNFLWER_FOLLOW
LNFLWER_STOP

CARGOLOADER_LOAD
CARGOLOADER_UNLOAD

AVOIDANCE_START

Figure 8.13: Finite-state machines evolved in each step of creative scenario.

196 Experimental Work

Run Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 All steps
1 9 / 614 21 / 2966 39 / 8396 21 / 4298 43 / 8516 7 / 1072 7 / 1122 147 / 26984

2 5 / 393 42 / 5400 48 / 6058 21 / 2849 65 / 8256 7 / 1107 13 / 1903 201 / 25966

3 7 / 497 44 / 2798 35 / 4850 29 / 3950 180 / 9592 20 / 1408 6 / 477 321 / 23572

4 5 / 357 40 / 2440 44 / 5826 44 / 5696 12 / 872 12 / 905 13 / 942 170 / 17038

5 6 / 469 43 / 2819 30 / 3701 76 / 9668 9 / 728 26 / 1666 71 / 4863 206 / 23914

6 10 / 636 28 / 3736 38 / 7495 42 / 8254 9 / 1368 6 / 992 6 / 980 139 / 23461

7 10 / 641 55 / 6976 31 / 5828 24 / 4797 28 / 3675 9 / 1293 11 / 1626 168 / 24836

8 7 / 500 49 / 6356 62 / 11590 22 / 4696 11 / 1685 44 / 5539 19 / 2555 214 / 32921

9 5 / 393 42 / 5400 48 / 6058 21 / 2849 65 / 8256 7 / 1107 13 / 1903 253 / 25966

10 5 / 394 27 / 3164 47 / 9306 11 / 2648 15 / 2305 12 / 1747 26 / 3600 143 / 23164

Avg. 7 / 489 39 / 4206 42 / 6911 31 / 4971 44 / 4525 15 / 1684 19 / 1997 196 / 24782

Table 8.3: Number of evaluations in each incremental step in sequential scenario
for 10 different simulated runs (for the values in cursive, the population size was
reduced from 200 to 100, or from 300 to 200; those in bold face ran with population
100 instead of 300). These parameters were varied for empirical testing. The
creative scenario required significantly less evaluations than the sequential scenario
(t=2.5796)

functionality was never produced. In particular, it appears to be too difficult to
evolve sensitivity to light, while not loosing the proper line-following behavior, if
the line leaves the light and follows to the loading station, where it is non-trivial to
turn and return back under the light to gain fitness. If the robots were rewarded
for spending time under the light, they evolved all the possible tricks of pretending
the line following behavior, while moving in various loops, but forgetting the proper
line-following behavior at the same time.

Once the line-following behavior has been lost, it was very difficult for the
evolution to reclaim it later again in the successor incremental steps, which required
it. Modifying the environment in the third incremental step was sufficient, and the
target behavior evolved in 11 of 15 runs, each run taking about 12 hours on a pool
of 60 computational nodes (2 GHz PCs). Table 8.3 shows the number of evaluations
performed in 10 different simulated runs with the sequential scenario. Figure 8.14
plots the best fitness.

To gain better understanding of underlying processes, we studied the contribu-
tion of the various mutation operators to the fitness improvements. The fitness
of the offspring that was generated using each mutation operator was compared
with the fitness of the parent, and the difference was stored. Figure 8.15 compares
the relative contribution of the mutation operators in all incremental steps of the
sequential scenario, that is with how large portion each operator contributed to the
progress. Alternatively, Figure 8.16 views the individual performances of all single
operators, and plots the ratios of the cases with positive and negative fitness changes
that resulted from operator applications.

8.3 Results 197

Figure 8.14: Best fitness for all incremental steps (average over 10 runs) with
sequential scenario.

198 Experimental Work

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 1 of sequential scenario

experiment

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 2 of sequential scenario

experiment

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 3 of sequential scenario

experiment

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 4 of sequential scenario

experiment

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 5 of sequential scenario

experiment

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 6 of sequential scenario

experiment

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 7 of sequential scenario

experiment

Figure 8.15: Contribution of mutation operators to evolutionary progress in all
incremental steps of a single run of the sequential experiment. Due to different
mutation rates, the absolute contribution of mutation operators was scaled by
the number of operator applications: in total 3970, 3321, 3951, 13329, 2974,
21857, 17773 applications of mut change start, mut split, mut rnd state del,
mut new state, mut del rnd trans, mut rnd trans and mut new trans operator
resp. Low success rate of mut rnd state del in earlier steps is due to the lower and
upper limits on number of states. Steps introducing higher complexity in task benefit
from mut split, when an extra state is smoothly added, extending one transition to
two steps. In total (the graph not shown to avoid direct addition of fitnesses from
different incremental steps), splitting, mutating and deleting transitions are the most
successful operators, however, all operators contribute significantly in more than one
incremental step.

8.3 Results 199

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 1

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 2

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 3

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 4

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 5

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 6

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 7

Figure 8.16: Positive rate of mutation operators expresses how often the operator
generated a positive fitness increase. In the first step (step 0), the total number
of evaluations was low, therefore high positive rate was achieved. In the sixth
step, a very large potential for improvement existed. The deletion operators
(mut rnd state del, mut del rnd trans) show lower rate as they often harm useful
parts of automata.

200 Experimental Work

A B C D

Figure 8.17: Examples of evolved misbehavior’s demonstrating richness of controllers
with FSA arbitrators evolved for a set of predefined competence modules. In A and
B, the robot is trained to follow the line. In A, when the line is encountered, it starts
chaotic cyclic movements around the line, sometimes crossing a larger distance in a
straight movement. In B, the robot starts following the line after it meets it for the
second time, but instead of smooth following, it follows by the line by systematic
looping — although actually achieving the desired behavior at certain quality level.
In C and D, the robot needs to follow the line and then periodically transport cargo
between the loading and unloading locations placed opposite to one another. In
C, the robot loads the cargo once, but fails to stop following the line. In D, the
robot fails to follow the correct (third from the bottom) line, which starts under
top-mounted light (not shown in this earlier environment viewer version).

8.4 Chapter Summary 201

8.4 Chapter Summary

• We demonstrate that the principles of evolutionary computing can make robots
adaptive on a trivial task.

• We design an experiment where an incremental evolutionary algorithm is
running on-board of a mobile robot. The task of the robot is moving an object
between two specified locations. The genotype representation is a variable-
length linear sequence of simple instructions.

• Finally, we design an experiment with a structural task for mobile robot
evolved in simulation that can be verified in realistic environment. In this
experiment, the robot is equipped with a behavior-based type of controller
with distributed behavior arbitration mechanism relying on set of finite-state
automata.

• The results from embedded incremental evolutionary task demonstrate how
incremental evolution can solve the problem of designing simple controller for
a navigation task.

• Evolution proceeds to later incremental steps automatically after fitness im-
provement occurs and decreases.

• In a more complex robotic task that involves object localization and transport,
we study different incremental scenarios of dividing the target task into
multiple sub-tasks: creative and sequential scenario.

• In the creative scenario, various skills are learned independently in modified
environments and merged together in later steps.

• In the sequential scenario, the same target environment is used, and the
behavior is built in a sequential manner – from shorter sequences of actions to
more complex sequences.

• The sequential scenario fails to evolve the target behavior due to a high
complexity, but succeeds if the environment is modified in one of the steps.

• The creative scenario succeed to evolve the target behavior in significantly
shorter time (t-test: 2.5786).

202 Experimental Work

Chapter 9

Discussion and Conclusions

9.1 Discussion

Personally, I think this is a crappy way to do things, but it’s the way the
system works.
—the head of section about this thesis review process

This section discusses various aspects we would like to attribute a point before
summarizing the whole thesis in the conclusions that follow as a separate section.

9.1.1 Extensibility of the Controller

One of the important strengths of the incremental approach to evolution of con-
trollers stems from the incremental property of the behavior-based approach to
building controllers.

When a functional controller is extended with a new functionality, this is typically
done by adding one or more behavior modules. The coordination of the original
controller needs to be adjusted to the new task, while preserving the original
functionality.

In case of distributed arbitration system, this practically means modifying the
previous arbitrators to fit the new situation, and designing the new arbitrator(s) for
the new module(s). It is important to realize that this is the same kind of design step
as was repeated several times while designing the original controller that is being
extended. Thus, our methodology for design is open-ended: the controller is never
fixed-finished, rather allows for future modifications that have same characteristics,
issues, and progress as the original design process.

We would like to discuss here a proposal for another interesting experiment,
which demonstrates these principles. The starting point is an evolved controller for
the cargo transporting robot. Consider the following three modifications of the task:

• The environment is modified and several lines start below light. Robot is
equipped with a compass sensor that allows it to recognize the correct line by
remembering the orientation during its navigation along the line (a normalized
sequence of orientations). The extending module learns from experience: if the

204 Discussion and Conclusions

robot follows incorrect line and there is no cargo-loading station at the end, it
will quit following that line another time. In a slight modification, there is no
compass sensor, but the sequence of time intervals between turnings is used
to approximate the sequence of relative orientations.

The easiest integration of the new feature into the existing controller would
be making the line-follower arbitrator emit a message each time it starts or
stops following a line, as well as reporting about whether loading or unloading
station was present, and the new module should respond to these events by
starting a sequence measurement, and reporting its prediction, which again
the line-following arbitrator should process after the correct orientations are
learned.

• Adding a module responsible for reporting the location of obstacles. The
scenario is as follows: obstacles cannot be detected unless the robot approaches
them closely. The robot is exploring the environment and is equipped with
advanced positioning sensors based on triangulation, GPS or similar (i.e.
overhead camera). Thus the location of the robot is known to it. The robot
combines the information about its location with the presence of obstacles and
constructs a map. The map is then used to avoid collisions with obstacles.

• Adding an IR sensor to the robot, and extending the task by placing an
IR-emitting sphere (such as IR soccer-ball) at a random location in the
environment. The sphere is to be avoided. A new sensor module is added
in the controller, and the Avoidance module has to be modified so that the
robot will be avoiding both the obstacles and the IR ball, without hitting or
touching it.

• And finally, in another interesting experiment, consider an evolved controller
and a modification to the original cargo-transporting task. In the modified
version, the cargo needs to be loaded at the loading station at the end of a
line and delivered below light. There is only a single line and single light. The
task needs to be achieved by modifying the existing controller.

The importance of these modifications lies in testing the adaptivity capabilities of
the proposed architecture and controller design method. In principle, these modifica-
tions resemble the incremental steps designed in order to evolve the target behavior,
and therefore there are good reasons to believe that the described transitions are
possible and likely to be successful. Yet, the actual verification of this hypothesis
remains for the future work.

9.1.2 Evolution Modeled as Phenotypic Process

We return back to our remark on the distinction of evolution modeled as a genetic
process and the approaches where the evolution is modeled as a phenotypic process
from section 2.10. We make a point here that this biologically-inspired distinction
is not very relevant in the computational context.

9.1 Discussion 205

First, the phenotypic representation inherently implies some form of encoding,
i.e. storing the usually complex patterns of interactions of the individual with
the environment or with the details of the particular task instance, where the
evolved or evolving solution is applied. This encoding does not explicitly list all
these interactions, and properties, not even all the mechanisms that participate in
these interactions. They are rather implied by and contained in the whole system
that executes the solution. Isn’t rather that whole system the phenotype? Where
is the border line between the body of the individual and its environment in the
computational context? Consider an example from the computational world of
an evolution of an artificial agent whose behavior is controlled by a FSA, and
an example from the biological world of some low-degree organism. The former
is supposed to be using a phenotype representation, while the latter is clearly
assumed to be evolved through biological genetic process. Is there really a difference
between interpreting a FSA in order to produce a run-time behavior of the agent
and interpreting a DNA of a biological organism in order to generate chemical
compounds that are reacting to the chemicals found in the agent’s internal and
external environment? In both cases, there is an encoding that is translated by
the “operating system” in order to obtain the actual behavior of an individual.
The agent itself performs in some space, and has some spacial properties that are
not represented in the FSA. And even if the encoding would involve a directly
executable machine code, it would still be interpreted by the CPU to obtain the
actual run-time behavior and execution of the CPU’s own microcode. Is there any
evolutionary process in the computational context that is modeled as phenotypic
process (except of the cases of evolutionary design or evolution of robot morphology)
at all? Avoiding further misunderstanding, please also notice the difference between
the distinction of a sexual and an asexual processes and the distinction between
phenotypic and genetic processes. Even if the evolution of the artificial agent with
FSA representation is asexual, we still can consider it to be a genetic process. There
are many examples of asexual organisms in the biological world.

The complex interactive individual must be frozen into some sort of a static
encoding in order to be manipulated by evolutionary operators and stored in a
population. In other words, in computational context, it is difficult and possibly
misleading to try to identify what is a phenotype. In biological terms, body of an
individual is distinguished by its spacial properties, however, those (if there could be
any analogy in the computational world) are rather task-related than representation-
related. The same FSA evolved for an artificial agent might perform differently when
used in different tasks, and agents with different morphologies and environments. It
is thus not the body that is encoded, but its genotype.

Does the phenotype include all the bits of the software, where the solution is
being run? Including the operating system, and all the low-level implementation of
the hardware of the computer, which the solution is interacting with and utilizing?
Or does it include only those parts of the evolved solution that can be changed in
the evolutionary process? But isn’t that then the genotype itself?

Secondly, in many instances of the evolutionary algorithms that are rendered
by [Fogel et al., 1995] as a genetic process, solutions are represented directly in the

206 Discussion and Conclusions

genotype – just recall the popular maxbit sample problem for instance. Here we
cannot talk about any phenotype associated with the evolved bit-string, because
the bit-string is the target of the search itself. The implications of our remark for
the field of evolutionary development are not dramatic, we only suggest that many
research questions relate to the genotype representation, and we consider the GP-
trees, FSA, and virtually any evolved representation to be a genotype, rather than a
phenotype evolved in a phenotypic process. In this respect, however, one has to be
very careful about any analogies drawn to the biological process of development. In
the computational context, transformations and configurations of the genotype itself
are possible, and their usefulness has little to do with the developmental process in
nature, even if it might share some [but most likely forced] structural similarities.
The research questions of what transformations on the genotypes and how they can
be performed, however, are still valid, interesting and worth investigation.

9.1.3 From FSA to Recurrent NN Architectures

Our chosen representation was motivated mainly by the fact that robots performing
tasks as well as their behavioral modules are always in some state, which changes
depending on what situation and environmental conditions the robot is dealing with.

Other, probably more common, approach in Evolutionary Robotics experiments
is the utilization of neural network architectures. In order to explore the rich world
of the controller architectures in between, let us consider the following concepts.

Fitness landscape, neighborhood, and genetic operators. Fitness neighborhood is
the solution subspace reachable from the particular genotype with one of the genetic
operators in one step. Genotypes based on the neural networks usually operate with
gradual changes to weights, or topologies by adding certain small random noise to the
current individual. In that way, they may suffer from the local extremes, which may
be difficult to escape by small random modifications. Larger modifications, however,
may be too disruptive to the solution. In genotypes with state representation, the
fitness landscape is less smooth. This may be seen as a disadvantage of the needle-
in-a-haystack kind. On the other hand, it can have larger potential of avoiding local
extremes, since new states and transitions may significantly improve the situation.
Given the correct working solution in a state representation, we can easily make
hundreds of modifications that will modify the behavior a little bit, but still lead
to a working controller - therefore, we could claim that the needle to find is not
necessarily so tiny. Further experimental analysis might bring more insight.

Finite-state automata are discreet, whereas neural networks are continuous. In
particular, the automata operate with discreet messages, the interface with the
behavior is discreet as well, they consist of discreet states, and transitions. An
interesting experiment would be to study the evolvability change when some of the
above instances of discreetness are relaxed. This can be done in the following steps:

1. making the transitions probabilistic

2. making the states probabilistic (thus achieving a HMM-type of automaton)

9.1 Discussion 207

3. introducing probabilistic messages (instead of communicating by sending a
single symbol, always send the whole vector with probabilities for each possible
symbol)

4. modify the interface between the arbitrator and the behavior module to
be probabilistic too, or completely drop the behavior modules and keep all
functionality in the probabilistic automaton.

Indeed in the last step, we reached an architecture not unlike a general recurrent
neural network (RNN). It has been shown earlier [Pollack, 1991] that RNN can
acquire grammatical structures, and that it is able to emulate the symbolic structures
of finite-state machines, hidden in the interaction between a real robot and its
environment in a robot navigation task [Tani, 1996].

It remains for the future study to see whether this may have a positive influence
on the evolvability and to what extent one could analyze the behavior of the resulting
controllers as it is clearly possible with simple discreet finite-state machines. High-
level atomic actions performed by robot have discreet nature. Events happening
in the world have discreet nature too. Continuous change in the evolution is not
necessarily a positive feature: Is a robot that performs certain expected action only
half of the time, 50% (or any) better than a robot that is not performing the action
at all? Perhaps, in some situations.

9.1.4 Lessons Learned about Simulating Robotic
System Time

Simulations of mobile robotic experiments certainly form a class of hard simulation
problems. The number of interactions of the simulated system (a robot) with its
environment is typically extremely high, since a mobile robot must continuously scan
its environment using most of its sensors. Each such sensing is a separate event, and
the density of the sensor events is typically bounded only by the speed of the robot
hardware — sensors and CPU. In a multithreaded system, where multiple behaviors
compete for the robot CPU resources, the simulation of the robotic system becomes
challenging, in the sense that even very slight differences in timing might lead to quite
different robot behavior and performance. Building accurate simulating environment
on a different platform is difficult and unlikely. Therefore, the controllers designed
in the simulation need to be robust enough in order to cope with the transition to
real robots. Extra adjustment efforts might be needed during the transition process.

9.1.5 Symbolic and Sub-Symbolic Viewpoints

Artificial intelligence textbooks, courses, and lectures often divide the field into two
strict sub-fields, namely “symbolic”, and “sub-symbolic” artificial intelligence.

The symbolic AI attempts to model and solve the problems by describing the
real world by discrete symbols, such as chair, brick, north, forward, pick-up,
enter, flat, red, higher, brighter, etc. The symbolic system usually works

208 Discussion and Conclusions

Figure 9.1: A re-planning controller for a pick-and-place robot enabled with a camera
and image recognition. A prototype of the robot built using LEGO Mindstorms is
shown at Figure 9.2.

with a knowledge base containing a set of facts, and inference rules. It has a sub-
component that can convert the perceived input information, obtained for example
from robot sensors, into discrete symbolic facts. Both names of instances, their
attributes, relations, and actions are associated with some symbol. The system has
its own goals (again, described by symbols), and with the help of all the possible
flavors of logic inferences, it usually arrives at a conclusion about the action that
needs to be taken in order to move closer to the system’s [current] goal(s). Once a
discrete symbolic action is generated, it is translated into actual low-level actuator
steering and control.

Sub-symbolic systems, on the other hand, work with numerical information.
This includes most versions of neural networks, evolutionary systems, and other
statistical, stochastic, approaches, such as tabu search, simulated annealing, analog
systems, etc. In addition, many of the sub-symbolic systems work with information
that is distributed. For instance, a neural network that can classify raster of pixels as
characters of the alphabet has no single node that corresponds to the character A, or
B. Instead, all, or most nodes contribute to the recognition of each of the characters
as the numeric information flows through the network. Similarly, Evolutionary
Algorithms work with large population of solutions, where the information stored in
various individuals is combined through recombination operators to progress in the
quality of the generated solutions. In a Bayesian network or a fuzzy controller with
several variables, it is the interplay of the individual numeric probability or weight
values that makes the network produce an output.

Nowadays, most systems must work with both the symbolic and sub-symbolic
information. The symbols can be assigned probabilities, or extended with another
representation of uncertainty. Symbolic systems can employ sub-symbolic modules

9.1 Discussion 209

Figure 9.2: A prototype of LEGO pick-and place robot. Two rails on the side allow
the central rail to navigate in forward-backward movement. The arm can move on
the central rail as well as upwards and downwards. The gripper can open and close
to grasp a piece. Pieces and chessboard are black and have letters on top, which
are recognized by a neural network trained with back-propagation. The chessboard
contains white markers that are used for camera positions calibration.

for certain sub-tasks and they can still infer over the sub-symbolic outcomes in
symbolic level – possibly enhanced by numerical information. An example of such
approach is a symbolic re-planning system that is utilizing a Genetic Algorithm to
generate and update the plans for a pick-and-place robot that moves bricks labeled
with letters on a chessboard with the help of camera and image recognition with
neural network, see Figure 9.1, [Yildirim et al., 2000].

A very important is the symbol grounding problem [Harnad, 1990], one of the
famous problems of Artificial Intelligence. It relates to the problem of mapping the
symbols used in the internal symbolic representation of the world against the real
objects in the environment, and obviously and consequently their perception by the
agent on the sub-symbolic level. For instance, consider an intelligent car-driving
controller. There are some four cars in a usual traffic situation identified by an
intelligent car-driving controller. After few seconds, these change their positions,
and become overlapped partially or completely by other objects in the scene for
some time. The problem is to map the symbols assigned to the real-world objects
(here cars) to the percepts acquired by the system correctly.

The importance of symbols for the intelligence is implied by the human language,
which is symbolic. We exchange the information with each other using high-level
symbolic sentences (in addition to the non-verbal communication, which can be both
symbolic – gestures, and sub-symbolic – emotions, eye contact, etc.). Therefore the
communication between the human and any intelligent system is very likely to be
symbolic. Furthermore, understanding of the robot actions and its task is also
likely to be specified symbolically. Thus it may be useful to allow for symbolic
representation to a large extent.

In our work, we abstain from restricting or classifying the approach as symbolic

210 Discussion and Conclusions

or sub-symbolic. Individual modules may utilize both symbolic and sub-symbolic
information, and the modules can exchange both kinds of information in the messages
sent from one to another. The evolutionary algorithm – as inherently sub-symbolic
may find solutions, which might appear sub-symbolic, but at the same time, our
chosen representation of the finite-state automata attempts to come close to the
possibilities of symbolic treatment and explanation of the evolved arbitrators.

9.2 Main Contributions of the Thesis

The thesis studies the problem of automatic design of behavior coordination mecha-
nism for behavior-based controllers of mobile robots by the means of evolutionary al-
gorithms. While other researchers often investigate controller architectures inspired
by neural networks, this thesis focuses on distributed coordination mechanisms
based on finite-state automata. Plain evolutionary algorithms are not capable of
overcoming the complexity of this design problem and therefore must be supported
by additional framework. This thesis uses the method of incremental evolution,
i.e. partitioning of the evolved task into a structure of simplified tasks of gradually
increasing complexity from various viewpoints. We see the main contributions of
this work as follows:

• We experimentally confirm that incremental evolution is a possible way of
overcoming the complexity of evolutionary task in the field of Evolutionary
Robotics, describe and experiment with various flavors of incrementality.

• We design and implement a new universal distributed coordination mechanism
and controller architecture consisting of behavioral modules, message passing,
and coordination modules associated with the behavior modules.

• We show how our coordination mechanism can be automatically designed
using evolutionary algorithm with the help of incremental evolution on a
non-trivial mobile robot task evolved in simulation and verified on a real
robot. That means, we confirm that the behavior coordination mechanism in
a behavior-based controller for a mobile robot can be automatically designed
using evolutionary computation.

• Designing the incremental scenario, i.e. dividing the task into incremental
steps can be performed in various ways, we show that the sequential setup,
where activities are always appended at the end of the previously evolved task
is not the most efficient way of task partitioning. Instead, dividing the task
into steps based on various behavioral activities generates faster scenario.

• We show that finite-state automata, the genotype representation used in
our coordination architecture, outperforms GP-tree programs on tasks with
structural similarity to behavior coordination problem.

• We experimentally confirm that embedded evolution, i.e. evolution running
on-line on the robot hardware, can generate solutions encountered by robots
while they are performing task in real environments.

9.2 Main Contributions of the Thesis 211

• We show that incremental evolution can both improve and decrease the
evolvability; the overall effect of its use can be both positive and negative and
thus the use of incremental evolution requires understanding and preliminary
analysis of the problem-specific search space.

212 Discussion and Conclusions

9.3 Conclusions

This thesis addresses the problem of designing adaptive mobile robots automatically.
Similarly as the nature succeeded throughout the millions of years of natural
evolution in designing functional organisms with various degrees of intelligence
and colossal diversity of behaviors, morphologies, and functionality, we attempt
to produce working robot controllers and perhaps bodies in tens of thousands
evaluations in a setup of artificial evolutionary computation.

Obviously, there is a gap between the complexities of the natural and artificial
evolutions. The size of this gap is difficult to estimate even today. This gap will
never be removed by any supercomputer in the Universe as we know it. That has
a couple of consequences: First, if the natural processes of an artificial evolution
should ever produce systems that would be at least partially comparable to any
intelligent living organisms, the conditions for the evolutionary progress in such
artificial environments would have to be enormously more favorable than they are
in the nature on our planet as we know it, or, alternately, we would have to be able
to identify a very small subset of the thousands of millions of interactions between
the organisms, species, and their environment that are relevant for the evolutionary
progress, if there are any such at all. Second, if we are to exploit the idea of artificial
evolution for our benefit within the artificial environments that we can build with
our computing power, we must restrict and guide the evolutionary process strongly.

Nevertheless, the inspiration from the natural evolution by the computer scien-
tists has brought provably successful projects, particularly in the areas where the
subject of the evolution is a solution to a relatively small-size search problem, which,
however, may be impossible or too hard to solve by known deterministic or other
algorithmic methods.

We approach the design of the robots by the means of evolutionary computation
by selecting those parts of the design process that are, in our opinion, most suitable
for evolution. In particular, in addition to studies into representations for evolving
morphologies, we focus on designing a coordination mechanism of behaviors in a
controller consisting of multiple simultaneously performing behaviors in the style of
the behavior-based robotics.

The behavior coordination in the controller used in our main experiments is
based on set of finite-state automata. One of the contributions of our work is
the analysis of the FSA representation itself. We touch several important issues
of artificial evolution with direct program representations, in particular GP-trees
and FSA. While the GP-tree programs tend to have a relatively linear path of
execution, the FSA are powerful in representing repeated and possibly irregular
patterns and behaviors that react to percepts and possibly launch different mode
(or state) of operation. The internal topology of the representations corresponds
1) to the topology of interactions of the evolved solution with its environment – as
demonstrated on the “switch” task and 2) to the topology of the space searched by
the evolutionary algorithm – as demonstrated by the “find target” task. On several
sample tasks, we study the performance of both representations, and confirm that
both representations can outperform one another, depending on the structure of the

9.3 Conclusions 213

interactions the program is to perform in a particular task. We leave for the future
work comparisons against automatically defined functions of Koza [Koza, 1994], and
hybrid approaches that combine both FSA and GP, for instance [Benson, 2000].

Another important difference of the GP-tree and FSA representations is that the
FSA individuals require some condition to be satisfied between performing any two
actions. This is not the case in the GP-tree representation, especially when a seq

non-terminal can be used. FSA representation can be compensated by introducing
tautology transition conditions, however, it still remains more sensitive to sensory
inputs (values of the registers).

Another, main contribution of this thesis relates to evolving the robot controllers
incrementally. More complex tasks prove to be too difficult for an evolutionary
algorithm, and further guidance might improve the chances for discovering a correct
solution. Incremental evolution is a possible method for such guidance. The incre-
mental method is based on dividing the target task into multiple tasks of increasing
complexity (a partial order relation). Evolved populations with individuals that
successfully perform more simple tasks are transformed and combined into initial
populations for more complex tasks thus making it possible to evolve complex
behaviors, which could not be automatically programmed otherwise. We approach
the incremental evolution from several viewpoints.

In the experiments with FSA representation, we show that using incremental
evolution requires careful preparation and understanding of the evolutionary process.
Our experimental runs confirm that making the evolutionary algorithm incremental
can both help and hinder the success rate of the evolutionary algorithm. Usually,
incremental evolution introduces an extra bias, requiring the evolution to pass
through stages that could possibly be avoided in a single run. This incremental
bias must be compensated by larger benefits resulting from evolving incrementally,
in favor of faster and easier progress of the evolution, otherwise the incremental
method performs worse.

More exploration of the abilities of FSA-based representations, and task-charac-
terization guidelines that may suggest suitable genotype representation remain also
for a possible future work. This would be especially interesting in the context of
incremental evolution. Deeper investigations into less deterministic representations,
such as probabilistic state automata remain also for the future work.

In an incremental evolution experiment with an embedded evolutionary algo-
rithm running on a simple robot built from flexible LEGO construction sets we
showed that the choice of the generation number for making transition to the next
incremental step has an influence on the quality of the final solution. A robot facing
a novel problem to solve needs to determine this generation automatically. We
applied a method where this choice is made based on measuring the convergence.
We also demonstrated on this simple task that the incremental evolution improves
evolvability of robot controllers.

Behavior control architectures are the focus of contemporary research. Our
robot controller architecture we proposed in the main part of the work is inspired
by the principle of independent robot competencies performed, or being ready to
be activated, in parallel. This principle is prevalent in Behavior-Based Robotics

214 Discussion and Conclusions

approaches. In our case, the behaviors communicate by sending addressed or broad-
casted message signals possibly containing data. The implementation relies on
shared memory locations between the individual threads of computation, and the
message-passing interface function calls achieve high efficiency (usually no data is
copied; rather the functions with arguments referring to common memory space
are called). However, shared memory is not a requirement of this representation.
Complete messages can be transmitted between the modules, if the hardware
implementation requires.

We have designed a parallel, distributed behavior-based controller architecture
where individual modules communicate by sending messages. Modules implement
simple behaviors and are usually hand-coded, or optionally evolved. Messages are
processed by post-offices attached to modules in order to filter relevant messages
and adapt the behavior of the modules with independent behavioral responsibility
to the purpose of the combined controller thus achieving efficient synergy of be-
havior coordination. On example task of cargo delivery, we have demonstrated a
successful design both manually and using automatic method based on incremental
evolutionary algorithm that evaluates the individuals in simulation. The evolved
individuals representing the arbitrators, i.e. the post-offices of all modules, take the
form of finite-state automata.

Our framework for incremental evolution allows a general design of the incre-
mental evolutionary scenario: the populations from several steps can be combined
together in different ratios for each particular FSA. In addition, it is possible to
specify a general ‘incremental’ function, which specifies a termination criterion
in each incremental step, i.e. a required condition for proceeding to the next
incremental step. Incremental function can take into account various variables,
such as the current generation number (globally or within this step), best fitness
(globally or current generation), average fitness (globally or current), learning
momentum, which is the current learning rate with history; number of evaluations
(globally or within this step), real run-time in different forms, etc. These variables
can be combined with numeric constants, binary operators and predicates. Each
incremental step has its own definition file for the environment, separate fitness
function, structure of the controller, and describes the robot topology. Despite this
generality, we concluded to several guidelines for designing the incremental scenarios:

1. Individual incremental steps ought to be as focused as possible. If a certain
competence required for the target behavior can be learned completely in some
incremental step, it should not be the subject of further learning and improve-
ment in other incremental steps, as it would only increase its complexity by a
multiplicative factor.

2. Each incremental step should focus on a relatively narrow and well- identifiable
competence. Avoiding evolving of multiple competencies at the same time is
essential. If some competence requires a cooperation of multiple competencies,
this itself has to be identified, and formulated as a distinguished, well-defined
competence.

9.3 Conclusions 215

3. Modifying the environment in order to create training situations for the robot
is a very efficient method of devising simpler incremental steps. Modifying
the objective function only, while keeping the same environment, is more
challenging, and often leads to multitudes of false behaviors. Evolution tends
to discover unexpected tricks due to the large number of possible interactions
in a typical target environment. Figure 8.17 shows few samples of incorrect
evolved behaviors.

4. The early apparent suggestive decomposition of the task is often not necessarily
the most efficient way of task decomposition for incremental evolution. The
average number of evaluations was significantly lower in the case of more
elaborate task decomposition as shown in the results section of this work.

5. Special care has to be taken to prevent the individuals from gaining fitness by
random coincidences without performing the required task. If the populations
with several hundreds individuals evolve for hundreds of generations, even
very unlikely events do happen and if the EA uses elitism, such faulty, but
lucky behavior might completely push all promising individuals out of the
population. Such events can, to a limited extent, be prevented by multiple
starts from all starting locations. This, however, increases the total evaluation
time for each individual. In our experiments, we used four different methods
of calculating the individual fitness from the scores gained in all starting
locations: arithmetic mean, geometric mean, worst fitness, and combination.
The worst fitness has to be used, if we want to set a hard constraint and
require that the individual performs the required behavior consistently and
reliably. It should be used especially when the objective function permits a
very high score in lucky situations – thus both mean and geometric mean
thresholds could pass an individual that would solve only some of the runs,
accidentally with a luckily high score (please note, that the geometric mean
would not suffer from this problem if the unsuccessful runs would receive zero-
fitness; that is, however, not the case, because the objective function typically
rewards multiple aspects of the task, and thus it is almost never 0). In case
of the combined option, we use the geometric mean for all runs from the same
starting location, but the worst fitness among all those means for all starting
locations. In other words, the robot has to solve each starting location, but
its performance does not have to be completely stable. Using worst fitness
can be too strict for evolution to discover any working solution as the search
typically solves only one of the starting locations first, followed by a solution
that can solve two, etc. We would recommended the approach we used in the
experiments: we started with geometric mean and followed with worst fitness.
This allows partial solutions to have an evolutionary advantage over poor and
random solutions and in the second stage, it eliminates individuals that do
not solve all test cases reliably.

Many tasks (including ours) comprise a high degree of randomness. The same
individual can gain fitness values that vary often more than 10%. This can lead into

216 Discussion and Conclusions

an illusory fitness improvement while the quality of the individuals does not change
– or even decreases slightly, especially if elitism is in use: a small change introduced
to an individual will result in a new individual, which by a lucky coincidence gains
higher fitness and replaces the old individual in the population. This makes it
also more difficult for newly found individuals, which introduce changes in a good
direction, to steer the evolution away, as there are already many individuals who
have the more lucky fitness for their real quality in the population, especially if the
evolution stagnated for some time already. For this reason, it is recommended to
evaluate all individuals over in each generation. Unfortunately, in our case, this
would exceed out of practical CPU limits, but it remains for future work to study
how much this issue hinders the evolution of arbitrators.

Sometimes, one cannot avoid transferring certain evolved features to succeeding
evolutionary steps. There is a high risk that the new incremental step will quickly
move in its search away from the evolved features, which thus become easily
forgotten. A remedy for this situation would be a continuous flow of individuals
from previous incremental step, however it remains for the future work to evaluate
this strategy.

It seems though that an insight of a human expert knowing the details of
the robot hardware and software is still required in order to design a functional
incremental decomposition. Future work should focus on eliminating these and
making the process of creating the controller as automatic as possible.

Two advanced evolutionary techniques were applied in order to improve the
evolutionary search process:

1. The population was automatically reinitialized each time it converged prema-
turely;

2. The states and transitions, which were never entered during the evaluation
by the fitness function, can optionally be removed automatically. On one
hand, this leads into much more readable and concise FSAs, on the other
hand, it reduces the evolvability as the overhead genetic material present in
the population becomes forbidden, and thus the population can get stuck in
local extremes more easily. Removing unused transition also helps to win the
useful code over bloat that can prevent the evolution from progressing at any
reasonable pace.

3. Fitness cache implemented using SQL database helped to decrease the overall
time required to reach the solution.

An important observation and recommendation about the possible applications
of evolutionary computation for designing the robot controllers is that those be-
haviors are amenable to evolution that are difficult to describe by simple schemes,
formalisms or clear sentences in natural language. If the target of the evolution is
easy to describe using highly-structured prescription, it is typically easier and more
efficient to use one or another kind of formalism to specify that prescription in some
implementation language and execute it directly on the robot, or provide some

9.3 Conclusions 217

interpreter for high-level natural sentences with a strongly limited domain. The
evolution can be much more useful when the target function is difficult to describe,
estimate, and analyze – when the human attempts to generate formal deterministic
solutions tend to fail or are too difficult to complete. In these cases, the evolution
is able to “mechanistically” grasp the hidden interactions within the system and
generate a solution with a suitable performance. Therefore the attempts to use the
evolutionary computation in the design of robot controllers have to be thoroughly
considered and first undergo a sound critique.

The computational demand of the algorithm is high and requires utilization of
distributed computational power. We have used three various systems for distributed
computation to harness the idle CPU power of university student lab computers and
cluster.

Additional further directions of this work are several. A natural language
interface for specifying the target task would allow to program robot for complex
task by giving description in human language. This would also require work on
automatic partitioning of the target task into incremental steps, and an AI system
that could achieve that by understanding the semantic descriptions of the basic
robot capabilities. Automatic programming of multiple groups of robots is a straight
extension of this work. Improvements in the simulation techniques, using real-time
operating systems, simulating more realistic environments, as well as implementing
the robot simulator and evolutionary algorithm directly on the robot hardware
remain for further studies. Other representations in addition to FSA taking the
role of behavior arbitrators should be investigated. The crispness of FSAs can be
alleviated by making them more continuous: either by transitions that occur with
certain probability, or by messages that would be probability vectors for all message
types, or by staying in multiple states at the same time with distributed probability.
This is our connection to the fields of Hidden Markov Models and neural networks,
however it remains to be investigated whether such representations apply smoothly
to the crisp robotic tasks constrained by the discrete robot body, actuators, and
world interactions, which are probably modeled best by discrete states.

9.3.1 On Educational Robotics

All our evolutionary experiments have been performed with educational robotics
hardware. Indeed, Evolutionary Robotics is such a highly-specialized sub-field that
per se alone does not exist and must naturally be connected to some particular
robotics domain. Our underlying domain – educational robotics deals with the use
of robotics technology in schools at all levels, either as part of the curriculum, or
as after-school activity. Naturally, we have performed several studies directly in the
field of educational robotics as part of this thesis, even though they are included as
and considered to be the supporting studies.

Drawing robots Robotnacka are installed in the robotics laboratory and available
through the Internet for public use. Teachers at various levels might consider using
the laboratory in their lessons – from mathematics, physics and programming at
the levels of primary and secondary schools, to the programming, control, hardware,

218 Discussion and Conclusions

computer vision, artificial intelligence courses at the undergraduate or graduate level.
Without previous advertisement of the laboratory that is still under development,
there already were hundreds of visitors who logged into the laboratory. As far
as we are concerned, there are very few other perpetual robot installations in the
World. The importance of our implementation is that the robots can be controlled
directly from Imagine Logo – an interactive programming environment for children.
However, the laboratory is available for the research and educational use from other
platforms (including C++, Java, Agent-Space architecture, and other). Our goal
is to continue and improve the operation of the remotely-controlled laboratory and
serve with our best efforts to the teachers and students communities at various
educational levels, where the use of robotics might be useful in educational process.
For instance, teachers at the Faculty of Electrical Engineering use these robots in
Mobile Robotics course [Balogh, 2007].

Pilot set of ten projects implemented in Imagine Logo and accompanied by
teachers’ and students’ instruction sheets (4 math, 4 algorithms, and 2 physics)
is ready to be evaluated in the schools. All relevant materials and evaluations are
available for review, feedback, and discussion at [URL - Robotnacka].

We achieved numerous little contributions in this area, namely finite-state
machines for RCX, computer vision package for evolutionary robotics experiments,
interfacing RCX with WowWee entertainment robots, integrating RCX and Aibo
robots in a model of a factory, using LEGO robots for analyzing rescue robot ap-
plication, multiple participation at RoboCup Junior contests, seven years of LEGO
ideas in summer camps for young people interested in computers (CyberCamp), and
Logo interpreter for NXT.

Using robots in schools may:

• demonstrate phenomena in novel and more ample ways,

• provide creative platforms for hands-on exploration for individual or group
student work,

• increase entertainment experience during the learning process,

• increase motivation for learning,

• spawn interest in technology among students.

On the other hand, using robots in education has severe drawbacks and challenges:

• high cost of robots,

• extra time, space, work and competence required from teachers and schools,

• shortage of curriculum materials and guidelines.

It remains for the enthusiastic work of proponents of robots in education to demon-
strate successful examples, which then could be adopted for wider use.

219

220 APPENDIX A – LIST OF EI PARAMETERS

Appendix A – List of EI
Parameters

Universal parameters:

representation: genotype representation, one of tree, fsa,
hmm

terminals: list of terminals
terminals p: list of terminals weights (proportional to

their probability)
terminals args: definition of terminals arguments (list)
conditions: list of predicates
num registers: number of registers
max constant: global constant range (1-max constant)
max eval steps: maximum number of execution steps

Evolutionary parameters:

num elitism: number of directly copied best individuals
elite allow dups: if set to false, the directly copied individuals

will be chosen to be different
num generations: number of generations
pcross: probability of crossover
crossover brooding: number of crossover broods
cross brood num starts q: portion of the sample from the test cases that

is used to evaluate broods
pbrooding crossover: probability of using the brooding crossover
strict brooding: whether the outcome of brooding should

provide different fitness than both parent
genotypes

pmutation: probability of mutation
population size: number of individuals in the population
selection: either tournament selection or

fitness proportionate selection

remove after select: if set to true, the individuals will be removed
from old population after they are selected

normalize fitness: whether to scale the fitness to 0–1 interval
and square it in each generation

APPENDIX A – LIST OF EI PARAMETERS 221

tournament size: size of the tournament if
tournament selection is used

tournament selection p: probability of taking the winning individual
in the tournament selection

num starts: number of testing samples used by the
objective function

fitness size q: penalty for the size of the genotype (to
encourage shorter genotypes)

evalsteps q: penalty for the number of execution steps (to
encourage faster-running programs)

log file name: string used for naming log file (together with
time stamp)

222 APPENDIX A – LIST OF EI PARAMETERS

GP-tree representation:

nonterminals: list of non-terminals
nonterminals p: list of non-terminals weights (proportional to

their probability)
nonterminals args: definition of non-terminals arguments (list)
max genotype depth: maximum depth of GP-tree
pcross combine: probability of combining crossover
phomologic crossover: probability of homologic crossover

FSA/HMM representation:

transition condition: definition of transition arguments
pshuffle: probability of shuffle change-mutation

(changes order of transitions in a state)
min fsa states: minimum number of states
max fsa states: maximum number of states
min fsa trans: minimum number of transitions within one

state
max fsa trans: maximum number of transitions within one

state

HMM representation:

palterprob: probability of changing the weight of transi-
tion in change-mutation

All with tape machine:

infinite tape: true or false
num ones min: minimum length of the input word
num ones max: maximum length of the input word

Experiment switch:

switch num symbols: whether we use symbols A,B,C, or A,B,C,D
(3 or 4)

increment3to4: when set to true, the experiment will con-
tinue with 4 symbols after reaching full
performance for 3 symbols

max switch sequence len: maximum number of consecutive zeros be-
tween other symbols on the input tape

APPENDIX A – LIST OF EI PARAMETERS 223

Experiment find target:

fitness hits q penalty for hitting an obstacle
find target fitness type how to compute fitness (1 – fraction, 2 –

subtract from high value)
target the target location to be reached
turning step number of degrees to turn left or right at once
moving step number of steps to move on short move

commands
long moving step number of steps to move on long move

commands
num obstacles number of obstacles
obstacles list of obstacles
starts list of starting locations
target shape shape of the target for visualization only
turtle shape shape of the robot for visualization only

Experiment dock:

turning step number of degrees to turn left or right at once
moving step number of steps to move on short move

commands
long moving step number of steps to move on long move

commands
lab images background images for all starting locations
targets target locations for all starting locations
starts list of starting locations
dock ip IP address of the simulator
dock port network port of the simulator

Experiment bit collect:

bit collect fill only version of task (true for simple version)
prob one probability of symbol 1 in the input word
max zeros maximum number of symbols 0 in the input

word
holes q fitness penalty for remaining symbols 0
ones q fitness penalty for extra or missing symbols 1

224 APPENDIX A – LIST OF EI PARAMETERS

Appendix B – Example of
Specification of Environment for
the Simulator

simulation.prj: Simple environment with 2 lights and 2 light switches,

one obstacle and round robot

#

modules message data in file (used only in non-evolutionary mode)

project/cargo/modules/alldata.dat

number of modules in use

7

their list (mid and name)

1

navigate

2

cargoloader

3

motordriver

4

lnflwer

7

bumpertracker

8

linetracker

9

lighttracker

10

beep

list of the modules that use fsa (0-terminated)

2

4

0

225

226 APPENDIX B – ENVIRONMENT SPECIFICATION

version of code to start

4

environment type: RECTANGLE

1

environment dimensions: width height

1.0 1.0

number of obstacles

3

1 0.35 0.73 0.01 0.2

1 0.5 0.0 0.01 0.56

1 0.35 0.56 0.16 0.01

number of floor marks

3

another floor mark: type(LINE) x y width Nsegments value

x1 y1

...

xN yN

the coordinates of vertices of this polyline are

in the center of the line (i.e. there’s a line around

these points in all directions up to a distance

width/2 - i.e. round corners)

-> this means that you should start/end the line in distance

width/2 from where it actually ends

2 0.2 0.8 0.05 6 30

0.25 0.8

0.25 0.65

0.46 0.65

0.46 0.8

0.7 0.8

0.7 0.865

2 0.2 0.5 0.05 2 30

0.42 0.5

0.42 0.01

2 0.2 0.4 0.05 2 30

0.35 0.4

APPENDIX B – ENVIRONMENT SPECIFICATION 227

0.35 0.01

number of light sources

1

1 0.2 0.8 1 1

environment light conductivity constant 0-1

0.3

number of active components

5

active areas description format (all conditions are in conjunction):

#

type ; now always 1=conditional active area

activation/delay ; -1: one time only,

; 0: on each entrance,

; d: on each entrance, if d [ms] passed since last entrance

x y width height ; location of the robot in the environment to activate

heading tolerance ; robot heading to activate

; (-1: any, otherwise: [heading-tolerance; heading+tolerance])

fork state (r0) ; fork state to activate

(-1: any, 1,2,3,4 for UP, DOWN, MOVING UP, MOVING DOWN resp.)

fork position min fork position max (r1) ; fork must be [min;max]

to activate, [0.0;1.0] for any

carrying cargo (r2) ; state of cargo (-1: any, 0, 1, 2, 3, 4

; for NO, YES, PUSHING, UNLOADING1, UNLOADING2)

reg min max* ; reg must be [min;max] 0-31 system registers,

; 32-255 user registers, min, max are ’doubles’

-2 event index ; which script event to execute (refers to list of events below)

loading station: signal to robot on entrance

1

-1

0.5 0.865 0.4 0.01

0.0 0.75

-1

0.0 1.0

0

-2 1

loading station: cargo loading - switching lamps and active areas

1

-1

0.5 0.875 0.4 0.025

228 APPENDIX B – ENVIRONMENT SPECIFICATION

3.1415926536 0.75

2

0.0 0.3

0

-2 2

unloading station: signal to robot

1

-1

0.5 0.575 0.4 0.01

3.1415926536 0.75

1

0.3 1.0

1

-2 1

unloading station: start cargo unloading

1

-1

0.5 0.55 0.4 0.025

0.0 0.75

-1

0.0 1.0

1

-2 3

unloading station: cargo unloaded - switching lamps and active areas

1

-1

0.5 0.55 0.4 0.025

0.0 0.75

2

0.0 0.3

4

-2 4

number of time events

2

time events description: type periodic [start count] time event index

(refers to list of events below)

following types are recognized

1 ... SCRIPT EVENT

periodic is

APPENDIX B – ENVIRONMENT SPECIFICATION 229

either 0, then time is a global simulation time

or 1, then also the start and count arguments must be given. start is global

simulation time of the first occurrence, count is number of occurrences

and time is the period

in the beginning, turn on light 1 and off light 2

1 0 0 4

1 0 0 5

number of script events

5

script events description

#

multiple lines for each script,

each line contains a command, script terminated by command 0 (STOP)

following commands are recognized:

10 light ID ... (TURN LIGHT ON)

11 light ID ... (TURN LIGHT OFF)

12 active area index ... (reinitialize active area)

13 msg ... (message msg received from IR port)

14 reg ... set current register to reg

(0-31 system registers, 32-255 user registers)

15 val ... put value (double) val into current register

light ID start from 1

script 1: send msg to the robot that it is close to loading/unloading station

13 84

0

script 2: turn on light 2, turn off light 1, reinitialize active areas 3,4,5,

set carrying cargo = 2

12 3

12 4

12 5

14 2

15 2

0

script 3: set carrying cargo = 3

230 APPENDIX B – ENVIRONMENT SPECIFICATION

14 2

15 3

0

script 4: turn on light 1, turn off light 2, reinitialize active areas 1, 2,

set carrying cargo = 0

12 1

12 2

14 2

15 0

0

script 5: turn light on

10 1

0

type of robot (round)

1

dimensions:

- radius

0.025

- fork size relative to radius

0.3

robot speed ratio (how the motor speed is translated to robot speed)

should be estimated by Henrik’s method

0.00000150

fork relative ratio - moving upwards (per millisecond of simulated time)

0.0012

fork relative ratio - moving downwards (per millisecond of simulated time)

0.0014

initial location and heading: number of locations followed by x y heading

APPENDIX B – ENVIRONMENT SPECIFICATION 231

3

#for evolving cargoloader

0.2 0.3 0

0.2 0.9 3.1416

0.2 0.45 0

time slowdown constant (how many times slower should be the simulation time

than the system time)

200

trajectory file

(used only when run without evolution)

project/cargo/traj/five incremental/4/t

fsa files for all fsas (these are not used when called by objective

function, in that case the values specified in evolutionary config file)

are used, list is terminated by 0. each filename is automatically suffixed

with .x, where x is the number of module

2

project/cargo/fsa-handmade/fsa.dat

4

project/cargo/fsa-handmade/fsa.dat

5

project/cargo/fsa-handmade/fsa.dat

6

project/cargo/fsa-handmade/fsa.dat

0

how often does the viewer refresh the visual output (in ms) zero means

no viewer, default: 200

0

realtime (0/1): are we running realtime (1) or time-shared (0);

realtime must be run as root

1

save trajectory file (0/1)

0

232 APPENDIX B – ENVIRONMENT SPECIFICATION

Appendix C – Example of
Specification of Evolutionary Run

eaparam.prj - defines parameters of the evolutionary algorithm

number of incremental steps (this many INCREMENTAL BLOCKS appear below AND

how many values are in each category marked INCR VECTOR below)

6

probability of the crossover (INCR VECTOR - for each incremental step different

value in another row)

0.3

0.3

0.3

0.3

0.3

0.3

probability of mutation (per individual) (INCR VECTOR)

0.7

0.7

0.7

0.7

0.7

0.7

detailed mutation probabilities for all operators (INCR VECTOR all)

MUT NEW RANDOM TRANSITION

0.25

0.25

0.25

0.25

0.25

0.25

MUT DELETE RANDOM TRANSITION

0.1

0.1

233

234 APPENDIX C – EVOLUTIONARY RUN SPECIFICATION

0.1

0.1

0.1

0.1

MUT NEW STATE

0.2

0.2

0.2

0.2

0.2

0.2

MUT RANDOM STATE DELETED

0.05

0.05

0.05

0.05

0.05

0.05

MUT RANDOM TRANSITION MUTATED

0.25

0.25

0.25

0.25

0.25

0.25

MUT NEW RANDOM INDIVIDUAL

0.05

0.05

0.05

0.05

0.05

0.05

MUT SPLIT TRANSITION

0.05

0.05

0.05

0.05

0.05

0.05

MUT CHANGE STARTSTATE

0.05

0.05

0.05

0.05

0.05

APPENDIX C – EVOLUTIONARY RUN SPECIFICATION 235

0.05

p trim (probability of trimming all states and transitions

that were not used) (INCR VECTOR)

0.5

0.5

0.5

0.5

0.5

0.5

p newinlast (probability of creating new transition in the state

which was terminal) (INCR VECTOR)

0.5

0.5

0.5

0.5

0.5

0.5

number of individuals (population size) (INCR VECTOR)

10

10

100

100

200

200

number of generations (total - all steps together)

600

portion of population to replace (INCR VECTOR)

1.0

1.0

1.0

1.0

1.0

1.0

selection type (1 = RouletteWheel, 2 = Tournament)

1

1

1

1

1

236 APPENDIX C – EVOLUTIONARY RUN SPECIFICATION

1

total number of modules in the controller (INCR VECTOR)

10

10

10

10

10

10

module message data in file

project/cargo/modules/alldata.dat

module specification files for all modules - the modules must be listed

in the order of their module ids! (INCR VECTOR)

project/cargo/modules/navigate.mod

project/cargo/modules/cargoloader.mod

project/cargo/modules/motordriver.mod

project/cargo/modules/lnflwer.mod

project/cargo/modules/avoidance.mod

project/cargo/modules/explore.mod

project/cargo/modules/bumpertracker.mod

project/cargo/modules/linetracker.mod

project/cargo/modules/lighttracker.mod

project/cargo/modules/beep.mod

#

project/cargo/modules/navigate.mod

project/cargo/modules/cargoloader.mod

project/cargo/modules/motordriver.mod

project/cargo/modules/lnflwer.mod

project/cargo/modules/avoidance.mod

project/cargo/modules/explore.mod

project/cargo/modules/bumpertracker.mod

project/cargo/modules/linetracker.mod

project/cargo/modules/lighttracker.mod

project/cargo/modules/beep.mod

#

project/cargo/modules/navigate.mod

project/cargo/modules/cargoloader.mod

project/cargo/modules/motordriver.mod

project/cargo/modules/lnflwer.mod

project/cargo/modules/avoidance.mod

project/cargo/modules/explore.mod

project/cargo/modules/bumpertracker.mod

project/cargo/modules/linetracker.mod

APPENDIX C – EVOLUTIONARY RUN SPECIFICATION 237

project/cargo/modules/lighttracker.mod

project/cargo/modules/beep.mod

#

project/cargo/modules/navigate.mod

project/cargo/modules/cargoloader.mod

project/cargo/modules/motordriver.mod

project/cargo/modules/lnflwer.mod

project/cargo/modules/avoidance.mod

project/cargo/modules/explore.mod

project/cargo/modules/bumpertracker.mod

project/cargo/modules/linetracker.mod

project/cargo/modules/lighttracker.mod

project/cargo/modules/beep.mod

#

project/cargo/modules/navigate.mod

project/cargo/modules/cargoloader.mod

project/cargo/modules/motordriver.mod

project/cargo/modules/lnflwer.mod

project/cargo/modules/avoidance.mod

project/cargo/modules/explore.mod

project/cargo/modules/bumpertracker.mod

project/cargo/modules/linetracker.mod

project/cargo/modules/lighttracker.mod

project/cargo/modules/beep.mod

#

project/cargo/modules/navigate.mod

project/cargo/modules/cargoloader.mod

project/cargo/modules/motordriver.mod

project/cargo/modules/lnflwer.mod

project/cargo/modules/avoidance.mod

project/cargo/modules/explore.mod

project/cargo/modules/bumpertracker.mod

project/cargo/modules/linetracker.mod

project/cargo/modules/lighttracker.mod

project/cargo/modules/beep.mod

number of fsas that are part of the genome (INCR VECTOR)

(they will be saved to project/cargo/fsa/project id/step number)

1

1

1

1

1

1

238 APPENDIX C – EVOLUTIONARY RUN SPECIFICATION

module ids for the fsas that are evolved (each on separate line) (INCR VECTOR)

5

4

2

4

4

4

number of fsas that are fixed and loaded from file (INCR VECTOR)

1

1

1

3

3

3

module ids for the fsas that are fixed and loaded from file (one per line)

followed by file name (INCR VECTOR) ; the extension .module number will

be added to each file automatically

#---s1

6

project/cargo/fsa-handmade/fsa.dat

#---s2

6

project/cargo/fsa-handmade/fsa.dat

#---s3

6

project/cargo/fsa-handmade/fsa.dat

#---s4

2

project/cargo/fsa/five incremental/2/fsa.dat.evolved

5

project/cargo/fsa/five incremental/0/fsa.dat.evolved

6

project/cargo/fsa-handmade/fsa.dat

#---s5

2

project/cargo/fsa/five incremental/2/fsa.dat.evolved

5

project/cargo/fsa/five incremental/0/fsa.dat.evolved

6

project/cargo/fsa-handmade/fsa.dat

#---s6

2

APPENDIX C – EVOLUTIONARY RUN SPECIFICATION 239

project/cargo/fsa/five incremental/2/fsa.dat.evolved

5

project/cargo/fsa/five incremental/0/fsa.dat.evolved

6

project/cargo/fsa-handmade/fsa.dat

########### trigger messages specifications for all modules

########### that are evolved (INCR VECTOR)

#---------step0 (A)

trigger message specification block - module 5 - bumpertracker

5

number of trigger messages

3

list of the messages

SENSORS BUMPERS PRESSED

SENSORS BUMPERS RELEASED

AVOIDANCE START

###

#---------step1 (B)

trigger message specification block - module 4 - lnflwer

4

number of trigger messages

2

list of the messages

SENSORS LINE ENTER

SENSORS LINE LEAVE

###

#---------step2 (C)

trigger message specification block - module 2 - CARGOLOADER

2

number of trigger messages

1

list of the messages

SENSORS TARGET MARK

###

#---------step3 (BC2)

trigger message specification block - module 4 - lnflwer

4

number of trigger messages

3

list of the messages

240 APPENDIX C – EVOLUTIONARY RUN SPECIFICATION

SENSORS LINE ENTER

SENSORS LINE LEAVE

SENSORS TARGET MARK

###

#--------step4 (BCD33)

trigger message specification block - module 4 - lnflwer

4

number of trigger messages

5

list of the messages

SENSORS LINE ENTER

SENSORS LINE LEAVE

SENSORS TARGET MARK

SENSORS LIGHT ENTER

SENSORS LIGHT LEAVE

###

#--------step5 (target)

trigger message specification block - module 4 - lnflwer

4

number of trigger messages

5

list of the messages

SENSORS LINE ENTER

SENSORS LINE LEAVE

SENSORS TARGET MARK

SENSORS LIGHT ENTER

SENSORS LIGHT LEAVE

###

########## trigger msgs end

max. number of states for each evolved module (INCR VECTOR)

4

5

4

6

8

10

min. init. number of states for each evolved module (INCR VECTOR)

1

1

1

APPENDIX C – EVOLUTIONARY RUN SPECIFICATION 241

1

1

1

max. init. number of states for all modules evolved (INCR VECTOR)

4

5

4

5

5

5

max. count of transitions in one state (only 1 number for

all modules) (INCR VECTOR)

5

5

5

5

7

8

min. count of transitions in one state (only 1 number for

all modules) (INCR VECTOR)

1

1

1

1

1

1

max. init # of transitions in one state (1 number) (INCR VECTOR)

4

4

4

4

4

4

min. init # of transitions in one state (1 number) (INCR VECTOR)

2

2

2

2

2

2

242 APPENDIX C – EVOLUTIONARY RUN SPECIFICATION

probability that the outgoing message is sent in the incoming fsa transition

0.1

phi for the learning momemtum (used for increments) (INCR VECTOR)

0.5

0.5

0.5

0.5

0.5

0.5

name of the environment-description project file

project/cargo/cfg/five incremental.prj

previously saved incremental steps filename table

how many they are

0

filenames (these are indexed from (-1)...(-how many)).

list of steps that are requested to be saved into file for possible

continuation of evolution

how many they are

6

which steps (one per line, steps are indexed starting with 0)

0

1

2

3

4

5

and the filenames

project/cargo/population/five incremental/0

project/cargo/population/five incremental/1

project/cargo/population/five incremental/2

project/cargo/population/five incremental/3

project/cargo/population/five incremental/4

project/cargo/population/five incremental/5

prefix formula that can include variables

(parenthesis treated as whitespace) (INCR VECTOR)

gennum ... current generation,

gennum-thisstep ... current generation of this step

best-fitness ... best fitness of the last generation

avg-fitness ... average fitness of the last generation

APPENDIX C – EVOLUTIONARY RUN SPECIFICATION 243

learning-momentum ... m new = phi*m old+(best fitness-last best fitness)

num-eval ... total number of evaluations so far

num-eval-thisstep ... number of evaluations since the beginning of this step

total-gennum ... total planned number of generations defined above

real-runtime ... real time since application start in seconds

#

numeric constants, and binary predicates & , |, ,̂ =, <, >, [,], !

and binary operators +, −, ∗, /

([means <=;] means >=; ! means ! =)

> 1 0

> 1 0

&] best-fitness 500000 < learning-momentum 50

&] best-fitness 700000 < learning-momentum 50

&] best-fitness 700000 < learning-momentum 50

&] gennum total-gennum < learning-momentum 50

population pass method from all previous steps:

number of directly preceding steps (INCR VECTOR)

0

0

0

1

1

1

and their list (negative values are taken from file according to previous

steps filename table) (INCR VECTOR)

1

3

4

for all fsas that are present in k multiple steps, specify the ratios

for blending - p-portion of the original population will come from copied

individuals, t-portion of the new population will be born by copying

and mutating x-times and the rest of the new population

will be initialized randomly (INCR VECTOR)

#-------k-times: (where k is the number of fsas evolved in this step)

mid

p 1 t 1 x 1

...

p nsteps t nsteps x nsteps

#-------

= mid - identifies fsa; p i identifies portion of the whole (1.0)

new population, where the fsa for given mid will be generated by copying

244 APPENDIX C – EVOLUTIONARY RUN SPECIFICATION

individuals from i-the of the directly preceding steps listed above

t i represents the portion which will be copied and mutated x i times,

q identifies portion of the new pop. which will have the fsa for mid

initialized randomly.

copying fsas from previous steps and mutating x i times

the sum of q and all p i for all mids together should be less than 1.

probabilities for all preceding steps have to be listed

(even if this fsa doesn’t occur in some of them - when the p i should be 0)

0

0

0

4

0.5 0.1 0.3 2

0

4

0.5 0.1 0.3 2

0

4

0.5 0.1 0.3 2

0

the list is terminated by extra row with 0

note: in the first step, or step that has no preceding step since there

are no preceding steps, the population is generated just randomly

and this structure should be omitted

number of starting positions for the objective function (INCR VECTOR)

3

3

3

3

3

6

fitness function timeout [s] (INCR VECTOR)

30

60

60

120

180

350

fitness checkpoints (if the fitness at given time is less than specified,

the individual is stoped, its currently gained fitness is used) (INCR VECTOR)

format: simulation time required fitness (list should be ordered by time)

APPENDIX C – EVOLUTIONARY RUN SPECIFICATION 245

10.0 200

or:

p q

t1 dt

where p - portion of population that is taken into account to get

average progress (0 - only best individual)

q - constraint requirement, quotient for measured fitness progress

t0 - first checkpoint (0 = right from the start)

dt - checkpoint time interval (ms of simulated time)

their number or -1 for automatic checkpoints

-1

0 0.05

20000 5000

-1

0 0.05

20000 5000

-1

0 0.05

20000 5000

-1

0 0.05

20000 5000

-1

0 0.05

20000 5000

-1

0 0.05

20000 5000

fitness function weights

w obstacle time (INCR VECTOR)

-1.0

0.0

0.0

0.0

0.0

0.0

w below light time (INCR VECTOR)

246 APPENDIX C – EVOLUTIONARY RUN SPECIFICATION

0.0

0.0

0.0

0.0

0.0

0.0

w following line time (INCR VECTOR)

0.0

1.0

0.0

0.0

0.0

0.0

w following line below light time (INCR VECTOR)

0.0

0.0

0.0

0.0

0.0

0.0

w total distance (INCR VECTOR)

1000.0

0.0

0.0

0.0

0.0

0.0

w robot moving changed (INCR VECTOR)

0.0

100.0

0.0

0.0

0.0

0.0

cnt w script count[cnt] - cnt should match the number of scripts

in the simulation.prj (INCR VECTOR)

#--step0

0

#--step1

0

APPENDIX C – EVOLUTIONARY RUN SPECIFICATION 247

#--step2

4

0.0

50000.0

0.0

50000.0

#--step3

4

0.0

0.0

0.0

100000.0

#--step4

4

0.0

0.0

0.0

100000.0

#--step5

4

0.0

0.0

0.0

100000.0

cnt w active area count[cnt]; (INCR VECTOR)

0

0

0

0

0

0

w num states (INCR VECTOR)

-10.0

-10.0

-10.0

-10.0

-10.0

-10.0

w num trans (INCR VECTOR)

-5.0

-5.0

-5.0

248 APPENDIX C – EVOLUTIONARY RUN SPECIFICATION

-5.0

-5.0

-5.0

w offset (the score is lifted by this constant to avoid

negative values) (INCR VECTOR)

300000.0

10000.0

10000.0

300000.0

300000.0

300000.0

w suppress score before load (0 or 1, no scores are accumulated

before cargo is loaded) (INCR VECTOR)

0

0

0

0

0

0

end of fitness function weights

name of the output log file for ea

log/ea five incremental.log

name of the galib output log file with statistics

log/ga five incremental.log

project id for fsa and trajectory file locations

five incremental

project id for cache

five incremental

use preserved fitness - if nonzero, previous values in the database

will not be deleted on startup - use with caution,

leave 0 if not sure (INCR VECTOR)

0

0

0

0

0

0

APPENDIX C – EVOLUTIONARY RUN SPECIFICATION 249

commands to be executed after each incremental step on the slave if running

in distributed mode (1 line per step; ’none’ if no commands) (INCR VECTOR)

scp cargo@search:current3/project/cargo/fsa/five incremental/0/*.evolved.*

/home/current3/project/cargo/fsa/five incremental/0

scp cargo@search:current3/project/cargo/fsa/five incremental/1/*.evolved.*

/home/current3/project/cargo/fsa/five incremental/1

scp cargo@search:current3/project/cargo/fsa/five incremental/2/*.evolved.*

/home/current3/project/cargo/fsa/five incremental/2

scp cargo@search:current3/project/cargo/fsa/five incremental/3/*.evolved.*

/home/current3/project/cargo/fsa/five incremental/3

scp cargo@search:current3/project/cargo/fsa/five incremental/4/*.evolved.*

/home/current3/project/cargo/fsa/five incremental/4

scp cargo@search:current3/project/cargo/fsa/five incremental/5/*.evolved.*

/home/current3/project/cargo/fsa/five incremental/5

commands to be executed after each incremental step on the master in

distributed mode (INCR VECTOR)

master command is fully executed before slave commands

scp /home/current3/project/cargo/fsa/five incremental/0/*.evolved.*

cargo@search:current3/project/cargo/fsa/five incremental/0

scp /home/current3/project/cargo/fsa/five incremental/1/*.evolved.*

cargo@search:current3/project/cargo/fsa/five incremental/1

scp /home/current3/project/cargo/fsa/five incremental/2/*.evolved.*

cargo@search:current3/project/cargo/fsa/five incremental/2

scp /home/current3/project/cargo/fsa/five incremental/3/*.evolved.*

cargo@search:current3/project/cargo/fsa/five incremental/3

scp /home/current3/project/cargo/fsa/five incremental/4/*.evolved.*

cargo@search:current3/project/cargo/fsa/five incremental/4

scp /home/current3/project/cargo/fsa/five incremental/5/*.evolved.*

cargo@search:current3/project/cargo/fsa/five incremental/5

stop-file - when this file is detected after the generation is completed,

the application terminates (and saves the population of the current

incremental step, if requested)

project/cargo/true.stop computing

skip-file - when this file is detected after the generation is completed,

the incremental step is completed and the application proceeds with the next

incr.step (the incr.step to skip must be added to the end of this file name!)

project/cargo/true.skip step

save fsa file

0

250 APPENDIX C – EVOLUTIONARY RUN SPECIFICATION

use benchmark (for distributed slaves)

0

master startup delay (how long time master should wait for slaves

to start before submitting work, seconds)

30

threshold for m new for random reinitialization of population (INCR VECTOR)

10

10

10

10

10

10

if the learning is stopped, reinitialize the following portion

of population randomly (INCR VECTOR)

0.5

0.5

0.5

0.5

0.5

0.5

whether robot moving changed applies only while following line:0/1 (INCR VECTOR)

0

0

0

0

0

0

Bibliography

Ricardo Nastas Acras and Silvia Regina Vergilio. Splinter: A Generic Framework for
Evolving Modular Finite State Machines. In SBIA 2004, pages 356–365. Springer-
Verlag, 2004.

P. Aerts and A. Ynnerman H. P. Lüthi. Evaluation of NOTUR. NOTUR
– A Norwegian High Performance Computational Infrastructure. Norges
Forskningsrd, 2004. ISBN 82-12-01991-8.

P. Anderson. BOINC: A System for Public-Resource Computing and Storage. In
Fifth IEEE/ACM International Workshop on Grid Computing, 2004.

Peter J. Angeline and Jordan Pollack. Evolutionary Module Acquisition. In
Proceedings of The Second Annual Conference on Evolutionary Programming,
1993.

Maribel G. Arenas, Pierre Collet, A. E. Eiben, Mark Jelasity, Juan J. Merelo,
Ben Peachter, Mike Preuss, and Marc Schoenauer. A Framework for Distributed
Evolutionary Algorithms. In PPSN VII, volume 2439, pages 665–675. Springer-
Verlag, 2002.

Ronald C. Arkin. Behavior-Based Robotics. MIT Press/Bradford Books, 1998.

Ronald C. Arkin and Douglas MacKenzie. Temporal Coordination of Perceptual
Algorithms for Mobile Robot Navigation. IEEE Transactions on Robotics and
Automation, 10(3):276–286, 1994.

Daniel Ashlock, Andrew Wittrock, and Tsui-Jung Wen. Training Finite State
Machines to Improve PCR Primer Design. In Proceedings of the Congress on
Evolutionary Computation CEC ’02, pages 13–18, 2002. ISBN 0-7803-7282-4.

Daniel A. Ashlock, Scott J. Emrich, Kenneth M. Bryden, Steve M. Corns, Tsui-
Jung Wen, and Patrick S. Schnable. A Comparison of Evolved Finite State
Classifiers and Interpolated Markov Models for Improving PCR Primer Design.
In Proceedings of the 2004 IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational Biology, CIBCB ’04, pages 190–197, 2004.
ISBN 0-7803-8728-7.

Gianluca Baldassarre. A Modular Neural-Network Model of the Basal Ganglia’s
Role in Learning and Selecting Motor Behaviours. In Proceedings of the Fourth

251

252 Bibliography

International Conference on Cognitive Modelling, pages 37–42. Lawrence Erlbaum
Associates, Mahwah NJ, 2001.

J. Mark. Baldwin. A New Factor in Evolution. American Naturalist, 30:441–451,
536–554, 1896.

Richard Balogh. I Am a Robot - Competitor, A Survey of Robotic Competitions.
International Journal of Advanced Robotic Systems, 2(2):144–160, 2005.

Richard Balogh. Practical Kinematics of the Differential Driven Mobile Robot. In
Proceedings of Robtep’07, 2007.

Maxim A. Batalin and Gaurav S. Sukhatme. Efficient Exploration without
Localization. In Efficient Exploration without Localization, 2002.

Randall D. Beer and John C. Gallagher. Evolving Dynamical Neural Networks for
Adaptive Behavior. Adaptive Behavior, 1:91–122, 1992.

Karl A Benson. Evolving automatic target detection algorithms that logically
combine decision spaces. In Proceedings of the 11th British Machine Vision
Conference, pages 685–694, Bristol, UK, 2000.

Barbara Bratzel. Physics by design. College House Enterprises, LLC, 2005.

Reinhard Braunstingl, Jokin Mujika, and Juan Pedro Uribe. A Wall Following
Robot with a Fuzzy Logic Controller Optimized by a Genetic Algorithm. In
FUZZ-IEEE/IFES’95 Fuzzy Robot Competition, Yokohama, 1995.

Rodney Allen Brooks. A Hardware Retargetable Distributed Layered Architecture
for Mobile Robot Control. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 106–110, 1987.

Rodney Allen Brooks. Artificial Life and Real Robots. In Towards a Practice of
Autnomous Systems: Proceedings of the First European Conference on Artificial
Life, pages 3 – 10. MIT Press, 1992.

Rodney Allen Brooks. A Robust Layered Control System For a Mobile Robot. IEEE
Journal of Robotics and Automation, 1986, RA-2(1, March), 1986.

Erick Cantú-Paz. A Survey of Parallel Genetic Algorithms. Calculateurs Paralleles,
10(2), 1998.

Joerg Cassens and Zoran Constantinescu. It’s Magic: SourceMage GNU/Linux as
a High Performance Cluster OS (abstract). In LinuxTag 2003 Conference, 2003.

J. Chavas, Christophe Corne, P. Horvai, Jérôme Kodjabachian, and Jean-Arcady
Meyer. Incremental Evolution of Neural Controllers for Robust Obstacle-
Avoidance in Khepera. In Phil Husbands and J. A. Meyer, editors, Proceedings of
The First European Workshop on Evolutionary Robotics – EvoRobot’98. Springer
Verlag, 1998.

BIBLIOGRAPHY 253

Kumar Chellapilla and David Czarnecki. A Preliminary Investigation into Evolving
Modular Finite State Machines. In Proceedings of the 1999 Congress on
Evolutionary Computation, CEC’99, volume 2, 1999. ISBN 0-7803-5536-9.

Charlie H. Clelland and Douglas A. Newlands. PFSA Modelling of Behavioural
Sequences by Evolutionary Programming. In Complex ’94 - Second Australian
Conference on Complex Systems, pages 165–72. IOS Press, 1994.

Dave Cliff, Inman Harvey, and Phil Husbands. Incremental Evolution of Neural
Network Architectures for Adaptive Behaviour. Technical Report CSRP256,
University of Sussex Technical Report, 1992.

Marco Colombetti and Marco Dorigo. Robot Shaping: Developing Situated Agents
through Learning. Technical Report 92-040, International Computer Science
Institute, 1993.

Marco Colombetti, Marco Dorigo, and Giuseppe Borghi. Behavior Analysis and
Training: A Methodology for Behavior Engineering. IEEE Transactions on
System, Man, and Cybernetics-Part B, 26(3):365–380, 1996.

E. Roy Davies. Machine Vision : Theory, Algorithms, Practicalities. Elsevier, 2005.

Hugo de Garis. Multistrategy Learning in Neural Nets: An Incremental Approach
to Genetic Programming. In Proceedings of the Second International Workshop
on Multistrategy Learning, pages 138–149, 1993.

Nirav S. Desai and Risto Miikkulainen. Neuro-Evolution and Natural Deduction.
In Proceedings of the First IEEE Symposium on Combinations of Evolutionary
Computation and Neural Networks, 2000.

Marco Dorigo and Marco Colombetti. Robot Shaping: An Experiment in Behavior
Engineering. MIT Press, 1997.

Marc Ebner. Evolution of a Control Architecture for a Mobile Robot. In Proceedings
of the Second International Conference on Evolvable Systems: From Biology to
Hardware (ICES 98), pages 303–310. Springer-Verlag, 1998.

Roger I. Eriksson. An Initial Analysis Of the Ability Of Learning To Maintain
Diversity During Incremental Evolution. In GECCO Workshop On Memetic
Algorithms, 2000.

Benjamin T. Erwin. Creative Projects with LEGO MINDSTORMS. Addison-Wesley,
2001.

Benjamin T. Erwin. K-12 Education and Systems Engineering: A New Perspective.
In Proceedings of the American Society of Engineering Education National
Conference, 1998.

254 Bibliography

Benjamin T. Erwin, Martha Cyr, John Osborne, and Chris Rogers. Middle School
Engineering with LEGO and LabView. In Proceedings of National Instruments
Week, August 1998.

David Filliat, Jérôme Kodjabachian, and Jean-Arcady Meyer. Incremental Evolution
of Neural Controllers for Navigation in a 6-legged Robot. In Sugisaka and Tanaka,
editors, Proceedings of the Fourth International Symposium on Artificial Life and
Robotics. Oita University Press, 1999.

Dario Floreano. Emergence of Nest-Based Foraging Strategies in Ecosystems of
Neural Networks. In From Animals to Animats 2: Proceedings of the Second
International Conference on Simulation of Adaptive Behavior, pages 410–416,
1992.

Dario Floreano and Francesco Mondada. Evolution of Homing Navigation in a Real
Mobile Robot. IEEE Transactions on Systems, Man, and Cybernetics, 26:396–
407, 1996.

Dario Floreano and Francesco Mondada. Automatic Creation of an Autonomous
Agent: Genetic Evolution of a Neural-Network Driven Robot. In From Animals
to Animats 3: Proceedings of the Third International Conference on Simulation
of Adaptive Behavior, pages 421–430. MIT Press, 1994.

Dario Floreano and Joseba Urzelai. Evolutionary Robots with On-Line Self-
Organization and Behavioral Fitness. Neural Networks, 13:431–443, 2000.

Dario Floreano, Stefano Nolfi, and Francesco Mondada. Competitive Coevolutionary
Robotics: From Theory to Practice. In Proceedings of the fifth International
Conference on Simulation of Adaptive Behavior, pages 515–524. MIT Press, 1998.

David B. Fogel. Evolving Behaviors in the Iterated Prisoners Dilemma. Evolutionary
Computation, 1(1):77–97, 1993.

Lawrence .J. Fogel. Autonomous Automata. Industrial Research, 4(2):14–19, 1962.

Lawrence J. Fogel. On the Organization of Intellect. PhD thesis, UCLA, 1964.

Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial Intelligence
Through Simulated Evolution. John Wiley, 1966.

Lawrence J. Fogel, Peter J. Angeline, and David B. Fogel. An Evolutionary
Programming Approach to Self-Adaptation on Finite State Machines. In
Proceedings of the 4th Annual Conference on Evolutionary Programming. MIT
Press, 1995.

Clemens Frey and Gnter Leugering. Evolving Strategies for Global Optimization - A
Finite State Machine Approach. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages 27–33. Morgan Kaufmann, 2001.
ISBN 1-55860-774-9.

BIBLIOGRAPHY 255

Alex S. Fukunaga and Andrew B. Kahng. Improving the Performance of
Evolutionary Optimization by Dynamically Scaling the Evaluation Function.
In Proceedings of IEEE International Conference on Evolutionary Computation,
pages I–182–I–187, 1995.

David Edward Goldberg. Genetic Algorithms in Search and Optimization. Addison-
Wesley, 1989.

Faustino Gomez and Risto Miikkulainen. Incremental Evolution of Complex General
Behavior. Adaptive Behavior, 5:317–342, 1997.

John J. Grefenstette and Connie Loggia Ramsey. An approach to Anytime Learning.
In Proceedings of the Ninth International Workshop on Machine Learning, pages
189–195. Morgan Kaufmann Publishers Inc., 1992.

Stevan Harnad. The Symbol Grounding Problem. Physica, D 42:335–346, 1990.

Inman Harvey. Species Adaptation Genetic Algorithms: A Basis for a Continuing
SAGA. In Proceedings of the First European Conference on Artificial Life. MIT
Press, 1992.

Inman Harvey. The Artificial Evolution of Adaptive Behaviours. PhD thesis,
University of Sussex, 1995.

Inman Harvey, Phil Husbands, Dave Cliff, Adrian Thompson, and Nick Jakobi.
Evolutionary Robotics: the Sussex Approach. Robotics and Autonomous Systems,
20:205–224, 1997.

Rob Warren Hicks II and Ernest L. Hall. Survey of Robot Lawn Mowers. In
Proceedings of SPIE – Volume 4197, Intelligent Robots and Computer Vision
XIX: Algorithms, Techniques, and Active Vision, pages 262–269, 2000.

W. Daniel Hillis. Co-evolving Parasites Improve Simulated Evolution as an
Optimization Procedure. Physica, D 42:228–234, 1990.

Frank Hoffmann. Incremental Tuning of Fuzzy Controllers by Means of an Evolution
Strategy. In Proceedings of the Third Annual Conference on Genetic Programming,
1998.

J. Holland. Adaptation In Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, 1975.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Adison-Wesley, Reading, Mass., 1979.

Jason W. Horihan and Yung-Hsiang Lu. Improving FSM Evolution with Progressive
Fitness Functions. In GLSVLSI04, 2004.

Michael S. Hsiao. Sequential Circuit Test Generation using Genetic Techniques.
PhD thesis, University of Illinois at Urbana-Champaign, 1997.

256 Bibliography

D. H. Hubel and T. N. Wiesel. The Period of Susceptibility to the Physiological
Effects of Unilateral Eye Closure in Kittens. The Journal of Physiology, 206(2):
419–436, 1970.

Mark Humphrys. Action Selection Methods Using Reinforcement Learning. PhD
thesis, University of Cambridge, 1997.

Matt C. Jadud. TeamStorms as a Theory of Instruction. In IEEE International
Conference on Systems, Man, and Cybernetics, pages 712–717, 2000.

David Jefferson, Robert J. Collins, Claus Cooper, Michael Dyer, Margot Flowers,
Richard Korf, Charles E. Taylor, and Alan Wang. Evolution as a Theme in
Artificial Life: The Genesys/Tracker System. Artificial Life II, 10:549–578, 1992.

Myra Wilson Joanne Walker, Simon Garrett. Evolving Controllers for Real Robots:
A Survey of the Literature. Adaptive Behavior, 11(3):179–203, 2003.

David W. Johnson, Roger T. Johnson, and Karl A. Smith. Active Learning:
Cooperation in the College Classroom. Interaction Book Company, 1991.

Hugues Juillé and Jordan B. Pollack. Dynamics of Co-Evolutionary Learning. In
From Animals to Animats 4: Proceedings of the Fourth International Conference
on Simulation of Adaptive Behavior, pages 526–534, 1996.

Ivan Kalaš and Andrea Hrušecká. The Great Big Imagine Logo Project book.
Logotron, 2004.

Tatiana Kalganova. Bidirectional Incremental Evolution in Evolvable Hardware. In
Proceedings of The Second NASA/DoD Workshop on Evolvable Hardware. IEEE
Press, 2000.

Maarten Keijzer, Juan J. Merelo, Gustavo Romero, and Marc Schoenauer. Evolving
Objects: a General Purpose Evolutionary Computation Library. In P. Collet
et al., editor, Proceedings of Evolution Artificielle’01. Springer Verlag, 2001.

Sven Koenig and Reid G. Simmons. Xavier: A Robot Navigation Architecture Based
on Partially Observable Markov Decision Process Models. Artificial Intelligence
and Mobile Robots, Case Studies of Successful Robot Systems, pages 91 – 122,
1998.

Maciej Komosinski. The Framsticks System: Versatile Simulator of 3D Agents
and Their Evolution. Kybernetes: The International Journal of Systems &
Cybernetics, 32(1/2; Special Issue on Artificial Life Software):156–173, 2003.

John R. Koza. Genetic Programming II. MIT Press, 1994.

John R. Koza. Evolution of Subsumption Using Genetic Programming. In F. J.
Varela and P. Bourgine, editors, Proceedings of the First European Conference on
Artificial Life. Towards a Practice of Autonomous Systems, pages 110–119. MIT
Press, Cambridge, MA, 1992a.

BIBLIOGRAPHY 257

John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Cambridge, MA: MIT Press, 1992b.

K. W. Lau, Heng Kiat Tan, Benjamin T. Erwin, and Pavel Petrovič. Creative
Learning in School with LEGO Programmable Robotics Products. In Proceedings
to Frontiers in Education’99, 1999.

Wei-Po Lee, John Hallam, and Henrik Hautop Lund. Learning Complex Robot
Behaviours by Evolutionary Computing with Task Decomposition. In Lecture
Notes in Computer Science, volume 1545, page 155, 1998.

Michael Litzkow, Miron Livny, and Matt W. Mutka. Condor — A Hunter of Idle
Workstations. In Proceedings of the 8th International Conference of Distributed
Computing Systems, pages 104–111, 1988.

Simon M. Lucas. Evolving Finite State Transducers: Some Initial Explorations.
In European Conference on Genetic Programming, EuroGP’2003, pages 130–141,
2003.

Sean Luke, Liviu Panait, Gabriel Balan, Sean Paus, Zbigniew Skolicki, Elena
Popovici, Joseph Harrison, Jeff Bassett, Robert Hubley, and Alexander Chircop.
A Java-based Evolutionary Computation and Genetic Programming Research
System, 2005. George Mason University’s ECLab Evolutionary Computation
Laboratory,
http://cs.gmu.edu/∼eclab/projects/ecj/.

Henrik Hautop Lund. Co-Evolving Control and Morphology with LEGO Robots. In
Proceedings of Workshop on Morpho-functional Machines. Springer-Verlag, 2001.

Henrik Hautop Lund and Orazio Miglino. Evolving and Breeding Robots. In
Proceedings of First European Workshop on Evolutionary Robotics. Springer-
Verlag, 1998.

Pattie Maes. How to Do the Right Thing. Connection Science Journal, 1, 1990.
Special Issue on Hybrid Systems.

Pattie Maes and Rodney Allen Brooks. Learning to Coordinate Behaviors. In AAAI,
Boston, MA, pages 796–802, 1990.

D. Marbach and A.J. Ijspeert. Co-Evolution of Configuration and Control for
Homogenous Modular Robots. In Proceedings of the Eighth Conference on
Intelligent Autonomous Systems (IAS8), pages 712–719. IOS Press, 2004.

Maja J Mataric. Integration of Representation into Goal-Driven Behavior-Based
Robots. IEEE Transactions on Robotics and Automation, 8(3):304–312, 1992.

Toshihiro Matsui and Masayuki Inaba. EusLisp: an Object-Based Implementation
of Lisp. Journal of Information Processing, 13(3), 1999.

258 Bibliography

Lisa A. Meeden and Deepak Kumar. Trends in Evolutionary Robotics. In Soft
Computing for Intelligent Robotic Systems, pages 215–233. Physica-Verlag, 1998.

Orazio Miglino, Henrik Hautop Lund, and Stefano Nolfi. Evolving Mobile Robots
in Simulated and Real Environments. Artificial Life, 2(4):417–434, 1995.

Francesco Mondada, Edoardo Franzi, and Paolo Ienne. Mobile Robot Miniaturi-
sation: A Tool for Investigation in Control Algorithms. In Proceedings of the
3rd International Symposium on Experimental Robotics, pages 501–513. Springer
Verlag, 1993.

Sha Na. Optimization for Layout Problem. Technical Report Master thesis,
The Mrsk Mc-Kinney Moller Institute for Production Technology, University of
Southern Denmark, 2002.

Takayoshi Naemura, Tomonori Hashiyama, and Shigeru Okuma. Modular
Generation for Genetic Programming and its Incremental Evolution. In Charles
Newton, editor, Second Asia-Pacific Conference on Simulated Evolution and
Learning, 1998.

Ulrich Nehmzow. Mobile Robotics: A Practical Introduction. Springer, 2000.

Nils Nilsson. Shakey the Robot. Technical Report Technical Note 323, SRI
International, Menlo Park, CA, 1984.

Nils J. Nilsson. Triangle Tables: a Proposal for Robot Programming Language.
Technical Report technical note 347, Artificial Intelligence Center, Computer
Science and Technology Division, SRI International, 1985.

Markus L. Noga. Designing the Legos Multitasking Operating System. Dr. Dobb’s
Journal, 1999.

Stefano Nolfi. Using Emergent Modularity to Develop Control System for Mobile
Robots. Adaptive Behavior, 5(3–4):343–364, 1997.

Stefano Nolfi and Dario Floreano. Evolutionary Robobics: The Biology, Intelligence,
and Technology of Self-Organizing Machines. MIT Press/Bradford Books, 2001.

Doug Oppliger. Using FIRST Lego League to Enhance Engineering Education and
to Increase the Pool of Future Engineering Students. In ASEE/IEEE Frontiers
in Education Conference, 2002.

Esben H. Ostergaard. Co-Evolving Complex Robot Behaviour. Technical Report
Master thesis, University of Aarhus, 2000.

Samuel Papert. A Critique of Technocentrism in Thinking About the School of the
Future. Epistemology and Learning Group Memo No.2, 1999.

Kirk Pearson. Internet Based Distributed Computing Projects, 2007.
http://www.aspenleaf.com/distributed.

BIBLIOGRAPHY 259

Simon Perkins. Incremental Acquisition of Complex Visual Behaviour Using Genetic
Programming and Robot Shaping. PhD thesis, University of Edinburgh, 1998.

Simon Perkins and Gillian Hayes. Robot Shaping – Principles, Methods and
Architectures. In Workshop on Learning in Robots and Animals at AISB’96,
University of Sussex, 1996.

Simon Perkins and Gillian Hayes. Evolving Complex Visual Behaviours Using
Genetic Programming and Shaping. In 7th European Workshop on Learning
Robots, Edinburgh, 1998.

Pavel Petrovič. Distributed System for Evolutionary Robotics Experiments.
Technical Report 05/04, Norwegian University of Science and Technology,
Department of Computer and Information Science, 2004.

Pavel Petrovič. Solving LEGO Brick Layout Problem using Evolutionary
Algorithms. In Proceedings to Norwegian Conference on Computer Science, 2001a.

Pavel Petrovič. Overview of Incremental Evolution Approaches to Evolutionary
Robotics. In Proceedings to Norwegian Conference on Computer Science, pages
151–162, 1999.

Pavel Petrovič. Program Your NXT Robot with Imagine. In Proceedings of
Eurologo’2007, 2007.

Pavel Petrovič. Simple Error-Correcting Communication Protocol for RCX.
Technical Report 03/2006, IDI, NTNU, 2006.

Pavel Petrovič. Mathematics with Robotnacka and Imagine Logo. In Proceedings of
the 10th Eurologo Conference, 2005.

Pavel Petrovič. A Step Towards Incremental On-Board Evolutionary Robotics. In
Proceedings to Scandinavian Conference on AI, 2001b.

Pavel Petrovič and Richard Balogh. Wireless Radio Communication with RCX.
Technical Report 01/2006, IDI, NTNU, 2006.

Pavel Petrovič, Andrej Lúčny, Richard Balogh, and Dusan Durina. Remotely-
Accessible Robotics Laboratory. In 8th International Conference on Automation
and Robotics in Theory and Practice (Robtep), Acta Mechanica Slovaca, pages
389–394. SjF TU Kosice, 2006.

Pavel Petrovič, Richard Balogh, Andrej Lúčny, and Ronald Weiss. Using Robotnacka
in Research and Education, 2007. Poster at Eurologo’2007.

Rolf Pfeifer and Christian Scheier. Understanding Intelligence. MIT Press, 1999.

Paolo Pirjanian. Behavior Coordination Mechanisms State-of-the-art. Technical
Report IRIS-99-375, Institute of Robotics and Intelligent Systems, School of
Engineering, University of Southern California, 1999.

260 Bibliography

Juraj Plavčan. Reprezentácie v Evolučnom Dizajne. Technical report, Faculty of
Mathematics, Physics and Informatics, Comenius University, Bratislava, 2007.

Jordan B. Pollack. The Induction of Dynamical Recognizers. Machine Learning, 7:
227–252, 1991.

Jordan B. Pollack, Hod Lipson, Gregory Hornby, and Pablo Funes. Three
Generations of Automatically Designed Robots. Artificial Life, 7:215–223, 2001.

Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An
Introduction. Springer Verlag, 1985.

Mitchel Resnick. Behavior Construction Kits. Communicationsn of the ACM, 36
(7):64–71, 1993.

Craig W. Reynolds. Competition, Coevolution and the Game of Tag. In Proceedings
of the Fourth Workshop on Artificial Life, pages 59–69. MIT Press, 1994.

Eric Ronco and Peter J. Gawthrop. Modular Neural Networks: State of the
Art. Technical Report CSC-95026, Centre for System and Control, University
of Glasgow, UK, 1995.

Michael Rosenblatt and Howie Choset. Designing and Implementing Hands-On
Robotics Labs. IEEE Intelligent Systems, 15(6):32–39, 2000.

Franz Rothlauf. Representations for Genetic and Evolutionary Algorithms. Physica-
Verlag, 2002.

Conor Ryan, J. J. Collins, and Michael O’Neill. Grammatical Evolution: Evolving
Programs for an Arbitrary Language. In Wolfgang Banzhaf, Riccardo Poli, Marc
Schoenauer, and Terence C. Fogarty, editors, Proceedings of the First European
Workshop on Genetic Programming, pages 83–95, Paris, 1998. Springer-Verlag.

Eckart Schlottmann, Dirk Spenneberg, Michael Pauer, Thomas Christaller, and
Kerstin Dautenhahn. A Modular Design Approach Towards Behaviour Oriented
Robotics. Technical Report GMD-Arbeitspapier 1088, GMD, Sankt Augustin,
Germany, 1997.

Marc Schoenauer. Shape Representation for Evolutionary Optimization and
Identification in Structural Mechanics. In Genetic Algorithms in Engineering and
Computer Science, pages 443–464, 1995.

Reid Simmons and David Apfelbaum. A Task Description Language for Robot
Control. In Proceedings of Conference on Intelligent Robotics and Systems, 1998.

Elizabeth I. Sklar, Jeffrey H. Johnson, and Henrik Hautop Lund. Children Learning
From Team Robotics: RoboCup Junior 2000. Technical Report Educational
Research Report, Department of Design and Innovation, Faculty of Technology,
The Open University, Milton Keynes, UK, 2000.

BIBLIOGRAPHY 261

Karl A. Smith. Cooperative learning: Effective teamwork for engineering classrooms.
In Proceedings of the Frontiers of Education Conference, page 2b5, 1995.

Robert Elliott Smith and H. Brown Cribbs III. Cooperative Versus Competitive
System Elements in Coevolutionary Systems. In From Animals to Animats 4:
Proceedings of the Fourth International Conference on Simulation of Adaptive
Behavior, pages 497–505, 1996.

Karine Soerby. Relationship Between Security and Safety in a Security-Safety
Critical System: Safety Consequences of Security Threats. Technical Report
Master thesis, IDI, NTNU, 2003.

William M. Spears and Diana F. Gordon. Evolving Finite-State Machine Strategies
for Protecting Resources. In Proceedings of the 12th International Symposium on
Foundations of Intelligent Systems, pages 166–175. Springer-Verlag, 2000. ISBN
3-540-41094-5.

Luc Steels. The Artificial Life Roots of Artificial Intelligence. Artificial Life, 1:
75–100, 1994.

Luc Steels and Frederic Kaplan. Aibo’s first words: The social learning of language
and meaning. Evolution of Communication, 4(1):3–32, 2001.

Thomas Sterling, Donald J. Becker, Daniel Savarese, John E. Dorband, Udaya A.
Ranawake, and Charles V. Packer. BEOWULF: A Parallel Workstation for
Scientific Computation. In Proceedings of the 24th International Conference on
Parallel Processing, pages I:11–14, 1995.

Ashley Stroupe and Tucker Balch. Behavior-Based Mapping and Tracking with
Multi-Robot Teams Using Probabilistic Techniques. In Proceedings of the 2003
IEEE International Conference on Robotics and Automation (ICRA ’03), 2003.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press/Bradford Books, 1998.

Jun Tani. Model Based Learning for Mobile Robot Navigation from the Dynamical
Systems Perspective. IEEE Trans. Syst. Man and Cybern. B, 26(3):421–436, 1996.

The On-Line Encyclopedia of Integer Sequences. The On-Line Encyclopedia of
Integer Sequences, 2007.
http://www.research.att.com/∼njas/sequences.

Sebastian Thrun, Arno Bcken, Wolfram Burgard, Dieter Fox, Thorsten Frhlinghaus,
Daniel Hennig, Thomas Hofmann, Michael Krell, and Timo Schmidt. Map
Learning and High-Speed Navigation in RHINO. Artificial Intelligence and Mobile
Robots, Case Studies of Successful Robot Systems, pages 53 – 72, 1998.

Jim Torresen. Increased Complexity Evolution Applied to Evolvable Hardware. In
Smart Engineering System Design, ANNIE’99, 1999.

262 Bibliography

URL - CMU Robotics Academy. CMU Robotics Academy, 2007.
http://www-education.rec.ri.cmu.edu/.

URL - Contests. Robot Competition FAQ, 2007.
http://robots.net/rcfaq.html .

URL - CyberCamp. CyberCamp 1999-2007, 2007.
http://www.cybercamp.no/.

URL - Didabots. Didabots, 2007.
http://www.robotika.sk/misc/didabots/.

URL - Distributed.net. Distributed.net, 2007.
http://www.distributed.net/.

URL - Eurobot. Eurobot, 2007.
http://eurobot.org/.

URL - Eval. Cargo Transporting Robot Simulator, 2007.
http://www.robotika.sk/misc/cargo/.

URL - Evolve with Imagine. Evolve with Imagine CVS, 2007.
http://webcvs.robotika.sk/cgi-bin/cvsweb/robotika/src/imagine/gp/.

URL - Fira. FIRA, 2007.
http://fira.net/.

URL - Handyboard. Handyboard, 2007.
http://handyboard.com/.

URL - InnoC. InnoC, Simple Sensor Networks, 2007.
http://www.innoc.at/.

URL - Istrobot. Istrobot, 2007.
http://robotika.sk/.

URL - LDAPS. LDAPS, LEGO Design and Programming System, 2007.
http://www.ceeo.tufts.edu/.

URL - Microbric. Microbric Robotics Set, 2007.
http://www.microbric.com/.

URL - Parallax. Parallax Robotics, 2007.
http://www.parallax.com/.

URL - PTL. PTL, Portable Threads Library, 2007.
http://www.media.osaka-cu.ac.jp/∼k-abe/PTL/.

URL - RoboCup. RoboCup Junior Norway, 2007.
http://robocup.idi.ntnu.no/.

BIBLIOGRAPHY 263

URL - Robotnacka. Robotnacka Home, 2007.
http://virtuallab.kar.elf.stuba.sk/robowiki/index.php/Robotnacka.

URL - Sapien. Controlling RoboSapien using LEGO IR-Tower, 2007.
http://www.robotika.sk/projects/robsapien/index.php.

URL - Schemas. Drawing and Simulating Motor Schemas, Exercise Project, 2007.
http://webcvs.robotika.sk/cgi-bin/cvsweb/robotika/src/imagine/motor schemas/.

URL - SETI. SETI at Home, 2007.
http://setiathome.ssl.berkeley.edu/.

URL - Virtuallab. Remotely-Operated Robotics Laboratory Project Page, 2007.
http://www.robotika.sk/projects/virtuallab/.

URL - World Community Grid. World Community Grid, 2007.
http://www.worldcommunitygrid.org/.

URL - World Robot Olympiad. World Robot Olympiad, 2007.
http://www.wroboto.org/.

Joseba Urzelai, Dario Floreano, Marco Dorigo, and Marco Colombetti. Incremental
Robot Shaping. Connection Science, 10:341–360, 1998.

Leigh Van Valen. A New Evolutionary Law. Evolutionary Theory, 1:1–30, 1973.

Dušan Ďurina, Pavel Petrovič, and Richard Balogh. Robotnacka – a Drawing
Robot. In 8th International Conference on Automation and Robotics in Theory
and Practice (Robtep), Acta Mechanica Slovaca, pages 113–118. SjF TU Kosice,
2006.

Shlomo Waks. Curriculum Design From an Art Towards a Science. Tempus Publ.,
1995.

Joanne Walker. Experiments in Evolutionary Robotics: Investigating the Importance
of Training and Lifelong Adaptation by Evolution. PhD thesis, University of Wales,
2003.

Janet Wiles and Jeff Elman. Learning to Count without a Counter: A Case Study
of Dynamics and Activation Landscapes in Recurrent Networks. In Proceedings
of the Seventeenth Annual Conference of the Cognitive Science Society, pages 482
– 487. MIT Press, 1995.

Stewart W. Wilson and David E. Goldberg. A Critical Review of Classifier Systems.
In Proceedings of the Third International Conference on Genetic Algorithms.
Morgan Kaufman, 1989.

Jay F. Winkler and B. S. Manjunath. Incremental Evolution in Genetic
Programming. In Proceedings of the Third Annual Conference, pages 403–411,
1998.

264 Bibliography

Jing Xiao, Zbigniew Michalewicz, Lixin Zhang, and Krzysztof Trojanowski.
Adaptive Evolutionary Planner/Navigator for Mobile Robots. 1(1), 1997.

Sule Yildirim, Turhan Tunal, and Pavel Petrovič. A Hybrid Task Planner
Architecture For Pick and Place Sequencing. In Proceedings of the The Ninth
Turkish Symposium on Artificial Intelligence and Neural Networks (TAINN 2000),
2000.

Index

Acras and Vergilio [2004], 32, 251
Aerts and H. P. Lüthi [2004], 77, 251
Anderson [2004], 76, 251
Angeline and Pollack [1993], 32, 251
Arenas et al. [2002], 84, 251
Arkin and MacKenzie [1994], 36, 251
Arkin [1998], 12, 27, 36, 251
Ashlock et al. [2002], 33, 251
Ashlock et al. [2004], 34, 251
Baldassarre [2001], 119, 251
Baldwin [1896], 59, 252
Balogh [2005], 96, 252
Balogh [2007], 98, 218, 252
Batalin and Sukhatme [2002], 21, 252
Beer and Gallagher [1992], 12, 31, 39, 252
Benson [2000], 143, 213, 252
Bratzel [2005], 96, 252
Braunstingl et al. [1995], 31, 252
Brooks [1986], 35, 37, 252
Brooks [1987], 38, 252
Brooks [1992], 40, 45, 49, 252
Cantú-Paz [1998], 112, 252
Cassens and Constantinescu [2003], 77,

85, 252
Chavas et al. [1998], 48, 252
Chellapilla and Czarnecki [1999], 32, 252
Clelland and Newlands [1994], 33, 253
Cliff et al. [1992], 42, 46, 253
Colombetti and Dorigo [1993], 37, 253
Colombetti et al. [1996], 46, 253
Davies [2005], 29, 253
Desai and Miikkulainen [2000], 48, 253
Dorigo and Colombetti [1997], 46, 253
Ebner [1998], 49, 253
Eriksson [2000], 48, 253
Erwin et al. [1998], 93, 253
Erwin [1998], 94, 253
Erwin [2001], 96, 253

Filliat et al. [1999], 48, 254
Floreano and Mondada [1994], 30, 49,

254
Floreano and Mondada [1996], 49, 254
Floreano and Urzelai [2000], 12, 42, 254
Floreano et al. [1998], 42, 254
Floreano [1992], 46, 254
Fogel et al. [1966], 32, 254
Fogel et al. [1995], 32, 205, 254
Fogel [1962], 32, 254
Fogel [1964], 32, 254
Fogel [1993], 32, 254
Frey and Leugering [2001], 33, 254
Fukunaga and Kahng [1995], 47, 254
Goldberg [1989], 173, 174, 255
Gomez and Miikkulainen [1997], 46, 255
Grefenstette and Ramsey [1992], 13, 58,

255
Harnad [1990], 209, 255
Harvey et al. [1997], 46, 255
Harvey [1992], 45, 255
Harvey [1995], 13, 31, 39, 59, 60, 255
Hillis [1990], 13, 255
Hoffmann [1998], 48, 255
Holland [1975], 39, 255
Hopcroft and Ullman [1979], 32, 255
Horihan and Lu [2004], 33, 255
Hsiao [1997], 33, 255
Hubel and Wiesel [1970], 21, 255
Humphrys [1997], 39, 44, 256
Jadud [2000], 96, 256
Jefferson et al. [1992], 32, 256
Joanne Walker [2003], 49, 256
Johnson et al. [1991], 93, 256
Juillé and Pollack [1996], 42, 48, 256
Kalaš and Hrušecká [2004], 120, 256
Kalganova [2000], 48, 256
Keijzer et al. [2001], 84, 256

265

266 Index

Koenig and Simmons [1998], 28, 256
Komosinski [2003], 43, 256
Koza [1992a], 31, 43, 256
Koza [1992b], 31, 39, 256
Koza [1994], 143, 213, 256
Lau et al. [1999], 69, 97, 257
Lee et al. [1998], 39, 44, 45, 59, 69, 257
Litzkow et al. [1988], 77, 257
Lucas [2003], 33, 257
Luke et al. [2005], 84, 257
Lund and Miglino [1998], 40, 46, 47, 49,

59, 257
Lund [2001], 60, 257
Maes and Brooks [1990], 35, 37, 257
Maes [1990], 60, 69, 257
Marbach and Ijspeert [2004], 43, 257
Mataric [1992], 26, 257
Matsui and Inaba [1999], 35, 257
Meeden and Kumar [1998], 49, 257
Miglino et al. [1995], 158, 258
Mondada et al. [1993], 54, 97, 258
Naemura et al. [1998], 48, 258
Na [2002], 6, 110, 117, 258
Nehmzow [2000], 26, 258
Nilsson [1984], 30, 258
Nilsson [1985], 34, 258
Noga [1999], 157, 180, 258
Nolfi and Floreano [2001], 39, 258
Nolfi [1997], 31, 258
Oppliger [2002], 93, 258
Ostergaard [2000], 45, 258
Papert [1999], 93, 95, 258
Pearson [2007], 76, 258
Perkins and Hayes [1996], 47, 259
Perkins and Hayes [1998], 47, 259
Perkins [1998], 47, 258
Petrovič and Balogh [2006], 74, 259
Petrovič et al. [2006], 97, 120, 259
Petrovič et al. [2007], 120, 259
Petrovič [1999], 59, 259
Petrovič [2001a], 83, 114, 259
Petrovič [2001b], 13, 259
Petrovič [2004], 86, 259
Petrovič [2005], 98, 259
Petrovič [2006], 74, 259

Petrovič [2007], 75, 259
Pfeifer and Scheier [1999], 20, 259
Pirjanian [1999], 12, 37, 259
Plavčan [2007], 89, 259
Pollack et al. [2001], 43, 260
Pollack [1991], 207, 260
Preparata and Shamos [1985], 107, 260
Resnick [1993], 93, 260
Reynolds [1994], 42, 260
Ronco and Gawthrop [1995], 31, 119, 260
Rosenblatt and Choset [2000], 96, 260
Rothlauf [2002], 123, 260
Ryan et al. [1998], 40, 260
Schlottmann et al. [1997], 97, 260
Schoenauer [1995], 106, 107, 112, 260
Simmons and Apfelbaum [1998], 35, 260
Sklar et al. [2000], 93, 260
Smith and Cribbs III [1996], 42, 261
Smith [1995], 93, 260
Soerby [2003], 74, 261
Spears and Gordon [2000], 34, 261
Steels and Kaplan [2001], 54, 261
Steels [1994], 31, 261
Sterling et al. [1995], 77, 261
Stroupe and Balch [2003], 38, 261
Sutton and Barto [1998], 12, 39, 261
Tani [1996], 207, 261
The On-Line Encyclopedia of Integer Se-

quences, 123, 261
Thrun et al. [1998], 28, 261
Torresen [1999], 48, 261
URL - CMU Robotics Academy, 96, 261
URL - Contests, 96, 262
URL - CyberCamp, 74, 262
URL - Didabots, 21, 262
URL - Distributed.net, 76, 262
URL - Eurobot, 96, 262
URL - Eval, 158, 262
URL - Evolve with Imagine, 106, 262
URL - Fira, 96, 262
URL - Handyboard, 69, 262
URL - InnoC, 69, 262
URL - Istrobot, 96, 262
URL - LDAPS, 96, 262
URL - Microbric, 69, 97, 262

INDEX 267

URL - PTL, 160, 262
URL - Parallax, 69, 97, 262
URL - RoboCup, 74, 96, 262
URL - Robotnacka, 218, 262
URL - SETI, 76, 263
URL - Sapien, 74, 263
URL - Schemas, 27, 263
URL - Virtuallab, 97, 99, 263
URL - World Community Grid, 77, 263
URL - World Robot Olympiad, 93, 263
Urzelai et al. [1998], 46, 60, 263
Valen [1973], 43, 263
Waks [1995], 91, 263
Walker [2003], 40, 263
Wiles and Elman [1995], 31, 263
Wilson and Goldberg [1989], 31, 39, 263
Winkler and Manjunath [1998], 47, 263
Xiao et al. [1997], 179, 263
Yildirim et al. [2000], 209, 264
Ďurina et al. [2006], 97, 263
de Garis [1993], 45, 253
Hicks II and Hall [2000], 26, 255

Agent goals, 25
Artificial intelligence

on-line vs. off-line, 19

Behavior arbitration, 36, 43, 57, 69, 119
Behavior-based controller, 54
Behavior-based robotics, 35, 37
Bottom-up design method, 30, 45, 68

Classifier systems, 31, 39
Co-evolution, 42, 43, 45
Controller

Behavior-based, 36, 67, 203
extensibility, 68, 203

Controller architecture, 30, 166

Dead-reckoning, 28
Digital circuits, 33

Embedded evolution, 58, 179
Embodiment, 18, 20
Emergence, 21, 33, 38
Evolution on real robots, 48
Evolutionary design, 43, 106

Evolutionary programming, 32, 33

Finite-state automata, 32, 45, 206
cyclic behavior, 34, 131
probabilistic, 33

Fitness space, 42
FSA

and genentic programming, 33
and incremental evolution, 33

Fuzzy controllers, 48

Genetic inference, 33
Genetic programming, 31, 47, 49, 103,

120

Hybridization, 34

Image chain codes, 33
Interpolated Markov models, 34

Landmarks, 26

Markov decision problems, 27
Modular architecture, 31, 32
Motor schema, 26

Navigation, 26
global, 28
local, 28

Neural network, 30, 39, 45–47
modular, 31
recurrent, 31, 46, 48, 206

Nouvelle AI, 35

Objective function
behavioral, 42
explicit, 42
external, 42
functional, 42
implicit, 42
internal, 42

Odometry, 28
On-line evolution, see Embedded evolu-

tion

Phenotype, 32, 204
Planning, 25
Population

268 Index

demetic grouping, 47
Potential-field map, see Motor schema

RCX, 21, 54, 73, 94, 95, 103, 157, 160,
162, 179–181, 191, 218

Reactivity, 25
Reinforcement learning, 28, 31, 39, 46
Robot behavior, 35, 41, 178, 182, 200
Robot football, see Robot soccer
Robot morphology, 21, 43
Robot soccer, 23, 45

SENSE-PLAN-ACT cycle, 19, 30
Sensor fusion, 28
Sensors, 28, 203
Simulation, 48, 70, 157

lazy, 158
time, 160, 207

Situatedness, 20
SONY Aibo, 54
Subsumption architecture, 37, 38, 43, 45,

60

Vision, 29, 46

