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Abstract

This paper presents a model-driven, stress test methodology aimed at increasing chances of discovering faults related to network traf-
fic in distributed real-time systems (DRTS). The technique uses the UML 2.0 model of the distributed system under test, augmented with
timing information, and is based on an analysis of the control flow in sequence diagrams. It yields stress test requirements that are made
of specific control flow paths along with time values indicating when to trigger them. The technique considers different types of arrival
patterns (e.g., periodic) for real-time events (common to DRTSs), and generates test requirements which comply with such timing con-
straints. Though different variants of our stress testing technique already exist (that stress different aspects of a distributed system), they
share a large amount of common concepts and we therefore focus here on one variant that is designed to stress test the system at a time
instant when data traffic on a network is maximal. Our technique uses genetic algorithms to find test requirements which lead to max-
imum possible traffic-aware stress in a system under test. Using a real-world DRTS specification, we design and implement a prototype
DRTS and describe, for that particular system, how the stress test cases are derived and executed using our methodology. The stress test
results indicate that the technique is significantly more effective at detecting network traffic-related faults when compared to test cases
based on an operational profile.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Distributed real-time systems (DRTS) are becoming
more important to our everyday life. Examples include
command and control systems, aircraft aviation systems,
robotics, and nuclear power plant systems (Tsai et al.,
1996). However, the development and testing of such sys-
tems is difficult and takes more time than for systems with-
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out real-time constraints or distribution (Weyuker and
Vokolos, 2000). Furthermore, based on an analysis of
sources of failures in the United States Public Switched
Telephone Network (PSTN) (Kuhn, 1997), it is reported
that in the 1992–1994 time period, although only 6% of
the outages were overloads, they led to 44% of the PSTN’s
service downtime. In the system under study, overload was
defined as the situation in which service demand exceeds
the designed system capacity. So it is evident that although
overloads do not happen frequently, the failure resulting
from them can be quite expensive.

Therefore the high-level motivation for our work can be
stated as follows: because DRTS are by nature concur-
rent and are real-time, there is a need for methodologies
and tools for testing and debugging DRTS under stress
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conditions such as heavy user loads and intense network
traffic. These systems should be tested under stress before
being deployed in the field in order to assess their robust-
ness to distribution-specific problems. In this work, our
focus is on network traffic, one of the fundamental factors
affecting the behavior of DRTS, though we will see that
our methodology can be easily tailored to other aspects.

Distributed nodes of a DRTS regularly need to commu-
nicate with each other to perform system functionality.
Network communications are not always successful and
on time as problems such as congestion, transmission
errors, or delays might occur. On the other hand, many
real-time and safety-critical systems have hard deadlines
for many of their operations, where if the deadlines are
not met, serious or even catastrophic consequences will
happen. Furthermore, a DRTS might behave well with
normal network traffic loads (e.g., in terms of amount of
data, number of requests), but abnormal and/or faulty
behavior (e.g., violation of real-time constraints) might
result from poor and unreliable communication if many
network messages or high loads of data are concurrently
transmitted over a particular network or towards a partic-
ular node. This is the type of problems that our test meth-
odology purports to uncover.

Our overall approach to testing is model-driven (Binder,
1999). Since 1997, UML has become the de facto standard
for modeling object-oriented software for nearly 70% of IT
industry (Pender, 2003). The new version of UML, version
2.0 (Object Management Group (OMG), 2005) offers an
improved modeling language compared to UML 1.x ver-
sions. Some of the high level improvements are: enhanced
architecture modeling and extensibility mechanisms, support
for component-based development, and model management
(Pender, 2003). As we expect UML to be increasingly used
for DRTS, it is therefore important to develop automatable
UML model-driven, stress test techniques.

Proposing that UML design models for a DRTS be in
the form of sequence diagrams (SD) annotated with timing
information, and the systems’ network topology be given in
a specific modeling format, we devise a technique to derive
test requirement to stress the DRTS with respect to net-
work traffic in a way that will likely reveal robustness prob-
lems. Note that, for a DRTS where several concurrent
objects are running on each distributed node and objects
communicate frequently with each other, the number of
all possible object interaction interleavings on a network
is extremely large.2 Testing all those interleavings is in gen-
eral not feasible. We thus introduce a systematic technique
to automatically generate an interleaving that will stress the
network traffic on a network or a node in a System Under
Test (SUT) so as to analyze the system under strenuous but
valid conditions. If any network traffic-related failure is
observed, designers will be able to apply any necessary fixes
to increase robustness before system delivery.
2 A network interaction interleaving is a possible sequence of network
interactions among a subset of objects on a subset of nodes.
The current work is an extended version of the work in
Garousi et al. (2006b), where we considered distributed sys-
tems in which external or internal events did not exhibit
arrival patterns (e.g., periods and bounded). The technique
in the current work takes into account different types of
events arrival patterns that are common in DRTSs. Such
patterns impose constraints on the time instant when inter-
actions between distributed objects can take place. We
make use of specifically-tailored genetic algorithms (a
much simpler technique was used in Garousi et al.,
2006b) to automatically generate test requirements which
comply with such timing constraints and lead to high traf-
fic-aware stress in a SUT.

The remainder of this article is structured as follows.
Related works are discussed in Section 2. An overview of
our stress test methodology is described in Section 3. Input
system models are described in Section 4. Section 5 dis-
cusses how a stress test model is built to support automa-
tion. The use of the stress test model to derive test
requirements is described in Section 6. Our prototype tool,
referred to as GA-based test Requirement tool for real-time

distribUted Systems (GARUS) and its empirical analysis
are presented in Section 7. The results of applying the
methodology to a case study system is described in
Section 8 which shows the applicability and assesses the
effectiveness of the methodology in revealing faults related
to network traffic. Finally, Section 9 concludes the article
and discusses some of the future research directions.

2. Related works

No existing work seems to directly address the automated
derivation of test requirements from UML models for per-
formance stress testing of DRTS from the perspective of
maximizing the chance of exhibiting network traffic faults.
In general, there have been relatively few works (Garousi
et al., 2006b; Avritzer and Weyuker, 1995; Briand et al.,
2006; Yang, 1996; Zhang and Cheung, 2002) on systematic
generation of stress and load test suites for software systems.

Avritzer and Weyuker (1995) propose a class of load test
case generation algorithms for telecommunication systems
which can be modeled by Markov chains. The black-box
techniques proposed are based on system operational pro-
files. The Markov chain that represents a system’s behavior
is first built. The operational profile of the software is then
used to calculate the probabilities of the transitions in the
Markov chain. The steady-state probability solution of
the Markov chain is then used to guide the generation pro-
cess of the test cases according to a number of criteria, in
order to target specific types of faults. For instance, using
probabilities in the Markov chain, it is possible to ensure
that a transition in the chain is involved many times in a
test case so as to target the degradation of the number of
calls that can be accepted by the system. From a practical
standpoint, targeting only systems whose behavior is mod-
eled by Markov chains can be considered a limitation of
this work. Furthermore, testing based on an operational
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profile (representing typical use) can hardly be expected to
stress a system.

Briand et al. (2006) propose a methodology for the der-
ivation of test cases that aims at maximizing the chances of
deadline misses within a system. They show that task dead-
lines may be missed even though the associated tasks have
been identified as schedulable through appropriate schedu-
lability analysis. The authors note that although it is
argued that schedulability analysis helps identify the
worst-case scenario of task executions, this is not always
the case because of the assumptions made by schedulability
theory regarding aperiodic tasks. The authors develop a
methodology that helps identify performance scenarios
that can lead to performance failures in a system.

Yang (1996) proposes a technique to identify potentially
load sensitive code regions and generate load test cases. The
technique targets memory-related faults (e.g., incorrect
memory allocation/de-allocation, incorrect dynamic mem-
ory usage) through load testing. The approach is to first
identify statements in the module under test that are load
sensitive, i.e., they involve the use of malloc() and free()
statements (in C) and pointers referencing allocated mem-
ory. Then, data flow analysis is used to find all Definition-
Use (DU)-pairs that trigger the load sensitive statements.
Test cases are then built to execute paths for the DU-pairs.

Zhang and Cheung (2002) describe a procedure, with a
similar goal to ours, for automating stress test case gener-
ation in multimedia systems. The authors consider a SUT
to be a multimedia system consisting of a group of servers
and clients connected through a network. Stringent timing
constraints as well as synchronization constraints are pres-
ent during the transmission of information from servers to
clients and vice versa. The authors identify test cases that
can lead to the saturation of one kind of resource, specifi-
cally CPU usage of a node in the distributed multimedia
system. The authors first model the flow and concurrency
control of multimedia systems using Petri-nets coupled
with timing constraints. A specific flavor of temporal logic
(Allen, 1983) was used to model temporal constraints. The
following are some of the limitations of their technique: (1)
it cannot be easily generalized to generate test cases to
stress test other kinds of resources, such as network traffic,
as this would require important changes in the test model;
(2) the resource utilization (CPU) of media objects is
assumed to be constant over time, although such utilization
would likely depend on the requests the server receives for
example; (3) although the objective is similar to ours, i.e.,
maximizing resource usage at a given time instant, no var-
iation of the technique is proposed or even mentioned to
stress test over a specific period of time. A system may only
exhibit failures if stress testing is prolonged for a period of
time; (4) in practice, the use of Petri Nets and temporal
logic can be an impediment to usage.

In this article, we build on a traffic-aware stress testing
technique for distributed systems we presented in Garousi
et al. (2006b). An important aspect of real-time systems
taken into account in the current work, which was left
out in Garousi et al. (2006b), is the arrival patterns for
events (e.g., periods) triggering SDs. Such patterns impose
constraints on the time instant when interactions between
distributed objects can take place, and thus on the deriva-
tion of (stress) test requirements. The stress test technique
in this work uses genetic algorithms (GA) to find test
requirements which comply with such timing constraints
and lead to high traffic-aware stress in a SUT.

There is an important body of work (e.g., Wegener
et al., 2001; Tracey et al., 1998a,b; Pargas et al., 1999; Jones
et al., 1996) that uses evolutionary algorithms (such as
GAs) for test case generation, which is commonly referred
to as evolutionary testing (ET). ET uses meta-heuristic
search-based techniques3 to find good quality test data.
Test data quality is often defined by a test adequacy crite-
rion (typically defined in terms of the program’s predicates)
built into a fitness function. This function determines the
fitness of candidate test data, which in turn, drives the
search implemented by an optimization technique.
Reported techniques in Wegener et al. (2001), Tracey
et al. (1998a), Pargas et al. (1999) and Jones et al. (1996)
aim at generating adequate test data for branch coverage
and other white-box testing criteria for a program under
test (Bowen et al., 2002). Reported fitness functions essen-
tially measure how close a candidate test input is to execut-
ing the desired (target) control flow path (CFP).
Generating test data using ET has been shown to be suc-
cessful, but its effectiveness is significantly reduced in the
presence of programming constructs which make the defi-
nition of an effective fitness function problematic, e.g.,
unstructured control flow (in which loops have many entry
and exit points) affects the ability to determine how alike
are the traversed and target paths (Bowen et al., 2002).
ET techniques are also used for black-box testing. For
instance, Tracey et al. (1998b) use a genetic algorithm to
derive test cases from pre and post-conditions. They trans-
form those predicates into disjunctive normal form and
make each conjunct contribute to the final fitness value.
The fitness function rewards values that satisfy the pre-con-
dition of a subprogram and result in a violation of its post-
condition. Since any particular test input either satisfies
this criterion or not, the authors also introduce the notions
of better and worse values to represent values that nearly

satisfy the criterion or are long away from satisfying it,
respectively (this is similar to the aforementioned measure
of how close an input is to executing a specific CFP).

Though the focus of ET techniques has not been so far
on load, performance or stress testing, the methodology
reported in this article is an ET technique which searches
among model-based CFPs in a SUT to maximize a fitness
function, but the CFPs are identified from models rather
than code. Another difference is that our fitness function
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(Section 6.5.5) is based on the amount of traffic a CFP
entails instead of how close a candidate test input drives
execution to traversing the desired (target) CFP. Further-
more, compared to existing ET techniques, our methodol-
ogy takes into account a different set of constraints (Section
6.5.2), which are specific to DRTSs. Two of such con-
straints we consider are: (1) sequential constraints between
SDs which imply that executing an arbitrary sequence of
SDs in a SUT might not be always valid or possible, e.g.,
the withdraw SD of a banking system can not be executed
before login; (2) SDs arrival patterns which impose con-
straints on the time instant when interactions between dis-
tributed objects can take place, e.g., a periodic event may
not be allowed to be triggered in arbitrary time instances
which do not belong to its periodic domain. Yet another
difference is that our work derives stress test requirements
given a set of stress test objectives (e.g., a network to be
stress tested in a time instance), while most existing ET
techniques focus on deriving a test case (input data) given
a test requirement (e.g., a CFP).

3. An overview of our methodology

An overview of our model-based stress test methodology
is presented using an activity diagram in Fig. 1. A UML
model of a SUT, following specific but realistic require-
ments, is used as input. A test model (TM) is then built
to facilitate subsequent automation steps. The TM and a
set of stress test parameters (objectives) set by the user
are then used by an optimization algorithm to derive stress
test requirements. Test requirements can finally be used to
specify test cases to stress test a SUT.

Note the distinction made in Fig. 1 using a color coding
scheme (refer to the legend) between the contributions of
the work in Garousi et al. (2006b) and the current article.
The stress testing technique in Garousi et al. (2006b) is
Control Flow Model
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Fig. 1. An overview of our model-
referred to as time-shifting stress test technique (TSSTT),
which uses only four elements of the TM. The technique
in the current article is referred to as genetic algorithm-

based stress test technique (GASTT), and uses all five ele-
ments of the TM. The arrival pattern model (Section 5.5)
incorporates the arrival pattern constraints of events in a
SUT and enables GASTT (Section 6) to derive test require-
ment complying with such constraints. Test activities with
a crossed gray background (deriving test cases from test
requirements and test execution by the tester) are not
addressed in this paper but we will discuss those aspects
in the context of our case study (Section 8).

At a high level, the goal of our stress test technique is to
choose the maximum number of SDs (to create an amount
of traffic) which can realistically be run concurrently,
according to the business logic of a SUT, and schedule
them such that their maximum traffic messages run at the
same time. The detailed steps of Fig. 1 are described in
the next sections:

• Specification of the input system models (Section 4).
• Specification and construction of the test model (Section

5).
• Derivation of stress test requirements using genetic algo-

rithms (Section 6).

Stress test parameters (objectives) in Fig. 1 specify the
variant of the stress test technique to be applied and the
values for the parameters of that stress test strategy. We
have 16 such variants in our methodology, which share a
common framework and many common concepts (Garousi
et al., 2006a). Each strategy is specified and named accord-
ing to four attributes: (1) a stress test location (a network or
a node); (2) a stress test direction (applies only to a node
test location-In for towards, Out for from, or Bi for bidirec-
tional traffic); (3) a test duration (a time instant, Ins, or a
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time interval, Int); and (4) a stress test type (DT for maxi-
mizing amount of data traffic, or MT for maximizing num-
ber of messages). For example, the stress test strategy we
focus on in this article is named StressNetInsDT which is
designed to stress test the system at a time instant (attribute
duration-Ins) when data traffic (attribute type-DT) on a
network (attribute location-Net) is maximal. For this stress
test strategy, the tester should provide the name of the net-
work under stress test (the network for which our method-
ology will derive stress test requirements such that the
instant data traffic is maximized).

4. Input system models

The assumed input system models for the stress test
methodologies in this article and Garousi et al. (2006b)
are almost the same, except that the current work requires
the arrival pattern of SDs to be modeled using stereotypes
from the UML profile for schedulability, performance, and
time (UML-SPT) (Object Management Group, 2003) in
SDs. Thus, we present in Section 4.1 only an overview of
the assumed input system models. Interested reader can
refer to Garousi et al. (2006a,b) for further details. Section
4.2 discusses how arrival pattern information can be mod-
eled in SDs.

4.1. An overview of the input system models

The input model consists of a number of UML dia-
grams. Some of them are standard in mainstream develop-
ment methodologies (class diagram, sequence diagrams,
and system context diagram; Gomaa, 2000). The other
two, further described in the next subsections, are needed
to describe the distributed architecture of the SUT (net-
work deployment diagram) and sequential constraints
among SDs, i.e., their respective use cases (modified inter-
action overview diagram).

4.1.1. Network deployment

The structure of the distributed architecture of a SUT as
we need it to be described is formalized in Fig. 2 as a meta-
model. Such network information is paramount as one of
our objectives is to stress, not only nodes in a network,
but also (sub-)networks. An example of a distributed archi-
tecture is depicted in Fig. 3a which shows networks in a
hierarchical structure (each network can have many sub-
1
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Fig. 2. Metamodel for distributed architectures.
nets and only one supernet), nodes belonging to networks,
and objects distributed on nodes, e.g., node1 hosts three
objects (o1,1, o1,2, and o1,3).

Each node can be connected to other nodes through sev-
eral network paths. A path is defined as a sequence of net-
works. For example, node1 is connected to node3 through
the network path hNetwork1, SystemNetwork, Network2i
in Fig. 3a. In the current work, we consider that there is only
one path between two nodes, rather than several paths.
Though this is a simplifying assumption, it is still realistic
in numerous cases as many proprietary SUT networks
(e.g., a distributed controller system of a factory) do not
have a complex topology. Considering multiple paths
would increase the complexity of our network traffic usage
model (Section 5.4) since it would require a detailed analysis
of the routing policy used in the network of the SUT.

Modeling a hierarchical set of networks and their inter-
connectivity is not directly addressed in the UML 2.0 spec-
ification (Object Management Group (OMG), 2005). We
therefore extend UML 2.0 deployment diagrams by adding
two stereotypes to the node notation: ‘‘network’’ and
‘‘node’’. We thus identify the type of an entity as a network
or a node. Furthermore, association roles stereotyped with
supernet and subnet are used to model the containment
relationships between super and sub-networks. As an
example, the architecture in Fig. 3a is modeled by the net-
work deployment diagram (NDD) in Fig. 3b.

4.1.2. Modified interaction overview

The name modified interaction overview diagram
(MIOD) comes from the UML 2.0’s interaction overview
diagram (IOD) (Object Management Group (OMG),
2005). To model which actor can trigger a particular SD,
we modify IODs to include activity partitions: one parti-
tion per actor. A MIOD is used to model sequential and
conditional constraints between SDs (inter-SD con-
straints): activities (i.e., nodes in the diagram) are SDs
and edges depict those sequential constraints. Standard
activity diagram decision nodes are used to model condi-
tional constraints between SDs. There exist alternative rep-
resentations (e.g., Coleman et al., 1994; Buhr, 1998; Nebut
et al., 2003). However, as we discuss in Garousi et al.
(2006b), MIODs suit best our needs for modeling sequen-
tial and conditional constraints among SDs in the context
of UML-based development.

Taking sequential and conditional constraints into
account is important while defining stress tests since exe-
cuting an arbitrary sequence of SDs in a SUT might not
be always valid or possible. The business logic of a SUT
might enforce a set of constraints on the sequence (order)
of SDs and also certain conditions may have to be satisfied
before a particular SD can be executed. An example MIOD
is shown in Fig. 4, where SDs SD1 and SD2 are triggered
by actor1 and SD3 by actor2. The MIOD specifies the
sequential and conditional constraints among SDs, e.g.,
SD1 and SD2 should be executed and condition c2 should
hold before SD3 can be executed.
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4.2. SDs with arrival pattern information

We expect that arrival pattern4 information is provided
in the specifications, e.g., if a SD is going to be triggered by
a sensor on a periodic basis, the period value of this peri-
odic arrival pattern should be provided in the system spec-
ifications. Such information is supposed to be obtained in
the design stage. Methodologies such as the one by Dou-
glass (1999) and the concurrent object modeling and archi-
tectural design method (COMET) framework (Gomaa,
2000) discuss ways to obtain arrival pattern information
in the design stage. It is therefore reasonable to expect such
information as part of the design model of a SUT.
4 Arrival-pattern constraints relate to timing of SDs. The time instant
when a SD can start running might be constrained in a SUT. Each SD
might be allowed to execute only in some particular time instants.
To model arrival pattern information, modelers can use
the RTArrivalPattern tagged-value which is a modeling
construct in the TimeModel package of the UML profile
for schedulability, performance, and time (UML-SPT)
(Object Management Group, 2003). Our technique
assumes that the arrival pattern information is given using
the RTArrivalPattern tagged-value in the UML model of a
SUT. As an example, the UML 2.0 SD in Fig. 5 shows the
temperature data update process for a simplified chemical
reactor system, where a sensor controller is getting the
two temperature values from two sensors (deployed on
nodes ns1 and ns2), and then sends the data to be updated
in the sensors database (on ncs). The timing information
of messages has been modeled using the UML-SPT. For
example, ‘‘RTstimulus’’ denotes that the first message is a
RT stimulus with an execution duration of less than 10 mil-
liseconds (ms) and an arrival pattern specified by the
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RTArrivalPattern tagged-value: a periodic event with a per-
iod value of 100 ms. RTstart and RTend tagged-values
specify the start and end time instances of a message. In
the UML-SPT, the time origin (t = 0) of constraints in a
SD is assumed to be the execution start time of the SD.

The system is obviously a safety-critical one, where an
inadequate response time of the system might have life-
threatening consequences. In other words, the temperature
of the system should be measured and checked according
to the timing notations in Fig. 5 and prompt corrective
actions should be carried out if the temperature is higher
than a pre-specified threshold.

5. Building the test models

We build a Test Model (TM) which includes the follow-
ing elements: (1) Control flow model, (2) Network inter-
connectivity tree, (3) Network traffic usage patterns, (4)
Inter-SD constraints model, and (5) Arrival patterns
model. These models are needed to facilitate the automated
derivation of test requirements. The activity diagram in
Fig. 6 illustrates the relationships among these models
and input UML models, as well as five distinct activities
responsible for the construction of test models, e.g., the
control flow analysis activity builds the control flow model
from an analysis of sequence and class diagrams. The fol-
lowing subsections describe how the TM is built. Four of
the five UML models composing the TM are discussed in
Garousi et al. (2006b) and, due to space constraints, we
present in Sections 5.1–5.3 only a brief overview of those
models and their construction. We devote more space to
the description of the Network Traffic Usage Model (Sec-
tion 5.4) and Arrival Patterns Model (Section 5.5).

5.1. Control flow model

In UML 2.0 (Object Management Group (OMG),
2005), SDs may have various program-like constructs such
as conditions (using alt combined fragment operator),
loops (using loop operator), and procedure calls (using
interaction occurrence construct). As a result, a SD is com-
posed of control flow paths (CFP), defined as a sequence of
messages in a SD. Furthermore, as we discussed in Garousi
et al. (2005), asynchronous messages and parallel combined
Input UML Model

Sequence Diagram

System Class Diagram

System Context Diagram

Modified Interaction 
Overview Diagram

Network Deployment 
Diagram (NDD)

Control Flow An

Arrival Pattern An

Inter-SD Constraint

Network Traffic Usag

NDD Path Ana

Fig. 6. An overview of how test models
fragments entail concurrency inside SDs. Additionally, in a
SD of a distributed system, some messages are local (sent
form an object to another on the same node), while others
are distributed (sent from an object on one node to an
object on another node) thus entailing network traffic.
Since network traffic varies with CFPs (e.g., varying num-
ber of distributed messages transmitting data of varying
sizes), a comprehensive model-based stress testing should
take into account the differences among CFPs in a SD.

In Garousi et al. (2006b), we used the model-based con-
trol flow analysis (MBCFA) technique presented in Garousi
et al. (2005), which was formalized using meta-modeling and
consistency-rules in the object constraint language (OCL)
(Object Management Group, 2005). We also introduced
concurrent control flow graphs (CCFG) as a means to ana-
lyze the concurrent control flow of SDs, due for instance
to asynchronous messages, and the associated notion of con-

current control flow path (CCFP), i.e., a path in a CCFG.
5.2. Inter-sequence diagram constraints model

Recall from Section 4.1.2 that taking sequential and
conditional constraints among SDs in a SUT into account
is important while defining stress tests since executing an
arbitrary sequence of SDs in a SUT might not be always
valid or possible. A MIOD is used to model sequential
and conditional constraints (inter-SD constraints) between
SDs. The goal of our stress test technique is to choose the
maximum number of SDs (to create maximum possible
traffic) which can realistically be run concurrently, accord-
ing to the MIOD, and schedule them such that their max-
imum traffic messages run at the same time.

To comply with inter-SD constraints while considering
the maximum number of SDs, we introduce the concept
of independent SD set (ISDS). Two SDs are independent if
there is no path (inter-SD constraints) between them in
the MIOD (e.g., Fig. 7a shows the MIOD of a power dis-
tribution controller system we use as a case study in Section
8), in which SDs A and B are independent. (More details
about this MIOD, such as actual SD names and the seman-
tics of stereotype ‘‘HRT’’ are provided in Garousi et al.
(2006a).) An ISDS is a largest (maximal) set of SDs, in
which any two SDs are independent, thus enabling all the
SDs in the set to run concurrently. A MIOD can lead to
Test Model
Control Flow Model

(Concurrent Control Flow Graph)

Arrival Patterns Model
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(Independent-SD Sets)
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Fig. 7. (a): The MIOD of our case study system. (b) and (c): Deriving independent SD sets of the MIOD.
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several ISDSs and, as discussed in Section 6, the ISDS with
maximum traffic (among all the ISDSs for a given MIOD)
will be chosen to generate stress test requirements.

To derive the set of ISDSs of a MIOD, we use a graph-
based approach in which we first build a graph, e.g.,
Fig. 7b, where nodes are SDs and there is an edge between
two nodes if and only if the two corresponding SDs are
independent. Finding the ISDSs can then be formulated
as a graph problem. More specifically, every maximal-com-
plete subgraph5 in this graph is an ISDS. Standard graph
algorithms can then be used to find those maximal-com-
plete subgraphs. For the MIOD in Fig. 7, four ISDSs are
identified (e.g., ISDS1 is illustrated in Fig. 7c):

ISDS1 ¼ fA;B;D;Eg ISDS2 ¼ fA;B; F g
ISDS3 ¼ fC;D;Eg ISDS4 ¼ fC; F g
5.3. Network interconnectivity tree

A Network Interconnectivity Tree (NIT) is built from a
NDD (Section 4.1.1). The root of the tree is always the
entire system network while system networks and nodes
are its children. The motivation for NITs is to easily iden-
tify the subset of nodes and networks that are relevant for
deriving stress test cases and the network path between any
two given nodes. For example, when stress testing a specific
network in a DRTS, we must identify the messages,
exchanged by nodes, that are transmitted through that
network.

To identify the network path between any two given
nodes, we define the network path function getNetworkPath

(ns, nr), where ns and nr are two nodes, which returns the net-
work path that messages sent from ns to nr would follow.
(An algorithm for this function can be found in Garousi
et al. (2006a).) For example, the derivation of the network
path between node1 (the sender) and node3 (the receiver)
5 A maximal complete subgraph (clique) of a graph is a subset of
vertices, each pair of which are connected by an edge, that cannot be
enlarged by adding any additional vertex from the graph (Moon and
Moser, 1965).
in Fig. 3a is formally represented as: getNetworkPath

(node1, node3) = hNetwork1, SystemNetwork, Network2i.
5.4. Network traffic usage model

A network traffic usage model describes the extent to
which messages, and thus CCFPs, entail traffic on a net-
work. An estimate of network traffic usage for each mes-
sage and CCFP is required in order to derive appropriate
stress test requirements to stress test a SUT with respect
to network traffic. We present in this section a resource
usage analysis (RUA) technique to estimate traffic usage
for messages and CCFPs.

In order to analyze the traffic usage of a CCFP, we need
to analyze the traffic usage entailed by its messages. Only
distributed messages (those sent between two different
nodes) in SDs are of interest here since they are the only
ones entailing network traffic. A distributed CCFP

(DCCFP) is a CCFP where only distributed messages are
modeled. To measure the traffic entailed by a distributed
message, we compute the data sizes of the parameters of
a call message or the return values of a reply message.
For a distributed signal message, we consider the size of
the signal object (sum of the attributes’ size) as the size
of the signal message.6 We define the data size of an object
to be the summation of sizes (in bytes) of the attributes in
its class. Admittedly, other measures (perhaps more accu-
rate) of network traffic can be considered. We however
consider our measurement as a reasonable and practical
surrogate for network traffic.

In order to precisely define how we perform traffic usage
analysis of CCFPs, we formally define SD messages. Simi-
lar to the tabular representation of messages, proposed by
UML 2.0 (Object Management Group (OMG), 2005), each
message annotated with timing information (using the
6 In UML 2.0, in the case of a message of type signal, the arguments of
the message must correspond to the attributes of the signal class. The data
carried by a signal message is represented as attributes of the signal
instance.



Eq. (1). Network traffic usage (NTU) function.
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UML-SPT profile Object Management Group, 2003) can
be represented as a tuple: message = (sender, receiver, meth-

odOrSignalName, parameterList, returnList, startTime,

endTime, msgType), where:

• sender denotes the sender of the message and is itself a
tuple of the form sender = (object, class, node), where
– object is the object (instance) name of the sender.
– class is the class name of the sender.
– node is where the sender object is deployed.

• receiver denotes the receiver of the message and is itself a
tuple of the same form as sender.

• methodOrSignalName is the name of the method on the
message or the signal class name in case of a signal on
the message.

• parameterList is the list of parameters for call messages.
parameterList is a sequence of the form h(p1,C1, in/out),
. . ., (pn,Cn, in/out)i, where pi is the ith parameter of class
type Ci and in/out defines the kind of the parameter. For
example if the call message is m(o1:C1,o2:C2), then the
ordered parameters set will be h(o1,C1, in), (o2,C2, in)i.
If the method call has no parameter, this set is empty.

• returnList is the list of return values on reply messages.
It is empty in other types of messages. UML 2.0 assumes
that there may be several return values for a reply mes-
sage. We show returnList in the form of a sequence
h(var1 = val1,C1), . . ., (varn = valn,Cn)i, where vali is the
return value for variable vari with type Ci.

• startTime is the start time of the message (modeled by
UML-SPT profile’s RTstart tagged value).

• endTime is the end time of the message (modeled by
UML-SPT profile’s RTend tagged value).

• msgType is a field to distinguish between signal, call and
reply messages. Although the messageSort attribute of
each message in the UML metamodel can be used to dis-
tinguish signal and call messages, the metamodel does
not provide a built-in way to separate call and reply
messages. Further explanations on this and an approach
to distinguish between call and reply messages can be
found in (Garousi et al., 2006a).

To formalize our network traffic usage model, we define
a network traffic usage (NTU) function (Eq. 1), which esti-
mates the amount of traffic entailed by a distributed mes-
sage. A dash (–) symbol indicates that a field can take
any arbitrary value. NTU is a function from the set of mes-
sages to real values (data traffic). The data traffic (DT)
value depends on the type of the message. For a signal mes-
sage (function SignalDT is used), DT is equal to the data
-attribute1 : long[100]
-attribute2 : char[100]

B

-attribute1 : long[100]
-attribute2 : long[500]

A

a

Fig. 8. (a): Two classes with data fields. (b)
sizes of all the attributes of the signal class referred by
the message. For a call message (function CallDT is used),
DT is the sum of data sizes of all the attributes of each
parameter. For a reply message (function ReplyDT is
used), DT is the sum of data sizes of all attributes of each
member of the return list. Data size of the data type of an
attribute is extracted from the specification of the target
programming language as specified by the user.

As an example, suppose we want to measure the traffic
usage of a call message with two parameters of type A
and one of class type B, respectively, where classes A and
B are defined in the class diagram of Fig. 8a. Using these
class specifications, we can estimate the size of the message
to be 5.8 KB, as illustrated in Fig. 8b, assuming the target
programming language is Java (the size of a char and a long

variable are two and eight bytes, respectively).
Using NTU, let us now define network traffic usage pat-

tern (NTUP) as a function from the set of DCCFPs, net-
works, and time domain to real values (usage pattern
values). The usage pattern of a DCCFP q on a network
net at a particular time instant t is the sum of NTU values
of the subset of the DCCFPs’ messages whose start/end
time interval includes t and that go through net (using get-

NetworkPath() defined in Section 5.3). Dur() denotes the
time duration of a message and since a message can span
over several time units, our definition for the data traffic
value of a message at a given time unit is its total data size
divided by its duration, which yields the average message
traffic per time unit (see Eq. 2).

5.5. Arrival pattern model

An Arrival pattern model (APM) is built based on SDs’
arrival pattern (AP) information. We first describe in Sec-
tion 5.5.1 how an APM will help our stress test requirement
derivation process (Section 5.5.1) to derive valid test
requirements, i.e., test requirements which comply with
SDs’ APs. Types of arrival patterns we consider in this
b
NTU(msg) = CallDT(msg) 
= dataSize(A) + dataSize(B) 
= (8×(100+500)) + (8×100+2×100)
= 5.8KB (kilobytes)

: An example of computation of NTU.



Eq. (2). Network traffic usage pattern (NTUP) function.
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work are discussed in Section 5.5.2. The analysis of arrival
patterns to derive an APM is described in Section 5.5.3.
Section 5.5.4 presents the concept of Accepted Time Set,
our APM, which is used by our stress test technique.
5.5.1. Impact of arrival patterns

We discuss in this section the impacts of SD arrival pat-
terns on the test requirements derivation process and thus
motivate the need for an arrival pattern model (APM).
Arrival patterns (Section 4.2), modeled in UML using the
UML-SPT profile, specify constraints on the start times
of messages in SDs, and thus on the start times of SDs,
and therefore on the start times of DCCFPs. Arrival Pat-
terns therefore impact the test requirements generation
process by limiting the search scope from unlimited time
instants to limited intervals for the start times of DCCFPs.

The impacts can be better visualized by the example of
Fig. 9. Let us first consider a simple search heuristic (used
in our earlier work Garousi et al., 2006b), to be used when
there is no arrival pattern: Fig. 9a. The heuristic searches
among all the ISDSs and finds the one with maximum
instant stress. Then the SDs of the selected ISDS are sched-
uled, i.e., their start time is determined, to yield the maxi-
mum stress. The scheduling is done so as the maximum
stress message of different SDs start concurrently. In
Fig. 9a, showing the selected ISDS with three SDs: SD1,
SD2, and SD3, the heuristic determined that the three SDs
can start at the same time to yield maximum stress. On
the other hand, if the same SDs have APs, time intervals,
referred to as AP regions, are specified during which SDs
can start executing: for instance, Fig. 9b. As it can be seen,
there are three AP regions for SD1, one AP region for SD2,
and three AP regions for SD3. Due to such time constraints,
SDs cannot be scheduled freely in any arbitrary time
instants. The heuristics to find maximum possible stress
while respecting APs, in this case, will be to search among
time (ms)

SD3

SD2

SD1

S

SD1

ISDS={SD1,SD2,SD3}

Without arrival patterns

a b

Fig. 9. Impact of arrival patterns on t
the AP regions of every SD and find a time instant when
the summation of entailed traffic values by DCCFPs from
all the SDs is maximized. One of such possible schedules
(among an infinite number of them) is shown in Fig. 9b.
5.5.2. Types of arrival patterns

We also assume that SD APs are modeled using the UML-
SPT profile’s RTarrivalPattern tagged-value (Object Man-
agement Group, 2003), such as in Fig. 5. We provide next
an overview on the five types of APs in the UML-SPT profile:

• Bounded: An AP where the inter-arrival time of two
consecutive arrivals is bounded by minimum and a max-
imum arrival times.

• Bursty: In this AP, a maximum number of events can
occur during a specific interval.

• Irregular: An ordered list of time values represents suc-
cessive arrival times.

• Periodic: Arrival times comply with a period and a devi-
ation value.

• Unbounded: An AP specified by a Probability Distribu-

tion Function. The types of supported distributions are:
bernoulli, binomial, exponential, gamma, geometric,
histogram, normal (Gaussian), poisson, and uniform.
5.5.3. Analysis of arrival patterns

In order to study APs and devise a stress test strategy to
account for them when generating stress test requirements,
the timing characteristics of APs should be analyzed. Fur-
thermore, given an arrival time, we should be able to deter-
mine if it satisfies an AP, i.e., whether the arrival time is
legal given the AP. The pseudo-code of function IsAPC-
Satisfied() shown in Fig. 10 determines if a DCCFP arrival
time satisfies an AP. The function will be used in our stress
test derivation technique (Section 6) to select legal sched-
ules for a SD’s DTCCFPs. The AP can be any of the fol-
time (ms)

SD3

D2

AP regions of SD2 

AP regions of SD1 

AP regions of SD3 

With arrival patterns

he derivation of test requirements.



Function IsAPCSatisfied(arrivalTime, AP)

AP∈{‘bounded’, ‘bursty’, ‘irregular’, ‘periodic’, ‘unbounded’}
1 Switch AP { 
2  ‘bounded’:
3 If arrivalTime is in one of the intervals of the bounded pattern, then Return True 
4 Else Return False 
5 ‘bursty’: Return True 
6  ‘irregular’:
7 If arrivalTime is one of the time values in the AP list, then Return True 
8 Else Return False 
9 ‘periodic’:

10 If there exists an arbitrary integer k such that arrivalTime∈[kp-d… kp+d], where p
and d are the period and the derivation values of the AP: then Return True 

11 Else Return False 

12 }

Fig. 10. Pseudo-code to check if the arrival pattern AP is satisfied by an arrival time.
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lowing: {‘bounded’, ‘bursty’, ‘irregular’, ‘periodic’,
‘unbounded’}. The pseudo-code is described in detail next.

If the AP is bounded, IsAPCSatisfied() returns true if the
arrival time is inside the time intervals specified by the
bounded pattern. Such a pattern is identified by a minimal

and a maximal inter-arrival time (MinIAT, MaxIAT). We
assume that MinIAT and MaxIAT of a bounded AP can-
not be equal. If the two values are equal, the arrival pattern
is equivalent to a periodic one. For example, a bounded AP
where MinIAT=MaxIAT=3 ms, is indeed a periodic arrival
pattern with period = 3 ms. Consider a bounded AP with
MinIAT = 4 ms and MaxIAT = 5 ms. The gray eclipses in
Fig. 11 depict the Accepted Time Interval (ATI) of the
AP, i.e., the time intervals where an AP is satisfied.

Note that the ATIs of a bounded AP denote all possible

arrival times, regardless of actual arrival times in a specific
scenario. The curved arrows in Fig. 11 denote how an ATI
is derived from the previous one. For the AP discussed
above, assuming that the AP starts from time = 0, the first
ATI is [4–5 ms]. If an event arrives in time = 4 ms, accord-
ing to the fact that MinIAT = 4 ms and MaxIAT = 5 ms,
the next event can arrive in interval [8–9 ms]. Similarly, if
an event arrives in time = 5 ms, according to the fact that
MinIAT = 4 ms and MaxIAT = 5 ms, the next event can
arrive in interval [9–10 ms]. In a similar fashion, a value
between 4 and 5 ms will cause the next arrival time to be
in the range [8–10 ms]. Therefore, the second ATI is [8–
10 ms]. The next ATIs are [12–15 ms], [16–20 ms], [20–
25 ms], [24–30 ms] and so on. Since a bursty AP only con-
strains the number of arrivals in a specific time interval,
any ‘single’ arrival at any arbitrary time instance thus sat-
isfies this AP. Similar analysis for other APs and explana-
tions for the rest of the pseudo-code in Fig. 10 can be found
in Garousi et al. (2006a).
0    1     2    3     4    5    6     7    8     9   10   11  12  13   14  15   

Accepted Time 
Interval (ATI)

Fig. 11. Accepted Time Intervals (ATI) of a bounded arrival pattern (
5.5.4. Accepted time sets

To better formulate our GASTT technique (Section 6),
we define the concept of accepted time set (ATS) for each
SD as the set of time instances or time intervals when a
SD is allowed to be triggered, according to its AP. An
ATS can be derived from the AP of the corresponding
SD. The ATS metamodel in Fig. 12a formalizes the funda-
mental concepts.

Each SD has an ATS. An ATS is made of several
accepted time point (ATP), for irregular and periodic (with
no deviation) arrival patterns, or several accepted time
interval (ATI), for the other arrival patterns. This is
because irregular and periodic (with no deviation) arrival
patterns specify the time instances when a SD can be trig-
gered, whereas all the other arrival patterns deal with time
intervals. The mutual exclusion between ATIs and ATPs is
shown by two OCL invariants (hasATInoATP and has-

ATPnoATI) in Fig. 12a. Each ATI has a start time and
an end time of type RTtimeValue (from the UML-SPT),
denoting the start and end times of an interval. ATP is of
type RTtimeValue too. The end time of an ATI can be null,
which denotes an ATI which has no upper bound (this is
further justified below).

Three ATS examples are illustrated in Fig. 12b, which
comply with the metamodel in Fig. 12a. ATSbounded and
ATSirregular are the ATSs corresponding to a bounded
and an irregular arrival pattern. ATSunconstrained is an
ATS for SDs which do not have any arrival pattern, i.e.,
can be triggered any time.

Our convention to represent an unconstrained ATS is to
leave the end time of its only interval as null: it is uncon-
strained so no upper bound can be defined. Such an ATS
has only one ATI from time 0 to1. This constraint has been
formalized by the third OCL invariant (unconstrainedATS)
16  17   18  19  20  21  22   23  24  25   26  27  28  29   30 time (ms)

...

‘bounded’, (4, ms), (5, ms)), i.e. MinIAT = 4 ms, MaxIAT = 5 ms.



Fig. 12. (a): Accepted Time Set (ATS) metamodel. (b): Three instances of the metamodel.
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in Fig. 12a. Note that one could need to consider other
kinds of constraints such as the following, that we refer
to as partly-constrained ATS: ATSpartly-constrained =
{((0,ms),(3,ms)),((5,ms),null)}; where the corresponding
SD can be triggered in all times, except interval ]3–5 ms[.
In such an ATS, there is at least one ATI where the end
time is null. However, modeling arrival patterns which lead
to partly-constrained ATSs is not currently possible using
the UML-SPT. Since we assumed the UML-SPT as the
modeling language to model arrival patterns in this
work, we assume that there will not be any SD with a
partly-constrained ATS.

6. Using genetic algorithms to derive stress test requirements

This section describes how stress test requirements are
derived from our test model. The heuristics of our stress
test technique are described in Section 6.1. Section 6.2 for-
mulates the stress test generation problem as an optimiza-
tion problem. The output stress test requirements format is
presented in Section 6.3. Our choice of the optimization
technique (genetic algorithms) to solve the stress test gener-
ation optimization problem is discussed in Section 6.4. The
genetic algorithm formulation to our problem is presented
in Section 6.5.
NTUP(DCCFP3,max,net,t)

NTUP(DCCFP1,max,net,t)

NTUP(DCCFP2,max,net,t) GASTT Heuristics

t
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Fig. 13. Heuristic
6.1. Stress test heuristics

When SDs have AP constraints, DCCFPs executions
cannot be freely shifted along the time axis. Each SD’s
DCCFP can only be scheduled in time instances inside
the SD’s accepted time set (ATS) (Section 5.5.4).

Fig. 13a shows the NTUPs for three DCCFPs of a given
ISDS (the ISDS contains three SDs and each SD has one
DCCFP): messages that impose maximum traffic on the
network (marked with vertical lines) execute at different
time instants. Fig. 13b shows the periods of time (ATSs)
during which it is legal to trigger the three DCCFPs. Each
of the three DCCFPs has a specific AP (the color-coded
ellipses denote the ATS of each SD).

In short, our stress test heuristic in the current work is to
look for SD schedules such that each SD start time is inside
its ATS. Only SDs (i.e., their respective DCCFPs) that are
members of an ISDS are considered in order to ensure we
comply with inter-SD constraints. For each such schedule,
the entailed traffic (stress) is the maximum combined traffic
(over all involved DCCFPs). Note that, when considering
AP constraints (Fig. 13b), it is not always possible to
achieve the maximum possible stress that one would obtain
without considering AP constraints. Considering that
ATSs of different SDs in a SUT can be in general very
(b) : A stress test requirement generated byGASTT
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different from each other, we can also see in Fig. 13 that the
optimization (search) algorithm needed to derive test
requirements in this context will likely have a complex set
of constraints to satisfy and is therefore not expected to
be as simple as the one in Garousi et al. (2006b).

In our work, we assume that a DCCFP execution ends
before the next acceptable time instant (ATI or ATP) in
the ATS as illustrated in Fig. 13b: the displayed execution
of the second DCCFP (starting in the first ATI) ends
before the next immediate time instant in the ATS (i.e.,
the start of the second ATI). We consider this a realistic
assumption since in DRTSs designers usually enforce, by
specifying appropriate arrival patterns, that this is the case
in order to ensure schedulability and safety.

6.2. Formulation as an optimization problem

The stress test heuristics defined above is an optimiza-
tion problem, since it tries to find the maximum stress mes-
sages given a set of constraints. In order to solve this
optimization problem, we formulate it formally as shown
in Fig. 14.

Note that multiple concurrent invocations of a SD
might be allowed in a system, e.g., a SD which is triggered
by five sensors concurrently. Therefore multiple DCCFP
instances of such a SD can be executed to maximize stress
during testing. Our technique derives the number of multi-
ple invocations of a SD from the information specified in a
system context diagram (Gomaa, 2000), i.e., a diagram
specifying actors interacting with the system and their
expected numbers at run-time. For example, if five
instances of an actor can trigger a SD, it implies that five
instances of the SD (i.e., one of its corresponding
DCCFPs) can run concurrently.

6.3. Output stress test requirements

Assuming that a SUT has n SDs (SD1, . . .,SDn), a test
requirement will be a schedule of a selected set of DCCFPs
in the form of: h(q1max, aq1max), . . ., (qnmax, aqnmax)i, where
for the ith entry of the sequence, qimax is a DCCFP in the
DCCFP set of SDi, DCCFP(SDi), that entails the maxi-
mum traffic over the selected network. aqimax is the start
time of qimax, i.e., the time to trigger qimax. Intuitively, if
Objective Function: Maximize the traffic

Variables:

− A subset of DCCFPs 

− Schedule to run the selected DCCFPs 

Constraints:

− Inter-SD sequential and conditional con

− SD arrival patterns 

Fig. 14. Formulating the problem of generating stre
none of the DCCFPs of SDi has any message going
through the selected network, it means that that SDi does
not have any traffic on the network and hence it will not
be included in the test requirements. In such a case, the
ith entry is null.

6.4. Choice of the optimization technique: genetic algorithms

For the test requirement generation problem at hand,
which is an optimization scheduling problem, using linear
programming (LP) is impossible as the constraint regions
of several ATSs altogether (their unions) can generally be
non-linear (disconnected in the context of ATSs). To bet-
ter explain such a non-linearity, suppose an n-dimensional
space where n ATSs (corresponding to n SDs) are speci-
fied, where each ATS can be disconnected (e.g., the
ATS of a bounded or a periodic AP). In such a case,
the acceptable search space of the problem is the union
of all those ATSs. Due to the disconnectivity of each
ATS, the search space resulting from their union will also
be non-linear, thus making the entire problem unsolvable
by LP. Furthermore, for the scheduling problem at hand,
any change in the number of SDs and DCCFPs or the
execution times may cause great changes in the solution.
The solution space of the problem is thus uneven, charac-
terized by multiple peaks and valleys. A non-linear pro-
gramming (NLP) technique is thus needed that alleviates
this problem by exploring multiple parts of the non-linear
problem space.

However, due to the disconnected nature of ATSs and
also the unbounded number of possible schedules for each
SD in our problem, we expect to face one of the major
common challenges in NLP: ‘‘local optima’’. Algorithms
that propose to overcome this difficulty are termed ‘‘Global
optimization techniques’’ (Horst, 1995), also known as
meta-heuristic methods. They continually search for better
solutions by altering a set of current solutions. Further-
more, meta-heuristic methods are usually more scalable
and flexible (Thierens et al., 1999) than other NLP tech-
niques (e.g., branch-and-bound) for complex problems like
ours.

Genetic algorithms (GA) and simulated annealing (SA)
are two of the commonly used global optimization tech-
niques. Some studies, such as Lahtinen et al. (1996)
 on a specified network

straints 

ss test requirements as an optimization problem.
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indicate that SA outperforms GAs, while others, such as
Chardaire et al. (1995) suggest that GAs produce solutions
equivalent or superior to SA. Most researchers, however,
seem to agree that because GAs maintain a population of
possible solutions, they have a better chance of locating
the global optimum compared to SA and Taboo Search
(TS) which proceed one solution at a time (Mahfoud and
Goldberg, 1995; Mahfouz et al., 1999). Furthermore,
because SAs maintain only one solution at a time, good
solutions may be discarded and never regained if cooling
occurs too quickly. Similarly, TS may miss the optimum
solutions. Alternatively, steady state GAs, one of the vari-
ations of GAs, accept newly generated solutions only if
they are fitter than previous solutions. Furthermore, GAs
lend themselves to parallelism, as they manipulate whole
populations: computations for different parts of the popu-
lation can be dispatched to different processors. SA, on the
other hand, cannot easily run on multiple processors
because only one solution is constantly manipulated (Mah-
foud and Goldberg, 1995). Hence, we adopt GA as our
optimization technique methodology.

6.5. Tailoring genetic algorithm to derive instant stress test

requirements

We use a GA to solve the optimization problem of find-
ing DCCFPs and their triggering times such that instant
traffic on a network or a node is maximized. This section
describes how we tailored the different components of the
GA to this problem. We define a chromosome representa-
tion in Section 6.5.1. Constraints defining legal chromo-
somes are formulated in Section 6.5.2. Derivation of the
initial GA population is discussed in Section 6.5.3. The
concept of a time search range which is needed in our
GA for the initialization process as well as the operators
is discussed in Section 6.5.4. The objective (fitness) function
is described in Section 6.5.5. GA operators (crossover and
mutation) are finally presented in Section 6.5.6.
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Fig. 15. (a): Metamodel of chromosomes and genes in our G
6.5.1. Chromosome

Chromosomes define a group of solutions to be opti-
mized. Their representation and length must be precisely
defined and justified (Haupt and Haupt, 1998). Recall we
need to optimize the selection of SDs’ DCCFPs and their
schedule, i.e., their start times. Therefore, the length of a
chromosome is the number of SDs in the SUT. Addition-
ally, we need to encode both DCCFP identifiers and their
arrival times in a chromosome. A gene can be depicted as
a pair (qi,selected,aqi,selected), where qi,selected is a selected
DCCFP of SDi, and aqi,selected is the start time of qi,selected.
Together, the pair represents a schedule of a specific
DCCFP. If no DCCFP is selected from a SD (because
the SD does not have traffic over a particular network,
for example), the gene is denoted as null. This is to ensure
that the number of genes in each chromosome remains con-
stant as this facilitates the definition of mutation/cross-over
operators and fitness function.

We formalize the concepts we employ in a metamodel
which is depicted in Fig. 15a. Such a metamodel also con-
stitutes a starting point for the design of our tool (Section
7). A Chromosome is composed of a sequence of Gene
instances, specifically as many genes as SDs in the system.
The Initialization, Crossover and Mutation operators are all
defined in Chromosome, as well as the objective function,
Evaluate. These functions will be defined in Section 6.5.6.

Each Gene is associated with a SD. Furthermore, it has
an association (selectedDCCFP) to zero (if no DCCFP is
chosen) or one DCCFP. A Gene has an attribute start-

Time, of type RTtimeValue (defined in the UML-SPT),
which is the time value to trigger selectedDCCFP. Each
DCCFP belongs to a SD, whereas each SD can have sev-
eral DCCFPs. Attribute numOfMultipleSDInstances is the
number of multiple SD instances which are allowed to be
triggered concurrently. Each SD can be a member of sev-
eral ISDSs, and an ISDS can have one or more SDs. Arri-
val pattern information of SDs is stored in instances of a
class ArrivalPattern (attributes of such a class can be easily
-End3-End4

Chromosome 

Gene Gene

(DCCFP1,2, (1, ‘2ms’)) (DCCFP2,2, (6, ‘9ms’))

An instance:

arent1, 
arent2, 

CFP.sd=sd

gene

context Chromosome:
inv self.gene.sd.isds = self.isds
inv self.gene->size() = self.isds.sd->size()

A algorithm. (b): Part of an instance of the metamodel.
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defined based on the discussions in Section 5.5.2, such as
type and AP parameters). A SUT (model) has one or more
ISDSs. Finally, to specify the well-formedness criteria of
the above metamodel, we have defined invariants for the
Chromosome and Gene classes (Fig. 15). For example, the
SD of a Gene instance should be the SD containing
the selected DCCFP of that Gene instance. Recall that
we are maximizing traffic at a given instant and what
matters is thus the number of SDs that can be triggered
concurrently. We therefore do not need to model sequential
and conditional constraints.

An example of a chromosome and a gene is illustrated in
Fig. 15b, which complies with the metamodel in Fig. 15a.
The chromosome is composed of two genes, since it is
assumed that the SUT has two SDs: SD1 and SD2.
DCCFP1,2 and DCCFP2,2 are selected DCCFPs of SD1

and SD2, respectively. The genes indicate that the
DCCFPs’ start times are 2 ms and 9 ms, respectively.
6.5.2. Constraints

Inter-SD and arrival pattern constraints should be satis-
fied when generating new chromosomes from parents.
Otherwise GA backtracking procedures (Haupt and Haupt,
1998) should be used. Backtracking, however, has its draw-
backs: it is time consuming and some GA tools incorporate
backtracking while others do not. To allow for generality,
we assume no backtracking methodology is available.
Therefore, we have to ensure that the GA operators always
produce chromosomes which satisfy the GA’s constraints.
In order to do so, we formally express inter-SD and arrival
pattern constraints based on our metamodel.
6.5.3. Constraint #1: inter-SD constraints

We incorporated inter-SD constraints in ISDSs (Section
5.2). A set of DCCFPs are allowed to execute concurrently
in a SUT only if their corresponding SDs are members of
an ISDS. As discussed in Section 6.5.1, each chromosome
is a sequence of genes, where each gene is associated with
zero or one DCCFP. Therefore, a chromosome satisfies
context Chromosome

inv: self.gene.selectedDCCFP.s

Fig. 16. Constraint #1 of the

1 IsAPCSatisfiedByAChromosome

2 post: result=

3 if c.gene->exits(g| 
and not IsAPCSatisfi
then

4 false

5 else

6 true

Fig. 17. Constraint #2 of the
Constraint #1 only if the SDs of DCCFPs corresponding
to its genes are members of a same ISDS. In other words,
each chromosome corresponds to only one ISDS. We can
formulate the above constraint as a class invariant on class
Chromosome (Fig. 15a) as presented in Fig. 16.
6.5.4. Constraint #2: arrival pattern constraints

Given a chromosome, the OCL post-condition in
Fig. 17 determines if the chromosome (the scheduling of
its genes) satisfies the arrival pattern constraints (APC)
of SDs. The function IsAPCSatisfiedByAChromosome(c :
Chromosome) returns true if all genes of the chromosome
satisfy the APCs. The OCL post-condition makes use of
function IsAPCSatisfied(startTime, AP), defined in Section
5.5.3.
6.5.5. Initial population

Determining the population size of a GA is challenging
(Atallah, 1999). A small population size will cause the GA
to quickly converge on a local minimum because it insuffi-
ciently samples the search space. A large population, on the
other hand, causes the GA to run longer in search for an
optimal solution. Haupt and Haupt in Haupt and Haupt
(1998) list a variety of works that suggests adequate popu-
lation sizes. The authors reveal that the work of De Jong
(1988) suggests a population size ranging from 50 to 100
chromosomes. Grefenstette and Cobb (1993) recommend
a range between 30 and 80, while Schaffer et al. (1989) sug-
gest a smaller population size, between 20 and 30. We
choose 80 as the population size as it is consistent with
most of experimental results.

The GA initial population generation process should
ensure that the two constraints of Section 6.5.2 are met.
The pseudo-code to generate the initial set of chromosomes
is presented in Fig. 18. As indicated by the constraint #1,
each chromosome corresponds to an ISDS. Therefore, line
1 of the pseudo-code chooses a random ISDS and the ini-
tialization algorithm continues with the selected ISDS to
create an initial chromosome. Note that to generate our
d.isds->asset()->size()=1

GA (an OCL expression).

(c:Chromosome)

g.selectedDCCFP.notEmpty
ed(g.startTime, g.sd.ap) 

GA (an OCL function).



Function CreateAChromosome(): Chromosome 

c: Chromosome 
1 ISDS=a random ISDS 
2 For all SDi∈ISDS
3 c.genei.selectedDCCFP = a random DCCFP from SDi

4 For all SDi∉ISDS
5 c.genei=null
6 Intersection=ATS(SD1) ∩ ATS(SD2) ∩… ∩ATS(SDi), where SDj,j=1…i∈ISDS
7 If Intersection≠{}
8 Choose a random time instance tschedule in Intersection
9  For all c.genei ≠null
10 c.genei.startTime= tschedule

11 Else
12 For all c. genei ≠null
13 c.genei.startTime= A random time instance ti in ATS(SDi)
14 Return c

Fig. 18. Pseudo-code to generate chromosomes of the GA’s initial population.
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GA’s initial population,CreateAChromosome() is invoked
80 times.

For each SD in the ISDS selected in line 1, lines 2–3
choose a random DCCFP and assign it to the correspond-
ing gene (i.e. genei corresponds to SDi). Other genes of the
chromosome (those not belonging to the selected ISDS) are
set to null (lines 4–5). An initial scheduling is done on genes
in lines 6–13. The idea is to schedule the DCCFPs in such a
way that the chances that DCCFPs’ schedules overlap are
maximized, in an attempt to produce an initial population
that already puts the system under stress. (The impact of
this heuristics remains to be studied though.) This is done
by first calculating the intersection of ATSs for SDs in
the selected ISDS (line 6), using an intersection operator
described in Garousi et al. (2006a). The intersection of
two ATSs is an ATS that contains all the time instances
and time intervals that are common to the two ATSs. If
the intersection set is not null (meaning that the ATSs have
at least one overlapping time instance), a random time
instance is selected from the intersection set (line 8). All
DCCFPs of the genes are then scheduled to this time
instance (lines 10 and 11). If the intersection set is null, it
means that the ATSs do not have any overlapping time
instance. In such a case, the DCCFP of every gene is sched-
uled differently, by scheduling it to a random time instance
in the ATS corresponding to its SD (lines 12 and 13).

When selecting a random time instance for a gene, we
need a range from which to select time values. When calcu-
lating an intersection of ATSs, we also need to select a
range of time values, especially when some ATSs are
unbounded. This range is discussed in Section 6.5.4 below.

Following the algorithm in Fig. 18, we ensure the initial
population of chromosomes complies with both constraints
of Section 6.5.2. Note that the above algorithm does not
necessarily ensure that all the ISDSs are represented in
the initial population (this depends on the number of
ISDSs and the size of the population). However, after cre-
ating an initial population of randomly-selected ISDS and
during the GA process, one of our GA’s mutation opera-
tors (Section 6.5.6.2) will mutate an entire chromosome
by assigning another, randomly-selected ISDS, to the chro-
mosome. That operator allows the search to investigate dif-
ferent ISDSs.

6.5.6. Determining a maximum search time

One important issue in our GA design is the range of the
random numbers chosen from the ATS of a SD with an
arrival pattern. As discussed in Section 5.5.4, the number
of ATIs or ATPs in some types of APs (e.g. periodic,
bounded) can be infinite. Therefore, choosing a random
value from such an ATS can yield very large values, thus
creating implementation problems.

Another direct impact of such unboundedness on our
GA is that it would significantly decrease the probability
that all (or a subset) of start times of DCCFPs (corre-
sponding to the genes of a chromosome) overlap or be
close to each other. If the maximum range when generating
a set of random numbers is infinity, the probability that all
(or a subset) of the generated numbers are relatively close
to each other is very small. Thus, to eliminate such prob-
lems, we introduce a Maximum Search Time. This maxi-
mum search time is essentially an integer value (in time
units) which enforces an upper bound on the selection of
random values for start times of DCCFPs, chosen from
an ATS. The GA maximum search time will be used in
our GA operators (Section 6.5.6) to limit the maximum
ranges of generated random time values.

Different values of maximum search time (MST) for a
specific run of our GA might produce different results.
For example, if the search range is too limited (small max-
imum search time), not all ATIs and ATPs in all ATSs will
be exercised. On the contrary, if the range is too large
(compared to maximum values in ATSs), it will take a
longer time for the GA to converge to a maximum plateau,
since the selection of random start times for DCCFPs will
be sparse and the GA will have to iterate through more
generations to settle on a stable maximum plateau (in
which start times are relatively close to each other).
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The impact of MST on exercising the time domain is
further discussed in Garousi et al. (2006a). We also present
in Garousi et al. (2006a) a set of heuristics-based con-
straints that a suitable MST should satisfy depending on
the kind of AP (e.g., periodic, irregular). For example,
one of those constraints is that a suitable MST should be
greater than all maximum times in ATSs of all irregular
APs. This constraint will allow our GA to effectively search
in the time domain, considering all possible times from all
irregular APs. All those constraints are considered together
when searching for a suitable MST by the GA.
6.5.7. Objective (fitness) function

Optimization problems aim at searching for a solution
within the search space of the problem such that an objec-
tive function is minimized or maximized (Atallah, 1999). In
other words, the objective function can aim at either min-
imizing the fitness of chromosomes or maximizing them.
The objective function of a GA measures the fitness of a
chromosome. Recall from Section 6.2 that our optimiza-
tion problem is defined as follows: What selection and what

schedule of DCCFPs maximize the traffic on a specified net-

work or node (at a specified time instant)?

Recall from Section 5.5 that we apply our GA-based
technique to find stress test requirements which stress a
SUT in a time instant. Therefore, let us refer to the objec-
tive function in this section as instant stress test objective

function (ISTOF). The ISTOF should measure the maxi-
mum instant traffic entailed by a schedule of DCCFPs,
specified by a chromosome. Using the network traffic usage
model in Section 5.4, we define ISTOF in Eq. 3.

The first line of Eq. 3 indicates that the input domain
and range of ISTOF are chromosomes and real numbers.
Length(dccfp)is a function to calculate the time duration
of a DCCFP (modeled in the corresponding SD using
Eq. (3). Instant stress test ob
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Fig. 19. Computing the instant stress test objectiv
UML-SPT tagged-values). Genes(c) returns the set of not
null genes of chromosome c. net is the given network to
stress test. NTUP is the traffic usage function (Section
5.4) to measure the instant data traffic in a network. The
value of NTUP is multiplied by the SD’s numOfMultipleS-

DInstances value. When multiple instances of a DCCFP
are triggered at the same time, the entailed traffic at each
time instant is proportional to the number of instances.

The heuristic underlying the ISTOF formula is that it
tries to find the maximum instant data traffic considering
all genes in a chromosome. The search is done in a prede-
termined time range. The starting point of the search is the
minimum startTime (the start time of the earliest DCCFP),
and the ending point of the range is the end time of the lat-
est DCCFP, which is calculated by taking maximum values
among start times plus DCCFP lengths.

To better illustrate the idea behind ISTOF, let us discuss
how ISTOF for the chromosome in Fig. 15b is calculated.
The calculation process is shown in Fig. 19. The chromo-
some contains two genes, which correspond to DCCFP1,2

and DCCFP2,2. The search range is [2 ms, 20 ms]: 2 is the
start time of the earliest DCCFP, namely DCCFP1,2; 20
is the start time (9) of the other DCCFP, DCCFP2,2, plus
its length (11). ISTOF sums the NetInsDT values in this
range and finds the maximum value: bottom right of
Fig. 19. The output value of ISTOF is 110 KB.
6.5.8. Operators

Operators enable GAs to explore a solution space
(Haupt and Haupt, 1998) and must therefore be formu-
lated in such a way that they efficiently and exhaustively
explore it. If the application of an operator yields a chro-
mosome which violates at least one of the GA’s con-
straints, the operation is repeated to generate another
chromosome. This is an alternative to GA backtracking
jective function (ISTOF).
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and is done inside each operator, i.e., each operator gener-
ates temporary children first and checks if they do not vio-
late any constraints (Section 6.5.2). If the temporary
children satisfy all the constraints, they are returned as
the results of the operator. Otherwise, the operation is
repeated. Furthermore, operators should be formulated
such that they can explore the entire solution space. We
define the crossover and mutation operators next.

6.5.9. Crossover operator

Crossover operators aim at passing on desirable traits or
genes from generation to generation (Haupt and Haupt,
1998). Varieties of crossover operators exist, such as sexual,
asexual and multi-parent. The former uses two parents to
pass traits to two resulting children. Asexual crossover
involves only one parent. Multi-parent crossover combines
the genetic makeup of three or more parents when produc-
ing off-springs. Different GA applications call for different
types of crossover operators. We employ the most common
of these operators: sexual crossover.

The general idea behind sexual crossover is to divide
both parent chromosomes into two or more fragments
and create two new children by mixing the fragments
(Haupt and Haupt, 1998). In our application, since each
gene corresponds to a SD, we consider the sexual cross-
over’s fragmentation policy to be on each gene, making
the size of each fragment to be one gene. Therefore, assum-
ing nis the number of genes, the resulting crossover opera-
tor (using Pawlosky’s terminology Pawlowsky, 1995) is
(n � 1)-point, and is denoted nPointCrossover. In our
application, the mixing of the fragments is additionally
subject to a number of constraints (Section 6.5.2): A newly
generated chromosome should satisfy the inter-SD and
arrival pattern constraints. We ensure this by designing
the GA operators in a way that they would never generate
an offspring violating a constraint.

Whether the alternation process of the nPointCrossover

operator starts from the first gene of one parent or the
other is determined by a 50% probability. To further intro-
duce an element of randomness, we alternate the genes of
the parents with a 50% probability, hence implementing a
second crossover operator, nPointProbCrossover. In
nPointCrossover, the resulting children have genes that
alternate between the parents. In nPointProbCrossover,
the same alternation pattern occurs as nPointCrossover,
but instead of always inheriting a fragment from a parent,
children inherit fragments with a probability of 50%.
Parent 1 (p1,1, 3ms) null

Parent 2

n

(p1,2, 2ms) null ( p3,4

(p1,1, 3ms) null null (p4,2, 6ms) (p5,2, 7ms)

(p1,2, 2ms) null (p3,4, 5ms) (p4,1, 4ms) null

Child 1

Child 2

C

C

nPointCrossover

Fig. 20. Two example uses of
It is important to note that, for both crossover versions,
if the set of non-null genes of a chromosome (their corre-
sponding SDs) do not belong to the chromosome’s ISDS,
constraint #1 will be violated. In such a case, we do not
commit the changes and search for different parent chro-
mosomes (by applying the operator again). Regarding con-
straint #2, note that since the parents are assumed to
satisfy the arrival pattern constraint and the crossover
operators do not change the start times of genes’ DCCFPs,
the child chromosomes are certain to satisfy such con-
straint. The start times of DCCFPs will be changed
(mutated) by our mutation operator (described in the next
section) and the arrival pattern constraint will be checked
when applying that operator.

Let us consider the example in Fig. 20 to see how our
two crossover operators work. The number of genes in
each parent chromosome is five (assuming that there are
five SDs in the SUT). Assume that the SUT has two ISDSs,
ISDS1 and ISDS2 such that ISDS1 = {SD1, SD4, SD5} and
ISDS2 = {SD1, SD3, SD4}, and DCCFP qi,x belongs to
SDi. Parent 1 has genes corresponding to DCCFPs in
{SD1, SD4, SD5} � ISDS1. Parent 2’s genes are DCCFPs
in {SD1, SD3, SD4} � ISDS2. The results of applying
nPointCrossover and nPointProbCrossover are shown in
Fig. 20b and c, respectively. In nPointCrossover, the frag-
ments of Parent 1 and Parent 2 are alternately interchanged
(Fig. 20b): Child1 (resp. Child2) receives the first, third and
fifth genes from Parent1 (resp. Parent2) and the second and
fourth genes from Parent2 (resp. Parent1). Using the same
example for nPointProbCrossover, one possible outcome
appears in Fig. 20c. Bold genes indicate the fragments
interchanged by nPointProbCrossover. Three of the four
generated children (all except Child 2 in Fig. 20c) conform
to constraint #1, i.e., the SDs corresponding to the genes of
each child belong to one ISDS (ISDS1 or ISDS2), as well as
constraint #2. Since Child 2 in Fig. 20c violates constraint
#1, the two temporary children (Child 1 and Child 2 in
Fig. 20c) are abandoned, and this particular execution of
nPointProbCrossover is repeated.

The advantages of nPointProbCrossover are twofold. It
introduces further randomness in the crossover operation.
By doing so, it allows further exploration of the solution
space. However, nPointProbCrossover has its disadvan-
tages: the resulting children may be replicas of the parents,
with no alteration occurring. This is never the case with
nPointCrossover; resulting children are always genetically
distinct from their parents.
ull (p4,1, 4ms) (p5,2, 7ms)

, 5ms) (p4,2, 6ms) null

(p1,2, 2ms) null null (p4,1, 4ms) null

(p1,1, 3ms) null (p3,4, 5ms) (p4,2, 6ms) (p5,2, 7ms)

hild 1
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nPointProbCrossover

the crossover operators.
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Crossover rates are critical. A crossover rate is the per-
centage of chromosomes in a population being selected for
a crossover operation. If the crossover rate is too high,
desirable genes will not be able to accumulate within a sin-
gle chromosome whereas if the rate is too low, the search
space will not be fully explored (Haupt and Haupt,
1998). De Jong (1988) concluded that a desirable crossover
rate should be about 60%. Grefenstette and Cobb (1993)
built on De Jong’s work and found that the crossover rate
should range between 45% and 95%. Consistent with the
findings of De Jong and Grefenstette, we apply a crossover
rate of 70%.

6.5.10. Mutation operator

Mutation aims at altering the population to ensure that
the GA avoids being caught in local optima. The process of
mutation proceeds as follows: a gene (or a chromosome) is
randomly chosen for mutation, the gene (or the chromo-
some) is mutated, and the resulting chromosome is evalu-
ated for its new fitness. We define three mutation
operators that (1) mutate a non-null gene (a gene with an
already assigned DCCFP) in a chromosome by altering
its DCCFP, (2) mutate the start time of a non-null gene,
or (3) mutate the entire chromosome by assigning another,
randomly-selected ISDS to it (i.e., assign to each gene of
the chromosome a randomly-selected DCCFP from the
corresponding ISDS’s SDs, and start times from the ATSs
of that ISDS’s SDs, in a way similar to the creation of the
chromosomes of the initial population). The mutation
operators are referred to as DCCFPMutation, startTime-

Mutation, and ISDSMutation, respectively.
The idea behind the DCCFPMutation operator is to

allow the search to investigate different DCCFPs. The idea
behind the startTimeMutation operator is to move DCCFP
executions along the time axis. This is done in such a way
that the constraints we defined on the chromosomes are
met (Section 6.5.2). The purpose of the ISDSMutation

operator is to increase the population of genes related to
an ISDS, thus increasing population variability. This is
expected to lead to a better search, especially when the
number of ISDSs is close to (or above) the selected popu-
lation size (Section 6.5.3). In that case, the initial popula-
tion created by the algorithm in Section 6.5.3 will have,
on average, only one, a few, or even no chromosome cor-
responding to an ISDS. In that case, different combinations
of DCCFPs and their triggering times inside an ISDS may
not thus be thoroughly searched. Our initial experiments
with the GA were not using the ISDSMutation operator
and revealed that this operator was crucial to converge
towards high fitness values.

Since the mutation operators alter non-null genes only,
they do not change the set of SDs corresponding to a chro-
mosome, thus ensuring that constraint #1 is satisfied (the
set of SDs will still belong to the same ISDS). However,
start times are changed by the mutation operator start-
TimeMutation, resulting in a possible violation of con-
straint #2. The output of the DCCFPMutation operator
will always adhere to constraint #2, since the start times
are unchanged by the operator. One way of making sure
that a generated chromosome by the startTimeMutation

operator satisfies the arrival pattern constraints is to set
the new start times to a random value in the range of
accepted arrival time values of a SD, i.e., accepted time
set (ATS) – (Section 5.5.3). Therefore, we design the start-

TimeMutation operator in such a way that the altered start
times are always among the accepted one. In other words,
there will be no need to backtrack in this case.

A mutation rate is the percentage of chromosomes in a
population being selected for mutation. Throughout the
GA literature, various mutation rates have been used. If
the rates are too high, too many good genes of a chromo-
some are mutated and the GA will stall in converging
(Haupt and Haupt, 1998). Back (1992) enumerates some
of the more common mutation rates used. The author
states that De Jong (1988) suggests a mutation rate of
0.001, Grefenstette and Cobb (1993) suggests a rate of
0.01, while Schaffer et al. (1989) formulated the expression
1:75=k

ffiffiffiffiffiffiffiffiffiffiffiffiffi

length
p

(where k denotes the population size and
length is the length of chromosomes) for the mutation
rate. Mühlenbein (1989) suggests a mutation rate defined
by 1/length. Smith and Fogarty (1996) show that, of the
common mutation rates, those that take the length of the
chromosomes and the population size into consideration
perform significantly better than those that do not. Based
on these findings, we apply for all the three mutation oper-
ators the mutation rate suggested by Schaffer et al.:
1:75=k

ffiffiffiffiffiffiffiffiffiffiffiffiffi

length
p

. Each of the three mutation operators
defined above are applied with a probability corresponding
to a third of the mutation rate.
7. Empirical analysis

We implemented a prototype tool to support the appli-
cation of the GASTT methodology (GARUS). This section
presents a carefully designed empirical study, using this
tool, to validate the design choices of our GA. We only
provide below a short functional overview (Fig. 21) but
technical details about the tool can be found in Garousi
et al. (2006a).

The test model of a SUT is given in an input file.
GARUS reads the test model from the input file and cre-
ates an object named tmof type TestModel, initialized with
the values from the input test model. Then, an object
named ga of type GAlib;SteadyStateGA is created, such
that tm is used in the creation of ga’s initial population
(Section 6.5.3). Note that object ga has a collection of chro-
mosomes of type GARUSGenome, and each object of type
GARUSGenome has an ordered set of genes of type
GARUSGene (these are classes in the tool’s class diagram
Garousi et al., 2006a). Furthermore, ga’s parameters (e.g.
mutation rate) are set according to our discussions in Sec-
tion 6.5. GARUS then evolves ga using our mutation and
crossover operators (Section 6.5.6). When the evolution of



GARUS (GA-based test Requirement generator for real-time distribUted Systems)

Input File

Test Model of a 
SUT
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Evolve ga
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Read the input file into an 
object of type TestModel

tm:TestModel

ga.statistics()
.bestIndividual()

Fig. 21. Overview activity diagram of GARUS.
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gafinishes, i.e., after a predefined number of generations,
the best individual is saved in an output file.

Along with a stress test requirement, GARUS also gen-
erates a maximum traffic value and a maximum traffic time.
The maximum traffic value is in fact the objective function
value of the GA’s best individual at the completion of the
evolution process. The objective function was described in
Section 6.5.5, and was referred to as instant stress test
objective function (ISTOF). The maximum traffic time is
the time instant when the maximum traffic happens. Using
the above information, test requirements generated by
GARUS can be validated according to a number of crite-
ria. Due to space constraint, we describe here two of the
main criteria (four others can be found in Garousi et al.
(2006a)):

1. Repeatability of GA results across multiple runs: It is
important to assess how stable and reliable the results
of the GA will be. To do so, the GA is executed a large
number of times and we assess the variability of the
average and best chromosome’s fitness values.

2. Convergence efficiency across generations towards a max-

imum: In order to assess the design of the selected muta-
tion and cross-over operators, as well as the chosen
chromosome representation, it is useful to look at the
speed of convergence towards a maximum fitness pla-
teau (Louis and Rawlins, 1993). This can be measured,
for example, in terms of number of generations required
to reach the plateau. This can be easily computed as, for
each generation, GAlib statistics provide min, max,
mean, and standard deviation of fitness values. A max-
imum fitness plateau is reached when the standard devi-
ation of the fitness values equals 0.

Using the above criteria, we have analyzed the stress test
requirements generated by running GARUS on an experi-
mental test model, which was specifically designed for that
purpose. The test model has a relatively small size (five SDs
and two to five CFPs for each SD) and APs of every pos-
sible type supported by the UML-SPT profile (Object
Management Group, 2003) (periodic, bounded, bursty,
irregular, and unbounded as discussed in Section 5.5.2)
are used. Note that though the experimental test model
used here is small, the scalability of our tool with respect
to variations in model size was assessed through another
experiment reported in Garousi et al. (2006a). Three of
the main observations from our experiments on scalability
analysis were: (1) as the size of the test model gets larger,
the variation in maximum ISTOF values (objective func-
tion) across executions remain constant; (2) the GA can
reach a maximum plateau even when the size of a specific
component (SD, ISDS, DCCFP, etc) of a given model is
very large (up to 100 ISDSs in a SUT, 200 SDs, 30 SDs
in an ISDS, and 50 DCCFPs in a SD); and (3) test model
size does not have an impact on the convergence efficiency
across generations, and the GA is able to reach a stable
maximum fitness plateau after about 50 generations on
average, independent of test model size. We report next
our empirical analysis results regarding repeatability and
convergence efficiency.

7.1. Repeatability of GA results across multiple runs

Since GAs are heuristics, their performance and outputs
can vary across multiple runs. We investigate the repeat-

abilityof GA results by analyzing the variation in maxi-
mum ISTOF values and maximum stress time values.

Fig. 22a depicts the distributions of maximum ISTOF
and stress time values for 1000 runs of the experimental test
model (explained above; Garousi et al., 2006b). From the
ISTOF distribution, we can see that the maximum fitness
values for most of the runs are between 60 and 72 units
of traffic. Descriptive statistics of the fitness values are
shown in Table 1.

Such a variation in fitness values across runs is expected
when using genetic algorithms on complex optimization
problems. However, though the variation above is not neg-
ligible, one would expect based on Fig. 22a that with a few
runs a chromosome with a fitness value close to the observed
maximum would likely be identified. Since each run lasts a
few seconds, relying on multiple runs to generate a stress test
requirement should perhaps take a few minutes for very
large examples and should not lead to practical problems.

Corresponding portions of max stress time values for
the most frequent maximum ISTOF value (72 units of traf-
fic) have been highlighted in black in Fig. 22b. As we can
see, these maximum stress time values are scattered across
the time scale (e.g., from 10 to 60 units of time). This high-
lights that a single ISTOF value (maximum stress traffic)
can happen in different time instances, thus suggesting
the search landscape for the GA is rather complex for this
type of problem. Thus, a testing strategy to further explore



ISTOF Max stress time ISTOF Max stress time 

50

60

70

80

90

10

20

30

40

50

50

60

70

80

90

10

20

30

40

50

60

a b
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Table 1
Descriptive statistics of the maximum ISTOF values over 1000 runs

Min Max Average Median Standard deviation

50 92 66.672 65 6.4

Values are in units of data traffic (e.g. KB).
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Fig. 23. Histogram of the generation numbers when a stable maximum
fitness plateau is reached in 1000 runs of an experimental test model by
GARUS.
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would be to cover all (or a subset of) such test requirements
with maximum ISTOF values in different time instances.
Indeed, although their ISTOF values are the same, a SUT’s
reaction to different test requirements might vary, since dif-
ferent DCCFPs (and hence set of messages) in different
time instances may be triggered. This might in turn lead
to uncovering different RT faults in the SUT.
7.2. Convergence efficiency across generations towards a

maximum

Another interesting property of the GA is the number of
generations required to reach a stable maximum fitness pla-
teau. The distribution of these generation numbers over
1000 runs of an experimental test model is shown in
Fig. 23, where the x-axis is the generation number and
the y-axis is the probability of achieving such plateau in
such a generation number. The minimum, maximum and
average values are 20, 91, and 52, respectively. Therefore,
we can state that, on the average, 52 generations of the
GA are required to converge to the final result (stress test
requirement). The variation around this average is limited
and no more than 100 generations will be required (even
for our large experimental models). This number is in line
with the experiments reported in the GA literature (Haupt
and Haupt, 1998) but is however likely to be dependent on
the number and complexity of SDs as well as their ATSs.

We further observe that, from the initial to the final pop-
ulations, the maximum fitness values typically increase by
about 80%, which can be considered a large improvement.
So, though we cannot guarantee that a GA does find the
global maximum, we clearly generate test requirements that
will significantly stress the system.

8. Case study

This section presents a case study based on an actual dis-
tributed real time system (DTRS). We describe in Section
8.1 the SUT we chose for our case study. The stress test
results are presented in Section 8.2.

8.1. System under test

Our stress test methodology can be used to stress test
distributed systems, with an emphasis on safety-critical
and data-intensive systems. distributed control systems

(DCS) (Mackay et al., 2003) and supervisory control and

data acquisition (SCADA) Systems (Daneels and Salter,
1999) are two kinds of such systems.

We surveyed numerous existing systems (e.g. Constan-
tinescu et al., 2003; Ebata et al., 2000; Information Society
Technologies, 2003; BWI Co, 2004) to choose a suitable
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Table 2
Quantiles of the distribution in Fig. 24

Level Min. 10% 25% Median 75% 90% Max.

OPT 953 1029 1059 1094 1125 1156 1241
ST 1211 1254 1263 1274 1285 1295 1327

Values are in milliseconds.
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case study. Selection criteria were that it should be possible
to run a system on a standard hardware/software platform,
the design model and source code of the system should be
available, and also the system should be accessible for use.
Since no public domain systems met all the above require-
ments, we decided to analyze, design and build a prototype
system based on a real-world specification.

SCAPS (our prototype system) is a SCADA-based
power system (e.g. Stojkovic and Vujosevic, 2002) which
controls the power distribution grid across a nation con-
sisting of several provinces, in which are cities and regions.
Each city and region has several local power distribution
grids, each with a Tele-Control unit (TC), which gathers
the grid data and can also be controlled remotely. There
is a nation-wide central server, and each province has one
central server that gathers the SCADA data from TCs
from all over the province and sends them to the central
server. The central sever performs the following real-time
data-intensive safety-critical functions as part of the Power

Application Software (Toshida et al., 1998): (1) Overload
monitoring and control, (2) Detection of separated power
systems and (3) Power restoration after network failure.

We designed SCAPS so that it meets all the suitability
criteria for a case study. The UML model was defined
and the system was implemented using Borland Delphi,
which is a well-known Integrated Development Environ-
ment for Rapid Application Development. Further details
can be found in Garousi et al. (2006a).

We used our GARUS tool (Section 7) with the SCAPS
UML model (Garousi et al., 2006a) as input to derive stress
test requirements maximizing instant data traffic on the
SCAPS nation-wide network. We then derived the corre-
sponding stress test cases for those requirements by finding
the specific inputs/conditions which drive the test execution
through the specific CFPs in the stress test cases. Further-
more, in our test execution, we scheduled those CFPs (their
corresponding SDs) to be executed in the specific time
instances as were determined by the stress test require-
ments. The test requirements included executing SDs D

and E presented in Fig. 7. The two SDs are parts of the
power application software model discussed above. There
are time constraints defined on these SDs’ executions and
our goal is to assess whether stress testing can help detect
violations of these constraints.

8.2. Stress test results

In this section we compare the durations for SDs D and
E presented in Fig. 7 when running operational profile tests
(OPT) and stress tests (ST). We considered OPTs to be a
useful baseline of comparison as test cases are derived from
the operational profile of SCAPS and therefore represent a
‘‘typical’’ situation in which the system can be exercised.
This is a common testing practice to assess a system based
on its expected usage in the field (Musa, 1992). To derive
operational profile test cases, we took into account SCAPS
business logic in the context of SCADA-based power sys-
tems. For example, overload and power failure situations
are expected to be fairly rare in a power grid (Toshida
et al., 1998).

Recall that we also modeled a HRT constraint in the
MIOD of SCAPS in Fig. 7. It specifies the maximum accept-
able value for the durations of SDs D and E: they should be
less than 1300 ms (milliseconds). Fig. 24 shows the observed
values of this duration by running 500 Operational Profile
Tests (OPT) and 500 Stress Tests (ST). The x-axis shows
the test type and the y-axis the duration in milliseconds.
The quantile regions and the histograms of the two distribu-
tions are also depicted, and reported in Table 2.

Due to the indeterminism of distributed environments
(different message transmission times due, to, among many
reasons, different delay times in network links and routers,
and different load situations in nodes or networks), the
duration of distributed messages can be different across dif-
ferent executions, hence the variance in the distributions of
Fig. 24. The 1300 ms deadline (HRT constraint) is illus-
trated by a horizontal bold line in Fig. 24 and all OPT test
executions satisfy it. In contrast, it is violated in almost
7.8% (39/500) of ST stress test cases. Furthermore, the dif-
ferences in average and median value between OPT and ST
distributions are large too, illustrating the ability of ST test
cases to stress the system.

9. Conclusions and future works

This paper presents a model-driven, stress test method-
ology aimed at increasing chances of discovering faults
related to network traffic in distributed systems. The tech-
nique uses a UML 2.0 model of a system, augmented with
timing information, as an input model. Such input model
was carefully defined so as to be adequate for our objectives
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but also as practical as possible from the standpoint of
modelers. Our input model includes, in addition to the
standard class and sequence diagrams, (1) a System Con-
text diagram that describes actors interacting with the sys-
tem under test and their expected numbers at run-time, (2)
a Network Deployment Diagram (following the UML
deployment diagram notation) that describes the distrib-
uted architecture in terms of system nodes and networks,
and (3) a Modified Interaction Overview Diagram (follow-
ing the UML 2.0 interaction overview diagram notation)
that describes execution constraints between sequence dia-
grams. Our stress testing methodology relies on a careful
identification of the control flow in UML 2.0 sequence dia-
grams and the network traffic they entail. This data is used
to generate stress test requirements composed of specific
control flow paths (in sequence diagrams) along with time
values indicating when those paths have to be triggered so
as to stress the network to the largest extent possible. The
current work is an extended version of the work in Garousi
et al. (2006b), where we considered distributed systems in
which external or internal events do not exhibit arrival pat-
terns (e.g., periods). The technique in the current work
takes into account different types of arrival patterns for
events that are common in DRTSs. Such patterns impose
constraints on the time instant when interactions between
distributed objects can take place.

Tool support was developed based on a specifically tai-
lored genetic algorithm (GA) to automatically generate test
requirements based on the above input model. GAs being
heuristics, a careful analysis showed that the tool was able
to converge efficiently towards test requirements that sig-
nificantly stressed the system and do so relatively consis-
tently across different executions (repeatability).

Using the specification of a real-world distributed sys-
tem as a case study, we designed and implemented a proto-
type distributed system and reported the results of applying
our stress test methodology to it. We discussed its effective-
ness in detecting violation of a hard real-time constraint
when compared to test cases based on an operational pro-
file of the system usage. Our first results are promising as
they clearly show our stress test technique is able to identify
constraint violations whereas operational profile test cases
are not. This suggests that our stress test cases can help
increase the probability of exhibiting network traffic-
related faults in distributed systems.

Some of our future works include: (1) Experimenting
with the other variants of stress testing techniques; (2) Gen-
eralizing the methodology to other distributed-type faults,
such as distributed unavailability of networks and nodes,
and other resources such as CPU, memory and database;
and (3) Generalizing the assumption we made in Section
4.1.1 in which we considered only one network path
between two nodes rather than several paths to simply
our network traffic usage model (Section 5.4). Such a gen-
eralization will require analysis of data load in different
parts of a network using the information provided by the
routing policy used in the backbone network of a SUT.
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Appendix. Glossary of acronyms

AP arrival pattern

APM
 arrival pattern model

ATI
 accepted time intervals

ATP
 accepted time points

ATS
 accepted time set

CCFG
 concurrent control flow graphs

CCFP
 concurrent control flow path

CFP
 control flow path

DCCFP
 distributed concurrent control flow path

DRTS
 distributed real-time systems

DT
 data traffic

GA
 genetic algorithms

GARUS
 GA-based test requirement tool for real-time

distributed systems

GASTT
 genetic algorithm-based stress test technique

HRT
 hard real-time

IOD
 interaction overview diagram

ISDS
 independent SD set

ISTOF
 instant stress test objective function

MaxIAT
 maximal Inter-Arrival Time

MinIAT
 minimal inter-arrival time

MIOD
 modified interaction overview diagram

MST
 maximum search time

MT
 message traffic

NDD
 network deployment diagram

NIT
 network interconnectivity tree

NTU
 network traffic usage

NTUP
 network traffic usage pattern

OPT
 operational profile test

RUA
 resource usage analysis

SD
 sequence diagram

ST
 stress test

SUT
 system under test

TM
 test model

TSSTT
 time-shifting stress test technique

UML-SPT
 UML profile for schedulability, performance,

and time
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