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Abstract

In an era marked by the big data paradigm and ubiquitous computing systems, it is increasingly common to see devices embedded
in any type of object with the aim of collecting and sharing owned or read data from its environment. This type of interconnection
between devices is known as the Internet of Things (IoT). In particular in the logistics sector, vehicles are equipped with control
units that are capable of monitoring a large number of parameters to ensure the correct operation of the vehicle. In addition, they
are now able to share this data in near real time so that this information can be accessed and analysed at any time. However, due
to the large amount of shared data, the frequency of data generation and delivery, and the high potential for growth in the number
of devices, traditional technologies and architectures are not able to meet the performance demands of these real time decision
making systems. In this article we describe and evaluate the benefits and potential trade-offs of implementing services based on a
distributed and scalable architecture, called RAI4.0, in a truck fleet management company, which currently has 20,000 on-board
devices and expects to grow to 80,000 devices in the next 2 years. With the change of architecture, the company expects to be
able to implement near real-time services to monitor and notify its drivers of driving tips and diagnose possible vehicle failures in
advance, among others.
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1. Introduction

The Internet of Things (IoT) is becoming prevalent within many different industries, and an area of growth is being
seen, especially in transportation. One of the key areas where this investment has been used is fleet management.
IoT-enabled fleet management systems allow companies to receive real-time information of their vehicles, allowing
them to make more informed decisions. For instance, time and costs may be saved by choosing the best possible route,
or by warning drivers in near real time to avoid congestions or giving them advice on their driving in order to reduce
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fuel consumption or to limit engine wear-and-tear. Furthermore, many of these actions would help to reduce CO2 
emissions, which consequently will make transportation sector to be more sustainable [1].

Modern vehicles are progressively equipped with an outsized quantity of sensors, actuators, and communication 
devices (mobile devices, GPS devices and embedded computers). The information they generate is a source of great 
value that, when properly processed, allows organizations to get real-time visibility into business KPIs; to send action-
able alerts to drivers about road status or inefficient driving; to know the status and location of the vehicle fleet: which 
vehicles are stopped, running, parked, the consumption per vehicle or even the pollutant emissions, among others.

The amount and variety of data being generated is so high and at such a fast pace that big data technology-
based platforms are required to ingest, pre-process and deliver actionable knowledge in real time. Data centered, 
distributed and scalable architectures are currently the software solution that better resolves these needs/challenges of 
the transport sector.

The main contribution of this paper is to present a reference architecture which meets these premises and allows 
logistics companies to evolve their digital platforms in a gradual and demand-driven manner, while building capacity 
to offer new services aimed at real-time decision making (data analytics, predictive tools...). This cutting edge ar-
chitecture enables processing and analysing IoT data from heterogeneous sources with different data structures and 
combines the real-time stream processing paradigm for information processing and transforming together with the 
complex event processing for information analysis.

For the sake of a better understanding, we show an instantiation of the architecture for a real use case. A com-
pany that provides a system for fleet management currently based on centralized architecture, process-oriented, that 
supports the ingestion of data from 26000 board computers (CLVs) with an average load of 92 MBytes/CLV which 
is stored in 900 relational databases, one per logistics company. Its prevision is to triple the number of CLVs and 
consequently the volume of data in two years and its current solution is no longer maintainable. Likewise, we discuss 
the advantages and difficulties found for its adoption in a medium-sized company.

The rest of the paper is organised as follows. Section 2 describes the related work. Section 3 describes our case 
study, the solution proposed and its implementation. Section 4 discusses the advantages and difficulties found for 
its adoption according to IT responsible of the company. Finally, section 5 draws the conclusions of this paper and 
mentions the future work lines.

2. Literature review

This section is organized in two folds. First, we describe proposals extracted from the literature in the arena of
Smart Transportation Systems. Next, we relate works that deal with IoT data processing in near real time through the 
use of big data technologies using architectural frameworks as a software solution to implement the digital platform.

2.1. Smart Transportation Systems

Intelligent Transportation Systems (ITS) aim to provide innovative services relating to different modes of transport 
and traffic management and enable users to be better informed and make safer and ‘smarter’ use of transport networks. 
The emerging technologies of the Internet of Things (IoT) and cloud computing provide unprecedented opportunities 
for the development and realization of innovative ITS where sensors and mobile devices can gather information and 
cloud computing, allowing knowledge discovery, information sharing, and supported decision making [2]. Among 
others, ITS can provide based on this data, business intelligence solutions and dashboards addressed to improve the 
performance and efficiency of companies in the transportation and logistics space.

For instance, we find in the literature works about green drivers such as [3], where authors analyzed the impact of 
driving context on driving behavior and consequently on energy consumption or [4] where researchers built personal 
driving style of various vehicle drivers based on several driving parameters. Others focused on the application of AI 
for designing optimized routes to collect waste in smart cities [5]. The predictive maintenance is another issue under 
research. At this respect, [6] describes a predictive maintenance system for a fleet of public transport buses, which 
attempts to diagnose faulty buses. On the other hand, this survey [7] offers various dimensions of applying deep 
learning methodologies to various types of ITS problems, ranging from supervised learning for traffic flow prediction, 
to deep reinforcement learning for traffic signal control and unsupervised learning for trajectory clustering.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2022.12.277&domain=pdf
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Modern vehicles are progressively equipped with an outsized quantity of sensors, actuators, and communication 
devices (mobile devices, GPS devices and embedded computers). The information they generate is a source of great 
value that, when properly processed, allows organizations to get real-time visibility into business KPIs; to send action-
able alerts to drivers about road status or inefficient driving; to know the status and location of the vehicle fleet: which 
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distributed and scalable architectures are currently the software solution that better resolves these needs/challenges of 
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The main contribution of this paper is to present a reference architecture which meets these premises and allows 
logistics companies to evolve their digital platforms in a gradual and demand-driven manner, while building capacity 
to offer new services aimed at real-time decision making (data analytics, predictive tools...). This cutting edge ar-
chitecture enables processing and analysing IoT data from heterogeneous sources with different data structures and 
combines the real-time stream processing paradigm for information processing and transforming together with the 
complex event processing for information analysis.

For the sake of a better understanding, we show an instantiation of the architecture for a real use case. A com-
pany that provides a system for fleet management currently based on centralized architecture, process-oriented, that 
supports the ingestion of data from 26000 board computers (CLVs) with an average load of 92 MBytes/CLV which 
is stored in 900 relational databases, one per logistics company. Its prevision is to triple the number of CLVs and 
consequently the volume of data in two years and its current solution is no longer maintainable. Likewise, we discuss 
the advantages and difficulties found for its adoption in a medium-sized company.

The rest of the paper is organised as follows. Section 2 describes the related work. Section 3 describes our case 
study, the solution proposed and its implementation. Section 4 discusses the advantages and difficulties found for 
its adoption according to IT responsible of the company. Finally, section 5 draws the conclusions of this paper and 
mentions the future work lines.
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This section is organized in two folds. First, we describe proposals extracted from the literature in the arena of
Smart Transportation Systems. Next, we relate works that deal with IoT data processing in near real time through the 
use of big data technologies using architectural frameworks as a software solution to implement the digital platform.

2.1. Smart Transportation Systems

Intelligent Transportation Systems (ITS) aim to provide innovative services relating to different modes of transport 
and traffic management and enable users to be better informed and make safer and ‘smarter’ use of transport networks. 
The emerging technologies of the Internet of Things (IoT) and cloud computing provide unprecedented opportunities 
for the development and realization of innovative ITS where sensors and mobile devices can gather information and 
cloud computing, allowing knowledge discovery, information sharing, and supported decision making [2]. Among 
others, ITS can provide based on this data, business intelligence solutions and dashboards addressed to improve the 
performance and efficiency of companies in the transportation and logistics space.

For instance, we find in the literature works about green drivers such as [3], where authors analyzed the impact of 
driving context on driving behavior and consequently on energy consumption or [4] where researchers built personal 
driving style of various vehicle drivers based on several driving parameters. Others focused on the application of AI 
for designing optimized routes to collect waste in smart cities [5]. The predictive maintenance is another issue under 
research. At this respect, [6] describes a predictive maintenance system for a fleet of public transport buses, which 
attempts to diagnose faulty buses. On the other hand, this survey [7] offers various dimensions of applying deep 
learning methodologies to various types of ITS problems, ranging from supervised learning for traffic flow prediction, 
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2.2. Software data-centered architecture for BigData/IoT

The number of Internet of Things (IoT) and smart devices capable of producing, consuming and exchanging infor-
mation is constantly increasing. The centralized architectures presents limitations to meet performance, scalability and 
latencies for decision-making applications in real time due to the massive generation of data at high speed. This along 
with the constrained computation and storage resources that IoT devices present have led to the use of the powerful 
cloud computing to process their data.

The digital platform that supports IoT applications must be versatile, easily extensible and scalable to respond to 
a complex, heterogeneous, geographically distributed environment in which there will be applications with different 
levels of criticality, leading to the need to combine the use of edge, fog and cloud computing nodes. [8]

Kappa-type architectures [9] are best suited for the design and implementation of near real-time data-intensive 
applications using distributed technologies from the big data domain [10] [11], such as those provided by 
Apache ecosystem. Kappa architectures are comprised of two layers: a stream processing layer and a serving layer. 
The former runs the stream processing jobs, generally to enable real-time data processing. The latter is used to query 
the results. An architecture for processing and analysing IoT data under this scope is described in [12]. A similar 
architecture follows the work described in [13] addressed to predictive maintenance tasks or the model proposed 
in [14] for the deployment of data flow and distributed deep learning based IoT-Edge applications.

The design, development and deployment of these applications are complex mainly due to the great number of 
different technologies that must be orchestrated, configured and deployed on a mixed cloud/fog/edge environment in 
order to fulfil their functionality. Therefore, it is highly recommended to work with conceptual tools that facilitate its 
conception, setting-up as well as its deployment. At this regard, we proposed RAI4.0[15] a metamodel that collects 
the description of all elements involved in an RAI4.0-compliant digital platform (data, resources, workloads and 
metrics) as well as the necessary information to configure, deploy and execute workloads ( applications) on i t. We 
believe that working with models not only facilitates the definition and comprehension of the architecture but also 
facilitates its extension and reconfiguration to host new IoT applications.

3. Real use case

A medium size Spanish company that offers monitoring and data analysis services for truck fleet management is
facing serious problems in scaling up its application as the number of clients increases. Its application gathers data
from the CLV installed in the trucks and stores it to show statistics about the last trips through a web application.
Currently it provides a tracking system that allows companies to monitor location of vehicles at all times. Every
minute, the CLV sends the truck’s positioning and diagnostic data (consumption, kilometres travelled, number of
accelerations, etc.) to a central system via Internet. However, the data preprocessing and analytics is carried out in
backend and its response is not in real time. Thus, it cannot offer services of re-routing or vehicle diagnosis for instant
decision-making by the fleet owner. During the last months the number of clients has raised considerably, and the
application is experiencing unexpected delays when trying to process and present data due to the volume and velocity
at which data is generated. Moreover, the developers now find that the backend code is getting more complex and
harder to maintain.

IT responsible wants to improve the software architecture to allow an easier maintenance and scaling, so they can
keep up with the increase of clients and the new hardware releases which measure more parameters and with higher
accuracy. In addition, they want to offer near real-time analytics to allow a faster decision making and deploy new
services addresed to monitoring and predictive maintenance.

As case study, this paper describes the migration of the truck trip calculation process from a centralized architecture
to a real time distributed and scalable platform using RAI4.0 reference architecture.

3.1. Objective: Migrating the current truck trip statistics generation

We start describing the process of trip statistics generation with the existing plaform (see Figure 1): first, trucks
send their data from the CLV devices and CANBUS to a set of web services. Secondly, services read data with the
CLV identifier and send them to an intermediate database which contains the information needed to map each CLV
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Fig. 1. Description of the current centralised architecture of this case study

to the corresponding client. Next, another set of services read and decode the data from the intermediate database.
Lastly, there is a relational database for each client where the data is stored in a structured manner.

Next, the trip calculation is performed by a stored procedure that follows Algorithm 1 implemented in a SQL
Server database management system. The fact of retrieving from disk and processing such a huge volume of data
requires a lot of computational power that has direct impact on the performance of the application and the overall user
experience. Because of that, the processing must be carried out in batch in off-peak hours. Even more, the system can
only scale vertically, i.e. changing the server for another more powerful. This strategy is neither efficient nor adaptable
to the demand.

3.2. Challenge: Data volume growth and performance

This centralized solution supports the ingestion of data from 26000 CLVs with an average load of 92 MB/CLV
stored in 900 relational databases, one per logistics company. Its prevision is to triple the number of CLVs and con-
sequently the volume of data in two years. This will cause that its system cannot keep up with the high demand due,
primarily, to the following problems:

• A relational database is being used as if it was a queue management system, which writes data to disk limiting
the rate of ingestion of the data. This fact can cause delays and data losses.
• There is a fixed number of services responsible for receiving and decoding data associated with the ports ex-

posed by the system, so once the capacity of these services is exceeded, it would be necessary to modify the
core of the application to incorporate new services.
• The database acting as a queue manager has a table for each service, therefore, would be also necessary to

modify the database if you want to increase the capacity of the application.
• There is a decoding service for each intermediate table, therefore in case of scaling the application it would be

necessary to create another new service.
• About 900 databases are being managed and if the number of clients increases, this number will also grow.

Therefore, having the logic of the application and the calculations centralized in the database server makes the
development and maintenance of the application more complex, the processing will be slower and the generation
of inconsistencies between the databases of the different clients will raise.

3.3. Solution: Big data platform based on RAI4.0

To deal with these challenges we have adopted the principles of the kappa architecture proposed by Wingerath 
et al. [9] and implemented a digital platform based on RAI4.0 architecture described in [15]. Likewise this paper 
gathers two case studies that validate the proposed architecture. This reference architecture is designed to meet the 
following Industry 4.0 requirements: i) the architecture must be operated in a reactive and decentralized mode in 
order to handle data streams that are generated in the environment; ii) the distribution, heterogeneity and scalability 
of the computational resources required to meet the functional and non-functional requirements of the applications 
deployed in the environment are conceived as a set of services with the aim of keeping a unique strategy for its
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Fig. 1. Description of the current centralised architecture of this case study
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gathers two case studies that validate the proposed architecture. This reference architecture is designed to meet the 
following Industry 4.0 requirements: i) the architecture must be operated in a reactive and decentralized mode in 
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Algorithm 1: Trip statistics calculation algorithm
for each vehicle in the fleet do

for each vehicle event do
Check the status (e.g. Start, Stop, Driver Change, Country Change, etc.)
if It is the first event then

It is marked as the beginning of a trip
else

It is compared with the previous one
if It belongs to the same trip then

Metrics are accumulated (e.g. distance, duration...)
Move to the next event
if It is marked as the end of the trip then

The end date is saved
Overall metrics are calculated
if distance <100m or speed <3Km/h then

It is considered a stop
end
The trip is saved in a temporary table

end
end

end
end
for each trip of the temporary table do

if It is the first then
The data is saved in temporary variables

else
if It is consecutive to the previous trip and maintains driver, location, vehicle ... then

The trip is considered a section and it is accumulated and grouped together with the previous one
else

The final trip is stored
end

end
end
for each final trip do

Technical metrics from CANBUS are collected and processed (fuel consumption, acceleration, braking time...)
Driving ratings are calculated
Data about incidents that occurred during the trip are incorporated
The idle and driving times are incorporated
The values obtained are checked
if there are values out of range then

It is labeled as a trip with errors
end

end
Final trip with its metrics is stored in the database

end

management; iii) the monitoring of the environment is an essential task since its maintenance and management rely 
on adaptive and dynamic strategies defined from the levels of use of the resources and the state of operation. The 
detailed description of RAI4.0 and the justification of its suitability for I4.0 is written in [15]. This digital platform 
comprises a communication service, a distribution service, a persistance service and a monitoring service (future 
work). The communication service implements the data bus where every component of the service can share data, it 
is the core of the architecture. The distribution service implements the stream processing engine where the workflows 
are deployed. It retrives data from the data bus and distributes the processing among the available worker nodes. 
The persistance service persists the data after the cleaning and processing is done. Finally, the monitoring service,
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Fig. 2. Proposal of RT distributed architecture for this case study

measures and displays the resource usage to scale up/down the components of the platform when needed with the aim
of avoiding excesive costs, bottlenecks or delays.

Figure 2 depicts the proposed solution for our case study. The main changes with respect to the current architecture
are:

• The services responsible for reading data have been replaced by stateless workflows that merge and clean the
different frames reported by the CLV and CANBUS and next publish them to the data bus.
• Data is now published in a data bus implemented by means of a message queue manager that uses memory to

increase the performance.
• This data is consumed and processed by a set of distributed tasks deployed on a data stream processing engine,

which allows computing each trip in near real time and storing it in a NoSQL database. These are prepared to
be analised in a dashboard. Additionaly, they can be sent to the relational database for further processing.
• Another set of tasks deployed in the data stream processing engine is responsible for performing the calculation

of the final trips (merge of events which comprise a trip) in a distributed way, which allows the system to
speed up the calculations, to relieve the load of the database and to make the business logic independent of the
database manager.

3.4. Prototype description

The solution proposed in the previous section has been developed and locally deployed using the following tech-
nologies:

• RabbitMQ has been chosen for the queue manager. This implements the MQTT protocol widely used in IoT
system.There are several reasons for its adoption, it is very light, adds a very small overhead in the devices and
allows declaring diferent queues to organize the data sources in diferent data streams.
• Apache Flink has been selected for the data flow processing engine. This allows exactly once processing at tuple

level. This prevents duplicate rows from reaching the database and allows developers to add timestamps that 
serve to detect data collected out of order. This services works in a reactive way, executing the tasks every time 
a new record is published in the data bus. It also allows operating over time windows (e.g. tumbling windows or 
sliding windows) or user-defined event based windows. In the implementation of Algorithm 2 and 3, available 
on [16], we have employed tumbling windows to merge the data sent from different devices of the same truck, 
and event-based windows to determine when trips start and finish using the state reported in the frames sent by 
CLV devices.
• As a persistence layer, SQL Server has been maintained for transactional data management and Cassandra has

been added to perform a quick data ingestion and query, in order to enable certain complex views to be loaded
from the interface without overloading the relational database server.
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measures and displays the resource usage to scale up/down the components of the platform when needed with the aim
of avoiding excesive costs, bottlenecks or delays.
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are:

• The services responsible for reading data have been replaced by stateless workflows that merge and clean the
different frames reported by the CLV and CANBUS and next publish them to the data bus.
• Data is now published in a data bus implemented by means of a message queue manager that uses memory to

increase the performance.
• This data is consumed and processed by a set of distributed tasks deployed on a data stream processing engine,

which allows computing each trip in near real time and storing it in a NoSQL database. These are prepared to
be analised in a dashboard. Additionaly, they can be sent to the relational database for further processing.
• Another set of tasks deployed in the data stream processing engine is responsible for performing the calculation

of the final trips (merge of events which comprise a trip) in a distributed way, which allows the system to
speed up the calculations, to relieve the load of the database and to make the business logic independent of the
database manager.

3.4. Prototype description

The solution proposed in the previous section has been developed and locally deployed using the following tech-
nologies:

• RabbitMQ has been chosen for the queue manager. This implements the MQTT protocol widely used in IoT
system.There are several reasons for its adoption, it is very light, adds a very small overhead in the devices and
allows declaring diferent queues to organize the data sources in diferent data streams.
• Apache Flink has been selected for the data flow processing engine. This allows exactly once processing at tuple

level. This prevents duplicate rows from reaching the database and allows developers to add timestamps that 
serve to detect data collected out of order. This services works in a reactive way, executing the tasks every time 
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The Algorithm 1 has been refactored into two Flink jobs. The first one, described in Algorithm 2, joins the data
streams coming from the truck (CANBUS and CLV). This algorithm receives and joins all the frames from each
vehicle within a determined time window and returns a new frame with all the data together. The second one, described
in Algorithm 3, receives the joined frames for each vehicle and checks the status reported to determine the begining
and the end of each trip using an event-based window. At the end of each trip, it retrieves all the data received within
the window and computes all the statistics (e.g. distance, fuel consumption...)

Algorithm 2: Data stream joining
canbus← subscribe to CANBUS RABBITMQ datastream
events← subscribe to EVENTS RABBITMQ datastream
joinedS tream←
events.join(canbus).where(idVehicle).equalsTo(IdVehicle).window(TumblingWindow(30s).joinFunction( joinFn)

joinedStream→ RABBITMQ
def joinFn(event, canbus):

joined ← new JoinedEvent(event) ; /* Initialized event parameter and sets canbus related values

to null */

if canbus ! = null then
for each parameter p in canbus do

joined.p← p
end

end
return joined

Algorithm 3: Window based trip calculation
events← subscribe to joined RABBITMQ datastream
events.keyBy(idVehicle).window(GlobalWindow).trigger(customTriggerFn).function(computeTrip)
def customTriggerFn(event):

if event.status! = “endTrip” then
return CONT INUE

end
return FIRE AND PURGE

def computeTrip(events[]):
trip← newTrip
trip.startDate← events[0].date
trip.endDate← events[events.length − 1].date
/* Statistic calculation details omitted for the sake of simplicity */

trip.computeStatistics(events)
return trip

The model depicted in Figure 3 describes graphically the architecture designed following the RAI4.0 architecture 
metamodel [15]. This model gathers the information about how each of the components is configured and related to 
the others. In Figure 3 we can see that there is an instance for each service hosted in a NodeCluster that points to the 
nodes where it will be deployed. In this case, as it is a local deployment, every NodeCluster points to the same node. 
Each service has an instance that contains its deployment configuration ( Rabbit conf, C assandra conf, F link conf), 
the data streams (Events, Cantrama and JoinedStream) point to the ComunicationService (RabbitService) that acts as 
holder, the tasks (decode and join and trip calculation) are linked to the root workflow ( Trip workflow) to which they 
belong and the workflow is connected to the SchedulingService (FlinkService) that host it.

Moreover, this model allows the developers to switch between different deployments and to scale vertically and 
horizontally with some minor changes. An example of a distributed and replicated version of this model that represent 
the deployment of the system on a set of GCE nodes with the specifications detailed on Table 1 is available on github 
[16]. To build the distributed and replicated version, the only action needed was to add the new ProcessingNodes 
deployed on GCE and update the links between the NodeCluster instances and the new ProcessingNodes.
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Fig. 3. Deployment model conforming RAI4.0 metamodel

Type CPU Family CPU Specs RAM Storage OS

E2-medium Intel(R) Xeon(R)
2vCPU @ 2.3Ghz
Cache:46.1 MB 4GB 10GB HDD Ubuntu 18.04.4 LTS

Table 1. GCE nodes specifications

4. Discussion

In this section, we discuss some of the advantages and disadvantages of the proposed platform focusing on different
aspects that are limiting factors in the current implementation of the application.

1 Extensibility and latency reduction for decision making
The inclusion of a data stream processing engine in the architecture allows the company to know statistics in
near real time with different levels of granularity. Some of them could be sent to the drivers during their trip as
warning messages or driving tips. With the current architecture, it is necessary to wait until the next day, after
finishing the trip, for the computation to be accesible.
In addition, the fact of being an extensible and scalable architecture allows the company to easily adapt the
deployment to the demand, something that in a centralized architecture like the one described would not be
possible.

2 Coding and maintenance complexity. Learning Curve.
Real time architectures requiere the use of a different programming paradigm which implies a period of training 
and adaptation. This process of adapting and migrating the system can be costly as there are a large number of 
technologies and components that have to be configured correctly in order to communicate one with each other. 
In addition, this system requires a high degree of control over the versions used for each of the components 
and their dependencies, as the compatibility of the elements with previous versions is not guaranteed. This 
complexity can be mitigated by modeling every component of the applications following the RAI4.0 metamodel, 
so there is a single source of truth where every item is represented and described once. Furthermore, RAI4.0 
provides a deployment tool, see [15], that automates this tedious task.
On the other hand, the fact of dividing the system into microservices and separating the business logic from the 
database simplifies the tasks of maintenance and production of new versions.
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3 High availability vs single point of failure
The use of a distributed and replicable architecture provides redundancy of all the data and processes so that, if
there was a failure, the system would recover in matter of seconds without human interaction and the informa-
tion would be preserved. The centralized solution requires to have an alternative fallover system which is most
of the time underutilized.

4 Evaluation of the improvement for the calculation of the statistics
This project is still in progress and, at this moment, we have developed a local version and a 7-nodes distributed
one comprised of: 1 node for RabbitMQ, 4 nodes for Flink (1 jobmanager and 3 taskmanagers), 1 node for
Cassandra and 1 node for Prometheus and Grafana deployed in GCP nodes (see Table 1) in order to measure
and compare their perfomance. The dataset used contain real data from 3 months for only 30 trucks, near 3
million events. This dataset was augmented to represent a total of 2000 vehicles. A 3 Flink taskmanagers + 1
RabbitMQ nodes set-up vs 1 Flink taskmanager + 1 RabbitMQ node configuration has been tested using this
augmented dataset. As a result, the system distributes the workload in a balanced way, one third on each cpu,
which means that the system capacity can be increased by simply adding more nodes. No node was saturated.
The CPU load is inferior to 15% on each node. The throughput is 4000 events/second. We grew the load to
10.000 vehicles but the nodes hired in GCE (free tier) did not work well, they started to lose events and the
delivery rate dropped drastically. However, the system still had plenty of resources available so we are currently
analysing whether this is due to the usage of GCE free tier. That is why the benchmark carried out is not
conclusive but promising.

5 Costs
In terms of costs, on-premise solutions implies both Capital expenditure (Capex) and Operational expenditure 
(Opex) costs while cloud computing only originates Opex. Cloud computing allows the project to start working 
with at a smaller cost. However, Opex costs are usually much higher for cloud computing so after a few years 
the on-premise solution can become cheaper. In [17], the authors carried out a comparative analysis 
between the cost of an on-premise system and a similar system but hosted on the cloud and determined that, 
depending on the costs and rate of maintenance services of the on-premise solution, the cumulative costs 
becomes higher for the cloud-based solution after three to five years. This means that if you are planning to 
maintain the same infrastructure, cloud based solutions may not be the best alternative. In our case study 
the business owner expects a fast growth of the number of clients, so keeping the same infrastructure over a 
long period of time may not be possible, making the cloud-based alternative a better suited option.

5 Security
Ensuring the security of cloud-based applications is harder and more complex than it is in a centralized on-
premise version due mainly to the number of different components to be taken into account, the comunication
among them and the location of data that is being stored and processed somewhere on the cloud. RAI4.0
architecture security service is still under implementation.

5. Conclusions and future work

This paper proposes a reference architecture to migrate IoT applications designed under a centralised architecture
to a scalable, distributed, near-real-time one to provide actionable services, i.e. sending real-time alerts or notifications
in order to reduce costs or improving the performance of certain processes.

A real use case is described to show the opportunity, suitability, advantages and challenges that a distributed and
scalable data bus architecture provides to solve the scalability problems that arise when the pace and volume of data
grows and near real-time requirements need to be met.

At the moment, we are working with different deployment configurations in the Google Cloud to carry out a cost vs
scalability and performance study. The results are promising in terms of performance. No costs have yet been incurred
as the cloud has been used for a free period.
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3 High availability vs single point of failure
The use of a distributed and replicable architecture provides redundancy of all the data and processes so that, if
there was a failure, the system would recover in matter of seconds without human interaction and the informa-
tion would be preserved. The centralized solution requires to have an alternative fallover system which is most
of the time underutilized.

4 Evaluation of the improvement for the calculation of the statistics
This project is still in progress and, at this moment, we have developed a local version and a 7-nodes distributed
one comprised of: 1 node for RabbitMQ, 4 nodes for Flink (1 jobmanager and 3 taskmanagers), 1 node for
Cassandra and 1 node for Prometheus and Grafana deployed in GCP nodes (see Table 1) in order to measure
and compare their perfomance. The dataset used contain real data from 3 months for only 30 trucks, near 3
million events. This dataset was augmented to represent a total of 2000 vehicles. A 3 Flink taskmanagers + 1
RabbitMQ nodes set-up vs 1 Flink taskmanager + 1 RabbitMQ node configuration has been tested using this
augmented dataset. As a result, the system distributes the workload in a balanced way, one third on each cpu,
which means that the system capacity can be increased by simply adding more nodes. No node was saturated.
The CPU load is inferior to 15% on each node. The throughput is 4000 events/second. We grew the load to
10.000 vehicles but the nodes hired in GCE (free tier) did not work well, they started to lose events and the
delivery rate dropped drastically. However, the system still had plenty of resources available so we are currently
analysing whether this is due to the usage of GCE free tier. That is why the benchmark carried out is not
conclusive but promising.

5 Costs
In terms of costs, on-premise solutions implies both Capital expenditure (Capex) and Operational expenditure 
(Opex) costs while cloud computing only originates Opex. Cloud computing allows the project to start working 
with at a smaller cost. However, Opex costs are usually much higher for cloud computing so after a few years 
the on-premise solution can become cheaper. In [17], the authors carried out a comparative analysis 
between the cost of an on-premise system and a similar system but hosted on the cloud and determined that, 
depending on the costs and rate of maintenance services of the on-premise solution, the cumulative costs 
becomes higher for the cloud-based solution after three to five years. This means that if you are planning to 
maintain the same infrastructure, cloud based solutions may not be the best alternative. In our case study 
the business owner expects a fast growth of the number of clients, so keeping the same infrastructure over a 
long period of time may not be possible, making the cloud-based alternative a better suited option.

5 Security
Ensuring the security of cloud-based applications is harder and more complex than it is in a centralized on-
premise version due mainly to the number of different components to be taken into account, the comunication
among them and the location of data that is being stored and processed somewhere on the cloud. RAI4.0
architecture security service is still under implementation.

5. Conclusions and future work

This paper proposes a reference architecture to migrate IoT applications designed under a centralised architecture
to a scalable, distributed, near-real-time one to provide actionable services, i.e. sending real-time alerts or notifications
in order to reduce costs or improving the performance of certain processes.

A real use case is described to show the opportunity, suitability, advantages and challenges that a distributed and
scalable data bus architecture provides to solve the scalability problems that arise when the pace and volume of data
grows and near real-time requirements need to be met.

At the moment, we are working with different deployment configurations in the Google Cloud to carry out a cost vs
scalability and performance study. The results are promising in terms of performance. No costs have yet been incurred
as the cloud has been used for a free period.
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