
Abstract—In this paper we present a system we have devel-
oped for a mobile audio-video collaboration that is centered
around the distributed datasets. In our approach all the data
are processed remotely on dedicated servers, where they are
successively rendered off-the-screen and compressed using a
video codec. The signals captured from the users' cameras are
transferred to the server in real time, where they are combined
with the data frames into single video streams. Dependent on
the device's capabilities and current network bandwidth every
session participant receives individually customized stream,
which presents both the remote data and the camera view of
currently chosen presenter alternately. At the end of this paper
we also present the results of the system's performance test that
we have obtained during the collaborative visualization of a re-
mote, multidimensional dataset using different kind of modern
mobile devices, including tablets and cell phones.

I. INTRODUCTION

ITH the dynamic advancement of a broadband Inter-

net access and a pervasive computerization the de-

mand for modern collaboration techniques grows rapidly.

First videoconferencing meetings were usually realized in

dedicated rooms, equipped with a professional audio-video

hardware and a very fast network connection, which allowed

for the low latency transfer of the complex multimedia data.

For the last couple of years the same functionality have been

successively enabled in many software solutions, that could

be widely used also in a personal computer environment, e.g.

Skype [1], Big Blue Button [2], Open Meetings [3] or Adobe

Connect Pro [4]. All of these applications have a built in

support for different types of synchronous collaboration

techniques, including text based chats, teleconferencing, as

well as a fully interactive audio-video communication.

W

Beside the communication between the session partici-

pants, distant collaboration usually involves working with

the data. Depending on the discipline, the type of this data

can be different and could vary from simple presentations to

a very complex multimedia content sharing. Most of the ex-

isting videoconferencing systems have a built-in support for

different kind of synchronous resource sharing, including

white boards or screen capture functionalities. However,

these solutions are only sufficient when a single presenter

shares the resources, which are stored locally on his comput-

er.

Unfortunately, none of the existing videoconferencing sys-

tems allow the collaboration that would be centered around

the distributed datasets, usually stored on different remote

servers. One of the most challenging area in this approach is

a cooperative visualization of the scientific, multidimension-

al resources. Most of the modern simulations and experi-

ments are so complex, that they must be realized in dedicated

computing centers. The size of the processed data is usually

so large that they cannot be easily transferred between dis-

tant computers and must be stored in a place where they

were generated. On the other hand, many scientific activities

require a real time cooperation of researchers representing

different disciplines, which should have a possibility to share

these data remotely. Moreover, with the growing popularity

of wireless networks and ubiquitous computing, this collabo-

ration should also be accessible with the use of different

types of mobile devices, including tablets and cell phones.

In this paper we propose a different approach to a video

based collaboration, which is centered around the distributed

datasets and could be effectively realized in a mobile envi-

ronment. The system we have developed processes all the

data remotely on dedicated servers and transcodes them into

a series of digital images representing different views of a vi-

sualized resources. Successive frames are compressed using

a video codec and synchronously broadcast to all session

participants. Users can also broadcast the audio-video signal

captured from their cameras and microphones, which is later

combined with the visualization frames into a single video

stream. This approach takes off all the complex computa-

tions from the mobile clients, leaving them only with the

video decompression, assuring thereby a highly interactive

visualization of the remote data.

This paper is organized as follows. Section 2 covers some

of the previous works covering remote data visualization in a

collaborative environment. In section 3 we describe in de-

tails the system architecture and the technologies we have

used to implement it. Section 4 presents the results of the

system performance tests and section 5 concludes this paper

drawing up further work.

Data Centered Collaboration in a Mobile Environment

Maciej Pańka
Nicolaus Copernicus University
University Center for Modern

Teaching Technologies
ul. Gagarina 17, 87-100 Toruń, Poland

Email: maciej.panka@umk.pl

Piotr Bała
Nicolaus Copernicus University

Faculty of Mathematics and Computer Science
ul. Chopina 12/18, 87-100 Toruń, Poland

and
ICM, University of Warsaw

ul. Pawinskiego 5a 02-106 Warszawa, Poland
Email: bala@mat.umk.pl

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 723–728

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 723

II. RELATED WORK

There are two general approaches to the collaborative vi-

sualization of the distributed datasets. The first category in-

volves systems where the data are transferred from distant

servers to session participants, which process them locally

using computational power of their devices. In this model a

selected session moderator manipulates the remote data us-

ing his device, sending thereby successive directives to the

main session server. The server broadcasts these directives in

real time to the rest of connected users, which in response

adequately synchronize their local resources.

The references [5] and [6] present two different systems

which derive from this approach and make use of the Virtual

Reality Modeling Language, which is a popular text file stan-

dard for representing 3D scenes on the Internet. The commu-

nication between session participants is realized in separate

channels, by means of text chats and teleconferencing mod-

ules. The VRML standard has also been successfully adopt-

ed into the mobile data visualization. Exemplary solutions

were presented in [7] and [8], where the authors introduced

two different systems running on Sony Ericsson P800 and

PocketPC Compaq iPAQ respectively.

A slightly different approach has been presented in the

reference [9], which covers collaborative data visualization

in a grid environment. The authors made use of the Interac-

tive Data Language, which is a programming language dedi-

cated mostly to solve 2D / 3D interactive visualization prob-

lems. The data synchronization in the proposed solution was

realized by means of Narada Brokering Messaging Service.

Similar example was also presented in the reference [10],

where the authors made use of a shared export concept,

which allows capturing of different inputs from a running ap-

plication and they later broadcast to distant users.

The second category of collaborative visualization solu-

tions involves systems, where all the complex computational

tasks are realized on dedicated servers and broadcast to users

as a series of graphical images (frames) representing differ-

ent data views (movement, zooming, 3D objects rotation or

animation). When the visualization is realized in a multiuser

environment, the image series generated by the server should

be broadcast to all session participants simultaneously, al-

lowing thereby a synchronous data sharing [12].

One of the biggest challenges in this approach is a com-

pression of the image data, which in case of very complex re-

sources could be the cause of a network communication la-

tency. Dependent on the dimension of the input data, differ-

ent compression techniques could be used. The authors of

[11] and [12] have developed their systems using popular

lossless compression algorithms, including ZLIB, LZO,

BZIP2 or RLE. However, higher compression ratios could

be achieved with the use of a lossy image compression

method, for example a JPEG standard [13]. Similar results

could be also obtained with the use of JPEG2000, which is

the newer version of the JPEG algorithm. Beside high com-

pression ratios, the JPEG2000 has a built in support for the

progressive image transmission and the regions of interest

concept, which in context of a mobile visualization could in-

crease the overall efficiency of the system [14, 15].

With the use of the Motion JPEG2000 technique and a

JPIP server, the JPEG2000 could also be adopted to the ani-

mated data compression. However, in this area, much better

results could be achieved by means of a dedicated video

codec. The references [16] and [17] introduce exemplary

collaborative systems, which generate video sequences on

the server and push them individually to every session partic-

ipant, where they are later decoded and displayed on the

screen. The authors made use of the H.263 and H.261 video

codecs respectively. A very similar system have been devel-

oped by the authors of [18], where the MPEG-4 standard

was used for a video compression. A server side encoding

was realized by means of the MPEG4IP library, which com-

pressed the video and streamed it to the Apple's Darwin Me-

dia Server using RTSP protocol. Apple's server republished

this video to the rest of the session participants. The MPEG-

4 standard has also been successfully adopted to the remote

visualization of a 3D data on different mobile devices

[19, 20].

We believe that the most effective approach to the data vi-

sualization on mobile devices is by means of the image based

streaming techniques, which take off most of the computa-

tional power from thin handhelds, leaving them only with

data decompression. Modern mobile devices still have many

limitations compared to the desktop computers, which ob-

struct effective rendering of the complex data, e.g. CPU and

GPU power, RAM and hard drive capacities, battery lifetime

or screen sizes. Unfortunately, none of the existing mobile

visualization systems allow fully interactive, real time audio-

video collaboration of distant users. On the other hand, cur-

rently available videoconferencing systems allow only local

data sharing, but they do not support distributed datasets vi-

sualization. Moreover, most of these systems were designed

in order to cooperate with the desktop computers, and they

couldn't be easily adopted to the mobile environment.

III. SYSTEM ARCHITECTURE

A. Collaborative Visualization Overview

The system consists of a client application, run on thin

mobile devices, and a server application, which processes the

complex data. A server is also responsible for the session

management and data synchronization between all connected

users. The general architecture of our system has been shown

on Fig. 1.

All users connected to the server are able to view and lis-

ten to the session proceeding but only one of them could ad-

ditionally be a session presenter. Only the currently chosen

presenter is able to control the remote data and broadcast his

camera's signal to the rest of participants. For the whole ses-

sion all users are also able to ask the questions

and comment the presentation in front of the group using

their devices' microphones.

At the beginning of each session the presenter initializes

the remote data on the server, which could be either read

from a disk, database or even generated in real time by a

dedicated rendering machine. Once the data are loaded by

the server they are rendered off the screen, producing there-

724 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

by a series of digital images, which represent different views

of the input resources. Our framework is completely trans-

parent on the data source and their dimensions, which could

be either 2D, 3D or even animated data. Two dimensional

data are represented as single pictures, while 3D and 4D data

produce the whole series of images, which represent data ro-

tation and animation frames respectively.

The generated image sequences are compressed by the

server on-the-fly with the use of a dedicated video codec and

streamed to all session participants in real time. Every con-

nected user receives his own video stream, individually cus-

tomized to the capabilities of his device and current network

bandwidth. At the beginning of each session the system de-

tects the screen size of a user's handheld, allowing thereby

frames scaling on the server. The network bandwidth is also

measured during the connection, and it is periodically tested

for eventual variations later during the session. Based on

these two parameters the server dynamically adapts the reso-

lutions and bit rates of all outgoing video streams.

Once the session is initialized, the presenter is able to ma-

nipulate the remote data using his mouse or touch gestures.

Dependent on the data dimension the presenter can zoom the

view, move to different regions of an image, rotate the 3D

model over the X and Y axes or even pause the animation

and swap between its successive frames. Adequate directives

are send in real time from the presenter's device to the server,

which in response processes the input data, generates ade-

quate video frames and streams them to users. The bit rates

of all outgoing videos are changed dynamically by the server

dependent on the current state of the presentation. During the

data motion (moving, zooming, rotating) the bit rate is auto-

matically decreased, because there is no need to display the

output in full details. Once the motion stops the server en-

codes the last frame using a higher bit rate, increasing there-

by its quality. If more details are needed, users are also able

to download the last frame from the server in a completely

uncompressed form. This approach saves the network band-

width and allow highly interactive performance of the sys-

tem.

In addition to the remote data visualization all session par-

ticipants are able to collaborate using a built in videoconfer-

encing solution. The signals captured from the presenter's

camera and microphone are streamed to the server, where

they are processed in real time. The camera signal is decom-

posed, producing thereby an uncompressed series of images,

which are later combined with the visualization frames and

audio packets into a single video stream. The session presen-

ter decides which signal should be visible at the moment for

the rest of participants: his camera or the remote data view.

Dependent on his choice the server encodes appropriate

video frames.

Additionally, during the whole session every user is able

to individually manipulate currently presented data, e.g.

viewing the 3D objects from different angles. In that case

only the frames, which represent the visualized data are re-

ceived from the server. The video signal is additionally com-

bined with the presenter's audio packets, allowing thereby si-

multaneous lecture listening. In a free look mode every user

receives his own instance of the remote data, having a

chance to control them independently from the rest of partic-

ipants. At any point during the session the free look mode

could be switched back to the presenter's video transmission.

B. Server Side Application

A server side application contains of a central session

management module and a processing cluster, as shown in

Fig. 2. At the beginning of every session users connect to the

session management module, which stores the information

about data locations and the addresses of all processing units

being part of the system. The session manager also acts as a

proxy for the audio-video communication and provides dif-

ferent types of real time collaboration techniques, e.g. shared

board, which allows synchronous drawing on the presenta-

tion and marking its different regions of interest. The central

management server is also responsible for the authentication

and dynamic roles switching between session participants.

Data generation and audio-video encoding are realized in

the processing units, which are built of two different ma-

chines working in parallel: an audio-video encoder and a

rendering server. Dependent on the number of concurrent

users a single processing cluster could be built of more than

one pair of the encoding and rendering servers, allowing

thereby a better load balancing.

Every collaborative session begins in the central manager

module, which at the startup collects the information about

all connected clients, including their screen resolutions and

current network bandwidths. Based on these parameters and

a number of concurrent users it selects the least loaded en-

Fig 1. A general architecture of the system.

MACIEJ PANKA, PIOTR BALA: DATA CENTERED COLLABORATION IN A MOBILE ENVIRONMENT 725

coding server from the cluster, responsible for further data

processing. The selected encoder prepares an individual

broadcasting object for each of the outgoing videos, which

are run in separate threads, allowing thereby a parallel en-

coding of multiple video streams on a single machine. In

case of many simultaneous users the broadcasting threads

could be additionally distributed between different process-

ing units of the cluster.

Successive directives received from the presenter are

broadcast in real time by the central management server to

every encoder involved in the session. Based on these direc-

tives the encoding servers request successive video frames

from appropriate rendering machines. Dependent on the data

source the rendering machines load appropriate frames from

a database, storage device or a dedicated rendering server

and streams them to the encoders using a TCP socket con-

nections. During a typical visualization session the renderer

and encoder exchange large amount of the image data, so it

is recommended that they communicate using a broadband

network connection. We have not implemented any compres-

sion technique at this point, because it would require an extra

CPU power from both servers, which could be the cause of

an additional latency.

Successive frames received from the rendering server are

passed to the appropriate encoding threads, where they are

scaled, compressed using a video codec and broadcast to the

session manager, which republishes them to the rest of users.

Additionally, during the whole session the presenter broad-

casts his video camera signal to the session manager, which

republishes it to the encoding servers. Each of the encoders

decompress this signal and combine it with the appropriate

images received from the rendering server.

The audio-video communication is realized through the

session manager, which republishes the live streams in both

directions. This approach takes off a lot of computational

power from the processing units, reducing the number of the

video streams they must encode. For example, when differ-

ent session users have the same screen resolutions and simi-

lar network capabilities the encoder generates only a single

video stream, which is later republished by the session

manger. On the other hand, with the use of the video proxy,

the users are able to dynamically switch between different

processing units, without the need of leaving their current

session rooms.

C. Implementation

Our system consists of a client application and a set of dis-

tributed server side programs. All server side applications

have been implemented using Java language. Additionally,

the session manager makes use of the Wowza Media Server,

which supports audio-video streams republishing. The com-

munication between the processing units and the session

manager is realized with the use of the Adobe's Real Time

Messaging Protocol, which allows both a live audio-video

streaming and a control information transmission.

The current version of the client application has been de-

veloped using the ActionScript 3.0 technology, which with

the use of the Adobe's Flash Player could be deployed on

most of the modern mobile operating systems, including

Google's Android, BlackBerry OS and Apple's iOS (using

the Adobe's iPhone packaging library). Video compression is

realized with the use of the Sorenson Spark codec, which is

an improver version of the H.263 standard, dedicated for a

low latency Internet communication. The audio is com-

pressed using the low latency Nellymoser Asao codec. How-

ever, the system is completely transparent in sense of the

client application technology and could be very easily adapt-

ed to any other mobile operating system and audio-video

codecs.

IV. RESULTS

We have run a series of tests of our system, checking both

the server and client applications performances. The server

side applications have been deployed on three different ma-

chines: an Intel Xeon 5050 3GHz running the session man-

agement module, a dual core Intel Xeon X5355 2.6 GHz,

which was rendering the data visualization frames, and a

quad core Intel Xeon E5420 2.5 GHz responsible for the au-

dio-video encoding. A client application was tested on three

different mobile devices: a 7” Samsung Galaxy Tab tablet

and a 3.7“ HTC Desire cell phone, both running the Google's

Android 2.2 operating system, and a 10.1” Apple's iPad

equipped with the iOS 4.3. The servers were communicating

using a 1Gb wired LAN connection, while the client's de-

vices used a standard 802.11g wireless connection. All tests

were run for two different sizes of the video streams,

320x240 and 640x480 pixels respectively, which are the

most popular resolutions of the video cameras available in

modern desktops and mobile devices. All videos were en-

Fig 2. The server side application works in a distributed environment,
where every part of the system is run on a different machine.

726 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

coded using 15 frames per seconds parameter, which is a suf-

ficient setting for a smooth video reception.

The purpose of a client's application test was to measure

the CPU usage during three different activities: a single live

video decoding, a camera signal encoding, as well as both of

them run at the same time. During the third of the above tests

the signal captured from the video camera was broadcast to

the encoding server, where it was combined with the visual-

ized data frames and pushed back to the same client. Howev-

er, none of the tests that involved camera signal publishing

could be run on the Apple's iPad, because this device has not

been equipped with the video camera. The results of the

client's application tests are presented in tables 1 and 2.

The video streams decoded on all three devices were dis-

played very smoothly, consuming less than a half of the pro-

cessor power in most cases. During the camera signal encod-

ing the average CPU usage increased, but has not affected

the overall performance of the system. The iPad's CPU us-

ages during the video decompressions were slightly higher

compared to the both Android devices. This is caused by the

fact, that Flash Player has not been natively available for the

iOS system and our application had to be transcoded into the

Objective-C using the Adobe's AIR 2.7 SDK. Nevertheless,

we have not noticed any differences in the client's applica-

tion effectivenesses on any of the tested devices.

TABLE I.
AVERAGE CPU USAGES OF THREE DIFFERENT MOBILE DEVICES DURING THE ENCODING AND

DECODING OF A 320 X 240 VIDEO STREAMS

Activity Samsun
Galaxy Tab

HTC Desire iPad

Decoding 30% 32% 55%

Encoding 60% 60% -

Decoding and
encoding

80% 70% -

TABLE II.
AVERAGE CPU USAGES OF THREE DIFFERENT MOBILE DEVICES DURING THE ENCODING AND

DECODING OF A 640 X 480 VIDEO STREAMS

Activity Samsun
Galaxy Tab

HTC Desire iPad

Decoding 35% 40% 80%

Encoding 90% 85% -

Decoding and
encoding

90% 90% -

In addition to the client's application performance, we

have also measured the efficiency of the encoding server

during a sample multiuser session. We experimented with

different numbers of simultaneous video streams encodings,

which varied from 1 to 60 connections. Beside the CPU us-

ages of the server, we have also calculated the average times

of the single video frame encodings and decodings. We have

also tried to estimate the highest possible number of concur-

rent video encodings for a single machine used in this exper-

iment. Tables 3 and 4 present the obtained results.

The maximum number of efficient parallel encodings were

55 and 20 for 320x240 and 640x480 videos resolutions re-

spectively. Below these levels all videos were streamed very

smoothly, having less than a half of a second latency. When

the number of concurrent users reached the maximum values,

the server's performance lowered and the network communi-

cation latency increased, preventing thereby the efficient

video encodings. However, with the use of the multiple pro-

cessing units the overall load of the system could be distrib-

uted between different machines, allowing thereby a higher

number of simultaneous connections.

TABLE III.
THE PERFORMANCE OF THE ENCODING SERVER DURING DIFFERENT MULTIUSER SESSIONS

USING 320 X 240 VIDEO STREAMS

1 user 20 users 40 users 55 users

CPU usage (quad
core)

4% 85% 240% 380%

Single frame
decoding time [ms]

0.3 0.5 0.8 6.1

Single frame
encoding time [ms]

1.4 1.9 3.6 23.8

TABLE IV.
THE PERFORMANCE OF THE ENCODING SERVER DURING DIFFERENT MULTIUSER SESSIONS

USING 640 X 480 VIDEO STREAMS

1 user 5 users 10 users 20 users

CPU usage (quad
core)

15% 75% 240% 380%

Single frame
decoding time [ms]

1.3 1.6 3.0 65

Single frame
encoding time [ms]

4.8 5.9 12.9 110

V. CONCLUSION AND FUTURE WORK

In this paper we presented the system for the collaborative

visualization of distributed datasets on mobile devices. In

our approach the remote data are rendered on dedicated

servers, where they are combined with the users' audio-video

signals. The output image sequences are compressed usxing

a dedicated video codec and broadcast to all session partici-

pants, presenting the visualized data and the camera view al-

ternately. All users can also communicate in real time using a

built in teleconferencing solution.

We have also run a series of the performance tests for both

the client and server applications. The results we have ob-

tained showed, that our system allows an effective, highly in-

teractive data visualization, even with many simultaneous

users connected to a single server. It is also compatible with

most of the modern mobile devices, including tablets and

cell phones.

In the future we are planning to implement the support for

other popular video codecs, including the H.264 and VP8

standards. We also want to improve the server side data pro-

cessing with the use of a dedicated graphical unit, e.g.

NVIDIA CUDA, which should increase the overall perfor-

mance of the system.

VI. ACKNOWLEDGMENT

This work has been supported by the eea grant PL-0262.

REFERENCES

[1] Skype, http://www.skype.com/
[2] Big Blue Button videoconferencing system, http://bigbluebutton.org/

MACIEJ PANKA, PIOTR BALA: DATA CENTERED COLLABORATION IN A MOBILE ENVIRONMENT 727

[3] Open Meetings videoconferencing system, http://code.google.com/
p/openmeetings/

[4] Adobe Connect Proc, http://www.adobe.com/products/
adobeconnect.html

[5] K. Engel, T. Ertl, „Texture-based Volume Visualization for Multiple
Users on the World Wide Web”.

[6] S. Lovegrove, K. Brodlie, „Collaborative Research Within a
Sustainable Community: Interactive Multi User VRML and
Visualization”.

[7] M. Mosmondor, H. Komericki, I.S. Pandzic, „3D Visualization of
Data on Mobile Devices”, IEEE MELECON ’04, 2004.

[8] R. R. Lipman, „Mobile 3D visualization for steel structures”,
Animation in Construction 13, 119-125, 2004.

[9] M. Wang, G. Fox, M. Pierce, „Grid-based Collaboration in Interactive
Data Language Applications”.

[10] S. Lee, S. Ko, G. Fox, „Adapting Content for Mobile Devices in
Heterogeneous Collaboration Environments”.

[11] Z. Constantinescu, M. Vladoiu, „Adaptive Compression for Remote
Visualization”, BULETINUL Universitatii Petrol, Gaze din Ploiesti,
vol. LXI, p. 49-58, 2009.

[12] K. Engel, O. Sommer, T. Ertl, „A Framework for Interactive
Hardware Accelerated Remote 3D-Visualization”.

[13] K. Ma, D. M. Camp, „High Performance Visualization of Time-
Varying Volume Data over a Wide-Area Network”, IEEE, 2000.

[14] D. Dragan, D. Ivetic, „Architectures of DICOM based PACS for
JPEG2000 Medical Image Streaming”, ComSIS, vol. 6, No. 1, 2009.

[15] N. Lin, T. Huang, B. Chen, „3D Model Streaming Based on JPEG
2000”.

[16] K. Engel, O. Sommer, C. Ernst, T. Ertl, „Remote 3D Visualization
using Image-Streaming Techniques”.

[17] M. Hereld, E. Olson, M.E. Papka, T.D. Uram, „Streaming
visualization for collaborative environments”.

[18] F. Goetz, G. Domik, „Remote and Collaborative Visualization with
openVisaar”.

[19] Y. Noimark, D. Cohen-Or, „Streaming Scenes to MPEG-4 Video
Enabled Devices”, IEEE Computer Graphics and Applications, 2003.

[20] L. Cheng, A. Bhushan, R. Pajarola, M.E. Zarki, „Real-Time 3D
Graphics Streaming using MPEG-4”, 2004.

728 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

