

J. Cent. South Univ. (2014) 21: 3864−3872
DOI: 10.1007/s11771-014-2373-x

Task scheduling scheme by checkpoint sharing and
task duplication in P2P-based desktop grids

Joon-Min Gil, Young-Sik Jeong

1. School of IT Engineering, Catholic University of Daegu, 13-13, Hayang-ro,

Hayang-eup, Gyeongsan-si, Gyeongbuk 712-701, Korea;
2. Department of Multimedia Engineering, Dongguk University, 30 Pildong-rol-gil,

Jung-gu, Seoul 100-715, Korea

© Central South University Press and Springer-Verlag Berlin Heidelberg 2014

Abstract: A scheduling scheme is proposed to reduce execution time by means of both checkpoint sharing and task duplication
under a peer-to-peer (P2P) architecture. In the scheme, the checkpoint executed by each peer (i.e., a resource) is used as an
intermediate result and executed in other peers via its duplication and transmission. As the checkpoint is close to a final result, the
reduction of execution time for each task becomes higher, leading to reducing turnaround time. To evaluate the performance of our
scheduling scheme in terms of transmission cost and execution time, an analytical model with an embedded Markov chain is
presented. We also conduct simulations with a failure rate of tasks and compare the performance of our scheduling scheme with that
of the existing scheme based on client-server architecture. Performance results show that our scheduling scheme is superior to the
existing scheme with respect to the reduction of execution time and turnaround time.

Key words: P2P-based desktop grids; checkpoint sharing; task duplication; embedded Markov chain

1 Introduction

Desktop grids are used in a practical computing
paradigm that can process massive computational tasks
in various application areas, using the idle cycles of the
heterogeneous resources (generally desktop computers)
connected over the Internet and owned by different
individual users. They are generally suitable for the
large-scale applications composed of hundreds of
thousands of small-sized tasks for the same
computational code. It is well-known that desktop grids
make it possible to obtain large-scale computing power
with a low cost [1−2]. Since the success of SETI@Home
[3−4], a variety of desktop grid platforms, such as
BOINC [5−6], XtremWeb [7], Korea@Home [8],
SZTAKI [9], QADPZ [10], have been developed. The
commercial desktop grid systems, such as Entropia [11]
and United Devices [12], are released for enterprise
computing, and some practical applications for desktop
grids are reported in Refs. [13−14].

An important aspect in desktop grids is that each
resource has a volatility property, due to free withdrawal
from execution participation even in the middle of task
execution. Moreover, each resource has a heterogeneity
property as it has a totally different computing

environment (e.g., CPU performance, memory capacity,
and network speed) [15]. One critical issue of a desktop
grid environment is to minimize the execution time of all
tasks, even if these two properties affect overall
performance adversely [1]. Unexpected failures can be
considered degrading factors in the minimization of
execution time, which can be partially addressed with the
use of a checkpointing mechanism at the application
level [16−17]. Another method of minimizing the
execution time is to share all of the checkpoints
performed on each resource [18]. Checkpoint sharing is a
method of reusing the checkpoint, which has been
recently performed on a local desktop in another
resource (i.e., the intermediate result of a task is
transmitted to other resources so that task execution from
the last checkpoint position can be restated).

Consequently, the purpose of checkpoint sharing is
to reduce the execution time of tasks, leading to a
reduction in turnaround time. Most desktop grid systems,
however, use a client-server model as their main
architecture [6, 11, 19]. Although this model is simple in
architecture as well as in the control of resources and
tasks, it concentrates all functions on the central server,
which heightens the bottleneck phenomenon in the server.
Moreover, in the client-server model, checkpoint sharing
is based on storing checkpoints in a central stable

Received date: 2013−11−20; Accepted date: 2014−01−16
Corresponding author: Young-Sik Jeong; E-mail: ysjeong@dongguk.edu

J. Cent. South Univ. (2014) 21: 3864−3872

3865

storage [18]. The checkpoints of all desktops are also
concentrated in the central stable storage, which again
brings about the bottleneck phenomenon. To overcome
this shortcoming of the client-server model in a desktop
grid environment, the peer-to-peer (P2P) model [20] is
utilized in this work as a fundamental architecture, which
has been widely used in Internet services, such as file
sharing or content delivery. Compared to the client-
server model that completely depends on the central
server, the P2P-based desktop grid environment used in
this work is based on a three-layered structure (central
server, peer groups and peers). In this structure, the
central server controls only peer groups, and a
representative peer in a peer group controls the peers that
belong to the corresponding group, thus dispersing the
functions of the central server, and ultimately, reducing
the bottleneck phenomenon in the central server.

To cope with task failures in a P2P-based desktop
grid environment, in this work, each peer performs
checkpointing on its local disk at a periodic cycle. The
intermediate result, which is stored in a peer as a
checkpoint, is transmitted to another peer requesting a
task. Then, the peer continuously executes the
intermediate result beginning with the last checkpoint
position. This checkpoint sharing leads to the reduction
of the execution time. In order to deal with peer volatility
and heterogeneity, a task duplication method is used
along with the checkpoint sharing. When a peer requests
a task, an intermediate result with the last checkpoint
among replicas for the task is allocated to the peer. The
requesting peer successively executes the task, utilizing
the intermediate result. Therefore, it is expected that our
scheduling scheme will more significantly reduce the
execution time than the existing scheme, where the
duplicated tasks are executed from the beginning.

Eventually, this work aims to devise a scheduling
scheme to reduce execution time per task using
checkpoint sharing and task duplication in a P2P-based
desktop grid environment, resulting in providing large-
scale applications with fast turnaround time. Contrary to
the existing scheme based on a client-server model, our
scheduling scheme performs checkpoint sharing and task
duplication on the basis of P2P architecture. Thus, our
scheme can basically reduce the load of the central server
due to the use of P2P architecture. As for checkpoint
sharing, it does not need any central storage. Instead,
checkpoints in each peer are autonomously transmitted to
other peers by the mediation of a peer. To show the
superiority of our scheduling scheme, we present a
mathematical analysis model with an embedded Markov
chain. Based on the model, we compare our scheme with
the existing one, in terms of transmission cost and
execution time. The simulations with task failures are
also conducted and their results are presented.

2 P2P-based desktop grid environment

2.1 System model

Figure 1 shows a system model for the P2P-based
desktop grid environment assumed in this work. This
system model is based on a three-layered structure
consisting of a central server, peer groups, and peers. The
central server operates minimum functions, such as peer
group management, peer authentication management,
and metadata management for tasks and peers, rather
than various kinds of management for peers and tasks.
The peer groups (PGs) consist of peers with identical
characteristics under certain conditions. A unique peer
within a peer group becomes a representative peer (RP),
and the remaining peers become member peers (MPs).

Fig. 1 System model

Generally, a large-scale application in a PC desktop

grid environment is divided into hundreds and millions
of unit tasks, and each should be suitable for execution in
a peer (or a resource). These unit tasks are also structured
in such a way that there is no dependency among unit
tasks [1].

In our system model, an RP keeps a task list,
Wg={w1, w2, …, wm, …, wM}, to manage the tasks to be
allocated to the MPs that belong to its PG. Here, g is an
index for distinguishing a PG, and M is the number of
tasks. An element of a task list, wm, has the following
data structure: wm={wid, wd, wc} (1≤m≤M), where wid is a
unique identifier for a task. For task duplication, each
task wm should recognize how many replicas are being
executed on different MPs. The wm keeps the current
number of replicas wd which has one of the following
values: {0, 1, …, D}, where D is the maximum number
of duplications. The wc represents the largest number of
checkpoints among those of the duplicated tasks. This
information is also used by the RP to duplicate the
intermediate result that has the largest number of
checkpoints when an identical task is being duplicated.

Meanwhile, a member peer in a PG, Ml, has the
following data structure: Ml={Mid, Pg, wid, Mc}, where
Mid and Pg are the identifiers of the MP and the PG to

J. Cent. South Univ. (2014) 21: 3864−3872

3866

which Mid belongs, respectively; wid is the identifier of
the task allocated from the RP; Mc represents the
checkpoint status of the task, which has one of the
following values: {0, 1, …, C}, where C represents the
maximum number of checkpoints. If Mc=0, this indicates
a status that has not yet taken a checkpoint (i.e., either a
stand-by status or a status of having executed a task just
before having taken the first checkpoint). If Mc has a
value of c (1≤c<C), the status has taken the cth
checkpoint and executed a task just before having taken
the (c+1)th checkpoint. If Mc=C, the task execution has
ended.

2.2 Checkpointing and task duplication

Figures 2 and 3 show the duplication process and
the checkpointing process between RP and MP,
respectively. The process of task duplication (Fig. 2) is as
follows. First, if Mi sends a task request message to RP
((1) in Fig. 2(a) and (b)), RP searches for the task with
the smallest number of duplications from the task list it
maintains. Assume that this task is wm. By examining the
wd value of wm, RP can recognize how many member
peers execute wm in duplication. If wd is 0, it means wm
has not yet been duplicated, and therefore, the RP
directly transmits the task data of wm to Mi ((2) in
Fig. 2(a)). If wd is larger than 1, RP recognizes an MP (or

MPs) to which wm has already been allocated (let the MP
be Mj). At this point, RP sends Mi the notification
message that task data will be received from Mj ((2) in
Fig. 2(b)). Then, RP sends an order message to Mj so that
Mj will transmit task data to Mi ((3) in Fig. 2(b)). Upon
receiving this message, Mj sends Mi its last checkpoint
as task data. In other words, it sends the intermediate
result, which has been produced by checkpointing, to Mi
((4) in Fig. 2(b)).

Figure 3 illustrates the checkpointing process. As
the intermediate result of a task, each checkpoint is saved
in the local disk of an MP at a periodic cycle (Mi in
Fig. 3). Soon after Mi performs a checkpoint, it notifies
RP that its checkpoint has been taken. Since
checkpointing is performed at a periodic cycle, Mi can
send the RP the checkpoint messages of total C times,
from the beginning to the end of a task ((1) in Fig. 3).
Meanwhile, by checkpoint sharing, Mi can receive a
checkpoint as an intermediate result from another MP. If
the checkpoint transmitted to Mi has been performed up
to the cth checkpoint, Mi will send the checkpoint
messages of C−c times to RP until the task is completed
((2) in Fig. 3). At this time, task execution time can be
reduced because Mi executes a task from the cth
checkpoint time, not from the beginning.

Having received a checkpoint message for task wm

Fig. 2 Duplication process between RP and MP: (a) RP transmitting task data directly; (b) Task data transmitted by mediation of RP

Fig. 3 Checkpointing process between RP and MP

J. Cent. South Univ. (2014) 21: 3864−3872

3867

from Mi, RP updates the wc value of wm in the task list.
At this point, wc is compared to the Mc of Mi, which is
included in the checkpoint message; if wc<Mc, wc is
replaced with Mc. This case indicates that in a state
where task wm is being executed on several MPs in
duplication, the Mi with the largest number of
checkpoints sends its checkpoint message to RP. If
wc≥Mc, wc is kept without any change. Meanwhile, if RP
receives a task completion message from Mi, it confirms
that task execution has been completed. Then, RP
receives a final result from Mi.

3 Analytical model

In this section, we analyze our scheme using an
embedded Markov chain model in terms of message/data
transmission cost and the reduction of execution time.

3.1 Analysis modeling with an embedded Markov

chain
Figure 4 shows the state transition diagram

established when MPs execute, at most, two checkpoints
(C=2) until completing each replica, permitting three
duplications per task (D=3). As shown in Fig. 4, when D
and C have the values of 3 and 2, respectively, each state
is expressed as a state vector (a, c1, c2, c3, r). The first
element, a (0≤a≤D), represents the number of replicas
for the task wm. The second to the fourth elements, c1, c2,
c3, come in the order of the number of checkpoints of the
MPs executing the task, which is 0≤c3≤c2≤c1<C. That is
to say, c1 is the number of checkpoints of the MP that has
the largest number of checkpoints among the MPs
executing the task. On the other hand, c3 is the number of
checkpoints of the MP that has the smallest number of
checkpoints. Because the checkpoint status for all the
MPs executing the task should be expressed in the state
vector, the total number of ci elements is required as
many as D (i.e., the number of duplications). The latest
element r represents the number of the completed tasks

among the duplicated ones.
In this work, we assume that a task request and a

checkpoint report follow the Poisson process [21] with
the ratio of λ1 and λ2, respectively. λ1 indicates the mean
number of events generated for a unit of time when the
RP receives a task request from an MP and allocates a
task to the MP, and λ2 indicates the mean number of
events generated for a unit of time when the MP
executing a task performs checkpointing and reports to
the RP that it has taken the checkpoint. From Fig. 4, we
can observe that the state transition of a task by
checkpoint sharing and task duplication is caused by an
MP’s task request or checkpoint report. Whenever either
a task request event or a checkpoint event occurs in an
MP, the RP receives messages for the event from the MP.
Thus, if such messages are observed on the RP, the state
transition of a task can be modeled. Let

1 2 3 1 2 3(, , , ,),(, , , ,)a c c c r a c c c rp be the one-stop transition
probability from a state (a, c1, c2, c3, r) to a state

1 2 3(, , , ,)a c c c r . It can be calculated based on the
state transition shown in Fig. 4. The one-step transition
matrix

1 2 3 1 2 3(, , , ,),(, , , ,)()a c c c r a c c c rp P can be expressed as
follows:

L

1
P

12

21

21

21

22
1

12

22
1

21

12

21

22
1

1
22

22

21

21

21

00000000000000000

00000000000000000

00000000000000000

000000000000000000

00000000000000000

0
22

000000000000000

00000000000000000

0000
22

000000000000

00000000000000000

00000000000000000

00000000000000000

000000000000000000

0000000
22

000000000

00000000
22

00000000

00000000000000000

00000000000000000

00000000000000000

00000000000000000

000000000000000000

L

L

L

Fig. 4 State transition diagram (D=3, C=2)

J. Cent. South Univ. (2014) 21: 3864−3872

3868

In this transition matrix, λ1 and λ2 indicate the task

request rate and the checkpoint arrival rate per unit of
time, respectively, and L=λ1+λ2. The elements of each
column and row in the transition matrix are listed in the
following order (0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (2, 0, 0, 0, 0),
(3, 0, 0, 0, 0), ···, (0, 0, 0, 0, 2), (1, 0, 0, 0, 2), (2, 1, 1, 0,
2), and (1, 1, 0, 0, 2). Next, let N be the total number of
states and

1 2 3(, , , ,)a c c c r the steady-state probability of
a state 1 2 3(, , , ,).a c c c r The unique steady-state
probability distribution vector π for these states can be
obtained from the following formula [19]:

π=e(I+E−P)−1 (1)

where E and e are the matrix (N×N) and the row (1×N),
whose element has a value of 1, respectively.
Equation (1), a variation of π=πP, is used very
significantly for the numerical calculation; using this
formula, we can compute each

1 2 3(, , , ,)a c c c r .

3.2 Analysis of transmission cost

Here, we describe the transmission cost required by
task requests and checkpointing when D=3 and C=2.
First, consider the transmission cost related to task
requests. Let mr and dr denote message cost and data cost,
respectively. If we assume that initial task data and
intermediate result data have the same size, the
transmission cost for the two data will be identical (i.e.,
transmission cost for each data is dr). Then, the unit cost
required by a task request event can be calculated by

1 r rU m d

2 r r3U m d (2)

where U1 is the unit cost made when the RP directly
transmits task data, and U2 is the unit cost made when
task data are transmitted by the mediation of the RP.
Using Eq. (2) and the transition probability for the task
request, the total cost Rc required by a task request event
is calculated by

c 1 1 2 2

1 1
1

1 (0,0,0,0,) (,0,0,0,0) (1,0,0,0,1)
1 20 1

1 1
1

2 (0,0,0,0,) (2,1, ,0,0)
1 20 0

D D

i i
i i

D C

i j
i j

R R U R U

R

R

(3)
where R1 is the total sum of the transition probabilities
that the RP directly sends task data to an MP for a task
request and R2 is the total sum of the transition
probabilities that the checkpoint of another MP as task
data is sent to the MP making a task request by the
mediation of the RP.

Second, consider the transmission cost related to

checkpointing. Let mc and dc denote message cost and
data cost for checkpointing, respectively. The cost of one
checkpoint message is incurred only when RP receives a
checkpoint notification message from an MP. However,
there is an exception when an RP is notified of the
completion of a task. In this case, the transmission costs
of both the task completion message and the final result
data are incurred once each. Also, if the checkpoint
message and the task completion message have the same
cost, the unit cost required by a checkpoint event can be
calculated by

1 cN m

2 c cN m d (4)

where N1 represents the unit cost required when an MP
notifies the RP that it has acquired a checkpoint, and N2
represents the unit cost required when the MP notifies
the RP that it has completed the allocated task. Using
Eq. (4) and the transition probability for checkpointing,
the total cost of a checkpoint event can be calculated by

c 1 1 2 2

2
1

1 (1,0,0,0,) (2,0,0,0,0) (2,1,0,0,0)
1 20

1 1

(,0,0,0,) (2,1,0,0,1) (3,1, ,0,0)
0 0

2

2 (1,1,0,0,) (2,1,1,0,0) (2,1,0,0,0)
0

1

2

1

2

1

2

D

i
i

D C

D i i j
i j

D

i
i

C C N C N

C

C

 1

1 2

(3,1,1,1,0) (2,1,1,0,1) (1,1,0,0,2)

1

(2,1,0,0,1) (3,1, ,0,0)
0

1

2

C

j
j

(5)
where C1 is the total sum of the transition probabilities
that an MP notifies the RP of the execution of
checkpointing, and C2 is the total sum of the transition
probabilities that the final result of the completed task is
transmitted to the RP.

Thus far, using Eqs. (3) and (5), we have calculated
the average cost for one task request event and one
checkpoint report event. Until a task is completed going
through checkpoint sharing and task duplication, on
average, D times of task request reports and D·C times of
checkpoint reports occur. Thus, the total cost of our
scheduling scheme, CT, is the sum of the task request
cost and the checkpoint report cost, as follows:

CT=D·Rc+(D·C)·Cc (6)

3.3 Analysis of execution time reduction cost

Here, we examine how much execution time our
scheme can reduce as compared to the client-server
model. The average execution time (et) reducing per
task request in our scheduling scheme can be calculated

J. Cent. South Univ. (2014) 21: 3864−3872

3869

by

2 1
1

e (1,1,0,0,) (2,1, ,0,0)
1 20 0

1D C

i j
i j

t T
C

(7)

where T is the execution time required when one task is
performed from the beginning to the end without the use
of the intermediate result, and C is the total number of
checkpoints. For analytical convenience, we assume that
all MPs have the same performance. Accordingly, all
checkpoints will be taken at a periodic cycle. Then, we
can see that a mean execution time between two

consecutive checkpoints is
1

.T
C
 The reduction of the

execution time is determined by how few checkpoints
the MP has performed after it receives an intermediate
result from another MP (i.e., as a checkpoint in an
intermediate result is close to a final result, the execution

time becomes less, as much as any times of
1

T
C
). On

the other hand, tasks in the client-server model are not
executed using an intermediate result; rather, even a
replica is executed from the beginning. As a result, in the
client-server model, if a task is duplicated D times, the
total execution time becomes D·T. Therefore, the
execution time reduction ratio (Re) of our scheduling
scheme to the client-server model is as follows:

e e
e

D t t
R

D T T

 (8)

4 Performance evaluation

In this section, the performance of our scheduling
scheme is compared to that of the scheduling scheme
based on the client-server model. Using the analytical
model described in the previous section, the total cost
generated by task request and checkpoint events for one
task is calculated. For analytical convenience, we assume
that the message cost generated in the task request and
checkpoint events is identical and that the data cost in the
two events is also identical (i.e., mr= mc and dr=dc).
Generally, data transmission incurs more costs than
message transmission, and so we define a relationship
between the two costs as follows:

r rd m (9)

where α≥1.

In the proposed scheme, an RP can be located either
in the identical network where each peer is located, or in
a network not far away from each peer; message/data
transmission is performed within one hop on average
because an RP is located between the central server and
MPs. On the other hand, since there is no a special peer

such as an RP in the client-server model, more than two
hops are needed to transmit messages or data. Thus, it is
assumed that message/data transmission of the client-
server model costs twice as much as that of the proposed
scheme. Table 1 shows the parameters used for
performance evaluation.

Table 1 Parameters for performance evaluation

Parameter Value

Number of duplications per task, D 2, 4, 6

Number of checkpointing per task, C 3, 4, 5

Ratio of message transmission cost to
data transmission cost, α

1:100

Ratio between our scheme and
client-server model for message/

data transmission cost
1:2

Ratio of task request to
checkpoint report, ρ

0.1, 0.2, …, 6.0

The effect of D and C on total costs is now

examined. Towards this end, D and C are divided into
three cases (D=2, 4, 6 and C=3, 4, 5), respectively. The
total costs for the nine cases based on all combinations of
D and C are calculated and compared.

Figure 5 shows a relative cost for message/data
transmission between the two schemes. The relative cost
is defined as the ratio of the message/data transmission
cost of the proposed scheme to that of the client-server
model. A relative cost of more than 1.0 means that the
proposed scheme costs less than the client-server model.
From Fig. 5, we can observe that in all combinations of
D and C, the relative cost is larger than 1.0. This result
indicates that the message/data transmission cost of the
proposed scheme is relatively lower than that of the
client-server model. As a result, the proposed scheme can
distribute the load of message/data transmission as
compared to the client-server model.

Now, let us examine a relative cost for the ratio ρ of
the task request ratio λ1 to the checkpoint report ratio λ2.
Figure 5 shows that for all cases of C, the relative cost
rapidly declines in a region where ρ≤k. Here, k represents
the lowest relative cost in each graph of Fig. 5. For C=3,
4, 5, k is 1.1, 1.5, 1.8, respectively. This sharp decline is
because the number of task requests is relatively more
than that of the checkpoint reports. Since few MPs
receive intermediate results when they request a task to
be executed, most task executions are performed from
the beginning (i.e., there is a high probability that MPs
perform lots of checkpointing without a reduction in the
number of checkpoint reports). As a result, the increase
in the checkpoint reports causes transmission costs to
increase. On the other hand, in the region where ρ>k, the
relative cost gradually increases. In this region, the
number of checkpoint reports is relatively more than that

J. Cent. South Univ. (2014) 21: 3864−3872

3870

Fig. 5 Message/data transmission cost: (a) C=3; (b) C=4;

(c) C=5

of task requests, and most MPs receive intermediate
results from other MPs when they request the task to be
executed. Accordingly, the MPs can perform checkpoint
reports fewer than C times; therefore, message costs in
this region are lower than that in the remaining region.

Figure 6 shows the execution time reduction ratio
(ETRR) according to the variations of D and C. From Fig.
6, we can observe that as D increases in relation to each
C, the ETRR becomes higher. When D=6 for each C, the
execution time of the proposed scheme is reduced as
much as approximately 9%–10%, compared to that of the
client-server model. This is because when an MP
requests a task, the frequency of task executions based

Fig. 6 Execution time reduction ratio: (a) C=4; (b) C=5;

(c) C=6

on the checkpoint of other MPs becomes more as D
increases. It should be noted that as the checkpoint
becomes closer to a final result, the reduction of
execution time per task becomes higher. Consequently,
by means of checkpoint sharing and task duplication, we
can see that the proposed scheme has a shorter execution
time than the client-server model.

To evaluate the effect of task failures on our
scheduling scheme, we conduct the simulations with task
failure rates. For performance comparison, the
scheduling scheme based on the client-server model is
simulated under the same conditions as those used in our
scheduling scheme. The failure event in each MP is

J. Cent. South Univ. (2014) 21: 3864−3872

3871

generated by Poisson process with a mean rate of f (i.e.,
each MP can encounter the task failures artificially
generated), which will eventually bring about the events
that the deadline of task execution is exceeded or
intermediate execution results are not delivered to other
MPs. As a result, the failed tasks are re-executed on other
MPs.

As a performance measure, we use the turnaround
time, which is defined as the total time taken between the
submission of the first task for execution and the return
of the complete result of the last task. The total number
of tasks used in the simulations is 1000.

Figure 7 shows the simulation results of the two
scheduling schemes according to a variation of the
number of duplications (D) when the number of
checkpoints (C) and a failure rate (f) are 5 and 0.001,
respectively. As shown in Fig. 7, our scheduling scheme
has less turnaround time with an increase in the number
of duplications than the scheduling scheme based on the
client-server model. This is because as the number of
duplications is higher, our scheduling scheme can restart
more failed tasks from the last checkpoint position of the
task, instead of restarting from the beginning.

Figure 8 shows the simulation results of the two

Fig. 7 Performance comparison according to a variation in

number of duplications (D)

Fig. 8 Performance comparison according to a variation in

number of checkpoint (C)

scheduling schemes according to a variation in the
number of checkpoints (C) when the number of
duplications (D) and a failure rate (f) are 5 and 0.001,
respectively. The results in Fig. 8 also indicate that our
scheduling scheme has less turnaround time than the
scheduling scheme based on the client-server model.
When an MP requests a task with many checkpoints, it
can receive an intermediate result that is close to the final
result. This results in fast task completion, leading to a
reduction in turnaround time.

5 Conclusions

1) The analysis of transmission cost and execution
time by the embedded Markov chain shows that the
transmission cost of the proposed scheme somewhat
increases when the number of duplications per task
increases.

2) However, our scheduling scheme shows that
when checkpointing is executed more and more, it can
considerably reduce the execution time compared to the
scheduling scheme based on the client-server model.

3) Our scheduling scheme also has less turnaround
time than the scheduling scheme based on the client-
server model, even if task failures occur.

4) Consequently, our scheduling scheme can reduce
the time it takes for an application user to obtain a final
task result. It is expected that when our scheduling
scheme is implemented in an actual desktop grid system,
it will be useful in minimizing the turnaround time of
large-scale applications.

Acknowledgments

This research was supported by the Basic Science
Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Education (2012R1A1A4A0105777) and supported by
the MSIP (Ministry of Science, ICT and Future Planning),
Korea, under the ITRC (Information Technology
Research Center) support program (NIPA-2013-H0301-
13-4007) supervised by the NIPA (National IT Industry
Promotion Agency).

References

[1] EMMANUEL U. Cloud, grid and high performance computing [M].

IGI Global, 2011: 135−154.

[2] ZHAO H, LIU X, LI X. A taxonomy of peer-to-peer desktop grid

paradigms [J]. Cluster Computing, 2011, 14(2): 129−144.

[3] SETI@Home Project [EB/OL]. http://setiathome.ssl.berkeley.edu.

2014.

[4] CESARIO E, de CARIA N, MASTROIANNI C, TALIA D.

Distributed data mining using a public resource computing

framework [M]// Grids, P2P and Services Computing. Springer, 2010:

33−44.

[5] Berkeley Open Infrastructure for Network Computing (BOINC)

J. Cent. South Univ. (2014) 21: 3864−3872

3872

[EB/OL]. http://boinc.berkeley.edu/. 2014.

[6] PATNI J C, ASWAL M S, PRAKASH O M, GUPTA A. Load

balancing strategies for grid computing [C]// International

Conference on Electronics Computer Technology. Kanyakumari,

2011: 239−243.

[7] URBAH E, KACSUK P, FARKAS Z, FEDAK G, KECSKEMETI G,

LODYGENSKY O, MAROSI A, BALATON Z, CAILLAT G,

GOMBAS G, KORNAFELD A, KOVACS J, HE H, LOVAS R.

EDGeS: Bridging EGEE to BOINC and XtremWeb [J]. Journal of

Grid Computing, 2009, 7(3): 335−354.

[8] Korea@Home [EB/OL]. http://www.koreaathome.org/eng/. 2010.

[9] KACSUK P, KOVACS J, FARKAS Z, MAROSI A C, GOMBAS G,

BALATON Z. SZTAKI Desktop grid (SZDG): A flexible and

scalable desktop grid system [J]. Journal of Grid Computing, 2009,

7(4): 439−461.

[10] VLADOIU M, CONSTANTINESCU Z. Development journey of

QADPZ–A desktop grid computing platform [J]. International

Journal of Computers, Communications & Control, 2009, 44(1):

82−91.

[11] Entropia [EB/OL]. http://enterthegrid.com/. 2014.

[12] United devices [EB/OL]. http://www.univa.com/. 2014.

[13] International desktop grid federation [EB/OL]. http://

desktopgridfederation. org/applications/. 2014.

[14] PATAKI M, MAROSI A C. Searching for translated plagiarism with

the help of desktop grids [J]. Journal of Grid Computing, 2013, 11(1):

149−166.

[15] GIL J M, KIM M. A log analysis system with REST Web services for

desktop grids and its application to resource group-based task

scheduling [J]. Journal of Information Processing Systems, 2011,

7(4): 707−716.

[16] BOUGUERRA M S, KONDO D, TRYSTRAM D. On the scheduling

of checkpoints in desktop grids [C]// 11th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing. Newport Beach,

CA, USA, 2011: 305−313.

[17] WANG D, GONG B. On the checkpointing strategy in desktop grids

[J]. Lecture Notes in Computer Science, 2012, 7648: 217226.

[18] DOMINGUS P, SILVA J G., SILVA L. Sharing Checkpoints to

improve turnaround time in desktop grid computing [C]// 20th

International Conference on Advanced Information Networking and

Applications. Vienna, Austria, 2006: 6−11.

[19] XtremWeb [EB/OL]. http://www.xtremweb.net/index.html. 2014.

[20] KWOK Y K R. Peer-to-peer computing: Applications, architecture,

protocols, and challenges [M]. CRC Press, 2011: 8−9.

[21] FELDMAN R M, VALDEZ-FLORES C. Applied probability and

stochastic processes [M]. Springer, 2010: 115−132.

(Edited by YANG Bing)

