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Abstract
Computing is progressively shifting to handle larger and larger collections of data. It is not 
uncommon that databases in the domains of health, biology, genomics, physics, astronomy, 
and engineering size in a range from gigabytes to petabytes. Moreover, the modern statist-
ical approaches to knowledge discovery in raw data, usually named machine learning or 
data mining, are intrinsically computational intensive. As a result, more and more power 
and storage capabilities are needed.

The usual way to obtain high computing performances is to aggregate several off-the-shelf 
CPUs in  ad-hoc networks of dedicated commodity PCs (clusters) or exploiting idle re-
sources of non-dedicated workstations (Desktop Grid). Obviously, distributed computing 
requires more than connecting several CPUs and several hard drives by wires. The real 
challenge is coordinating tasks execution and data storage on such systems.

The research on grid architectures consistently focused on designing middlewares to allow 
programmers to manage large disparate resources, often forgetting that the acceptance of a 
software tool is often a problem of human and economic factors rather than a technical as-
pect. A programmer, like any other user, should have an interface that abstracts the com-
plexity of the distributed system, allowing him to develop large scale applications in a not 
dissimilar way from the small local ones.

In recent years, the business software community is promoting a Java-based solution called 
In-Memory Data Grids, which has received only a little attention from the scientific soft-
ware developers. In-Memory Data Grids provide a simple access interface, thanks to their 
abstraction of the familiar local data structures. In addition, In-Memory Data Grids are 
well suited to exploit the new MapReduce programming model, specifically designed to 
provide an easy and error-free environment for parallel distributed programming.

In this work are explore the opportunities of applying In-Memory Data Grids in data min-
ing applications, providing an overview of parallel and distributed computing covering cur-
rent Java approaches and their applications in data mining and machine learning, and In-
-Memory Data Grids as a novel approach to massive dataset handling. Then, several In-
-Memory Data Grids implementations are explored to understand their specific character-
istics and an architecture based on Data Grids is compared to a classic grid implementation 
of a specific machine learning algorithm.
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1 Introduction

Computing is progressively shifting to handle larger and larger collections of data. The trend 
is the same in both business and scientific applications, but in science, a new approach to re-
search is greatly contributing to the growth of the data size explored and generated. Classic-
ally, scientific data collections were thought as a reasoned catalogue of relevant facts organ-
ized ex-ante by a domain expert or they were collected to verify a specific theoretical hypo-
thesis. Instead, nowadays has become common in many disciplines the idea of collecting the 
raw data and then using powerful statistical methods to identify patterns and rules ex-post.

It is not unusual that databases in the domains of health, biology, genomics, physics, astro-
nomy, and engineering size in a range from gigabytes to petabytes. Moreover, modern stat-
istical approaches to knowledge discovery in raw data, usually named machine learning or 
data mining, are intrinsically computational intensive. As a result, more and more power 
and storage capabilities are needed.

Starting from the ‘90s, the only feasible way to obtain high computing performances is to 
aggregate several off-the-shelf CPUs or GP-GPUs. These can be organised according three 
main architectures:

– custom hardware connecting thousands of processors1 in big parallel machines;

– ad-hoc networks of dedicated commodity PCs (clusters);

– aggregate resources of non-dedicated workstations (Desktop Grid).

The scientific community has soon recognized the value of connecting and sharing these re-
sources, and great efforts have been made in Europe, USA, China and Japan, to create the 
infrastructures known as Computational Grids. Nevertheless, many small laboratories and 
research groups still have no access to institutional grids, and lack of the budget and the 
technical staff needed to handle large clusters by themselves.

For such users, even the lower end of the multiprocessor spectrum can be beyond their pos-
sibilities. A medium-range dual 4-core CPU system costs less than 4-5 times an equivalent 

1 Such as the IBM Roadrunner (6,912 dual-core AMD Opteron plus 12,960 Cell processors), the Cray Plei -
ades (51,200 Intel Xeon) or, at the lower end, the Asus ESC 1000 (960 NVIDIA Tesla core).
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lower-end 4 processors system2. And increasing the number of processors, the curve of the 
price for processors/cores became further stepping. Thus, there is a clear trend of replacing 
high end systems with cheapest solutions which aggregate standard PCs using Ethernet net-
works.

Obviously, distributed computing requires more than connecting several CPUs and several 
hard drives by wires. The real challenge is coordinating tasks execution and data storage on 
such systems. While there are many frameworks that provide tools for distributed comput-
ing in grid and P2P architectures, as well as many systems that provide coordinated data 
storage across a network, there are only few systems that elegantly integrate both. In recent 
years,  the business  software  community is  promoting a  new solution called  In-Memory 
Data  Grids3,  which  has  received only a  little  attention  from the  scientific  software  de-
velopers.

For a long time, scientific applications were identified with classic mathematical computa-
tions, such as matrix manipulation, Fast Fourier Transform, or partial differential equations 
solution, thus identifying scientific software in essence with  number-crunching. Unfortu-
nately,  this  vague definition does not  help in  characterizing scientific  software and it  is 
suited for engineering applications, image processing tools, financial forecasts, and even for 
many video games. In comparison, many statistical-based methods have instead a high data 
access ratio with relative elementary operations in which the computational cost of access-
ing the data could be comparable or above the cost of actually performing the process. Thus, 
performing data mining  on a distributed system moving data from a central repository may 
not worth the cost and time in terms of bandwidth. Therefore, for data sets that are com-
monly processed several times, it makes sense to store them in a distributed way, at least for 
the experiment timeframe. 

The research on grid architectures consistently focused on designing middlewares to allow 
programmers to manage large disparate resources, often forgetting that the acceptance of a 
software tool is often a problem of human and economic factors rather than technical as-
pects. A programmer, like any other user, should have an interface that abstracts the com-
plexity of the distributed system, allowing him to develop large scale applications in a not 
dissimilar way from small local ones.

Scientific  applications  have  a  specific  developing  model.  In  software  engineering,  de-
velopers and final users are usually considered as two distinct communities: the users are 

2 For example, in November 2009, a dual dual-core Xeon R410 Dell server costes € 1,099, while a machine 
with equivalent hardware but 4 processors costed € 10,179.

3 Do not confuse the well explored topic of Data Grid as intended in [CFKS+01], which refers to something 
similar to a global virtual filesystem, with the In-Memory Data Grid described ahead.
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the “owners” of the problem, and the developers produce the software tools to solve the 
problem. This distinction does not cover the reality: in business and enterprises, advanced 
users have the habit of automatize or customize their office productivity tools, e.g. creating 
Microsoft Excel macro. Even home users who create complex web sites or book catalogues 
for themselves are not rare. These activities of creating, modifying or automatizing software 
artefacts are usually referred as End-User Development [cacm][Seg07].

In the landscape of End-User Development, scientific users hold a special place. Research-
ers are not usually frightened by the challenge of learning programming languages,  and 
there is a long tradition of scientists developing their own software solutions to prove their 
theoretical models. Hence scientific software production has its own point:

– The distinction between developer and user is fuzzy: often there is no “external” cus-
tomer and the primary user of the code is the developer himself, who want to add 
functionalities to advance in his research. Even when the application is shared with 
other users, the code often requires additions or modifications to be useful, and ex-
ternal users are supposed to code themselves their additions.

– Most developers are domain experts, not computer specialists: often the developers 
have no computer science or software engineering formal background, nor experi-
ence in professional  software development.  Project  leaders  usually find easier  to 
teach to a domain scientist how to write the code than to explain to a computer spe-
cialist the deep scientific phenomena being captured by the code.

Unfortunately, empowering End-Users to develop they own applications is not a risk-free 
process. According to several investigations [CLHK+06][Seg08], scientific software devel-
opment follows some typical paths:

5
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– Science and portability are of primary concerns, while performance is not the driving 
force: even in projects based on parallel programming, where the code performance 
is clearly an important goal, the primary interest of developers is the scientific accur-
acy. Furthermore, these developers are aware that their code will be often used for 
decades, during which increasing performances will be achieved through new hard-
ware. Therefore they spend more effort on portability than on speed, scalability and 
efficiency. For the same reason, the tuning for a specific system architecture is rarely 
performed.

– There is high turnover inside development teams in academic and research environ-
ments, where many project members, such as postdocs and graduate students, are in-
volved for short periods. There is also a limited sharing of code and applications 
with other users in the same domain. Often, there is the assumption that only the de-
velopers can understand their own code. This result in poor support and documenta-
tion.

– There is little reuse of code and frameworks, even when developed internally. Third 
party and externally developed softwares and tools are viewed as a major risk factor 
and avoided. Often modern productivity tools, such as RAD, are avoided in favour 
of old-style ones.

– It is very difficult to verify whether the software is correct or not: in many partly-un-
derstood domains, the developers do not know the “right” answer. In the case of un-
expected output, it is not clear where to find the source of the problem: if it is the un-
derlying scientific model to be incorrect, or its translation in an algorithm, or if there 
is a genuine bug in the software.

A lesson on the attitude of scientists in developing software can be learned from the past fif-
teen years of parallel computing applications. In the cluster environment, years ago there 
was the choice between MPI (Message Passing Interface) and PVM (Parallel Virtual Ma-
chine). Despite the extra features that PVM offered, such as load balancing and fault toler-
ance, MPI’s simplicity won out and, for many years, MPI has been the de facto standard in 
parallel programming and the primary parallel computing toolkit for most of the supercom-
puting centres. Nowadays, the relevance of MPI is decreasing due to several reasons: it is 
not well supported in many grid environments, Java is replacing C without offering MPI 
binding, and parallel programming community is now mainly focused on multicore and GU-
GPU technologies. However, if a new paradigm has to be adopted, it must provide simpli-
city.
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Java-based In-Memory Data Grids provide such simplicity, thanks to their abstraction of the 
familiar local data structures. In addition, In-Memory Data Grids are well suited to exploit 
the new MapReduce programming model. Although MapReduce in its essence could be see 
as an application of the classic Divide&Conquer technique, it was specifically designed to 
provide an easy and error-free environment for parallel distributed programming.

The work reported in  this  dissertation aims to explore the opportunities of applying In-
-Memory Data Grids in data mining applications and it is organized as follows:

– In Chapter 2, we provide an overview of parallel and distributed computing covering 
current Java approaches and their applications in data mining and machine learning, 
Desktop  Grids  architectures  which  exploit  existing  underused  computational  re-
sources, and In-Memory Data Grids as a novel approach to massive dataset hand-
ling;

– In Chapter 3, several In-Memory Data Grids implementations are explored to under-
stand their specific characteristics and evaluate their performances;

– In Chapter 4, an architecture based on Data Grids is compared to a classic grid im-
plementation of a specific machine learning algorithm and the results obtained are 
applied to develop a plugin for an existent data mining application;

– In Chapter 5, the conclusions are presented plus some hypothesis for future work.

In  the  Appendix,  a  survey  of  the  existing  In-Memory  Data  Grid  implementations  is 
provided.
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2 Background

In recent years, the idea that scientific researches could be performed digging in huge col-
lection of raw data has become a common thinking in many fields, such as biology, social 
sciences, drug discovery, etc... This novel approach, known as e-Science, leverages in com-
putationally intensive tasks carried out in distributed networks, composing external services 
and accessing to immense data sets.

At the same time, scientific applications have evolved from old-days command line tools for 
matrix  manipulation,  Fast  Fourier  Transform,  sequence  alignment,  or  partial  differential 
equations solution. Nowadays scientists require modularity, nice GUIs, capability to access 
to web-services or databases, portability, and other features typically found in business ap-
plications. At the extreme end of the scientific software spectrum, the  e-Scientist suggests 
that research can be carried out composing existing distributed resources, promoting the 
point&click Workflow Manager (WfM [wfmc]) as the ultimate scientific tool at the end-user 
level.

This  has produced a plethora of WfMs applications,  such as Triana  [tri],  Taverna  [tav], 
Kepler [kep] and others. Many of them are mainly designed as tools for the orchestration of 
remote services, as the current vision in enterprise software, where the SOA (Service Ori-
ented Architecture) approach is based on the composition of Web Services. In these WfMs, a 
node in the workflow corresponds to a service and the entities flowing in the graph are con-
trol data.

The basic idea under the WfMs is that the researcher will prepare and execute interactively 
complex workflows to visually discover unsuspecting data relations. In this envision, the 
computation is performed by backend grid services, and the WfM itself has not special per-
formance requirements. Instead, it needs a wide support for different connection protocols 
and a modular architecture to host third-part plugins. These features are by far easier to sup-
port with Java than with other environments. And, in fact, almost all of the new generation 
WfMs are developed using this language.

As a result, and despite the criticisms regarding its poor performances, Java is now wide-
spread in scientific applications. Actually, the performances of Java are not as bad as word-
of-mouth says and scientific applications are not composed by number-crunching routines 

8



only. Moreover, Java is an easy tool to start with for programming and this often wake up 
the do-it-yourself attitude in the end-users.

The “bad reputation” within the High Performance Computing community [PBGP+01] stuck 
to Java for a long time is nowadays unjustified.  Just-in-Time (JIT)  compilers,  advanced 
Garbage Collectors and other improvements have lift the performances of modern JVM not 
so far from traditional FORTRAN and C languages, with results depending more on the 
quality  of  the  algorithms  than  the  language  itself  [Bul01][Goe05][ABCD+08][WN08]. 
Moreover,  Java has  a  built-in  support  for  enhanced multithreading since version  5,  and 
therefore it allows for an easy exploitation of modern multi-core processors.

Probably, this progressive shift to Java in the context of scientific applications also benefits 
from the specific attitude of scientists, who are not worried by the challenge of learning pro-
gramming languages and development tools  [Seg07][CLHK+06]. As a result,  researchers 
from diverse domains, such as biology, chemistry, astronomy, operational research, social 
studies, and even humanities, wanted to build their own software tools and found in Java an 
easy-to-learn environment to start with. Unfortunately, good-willing cannot replace specific 
skills and the resulting products are usually strong in domain-specific functionalities, but 
lack in documentation, interface functionalities, long term support and other side features.

These developers soon recognized that the computational power they need could originate 
from exploiting networks of commodity PCs and many scientific softwares have some built-
in capability to run in a distributed fashion. But, these developers often preferred to build 
their home-made solutions instead of using a stable third-part toolkit for distributed compu-
tation. The reasons for this choice come sometimes from a kind of bias, such as the not-in-
vented-here syndrome, but other times sound reasonable, such as having a partial view on 
state-of-the-art technology or fearing of sticking to a specific vendor. Unfortunately, distrib-
uted programming is difficult and fraught with danger: besides concurrency issues such as 
race conditions, deadlocks, livelocks, and other failures, there are also problems specific to 
distributed systems such as network unreliability, security and trustworthy, and even politic-
al issues related to span through multiple administrative domains [Deu94]. As a result, many 
of these custom programs are suboptimal (when not buggy), hard to maintain, and difficult 
to setup (often due to their poor documentation).

A wide body of research exists concerning the foundation of distributed Java-based parallel 
processing and data storage in grid environments, but only few hints are given to program-
mers who want to build an affordable and reliable real application. The solutions analysed 
here lay in the confluence of many topics:
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1. Data mining and machine learning applications,  intended as widely used general 
purpose scientific tools, as examples of Java-based and highly resource-demanding 
applications;

2. Java integration with grid computing, and specifically Desktop Grids, as an architec-
ture which enables small organizations to exploit existing underused computational 
resources;

3. In-Memory Data Grids as a novel approach, born in  the business software com-
munity, for massive dataset handling.

In order to provide an overview, each area will be explored in turn in the next sections.

2.1 Data mining and machine learning tools for scientific research

Data mining and machine learning softwares are especially interesting because, at the same 
time, they are a research topic and a research tool. It is not surprisingly that this is a prolific 
field for academic software production. Well known examples are the R programming lan-
guage from the University of Auckland (NZ)  [IG96], RapidMiner,  initially developed as 
YALE (Yet Another Learning Environment) at the University of Dortmund (D) [MSKW+06], 
Weka born in the University of Waikato [WF05], KNIME from the University of Konstanz 
[BCDG+08], Orange developed at the Laboratory of Artificial Intelligence of the University 
of Ljubljana (SL) [DZLC04], and many others.

Many of these applications, as well as many commercial ones such as IBM SPSS Modeler 
(formerly  SPSS Clementine®)  [spss] or Accelrys  Pipeline  Pilot  [app],  are  based  on the 
WfMs paradigm. But in these cases, they are the visual incarnation of the dataflow program-
ming model [Sut66], in which nodes exchange data rather than controls.

As an example of the progress in data mining applications, it is possible to follow the evolu-
tion of applications which implement decision trees, a basic machine learning algorithm. In 
the early '90s, when Ross Quinlan released an implementation of his C4.5 algorithm for de-
cision trees  [Qui93], the typical usage pattern of the program was the following:

– using a text editor, prepare two files: a .names file with the attribute names and a 
.data file containing the training instances;

– using standard Unix tools such as grep, cut, or awk, filter or transform the data file 
according the needs;

– launch from the shell the  c4.5 program to form a decision tree from a file of ex-
amples and save the tree in an intermediate file;
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– then, using the c4.5rules program, re-read the unpruned decision tree to form pro-
duction rules and save them in another file;

– finally, run the consult program to classify items using the rules previously saved 
[Ham00].

It is true, this operations pipeline might be automated by using BASH scripts or similar 
techniques, but combining several programs each one using different file formats and option 
switches, requires considerable computer skills and does not allow for an interactive ap-
proach to data mining.

In the late '90s, a new generation of tools, which have their prototype in Weka, introduced a 
coherent interface, available both as CLI and as GUI, to perform and combine all the opera-
tions of the pipeline. As an example, performing the same C4.54 based classification re-
quires a single operation from the command line  [WF05]. Using different arguments, the 
same command allows the user to invoke different algorithms and, moreover, the addition of 
filters and pre- or post-process operations is quite straightforward, since it requires only to 
set additional parameters:

Using the graphical interface Weka Knowledge Explorer, the same operation of  Listing 1 
could be performed interactively and incrementally, as shown in Figure 2.

From the user perspective, the major improvements are that all the algorithms offer the same 
interface, the process pipeline can be saved and repeated at will, and using the GUI the pro-
cess is interactive, allowing the user to tune the parameters and immediately get the feed-
back.

However, this is still a pipeline solution which produces linear execution stages, without 
branch, conditions, loops, parallelism, etc... With newer releases, Weka introduced addition-
al interfaces, named Experimenter and KnowledgeFlow, to offer some of these functions.

4 C4.5 release 8 algorithm re-implemented in Java is named J48 in Weka, probably due to copyright reasons

11

$ java weka.classifiers.trees.J48 -C 0.25 -M 2 -t golf.arff -d 
golf.model
...

$ java weka.classifiers.bayes.NaiveBayes -D -t golf.arff -d golf.model
...

Listing 1: A command line session with Weka a J48 and a naïve Bayes classifiers applied to the same  
dataset



At the beginning of the XXI Century, the workflow paradigm has become predominant. In 
the data mining tools panorama, it has been adopted initially by commercial products, and 
later on by academic open source softwares. One of the latter is KNIME, in which the work-
flows are visually composed using a graphical interface5. The C4.5 classification problem 
already discussed would appear in KNIME as in Figure 3.

5 Visually designed workflow can be later run in a batch mode
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a) data file loading b) select and applying filters

c) generate C4.5 classification tree d) visualize the data results
Figure 2: A Weka classification pipeline



This evolution has had several implications:

– the user interface and its extendibility capability have become more important than 
pure performances, resulting in the general acceptance of Java as the elective lan-
guage for developing this class of applications;

– the users belong now to a wider audience6 and often they even not have the basic 
computer skills to configure complex systems or to correctly evaluate the resources 
needed for performing some tasks;

– the users want, at the same time, to access to very large datasets, to apply complex 
algorithms and to get the answers immediately.

This new scenario has lead to a computational power “hungry” that could be satisfied only 
by distributed systems. In fact, many of the new tools use ad-hoc distributed computation 
facilities, such as the Weka Distributed Experiment, or they can access to specific clusters, 
such as the KNIME  plug-in for Sun Grid Engine, or they use general grid infrastructures,  
such as Triana through the JavaGAT module.

6 As an extreme example, data mining has become a valuable tool for online poker players http://www.card-
player.com/poker-news/8221-online-poker-the-data-mining-dilemma (last accessed 31 Dec 2009)
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2.1.1 Reference applications
To understand the state-of-the-art and the current practices within developers, we deeply 
analysed a sample of existing data mining applications, providing that they are written in 
Java, have an academic origin, are licensed according to open source statements (thus allow-
ing to explore the source code), have a good reputation within researchers, and a lively users 
community witnessed by updated discussions on forums and mailing lists. The applications 
selected according to these criteria are Weka and KNIME. In addition, we have analysed 
two young projects which explicitly stated to cope with memory problem, JDMP and Debel-
lor.

Weka7 (Waikato Environment for Knowledge Analysis) was developed in the late '90s by 
Witten and Frank at the University of Waikato (New Zealand) [WFTH+99] and it is one of 
the most established data mining suite of tools8. In 2006, the Pentaho Corporation acquired 
the license from the University for commercial application of Weka, but the software itself 
is still  available as free software under the GNU General Public License. Besides using 
Weka as-is, many other machine learning applications integrate the Weka code in their al-
gorithms library, making Weka de-facto standard in Java-based machine learning tools. In 
the suite, the built-in feature named Distributed Experiment, allows to spread a cross valida-
tion procedure among several machines, but it results cumbersome to use. Aside this, sever-
al  projects  have  tried  to  extend  Weka  in  order  to  exploit  computational  grids  [CM02]
[KZK04][SHSS+07][TTV05].

KNIME (Konstanz Information Miner) has been developed since 2005 by the group headed 
by Michael  Berthold  at  the  University  of  Konstanz  (Germany)  [BCDG+08].  KNIME is 
based on the Eclipse platform and exposes a modular and extensible design. It represents the 
new generation of data mining applications, in which the user visually composes data ana-
lysis workflows. Also KNIME offers commercial support, thanks to a spin-off company. 
KNIME was originally released under Aladdin Free Public License, but it has later switched 
to the GNU General Public License starting from version 2.1. KNIME can be integrated 
with the Cluster Execution Plugin to exploit a Sun Grid Engine computer cluster [knc]. Oth-
er distributed architectures have been evaluated in the past [SMB07], but no implementation 
has been publicly released.

JDMP (Java Data Mining Package) is a Java library for data analysis and machine learning 
rather than a fully-featured application, but it offers a simple graphical user interface. It has 

7 Sometimes spelled WEKA

8 KDnuggets, a website specialised in datamining resources, reported Weka as the most used open source 
tools for many years. Recently, new competitor, including KNIME, took over or eroded the position of  
Weka. http://www.kdnuggets.com/polls/2009/data-mining-tools-used.htm (last accessed 30 Dec 2009)
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been developed at the Technical University of Munich (Germany) starting from 2008. Some 
of the explicit goals of JDMP are the handling of large data sets that do not fit completely 
into main memory and the support for parallel processing in a computer cluster  [Arn09]. 
These features are built on a backend library for matrix manipulation named UJMP (Univer-
sal Java Matrix Package)  [ABN09]. JDMP is released under GNU Lesser Public License 
(LGPL).

Finally, Debellor is a framework for data mining and machine learning, developed since 
2008 at the Warsaw University (Poland) [Woj08]. Even if it does not offer any GUI yet, the 
programming model is based on data flow, which seems suitable to be implemented using 
Data  Grids.  Debellor  addresses  the  problem of  handling massive  datasets  applying data 
streaming techniques. The application and the library are distributed under GNU General 
Public Licence.

2.1.2 Java issues with large data set
Memory requirements issues are a well known topic in high performance computing studies. 
Many of the known solutions suppose the direct memory manipulation, unfortunately not 
supported by Java. Thus, Java scientific applications have to face with both general issues 
and Java-specific ones.

In machine learning, especially when applied to bioinformatics or computer vision, there is 
a frequent need to process huge volumes of data, too large to fit in main memory. As an ex-
ample, the OutOfMemoryException was a recurrent topic in Weka and KINIME mailing 
lists and forums9. Several causes contribute to make memory one of the major issues in 
Java-based data mining applications. Aside problems related to algorithms unable to handle 
data streaming, many others are tied to the memory management mechanism used by a Java 
system.

In the common commodity PCs architecture, a 32 bit hardware, 32 bit operative system10, or 
32 bit Java Virtual Machine cannot usually handle more than 4GB of physical and virtual 
memory. Although there are some workarounds, such as enabling the PAE (Paging Address  
Extension) extension on Windows or recompiling the Linux kernel with HIGHMEM op-

9 https://list.scms.waikato.ac.nz/mailman/htdig/wekalist/   http://forums.pentaho.org/forumdisplay.php?f=81 
and http://www.knime.org/documentation/faq (last accessed 31 Dec 2009)

10 32 bit OSs are still the majority in common usage. It is hard to obtain statistics on this topic. For home  
users, Steam, a platform for online gaming, reported in December 2009 that only 27% of the 2.3 million of 
users has a 64 bit release of Microsoft Windows system (http://store.steampowered.com/hwsurvey). For 
web surfers, the Wikimedia Fundation reports, in Novemebr 2009, that more than 56% of about 4.5 billion 
of accesses was performed using Microsoft Windows XP, which was mainly distributed in the 32 bit ver-
sion (http://stats.wikimedia.org/wikimedia/squids/SquidReportOperatingSystems.htm)
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tions, these are demanding for a normal user. In addition, many 32 Java Virtual Machines re-
quire to allocate the heap in contiguous memory space which further reduces the available 
memory. Providing enough memory could be a problem even on 64 bit platforms: most of 
the consumer hardware does not support more than 16 Gbyte of physical RAM, and 64 bit  
JVMs use about 50% more memory than a 32 bit one to allocate the same object set.

Many of the In-Memory Data Grids products claim to mitigate this problem in two ways. 
The first,  more traditional, is to use the disk as a memory extension and acting as a L1 
cache. The second, is to exploit the aggregation of the memories of all the nodes in the 
cluster, presenting them as an unique heap to the local client. This second mechanism might 
work only when the Data Grid is configured for so-called  data partitioning. In replicated 
memory scenario, each node allocates the same amount of data, and the memory available 
to the application is limited to the smallest heap in the cluster.

2.1.3 Memory issues in data mining
The evolution of the data mining tools has had an impact on the memory requirements. 
Within single-task applications, the memory footprint is strictly related to the algorithm im-
plemented. Some of these algorithms allow a stream or incremental approach, in which the 
data are loaded item-by-item, used to computing a partial result and then discharged when 
consumed. This approach could potentially allow the analysis of huge datasets regardless 
the size of the available memory. Unfortunately, many of the known algorithms in machine 
learning requires to access to the whole dataset and in Java this means that all data must be 
materialized in memory.

Developers of data  mining and machine learning tools have progressively applied more 
sophisticated strategies to cope with memory problems. Weka simply ignores this: data are 
represented  using  the  class  weka.core.Instances which  wraps  a  non  synchronized 
Vector replacement named weka.core.FastVector. Being a concrete class rather than 
an interface, it is not easy to replace Instances with a better implementation. Moreover, 
each node in the pipeline duplicates, in the meaning of Java reference handling, the data in-
stead of providing a new view on them. As a result, long pipelines require a huge amount of  
memory. In applications similar to Weka, even if a single stage could have relative small 
memory requirements, the data of all processing stages are kept in memory, thus resulting in 
a very fast memory exhaustion. 

Newer and more engineered applications recognized that memory in each stage (node in a 
workflow) could be managed independently, allowing sophisticated strategies. KNIME em-
ploys a heuristic caching strategy to move part of a data table to the hard disk when it be-
comes too large to fit the memory. This does not solve the problem at the node level, but 
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limits the overall memory requirements. As a collateral benefit, it offers a checkpointing 
functionality, since intermediate results are  passivate on the disk and can be later restored 
within two user sessions. 

Another strategy, at the moment applied only in few applications, is switching to a stream 
architecture which does not enforce data materialization. Debellor [Woj08] is a young data 
mining library based on this concept. Data are passed between interconnected algorithms 
one-by-one, as a stream of items that can be processed on the fly, without full materializa-
tion.  Unfortunately,  Debellor  at  this  stage  includes  few stream-oriented  native  modules, 
while other algorithms are imported from the Weka library, thus resulting in buffering which 
re-raises the same problem of Weka.

2.1.4 Exploitable parallelism in data mining
Thanks to the recent diffusion of multicore CPUs, detecting program patterns which might 
benefit of parallelism is considered again an hot topic. Data mining applications, being com-
posed of several stages of processing, offers many points for insertion of parallel solutions.

Specifically, in WfM-based data mining, there are some elective ways to exploiting parallel-
ism in the workflow enacting:

– the concurrent execution of different paths in the workflow;

– the parallel processing of the rows of the data table;

– the application of parallel versions of machine learning algorithms;

– the concurrent execution of cycles or sub-workflows.

The parallel execution of different paths in a workflow is an obvious technique inherited 
from the overall data flow design and not tied to data mining applications. In Java based 
WfMs, due to the native support for multithreading, this technique is widespread. In both 
Weka Knowledge Flow and KNIME, for example, each node runs in its own thread.

Many tasks in data mining, especially those related to the data preprocessing such as row 
filtering or field transformation, handle the rows as independent data chunks and allow par-
allel processing. Using a framework such as the  java.util.concurrent package, this 
parallelization strategy is easily exploitable even by casual programmers. Nevertheless, this 
technique is not widely adopted, often because the core libraries of many applications have 
been designed before Java 5 and they are not easily portable to this new idiom.
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The development and the efficient implementation of parallel versions of machine learning 
algorithms is instead a matter for Computer Scientists. Many machine learning concepts im-
ply strong dependencies and correlations in data which require a case-by-case analysis.

Often, complex or multistep operations in data mining might be considered as whole, and 
handled as a single operation reiterated with different parameter values (parameter sweep). 
We recall for example the cross-validation procedure, in which the data are repetitively par-
titioned into complementary subsets, called the training set and the validation set, the first 
used to train a machine learning algorithm according to some parameter values and the 
second to estimate the resulting model errors. This is a very expensive, but embarrassingly 
parallel, procedure and is not a surprise that almost all data mining applications support par-
allel or distributed cross validation.

A comprehensive bibliographical reference on the research on distributed data mining is 
kept updated by [BDLK].

2.2 Java-based grid computing

Computational  grids  are  usually  classified  under  two  categories,  institutional  grids and 
Desktop Grids. Institutional grids aim to provide a transparent, secure, and coordinated ac-
cess to various computing resources such as supercomputers, clusters, databases, scientific 
instruments, or storage facilities owned by different institutions by means of virtual organ-
izations, which aggregate heterogeneous, large-scale, and multiple-institutional resources. 
On the other hand, there is the consensus of many authors [Cap07][CBKB+08][VC08] that 
the main characterization of Desktop Grids is the design goal of harvesting the idle CPU 
cycles of desktop Personal Computers (PCs) assigned to usual home/office activities in or-
der to accelerate the performances of a third part application. The PCs can be connected 
over  the  Internet,  in  which  case  participation  is  usually  on  voluntary  basis,  or  in  a 
corporate/university network.

The earlier prototype of Desktop Grid was SETI@Home [ACKL+02], released in May 1999 
with the original goal of analysing radio signals searching for clues of extra terrestrial intel-
ligences. Besides this fascinating, but vane, intent which persuaded over 200,000 people in 
the first week and more than 3.83 million after three years to devolve their resources to the 
project, SETI@Home was a formidable proof of the viability and practicality of the Desktop 
Grid concept. The infrastructure underlying SETI@Home was generalized by David Ander-
son to create the Berkeley Open Infrastructure for Internet Computing (BOINC) [And04]. 
This and similar projects are based on a central service which dispatches the workloads, 
consisting of data to be analysed, to the applications running on remote PCs. The edge node 
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application is dedicated and vertically integrated, and no generic use of such computing re-
sources is possible.

Several other architectures of Desktop Grid have been proposed, either from academy and 
industry, and for a complete taxonomy we refer to [CBKB+08].

2.2.1 Accessing the grid
The main components of a Desktop Grid infrastructure are the resources and the scheduling 
managers, which take care of keeping a registry of the resources, allocating them to the user 
according his request, dispatching the tasks to the resources, collecting the results, handling 
failures, and providing the required security level.

From the perspective of a programmer who wants to exploit a grid service for his applica-
tion, the main concern is how to access to the resources of the Desktop Grid and how the 
tasks (and the data) have to be described and encoded.

In early design, the use of computational grids mimics the familiar local interaction, in the 
same way of a SSH remote command execution. As an example, using the old releases of-
Globus Toolkit to run the date command on the remote host gridnode.somedomain, re-
quires to type the command in the shell, as shown in Listing 2.

To be effective, the grid must offer some programmable entry points through an Application 
Programming Interface (API). According to Mateos et al. [MZC08], it is possible to identify 
the granularity of a grid access service “as the granularity of the individual components11 
that constitute an executing gridified application from the point of view of the grid middle-
ware”,  where  the  components  are  the  execution  units  (jobs or  tasks)  to  which  the  grid 
provides scheduling and execution.

Grid access granularity takes continuous values ranging from the smallest to the largest pos-
sible component size. The spectrum can be divided into three main classes:

– Coarse-grained: the application element executed on the grid is a complete applica-
tion behaving as a “black box” that receives a predetermined set of input parameters 
(e.g. a sequence of numerical arguments, input files, etc...), performs some computa-
tion and then returns back the result to the executor using the same mechanism of the 

11 The authors use the term “component” to refer to any single piece of software included in a larger system
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$ globus-job-run gridnode.somedomain /bin/date
… runs /bin/date on the remote host
$ globus-job-run gridnode.somedomain -s myprog
… transfers the program file myprog on the remote host and runs it

Listing 2: Sample of Globus Toolkit command interface (surce Globus Toolkit 2.4 manual)



input (e.g. the standard output, a result file). The application as-is cannot take ad-
vantage of distribution,  parallelization or scheduling to achieve higher efficiency. 
Access schemas provided by the Globus Toolkit  [Fos05], the BES/JSDL standard 
[jsdl],  or  the  Condor submission  system  [LLM88],  are  well  known examples  of 
coarse-grained API.

– Medium-grained: the programmer identifies in the application the modules suitable 
to run concurrently and remotely. Then, in the initialization phase, the middleware 
maps the modules on existing remote services or transfers the executables on remote 
nodes.  The  application  accesses  the  modules  using  a  RPC-style  communication 
mechanism. Medium-grained access API are provided, as for example, by ProAct-
ive12 [CKV98], or by the GigaSpaces XAP when default component deployment is 
used [Coh09]. This approach could provide some capabilities of dynamic component 
deployment and invocation.

– Fine-grained: the distributed components are generated and spawned at runtime on 
the invocation of a method or procedure. A key difference with the previous categor-
ies is the ability to cope with recursive distribution methods. The programmer is re-
lieved of  scheduling and synchronization issues, while he can focus on parallelism 
and asynchronism. The middleware is not a pure access interface anymore and it 
must provide sophisticated execution services to efficiently deal with a potentially 
large number of tasks. Examples of fine-grained APIs are offered by the middle-
wares JPPF [jppf], Satin [vNMK+05], or GridGain [ggp].

Being the above classification based on the access framework used by the developer to build 
a grid-enabled application, it is worth noting that it could be a matter of perspective. If the 
user is  building a workflow, using a WfMs such as in Triana13 or  in Taverna,  a coarse-
grained grid is confined in a single node of the workflow graph and appears as a component. 
Many of the grid toolkits are bundled with a dedicated workflow manager, such as Karajan 
in the Java CoG Kit [LFGL01], or Pegasus in Condor.

Moreover, if the API is developed for a portable language with some built-in code serializa-
tion capability, such are Java or Python, even a coarse-grained API can be encapsulated in a 
finer interface. For example, we have  developed a framework for the Python language [BF-
SV09] in which two classes, Job and Grid, take care of all the logic involved in creating 
and launching jobs on a grid infrastructure.  The developer  of the client  application has 

12 The authors of [MZC08] classified ProActive as a coarse-grained middleware, but ProActive's active ob-
jects are clearly modules, not application. The same classification of ProActive as medium-grained could 
be found in [BBBC+06]

13 Triana can also establish Peer-to-Peer grids that connect Triana's instances running on different hosts
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simply to implement a subclass of Job, mostly just wrapping the existing code to be distrib-
uted, and then inserting in the main function few calls to the methods of Job. The frame-
work has been used to port an existing multithread medical image process application, de-
veloped for local use on multicore CPUs, on an infrastructure which offers a coarse-grained 
API [CBSA+03], changing only the invocation of threads with the dispatching of remote 
tasks.

From a Java programmer's perspective, the three classes just discussed could be exemplified 
as follow.  Well known coarse-grained computational grid APIs are the Globus CoG Kit and 
JavaGAT. Both toolkits allow to run remote programs, redirecting the standard input and 
output, and staging input and output files. Listing 3, based on the Globus CoG Kit, shows 
how to create from Java the descriptor for the batch execution of the Unix command  ls 
-la,  reading the  input  from the  file  testInput and  redirecting  the  output  to  the  file 
testOutput.

The  JobSpecification will be passed to the runtime which will submit the task to the 
grid. Another Java fragment, using JavaGAT, is shown in Listing 4, where the execution of 
the application hostname is invoked, redirecting the output to the file hostname.txt. In 
this case, being JavaGAT an abstraction layer, the true grid infrastructure that will execute 
the task depends on an external configuration.

In both cases, exploiting a computational grid requires heavy file manipulations to handle 
input and output, very far from the usual Java programming style. Moreover, the exploita-
tion of the grid is limited to run executables already available on the remote hosts or, in rare 
cases,  to  portable  program staged-in  where  is  available  a  suitable  runtime  and security 
measures do not prevent this.
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JobSpecification spec = new JobSpecificationImpl();
 
spec.setExecutable("/bin/ls");
spec.addArguments("-l");
spec.addArguments("-a");
 
spec.setStdInput("testInput");
spec.setStdOutput("testOutput");
spec.setBatchJob(true);

spec.setAttribute("count","546");

task.setSpecification(spec);
Listing 3: Example of coarse-grained access to the grid (source Java CoG Kit examples wiki)



These limits are overcome when adopting a component based API. Starting from the release 
1.1 in 1997, the Java platform supplies a built-in framework for inter-process communica-
tion called RMI (Remote Method Invocation) [rmi]. RMI uses a RPC-style communication 
mechanism with object passing (using serialization [sun96]) inspired to Network Objects of 
Modula-3 [WRW96]. Using RMI, an object instantiated on one JVM can invoke methods on 
an  object  on  another  JVM, providing  that  the  invoked  object  implements  the  interface 
java.rmi.Remote. In such a way, the access to a remote object is almost transparent and 
requires only few additional  care compared to  usual  programming.  In fact,  most  of the 
home-made distributed modules are RMI-based. Several medium-grained grid toolkits are 
based on some extension or reinterpretation of RMI [SHW98][vNMH+02][p2pmpi].

The key difference between a distributed component service in a broad sense,  such one 
based on CORBA or Web Services, and a grid toolkit is that in the former the deployment of 
remote components is delegated to the administrator of the system, while in the latter the de-
ployment is part of the client program itself. As an example, in the first part of  Listing 5, 
based on ProActive, the node VN is obtained from the deployment description. Then, in the 
second part, an object of class Worker is deployed on the node, passing the params to the 
constructor, and the stub  charlie is returned. The methods of  charlie can be invoked 
later using standard Java calls, as in RMI. Note that the lifecycle of the remote object is in-
dependent from the launching program. In the case of medium-grained API, it is no evident 
how to efficiently distribute embarrassingly parallel tasks. The naïve solution seems to al-
locate the same object on different nodes and then apply some ad-hoc strategy to split the 
tasks between the nodes, but this requires a sensible effort by the programmer. 
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public class SubmitLocalJob {
public static void main(String[] args) throws Exception {

GATContext context = new GATContext();
SoftwareDescription sd = new SoftwareDescription();
sd.setLocation("file:////bin/hostname");
File stdout = GAT.createFile(context, "hostname.txt");
sd.setStdout(stdout);
JobDescription jd = new JobDescription(sd);
ResourceBroker broker = GAT.createResourceBroker(context);
Job job = broker.submitJob(jd);
while (job.getState() != Job.STOPPED

&& job.getState() != Job.SUBMISSION_ERROR)
Thread.sleep(1000);

}
}

Listing 4: Example of coarse-grained access to the grid (source GridLab “GAT Tutorial”)



It is advisable that an API design for parallel execution looks familiar to a Java developer. In 
this case, a more sounding pattern for a Java programmer would be offer by the standard 
java.util.concurrent package (j.c.u for short) and, specifically, by the interfaces 
Future and ExecutorService.

The model of  ExecutorService has been followed by several Java-based grid toolkits 
[Fer09]. As in Listing 6, within the JPPF framework [jppf], tasks extend the JPPFTask ab-
stract  class,  so  they  can  be  declared  on-the-fly  using  anonymous  classes,  packed  in  a 
JPPFJob and submitted to remote execution. The task, once completed, returns the result or 
re-raise  the  exception  occurred  remotely.  This  role  is  quite  similar  to  that  played  by 
Callable/Future in the j.u.c package, with the difference that Callable and Future 
are different interfaces rather than a single abstract classes.
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/***** GCM Deployment *****/
File applicationDescriptor = new File(gcmaPath);

GCMApplication gcmad;
try {

gcmad = 
PAGCMDeployment.loadApplicationDescriptor(applicationDescriptor);
} catch (ProActiveException e) {

e.printStackTrace();
return;

}
gcmad.startDeployment();

// Take a node from the available nodes of VN
GCMVirtualNode vn = gcmad.getVirtualNode("VN");
vn.waitReady();
Node node = vn.getANode();
/**************************/

// Set the constructor parameters
Object[] params = new Object[] { new IntWrapper(26), "Charlie" };
Worker charlie;
try {

charlie = PAActiveObject.newActive(Worker.class, params, node);
} catch (ActiveObjectCreationException aoExcep) {

// the creation of ActiveObject failed
System.err.println(aoExcep.getMessage());

} catch (NodeException nodeExcep) {
System.err.println(nodeExcep.getMessage());

}
Listing 5: Example of medium-grained access to the grid (source ProActive 4.2.0 documentation)



In the design of JPPF and other similar frameworks, it is crucial to provide mechanisms that 
allow the remote agents to dynamically transfer the classes in the executable binary form if 
it si not available locally. Otherwise, the remote agent will be able to execute only classes 
accessible to the local classloader, preventing to realize a real on-demand grid facility. Cur-
rently, not all toolkits provide this functionality. When it is supported, the classes dynamic-
ally loaded must be discharged when the application terminates, otherwise newer releases of 
the same application could produce conflicts between different class versions. The lifecycle 
of the task is thus tightly bound with the application which creates it, rather than with the 
agent executing it on the remote node.

Notice that the same framework can offer different access granularity. The base execution 
unit in GigaSpaces XAP is the  Processing Unit, a software component which bundles, a 
class conforming to the JavaBean convention regarding public methods,  a shared registry 
identifier, the dependent libraries and a XML deploy descriptor. But XAP also exposes the 
Async  API,  a  simpler  support  for  asynchronous  tasks  and  even  an  implementation  of 
j.u.c.ExecutorService if neither asynchronism nor task routing is required14.

14 http://www.gigaspaces.com/wiki/display/XAP7/Terminology+-+Basic+Components  and  http://www.-
gigaspaces.com/wiki/display/XAP7/Task+Execution+over+the+Space (last accessed 13 Jan 2010)
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public class JPPFTest implements Serializable {

   public void gridSqrt(final double d) throws Exception {
// create a JPPF job
JPPFJob job = new JPPFJob();
// give this job a readable unique id that we can use to
// monitor and manage it.
job.setId("Square Root Job");

// add a task to the job.
job.addTask(new JPPFTask() {

     public void run() {
       setResult(Math.sqrt(d));

  }
});

     JPPFClient jppfClient = new JPPFClient();
     List<JPPFTask> results = jppfClient.submit(job);
     System.out.println("SQRT: " + results.get(0).getResult());

     jppfClient.close();
  }
}

Listing 6: Example of fine-grained API: a task extending JPPFTask is declared on-the-fly using  
anonymous class, packed in a JPPFJob and submitted to remote execution.



Alternative to the model offered by the j.c.u executors, it is worth noting that the MapRe-
duce paradigm, introduced later in Section 2.3.3, has had a special impact in the design of 
this generation of frameworks. Many recent implementations, such as Granules  [PEF08], 
Satin, or GridGain, use a pure MapReduce model, based on a functional programming style, 
or a more general Divide&Conquer approach. This add the capability of splitting automatic-
ally the job into several tasks and then allocating them on different hosts using load balan-
cing or fault tolerant strategies.

Another feature often implemented in frameworks designed with a fine-grained program-
ming model is the auto-organization capability based on a P2P (Peer-to-Peer) architectures. 
From the programmer’s viewpoint this results in a network configuration reduced to minim-
um or, often, no configuration need at all. This contrasts with the common experience when 
working with RMI. Another great advantage is the ability of a P2P grid of completing the 
task, even taking a longer time, in case of crashing or unreachability of all nodes except the 
user’s client one.

2.2.2 Checkpoint and shared storage
In scientific computation it is frequent that a numerical calculation requires a long execution 
time, perhaps hours or even days, without any user interaction. If the computer crashes, the 
time and other resources spent as far are lost. Moreover, the user may wish to periodically 
interrupt the calculation, to check the intermediate results and adjust parameters if needed, 
or simply to use his computer for some other jobs. To cope with these problems, the calcula-
tion is periodically halted in some intermediate, but consistent, state (checkpoint) and the 
results obtained so far are saved in some persistent storage system. So that, if the calculation 
aborts, it might be restarted from the last available checkpoint. If the checkpoint system also 
allows to move a checkpoint from one host to another one, checkpointing can implement a 
dynamic load balancing facility.

In distributed computation, the presence of more failure points renders the previous scenario 
even worst, and checkpointing is a well known problem. In the current design of institution-
al grid frameworks, a checkpoint is a persistent snapshot of the running state of an applica-
tion. It exists in some storage system, such as one or more files or database records. Check-
pointing includes the ability to save and recover the application state on a single grid-con-
nected resource, and it could also include the migration of checkpointed jobs to other re-
sources, but it does not include the checkpoint and recovery of jobs running simultaneously 
across multiple computing resources [BHKM+04].

Checkpoint systems are classified as System-level and User-defined. System-level check-
point systems provide automatic, transparent checkpointing of applications at the operating 
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system or middleware level. The application is handled as a black-box, and the checkpoint-
ing mechanism has no knowledge about any of its characteristics. Typically, this involves 
capturing the complete process image of the application. User-defined checkpointing relies 
on  the  programmer  support  for  capturing  the  application  state.  A detailed  comparison 
between the two approaches can be found in [SS98], while in this work we focus on User-
-defined checkpointing.

2.2.3 Desktop Grids as deployment tool
From a certain viewpoint, grid tookits can be intended as software deployment tools, which 
execute the install, activate, and deactivate steps of the user application lifecycle. The main 
differences with other remote deployment methods, such as SSH remote execution or Mi-
crosoft  Active Directory Group Policy,  are the capability of selecting resource based on 
rules, such as “deploy on host having RAM > 1024 Mbyte and running Linux OS”, and the 
fault recovery mechanisms, which should ensure the user application terminates, even in 
case of node crash.

In order to exploit this opportunity, there are some environmental preconditions to meet: the 
grid run-time must allow the transfer and execution of arbitrary applications written in a 
high level or interpreted programming language such as Lisp, Perl, or Java, and, being this a 
serious security threat, the grid nodes must be hosted in a LAN with no critical applications 
and a certain control degree by a trusted technical staff. This is a common scenario in cor-
porate LANs or university computer rooms.

Condor, OurGrid/ShareGrid [CBSA+03], or Zorilla [DvNH06] are middlewares that an user 
can manage in such way. To submit a job, the user has to prepare a description file, named 
Job Description File,  Submit Description File, or similar, which specifies the environment 
desired to run the application, the file to stage-in and -out, and the command to execute.
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Executable    = foo                                                    
Universe      = standard 
Requirements  = Memory >= 32 && OpSys == "SOLARIS28" && Arch =="SUN4u" 
Rank          = Memory >= 64

Error   = err.$(Process) 
Input   = in.$(Process) 
Output  = out.$(Process) 
Log     = foo.log

Queue 150
Listing 7: A Condor's submit file which queues 150 runs of foo (source Condor 7.4 documentation)



As an example, the file in  Listing 7 queues 150 runs of the program foo which has been 
compiled and linked to run on Sun Solaris 8 systems. Similarly, Listing 8 shows a  Job De-
scription File for OurGrid which loads the executable  mytask on the remote nodes and 
queues two runs of it.

If the application deployed has P2P auto-organization capabilities, the peer nodes can estab-
lish their own overlay network to communicate each other regardless the grid infrastructure 
capability.

2.3 Distributed Data Storage

As discussed in Section 2.2.1, fine-grained Desktop Grid APIs mimic the usual Java multi-
thread programming idiom and should offer an adequate abstraction level to most of the 
Java  programmers.  But  these  APIs  do  not  offer  any comparable  help  for  sharing   data 
between nodes.

One of the problem of “going distributed” is the challenge posed by the access to large col-
lections of data. Traditional cluster and grid architectures usually rely on some shared file 
storage services, such as NFS in Condor clusters, or on-demand file transfer mechanisms, 
such as GridFTP in Globus framework15. Neither these strategies, based on files, have the 
level of abstraction familiar to Java programmers. Some custom distributed implementa-
tions, such as Weka Distributed Experimenter, use a RDBMS through JDBC as shared stor-
age, but also this solution has not an adequate abstraction level. In fact, as demonstrated by 
the progressive diffusion of frameworks such as JPA (Java Persistence API), Hibernate, and 
other O/R tools, a Java programmer is habit to think in terms of objects and he wants to be 
able to make the object persistent in a transparent way.

15 A comprehensive evaluation of several file transfer systems oriented to grids is available in [AC04]
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job :
label : myjob7
init : put input input

store mytask mytask
remote : mytask < input > output-$TASK
final : get output-$TASK output-$TASK

task :
init :put alpha input
store mytask mytask

task :
Listing 8: An OurGrid JDF file which submit two instances of program mytask (source OurGrid 4  
documentation)



This problem has received from the scientific community less attention than the computing 
aspect, and only few usable proposals could be found [ABJ05], none of them designed for 
Java. Instead, as in many other cases of programming tools, it has caught the interest of the 
business software community, primarily within web applications, which haa developed sev-
eral solutions under the definition of In-Memory Data Grid (IMDG) or Distributed Cache. 
The two definitions are partially overlapping and the products are progressively conver-
ging16 to the same set of functionalities. For this reason, in the following we will use the 
term Data Grid for both.

A Data Grid allows to distribute data across the nodes of a network in their original form of 
objects with an API very similar to the local data structure usage. Basically, the storage layer 
of an IMDG offers the following features:

– Data replication: in this configuration, a copy of all the data is stored in all the 
nodes of the grid. This strategy consumes the most resources, however it is the most 
performing solution for scenarios in which reads far exceed writes, as data is avail-
able everywhere for immediate access. Data updates are notified or replicated to 
each node from the originating node using different strategies such as data invalida-
tion, synchronous updates and others.

– Data partitioning: the whole data set is split into multiple subsets and every subset 
is assigned to a grid node. In the purest form, data is not replicated between nodes, 
and each node is the only responsible for its own subset of data; every access to a 
non local element requires a network operation and a crash of a node leads to a data 
loss. On the other side, the available storage space corresponds to the aggregate of 
the storages of all the nodes. However, partitioning usually includes the possibility 
of keeping a configurable number of backup copies in different nodes, to guarantee a 
certain degree of fault tolerance.

– Distributed locks or transactions: in order to ensure coherency within complex up-
dates, Data Grids usually support at least a lock mechanism. Most of the Data Grids 
also support various distributed transactions, with different isolation levels, such as 
Read Committed, Write Committed, Serializable, etc... Some products are also com-
patible with J2EE or XA container managed transactions.

– Persistent storage and overflow: most of the products can replicate the data on the 
disk or on a database using a write-through or write-behind strategy, making it per-
sistent. When the data is recalled through the associated key, if the entry does not ex-

16 At least two cache product, GigaSpaces XAP and IBM eXtreme Scale, available for years, have introduced 
the term Data Grid in the documentation only recently.
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ist in-memory, the system retrieves it from the persistent store. In some cases, this al-
lows to overflow data to the persistent store and flush them from the memory if the 
memory is close to fulfil.

– Notifications: the node could register callbacks, following the model of JavaBeans 
Events, to be notified of events regarding the grid (node leaving or node joining) or 
the storage (key added, data updates).

Notifications are enough to perform distributed computations, but Data Grids might also of-
fer an execution layer, including one or more of the following  features:

– Distributed execution: allows to execute a task, usually a serializable Runnable or 
Callable object, in the grid. The task could be executed, synchronously or asyn-
chronously, on a specific node, on all or on a subset of the grid nodes.

– Data affinity or co-location: in a partitioned configuration, this is the possibility to 
explicitly suggest to store an entry on the same node hosting the key of another 
entry, typically in a parent-child relation. This feature is tightly related with the loca-
tion aware distributed execution.

– Location aware distributed execution17:  in systems supporting this feature, it  is 
possible to associate a task with a key or a collection of keys identifying the data to 
be processed. The task will be transferred to the node which hosts the data and ex-
ecuted locally to the data itself. In case of multiple keys, eventually specified using a 
filter, tasks are replicated on all nodes hosting the data and executed in parallel.

– Messaging: this allows the nodes to communicate each others, usually supporting 
either point-to-point and broadcast messages.

– Peer-to-peer architecture:  P2P products can discover other peer nodes and then 
join the grid automatically, usually using IP multicast.

The details on the features supported by each product are available in the survey in the Ap-
pendix.

It is worth to mention two other classes of  product which partially overlap with the features 
of In-Memory Data Grids: embedded databases and Single System Image (SSI) systems.

In the Java ecosystem, embedded RDBMS, such as HSQLDB (also known as Hypersonic 
SQL18) or Apache Derby, are well established. An embedded database, in addiction to usual 
client/server mode, could operate in a standalone, or in-process, with in-memory tables ar-
17 This concept is not yet defined by an established term; vendors use “Task routing” (GigaSpaces), “Parallel  

data processing” combined with “Targeted execution” (Oracle Coherence), “Key based distributed execu-
tions” (Hazelcast)
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chitecture. In the in-process mode, the database runs in a different thread of the same JVM 
of the application, using direct object exchanges to communicate each other. The main goal 
of embedded RDBMS is to support ACID properties and SQL query language. Compared to 
a Data Grid, embedded RDBMS lack of P2P features and distributed execution support, but 
they offer a better support and a familiar model for data persistence. Therefore, they are 
complementary and in some cases could be used together, using the RDBMS to handle the 
persistence and the IMDG as a write-behind cache. It is worth noticing that some IMDGs 
are starting to include SQL-like query capabilities.

SSI applications present to the programmer a virtual aggregation of several different ma-
chines; in case of Java, this means several JVMs [Lau03]. SSIs are rare, with the notably ex-
ception of Terracotta Distributed Shared Objects (DSO) [terr]. Terracotta instantiates an in-
frastructure very similar to an IMDG and can cooperate with it. Unfortunately, it uses a cli-
ent/server architecture which results hard to dynamically deploy in a Desktop Grid-like in-
frastructure.

2.3.1 Data Grid APIs
Within Java binding to IMDG, there are three main approaches to hide the underlying com-
plexity with a familiar façade, sometimes exposed together within the same product: expos-
ing  the  familiar  java.util.Map interface,  implementing  the  extension  of  a  JSR-107 
(JCACHE) or using something like Linda's tuplespace.

In systems based on the java.util.Map model, the programmer usually obtains,  using a 
factory, an object implementing the standard  Map or  ConcurrentMap interface which is 
backended in the Data Grid, as shown in Listing 9. All the instantiated maps are shared by 
all the nodes of the Data Grid. This is a nearly drop-in replacement for local data structure 
and allowed an easy “gridification” of existing applications. By contrast, usually the config-
uration of the toolkit cannot be modified by code and has to be performed by means of ex-
ternal files. A drawback in most of the current distributed Map implementations is the lack of 
support for generics. Except for Hazelcast, all other implementations require a type cast for 
each read operation.

The JSR-107 (JCACHE) is a proposal for an API and a semantics for temporary, in memory 
caching of Java objects, including object creation, shared access, spooling, invalidation, and 
consistency across JVM's [jsr107]. Even if a JSR-107 cache could resemble to a plain Map 
at first glance, there are some differences, such as: put() and replace() are different opera-

18 The original Hypersonic SQL project was stopped in 2001, and the HSQLDB Group take over the Hyper-
sonic SQL code.
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tions, a get for a non existing element raise an exception instead of returning null, and the 
cache can be divided in regions.

Although designed for cache implementation, in which transaction support is not a require-
ment and invalid objects can be recreated from the original source, it has been progressively 
adopted by several implementations of Data Grids. The standardization process, started by 
Oracle, results inactive since 2001. After an initial enthusiasm, many projects which earlier 
adopted the JSR-107 interface threw away the most cumbersome aspects19, such as regions, 
resulting in slightly incompatibilities between different libraries. Systems inspired to JSR-
107 offer programmatically configuration capabilities, in addition to file based ones, and 
awareness of the distributed nature of the data as shown in  Listing 10. JSR-107 caches 
provide also an event notification feature.

The less common interface is inspired to Linda's tuplespace [GCCC85], which presents an 
associative memory and an event system to concurrently operate on it. Java incarnation of 

19 A detailed description of critical points in JCACHE can be found in JCS documentation. http://jakarta.a -
pache.org/jcs/JCSandJCACHE.html (last accessed 5 Jan 2010)
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import com.hazelcast.core.Hazelcast;
import java.util.Map;
import java.util.Collection;

Map<String, Customer> mapCustomers = Hazelcast.getMap("customers");
mapCustomers.put("1", new Customer("Joe", "Smith"));
mapCustomers.put("2", new Customer("Ali", "Selam"));

Collection<Customer> colCustomers = mapCustomers.values();
for (Customer customer : colCustomers) {
        // process customer
}

Listing 9: A distributed data structure presenting a Map interface; each node in the cluster or grid  
accesses to the same entries if it obtains the map using the same name (source Hazelcast documentation)

CacheManager singletonManager = CacheManager.create();
Cache memoryOnlyCache = new Cache("testCache", 5000, false, false, 5);
manager.addCache(memoryOnlyCache);
Cache test = singletonManager.getCache("testCache");

Element element = new Element("key1", "value1");
cache.put(element);
element.getCreationTime();
...
manager.shutdown();

Listing 10: A JSR-107 inspired cache. Configuration could be changed programmatically. The data are  
accessed through the Cache interface (source Ehcache documentation)



the tuplespace is the JavaSpaces specification, part of JINI specifications [jini]. JavaSpaces 
is designed to support distributed transactions and persistence, but it is less straightforward 
to use and requires several additional steps compared to other solutions.

Most of the JavaSpace implementations currently available are designed for concurrent pro-
gramming within single JVM and they do not support any distribution feature. Exception of 
distributed products are GigaSpaces XAP, the old IBM Tspace [tspace], and the open source 
project SemiSpace [ssp] which could integrate with Terracotta.

2.3.2 Execution layer and programming model
The In-Memory Data Grids are characterized by the design oriented to data sharing. The 
computational  task  is  demanded  to  another  component  not  necessarily  included  in  the 
framework. From the developer perspective, current Data Grids implementations offer the 
choice between three main programming models. One is the already mentioned, long stand-
ing  Linda  language20 model.  An  alternative,  tightly  bound  to  Java,  is  the 
j.c.u.ExecutorService. The third is the MapReduce model, a current hot topic. In the 
next paragraphs, we will explore the support offered by the selected frameworks to these 
programming models.

Highly integrated with the concept of tuplespace, Linda defines also a set of operations, in 
the form of programming language extensions, for facilitating parallel programming. In this 
architecture, concurrent processes exchange data by generating, reading, and consuming the 
entries (tuples) in the registry. The actions are coordinated by an event-driven mechanism 
and could use an implicit locking mechanism to ensure proper synchronization in case of 
multiple accesses. The basic operations of Linda are:

– rd(t) performs a non-destructive read from the tuplespace. If the required tuple t is 
not found, the invoking process will wait until an appropriate tuple is created by an-
other process;

– in(t) is similar to rd(t), except the read is destructive and the tuple is removed;

– out(t) writes the tuple t into the tuplespace;

– eval(exp) creates a new process which writes the tuple resulting from the evalu-
ation of exp to tuplespace. 

20 Usually Linda is referred as a "coordination language" meaning it is not a full programming language,  
rather then a set of coordination operations that can be added to any existing language. Linda primitives  
have been ported to many languages such as C, Prolog, Fortran, Smalltalk, and Java. However, for the sake 
of this discussion, Linda primitives are equivalent to library or toolkit functions.
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A typical application is composed by a module which responds to an elementary event (such 
as “the tuple is now available in the space”), then elaborates it and returns the result to the 
tuplespace. For example, in a well known pattern for embarrassingly parallel applications, 
two modules are identified, the master and the worker:

– the master, usually deployed as a single instance, splits the job into discrete tasks and 
puts each task into the shared registry;

– the workers, running in many instances, are notified of the availability of the data;

– each worker retrieves the task and pushes the results back into the shared registry;

– the master or other workers are notified of the presence of the results in order to 
gather or to further elaborate them;

– workers are notified of work completion by meeting some conditions, or receiving a 
"poison pill" or by some other means, such as sideband communications.

The  equivalent  JavaSpaces  API  are  the  time-bounded  methods  read(),  take() and 
write().

Since most of the In-Memory Data Grids provide events notification concerning the storage, 
it could be a temptation to use them in a Linda-like fashion. Except for GigaSpaces XAP, 
which specifically supports multiple APIs including JavaSpaces ones, some important dif-
ferences discourage to follow this path if a compatibility with different products is desired.

A first problem is the general design of IMDGs, in which an application can subscribe to re-
ceive events from any type of storage, regardless of whether it is partitioned, near, replic-
ated, using read-through, write-through, write-behind, overflow to disk, and so on. Since the 
storage  type  should  be  transparent  to  the  application,  the  most  common  architecture 
provides all the events, regardless of the storage topology, the number of nodes, and the 
node which operates the modifications will be delivered to the client application's listeners. 
This results in a considerable network traffic and high contention of the service thread dis-
patching events. Moreover, the APIs of many products do not have a primitive to determine 
if the event involves a entry owned by the local node. So all the agents listening for events 
will try to react to all changes in the cluster, not only to local ones.

Another critical point is more subtle: most of the implementations apply the same architec-
ture, based on a service thread which invokes the listeners callbacks. This is the result of 
many years of experience in toolkit development which have to cope with multiple event 
source [Goe06][Ham04]. As a consequence, the operations in the callbacks cannot be block-
ing nor time-consuming. This requirement contrasts with both the Linda programming mod-
el, which assumes a transactional context, and the goal of performing heavy computations in 
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response to data changes. To prevent such problems, Coherence21 and other implementations 
intercept at runtime calls to expensive methods in callbacks and raise an error if detect their 
presences.

Aside these architectural constraints, the programming model based on callbacks is hard to 
understand, error prone, and difficult to test for a non expert programmer. The problems in 
test-driven development applied to Swing-based GUI, which pose similar challenges, are 
well known and not completely solved yet.

A more sounding and straightforward pattern for a Java programmer is the model presented 
by the package  java.util.concurrent and the interface  ExecutorService, already 
implemented by some computational grid middlewares as explained in Section 2.2.1.

The key difference between a generic distributed ExecutorService and its implementa-
tion in a Data Grid is the ability to route the task to the node which holds the data to be pro-
cessed. This is not easy to achieve, since the ExecutorService interface has no method 
for this. A possible workaround is implemented by Hazelcast [haz], in which the service (a 
singleton [GHJV94]) executes a submitted Callable object22 on a node picked up at ran-
dom.

But, if the object extends the class com.hazelcast.core.DistributedTask, it might 
specify more options, such as the execution on a specific member of the cluster, or the paral-

21 http://coherence.oracle.com/display/COH35/Constraints+on+Re-entrant+Calls (last accessed 2 Feb 2010)

22 In  this  and  other  distributed  implementations,  the  object  must  also  implement  the 
java.io.Serializable interface, causing the impossibility to use anonymous classes.
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Import com.hazelcast.core.DistributedTask;
// ...

public class Task implements Callable<T>, Serializable {
public T call() {
// . . .

}

// . . .

ExecutorService executorService = Hazelcast.getExecutorService();
IMap<Object, Row> map = Hazelcast.getMap("mymap");
for (Object key : map.keySet()) {
    DistributedTask<Row> ft = new DistributedTask<Row>(new

Task<Row>() { ... }, key);
    executorService.execute(ft);
}

Listing 11: A submission of tasks to the distributed ExecutorService in Hazelcast, each task will run  
on the same host which holds the corresponding key



lel execution in multiple instances on all or on a subset of the members, or on the member 
hosting the data associated with a specific key. The code fragment in Listing 11 shows the 
submission of multiple tasks, where each task will be executed asynchronously on the host 
holding the master copy of  Row data corresponding to the associated  key.A similar result 
can be obtained using annotation. In GigaSpaces XAP, the task could define a method re-
turning  the  key  to  be  used  as  the  routing  value  just  marking  the  method  with  the 
@SpaceRouting annotation.

Other Data Grids implement similar but incompatible mechanisms, perhaps more flexible, 
to the executor service. For example, GemStone GemFire [gsg] has a data-aware execution 
service called  FunctionService which can execute data-dependent tasks implementing 
the interface  Function, extending  Serializable, with the main method  execute(). 
While Function has little difference from the classic j.u.c.RunnableFuture, the exe-
cution service accepts hints indicating the task is dependent on a key, a key region, a set of 
servers, or other characteristics, as shown in Listing 12.

It is worth noting that, in case of Data Grids not including an own executor service, it might  
be  possible  to  integrate  them with  a  computational  grid toolkit.  For  instance,  GridGain 
shares many of the features of Data Grids we are interested, such as a P2P architecture, and 
it allows tasks allocation and checkpointing strategies to be plugged in. So it is easy integ-
rate GridGain with a Data Grid in which the support for distributed execution lacks or does 
not fit the requirements, and handle the pair of applications as a single package.
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Region clientRegion; // Region is the equivalente of Map or Cache
Set keySet = new HashSet();
keySet.add("key1");
keySet.add("key2");
Function myFunction = new Function() {

// ...
}
Serializable args //...

ResultCollector rc = FunctionService.onRegion(clientRegion)
.withArgs(args)
.withFilter(keySet)
.execute(myFunction.getId());

// Do something ...

// Retrieving the result
Serializable functionResult =  rc.getResult();

Listing 12: The GemFire execution service FunctionService: the task myFunction is executed on 
the nodes owning the keys key1 and key2.



2.3.3 The MapReduce support
In recent years, a new paradigm for huge date set management is becoming mainstream: the 
computation is delegated to the system storing the data, instead of moving the data to be 
processed from system to system. A prototype of this paradigm is the MapReduce technique 
developed at Google  [DG04] for the processing of large files across large, but unreliable, 
clusters of computers.

Google uses a very large infrastructure that stores hundreds of Tbyte in thousands of com-
puter files which are mostly read and infrequently updated. This scenario asks for a pro-
gramming model which, at the same time, does not move data around and offers to the pro-
grammers an error-proof framework to take advantage of any exploitable parallelism.

The MapReduce is a such a simplified parallel programming model. It supplies a skeleton 
based on the map() function and the reduce() function. The map() function accepts a list 
of keys and associated values, and then produces an intermediate set of keys and values. The 
reduce() function combines these intermediate values into a final result. The programmer 
has to implement these two functions only, while the framework takes care of distributing 
them and collecting the results. As illustrated in Figure 4a), the master node decides how the 
file will be partitioned and allocated. Chunks of the file and metadata attributes are then sent 
from the user to the runtime system on the first chunk server, and then pipelined throughout 
the chain to distribute the replicas. The master then splits the tasks accordingly (Figure 4b), 
and sends the map() task to chunk servers, aiming to keep the computations as close to the 
stored data as possible. The master also assigns the reduce() task to one or more chunk 
servers. The chunk servers with intermediate output from map() ready to be processed by 
reduce() functions (Figure 4c), send their outputs to the appropriate chunk servers, which 
have been assigned the reduce tasks.
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In some cases, the intermediate keys produced by each map task can have significant repeti-
tion. It is the case, in Data Grids, in which the each node elaborate the data entry-by-entry 
and the map() outputs a list of result for each entry. If the reduce() function is commutat-
ive and associative, the user can specify an optional combine() function that does merging 
of partial results on the same node which performs the map() task, before sent them over 
the network. Typically, both the combine() and the reduce() functions are implemented 
by the same code. A UML representation of MapReduce activation sequence is shown in 
Figure 5.
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a)

b)

c)
Figure 4: The MapReduce programming model (source [CSGA07])



The MapReduce approach has been tested in machine learning and data mining applications. 
Many different algorithms have been adapted to a MapReduce framework such as weighted 
linear  regression,  K-means,  Naive  Bayes,  linear  Support  Vector  Machines,  independent 
component  analysis,  logistic  regression,  gaussian  discriminant  analysis,  or  Probabilistic 
Neural Network classifier [CKLY+06][CSGA07].

This model, characterized by moving the task to the store node instead of moving the data to 
the processing node, finds in full Java grid an ideal environment. In fact, it is quite natural 
for a Java programmer to think to objects with both the nature of data and tasks. And, since 
data can move around, even a task can be moved and executed on machines different from 
the one that instantiated it.

As already suggested, Data Grids have a strict affinity with the MapReduce programming 
model. Not surprisingly,  many of them support that strategy in some flavour.  Ideally,  to 
achieve a linear scalability, a task running on a node should operate only on the partition 
owned by that node and all the operations should be executed concurrently across nodes and 
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Figure 5: A sequence diagram for MapReduce, deduced from Hadoop documentation and code



partitions. Most versatile products can target the task execution on a single cluster node, in 
parallel on a subset of nodes, or in parallel on all members of the cluster. Advanced imple-
mentations also allow the programmer to specify object relationships concerning transac-
tions boundary, such as a master/details relation, having the Data Grid co-located all related 
data to a single node, if possible. In such a way, the task running on the node likely access 
only to local data and concurrency locks traversing the network will be avoided.

Unfortunately, being both Data Grids and MapReduce young technologies, there is not a 
consolidate API model and MapReduce-like support in Java frameworks seems one of the 
most confusing and not-yet-canonized programming model. Here follows a sample of differ-
ent APIs. As an instance, in Oracle Coherence the task executor is the cache itself (class 
NamedCache),  which  implements  the  InvocableMap interface  (note  the  hesitation 
between the terms  map and  cache). To execute a task (agent, in Coherence idiom) on the 
grid node that owns the data, the cache itself  exposes the method invoke(), with various 
overloaded form:

Object result = map.invoke(key, agent);
From the client perspective, the invocation is synchronous and the client must wait for the 
result. Coherence will determine the location where to execute the agent according to the 
configuration for the data topology, move the agent there, execute it (automatically handling 
concurrency control for the item while executing the agent), backup the modifications if 
any, and return a result. It is possible to target the task to a key collection, enumerated or se-
lected by a query. If the task implements the interface ParallelAwareAggregator, de-
scribed in Listing 13, it signals it is explicitly capable of being run in parallel in a distributed 
environment.

A ParallelAwareAggregator operates as described in the Figure 6: the aggregate() 
method is invoked in each server passing the set of locally owned entries. Then, once the 
partial results from each server have been collected, the runtime obtains the combiner of 
partial results from getParallelAggregator() and uses this object (usually, implemen-
ted by the same task) to combine partial results with method aggregateResults(). Co-
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public interface InvocableMap.ParallelAwareAggregator {

    Object aggregate(Set setEntries);

    EntryAggregator getParallelAggregator();

    Object aggregateResults(Collection collResults);
}

Listing 13: Coherence ParallelAwareAggregator subinterface



herence API does not use generics and often returns Object, so it is very easy to be con-
fused from these operations.

The same role in GigaSpaces XAP is  played by the DistributedTask interface, shown in 
Listing  14.  It   expose  two  function,  the  mapper  execute() function  and  the  reducer 
reduce(). The mapper has not arguments and the data must be read directly from the space 
or be injected by the runtime. The task is submitted to the space and it is executed asyn-
chronously using a Future, and the target keys must be enumerated:

AsyncFuture<Long> future = gigaSpace.execute(new MyTask(), 1, 4, 6, 7);
long result = future.get();

The sequence is illustrated in Figure 7.
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Figure 6: The sequence diagram for ParallelAwareAggregator, deduced from Coherence  
documentation



Other IMDGs have more different architectures, such as IBM WebSphere eXtreme Scale 
[ibm], with distinct synchronous mapper and reducer. It is quite evident that the MapReduce 
model is not well well-established yet, and any vendor has design a incompatible interface.
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public interface DistributedTask<T extends Serializable,R> {

T execute() throws Exception;

R reduce(List<AsyncResult<T>> results) throws Exception;

}
Listing 14: GigaSpaces XAP DistributedTask interface

Figure 7: The sequence diagram for Gigaspaces XAP, deduced from the documentation



2.3.4 Facing the CAP theorem
From this brief introduction, it seems that the In-Memory Data Grid technology could solve 
all the problems distributed computing has faced in the last decades. This is obviously not 
true: the advantages of Data Grids have to cope with other weakness. It is well known that 
distributed computing cannot avoid trade-offs [WWWK94], and in 2000 Eric Brewer postu-
lated the existence of uncircumventable limits in his CAP (Consistency, Availability, and 
Partition) conjecture [Bre00]. According to this conjecture, it is impossible for a distributed 
system to have simultaneously:

– Strong Consistency: all clients see the same view, even in presence of updates.

– High Availability: all clients can find some replica of the data, even in the presence 
of failures.

– Partition-tolerance: the system properties hold even when the system is partitioned.

As result, at any given time, at most two of these three desirable properties can be achieved.

The conjecture has been formally proven two years later by Gilbert and Lynch [GL02] and it 
is now known as the CAP theorem. 

More precisely, consistency means that a service is fully operating or not at all. Gilbert and 
Lynch use the term “atomic” instead of consistent in their proof, for coherence with the A 
and C meaning in ACID. Availability means that the service will answer in bounded time. 
Partition-tolerance means the system can tolerate lost messages between nodes. Gilbert and 
Lynch pointed out that no set of failures less than total network failure is allowed to cause 
the system to respond incorrectly.

It is important to notice that the CAP properties are characteristics of a specific architecture 
or infrastructure deployment, not of a software toolkit. For example, since its origin, the 
LDAP protocol [HKY93] provides the elements to many different fault tolerance mechan-
isms. Using the same server implementation (e.g. Sun Directory Server or OpenLDAP) it is 
possible to deploy a service which alternatively provides:

– strong consistency, using only one server, and thus sacrificing the tolerance to the 
network partitions;

– eventually consistency, using a master/replica setup, and thus losing the availability 
of the write service during a partition: replicated data will be reconciled if and when 
the network will return functional;

– no consistency, in a multi-master configuration, allowing both writing and reading 
even in case of network failure, at the risk of not-reconcilable states  [Fer00].
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Most of the Data Grids have been designed to offer a configurable degree of  Consistency, 
Availability and Partition-tolerance mix. In pure P2P systems, such as in Coherence, Hazel-
cast, Infinispan, or GridGain in case of computing grid, the peer subsystem runs in the same 
JVM of the application subsystem. With this architecture, the “master” node, corresponding 
to  the interactive user  application,  provides autonomously all  the feature offered by the 
whole grid. As a result, within the limit of available resources, the user application can con-
tinue to submit tasks and obtaining results even in case of network failures.

The question we can pose is the following: “Which are the most desirable characteristics of 
a Desktop Grid-based architecture devoted to interactive and/or situational data mining?” 
Obviously,  being  interactive,  availability is  unavoidable.  The most  frequent  failure  in  a 
Desktop Grid is node outage, due to local user activity, while a data mining computation in-
frastructure probably relies on a RDBMS or reliable file system to store the data in their ori-
ginal form, before any manipulation. So, it seems reasonable that Partition-tolerance is more 
important than data consistency to survive to node outage, since the data can be reload and 
reprocessed from the original sources.
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3 Comparison between different IMDG implementations

What are the desiderata features required to a Data Grid design for hot-deployment in LAN 
environments for data mining and machine learning applications?

First of all, the Data Grid must work. This might seems quite obvious and, indeed, all the 
available  products  “do something”   but  there  are  many subtle  details  that  can  cause  a 
product to be useless or too unstable to be used. Other requirements are less trivial; the Data 
Grid design:

– should expose an easy and familiar API to the programmers;

– should work fast, at least as fast as a traditional database, especially in high concur-
rent situations;

– should present the resources of connected hosts, the memory in particular, as an ag-
gregate capable to deal with large data collections;

– it should provide built-in checkpoints and persistence mechanisms.

All these features will be described in turn in the next sections.

3.1 In-Memory Data Grids platforms

Several software products, self-defining In-Memory Data Grid or having similar capabilit-
ies, are available and a survey can be found in the Appendix. Nevertheless, Data Grid is a 
novel and little explored architecture, and the lack of literature has required a preliminary 
assessment  to  understand if  this  technology is  suitable  for  distributed  machine  learning 
scenarios. None of the following results should be considered as a benchmark, neither the 
goal was to determine the "best" product.

Some of the well  known IMDGs and distributed cache platforms have been tested in  a 
single node configuration to analyse basic characteristics. In the remaining part of this sec-
tion, we will discuss the results obtained on the following implementations23:

23 Other applications have been subjected to a dry analysis, but not effectively tested. GemStone GemFire is  
not included in this work because the license of the evaluation version includes a non-disclosure clause.  
IBM WebSphere eXtreme Scale is available in a free evaluation edition but it has some limitation in func -
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– Oracle Coherence grid edition release 3.5.2 dated 19 October 2009

– Terracotta Ehcache release 1.6.2 dated 23 August 2009, then some tests have been 
reproduced with the newer release 1.7.1 dated 30 November 2009

– Hazelcast release 1.7.1 dated 16 October 2009, then, due to an issue interfering with 
tests, repeated with a snapshot of release 1.8

– JBoss Infinispan release 4.0 RC3 dated 11 December 2009

– Apache Jakarta JCS release 1.3 dated 30 May 2007

A dummy data  grid  mock-up,  based on a  plain  java.util.Hashtable,  exposing the 
same façade  interface,  and storing regular  POJO (Plain Old Java Object),  was  used as 
baseline and all the values are reported to it, using its performance on same operation as 
measure unit.

It is highly probable that the tested products could be fine-tuned to offer better performances 
in specific deployments, but the goal of this test was to produce a baseline for further invest-
igations. It is also unlikely that the final user will explore the configuration options in details 
and the perspective of an application distributed in a Desktop Grid discourages platform-de-
pendent configurations.

3.1.1 Load capacity test on a single node
The first test consists in a progressive load of data until the memory exhaustion causes the 
crash of the application. Data have been loaded in chunks of 512 entries of 128 Integer 
objects, the heap of JVM being limited to 128 Mbyte. The testing platform was an Athlon 
X2 5200, 6 Gbyte of RAM, with Microsoft Windows Vista 64 bit OS and SUN 64 bit 1.6.11 
JVM.  Results are shown in Figures from 8 to 13 and summarized in Table 1.

tionality which prevent long term usage. GigaSpaces eXtreme Application Platform (XAP) does not fit the  
usage scenario because is not based on pure P2P architecture and uses a more traditional controller/agents 
one. In order to run a grid node (GigaSpaces Container GSC), a discovery service (Lookup Service LUS) 
in the network and an agent (GigaSpaces Manager GSM) running on each host are required. This architec-
ture makes difficult to create auto-deploying data grids. Moreover, XAP is released under a commercial li -
cense model which does not match with the spreading of components over a network spanning through dif-
ferent organizations. Cacheonix has been disregarded because the per-processor license model does not 
cope with the employ in a Desktop Grid fashion architecture which should collect as many PCs as possible.
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Average star-
tup time

Stored entries Average store time 
for entry

Average single entry 
read time

java.util.Hashtable 1 24,064 1 1

Oracle Coherence 3.5.2 382.76 55,296-55,808 6.9 3

Terracotta Ehcache 1.7.1 31.47 24,064-46,080 3.13 11.1

Hazelcast 1.8 223.8 35,328-36,864 5.21 4

JBoss Infinispan 4.0 RC3 22.66 24,064-46,080 2.23 -

Apache Jakarta JCS 1.3 0.9 22,528-23,040 1.51 -

Table 1: Data Grid results summary. All time measures use the  performance of Hashtable in the  
same as measure unit.
Each test has been executed at least three times in different periods to compensate possible 
background activities in the host. In the graphs, the x-axis represents the data chunks alloc-
ated in sequence. The blue lines represent the total allocated heap, the red lines the time 
elapsed to allocate each block.

As clearly shown in Figure 8, the java.util.Hashtable had such a constant behaviour, 
so that the three lines almost coincide. For this reason, this implementation has been used as 
reference and all other time measures have been normalized to that.

Surprisingly,  the  storage  capacity  of  many  implementations  (Coherence,  Ehcache  and 
Hazelcast) outperforms the plain local storage, due to a very efficient serialization of the ob-
jects in a compressed form. Obviously, since nothing comes for free, and write operations in 
Data Grids are from 2 to 7 times slower than in Hashtable.
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Figure 8: Single node allocation test, local Hashtable. The x-axis represents the chunks allocated.  
The blue lines represent the total allocated memory, the red lines the time elapsed to allocate each block.  
This test has been executed three times but the lines almost coincide.

0

10

20

30

40

50

60

0
20000
40000
60000
80000
100000
120000
140000

Allocated memory [kbyte]

Elapsed time per block

Figure 9: Single node allocation test, Oracle Coherence 3.5.2
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Ehcache has a cache-oriented design, rather than being cluster-oriented, and applies by de-
fault a write-behind strategy. At write time, it stores the entry as-is, showing performances 
near to the plain  Hashtable. Then, when it reaches a configurable memory limit, it en-
queues the entries candidate to compression or overflow to the disk in a spool, according to 
the current policy (LRU or LFU). A background task performs these operation effectively. If 
the spool capacity is reached or the background task cannot operate at the same speed at 
which the entries are spooled, e.g. because it writes to the disk, exceeding entries are dis-
charged from the memory and lost. This is an acceptable behaviour for a cache, in which a 
missed entry should be recoverable from the original source. Unfortunately, when setting 
Ehcache to use the  perpetual eviction policy,  in which entries are never discharged, the 
asynchronism between the operations at the user and background levels result in an erratic 
behaviour, in both storage capacity and elapsed time, as shown in Figure 10. It can be ob-
served that the load lines interrupt at different steps, ranging from 24k to 46k chunks. This is 
the only implementation showing a such a behaviour, being the capacity variations in other 
IMDG less than 10%.

The Hazelcast library has demonstrated some problems to detect the OutOfMemoryError 
condition, sometimes because it occurs in the service thread and it does not propagate to the 
main thread; as a result, the application hangs instead of crashing24. A similar problem seems 
sporadically affecting Infinispan too, but it was tested in a not yet stable release.

24 The problem has been submitted to the maintainer of the project.
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Figure 11: Single node allocation test, Hazelcast 1.8
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Figure 10: Single node allocation test, Ehcache 1.7.1
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Infinispan was tested at the end of 2009 in a pre-release stage and it shown some troubles 
not easy to fix, without offering evident improvements. Nevertheless, the roadmap25 of the 
project suggests to keep an eye on it, since JBoss plans to implement the state-of-the-art fea-
tures set of Data Grids.

JCS has a design similar to Ehcache, but the documentation is not kept updated and it was 
very difficult to configure it correctly.

After these preliminary tests, Infinispan and JCS were no further investigated. Indeed, JCS 
is  not  actively  maintained  from 2007  and  its  performances,  roughly  equal  to  the  plain 
Hashtable, did not warrant the use. On the other hand, the beta release of Infinispan was 
too unstable for a real use.

In order to check if contextual settings have influenced the results, some tests have been re-
peated under different conditions: using a Bea JRockit 32 bit JVM, the overall  behaviour 
was the same but, as expected, each instance could accommodate more data (for example, 
Coherence allocated over 144 blocks instead of about 110). Moreover, using different object 
types, such as small String, seemed of no influence. Instead, very large objects could ex-
hausted the memory much faster than as expected compared to the equivalent amount of 
small objects. This issue need a deeper investigation in case of systems designed to deal 
with large data such as image files.

25 http://community.jboss.org/wiki/infinispanroadmap (last accessed 15 Jan 2010)
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Figure 13: Single node allocation test, JCS 1.3
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Figure 12: Single node allocation test, Infinispan 4 RC3
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3.1.2 Entry retrieval test
An entry retrieval and read performance test has been performed on the same data used in 
the previous experiment. Read of entries has been tested both in the same order they have 
been stored and in a random one. The results are shown from Figure 14 to 16. The x-axis 
represents the time elapsed to read all the entry in a chunck.

Oracle Coherence has shown a very homogeneous behaviour. The spikes, visible in Figure
14, are probably due to the Garbage Collector activity. 

Ehcache has shown less predictability and worst performances, probably for the same reas-
on detected in the write test.

Finally, the behaviour of Hazelcast was a little chaotic, but affordable and time-bound.
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Figure 14: Coherence read test. Green lines show sequential read time per entry, purple lines show  
random reads. Time measures are scaled to the Hashtable performance.
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Figure 16: Hazelcast read test
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In all the platforms, accessing the entries in a random order seems to have a small, but no-
ticeable, impact on performances.

3.2 Memory allocation effectiveness

To investigate the behaviour of In-Memory Data Grid for memory allocation, other tests 
have been performed to verify the capability of effective memory usage.

The write tests of Section 3.1, have been repeated reserving 4 Gbyte for the heap. Results 
are shown in Figures 17 to 19. Test ran in the same conditions of above.

Oracle Coherence, in Figure 17, seems unable to exploit more than 1.5 Gbyte of memory26. 
However, thanks to a better compression, Coherence still stores more objects than the other 
implementations.

Ehcache confirms a less efficient memory usage, using around 3 Gbyte of RAM to allocate 
less than half of the objects allocated by Hazelcast. The only product capable to scale up to 
4 Gbyte is Hazelcast, as shown in Figure 19.

In all the experiments, the interference of the Garbage Collector (GC) was quite evident 
when the memory allocation grown, with spikes in allocation time lines (less visible in Co-
herence due to the less amount of used memory). The GC in most of the Java Virtual Ma-

26 After a conversation with the Oracle Coherence technical support, the test has been repeated on a different  
platform obtaining the correct Coherence behaviour. The problem is under investigation.
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Figure 17: Coherence 4 Gbyte allocation test. In the x-axis the chunks allocated. The blue lines represent  
the total allocated memory, the red lines the time elapsed to allocate each block.Time scale is the same of  
the Figure 8, memory scale is in Mbyte instead of kbyte.
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Figure 18: Ehcache 4 Gbyte allocation test.
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chines has greatly improved over the years. Nevertheless, applications using large heaps 
might still manifest a "Stop-the-World" behaviour and it is not uncommon that a garbage 
collection phase requires tens of seconds to complete. These delays might be acceptable if 
the latency is not a big deal. Unfortunately, the Data Grids under examination have a P2P 
network layer which marks as suspect a peer not responding to the heartbeat notification. A 
long wait for the heartbeat produces a rearrangement of data partitions, resulting in further 
delays. In fact, from the cluster's perspective, the node that does not respond for long time 
(ranging from 5 seconds for Ehcache to 300 seconds for Hazelcast, using default values) 
might be dead and the cluster is allowed to exclude it from the configuration. When the 
node resumes after the long GC phase, it has to re-join the cluster and this requires a lot of 
new work, further worsening the response time. Instead, the “split brain syndrome”, where 
two or more instances attempt to control the cluster is unlikely to occur. IMDGs are spe-
cifically designed to cope with this problem and, in the assumed scenario, the client inter-
face is defined as the “authoritative” node.

Based on similar observations, there are suggestions [Ime08] that applications based on P2P 
Data Grids could benefit from splitting the RAM between a set of JVMs running in the 
same host, instead of reserving all the memory for a single JVM, allocating a Virtual Ma-
chine per CPU core. In this way, it is supposed the effect of the GC might be reduced be-
cause the heap size of the individual JVMs is smaller and the GC process is spread across 
the cluster, reducing the impact on the individual machine.

3.3 Clustered operations

At this point we know that some Data Grid implementations work as declared, at least in 
isolation, but since they are designed for distributed and high concurrent applications, we 
need to analyse their behaviour in a clustered configuration. 

The capability of memory aggregation using different nodes/heap combinations has been 
explored in this test. Since this architecture supposes a setup based on  data partitions, and 
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Figure 19: Hazelcast 4 Gbyte allocation test.
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Ehcache does not have this built-in capability27, this platform has not been tested in this con-
figuration.  To avoid the overhead caused by the network layer, but offering enough cores to 
simulate a small cluster, the test has been performed using an Amazon EC2 High-CPU Extra 
Large Instance with 8 cores and 7 GB of memory, running Linux Fedora 64-bit and Sun 64 
bit JDK 6 Java Virtual Machine. Results are shown in Figures 20 and 21. On the x-axis ap-
pears the cluster size, in the y-axis the storage capacity on the left graph and the elapsed 
time on the right graph, measured as in the previous load test.

At a first glance a write test does not involve the Garbage Collection, but in these architec-
tures objects instantiated by the application are copied in a serialized form in the Grid and 
then discharged, thus becoming eligible for the GC. Hence, this test also verifies the correct-
ness of the hypothesis about splitting memory among different JVMs to limit GC overhead. 

Some products claim their partitioned memory allocation can exploit the aggregation of the 
memory of all nodes in a single storage space. In this case, assuming all the n nodes, includ-
ing the user own PC, have hm heap memory available, the expected total accessible storage 
is havailable = n hm / k, where k is the number of configured backup copies (usually 1).

Coherence shows clear benefits in memory aggregation, as visible in Figure 20. In a cluster 
with more than two nodes, the storage capability grows as expected in a roughly linear way.  
Moreover, the aggregate memory is close to the whole memory: 8 nodes with 512 Mbyte of 
heap, 4 with 1024 Mbyte, or 2 with 2048 Mbyte, can allocate around the same amount of 

27 The client application could implement the strategy by itself, as explained in http://ehcache.org/Ehcach-
eUserGuide.html#id.s32.3 (last accessed 10 Jan 2010). Unfortunately, this strategy lacks of the automatic 
relocation of block nor offers an obvious way to handle nodes  dynamically joining and leaving the cluster.
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Entries storage capacity Time elapsed

Figure 20: Oracle Coherence: storage capacity and time by nodes in the cluster. Each test has been  
managed to not exceed the host hardware, using up to 8 instances for 8 cores and no more than 6 Gbyte  
of RAM. The 4 Gbyte line is the capacity obtained allocating the memory in a one node configuration.
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objects. However, using several JVMs in a single machine resulted in less storage capability 
and high overhead in writing time, without any visible benefit.

From the point of view of memory effectiveness, Hazelcast simply ignores the clustering. 
Elapsed time grows, as shown in Figure 21, but not in an evident way such as in Coherence, 
and the storage capability does not change.

After these results, the proposal of using multiple JVM on the same host to minimize the 
impact of Garbage Collector seems not well funded. As an example, shown in Figure 22, the 
behaviour of one JVM allocating 4 Gbyte of heap or four instances with 1 Gbyte each are 
not clearly distinguished.

Another sensitive point is the operation throughput. We tested two scenarios, a mostly-read 
and a balanced-write, in a cluster configuration. In each case, we provided to not saturate 
the system, setting a limit for each node heap in a way the total heap being largely lower 
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Figure 21: Hazelcast: storage capacity and time by nodes in the cluster
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Figure 22: Oracle Coherence, multiple instance on the same host, replicated configuration.  
Configuration with 512 Mbyte of heap exhausted the memory early, the crash point of other  
configurations is outside the graph.
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than physical RAM, and running from two up to six nodes to ensure at most two free cores 
for handling background threads. Again the performances of the dummy local Hashtable 
have been used as measure unit. 

In the mostly-read scenario, read operations are approximatively ten times more than the 
write operations. Differently from the results reported in Section 3.1.1, in this environment 
the performances of the Hashtable are less consistent, with a standard deviation of around 
14%. This is caused by the virtualized environment, but it is not considered a critical point  
for the test, since the full run for the Hashtable elapsed few seconds, while in Data Grids 
spans over several minutes. The results are summarized in Table 2 and in Figure 25.
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2 nodes 3 nodes 4 nodes 5 nodes 6 nodes

Coherence Mixed op/t 0,0286 0,0210 - 0,0148 0,0105

Write op/t 0,0115 0,0099 - 0,0073 0,0053

Read op/t 0,0339 0,0238 - 0,0166 0,0117

Hazelcast Mixed op/t 0,0245 0,0170 0,0121 0,0116 0,0097

Write op/t 0,0172 0,0094 0,0051 0,0043 0,0039

Read op/t 0,0258 0,0187 0,0141 0,0145 0,0117

Table 2: Mean throughput for single node in clustered configuration..Values recorded for 4-node  
Coherence cluster present anomalies, but the test could not be reproduced on the same platform. 1 t unit  
is the equivalent performance of Hashtable

a)  Mean throughput for node b)  Aggregate throughput for cluster

Figure 23: Throughput for node in cluster configuration. 1 is the throughput of Hashtable
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The throughput per each node sensibly decreases with the cluster growth, but the aggregate 
throughput increases.

Both platforms benefit from a warm-up phase. Even when the cluster is started in advance, 
to let the P2P negotiation stabilize, it seems the population of an empty map requires a while 
to uniformly distribute the keys in the cluster and to initialize near caches, and performances 
improved after a little period, in the order of tens of seconds. This phenomenon should be 
taken into account for deployment on-the-fly, as an additional issue discouraging too short 
tasks. The warm-up phase is noticeable in  Figure 24, referring to Coherence. Both green 
lines, representing the read throughput in entry per second of each node, stabilize at the 
middle of the graph. Hazelcast has a similar behaviour and thus it is not presented here.

The tests have been repeated with a balanced number of interleaved write and read opera-
tions. Also in this case, Coherence and Hazelcast had a similar behaviour which was not dis-
similar from the previous test, only with a decrease of around 20% in the number of opera-
tions per second.

It is interesting to analyse the fault-tolerance of the cluster. Both products can easily handle 
the loss of one node at time. In Figure 25, each line shows one of five nodes in a Hazelcast 
cluster running the balanced read test, in which two nodes have been killed during execu-
tion. After a while, to allow the cluster reassigning the partitions, the work restarts and con-
tinues at the same speed.

55

Figure 24: Oracle Coherence, 6-node cluster, interleaved read:write 1:10, throughput per second. Green  
lines represent the read throughput of each node, the red lines the write throughput. Entries are complex  
object with variable length array and collections as members..
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We also performed informal tests against a traditional RDBMS, in this case MySQL which 
has the reputation to be one of the fastest DB engine available. We found that the perform-
ances are strictly related to the O/R mapping applied.  If the objects to be saved can be 
mapped on a single row of a table, MySQL can slightly outperform the best of the Data 
Grids we tested. But, as long as that the object includes a Collection field with variable 
length, which requires a normalization of the database and another table at least, the per-
formances drop dramatically. We experienced ten times slower performances by just adding 
a  variable  length  array  of  double to  a  class.  Nevertheless,  since  MySQL and  similar 
products cannot be deployed on-the-fly in a P2P network, this configuration has not been 
further investigated.
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4 Experiments and results

The main goal of this work is to investigate if and how the emerging technology of In-
-Memory Data Grids, born in the community of business and web software, is easily ex-
ploitable by the developers of data massive applications in fields such as bioinformatics, 
data mining and machine learning.

In most cases, these applications are created by domain specialists, rather than by software 
engineers, who focus on their specific algorithms. The dissertation statement is that the Data 
Grids and the programming model they expose, wrapped by an abstraction layer, offer to a 
non-programmer specialists interfaces suitable to build distributed parallel applications with 
a minimal effort. In the trade-off between simplicity and performances, In-Memory Data 
Grids  swap an easy-to-understand programming model  and decent  overall  performances 
with a lack of fine grained control and sub-optimal resource usage. Nevertheless, they seems 
suitable to replace the current approach to distributed computation applied in many popular 
applications, which apply home-made solutions or have no distributed capability at all.

Known use cases for a Data Grid, explicitly advertised by the main vendors, are caching, in 
which frontend applications request data from a Data Grid rather than backend data sources, 
analytics, in which applications query the Data Grid, transactions, where the Data Grid acts 
as a transactional record system hosting both the data and the business logic, and Complex 
Event Processing (CEP) in which the system looks for sequences in a event stream trying to 
match a pattern and notifying “complex events” of interest. Classic applicative domains are 
market  and reference  data  analysis,  financial  risk management,  algorithmic trading,  and 
fraud detection [ora08][gem05].

All these applications are designed for a scenario providing a stable server infrastructure and 
predeterminate tasks. Our goal is to exploit Data Grids as distributed datastore and check-
pointing facility in volatile networks to satisfy the computational requirements of interactive 
data mining. To verify these hypothesis, several tests have been performed. To investigate 
specific data mining scenarios, we applied the proposal technology to a pre-existing applica-
tion we have already used in the recent past, which performs the l1l2 regularization protocol 
on a traditional Desktop Grid architecture.
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In this chapter, we provide a short background of the l1l2 distributed application and describe 
the testbed infrastructure. Then we provide an overview of the architecture of the Data Grid-
aware version of l1l2  and show some performance results. Referring to the points discussed 
in Section 2.1.4, i.e. parallelization of data mining applications, the experiments apply both 
the decomposition of the data table in regions each assigned to different hosts, and the more 
classic technique of distributed parameter sweeps.

The experience coming from l1l2 is then applied to a general purpose data mining Workflow 
application in order to evaluate the advantage for programmer in using IMDGs coupled with 
MapReduce programming model.

4.1 Background

Distributed cross-validation and its use, such as the feature selection, is a well known topic 
in both the theoretical research and the proof-of-concept software. Production-grade support 
is instead less common and only few open source data mining applications have an imple-
mentation which is easy to use.

In order to evaluate the performance of In-Memory Data Grids in this class of tasks, we por-
ted on this platform a framework we already used [BF09] to developed a distributed version 
of a program for the selection of relevant genes from DNA microarray data based on the l1l2 

algorithm  originally  presented  by  [ZH05] and  then  studied  and  implemented  by 
[DMDV+08][DMTV09].

Denoting with X the gene expressions matrix and with Y the vector of the classes labels, the 
l1l2 regularization aims to find β defined as:

=argmin∥Y−X ∥2

2
 ∥∥1∥∥2

2


where the least square error is penalized with the l1 and l2 norm of the coefficient vector. The 
parameter ε in the functional is fixed a priori and governs the amount of correlation we wish 
to take into account. The features corresponding to nonzero values in the optimal coefficient 
vector are those selected as relevant. In practice, we use the selection protocol that combines 
the selection step described above with a Regularized Least Squares (RLS) classification 
phase.

min ∥Y−X∥2

2
 ∥∥2

2


where  X is the submatrix obtained by only using the columns of  X corresponding to the 
variables selected in the first step. l1l2  translated in pseudocode is shown in Listing 15.
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One of the main challenge from the data analysis perspective, is to design an appropriate al-
gorithms able to find the variables relevant to a given process, with good generalization 
properties on new data and avoiding the so-called selection bias [AM02]. In principle, the 
only way to assess predictive accuracy of a system is to classify a set of independent new 
cases. But in cases such as DNA microarray, obtaining new data is very expansive when not 
possible at all, so it is advisable to estimate the correct accuracy estimated from the data at 
hand using cross-validation methods.

In cross-validation methods,  data  are  partitioned into two complementary subsets  called 
training set and testing set, then using the training set to learn the parameters and the testing 
set to estimate the error on those parameters. Common cases of cross-validation split the 
sample into two partitions with a test:training ratio of 1/3:2/3, with three rotations of the 
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dataset = {Matrix X, Vector Y}
n = rowcount(X)  // n. Sample
d = columncount(X)  // features

Vector β
DoubleMatrix xt = x.transpose();

// Step size σ0
// if σ0 is not specified in input, it evaluates from dataset
σ0 = estimateSigma0(dataset)

tolerance = 0.01 // tolerance for stopping rule
kmax = 10000 // maximum number of iterations

// Element-wise right array division
Matrix XT = transpose(X) / (n * σ)

// initialize beta vector with RLS solution of
// ||Y – X * β ||2

Vector β0 = RLS(X,Y)  // initialize beta vector with RLS solution
 
// initialization
σ =  σ0 + µ
µs = µ / σ

// l1l2 algorithm
k = 0
repeat {

Vector β = thresholding(β0 *(1 – µs) + XT * (Y – X * β0), ts);

} until (k < kmax && ∀ i = 1..n |β[i]-β0[i]| ≤ |β0[i]| * tolerance/(k+1) )

Listing 15: l1l2  pseudo code



sets, or the 1:9, with ten rotations, also known as 10-folds cross validation. Usually such 
cross validations are used to estimate the errors on one, sometimes two, parameters.

The procedure applied to microarrays has quite different constrains. Microarrays presents 
about 54,000 features28, are expensive and time-consuming to produce, and the genetic dis-
eases under investigation are often, and fortunately, rare. Thus, usually such analysis can 
rely on few dozen of samples only. In such cases, the most widely adopted resampling pro-
cedure is the  leave-one-out cross validation, where the number of partitions equals to the 
number of samples and the procedure is repeated for each sample. Moreover, the l1l2  al-
gorithm requires to estimate two different parameters, the term  τ which controls the l1l2 

phase and term λ which controls the RLS, thus it requires two nested loop of cross-valida-
tion. As results, a single run of feature selection usually requires several thousands repetition 
of the learning/test cycle.

4.2 The classic approach

The original release of the l1l2  framework was implemented as a set of MATLAB  [matl] 
scripts called L1L2_TOOLBOX. It runs on a single hi-end workstation, spending a time in the 
magnitude of weeks to perform a full analysis of a data set collected from 20-50 microar-
rays.

Cross-validation is an obviously parallel procedure, since it involves the execution of many 
independent  tasks.  We  exploited  the  availability  of  ShareGrid  infrastructure,  described 
ahead, to develop a grid-enabled version on the L1L2_TOOLBOX. The refactoring mainly re-
quired to unwind the two nested loops, dynamically generate a Job Descriptor File, as de-
scribed in Section 2.2.3, and then submit the scripts and the data to the grid.

In the first phase, we used the infrastructure in three complex experiments, reported in Table
3, in which the computation is only a small, but significant, part. After a tuning of the con-
figuration,  the distributed application gave us  remarkable benefits  with little  effort.  The 
speed up obtained was more promising that the dry numbers seem indicate. The first experi-
ment was performed during Christmas 2008 holidays, when most of the computer rooms in 
Universities were closed and only few hosts were running the grid computation. A post-ex-
periment diagnose suggested that when sufficient PCs are available, the benefits would be 
effective. The second experiment was used to evaluate an optimal task allocation strategy. 
The conclusion was that the size of each task should be not too small, to pay off the transfer  
time (many of the hosts were in Turin), but also not too big, to lower the probability of a stu-
dent in the computer room starting to use the machine. Being the PCs in ShareGrid non ded-

28 Referring to Affymetrix HG-U133 Plus 2.0 GeneChip
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icated resources, the local activity is preemptive and it kills suddenly the background com-
putation, which must restart on another machine. We empirically evaluated the right size of 
task such as it might complete in around five minutes. The second improvement was to use 
a scheduling strategy which replicated the tasks on different grid machines, if idle, and run 
them simultaneously. This further reduced the probability of a task being killed in all its in-
stances and restarted. The results of these optimizations are highlighted by the third experi-
ment, which reports a speed up of 36 time. For our users, this means switching from a wait  
of three weeks to less than one day. After these trial experiments, the infrastructure has been 
used for other computations [SBDM+09].

Experiment 
name

samples features questions CPU time (h) Wall-c-
lock 
time 
(h)

1 Brain tumor 68 54913 6 ~ 3000 1200

2 Ependymomas 19 54913 9 1302 316

3 Breast cancer 198 up to 22238 2981 437 12

Table 3: Main gene selection experiments. Wall clock, from the launch of the experiment to the return of  
last result, time includes data transfer. CPU time is the sum of all single tasks run time recorded on the  
remote node and match with the estimated time required for a single workstation. One week is 168 hours.
Despite the satisfying performance improvement, several issues still remain to be solved. As 
explained in the in the introduction, this solution suffers from many of the flaws frequently 
found in scientific applications:

– the user needs to handle several different tools at the same time;

– the granularity of the tasks, once distributed, is fixed;

– troubleshooting is cumbersome and out-of-band;

– there is not an obvious way to distribute tasks requiring different library/base applic-
ations;

– data distribution is primitive;

– there is not checkpointing facility and the task restarts  from the beginning when 
killed by the local user activity;

– input, output and interprocess data exchange is based on files.
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Moreover, the solution adopted resulted results tightly bound to the algorithms we have im-
plemented on it , not scalable, and not easily generalizable to other applications. 

4.3 The distributed testbed infrastructure

In both the original l1l2  and the new Data Grid-enabled experiments, we exploited ShareG-
rid,  an existing Desktop Grid infrastructure,  to distribute the computation across several 
PCs. ShareGrid [ACGB+08] is a collaborative project which involves several Universities in 
Northern Italy. Each partner allows the others to use his own computational resources on a 
reciprocity basis. As of October 2009, the participants to ShareGrid were the Department of 
Computer Science of the University of Piemonte Orientale, the Department of Computer 
Science, the Department of Economic and Financial Sciences "G. Prato", and the Depart-
ment of Drug Science and the Re.Te.-Centro di Interesse Generale d'Ateneo Reti e Tele-
comunicazioni of the University of Torino, TOP-IX, the Torino Internet traffic exchange 
point, the CSP - Innovazione nelle ICT, and the Department of Computer and Information 
Science of the University of Genova.

The ShareGrid infrastructure is based on OurGrid middleware, developed at the Universid-
ade Federal de Campina Grande (Brazil) and sponsored by HP. OurGrid is based on a two 
level peer-to-peer architecture, as described in Figure 26. At the first level, a department cre-
ates its own desktop grid infrastructure, installing on each PC an agent and using a central 
supervisor (manager or peer) to coordinate them. At the second level, the supervisors of dif-
ferent organizations connect in a mesh to establish a P2P network.
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Figure 26: The ShareGrid/OurGrid architecture



OurGrid is designed to support only the execution of the so-called  Bag-of-Tasks applica-
tions, consisting in a set of independent tasks that do not communicate among them [CG89]. 
Despite their limitations, Bag-of-Tasks are used in a variety of domains, such as parameter 
sweeps, simulations, computational biology, and computer imaging.

We successfully used ShareGrid for different research works  [BFSV09][BF09][FL09], but 
the lack of coordination between tasks, especially concerning splitting strategies and check-
pointing, suggested us to develop the solution presented here. Unfortunately, not all ShareG-
rid’s sites are suitable to run P2P Data Grids; the major obstacles found were incompatible 
JVM versions on the hosts and troubles with multicast traffic in some LAN configurations. 
Since one of the features of grid toolkits is to allow the selection of the resources, after a 
scouting run of a probe program, we identified the peers compatible with our experiment 
and then run the test on these nodes only.

4.3.1 Framework architecture
Over ShareGrid we apply this overall strategy to add checkpoiting, shared storage, and other 
features supplied by Data Grids to the application. The user, using the standard OurGrid 
tools, deploys the Data Grid nodes and additional libraries on several machine. As observerd 
in the previous analysis, Data Grids is not usually designed to work over WAN or in parti-
tioned networks, hence the hosts must be selected from the same LAN. The hosts might also 
been selected to meet the application requirements, such as available memory, operative sys-
tems, etc.... When the nodes start, they discover each other and establish an overlay net-
work, as illustrated in Figure 27.
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Figure 27: The user deploys Data Grid nodes using the grid tools and selecting suitable resources. At  
startup, the nodes discovered each other and setup an overlay network, distributing data partitions  
providing at least one backup for each partition



If a node leaves the Data Grid, for instance for the crash of the PC or because somebody on 
the local console starts to work on it, the other nodes rearranges partitions assignment to en-
sure the presence of backups, as in Figure 28. When the Data Grid cluster is established, the 
user can start his application, on its own PC if connected to the same LAN, or in another 
node of the remote grid.

Any subtask of the application can be sent to the node hosting the partition and executed 
concurrently. The data in the Grid can survive to the loss of one or several nodes if the inter-
val between each crash allows the partitions to be reallocated.

4.4 Data Grid-aware l1l2

The first step to this new architecture was the porting of the code to a version entirely re-
written in Java. A preliminary version was prepared mapping the original MATLAB code to 
Java, using JAMA [jama] as the base matrix manipulation library. The access to JAMA API 
is mediated by few abstraction classes, which allow the easy replacement of the library for 
linear  algebra  and matrix  manipulation.  It  is  worth  noting  that  microarray matrices  are 
dense,  therefore  different  matrix  implementations  could  hardly  make  a  difference  in 
memory footprint. Potential benefits can be expected from libraries which apply a strategy 
based on views rather than on copies for certain operations, but these are rare in l1l2 .

Preliminary tests were also performed with UJMP [ABN09], which offers a more modern 
design and can seamlessly integrate other matrix libraries aside the built-in functions. In our 
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Figure 28: In case of Data Grid node leaves the cluster, the Data Grid rearranges partitions. The  
underlying Desktop Grid infrastructure could restart the crashing node. When the user application has a  
subtask associated to a specific data, it is routed to the nodes hosting that data in their partitions and  
executed locally



test UJMP performs more than two times slower than JAMA29, and in the current release it 
requires additional libraries to implement some features such as Singular Value Decomposi-
tion, without offering notable benefits to our application. The support UJMP should be de-
sirable for its capability of exposing  Map objects, backended on disk possibly,  as UJMP 
matrices, thus outlining a good integration with IMDG.

This first Java release of the l1l2  framework, hereafter referred as  L1L2Base, was used as 
baseline for all remaining comparisons. As preliminary step, L1L2Base was compared with 
the original L1L2_TOOLBOX. Tests on a Windows XP platform shown that the Java imple-
mentation is slightly slower than the original  L1L2_TOOLBOX executed in MATLAB, but 
outperforming twice the same script executed using the open source GNU Octave [Eat02].

This was a critical point: MATLAB is a commercial product whose license does not allow a 
distributed  use,  especially in  a  grid infrastructure spanning multiple  institutions  such as 
ShareGrid.  To be complaint with the license, we adopted GNU Octave,  which is highly 
compatible with MATLAB, but considerably slower. In the grid implementation, the huge 
number of running machines partially compensate this deficiency. However, the perform-
ance boosting obtained by using Java is largely sufficient to justify the switch to the new im-
plementation.

4.4.1 A Data Grid framework
The L1L2Base implementation has serious memory requirements, as shown in Figure 29, 
that could dramatically increase in a parallel execution, due to the increasing number of 
matrices instantiated as intermediate results.

29 This contrasts with the benchmarks published by UJMP (http://www.ujmp.org/java-matrix/benchmark/ last 
accessed 1 Nov 2009) which, on a limited set of operations (a single matrix multiplication and a single 
matrix transposition), seems indicate a completely different performance ranking among Octave, JAMA 
and UJMP. However, l1l2 application includes several matrix operations.
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Figure 29: Java VisualVM console showing the memory allocation and the CPU utilization required to  
load 10 samples (image from a dual-core CPU, with the basic single thread l1l2  implementation).



In-Memory Data Grids offer the opportunity of facing both the memory footprint and the 
computation performances at the same time.

The specific structure of data collected by microarrays, with few lines having many columns 
adopting the classical tabular representation of data mining, and the specific protocol of 
leave-one-out cross-validation, have suggested to load the data on the Data Grid associating 
each row to an entry. The size of each row resulted around 430 kbyte, probably too large to 
obtain optimal performances with some Data Grid implementations, but the tests with l1l2 

did not manifest any anomaly. Being each line stored in the Data Grid, in a partitioned con-
figuration possibly, the tasks are submitted to each node. Each task is defined by a tuple 
from the parameter space to explore and by a set of keys associated with lines forming the 
training set. For a generalised implementation, also the keys of the test set are included in 
the task definition, although in this specific case they could be derived as the complement of 
the training set. This also avoid to implement a naming strategy to keep separate entries in 
the map belonging to the dataset from others with different origin; even if some other pro-
cess save a new entry in the Data Grid map, providing the key is not present, there is no pos-
sible overlapping.

If the underlying Data Grid implementation supports targeted or key-based routing, the task 
will execute on a node owning locally at least one of the involved entries. In this execution 
phase, because of the nature of leave-one-out cross-validation, in which each task needs all 
the dataset except one entry, and the design of partitioned Data Grid, in which redundancy is 
minimized, there is no chance to do a better job, and some network load is unavoidable. 
However, any other mechanism, such as shared file systems, RDBMS, etc... will need to 
transfer all the data to the node running the task. In Data Grid it is possible to use Near 
Cache feature, configurable at deployment time, to handle repeated access to the same keys 
in an efficient way.

At each stage, the task saves in the Grid its partial results, associated with a meaningful key, 
in the sense that the key alone permit to reproduce the result. As an example, each iteration 
of the inner loop of l1l2, is determined by a tuple of values from the parameter space and a 
set of row used for training. Thus, a class  InnerLoopParameters is defined and an in-
stance is used to keep the values at each iteration and as the key to store the result of the it-
eration. This design brings two benefits: first,  it  is easy to generate the complete list  of 
InnerLoopParameters combinations without actually computing the partial results. Then 
each key can be sent to a different node for a parallel computation. The second benefit is 
that the task, before starting a computation, can check the map in the Data Grid to verify the 
presence of the entry; if so, the result has been already computed and the task can read it, 
proceeding directly to the next step. Saving the entry should be an idempotent operation to 
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ensure that multiple  put() of the same key will not produced wrong effects but useless 
computation. Not always this is possible, since some machine learning methods, such as K-
means clustering, rely on steps including random decisions. However, a careful design of 
the implementation can avoid these situations.

Saving the partial results associated with the values that generate them as key allows, in 
case of node crashing, the dead task can restart on another node and recover the results ob-
tained so far. Thus, the checkpointing feature comes for free in a Data Grid.

The other interesting advantage over traditional grid approach comes from their underlying 
P2P architecture and MapReduce execution model.  In a  pure P2P implementation,  each 
node is equivalent and each task running on a remote node can launch other distributed tasks 
as well. This characteristic might be accessible only in grids with a fine-grained API. In fact, 
at that level, there is an uniformity between the functions that the user invoke to submit a 
task and the functions that the task itself can invoke when running on a remote node.

In general, recursive task submission is error prone and should be handled as harmful by a 
casual developer. As in multithread programming, the most probable result is a deadlock or 
a race condition. The MapReduce programming model can help in this context. Although 
being criticized  for  its  lacks  of  expressiveness  or  as  a  “step  backwards”  [DWS08],  the 
MapReduce model was designed to “allows programmers without any experience with par-
allel and distributed systems to easily utilize the resources of a large distributed system” 
[DG04].

In Data Grids that in a broad sense support the MapReduce model, the risks factors intro-
duced by careless programming are reduced. In fact, each framework supposes to receive a 
“map function” which accepts  one parameter and produces a  list of results, and a “reduce 
function” that accepts a list of results and returns one value. If such an API is combined with 
the Java generics facility, it is hardly to produce unwanted harmful code. It should be noted 
that, at the present, only few Java-based grids middlewares, such as GigaSpaces XAP and 
GridGain, support both MapReduce and generics. 

4.4.2 Performances
To evaluate the performances of the system in a real scenario, we have repeated the same 
computation in two different configurations.  In the first  case, we used our departmental 
cluster composed of 20 dual Intel Xeon servers connected through a dedicated Gbit Ethernet 
network. Having not external interference, this facility provided a baseline of repeatable res-
ults. The tests have been repeated on two different ShareGrid sites during normal activity 
time in remote computer rooms. In both cases, each computation has been executed re-
peatedly. The number of repetitions ranging from at least three in the cluster, to some dozen 
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on ShareGrid, varying with the availability of the remote hosts. In the results, we show the 
average time for each test set. The computation consists in a feature selection run on a syn-
thetic dataset which we normally use to validate and to test l1l2  implementations. Experi-
ments have been repeated with 3k, 15k, 50k and 200k datasets, where the number indicates 
the thousand of cells in the matrix.

Results obtained from the cluster, summarized in Figure 30, show the Data Grid-enable l1l2 

can scale when adding nodes, in the x-axis, even if less than expected. Execution times, in 
y-axis, are normalized to the one elapsed by the two nodes setup. For each dataset and node 
configuration, the standard deviation of the experiment was usually less then 10%, except 
for the strange behaviour of the 50k dataset which seems more susceptible to the cluster 
size, resulting sometimes faster than the ideal speed.

The  same tests  have  been  repeated  on  ShareGrid.  As  expected,  due  to  the  dynamic  of 
Desktop Grid infrastructures, the results were more variable e sometimes unpredictable. As 
exemplified in Figure 31, small datasets could have some benefits from the distribution in a 
Desktop Grid, as shown by the 12k dataset experiment executed on Turing lab, but larger 
problems suffer from the contention with local user activities, resulting in inconsistent per-
formances.

An interesting point is that many executions on ShareGrid had to deal with node crashes. 
We experienced up to six nodes leaving and five nodes joining the cluster in a single run, 
with delays ranging from 15 seconds to 5 minutes, depending on data size and target labor-
atory. Rarely these events have caused the computation interruption.
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a) execution time b) speed up

Figure 30: l1l2 cluster experiments. In the x-axis, the number of nodes in the cluster, in the y-axis, on the  
left, the execution time compared to the two-nodes result for the same dataset, on the right, the speedup.
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The data analysis has filtered out some outlier values. Less than a dozen of runs required 
more than ten times to complete, in few cases more than one hundred times, without no 
evident correlation with the status or the activity of the target LAN. Node logs might give 
some hints, but unfortunately the current OurGrid architecture returns the logs at the task 
fulfilment only, while frequently the PC is switched off or rebooted before the hosted Data 
Grid node shutdowns gracefully. Being many of the PCs owned by other organizations, it 
was not possible to read logs at runtime directly from the node console.

4.5 Data Grid integration with existing applications

The scenario presented in previous sections provides basic services and algorithms. In the 
aim of evaluate IMDG as distributed framework for data mining applications providing a 
programmer-friendly programming models, we have evaluated different applications,  de-
scribed in Section 2.1.1. We present here only the results obtained from KNIME. Previous 
prototypes based on Weka have shown several problems, due to the legacy of  code smell 
[Flo99], the pre-Java 5 multithread techniques, and its old design. The main obstacle to in-
terface with a Data Grid, which handles serializable object only, was the foundation class 
weka.core.Instances, as noted in Section  2.1.3, which cannot used nor extends as-is. 
The refactoring needed to convert Weka to an interface-based design is out of the scope of 
this work. Debellor re-uses Weka and thus present similar problems.
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a) execution time, 12k dataset b) execution time, 50k dataset

Figure 31: l1l2 ShareGrid experiments. In the x-axis, the number of nodes in the cluster, in the y-axis, the  
execution time compared to the two-nodes result for the same dataset. The Turing lab is based on  
Microsoft Windows XP systems, the Dijkstra lab on Sun Solaris 10.
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KNIME is based on a plugin architecture compliant to the OSGi platform [osgi] provided by 
the Eclipse platform [eclp]. This allows for a great extensibility e a clear separation of con-
cerns in design. Being KNIME a visual Workflow Manager, the “building blocks” are iden-
tifiable with the workflow nodes, even if OSGi modules (bundle) can provide many differ-
ent services entry point. As an example, the services of a computational grid might be ex-
posed to the programmer as a platform-wide service through an API, or might be presented 
to the user as a workflow metanode. The first option represents a valid choice to implement 
the  support  for  Data Grid.  Unfortunately,  it  could  require  an heavy work in  some core 
classes, producing an incompatible fork of the original project.

Thus, for the sake of simplicity, we have implemented the modules to access the Data Grid 
as  nodes.  Creating  a  node plugin  is,  in  general,  quite  straightforward,  just  requiring  to 
provide a concrete implementation of few methods in a skeleton generated by a wizard. In 
our  case,  there  was  complication.  Many  of  the  core  interfaces  and  classes,  such  as 
org.knime.core.data.DataTable and its implementations, o.k.c.d.DataRow,   and 
o.k.c.node.BufferedDataTable,  do  not  implement  the  Serializable interface. 
These classes cannot be used as-is to move data from and to the Data Grid. Since element-
ary components, such as o.k.c.d.DataCell are serializable instead, we solved this prob-
lem implementing a new data type (Port Object) which encapsulates serializable compon-
ents in a new class hierarchy which maps the core classes. In the prototype, the user needs to 
explicitly transfer the data to and from the Data Grid and special nodes are required to ma-
nipulate them. These nodes delimiting the scope of Data Grid are introduced as prototypical 
level without any logic inside. Node which operate on data are copied and adapted form the 
default KNIME release.
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Figure 32: Data Grid-aware nodes in KNIME. The upper workflow reads a text file, split lines in records  
and filter the resulting data rows in order to compute basic statistics. The lower workflow operates the  
same data operations, but loading data in the Data Grid.



Thus, the prototype works as shown in Figure 32: data from a standard node are loaded into 
the Data Grid, then are elaborated by specialized version of nodes, sharing the same code-
base of equivalent defaults, and finally the rows are collected from the Data Grid and re-
turned to the local workflow.

This looks like the design of KNIME built-in database node group, with an important differ-
ence: it is only a tactical design choice to ensure the compatibility with the main project. As 
we will see, the pre-existing code can be converted to supports Data Grid natively.

To support  different IMDG implementations,  we developed a simple façade framework, 
named SDGF (Simple Data Grid Façade), which abstracts basic operations and presents 
them in with an uniform interface. Some details about SDGF are described in Section 4.6. In 
SDGF, the backend IMDG implementation can be choosen at deployment time, using a sys-
tem property.

In this new design, plugin nodes require an unusual approach. The current programming 
idiom is expecting to iterate on data rows, applying some operation on them. For example, 
in the original code of node “Row Filter”, shown in Listing 16, the whole input table is iter-
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protected BufferedDataTable[] execute(
final BufferedDataTable[] inData,
final ExecutionContext exec) throws Exception {

DataTable in = inData[0];
// ... initialisation code ...

BufferedDataContainer container = 
exec.createDataContainer(in.getDataTableSpec());

try {
int count = 0;
RowFilterIterator it =

new RowFilterIterator(in, m_rowFilter, exec);
while (it.hasNext()) {

DataRow row = it.next();
count++;
container.addRowToTable(row);
exec.setMessage("Added row " + count + " (\"" 

+ row.getKey() + "\")");
}

// ... catch clauses ...

return new BufferedDataTable[]{container.getTable()};
}

Listing 16: Snippet from class  
org.knime.base.node.preproc.filter.row.RowFilterNodeModel



ated and rows meeting certain criteria are copied in a new data table. In this case, “the data 
go to the task”, sometimes in literal meaning: if the table, for instance, is backended in a text 
file, to iterate through it implies read the file line-by-line from the disk. In Data Grid, to ob-
tain any benefit, the flux must be inverted and the tasks moves where the data are. Being the 
storage unit of the Data Grid the associative map, this means each task must be targeted to a 
map.

The equivalent Data Grid-aware version of “Row Filter”, based on the SDGF framework 
and shown in Listing 17, creates a Task object, specialized for data copy, and sends it to the 
Data Grid specifying the target map. The underlying IMDG implementation, if capable, will 
spread the task on the nodes and each node will execute it locally against owned entries.

The  Task interface of SDGF, and its subinterfaces such as  CopyTask, has basically the 
same role of a  Callable or Runnable. The main constrains in Data Grids is that each ob-
ject must be serializable, thus Task extends Serializable. In the example, it is not pos-
sible to instantiate an anonymous class, since the model of a workflow node in KNIME is 
not  serializable.  In  other  cases,  having an interface  which extends both  Callable and 
Serializable could help the programmer to quickly implement small tasks.

The Data Grid maps are handled by name, to ensure the maximum compatibility among IM-
DGs and the possibility to switch directly to the backend implementation API if advance 
features, not provided by SDGF, are needed.

Submitting  a  task  on  the  Grid  returns  a  Future,  as  in  the  familiar  model  of 
j.u.c.Executor,  which allows asynchronous execution and, if the underlying middle-
ware has this capability, also allows the cancellation of the task. This supports some usabil-
ity features normally required in a GUI. Unfortunately, in this architecture is hard to provide 
a progress bar; since it is not clear how to compute the progress ratio and where execute the 
callback updating the values in such a parallel environment with an unknown number of 
nodes. Moreover, obtaining some information from the remote nodes, even if the middle-
ware supports messaging, could result in an excessive network overhead.
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The MapReduce model can be applied as well. For example, it is easy to use a reduce-only 
procedure to compute basic statistics on a distributed table. The map() part is not required 
by SDGF which automatically creates a 1:1 map. In Listing 18 the usage of a  reduce() 
function to compute a statistic table holding statistical moments, such as mean, variance, 
column sum, count missing values, minimum and maximum values, etc... is shown.
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public static class Filter implements CopyTask<SRowKey, SDataRow> {
// ... plumbing code ...

@Override
public SDataRow execute(SRowKey key, SDataRow row)

throws Exception {
if (m_filter.matches(row)) {

return value;  // Copy to the new map if matchs
}
else {

return null;
}

}
}

protected DatagridConnection[] execute(final PortObject[] inData,
final ExecutionContext exec) throws Exception {

DatagridConnection in = (DatagridConnection) inData[0];
// ... initialisation code ...

Map sink = Datagrid.newMap(m_mapname);  // Create sink map

CopyEntryTask<SRowKey, SDataRow> filterTask = new Filter();
filterTask.setSinkMap(m_mapname);
Future future = Datagrid.submit(in.getMapName(), filterTask);
future.get();  // Wait for completion

// ... plumbing code ...
return new DatagridConnection[] {dgTable};

}

Listing 17: A Data Grid-aware rewriting of RowFilter code



The MapReduce-aware  versions  of  many machine  learning algorithms are  available.  As 
already noted, MapReduce is not a new programming technique and does not perspect rad-
ically different performances on parallel system. It is designed to cope with the difficulty of 
distributed computations in both execution on unreliable hardware and programming by ex-
perienced programmers. Since performances of parallel versions of machine learning al-
gorithm are more dependant on the algorithm itself rather than by the middleware which ex-
ecutes them, we concentrate our tests on basic tasks, such as filtering and conversions, fo-
cusing on the benefit for the programmer.
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public static class StatReducer
implements ReduceTask<SDataRow, StatisticsTable> {

private final DataTableSpec dataSpec;

// ... plumbing code ...

public StatisticsTable reduce(List<SDataRow> results)
throws Exception {

// A modified version of default StatisticsTable
// which allow incremental operations
StatisticsTable stat = new StatisticTable(dataSpec);

for (SDataRow row : results) {
stat.addToAllMoment(row);

}

return stat;
}

}

protected DatagridConnection[] execute(final PortObject[] inData,
final ExecutionContext exec) throws Exception {

// ... plumbing code ...

StatReducer reduceTask = new StatReducer(m_mapname);

Future future = Datagrid.mapReduce(dg.getMapName(),
null, reduceTask); // null map() is handle 

automatically
// to 1:1 map

StatisticsTable stats = future.get();

// ... plumbing code ...
}

Listing 18: A MapReduce implementation of basic statistics



4.5.1 A basic ETL test
In many cases, an IMDG might act as a store for transient data continuously flowing from 
sensors, diagnostic services, or OLTP systems. As an example, we could think to a Data 
Grid feed from system logs, emails, and SNMP trap events, which keeps copies of the ori-
ginal data for a short period. In this case, losing some data, due to overload or network prob-
lems or discharged old ones, is an acceptable event. The infrastructure could be used to dis-
cover anomalies or behavioural patterns for intrusion detection, failure prediction, or spam 
fighting.

The raw data must be preprocessed to adapt to the system. Such phase, known as ETL (Ex-
tract, Transform, Load) is a crucial process in data mining. Typical ETL is time consuming, 
because data are recorded on databases or files that, having an architecture designed to en-
sure integrity maintenance, slow down this type of operation which often does not require 
the same high level of integrity insurance. Even in well-designed infrastructure, the database 
is usually the bottleneck due to the fact that RDBMS can only scale up (buying more power-
ful, and expensive, hardware), and not scale out by adding other inexpensive servers.

We can expect In-Memory Data Grids might speed up ETL processes for continuous opera-
tion, such as in systems which continuously receive new data, in two way: firstly, the data 
are transformed on their arrival and not at load time, secondly, the processed data are keept 
as POJO (or other optimized form) rather than as database or textual data, without the over-
head introduced by marshalling/unmarshalling operations.

For the same reasons, an In-Memory Data Grid could also be used has backend for passiva-
tion and checkpointing, hiding to the programmer most of the complexity of handling a con-
figurable support for object persistence. Moreover, in situations in which the same pre-pro-
cessed data have to be used in different clients or in long batch operations, table stored in 
the Data Grid could be shared with other applications and clients can detach from the Data 
Grid and return later to collect the results.

To test this scenario, we performed a cycle of ETL to analyse a log file generated by an 
Apache web server and designed a typical web analytic job, consisting in the extraction of 
cumulative statistics form an web server log file. The log lines are tokenized, then the fields 
are converted in the appropriate Java type. The resulting objects are then processed, such as 
extracting the  network from the  IP address,  to  compute aggregate  statistics  about  bytes 
downloaded per network, preferred pages and their hit numbers and the set of user agents 
(browsers).

Lines came from a real web site Apache httpd server log, and have been loaded in the Data 
Grid, in batch starting form 1,000 lines to reach 512,000 ones. The tests have ran on our de-
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partmental cluster, using a pool ranging from 1 to 8 nodes. Each machine have two Intel 
Xeon processors, and uses Slackware 64bit Linux and a Sun 64 bit JDK 6 Java Virtual Ma-
chine with a heap limit of 768 Mbyte.

After loading, the data was processed in this order:

1) each line was loaded in a table or map of the Data Grid using a progressive identifier 
as key; The typical log line and a sample of the result is shown in Listing 19.;

2) using a regular expression, each line was splitted in an String array of its compon-
ents, invalid line were discharged, and resulting arrays were stored on the Data Grid;

3) each String array was copied in new array of objects of the correct class, convert-
ing the byte transmitted into an Integer, the timestamp into a Date, etc... Result-
ing arrays were also stored in the Data Grid; not convertible values were reported as 
null and handled as missing values;

4) from the whole table statistics were extracted: source network of the request and 
bytes  downloaded per  network,  preferred pages and their  hit  numbers,  and most 
common user agents.
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// Typical log lines
95.108.128.242 - - [17/Sep/2009:06:41:12 +0100] "GET 
/manuali/eudora5/smtpeudora.html HTTP/1.1" 200 5101 "-" 
"Yandex/1.01.001 (compatible; Win16; I)"
65.55.207.119 - - [17/Sep/2009:06:41:35 +0100] "GET / HTTP/1.1" 200 
10452 "-" "msnbot/2.0b (+http://search.msn.com/msnbot.htm)"
195.210.89.37 - - [17/Sep/2009:06:41:50 +0100] "HEAD 
/genuanet/mrtg/scpo-month.png HTTP/1.1" 200 - "http://www.unige.it/" 
"libwww-perl/5.805"

// Statistics
Byte/network:

130.251.121=1356063104
83.224.68=5590464
...

Url/hits:
/genuanet/wm/=2368
/genuanet/mrtg/ling.html=1152
...

Browsers:
msnbot/2.0b (+http://search.msn.com/msnbot.htm)
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
...

Listing 19: Typical Apache log lines and analytic results



The tests have used the code of our KNIME custom nodes. As backend, both Coherence and 
Hazelcast have been used. Each operation has been performed using as much parallelisms as 
the underlay middleware could offer. Specifically, using Oracle Coherence, the operations 
on lines were implemented as instances of InvocableMap.EntryProcessor and the ag-
gregate statistics were computed with instances of ParallelAwareAggregator.

Being the Data Grid configured to use one backup copy, the result of a two-nodes cluster 
have not significance, since this configuration handle exactly the same data of a single node, 
just adding a high communication overhead.

Coherence has been tested in various configurations. One of the most interesting feature is 
the Asynchronous Store Manager backend on a NIO buffer30. In this case, the operations in-
volving data storage, as shown in  Figure 33, require more time as the number of nodes 
grow, but the operation with a high degree of parallelism scale better.

30 http://coherence.oracle.com/display/COH34UG/async-store-manager (last accessed 31 Jan 2010)
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Loading phase Splitting phase

Conversion phase Aggregation phase
Figure 33: Coherence with Asynchronous backend ETL test, 128,000 log lines sample. Note the different  
scale of aggregation phase.
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Hazelcast shows a different behaviour; as shown in  Figure 34. The complete test required 
about the same time independently by the number of nodes (except in the case of a single 
node). 

Variation in the phases are more likely due to erratic network and host conditions, as visible 
in the details graphs in Figure 35.
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Loading phase Splitting phase

Conversion phase Aggregation phase
Figure 35: Hazelcast ETL test, 64,000 log lines sample, details.
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Figure 34: Hazelcast ETL test, using 64,000 log lines sample
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This behaviour is due to the synchronous architecture of Hazelcast; both load/store opera-
tions and distributed task executions are blocking and the algorithms cannot exploit concur-
rent execution to increase performances. Obviously, in other contexts such as Web Applica-
tion clustering, this behaviour, which does not depend on the number of nodes, might be an 
advantage.

4.6 Some details on the Simple Data Grid Façade framework

To  test  the  different  Data  Grid  implementations,  we  developed  the  Simple  Data  Grid  
Façade (SDGF), a lightweight abstraction library which offers an uniform API to many 
Data Grids.  SDGF is inspired to  other  well  known libraries with similar goals,  such as 
SLF4J (Simple Logging Façade for Java) [slf4j] which serves as an abstraction for various 
logging frameworks.

This library is by far from having a production-grade quality, however its use provided some 
suggestions. SDGF works at a low level and aims to be used as a connection provider. Up-
per level abstractions can be found by other projects, such as Cascading [casc] or Granules.

4.6.1 Instantiation pattern
The Data Grid is  accessed through the  it.unige.disi.sdgf.Datagrid class,  which 
implements a singleton, handles the lifecycle of a driver class, and mediates the access to 
the  backend.  Drivers  implement  the  i.u.d.s.Provider interface,  exposing a  Service 
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Figure 36: Class diagram of SDGF



Provider Interface (SPI) and wrapping the IMDG with a specific adaptor. A local imple-
mentation based on j.u.c.ConcurrentMap and j.c.u.ExecutorService is provided 
for both testing and fallback purposes.

Since many IMDGs do not offer a suitable execution layer, in such cases the missing fea-
tures are provided integrating GridGain. Support for other computational grid implementa-
tions, such as JPPF, is possible.

The concrete Provider is specified using a system property. This design is close to many 
other Java services, such as JAXP [CW02]. Although, this is not a OSGi-friendly solution, 
the effort to assembly a service bundle was out of the scope of this work.

4.6.2 Task as serializable Callable
In SDGF, all tasks implement a specialized interface derived from Task. This interface has 
the same role of  Callable in the package  j.u.c. The main method is  execute(key, 
value), which operates on an entry. The code must be reentran and can raise exceptions; 
this design is close to Oracle Coherence and IBM WebSphere eXtreme Scale, while other 
implementations, such as GemStore GemFire or GigaSpaces XAP, use a model similar to 
Runnable. Unfortunately, Runnable does not help the programmer in preventing the per-
ils  of  concurrent programming. It  presents several dangerous points that a programmer 
needs to face with: returning a value require some attention to shared resources, there is not 
an obvious way to deal with exceptions, start() and join() must be explicitly invoked, 
etc... Moreover, the API should make transparent to the programmer the underlying distribu-
tion, but using class member as both input arguments and the returning value could lead to 
some confusion, since the programmer could perceive both as local variables and not as 
copy or proxy of remote shared data. Thus, this model is not supported in SDGF.

Task is not used as-is: each implementation has specific strong point to exploit, while other 
usage patterns are not directly supported and required adaptors. For this reason, SDGF of-
fers several specialized subinterfaces,  each one mapping to some specific feature of the 
backend. Missing features are emulated.

4.6.3 Built in Completion service
Many IMDGs support a grid-aware  ExecutorService,  but no one could be integrated 
with the standard ExecutorCompletionService. In fact, this component has hidden de-
pendencies from FutureTask, at least in Java 6, which is not serializable [Fer09]. SDGF 
offers an advanced support to a grid-aware completion service.
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4.6.4 Unsupported features and future directions
SDFG is in a preliminarily stage. Many features are not supported because they were not 
need for any specific test in this work. At the moment, for example, event notification is un-
supported. Other features are not implemented by design. An example is the resource injec-
tion using annotations. This technique is applied by many frameworks, such as GigaSpaces 
XAP, GridGain, and WebSphere eXtreme Scale, but it seems still unfamiliar to many Java 
programmers. Moreover, it requires the dynamic discovery at runtime, which could degrade 
the overall performances.
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5 Conclusions and future work

Let us come back to our original question asking whether In-Memory Data Grid is a techno-
logy suitable for distributed Data Mining. The answer cannot be neither a definitive yes nor 
a definitive no since lights and shadows has emerged.

Concerning their use as distributed storage systems, IMDGs seem fitting the architecture of 
typical data mining applications. In fact, the storage model based on familiar  Map is very 
similar to the internal data structure used by most of recent data mining programs. Older ap-
plications could rely on an array representation of data, often inherited by the core libraries 
of machine learning algorithms, which would require more work to be adapted. Instead, lib-
raries more focused on ETL operations might integrate seamlessly with this new technology. 
From this viewpoint, Data Grids could offer to distributed Java applications a scalable stor-
age space, capable to handle objects as-is without impedance mismatch, with an integrated 
checkpointing facility, and fault tolerance mechanisms in Desktop Grid architectures. Al-
though not standardized yet, storage APIs exposed by different products appear as similar 
and, with a tiny adaptation layer, almost all implementations seem interchangeable. Some is-
sues are still open, such as the behaviour when the memory usage is near its limit, which 
results in an application crash instead of providing a graceful degradation.

A promising usage scenario seems that of permanent infrastructures dedicated to continuous 
analysis of streaming data coming from remote systems and having an authoritative storage, 
that can be found for example in fraud detections, anomalies searching in system logs, or 
spam fighting. In this use case, the absence of ACID properties is no crucial,  and older 
samples could be discharged, since the goal is detecting abnormal behavioural pattern ex-
ploring recent data and comparing them with existent models.

Storage features have been considered as the primary APIs of Data Grids, but this techno-
logy is proposed as a support to move computational tasks where the data are stored. Unfor-
tunately, the current status of the majority of the products resulted still immature. The tests 
discussed in Chapters 3 and 4, have shown that often these products do note scale as expec-
ted or can not handle faults in cluster nodes. 

Another major problem is the difficult in the translation of the MapReduce programming 
model when it is ported to Java. Every implementation presents a different API, often in-
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cluding some specific (an not-well  documented) idiosyncrasy,  thus making the code de-
veloped for one platform not easily portable onto another one. This introduces several costs. 
A programmer has to restart from scratch to switch to a different product, and a project is 
stuck to the original choice once a specific product has been adopted. This recalls the “old 
days” when each RDBMS required its specific libraries to be used. Technologies such as 
ODBC, JDBC, etc... have greatly simplified the life of programmers who do not have to 
worry anymore about the database until the deployment time. Also database producers have 
benefit  from API-level  interoperability,  since  new products  will  have  no  opportunity to 
emerge if switching to them is too costly. We hope such a situation could emerge for In-
-Memory Data Grid as well.

5.1 Open source full-featured IMDG

From the experience learned during our tests, Oracle Coherence emerged as a stable and 
performing  solution.  Unfortunately,  Coherence  as  well  as  many other  platforms  cannot 
really be used in academic studies because of their license. Commercial solutions, in fact, 
offer  a full support and a very stable implementation, but pose serious limitations to the us-
age in Desktop Grids within academic infrastructures because the licenses are expensive, 
and usually set limits in the number of CPUs or in the network boundary. Moreover, often 
they are too complex to manage without a skilled technical staff, easier to find in a stable in-
frastructure rather than in a “deploy on the fly” scenario.

It becomes evident the need of an open source solution, even with limited functionalities, 
but ready and easy to use. Hazelcast is a possible candidate but at the moment it offers 
strong capabilities on the storage side, while it has a poor distributed model for computa-
tion. JBoss Infinispan is a promising project, but its distributed execution capabilities are far 
to be implemented. In the roadmap, their are estimated for release 5.1.0.

We hope our Simple Data Grid Façade framework, once mature for a stable release, could 
help in this process, allowing the programmers to abstract from the underlying Data Grid 
implementation.

83



6 Appendix: A Java Data Grids survey

In-Memory Data Grids are currently a hot topic in the business and web-oriented developer 
community, but have received a little attention from the developers of scientific oriented ap-
plications. Most of the main features of Data Grids are not new and often were already 
present in “distributed cache” engines.  In this survey, we will  consider applications that 
define themselves “data grid”, or “distributed cache” or “distributed tuple space”, providing 
they have a native binding for Java.

Data Grid solutions are available as both commercial products such as Oracle Coherence, 
GemStone GemFire Enterprise, GigaSpaces XAP, or IBM WebSphere eXtreme Scale and 
open source projects, such as JBoss Infinispan and its predecessor JbossCache, Hazelcast, or 
Terracotta Ehcache.

In order to provide an overview of production-grade products suitable for Desktop Grid in-
stallations, the following implementations, in some cases only loosely identifiable as Data 
Grids, have been left out for their status at the end of 2009:

– Memcached (http://memcached.org/), because it has a client/server API access

– OSCache (http://www.opensymphony.com/oscache/), since it appears not more sup-
ported with the last release date back to 2007 and the last bug fixed in the January

– SwarmCache  (http://swarmcache.sourceforge.net/),  XSTM  (http://www.xstm.net/), 
Whirlycache (https://whirlycache.dev.java.net/),  and cache4j (http://cache4j.source-
forge.net/) because they are stick on beta or first released and not actively developed 
for more than 3 years.

– JBoss cache, since it is being to be replaced by Infinispan

– Cacheonix  because it is licensed per-processor (http://www.cacheonix.com/) and the 
unavailability of publicly released documentation

– FKcache (http://jcache.sourceforge.net/) and SHOP.COM Cache System 
(http://code.google.com/p/sccache/) because, although actively maintained, they are 
completely new cache-oriented projects, with a very small team, currently in beta re-
lease
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Besides the functional features enumerated in the Section 2.3, other characteristics are ob-
served:

– General description, licensing, status, architecture and base libraries

– Eviction policy, multilevel cache, fail-over support

– Configuration mechanisms

– Networking features

– Querying and indexing capabilities

Features not reported here could be available in additional plugins or could be present but 
officially undocumented or unsupported.

These results is provided “as is” without warranty of any kind, either express or implied, in-
cluding, but not limited to, the implied warranties of non-infringement, merchantability or 
fitness for a particular purpose.

6.1.1 Oracle Coherence
http://www.oracle.com/technology/products/coherence/

Latest release 3.5.3, January 2010

Oracle defines Coherence “A JCache-compliant in-memory distributed data grid solution”. 
Oracle acquired Tangosol Inc. in March 2007. Coherence was the top product of Tangosol 
and is now part of the commercial offer of Oracle. 

Coherence is commercially available in three edition: Standard, Enterprise and Grid. Grid 
Edition is also available for free download for testing and developing prototypes31.

Every edition is distributed as a single JAR file of approximatively 4.5 Mbyte.

6.1.2 IBM WebSphere eXtreme Scale
http://www.ibm.com/software/webservers/appserv/extremescale/

Release 7.0.0, December 2009.

IBM claims “WebSphere eXtreme Scale is an in-memory grid”.

Commercial license based on Processor Value Units (PVU). A free trial version is available, 
with the limitation of 8 hours of continual use. After that, the instance must be restarted.

Previously named ObjectGrid, until 2008, it is an ORB based product.

31 Read the OTN License carefully before download
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6.1.3 JBoss Infinispan
http://www.jboss.org/infinispan

Latest release 4.0.0 Release Candidate 4, 2 February 2010 (for commercial reasons, the first 
release is directly numbered as 4.x, to not overlap with previous JBoss Cache releases).

JBoss defines Infinispan as “an extremely scalable, highly available data grid platform -  
100% open source, and written in Java”. 

JBoss, a subsidiary of Redhat , Inc., developed a popular clustered caching library named 
JBoss Cache since 2003. In April 2009, JBoss announced JBoss Cache will be discontinued 
and it introduced a new product, named Infinispan. It requires Java 6.

Infinispan is released under GNU LGPL license.

6.1.4 Hazelcast
http://www.hazelcast.com/

Latest release 1.8, 15 December 2009

The  web  site  announces  “Hazelcast  Provides  In-Memory  Data  Grid”  and  “Hibernate  
Second Level Cache”. It consists of one only jar file, sizing 750 kbyte, without any external 
dependencies.

Hazelcast is released under Apache open source license.

6.1.5 Ehcache
http://ehcache.org/

Latest release 1.7.2, 11 January 2010

In origin, Ehcache was “an open source, standards-based cache” only. Ehcache has recently 
merger  with  Terracotta  in  August  2009,  hence  there  is  an  integration  plan  of  the  two 
products  which generate a version more similar to a In-Memory cluster solution than a 
simple cache.

In the current release, Ehcache has few dependencies on external library and a modular ar-
chitecture. Ehcache is released under Apache Software License Version 2.0.

6.1.6 Gigaspace XAP
http://www.gigaspaces.com/xap

Latest release 7.0.2, Decempber 2009.
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GigaSpaces says “XAP In-Memory Data Grid delivers an in-memory cache for fast data ac-
cess, and an advanced distributed cache for extreme performance and scalability.” XAP is 
one of the few products exposing the JavaSpaces API.

GigaSpaces XAP is offered in a variety of license models, including perpetual, annual sub-
scription, and pay per use. Free developer and academic editions available.

6.1.7 GemStone GemFire Enterprise
http://www.gemstone.com/products/gemfire

Latest release 6.0.1, April 2009.

GemFire Enterprise is defined as an “in-memory distributed data management platform”.

Production licenses are usually node-locked and limited to a fixed number of CPUs, but oth-
er  licensing models  can be negotiated.  Evaluation expiring evaluation licenses  available 
upon request. A development licenses for development and testing only.

6.1.8 Jakarta JCS
http://jakarta.apache.org/jcs/

Latest formal release 1.3, June 2007; snapshot 1.3.3.2, June 2009.

Jakarta JCS (Java Caching System) is “a distributed caching system”. Although the term 
“Data Grid” in not used to describe the product, it share many features with IMDG. JCS has 
a dependency from Doug Lea’s concurrent package [Lea04].

JCS is released under Apache Software License Version 2.0.
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6.2 Data storage

API: from the programmers viewpoint, the API are the most visible point. Main API style 
are  illustrated  in  Section  2.3,  as  java.util.Map,  JSR-107  JCache,  and 
JavaSpace/TupleSpace.  In  addition,  an  implementation  might  support  the 
j.u.c.ConcurrentMap API, an extension of Map which add the atomic non-locking oper-
ations based on the  Compare-and-swap (CAS) technique  putIfAbsent(key, value), 
remove(key, value) ,  replace(key, value)  and  replace( key, oldValue, 
newValue). This interface avoid using locks to execute common procedure such as check-
ing the presence of a key value before to save a new entry.

Entry container name: almost all the products use the term “entry” to identify the key-ob-
ject pair as elementary storable element, but there is not accordance on the name to assign to 
the elementary container of entries, which has the same conceptual role of table in relational 
databases.

Serialization:  in order  to be transmitted over the wires,  Java object must  be  serialized. 
Many Data Grid implementations also store in the partition a serialized version of the object 
instead of an handle to its representation in the heap memory. Java includes a standard seri-
alization mechanism, but it is know as inefficient [vNMH+02], thus many implementation 
uses a custom serialization format. In this case, programmers can advantages of this imple-
menting externalization method as preferred by the implementation.

Pluggable serialization: the serialization mechanisms can be customized using plugin.

Passivation: the capability of deactivate an entry by moving it from memory to backend 
storage when certain condition are meet (usually analogues to the eviction policy).

Multimap: a MultiMap is a specialized map where a key can be associate with multiple val-
ues.  The benefit  of specialized implementation of MultiMap instead of using something 
such as  Map<K, List> in Data Grids is tied to serialization: adding or removing an ele-
ment form a List stored as an entry of a Map requires the whole list being deserialized then 
serialized and stored again after the update. For long list, this process is very expansive. 
MultiMap avoid this problem associating whit the key a list of the serialized version of ele-
ments.

Query and indexing: when data partitions are spreads across the cluster, iterate over the 
entries and look for ones meeting some criteria is possible but very inefficient, especially in 
those implementation which not offers parallel distributed execution. Many Data Grids im-
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plement some support for queries. SQL-like, XPath, LDAP, etc... No current products full 
supports SQL, specifically multi-table operations are not available.

Unique id generator: a function to generate an identifier unique within the whole cluster.
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Map 1) Concurre

ntMap

Concurre
ntMap

2)

3)
JSR107

Map
Jini

JDBC
Map custom

Entry container name cache,
named 
cache

cache map cache space
data 

region
4)

cache

Serialization River custom Custom
5) custom

Pluggable 
serialization X X

Passivation X

Multimap X 6)

Query and indexing filters OGQL,
4)

SQL-like,
JPA

SQL-like,
XPath OQL Index,

pattern

Unique id generator X

Notes:
1) WebSphere eXtreme Scale  exposes  two API,  ObjectMap and  EntityManager, 

similar to Map but not compatible with it.
2) Hazelcast also implements the distributed version of other Java standard data struc-

tures, specifically  java.util.Set,  java.util.List,  java.util.Queue, and 
their concurrent versions.

3) Implements a proprietary API in which entries (Element) must be create explicitly.
4) GemFire documentation define as “cache” the whole entry set handled by a node, 

which can include several regions; regions can be nested, which produces similar ef-
fect of MultiMaps.

5) XAP can control the serialization mode using different mechanisms.
6) WebSphere  eXtreme  Scale  supports  the  Object  Grid  Query  Language  (OGQL) 

which is similar to JPQL.
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6.3 Networking

Multicast discovery: in most of implementation, IP multicast is the default protocol to the 
discovery process. During discovery, nodes locate each other and negotiate to join the dis-
tributed system. The membership and discovery facility keeps also track of the membership 
list and makes the members aware of the identities of the other members in the distributed 
system.

Client/server: in this configuration, clients and servers are organized into separate distrib-
uted system, usually communicating through network. The cluster could also support  non-
Java clients or standard protocols.

P2P: in this context, a In-Memory Data Grid provide a Peer-to-Peer (P2P) architecture if the 
client and the server might run in the same JVM exchanging data as intra-JVM object. From 
the programmers perspective, this means that an application moved on another host without 
a network connection work as-is.

Super peer:  or “super client”,  or “lite client” model,  where client application is  cluster 
member with no storage. The client may employ an near cache.

Hub: in case of complex networks, in which not all the nodes are mutually reachable, a 
node can act as store&forward gateway to another remote node over segmented LAN or 
WAN.

JGroups: it is a toolkit for reliable multicast communication over different protocol stack, 
not only IP Multicast. It has NAT-traversal capability, joining and leaving handling, notifica-
tion about joined/left/crashed members, point-to-multipoint and point-to-point messaging. It 
is used as base library by many projects. Thus all that projects have similar configurations 
syntax and support similar capabilities. Development of JGroups has been started by Bela 
Ban during his post-doc at Computer Science Department at Cornell University, in 1999. 
More information on http://www.jgroups.org/ (last accessed 07 Feb 2010)

JMS: a  Java Message Service (JMS)  [jms], usually in a Publish/Subscribe configuration, 
can be used to pushes changes between nodes or from nodes to client near cache.
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Multicast discovery X 1) X X X X

Client/Server C++
.NET

native
REST REST SOAP

REST
C++
.NET

C++
.NET RMI

P2P X 2) X X X X

Super peer 3) X X X

Hub X X

JGroups X 4) 5) X

JMS X 4) 6)

Notes:
1) Based on JGroups.
2) eXtreme Scale can be configured in a P2P topology regarding the nodes partition 

stores, but still requires a catalog server.
3) Partitioned configuration can disable local storage, resulting in a client-only node.
4) Optional.
5) Also Terracotta clustering.
6) Including server features.
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6.4 Data distribution

Distributed cache and In-Memory Data Grids could adopt several topologies to spread the 
data across the nodes. Replication has been studied extensively and different distributed dis-
tribution strategies have been proposed in the literature:

Data replication: all data are fully replicated to all cluster members. for availability (and 
performance)

Data partitioning: the full key-space is divided in a fixed number of virtual blocks (or seg-
ments or shards). Then each block is assigned to to a node (owner of the block); in case of 
fault tolerant partitioning, one or more backup (or replica) copies of the block are assigned 
to other nodes. Each entry is store in the node owning the corresponding key plus in all the 
nodes hosting the backups. A common assignment strategy is set the block count to a prime 
number, then having a  coordinator or  catalog node (usually the oldest) which assign the 
ownership of each block and backups to the nodes. In pure Java implementations, entries 
belong  to  the  block  resulting  form  a  computation  such  as  key.hashCode() % 
blockCount or similar.

Near caching: (or  Local, or  L1): a local view proxy maintains a subset of the partitions 
data, allowing the client to read distributed data without any remote operations.

Memory Management and Eviction Policy:  when memory is  about  to exhausting,  the 
Data Grid could discharge (evict)  some entries to make room for newer ones. Common 
policies are  perpetual (never discharge), well known  FIFO,  LRU (Least Recently Used), 
LFU (Least Frequently Used), …. Usually eviction policy can be configured per-region, in 
some case, also per-entry. Some implementations allow to plug-in a custom provider for the 
eviction policy. Products which not implement a perpetual eviction strategy are not included 
in this survey, since are not suitable as Data Grid.

Moreover, also the mechanism to propagate changes in data could be:

– Data copy: new elements placed in a cache and element removals are replicated are 
replicated to others nodes

– Data destroy: an entry is removed completely from the cache with a distributed syn-
chronous the operation

– Data invalidation: the entry value is set to null. Being entry is invalid, a subsequent 
get() causes the cache to retrieve the value from the original source

– Write-Through and Write-Behind
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Batch Write: especially in conjunction with a persistent backend, the ability of bundling 
into a single operation many different updates. In some implementations, the changes might 
also coalesced into a single backend operation if occurred to the same piece data. E.g. in 
case two successive update of the same entry happened before the Write-Behind delay, only 
the latest could be apply to the backend storage.

Asynchronous replication: to guarantee the consistency among distributed cache, all the 
products support synchronous operations. These are a serious bottleneck, since all  are sup-
ported between partitions of the distributed cache (primarily used to synchronize partitions 
with their backup copies on other machines).

Persistent backend storage: allows to load and store the map entries from and to a persist-
ent storage such as relational database. When an entry is retrieve via its key and it does not 
exist in-memory, the engine will try to load the entry from the storage. Similarly, when an 
entry is stored on the cache, the engine will also store it into the backed. Storing can be per-
form synchronously (write-through) with no-delay or asynchronously (write-behind) after a 
configurable delay.

Cache initialization: or “warm startup” is the capability of read the initial state from an ex-
ternal source. This is a distinct feature from persistent backend, since the data are only read, 
and not saved on the backend, and all the data are read, not only the entries occurring in 
cache miss. This feature speed up cache initialization because usually skip any lock control.
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Figure 37: Possible data distribution topologies in Data Grid
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Data replication X X 1) X X X X

Data partitioning X X X X X

Near cache X X X X X X X

Eviction policies
LRU
LFU

TTL
LRU
LFU

memory

LRU
LFU
FIFO

LRU 
FIFO

All-In-
Cache

memory

LRU
Heap 
limit
TTL

LRU

Per-entry policies X X

Pluggable policy X X X

Write-Through X X X

Write-Behind X 2) X

Batch Write X 3) X X

Asynchronous 
operations 4) X X X X

Persistent backend Disk
Database many plugin Disk Hibernate disk

Cache initialization X X X JDBC
plugin

Notes:
1) The  same  result  can  be  obtained  setting  the  backup  replica  number  to 

Integer.MAX_VALUE
2) Only writing on the persistent backend
3) Coalesed changes also supported
4) As backend for distributed partitions.
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6.5 Transactions and database integration

Distributed locks: are usually acquired on a key. Usual algorithms are pessimistic, optim-
istic and Multiversion concurrency control (MVCC) locking. Cluster wide (eagerly) must be 
supported, in some cases also supported local-only locking associated to cluster wide trans-
actions.

Time-bound locks: sometimes associated to deadlock detection.

Transactions isolation: advanced implementation offers other transaction isolation levels 
besides the serializable one provided by locks. Some Data Grid provides repeatable read, in 
which keyset and entryset cannot change once selected from the map, or read committed, in 
which data retrieved by a selection may be modified by some other transaction and became 
visible when it commits.

Transaction manager: support to cooperate in distributed transaction manager

Trigger: allows to validate, reject or modify mutating operations against a map.

Cache plugins: many data access frameworks include the support for a pluggable second 
cache manager  to be used below the persistence layer and completely transparent to the ap-
plication. The Data Grid could be include plugins for frameworks such as Hibernate and 
JPA.
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Distributed locks X X X

Time-bound locks X X X

Transactions isolation Repeatabl
e-read 
Read 

committe
d

Repeatabl
e-read 
Read 
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d

Read 
committe

d
1) Repeatabl

e-read 

Transaction manager JTA
JCA
XA

J2EE JTA J2EE
JCA JTA JTA

Spring
J2EE
JTA

Triggers X 2) 3)

Cache plugin Hibernate
JPA Hibernate Hibernate Hibernate

Notes:
1) Provided by Spring Framework.
2) Interceptors.
3) Used in authorization.
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6.6 Data affinity, data routing and fault recovery

Data affinity: IMDG providing  data affinity, or  co-location, could ensure that entries re-
lated in the same group is contained within the same data partition. For example, in a mas-
ter-detail pattern such as an “Order-Item”, the entire collection of Item objects belonging to 
an Order may be co-located in the same data partition of  the Order object.

Data affinity ensures that all relevant data is managed on a single primary cache node. In 
some implementations,  affinity may span multiple partitions managed by the same host. 
Usually, data affinity is specified in terms of keys, not values.

Main benefit of data affinity are:

– only a single node is required to manage queries and transactions against a set of re-
lated items;

– all concurrency operations can be managed locally, avoiding the need for clustered 
synchronization.

Zones: allows for rules-based block allocation, enabling optimized topology for Grids span-
ning across physical locations. As an example, nodes in the same zone could have a syn-
chronous replication and nodes in different zoned could be asynchronously replicated.

Fault recovery: mechanisms for automatically recovery from cluster errors.
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Data affinity X X 1)

Zones X 2) X

Fault recovery X X X

Notes:
1) Data regions (maps) can themselves be nested and contain child data regions.
2) In compatibility mode with JBoss 3, will be discontinued.
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6.7 Event and messaging

Cluster events: listeners for membership events are notified when members added or leave 
the cluster

Partition events: listeners for partition events are notified when primary partitions, replicas, 
or block, is created, moved or disposed.

Map/cache events: listeners for map/cache events are notified when a storage has finished 
pre-loading, or an entry is stored or evicted.

Entry events: listeners for entry events are notified when a specific entry is modified.

Local entries events: notifications are provided for events occurring in the local partition 
only; some implementations can emulate this feature using a cluster-wide listeners, which 
receive all events, and a filter to ignore not local ones.

Continuous query:  with the continuous query facility,  the clients application registers a 
listener associated to a query expressions. Then, events are sent to client listeners any time a 
change in the data cluster satisfies the query. 
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Entry events X X
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6.8 Distributed and data-aware execution

Task name: there is not accordance on the name of the elementary execution unit. Common 
choices are function, job, or task. The latter two are cause of confusion, since system provid-
ing a way to split the work unit into smaller parts, also named them jobs or tasks. As ex-
ample,  for  GridGain  “Grid  task gets  split  into  jobs when  GridTask.map(List, 
Object) method is called” 32, while JPPFJob class in JPPF “represent a JPPF submission 
and hold all the required elements: tasks, execution policy, task listener, data provider”33. In 
this dissertation, a basic indivisible work unit is identify as task, and an collection of correl-
ate tasks is called job. Sometimes also the term “agent” is used, but normally the agent is 
the service component running in daemon mode on remote host which handle the incoming 
requests.

Distributed executor:  distributed executors automatically span a single task submission 
among all or specified nodes.

ExecutorService:  the  system  exposes  an  API  compatible  with  the  interface 
java.util.concurrent.ExecutorService,

Task cancellation: the remote task can be cancelled.

Execution callbacks: even in products where the task execution is asynchronous in nature, 
it is possible that a call to get a result is a blocking (either indefinitely or for a specific 
timeout). Products supporting callbacks adds the ability to register an listener which will be 
executed once a result arrives.

Targeted execution: the ability of execute an agent (or task) against an entry in any map of 
data, sending it to the Grid node owning the entry and then executing it locally at that node. 
In many cases, it is much more efficient to move the serialized form of the agent (usually a 
few hundred bytes) than moving the data to the execution host, handling distributed concur-
rency control, coherency and data updates. The agent can be routed according to the key of 
the entry, or according to a query result, or to a specific node.

Parallel execution: if the agent is targeted to multiple key, owned by different nodes, some 
IMDGs allow the parallel execution of the task on each node. To be parallel, it is required 
the execution could be truly asynchronous: some framework, such as Hazelcast, present an 

32 http://www.gridgainsystems.com/wiki/display/GG15UG/Grid+Tasks+And+Grid+Jobs  (last  access  4  Aug 
2009)

33 http://www.jppf.org/api/org/jppf/client/JPPFJob.html (last access 4 Aug 2009)
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asynchronous interface to the programmer, based on  java.util.concurrent.Future, 
but internally handle the task synchronously, not exploiting parallelism.

MapReduce:  some IMDG includes a framework or template classes for the MapReduce 
programming model.

MapReduce generics: Map and Reduce classes or parameters are defined using Java gener-
ics.

Fault tolerance: when a task is invoked from a client and the original request fails due to a 
server-side issue (the node owning the target key goes down, or a network partition), the cli-
ent or another peer automatically retries the function execution. Since the task execution 
service is usually not transactional, this can result in multiple execution or partially executed 
results.

Integration with computational grids: some products offers out-of-the-box can integrate 
with computational oriented grids, such as GridGain or JPPF. Integration support could be 
offered by the computational grid.
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Task name Agent,
Entry 

Processor
agent Callable

Task

Processin
g Unit,

task
function

Distributed executor X X X X

ExecutorService X X

Task cancellation X X X

Execution callbacks X X X

Targeted execution Key 
based, 
node 

based, 
query 
based

Query 
based

Key 
based, 
node 
based

Key 
based

Map 
based
Node 
based
Query 
based

Parallel execution 1) X X X

MapReduce X X X X

MapReduce generics X

Fault tolerance X X X

Computation grid 
integration GridGain 2) GridGain

JPPF

Notes:
1) Parallel execution is available with Enterprise and Grid editions only
2) GridGain has an adapter for JBoss cache
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6.9 Security

Authenticated join to the cluster: a node must present a valid token to join the cluster; 
mostly used in P2P architectures

Autenticated access and user management: a client application must present a valid token 
to access and operate in the Data Grid; mostly used in client/server architecture.

Authorization level or roles: client can be authorized to specific operations; as example, 
clients can be authorized or not to perform insert, read, update, invalidate, or delete opera-
tions on cache or to perform queries, etc... Administration authorization are a different topic. 
Many P2P implementation, once allowed the access using a token, have no limitation on the 
action the client can perform. Authorization is often delegated to a standard access manager, 
such as Java Authentication and Authorization Services (JAAS).

Traffic encryption: supported protocols.
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keys password X
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SSL
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X

Password
SSL
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X
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Tivoli 
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Manager

X X
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keys

certificate
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6.10 Management

Demo client: the toolkit includes a demo client for testing purpose.

Admin console: description of the management console.

JMX: supports Java Management Extensions (JMX) Agent.
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API
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Notes:
1) Partial support
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7 Appendix: Amendment One to the OTN License
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