
Dipartimento di Informatica e
Scienze dell'Informazione

Java frameworks
for high-level distributed
scientific programming

by
Marco Ferrante

Theses Series DISI-TH-2010-07

DISI, Università di Genova
Via Dodecaneso, 35 – 16146 Genova, Italy

http://www.disi.unige.it/

Universita degli Studi di Genova

Dipartimento di Informatica e
Scienze dell'Informazione

Dottorato di Ricerca in Informatica

Ph.D. Thesis in Computer Science

Java frameworks
for high-level distributed scientific

programming

by

Marco Ferrante

February, 2010

Dottorato di Ricerca in Informatica
Dipartimento di Informatica e Scienze dell'Informazione

Universita degli Studi di Genova

DISI, Univiversità di Genova
via Dodecaneso 35

I-16146 Genova, Italy
http://www.disi.unige.it/

Ph.D. Thesis in Computer Science (S.S.D. INF/01)

Submitted by Marco Ferrante
DISI, Università di Genova

ferrante@disi.unige.it

Date of submission: February 2009

Title: Java frameworks for high-level distributed scientific programming

Advisor: GIOVANNI CHIOLA
DISI, Università di Genova
chiola@disi.unige.it

Ext. Reviewers:
 MICHAEL R. BERTHOLD

Department of Computer and Information Science
Universität Konstanz
berthold@ieee.org

MAURO MIGLIARDI
Faculty of Statistics
Università di Padova

mauro.migliardi@dei.unipd.it

Abstract
Computing is progressively shifting to handle larger and larger collections of data. It is not
uncommon that databases in the domains of health, biology, genomics, physics, astronomy,
and engineering size in a range from gigabytes to petabytes. Moreover, the modern statist-
ical approaches to knowledge discovery in raw data, usually named machine learning or
data mining, are intrinsically computational intensive. As a result, more and more power
and storage capabilities are needed.

The usual way to obtain high computing performances is to aggregate several off-the-shelf
CPUs in ad-hoc networks of dedicated commodity PCs (clusters) or exploiting idle re-
sources of non-dedicated workstations (Desktop Grid). Obviously, distributed computing
requires more than connecting several CPUs and several hard drives by wires. The real
challenge is coordinating tasks execution and data storage on such systems.

The research on grid architectures consistently focused on designing middlewares to allow
programmers to manage large disparate resources, often forgetting that the acceptance of a
software tool is often a problem of human and economic factors rather than a technical as-
pect. A programmer, like any other user, should have an interface that abstracts the com-
plexity of the distributed system, allowing him to develop large scale applications in a not
dissimilar way from the small local ones.

In recent years, the business software community is promoting a Java-based solution called
In-Memory Data Grids, which has received only a little attention from the scientific soft-
ware developers. In-Memory Data Grids provide a simple access interface, thanks to their
abstraction of the familiar local data structures. In addition, In-Memory Data Grids are
well suited to exploit the new MapReduce programming model, specifically designed to
provide an easy and error-free environment for parallel distributed programming.

In this work are explore the opportunities of applying In-Memory Data Grids in data min-
ing applications, providing an overview of parallel and distributed computing covering cur-
rent Java approaches and their applications in data mining and machine learning, and In-
-Memory Data Grids as a novel approach to massive dataset handling. Then, several In-
-Memory Data Grids implementations are explored to understand their specific character-
istics and an architecture based on Data Grids is compared to a classic grid implementation
of a specific machine learning algorithm.

To the memory of Flavio Baroncelli, Franco Carlini and Vincenzo Tagliasco

Acknowledgements

To my supportive wife Katja, for her infinite patience.

A special thanks to Marina Ribaudo, without her support, this dissertation would have been
much more difficult.

I wish to thank Giovanni Chiola, Giuseppe Ciaccio, Alessandro Verri, Annalisa Barla, and
Paolo Romano, great people I meet in my doctorate.

A special mention for Patrizia Cepollina, Director of CSITA, for her kindness, and to
Stefano Bencetti, Daniele Rossetto and Angelo Marando, for the help in my work.

I acknowledge the ShareGrid management team for the computing power provided through
the ShareGrid distributed platform.

Thank to Cameron Purdy, Vice President at Oracle for the Oracle Coherence product, for
his support with the Oracle license issues (see page 104).

Thank to Carmela Grassi for her helpfulness and to Nicola Rebagliati for his interesting
hints.

I wish also thank everybody working on open source projects, especially Talip Ozturk
(Hazelcast), the team of KNIME and the team of GridGain.

Table of Contents
1 Introduction..3
2 Background..8

2.1 Data mining and machine learning tools for scientific research................................10
2.1.1 Reference applications..14
2.1.2 Java issues with large data set...15
2.1.3 Memory issues in data mining..16
2.1.4 Exploitable parallelism in data mining...17

2.2 Java-based grid computing...18
2.2.1 Accessing the grid...19
2.2.2 Checkpoint and shared storage...25
2.2.3 Desktop Grids as deployment tool..26

2.3 Distributed Data Storage..27
2.3.1 Data Grid APIs..30
2.3.2 Execution layer and programming model...32
2.3.3 The MapReduce support...36
2.3.4 Facing the CAP theorem...42

3 Comparison between different IMDG implementations..44
3.1 In-Memory Data Grids platforms...44

3.1.1 Load capacity test on a single node..45
3.1.2 Entry retrieval test...49

3.2 Memory allocation effectiveness..50
3.3 Clustered operations...51

4 Experiments and results...57
4.1 Background...58
4.2 The classic approach...60
4.3 The distributed testbed infrastructure...62

4.3.1 Framework architecture..63
4.4 Data Grid-aware l1l2..64

4.4.1 A Data Grid framework...65
4.4.2 Performances..67

4.5 Data Grid integration with existing applications..69
4.5.1 A basic ETL test..75

4.6 Some details on the Simple Data Grid Façade framework...79
4.6.1 Instantiation pattern..79
4.6.2 Task as serializable Callable...80
4.6.3 Built in Completion service..80
4.6.4 Unsupported features and future directions..81

5 Conclusions and future work..82
5.1 Open source full-featured IMDG...83

6 Appendix: A Java Data Grids survey..84
6.1.1 Oracle Coherence..85
6.1.2 IBM WebSphere eXtreme Scale...85

1

6.1.3 JBoss Infinispan..86
6.1.4 Hazelcast...86
6.1.5 Ehcache...86
6.1.6 Gigaspace XAP...86
6.1.7 GemStone GemFire Enterprise...87
6.1.8 Jakarta JCS..87

6.2 Data storage..88
6.3 Networking...90
6.4 Data distribution...92
6.5 Transactions and database integration..95
6.6 Data affinity, data routing and fault recovery...97
6.7 Event and messaging..98
6.8 Distributed and data-aware execution..99
6.9 Security...102
6.10 Management...103

7 Appendix: Amendment One to the OTN License..104
8 References..105

2

1 Introduction

Computing is progressively shifting to handle larger and larger collections of data. The trend
is the same in both business and scientific applications, but in science, a new approach to re-
search is greatly contributing to the growth of the data size explored and generated. Classic-
ally, scientific data collections were thought as a reasoned catalogue of relevant facts organ-
ized ex-ante by a domain expert or they were collected to verify a specific theoretical hypo-
thesis. Instead, nowadays has become common in many disciplines the idea of collecting the
raw data and then using powerful statistical methods to identify patterns and rules ex-post.

It is not unusual that databases in the domains of health, biology, genomics, physics, astro-
nomy, and engineering size in a range from gigabytes to petabytes. Moreover, modern stat-
istical approaches to knowledge discovery in raw data, usually named machine learning or
data mining, are intrinsically computational intensive. As a result, more and more power
and storage capabilities are needed.

Starting from the ‘90s, the only feasible way to obtain high computing performances is to
aggregate several off-the-shelf CPUs or GP-GPUs. These can be organised according three
main architectures:

– custom hardware connecting thousands of processors1 in big parallel machines;

– ad-hoc networks of dedicated commodity PCs (clusters);

– aggregate resources of non-dedicated workstations (Desktop Grid).

The scientific community has soon recognized the value of connecting and sharing these re-
sources, and great efforts have been made in Europe, USA, China and Japan, to create the
infrastructures known as Computational Grids. Nevertheless, many small laboratories and
research groups still have no access to institutional grids, and lack of the budget and the
technical staff needed to handle large clusters by themselves.

For such users, even the lower end of the multiprocessor spectrum can be beyond their pos-
sibilities. A medium-range dual 4-core CPU system costs less than 4-5 times an equivalent

1 Such as the IBM Roadrunner (6,912 dual-core AMD Opteron plus 12,960 Cell processors), the Cray Plei -
ades (51,200 Intel Xeon) or, at the lower end, the Asus ESC 1000 (960 NVIDIA Tesla core).

3

lower-end 4 processors system2. And increasing the number of processors, the curve of the
price for processors/cores became further stepping. Thus, there is a clear trend of replacing
high end systems with cheapest solutions which aggregate standard PCs using Ethernet net-
works.

Obviously, distributed computing requires more than connecting several CPUs and several
hard drives by wires. The real challenge is coordinating tasks execution and data storage on
such systems. While there are many frameworks that provide tools for distributed comput-
ing in grid and P2P architectures, as well as many systems that provide coordinated data
storage across a network, there are only few systems that elegantly integrate both. In recent
years, the business software community is promoting a new solution called In-Memory
Data Grids3, which has received only a little attention from the scientific software de-
velopers.

For a long time, scientific applications were identified with classic mathematical computa-
tions, such as matrix manipulation, Fast Fourier Transform, or partial differential equations
solution, thus identifying scientific software in essence with number-crunching. Unfortu-
nately, this vague definition does not help in characterizing scientific software and it is
suited for engineering applications, image processing tools, financial forecasts, and even for
many video games. In comparison, many statistical-based methods have instead a high data
access ratio with relative elementary operations in which the computational cost of access-
ing the data could be comparable or above the cost of actually performing the process. Thus,
performing data mining on a distributed system moving data from a central repository may
not worth the cost and time in terms of bandwidth. Therefore, for data sets that are com-
monly processed several times, it makes sense to store them in a distributed way, at least for
the experiment timeframe.

The research on grid architectures consistently focused on designing middlewares to allow
programmers to manage large disparate resources, often forgetting that the acceptance of a
software tool is often a problem of human and economic factors rather than technical as-
pects. A programmer, like any other user, should have an interface that abstracts the com-
plexity of the distributed system, allowing him to develop large scale applications in a not
dissimilar way from small local ones.

Scientific applications have a specific developing model. In software engineering, de-
velopers and final users are usually considered as two distinct communities: the users are

2 For example, in November 2009, a dual dual-core Xeon R410 Dell server costes € 1,099, while a machine
with equivalent hardware but 4 processors costed € 10,179.

3 Do not confuse the well explored topic of Data Grid as intended in [CFKS+01], which refers to something
similar to a global virtual filesystem, with the In-Memory Data Grid described ahead.

4

the “owners” of the problem, and the developers produce the software tools to solve the
problem. This distinction does not cover the reality: in business and enterprises, advanced
users have the habit of automatize or customize their office productivity tools, e.g. creating
Microsoft Excel macro. Even home users who create complex web sites or book catalogues
for themselves are not rare. These activities of creating, modifying or automatizing software
artefacts are usually referred as End-User Development [cacm][Seg07].

In the landscape of End-User Development, scientific users hold a special place. Research-
ers are not usually frightened by the challenge of learning programming languages, and
there is a long tradition of scientists developing their own software solutions to prove their
theoretical models. Hence scientific software production has its own point:

– The distinction between developer and user is fuzzy: often there is no “external” cus-
tomer and the primary user of the code is the developer himself, who want to add
functionalities to advance in his research. Even when the application is shared with
other users, the code often requires additions or modifications to be useful, and ex-
ternal users are supposed to code themselves their additions.

– Most developers are domain experts, not computer specialists: often the developers
have no computer science or software engineering formal background, nor experi-
ence in professional software development. Project leaders usually find easier to
teach to a domain scientist how to write the code than to explain to a computer spe-
cialist the deep scientific phenomena being captured by the code.

Unfortunately, empowering End-Users to develop they own applications is not a risk-free
process. According to several investigations [CLHK+06][Seg08], scientific software devel-
opment follows some typical paths:

5

Figure 1: A model of scientific-software development (source [CLHK+06])

– Science and portability are of primary concerns, while performance is not the driving
force: even in projects based on parallel programming, where the code performance
is clearly an important goal, the primary interest of developers is the scientific accur-
acy. Furthermore, these developers are aware that their code will be often used for
decades, during which increasing performances will be achieved through new hard-
ware. Therefore they spend more effort on portability than on speed, scalability and
efficiency. For the same reason, the tuning for a specific system architecture is rarely
performed.

– There is high turnover inside development teams in academic and research environ-
ments, where many project members, such as postdocs and graduate students, are in-
volved for short periods. There is also a limited sharing of code and applications
with other users in the same domain. Often, there is the assumption that only the de-
velopers can understand their own code. This result in poor support and documenta-
tion.

– There is little reuse of code and frameworks, even when developed internally. Third
party and externally developed softwares and tools are viewed as a major risk factor
and avoided. Often modern productivity tools, such as RAD, are avoided in favour
of old-style ones.

– It is very difficult to verify whether the software is correct or not: in many partly-un-
derstood domains, the developers do not know the “right” answer. In the case of un-
expected output, it is not clear where to find the source of the problem: if it is the un-
derlying scientific model to be incorrect, or its translation in an algorithm, or if there
is a genuine bug in the software.

A lesson on the attitude of scientists in developing software can be learned from the past fif-
teen years of parallel computing applications. In the cluster environment, years ago there
was the choice between MPI (Message Passing Interface) and PVM (Parallel Virtual Ma-
chine). Despite the extra features that PVM offered, such as load balancing and fault toler-
ance, MPI’s simplicity won out and, for many years, MPI has been the de facto standard in
parallel programming and the primary parallel computing toolkit for most of the supercom-
puting centres. Nowadays, the relevance of MPI is decreasing due to several reasons: it is
not well supported in many grid environments, Java is replacing C without offering MPI
binding, and parallel programming community is now mainly focused on multicore and GU-
GPU technologies. However, if a new paradigm has to be adopted, it must provide simpli-
city.

6

Java-based In-Memory Data Grids provide such simplicity, thanks to their abstraction of the
familiar local data structures. In addition, In-Memory Data Grids are well suited to exploit
the new MapReduce programming model. Although MapReduce in its essence could be see
as an application of the classic Divide&Conquer technique, it was specifically designed to
provide an easy and error-free environment for parallel distributed programming.

The work reported in this dissertation aims to explore the opportunities of applying In-
-Memory Data Grids in data mining applications and it is organized as follows:

– In Chapter 2, we provide an overview of parallel and distributed computing covering
current Java approaches and their applications in data mining and machine learning,
Desktop Grids architectures which exploit existing underused computational re-
sources, and In-Memory Data Grids as a novel approach to massive dataset hand-
ling;

– In Chapter 3, several In-Memory Data Grids implementations are explored to under-
stand their specific characteristics and evaluate their performances;

– In Chapter 4, an architecture based on Data Grids is compared to a classic grid im-
plementation of a specific machine learning algorithm and the results obtained are
applied to develop a plugin for an existent data mining application;

– In Chapter 5, the conclusions are presented plus some hypothesis for future work.

In the Appendix, a survey of the existing In-Memory Data Grid implementations is
provided.

7

2 Background

In recent years, the idea that scientific researches could be performed digging in huge col-
lection of raw data has become a common thinking in many fields, such as biology, social
sciences, drug discovery, etc... This novel approach, known as e-Science, leverages in com-
putationally intensive tasks carried out in distributed networks, composing external services
and accessing to immense data sets.

At the same time, scientific applications have evolved from old-days command line tools for
matrix manipulation, Fast Fourier Transform, sequence alignment, or partial differential
equations solution. Nowadays scientists require modularity, nice GUIs, capability to access
to web-services or databases, portability, and other features typically found in business ap-
plications. At the extreme end of the scientific software spectrum, the e-Scientist suggests
that research can be carried out composing existing distributed resources, promoting the
point&click Workflow Manager (WfM [wfmc]) as the ultimate scientific tool at the end-user
level.

This has produced a plethora of WfMs applications, such as Triana [tri], Taverna [tav],
Kepler [kep] and others. Many of them are mainly designed as tools for the orchestration of
remote services, as the current vision in enterprise software, where the SOA (Service Ori-
ented Architecture) approach is based on the composition of Web Services. In these WfMs, a
node in the workflow corresponds to a service and the entities flowing in the graph are con-
trol data.

The basic idea under the WfMs is that the researcher will prepare and execute interactively
complex workflows to visually discover unsuspecting data relations. In this envision, the
computation is performed by backend grid services, and the WfM itself has not special per-
formance requirements. Instead, it needs a wide support for different connection protocols
and a modular architecture to host third-part plugins. These features are by far easier to sup-
port with Java than with other environments. And, in fact, almost all of the new generation
WfMs are developed using this language.

As a result, and despite the criticisms regarding its poor performances, Java is now wide-
spread in scientific applications. Actually, the performances of Java are not as bad as word-
of-mouth says and scientific applications are not composed by number-crunching routines

8

only. Moreover, Java is an easy tool to start with for programming and this often wake up
the do-it-yourself attitude in the end-users.

The “bad reputation” within the High Performance Computing community [PBGP+01] stuck
to Java for a long time is nowadays unjustified. Just-in-Time (JIT) compilers, advanced
Garbage Collectors and other improvements have lift the performances of modern JVM not
so far from traditional FORTRAN and C languages, with results depending more on the
quality of the algorithms than the language itself [Bul01][Goe05][ABCD+08][WN08].
Moreover, Java has a built-in support for enhanced multithreading since version 5, and
therefore it allows for an easy exploitation of modern multi-core processors.

Probably, this progressive shift to Java in the context of scientific applications also benefits
from the specific attitude of scientists, who are not worried by the challenge of learning pro-
gramming languages and development tools [Seg07][CLHK+06]. As a result, researchers
from diverse domains, such as biology, chemistry, astronomy, operational research, social
studies, and even humanities, wanted to build their own software tools and found in Java an
easy-to-learn environment to start with. Unfortunately, good-willing cannot replace specific
skills and the resulting products are usually strong in domain-specific functionalities, but
lack in documentation, interface functionalities, long term support and other side features.

These developers soon recognized that the computational power they need could originate
from exploiting networks of commodity PCs and many scientific softwares have some built-
in capability to run in a distributed fashion. But, these developers often preferred to build
their home-made solutions instead of using a stable third-part toolkit for distributed compu-
tation. The reasons for this choice come sometimes from a kind of bias, such as the not-in-
vented-here syndrome, but other times sound reasonable, such as having a partial view on
state-of-the-art technology or fearing of sticking to a specific vendor. Unfortunately, distrib-
uted programming is difficult and fraught with danger: besides concurrency issues such as
race conditions, deadlocks, livelocks, and other failures, there are also problems specific to
distributed systems such as network unreliability, security and trustworthy, and even politic-
al issues related to span through multiple administrative domains [Deu94]. As a result, many
of these custom programs are suboptimal (when not buggy), hard to maintain, and difficult
to setup (often due to their poor documentation).

A wide body of research exists concerning the foundation of distributed Java-based parallel
processing and data storage in grid environments, but only few hints are given to program-
mers who want to build an affordable and reliable real application. The solutions analysed
here lay in the confluence of many topics:

9

1. Data mining and machine learning applications, intended as widely used general
purpose scientific tools, as examples of Java-based and highly resource-demanding
applications;

2. Java integration with grid computing, and specifically Desktop Grids, as an architec-
ture which enables small organizations to exploit existing underused computational
resources;

3. In-Memory Data Grids as a novel approach, born in the business software com-
munity, for massive dataset handling.

In order to provide an overview, each area will be explored in turn in the next sections.

2.1 Data mining and machine learning tools for scientific research

Data mining and machine learning softwares are especially interesting because, at the same
time, they are a research topic and a research tool. It is not surprisingly that this is a prolific
field for academic software production. Well known examples are the R programming lan-
guage from the University of Auckland (NZ) [IG96], RapidMiner, initially developed as
YALE (Yet Another Learning Environment) at the University of Dortmund (D) [MSKW+06],
Weka born in the University of Waikato [WF05], KNIME from the University of Konstanz
[BCDG+08], Orange developed at the Laboratory of Artificial Intelligence of the University
of Ljubljana (SL) [DZLC04], and many others.

Many of these applications, as well as many commercial ones such as IBM SPSS Modeler
(formerly SPSS Clementine®) [spss] or Accelrys Pipeline Pilot [app], are based on the
WfMs paradigm. But in these cases, they are the visual incarnation of the dataflow program-
ming model [Sut66], in which nodes exchange data rather than controls.

As an example of the progress in data mining applications, it is possible to follow the evolu-
tion of applications which implement decision trees, a basic machine learning algorithm. In
the early '90s, when Ross Quinlan released an implementation of his C4.5 algorithm for de-
cision trees [Qui93], the typical usage pattern of the program was the following:

– using a text editor, prepare two files: a .names file with the attribute names and a
.data file containing the training instances;

– using standard Unix tools such as grep, cut, or awk, filter or transform the data file
according the needs;

– launch from the shell the c4.5 program to form a decision tree from a file of ex-
amples and save the tree in an intermediate file;

10

– then, using the c4.5rules program, re-read the unpruned decision tree to form pro-
duction rules and save them in another file;

– finally, run the consult program to classify items using the rules previously saved
[Ham00].

It is true, this operations pipeline might be automated by using BASH scripts or similar
techniques, but combining several programs each one using different file formats and option
switches, requires considerable computer skills and does not allow for an interactive ap-
proach to data mining.

In the late '90s, a new generation of tools, which have their prototype in Weka, introduced a
coherent interface, available both as CLI and as GUI, to perform and combine all the opera-
tions of the pipeline. As an example, performing the same C4.54 based classification re-
quires a single operation from the command line [WF05]. Using different arguments, the
same command allows the user to invoke different algorithms and, moreover, the addition of
filters and pre- or post-process operations is quite straightforward, since it requires only to
set additional parameters:

Using the graphical interface Weka Knowledge Explorer, the same operation of Listing 1
could be performed interactively and incrementally, as shown in Figure 2.

From the user perspective, the major improvements are that all the algorithms offer the same
interface, the process pipeline can be saved and repeated at will, and using the GUI the pro-
cess is interactive, allowing the user to tune the parameters and immediately get the feed-
back.

However, this is still a pipeline solution which produces linear execution stages, without
branch, conditions, loops, parallelism, etc... With newer releases, Weka introduced addition-
al interfaces, named Experimenter and KnowledgeFlow, to offer some of these functions.

4 C4.5 release 8 algorithm re-implemented in Java is named J48 in Weka, probably due to copyright reasons

11

$ java weka.classifiers.trees.J48 -C 0.25 -M 2 -t golf.arff -d
golf.model
...

$ java weka.classifiers.bayes.NaiveBayes -D -t golf.arff -d golf.model
...

Listing 1: A command line session with Weka a J48 and a naïve Bayes classifiers applied to the same
dataset

At the beginning of the XXI Century, the workflow paradigm has become predominant. In
the data mining tools panorama, it has been adopted initially by commercial products, and
later on by academic open source softwares. One of the latter is KNIME, in which the work-
flows are visually composed using a graphical interface5. The C4.5 classification problem
already discussed would appear in KNIME as in Figure 3.

5 Visually designed workflow can be later run in a batch mode

12

a) data file loading b) select and applying filters

c) generate C4.5 classification tree d) visualize the data results
Figure 2: A Weka classification pipeline

This evolution has had several implications:

– the user interface and its extendibility capability have become more important than
pure performances, resulting in the general acceptance of Java as the elective lan-
guage for developing this class of applications;

– the users belong now to a wider audience6 and often they even not have the basic
computer skills to configure complex systems or to correctly evaluate the resources
needed for performing some tasks;

– the users want, at the same time, to access to very large datasets, to apply complex
algorithms and to get the answers immediately.

This new scenario has lead to a computational power “hungry” that could be satisfied only
by distributed systems. In fact, many of the new tools use ad-hoc distributed computation
facilities, such as the Weka Distributed Experiment, or they can access to specific clusters,
such as the KNIME plug-in for Sun Grid Engine, or they use general grid infrastructures,
such as Triana through the JavaGAT module.

6 As an extreme example, data mining has become a valuable tool for online poker players http://www.card-
player.com/poker-news/8221-online-poker-the-data-mining-dilemma (last accessed 31 Dec 2009)

13

Figure 3: A KNIME workflow for C4.5 classification

2.1.1 Reference applications
To understand the state-of-the-art and the current practices within developers, we deeply
analysed a sample of existing data mining applications, providing that they are written in
Java, have an academic origin, are licensed according to open source statements (thus allow-
ing to explore the source code), have a good reputation within researchers, and a lively users
community witnessed by updated discussions on forums and mailing lists. The applications
selected according to these criteria are Weka and KNIME. In addition, we have analysed
two young projects which explicitly stated to cope with memory problem, JDMP and Debel-
lor.

Weka7 (Waikato Environment for Knowledge Analysis) was developed in the late '90s by
Witten and Frank at the University of Waikato (New Zealand) [WFTH+99] and it is one of
the most established data mining suite of tools8. In 2006, the Pentaho Corporation acquired
the license from the University for commercial application of Weka, but the software itself
is still available as free software under the GNU General Public License. Besides using
Weka as-is, many other machine learning applications integrate the Weka code in their al-
gorithms library, making Weka de-facto standard in Java-based machine learning tools. In
the suite, the built-in feature named Distributed Experiment, allows to spread a cross valida-
tion procedure among several machines, but it results cumbersome to use. Aside this, sever-
al projects have tried to extend Weka in order to exploit computational grids [CM02]
[KZK04][SHSS+07][TTV05].

KNIME (Konstanz Information Miner) has been developed since 2005 by the group headed
by Michael Berthold at the University of Konstanz (Germany) [BCDG+08]. KNIME is
based on the Eclipse platform and exposes a modular and extensible design. It represents the
new generation of data mining applications, in which the user visually composes data ana-
lysis workflows. Also KNIME offers commercial support, thanks to a spin-off company.
KNIME was originally released under Aladdin Free Public License, but it has later switched
to the GNU General Public License starting from version 2.1. KNIME can be integrated
with the Cluster Execution Plugin to exploit a Sun Grid Engine computer cluster [knc]. Oth-
er distributed architectures have been evaluated in the past [SMB07], but no implementation
has been publicly released.

JDMP (Java Data Mining Package) is a Java library for data analysis and machine learning
rather than a fully-featured application, but it offers a simple graphical user interface. It has

7 Sometimes spelled WEKA

8 KDnuggets, a website specialised in datamining resources, reported Weka as the most used open source
tools for many years. Recently, new competitor, including KNIME, took over or eroded the position of
Weka. http://www.kdnuggets.com/polls/2009/data-mining-tools-used.htm (last accessed 30 Dec 2009)

14

been developed at the Technical University of Munich (Germany) starting from 2008. Some
of the explicit goals of JDMP are the handling of large data sets that do not fit completely
into main memory and the support for parallel processing in a computer cluster [Arn09].
These features are built on a backend library for matrix manipulation named UJMP (Univer-
sal Java Matrix Package) [ABN09]. JDMP is released under GNU Lesser Public License
(LGPL).

Finally, Debellor is a framework for data mining and machine learning, developed since
2008 at the Warsaw University (Poland) [Woj08]. Even if it does not offer any GUI yet, the
programming model is based on data flow, which seems suitable to be implemented using
Data Grids. Debellor addresses the problem of handling massive datasets applying data
streaming techniques. The application and the library are distributed under GNU General
Public Licence.

2.1.2 Java issues with large data set
Memory requirements issues are a well known topic in high performance computing studies.
Many of the known solutions suppose the direct memory manipulation, unfortunately not
supported by Java. Thus, Java scientific applications have to face with both general issues
and Java-specific ones.

In machine learning, especially when applied to bioinformatics or computer vision, there is
a frequent need to process huge volumes of data, too large to fit in main memory. As an ex-
ample, the OutOfMemoryException was a recurrent topic in Weka and KINIME mailing
lists and forums9. Several causes contribute to make memory one of the major issues in
Java-based data mining applications. Aside problems related to algorithms unable to handle
data streaming, many others are tied to the memory management mechanism used by a Java
system.

In the common commodity PCs architecture, a 32 bit hardware, 32 bit operative system10, or
32 bit Java Virtual Machine cannot usually handle more than 4GB of physical and virtual
memory. Although there are some workarounds, such as enabling the PAE (Paging Address
Extension) extension on Windows or recompiling the Linux kernel with HIGHMEM op-

9 https://list.scms.waikato.ac.nz/mailman/htdig/wekalist/ http://forums.pentaho.org/forumdisplay.php?f=81
and http://www.knime.org/documentation/faq (last accessed 31 Dec 2009)

10 32 bit OSs are still the majority in common usage. It is hard to obtain statistics on this topic. For home
users, Steam, a platform for online gaming, reported in December 2009 that only 27% of the 2.3 million of
users has a 64 bit release of Microsoft Windows system (http://store.steampowered.com/hwsurvey). For
web surfers, the Wikimedia Fundation reports, in Novemebr 2009, that more than 56% of about 4.5 billion
of accesses was performed using Microsoft Windows XP, which was mainly distributed in the 32 bit ver-
sion (http://stats.wikimedia.org/wikimedia/squids/SquidReportOperatingSystems.htm)

15

tions, these are demanding for a normal user. In addition, many 32 Java Virtual Machines re-
quire to allocate the heap in contiguous memory space which further reduces the available
memory. Providing enough memory could be a problem even on 64 bit platforms: most of
the consumer hardware does not support more than 16 Gbyte of physical RAM, and 64 bit
JVMs use about 50% more memory than a 32 bit one to allocate the same object set.

Many of the In-Memory Data Grids products claim to mitigate this problem in two ways.
The first, more traditional, is to use the disk as a memory extension and acting as a L1
cache. The second, is to exploit the aggregation of the memories of all the nodes in the
cluster, presenting them as an unique heap to the local client. This second mechanism might
work only when the Data Grid is configured for so-called data partitioning. In replicated
memory scenario, each node allocates the same amount of data, and the memory available
to the application is limited to the smallest heap in the cluster.

2.1.3 Memory issues in data mining
The evolution of the data mining tools has had an impact on the memory requirements.
Within single-task applications, the memory footprint is strictly related to the algorithm im-
plemented. Some of these algorithms allow a stream or incremental approach, in which the
data are loaded item-by-item, used to computing a partial result and then discharged when
consumed. This approach could potentially allow the analysis of huge datasets regardless
the size of the available memory. Unfortunately, many of the known algorithms in machine
learning requires to access to the whole dataset and in Java this means that all data must be
materialized in memory.

Developers of data mining and machine learning tools have progressively applied more
sophisticated strategies to cope with memory problems. Weka simply ignores this: data are
represented using the class weka.core.Instances which wraps a non synchronized
Vector replacement named weka.core.FastVector. Being a concrete class rather than
an interface, it is not easy to replace Instances with a better implementation. Moreover,
each node in the pipeline duplicates, in the meaning of Java reference handling, the data in-
stead of providing a new view on them. As a result, long pipelines require a huge amount of
memory. In applications similar to Weka, even if a single stage could have relative small
memory requirements, the data of all processing stages are kept in memory, thus resulting in
a very fast memory exhaustion.

Newer and more engineered applications recognized that memory in each stage (node in a
workflow) could be managed independently, allowing sophisticated strategies. KNIME em-
ploys a heuristic caching strategy to move part of a data table to the hard disk when it be-
comes too large to fit the memory. This does not solve the problem at the node level, but

16

limits the overall memory requirements. As a collateral benefit, it offers a checkpointing
functionality, since intermediate results are passivate on the disk and can be later restored
within two user sessions.

Another strategy, at the moment applied only in few applications, is switching to a stream
architecture which does not enforce data materialization. Debellor [Woj08] is a young data
mining library based on this concept. Data are passed between interconnected algorithms
one-by-one, as a stream of items that can be processed on the fly, without full materializa-
tion. Unfortunately, Debellor at this stage includes few stream-oriented native modules,
while other algorithms are imported from the Weka library, thus resulting in buffering which
re-raises the same problem of Weka.

2.1.4 Exploitable parallelism in data mining
Thanks to the recent diffusion of multicore CPUs, detecting program patterns which might
benefit of parallelism is considered again an hot topic. Data mining applications, being com-
posed of several stages of processing, offers many points for insertion of parallel solutions.

Specifically, in WfM-based data mining, there are some elective ways to exploiting parallel-
ism in the workflow enacting:

– the concurrent execution of different paths in the workflow;

– the parallel processing of the rows of the data table;

– the application of parallel versions of machine learning algorithms;

– the concurrent execution of cycles or sub-workflows.

The parallel execution of different paths in a workflow is an obvious technique inherited
from the overall data flow design and not tied to data mining applications. In Java based
WfMs, due to the native support for multithreading, this technique is widespread. In both
Weka Knowledge Flow and KNIME, for example, each node runs in its own thread.

Many tasks in data mining, especially those related to the data preprocessing such as row
filtering or field transformation, handle the rows as independent data chunks and allow par-
allel processing. Using a framework such as the java.util.concurrent package, this
parallelization strategy is easily exploitable even by casual programmers. Nevertheless, this
technique is not widely adopted, often because the core libraries of many applications have
been designed before Java 5 and they are not easily portable to this new idiom.

17

The development and the efficient implementation of parallel versions of machine learning
algorithms is instead a matter for Computer Scientists. Many machine learning concepts im-
ply strong dependencies and correlations in data which require a case-by-case analysis.

Often, complex or multistep operations in data mining might be considered as whole, and
handled as a single operation reiterated with different parameter values (parameter sweep).
We recall for example the cross-validation procedure, in which the data are repetitively par-
titioned into complementary subsets, called the training set and the validation set, the first
used to train a machine learning algorithm according to some parameter values and the
second to estimate the resulting model errors. This is a very expensive, but embarrassingly
parallel, procedure and is not a surprise that almost all data mining applications support par-
allel or distributed cross validation.

A comprehensive bibliographical reference on the research on distributed data mining is
kept updated by [BDLK].

2.2 Java-based grid computing

Computational grids are usually classified under two categories, institutional grids and
Desktop Grids. Institutional grids aim to provide a transparent, secure, and coordinated ac-
cess to various computing resources such as supercomputers, clusters, databases, scientific
instruments, or storage facilities owned by different institutions by means of virtual organ-
izations, which aggregate heterogeneous, large-scale, and multiple-institutional resources.
On the other hand, there is the consensus of many authors [Cap07][CBKB+08][VC08] that
the main characterization of Desktop Grids is the design goal of harvesting the idle CPU
cycles of desktop Personal Computers (PCs) assigned to usual home/office activities in or-
der to accelerate the performances of a third part application. The PCs can be connected
over the Internet, in which case participation is usually on voluntary basis, or in a
corporate/university network.

The earlier prototype of Desktop Grid was SETI@Home [ACKL+02], released in May 1999
with the original goal of analysing radio signals searching for clues of extra terrestrial intel-
ligences. Besides this fascinating, but vane, intent which persuaded over 200,000 people in
the first week and more than 3.83 million after three years to devolve their resources to the
project, SETI@Home was a formidable proof of the viability and practicality of the Desktop
Grid concept. The infrastructure underlying SETI@Home was generalized by David Ander-
son to create the Berkeley Open Infrastructure for Internet Computing (BOINC) [And04].
This and similar projects are based on a central service which dispatches the workloads,
consisting of data to be analysed, to the applications running on remote PCs. The edge node

18

application is dedicated and vertically integrated, and no generic use of such computing re-
sources is possible.

Several other architectures of Desktop Grid have been proposed, either from academy and
industry, and for a complete taxonomy we refer to [CBKB+08].

2.2.1 Accessing the grid
The main components of a Desktop Grid infrastructure are the resources and the scheduling
managers, which take care of keeping a registry of the resources, allocating them to the user
according his request, dispatching the tasks to the resources, collecting the results, handling
failures, and providing the required security level.

From the perspective of a programmer who wants to exploit a grid service for his applica-
tion, the main concern is how to access to the resources of the Desktop Grid and how the
tasks (and the data) have to be described and encoded.

In early design, the use of computational grids mimics the familiar local interaction, in the
same way of a SSH remote command execution. As an example, using the old releases of-
Globus Toolkit to run the date command on the remote host gridnode.somedomain, re-
quires to type the command in the shell, as shown in Listing 2.

To be effective, the grid must offer some programmable entry points through an Application
Programming Interface (API). According to Mateos et al. [MZC08], it is possible to identify
the granularity of a grid access service “as the granularity of the individual components11
that constitute an executing gridified application from the point of view of the grid middle-
ware”, where the components are the execution units (jobs or tasks) to which the grid
provides scheduling and execution.

Grid access granularity takes continuous values ranging from the smallest to the largest pos-
sible component size. The spectrum can be divided into three main classes:

– Coarse-grained: the application element executed on the grid is a complete applica-
tion behaving as a “black box” that receives a predetermined set of input parameters
(e.g. a sequence of numerical arguments, input files, etc...), performs some computa-
tion and then returns back the result to the executor using the same mechanism of the

11 The authors use the term “component” to refer to any single piece of software included in a larger system

19

$ globus-job-run gridnode.somedomain /bin/date
… runs /bin/date on the remote host
$ globus-job-run gridnode.somedomain -s myprog
… transfers the program file myprog on the remote host and runs it

Listing 2: Sample of Globus Toolkit command interface (surce Globus Toolkit 2.4 manual)

input (e.g. the standard output, a result file). The application as-is cannot take ad-
vantage of distribution, parallelization or scheduling to achieve higher efficiency.
Access schemas provided by the Globus Toolkit [Fos05], the BES/JSDL standard
[jsdl], or the Condor submission system [LLM88], are well known examples of
coarse-grained API.

– Medium-grained: the programmer identifies in the application the modules suitable
to run concurrently and remotely. Then, in the initialization phase, the middleware
maps the modules on existing remote services or transfers the executables on remote
nodes. The application accesses the modules using a RPC-style communication
mechanism. Medium-grained access API are provided, as for example, by ProAct-
ive12 [CKV98], or by the GigaSpaces XAP when default component deployment is
used [Coh09]. This approach could provide some capabilities of dynamic component
deployment and invocation.

– Fine-grained: the distributed components are generated and spawned at runtime on
the invocation of a method or procedure. A key difference with the previous categor-
ies is the ability to cope with recursive distribution methods. The programmer is re-
lieved of scheduling and synchronization issues, while he can focus on parallelism
and asynchronism. The middleware is not a pure access interface anymore and it
must provide sophisticated execution services to efficiently deal with a potentially
large number of tasks. Examples of fine-grained APIs are offered by the middle-
wares JPPF [jppf], Satin [vNMK+05], or GridGain [ggp].

Being the above classification based on the access framework used by the developer to build
a grid-enabled application, it is worth noting that it could be a matter of perspective. If the
user is building a workflow, using a WfMs such as in Triana13 or in Taverna, a coarse-
grained grid is confined in a single node of the workflow graph and appears as a component.
Many of the grid toolkits are bundled with a dedicated workflow manager, such as Karajan
in the Java CoG Kit [LFGL01], or Pegasus in Condor.

Moreover, if the API is developed for a portable language with some built-in code serializa-
tion capability, such are Java or Python, even a coarse-grained API can be encapsulated in a
finer interface. For example, we have developed a framework for the Python language [BF-
SV09] in which two classes, Job and Grid, take care of all the logic involved in creating
and launching jobs on a grid infrastructure. The developer of the client application has

12 The authors of [MZC08] classified ProActive as a coarse-grained middleware, but ProActive's active ob-
jects are clearly modules, not application. The same classification of ProActive as medium-grained could
be found in [BBBC+06]

13 Triana can also establish Peer-to-Peer grids that connect Triana's instances running on different hosts

20

simply to implement a subclass of Job, mostly just wrapping the existing code to be distrib-
uted, and then inserting in the main function few calls to the methods of Job. The frame-
work has been used to port an existing multithread medical image process application, de-
veloped for local use on multicore CPUs, on an infrastructure which offers a coarse-grained
API [CBSA+03], changing only the invocation of threads with the dispatching of remote
tasks.

From a Java programmer's perspective, the three classes just discussed could be exemplified
as follow. Well known coarse-grained computational grid APIs are the Globus CoG Kit and
JavaGAT. Both toolkits allow to run remote programs, redirecting the standard input and
output, and staging input and output files. Listing 3, based on the Globus CoG Kit, shows
how to create from Java the descriptor for the batch execution of the Unix command ls
-la, reading the input from the file testInput and redirecting the output to the file
testOutput.

The JobSpecification will be passed to the runtime which will submit the task to the
grid. Another Java fragment, using JavaGAT, is shown in Listing 4, where the execution of
the application hostname is invoked, redirecting the output to the file hostname.txt. In
this case, being JavaGAT an abstraction layer, the true grid infrastructure that will execute
the task depends on an external configuration.

In both cases, exploiting a computational grid requires heavy file manipulations to handle
input and output, very far from the usual Java programming style. Moreover, the exploita-
tion of the grid is limited to run executables already available on the remote hosts or, in rare
cases, to portable program staged-in where is available a suitable runtime and security
measures do not prevent this.

21

JobSpecification spec = new JobSpecificationImpl();

spec.setExecutable("/bin/ls");
spec.addArguments("-l");
spec.addArguments("-a");

spec.setStdInput("testInput");
spec.setStdOutput("testOutput");
spec.setBatchJob(true);

spec.setAttribute("count","546");

task.setSpecification(spec);
Listing 3: Example of coarse-grained access to the grid (source Java CoG Kit examples wiki)

These limits are overcome when adopting a component based API. Starting from the release
1.1 in 1997, the Java platform supplies a built-in framework for inter-process communica-
tion called RMI (Remote Method Invocation) [rmi]. RMI uses a RPC-style communication
mechanism with object passing (using serialization [sun96]) inspired to Network Objects of
Modula-3 [WRW96]. Using RMI, an object instantiated on one JVM can invoke methods on
an object on another JVM, providing that the invoked object implements the interface
java.rmi.Remote. In such a way, the access to a remote object is almost transparent and
requires only few additional care compared to usual programming. In fact, most of the
home-made distributed modules are RMI-based. Several medium-grained grid toolkits are
based on some extension or reinterpretation of RMI [SHW98][vNMH+02][p2pmpi].

The key difference between a distributed component service in a broad sense, such one
based on CORBA or Web Services, and a grid toolkit is that in the former the deployment of
remote components is delegated to the administrator of the system, while in the latter the de-
ployment is part of the client program itself. As an example, in the first part of Listing 5,
based on ProActive, the node VN is obtained from the deployment description. Then, in the
second part, an object of class Worker is deployed on the node, passing the params to the
constructor, and the stub charlie is returned. The methods of charlie can be invoked
later using standard Java calls, as in RMI. Note that the lifecycle of the remote object is in-
dependent from the launching program. In the case of medium-grained API, it is no evident
how to efficiently distribute embarrassingly parallel tasks. The naïve solution seems to al-
locate the same object on different nodes and then apply some ad-hoc strategy to split the
tasks between the nodes, but this requires a sensible effort by the programmer.

22

public class SubmitLocalJob {
public static void main(String[] args) throws Exception {

GATContext context = new GATContext();
SoftwareDescription sd = new SoftwareDescription();
sd.setLocation("file:////bin/hostname");
File stdout = GAT.createFile(context, "hostname.txt");
sd.setStdout(stdout);
JobDescription jd = new JobDescription(sd);
ResourceBroker broker = GAT.createResourceBroker(context);
Job job = broker.submitJob(jd);
while (job.getState() != Job.STOPPED

&& job.getState() != Job.SUBMISSION_ERROR)
Thread.sleep(1000);

}
}

Listing 4: Example of coarse-grained access to the grid (source GridLab “GAT Tutorial”)

It is advisable that an API design for parallel execution looks familiar to a Java developer. In
this case, a more sounding pattern for a Java programmer would be offer by the standard
java.util.concurrent package (j.c.u for short) and, specifically, by the interfaces
Future and ExecutorService.

The model of ExecutorService has been followed by several Java-based grid toolkits
[Fer09]. As in Listing 6, within the JPPF framework [jppf], tasks extend the JPPFTask ab-
stract class, so they can be declared on-the-fly using anonymous classes, packed in a
JPPFJob and submitted to remote execution. The task, once completed, returns the result or
re-raise the exception occurred remotely. This role is quite similar to that played by
Callable/Future in the j.u.c package, with the difference that Callable and Future
are different interfaces rather than a single abstract classes.

23

/***** GCM Deployment *****/
File applicationDescriptor = new File(gcmaPath);

GCMApplication gcmad;
try {

gcmad =
PAGCMDeployment.loadApplicationDescriptor(applicationDescriptor);
} catch (ProActiveException e) {

e.printStackTrace();
return;

}
gcmad.startDeployment();

// Take a node from the available nodes of VN
GCMVirtualNode vn = gcmad.getVirtualNode("VN");
vn.waitReady();
Node node = vn.getANode();
/**************************/

// Set the constructor parameters
Object[] params = new Object[] { new IntWrapper(26), "Charlie" };
Worker charlie;
try {

charlie = PAActiveObject.newActive(Worker.class, params, node);
} catch (ActiveObjectCreationException aoExcep) {

// the creation of ActiveObject failed
System.err.println(aoExcep.getMessage());

} catch (NodeException nodeExcep) {
System.err.println(nodeExcep.getMessage());

}
Listing 5: Example of medium-grained access to the grid (source ProActive 4.2.0 documentation)

In the design of JPPF and other similar frameworks, it is crucial to provide mechanisms that
allow the remote agents to dynamically transfer the classes in the executable binary form if
it si not available locally. Otherwise, the remote agent will be able to execute only classes
accessible to the local classloader, preventing to realize a real on-demand grid facility. Cur-
rently, not all toolkits provide this functionality. When it is supported, the classes dynamic-
ally loaded must be discharged when the application terminates, otherwise newer releases of
the same application could produce conflicts between different class versions. The lifecycle
of the task is thus tightly bound with the application which creates it, rather than with the
agent executing it on the remote node.

Notice that the same framework can offer different access granularity. The base execution
unit in GigaSpaces XAP is the Processing Unit, a software component which bundles, a
class conforming to the JavaBean convention regarding public methods, a shared registry
identifier, the dependent libraries and a XML deploy descriptor. But XAP also exposes the
Async API, a simpler support for asynchronous tasks and even an implementation of
j.u.c.ExecutorService if neither asynchronism nor task routing is required14.

14 http://www.gigaspaces.com/wiki/display/XAP7/Terminology+-+Basic+Components and http://www.-
gigaspaces.com/wiki/display/XAP7/Task+Execution+over+the+Space (last accessed 13 Jan 2010)

24

public class JPPFTest implements Serializable {

 public void gridSqrt(final double d) throws Exception {
// create a JPPF job
JPPFJob job = new JPPFJob();
// give this job a readable unique id that we can use to
// monitor and manage it.
job.setId("Square Root Job");

// add a task to the job.
job.addTask(new JPPFTask() {

 public void run() {
 setResult(Math.sqrt(d));

 }
});

 JPPFClient jppfClient = new JPPFClient();
 List<JPPFTask> results = jppfClient.submit(job);
 System.out.println("SQRT: " + results.get(0).getResult());

 jppfClient.close();
 }
}

Listing 6: Example of fine-grained API: a task extending JPPFTask is declared on-the-fly using
anonymous class, packed in a JPPFJob and submitted to remote execution.

Alternative to the model offered by the j.c.u executors, it is worth noting that the MapRe-
duce paradigm, introduced later in Section 2.3.3, has had a special impact in the design of
this generation of frameworks. Many recent implementations, such as Granules [PEF08],
Satin, or GridGain, use a pure MapReduce model, based on a functional programming style,
or a more general Divide&Conquer approach. This add the capability of splitting automatic-
ally the job into several tasks and then allocating them on different hosts using load balan-
cing or fault tolerant strategies.

Another feature often implemented in frameworks designed with a fine-grained program-
ming model is the auto-organization capability based on a P2P (Peer-to-Peer) architectures.
From the programmer’s viewpoint this results in a network configuration reduced to minim-
um or, often, no configuration need at all. This contrasts with the common experience when
working with RMI. Another great advantage is the ability of a P2P grid of completing the
task, even taking a longer time, in case of crashing or unreachability of all nodes except the
user’s client one.

2.2.2 Checkpoint and shared storage
In scientific computation it is frequent that a numerical calculation requires a long execution
time, perhaps hours or even days, without any user interaction. If the computer crashes, the
time and other resources spent as far are lost. Moreover, the user may wish to periodically
interrupt the calculation, to check the intermediate results and adjust parameters if needed,
or simply to use his computer for some other jobs. To cope with these problems, the calcula-
tion is periodically halted in some intermediate, but consistent, state (checkpoint) and the
results obtained so far are saved in some persistent storage system. So that, if the calculation
aborts, it might be restarted from the last available checkpoint. If the checkpoint system also
allows to move a checkpoint from one host to another one, checkpointing can implement a
dynamic load balancing facility.

In distributed computation, the presence of more failure points renders the previous scenario
even worst, and checkpointing is a well known problem. In the current design of institution-
al grid frameworks, a checkpoint is a persistent snapshot of the running state of an applica-
tion. It exists in some storage system, such as one or more files or database records. Check-
pointing includes the ability to save and recover the application state on a single grid-con-
nected resource, and it could also include the migration of checkpointed jobs to other re-
sources, but it does not include the checkpoint and recovery of jobs running simultaneously
across multiple computing resources [BHKM+04].

Checkpoint systems are classified as System-level and User-defined. System-level check-
point systems provide automatic, transparent checkpointing of applications at the operating

25

system or middleware level. The application is handled as a black-box, and the checkpoint-
ing mechanism has no knowledge about any of its characteristics. Typically, this involves
capturing the complete process image of the application. User-defined checkpointing relies
on the programmer support for capturing the application state. A detailed comparison
between the two approaches can be found in [SS98], while in this work we focus on User-
-defined checkpointing.

2.2.3 Desktop Grids as deployment tool
From a certain viewpoint, grid tookits can be intended as software deployment tools, which
execute the install, activate, and deactivate steps of the user application lifecycle. The main
differences with other remote deployment methods, such as SSH remote execution or Mi-
crosoft Active Directory Group Policy, are the capability of selecting resource based on
rules, such as “deploy on host having RAM > 1024 Mbyte and running Linux OS”, and the
fault recovery mechanisms, which should ensure the user application terminates, even in
case of node crash.

In order to exploit this opportunity, there are some environmental preconditions to meet: the
grid run-time must allow the transfer and execution of arbitrary applications written in a
high level or interpreted programming language such as Lisp, Perl, or Java, and, being this a
serious security threat, the grid nodes must be hosted in a LAN with no critical applications
and a certain control degree by a trusted technical staff. This is a common scenario in cor-
porate LANs or university computer rooms.

Condor, OurGrid/ShareGrid [CBSA+03], or Zorilla [DvNH06] are middlewares that an user
can manage in such way. To submit a job, the user has to prepare a description file, named
Job Description File, Submit Description File, or similar, which specifies the environment
desired to run the application, the file to stage-in and -out, and the command to execute.

26

Executable = foo
Universe = standard
Requirements = Memory >= 32 && OpSys == "SOLARIS28" && Arch =="SUN4u"
Rank = Memory >= 64

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = foo.log

Queue 150
Listing 7: A Condor's submit file which queues 150 runs of foo (source Condor 7.4 documentation)

As an example, the file in Listing 7 queues 150 runs of the program foo which has been
compiled and linked to run on Sun Solaris 8 systems. Similarly, Listing 8 shows a Job De-
scription File for OurGrid which loads the executable mytask on the remote nodes and
queues two runs of it.

If the application deployed has P2P auto-organization capabilities, the peer nodes can estab-
lish their own overlay network to communicate each other regardless the grid infrastructure
capability.

2.3 Distributed Data Storage

As discussed in Section 2.2.1, fine-grained Desktop Grid APIs mimic the usual Java multi-
thread programming idiom and should offer an adequate abstraction level to most of the
Java programmers. But these APIs do not offer any comparable help for sharing data
between nodes.

One of the problem of “going distributed” is the challenge posed by the access to large col-
lections of data. Traditional cluster and grid architectures usually rely on some shared file
storage services, such as NFS in Condor clusters, or on-demand file transfer mechanisms,
such as GridFTP in Globus framework15. Neither these strategies, based on files, have the
level of abstraction familiar to Java programmers. Some custom distributed implementa-
tions, such as Weka Distributed Experimenter, use a RDBMS through JDBC as shared stor-
age, but also this solution has not an adequate abstraction level. In fact, as demonstrated by
the progressive diffusion of frameworks such as JPA (Java Persistence API), Hibernate, and
other O/R tools, a Java programmer is habit to think in terms of objects and he wants to be
able to make the object persistent in a transparent way.

15 A comprehensive evaluation of several file transfer systems oriented to grids is available in [AC04]

27

job :
label : myjob7
init : put input input

store mytask mytask
remote : mytask < input > output-$TASK
final : get output-$TASK output-$TASK

task :
init :put alpha input
store mytask mytask

task :
Listing 8: An OurGrid JDF file which submit two instances of program mytask (source OurGrid 4
documentation)

This problem has received from the scientific community less attention than the computing
aspect, and only few usable proposals could be found [ABJ05], none of them designed for
Java. Instead, as in many other cases of programming tools, it has caught the interest of the
business software community, primarily within web applications, which haa developed sev-
eral solutions under the definition of In-Memory Data Grid (IMDG) or Distributed Cache.
The two definitions are partially overlapping and the products are progressively conver-
ging16 to the same set of functionalities. For this reason, in the following we will use the
term Data Grid for both.

A Data Grid allows to distribute data across the nodes of a network in their original form of
objects with an API very similar to the local data structure usage. Basically, the storage layer
of an IMDG offers the following features:

– Data replication: in this configuration, a copy of all the data is stored in all the
nodes of the grid. This strategy consumes the most resources, however it is the most
performing solution for scenarios in which reads far exceed writes, as data is avail-
able everywhere for immediate access. Data updates are notified or replicated to
each node from the originating node using different strategies such as data invalida-
tion, synchronous updates and others.

– Data partitioning: the whole data set is split into multiple subsets and every subset
is assigned to a grid node. In the purest form, data is not replicated between nodes,
and each node is the only responsible for its own subset of data; every access to a
non local element requires a network operation and a crash of a node leads to a data
loss. On the other side, the available storage space corresponds to the aggregate of
the storages of all the nodes. However, partitioning usually includes the possibility
of keeping a configurable number of backup copies in different nodes, to guarantee a
certain degree of fault tolerance.

– Distributed locks or transactions: in order to ensure coherency within complex up-
dates, Data Grids usually support at least a lock mechanism. Most of the Data Grids
also support various distributed transactions, with different isolation levels, such as
Read Committed, Write Committed, Serializable, etc... Some products are also com-
patible with J2EE or XA container managed transactions.

– Persistent storage and overflow: most of the products can replicate the data on the
disk or on a database using a write-through or write-behind strategy, making it per-
sistent. When the data is recalled through the associated key, if the entry does not ex-

16 At least two cache product, GigaSpaces XAP and IBM eXtreme Scale, available for years, have introduced
the term Data Grid in the documentation only recently.

28

ist in-memory, the system retrieves it from the persistent store. In some cases, this al-
lows to overflow data to the persistent store and flush them from the memory if the
memory is close to fulfil.

– Notifications: the node could register callbacks, following the model of JavaBeans
Events, to be notified of events regarding the grid (node leaving or node joining) or
the storage (key added, data updates).

Notifications are enough to perform distributed computations, but Data Grids might also of-
fer an execution layer, including one or more of the following features:

– Distributed execution: allows to execute a task, usually a serializable Runnable or
Callable object, in the grid. The task could be executed, synchronously or asyn-
chronously, on a specific node, on all or on a subset of the grid nodes.

– Data affinity or co-location: in a partitioned configuration, this is the possibility to
explicitly suggest to store an entry on the same node hosting the key of another
entry, typically in a parent-child relation. This feature is tightly related with the loca-
tion aware distributed execution.

– Location aware distributed execution17: in systems supporting this feature, it is
possible to associate a task with a key or a collection of keys identifying the data to
be processed. The task will be transferred to the node which hosts the data and ex-
ecuted locally to the data itself. In case of multiple keys, eventually specified using a
filter, tasks are replicated on all nodes hosting the data and executed in parallel.

– Messaging: this allows the nodes to communicate each others, usually supporting
either point-to-point and broadcast messages.

– Peer-to-peer architecture: P2P products can discover other peer nodes and then
join the grid automatically, usually using IP multicast.

The details on the features supported by each product are available in the survey in the Ap-
pendix.

It is worth to mention two other classes of product which partially overlap with the features
of In-Memory Data Grids: embedded databases and Single System Image (SSI) systems.

In the Java ecosystem, embedded RDBMS, such as HSQLDB (also known as Hypersonic
SQL18) or Apache Derby, are well established. An embedded database, in addiction to usual
client/server mode, could operate in a standalone, or in-process, with in-memory tables ar-
17 This concept is not yet defined by an established term; vendors use “Task routing” (GigaSpaces), “Parallel

data processing” combined with “Targeted execution” (Oracle Coherence), “Key based distributed execu-
tions” (Hazelcast)

29

chitecture. In the in-process mode, the database runs in a different thread of the same JVM
of the application, using direct object exchanges to communicate each other. The main goal
of embedded RDBMS is to support ACID properties and SQL query language. Compared to
a Data Grid, embedded RDBMS lack of P2P features and distributed execution support, but
they offer a better support and a familiar model for data persistence. Therefore, they are
complementary and in some cases could be used together, using the RDBMS to handle the
persistence and the IMDG as a write-behind cache. It is worth noticing that some IMDGs
are starting to include SQL-like query capabilities.

SSI applications present to the programmer a virtual aggregation of several different ma-
chines; in case of Java, this means several JVMs [Lau03]. SSIs are rare, with the notably ex-
ception of Terracotta Distributed Shared Objects (DSO) [terr]. Terracotta instantiates an in-
frastructure very similar to an IMDG and can cooperate with it. Unfortunately, it uses a cli-
ent/server architecture which results hard to dynamically deploy in a Desktop Grid-like in-
frastructure.

2.3.1 Data Grid APIs
Within Java binding to IMDG, there are three main approaches to hide the underlying com-
plexity with a familiar façade, sometimes exposed together within the same product: expos-
ing the familiar java.util.Map interface, implementing the extension of a JSR-107
(JCACHE) or using something like Linda's tuplespace.

In systems based on the java.util.Map model, the programmer usually obtains, using a
factory, an object implementing the standard Map or ConcurrentMap interface which is
backended in the Data Grid, as shown in Listing 9. All the instantiated maps are shared by
all the nodes of the Data Grid. This is a nearly drop-in replacement for local data structure
and allowed an easy “gridification” of existing applications. By contrast, usually the config-
uration of the toolkit cannot be modified by code and has to be performed by means of ex-
ternal files. A drawback in most of the current distributed Map implementations is the lack of
support for generics. Except for Hazelcast, all other implementations require a type cast for
each read operation.

The JSR-107 (JCACHE) is a proposal for an API and a semantics for temporary, in memory
caching of Java objects, including object creation, shared access, spooling, invalidation, and
consistency across JVM's [jsr107]. Even if a JSR-107 cache could resemble to a plain Map
at first glance, there are some differences, such as: put() and replace() are different opera-

18 The original Hypersonic SQL project was stopped in 2001, and the HSQLDB Group take over the Hyper-
sonic SQL code.

30

tions, a get for a non existing element raise an exception instead of returning null, and the
cache can be divided in regions.

Although designed for cache implementation, in which transaction support is not a require-
ment and invalid objects can be recreated from the original source, it has been progressively
adopted by several implementations of Data Grids. The standardization process, started by
Oracle, results inactive since 2001. After an initial enthusiasm, many projects which earlier
adopted the JSR-107 interface threw away the most cumbersome aspects19, such as regions,
resulting in slightly incompatibilities between different libraries. Systems inspired to JSR-
107 offer programmatically configuration capabilities, in addition to file based ones, and
awareness of the distributed nature of the data as shown in Listing 10. JSR-107 caches
provide also an event notification feature.

The less common interface is inspired to Linda's tuplespace [GCCC85], which presents an
associative memory and an event system to concurrently operate on it. Java incarnation of

19 A detailed description of critical points in JCACHE can be found in JCS documentation. http://jakarta.a -
pache.org/jcs/JCSandJCACHE.html (last accessed 5 Jan 2010)

31

import com.hazelcast.core.Hazelcast;
import java.util.Map;
import java.util.Collection;

Map<String, Customer> mapCustomers = Hazelcast.getMap("customers");
mapCustomers.put("1", new Customer("Joe", "Smith"));
mapCustomers.put("2", new Customer("Ali", "Selam"));

Collection<Customer> colCustomers = mapCustomers.values();
for (Customer customer : colCustomers) {
 // process customer
}

Listing 9: A distributed data structure presenting a Map interface; each node in the cluster or grid
accesses to the same entries if it obtains the map using the same name (source Hazelcast documentation)

CacheManager singletonManager = CacheManager.create();
Cache memoryOnlyCache = new Cache("testCache", 5000, false, false, 5);
manager.addCache(memoryOnlyCache);
Cache test = singletonManager.getCache("testCache");

Element element = new Element("key1", "value1");
cache.put(element);
element.getCreationTime();
...
manager.shutdown();

Listing 10: A JSR-107 inspired cache. Configuration could be changed programmatically. The data are
accessed through the Cache interface (source Ehcache documentation)

the tuplespace is the JavaSpaces specification, part of JINI specifications [jini]. JavaSpaces
is designed to support distributed transactions and persistence, but it is less straightforward
to use and requires several additional steps compared to other solutions.

Most of the JavaSpace implementations currently available are designed for concurrent pro-
gramming within single JVM and they do not support any distribution feature. Exception of
distributed products are GigaSpaces XAP, the old IBM Tspace [tspace], and the open source
project SemiSpace [ssp] which could integrate with Terracotta.

2.3.2 Execution layer and programming model
The In-Memory Data Grids are characterized by the design oriented to data sharing. The
computational task is demanded to another component not necessarily included in the
framework. From the developer perspective, current Data Grids implementations offer the
choice between three main programming models. One is the already mentioned, long stand-
ing Linda language20 model. An alternative, tightly bound to Java, is the
j.c.u.ExecutorService. The third is the MapReduce model, a current hot topic. In the
next paragraphs, we will explore the support offered by the selected frameworks to these
programming models.

Highly integrated with the concept of tuplespace, Linda defines also a set of operations, in
the form of programming language extensions, for facilitating parallel programming. In this
architecture, concurrent processes exchange data by generating, reading, and consuming the
entries (tuples) in the registry. The actions are coordinated by an event-driven mechanism
and could use an implicit locking mechanism to ensure proper synchronization in case of
multiple accesses. The basic operations of Linda are:

– rd(t) performs a non-destructive read from the tuplespace. If the required tuple t is
not found, the invoking process will wait until an appropriate tuple is created by an-
other process;

– in(t) is similar to rd(t), except the read is destructive and the tuple is removed;

– out(t) writes the tuple t into the tuplespace;

– eval(exp) creates a new process which writes the tuple resulting from the evalu-
ation of exp to tuplespace.

20 Usually Linda is referred as a "coordination language" meaning it is not a full programming language,
rather then a set of coordination operations that can be added to any existing language. Linda primitives
have been ported to many languages such as C, Prolog, Fortran, Smalltalk, and Java. However, for the sake
of this discussion, Linda primitives are equivalent to library or toolkit functions.

32

A typical application is composed by a module which responds to an elementary event (such
as “the tuple is now available in the space”), then elaborates it and returns the result to the
tuplespace. For example, in a well known pattern for embarrassingly parallel applications,
two modules are identified, the master and the worker:

– the master, usually deployed as a single instance, splits the job into discrete tasks and
puts each task into the shared registry;

– the workers, running in many instances, are notified of the availability of the data;

– each worker retrieves the task and pushes the results back into the shared registry;

– the master or other workers are notified of the presence of the results in order to
gather or to further elaborate them;

– workers are notified of work completion by meeting some conditions, or receiving a
"poison pill" or by some other means, such as sideband communications.

The equivalent JavaSpaces API are the time-bounded methods read(), take() and
write().

Since most of the In-Memory Data Grids provide events notification concerning the storage,
it could be a temptation to use them in a Linda-like fashion. Except for GigaSpaces XAP,
which specifically supports multiple APIs including JavaSpaces ones, some important dif-
ferences discourage to follow this path if a compatibility with different products is desired.

A first problem is the general design of IMDGs, in which an application can subscribe to re-
ceive events from any type of storage, regardless of whether it is partitioned, near, replic-
ated, using read-through, write-through, write-behind, overflow to disk, and so on. Since the
storage type should be transparent to the application, the most common architecture
provides all the events, regardless of the storage topology, the number of nodes, and the
node which operates the modifications will be delivered to the client application's listeners.
This results in a considerable network traffic and high contention of the service thread dis-
patching events. Moreover, the APIs of many products do not have a primitive to determine
if the event involves a entry owned by the local node. So all the agents listening for events
will try to react to all changes in the cluster, not only to local ones.

Another critical point is more subtle: most of the implementations apply the same architec-
ture, based on a service thread which invokes the listeners callbacks. This is the result of
many years of experience in toolkit development which have to cope with multiple event
source [Goe06][Ham04]. As a consequence, the operations in the callbacks cannot be block-
ing nor time-consuming. This requirement contrasts with both the Linda programming mod-
el, which assumes a transactional context, and the goal of performing heavy computations in

33

response to data changes. To prevent such problems, Coherence21 and other implementations
intercept at runtime calls to expensive methods in callbacks and raise an error if detect their
presences.

Aside these architectural constraints, the programming model based on callbacks is hard to
understand, error prone, and difficult to test for a non expert programmer. The problems in
test-driven development applied to Swing-based GUI, which pose similar challenges, are
well known and not completely solved yet.

A more sounding and straightforward pattern for a Java programmer is the model presented
by the package java.util.concurrent and the interface ExecutorService, already
implemented by some computational grid middlewares as explained in Section 2.2.1.

The key difference between a generic distributed ExecutorService and its implementa-
tion in a Data Grid is the ability to route the task to the node which holds the data to be pro-
cessed. This is not easy to achieve, since the ExecutorService interface has no method
for this. A possible workaround is implemented by Hazelcast [haz], in which the service (a
singleton [GHJV94]) executes a submitted Callable object22 on a node picked up at ran-
dom.

But, if the object extends the class com.hazelcast.core.DistributedTask, it might
specify more options, such as the execution on a specific member of the cluster, or the paral-

21 http://coherence.oracle.com/display/COH35/Constraints+on+Re-entrant+Calls (last accessed 2 Feb 2010)

22 In this and other distributed implementations, the object must also implement the
java.io.Serializable interface, causing the impossibility to use anonymous classes.

34

Import com.hazelcast.core.DistributedTask;
// ...

public class Task implements Callable<T>, Serializable {
public T call() {
// . . .

}

// . . .

ExecutorService executorService = Hazelcast.getExecutorService();
IMap<Object, Row> map = Hazelcast.getMap("mymap");
for (Object key : map.keySet()) {
 DistributedTask<Row> ft = new DistributedTask<Row>(new

Task<Row>() { ... }, key);
 executorService.execute(ft);
}

Listing 11: A submission of tasks to the distributed ExecutorService in Hazelcast, each task will run
on the same host which holds the corresponding key

lel execution in multiple instances on all or on a subset of the members, or on the member
hosting the data associated with a specific key. The code fragment in Listing 11 shows the
submission of multiple tasks, where each task will be executed asynchronously on the host
holding the master copy of Row data corresponding to the associated key.A similar result
can be obtained using annotation. In GigaSpaces XAP, the task could define a method re-
turning the key to be used as the routing value just marking the method with the
@SpaceRouting annotation.

Other Data Grids implement similar but incompatible mechanisms, perhaps more flexible,
to the executor service. For example, GemStone GemFire [gsg] has a data-aware execution
service called FunctionService which can execute data-dependent tasks implementing
the interface Function, extending Serializable, with the main method execute().
While Function has little difference from the classic j.u.c.RunnableFuture, the exe-
cution service accepts hints indicating the task is dependent on a key, a key region, a set of
servers, or other characteristics, as shown in Listing 12.

It is worth noting that, in case of Data Grids not including an own executor service, it might
be possible to integrate them with a computational grid toolkit. For instance, GridGain
shares many of the features of Data Grids we are interested, such as a P2P architecture, and
it allows tasks allocation and checkpointing strategies to be plugged in. So it is easy integ-
rate GridGain with a Data Grid in which the support for distributed execution lacks or does
not fit the requirements, and handle the pair of applications as a single package.

35

Region clientRegion; // Region is the equivalente of Map or Cache
Set keySet = new HashSet();
keySet.add("key1");
keySet.add("key2");
Function myFunction = new Function() {

// ...
}
Serializable args //...

ResultCollector rc = FunctionService.onRegion(clientRegion)
.withArgs(args)
.withFilter(keySet)
.execute(myFunction.getId());

// Do something ...

// Retrieving the result
Serializable functionResult = rc.getResult();

Listing 12: The GemFire execution service FunctionService: the task myFunction is executed on
the nodes owning the keys key1 and key2.

2.3.3 The MapReduce support
In recent years, a new paradigm for huge date set management is becoming mainstream: the
computation is delegated to the system storing the data, instead of moving the data to be
processed from system to system. A prototype of this paradigm is the MapReduce technique
developed at Google [DG04] for the processing of large files across large, but unreliable,
clusters of computers.

Google uses a very large infrastructure that stores hundreds of Tbyte in thousands of com-
puter files which are mostly read and infrequently updated. This scenario asks for a pro-
gramming model which, at the same time, does not move data around and offers to the pro-
grammers an error-proof framework to take advantage of any exploitable parallelism.

The MapReduce is a such a simplified parallel programming model. It supplies a skeleton
based on the map() function and the reduce() function. The map() function accepts a list
of keys and associated values, and then produces an intermediate set of keys and values. The
reduce() function combines these intermediate values into a final result. The programmer
has to implement these two functions only, while the framework takes care of distributing
them and collecting the results. As illustrated in Figure 4a), the master node decides how the
file will be partitioned and allocated. Chunks of the file and metadata attributes are then sent
from the user to the runtime system on the first chunk server, and then pipelined throughout
the chain to distribute the replicas. The master then splits the tasks accordingly (Figure 4b),
and sends the map() task to chunk servers, aiming to keep the computations as close to the
stored data as possible. The master also assigns the reduce() task to one or more chunk
servers. The chunk servers with intermediate output from map() ready to be processed by
reduce() functions (Figure 4c), send their outputs to the appropriate chunk servers, which
have been assigned the reduce tasks.

36

In some cases, the intermediate keys produced by each map task can have significant repeti-
tion. It is the case, in Data Grids, in which the each node elaborate the data entry-by-entry
and the map() outputs a list of result for each entry. If the reduce() function is commutat-
ive and associative, the user can specify an optional combine() function that does merging
of partial results on the same node which performs the map() task, before sent them over
the network. Typically, both the combine() and the reduce() functions are implemented
by the same code. A UML representation of MapReduce activation sequence is shown in
Figure 5.

37

a)

b)

c)
Figure 4: The MapReduce programming model (source [CSGA07])

The MapReduce approach has been tested in machine learning and data mining applications.
Many different algorithms have been adapted to a MapReduce framework such as weighted
linear regression, K-means, Naive Bayes, linear Support Vector Machines, independent
component analysis, logistic regression, gaussian discriminant analysis, or Probabilistic
Neural Network classifier [CKLY+06][CSGA07].

This model, characterized by moving the task to the store node instead of moving the data to
the processing node, finds in full Java grid an ideal environment. In fact, it is quite natural
for a Java programmer to think to objects with both the nature of data and tasks. And, since
data can move around, even a task can be moved and executed on machines different from
the one that instantiated it.

As already suggested, Data Grids have a strict affinity with the MapReduce programming
model. Not surprisingly, many of them support that strategy in some flavour. Ideally, to
achieve a linear scalability, a task running on a node should operate only on the partition
owned by that node and all the operations should be executed concurrently across nodes and

38

Figure 5: A sequence diagram for MapReduce, deduced from Hadoop documentation and code

partitions. Most versatile products can target the task execution on a single cluster node, in
parallel on a subset of nodes, or in parallel on all members of the cluster. Advanced imple-
mentations also allow the programmer to specify object relationships concerning transac-
tions boundary, such as a master/details relation, having the Data Grid co-located all related
data to a single node, if possible. In such a way, the task running on the node likely access
only to local data and concurrency locks traversing the network will be avoided.

Unfortunately, being both Data Grids and MapReduce young technologies, there is not a
consolidate API model and MapReduce-like support in Java frameworks seems one of the
most confusing and not-yet-canonized programming model. Here follows a sample of differ-
ent APIs. As an instance, in Oracle Coherence the task executor is the cache itself (class
NamedCache), which implements the InvocableMap interface (note the hesitation
between the terms map and cache). To execute a task (agent, in Coherence idiom) on the
grid node that owns the data, the cache itself exposes the method invoke(), with various
overloaded form:

Object result = map.invoke(key, agent);
From the client perspective, the invocation is synchronous and the client must wait for the
result. Coherence will determine the location where to execute the agent according to the
configuration for the data topology, move the agent there, execute it (automatically handling
concurrency control for the item while executing the agent), backup the modifications if
any, and return a result. It is possible to target the task to a key collection, enumerated or se-
lected by a query. If the task implements the interface ParallelAwareAggregator, de-
scribed in Listing 13, it signals it is explicitly capable of being run in parallel in a distributed
environment.

A ParallelAwareAggregator operates as described in the Figure 6: the aggregate()
method is invoked in each server passing the set of locally owned entries. Then, once the
partial results from each server have been collected, the runtime obtains the combiner of
partial results from getParallelAggregator() and uses this object (usually, implemen-
ted by the same task) to combine partial results with method aggregateResults(). Co-

39

public interface InvocableMap.ParallelAwareAggregator {

 Object aggregate(Set setEntries);

 EntryAggregator getParallelAggregator();

 Object aggregateResults(Collection collResults);
}

Listing 13: Coherence ParallelAwareAggregator subinterface

herence API does not use generics and often returns Object, so it is very easy to be con-
fused from these operations.

The same role in GigaSpaces XAP is played by the DistributedTask interface, shown in
Listing 14. It expose two function, the mapper execute() function and the reducer
reduce(). The mapper has not arguments and the data must be read directly from the space
or be injected by the runtime. The task is submitted to the space and it is executed asyn-
chronously using a Future, and the target keys must be enumerated:

AsyncFuture<Long> future = gigaSpace.execute(new MyTask(), 1, 4, 6, 7);
long result = future.get();

The sequence is illustrated in Figure 7.

40

Figure 6: The sequence diagram for ParallelAwareAggregator, deduced from Coherence
documentation

Other IMDGs have more different architectures, such as IBM WebSphere eXtreme Scale
[ibm], with distinct synchronous mapper and reducer. It is quite evident that the MapReduce
model is not well well-established yet, and any vendor has design a incompatible interface.

41

public interface DistributedTask<T extends Serializable,R> {

T execute() throws Exception;

R reduce(List<AsyncResult<T>> results) throws Exception;

}
Listing 14: GigaSpaces XAP DistributedTask interface

Figure 7: The sequence diagram for Gigaspaces XAP, deduced from the documentation

2.3.4 Facing the CAP theorem
From this brief introduction, it seems that the In-Memory Data Grid technology could solve
all the problems distributed computing has faced in the last decades. This is obviously not
true: the advantages of Data Grids have to cope with other weakness. It is well known that
distributed computing cannot avoid trade-offs [WWWK94], and in 2000 Eric Brewer postu-
lated the existence of uncircumventable limits in his CAP (Consistency, Availability, and
Partition) conjecture [Bre00]. According to this conjecture, it is impossible for a distributed
system to have simultaneously:

– Strong Consistency: all clients see the same view, even in presence of updates.

– High Availability: all clients can find some replica of the data, even in the presence
of failures.

– Partition-tolerance: the system properties hold even when the system is partitioned.

As result, at any given time, at most two of these three desirable properties can be achieved.

The conjecture has been formally proven two years later by Gilbert and Lynch [GL02] and it
is now known as the CAP theorem.

More precisely, consistency means that a service is fully operating or not at all. Gilbert and
Lynch use the term “atomic” instead of consistent in their proof, for coherence with the A
and C meaning in ACID. Availability means that the service will answer in bounded time.
Partition-tolerance means the system can tolerate lost messages between nodes. Gilbert and
Lynch pointed out that no set of failures less than total network failure is allowed to cause
the system to respond incorrectly.

It is important to notice that the CAP properties are characteristics of a specific architecture
or infrastructure deployment, not of a software toolkit. For example, since its origin, the
LDAP protocol [HKY93] provides the elements to many different fault tolerance mechan-
isms. Using the same server implementation (e.g. Sun Directory Server or OpenLDAP) it is
possible to deploy a service which alternatively provides:

– strong consistency, using only one server, and thus sacrificing the tolerance to the
network partitions;

– eventually consistency, using a master/replica setup, and thus losing the availability
of the write service during a partition: replicated data will be reconciled if and when
the network will return functional;

– no consistency, in a multi-master configuration, allowing both writing and reading
even in case of network failure, at the risk of not-reconcilable states [Fer00].

42

Most of the Data Grids have been designed to offer a configurable degree of Consistency,
Availability and Partition-tolerance mix. In pure P2P systems, such as in Coherence, Hazel-
cast, Infinispan, or GridGain in case of computing grid, the peer subsystem runs in the same
JVM of the application subsystem. With this architecture, the “master” node, corresponding
to the interactive user application, provides autonomously all the feature offered by the
whole grid. As a result, within the limit of available resources, the user application can con-
tinue to submit tasks and obtaining results even in case of network failures.

The question we can pose is the following: “Which are the most desirable characteristics of
a Desktop Grid-based architecture devoted to interactive and/or situational data mining?”
Obviously, being interactive, availability is unavoidable. The most frequent failure in a
Desktop Grid is node outage, due to local user activity, while a data mining computation in-
frastructure probably relies on a RDBMS or reliable file system to store the data in their ori-
ginal form, before any manipulation. So, it seems reasonable that Partition-tolerance is more
important than data consistency to survive to node outage, since the data can be reload and
reprocessed from the original sources.

43

3 Comparison between different IMDG implementations

What are the desiderata features required to a Data Grid design for hot-deployment in LAN
environments for data mining and machine learning applications?

First of all, the Data Grid must work. This might seems quite obvious and, indeed, all the
available products “do something” but there are many subtle details that can cause a
product to be useless or too unstable to be used. Other requirements are less trivial; the Data
Grid design:

– should expose an easy and familiar API to the programmers;

– should work fast, at least as fast as a traditional database, especially in high concur-
rent situations;

– should present the resources of connected hosts, the memory in particular, as an ag-
gregate capable to deal with large data collections;

– it should provide built-in checkpoints and persistence mechanisms.

All these features will be described in turn in the next sections.

3.1 In-Memory Data Grids platforms

Several software products, self-defining In-Memory Data Grid or having similar capabilit-
ies, are available and a survey can be found in the Appendix. Nevertheless, Data Grid is a
novel and little explored architecture, and the lack of literature has required a preliminary
assessment to understand if this technology is suitable for distributed machine learning
scenarios. None of the following results should be considered as a benchmark, neither the
goal was to determine the "best" product.

Some of the well known IMDGs and distributed cache platforms have been tested in a
single node configuration to analyse basic characteristics. In the remaining part of this sec-
tion, we will discuss the results obtained on the following implementations23:

23 Other applications have been subjected to a dry analysis, but not effectively tested. GemStone GemFire is
not included in this work because the license of the evaluation version includes a non-disclosure clause.
IBM WebSphere eXtreme Scale is available in a free evaluation edition but it has some limitation in func -

44

– Oracle Coherence grid edition release 3.5.2 dated 19 October 2009

– Terracotta Ehcache release 1.6.2 dated 23 August 2009, then some tests have been
reproduced with the newer release 1.7.1 dated 30 November 2009

– Hazelcast release 1.7.1 dated 16 October 2009, then, due to an issue interfering with
tests, repeated with a snapshot of release 1.8

– JBoss Infinispan release 4.0 RC3 dated 11 December 2009

– Apache Jakarta JCS release 1.3 dated 30 May 2007

A dummy data grid mock-up, based on a plain java.util.Hashtable, exposing the
same façade interface, and storing regular POJO (Plain Old Java Object), was used as
baseline and all the values are reported to it, using its performance on same operation as
measure unit.

It is highly probable that the tested products could be fine-tuned to offer better performances
in specific deployments, but the goal of this test was to produce a baseline for further invest-
igations. It is also unlikely that the final user will explore the configuration options in details
and the perspective of an application distributed in a Desktop Grid discourages platform-de-
pendent configurations.

3.1.1 Load capacity test on a single node
The first test consists in a progressive load of data until the memory exhaustion causes the
crash of the application. Data have been loaded in chunks of 512 entries of 128 Integer
objects, the heap of JVM being limited to 128 Mbyte. The testing platform was an Athlon
X2 5200, 6 Gbyte of RAM, with Microsoft Windows Vista 64 bit OS and SUN 64 bit 1.6.11
JVM. Results are shown in Figures from 8 to 13 and summarized in Table 1.

tionality which prevent long term usage. GigaSpaces eXtreme Application Platform (XAP) does not fit the
usage scenario because is not based on pure P2P architecture and uses a more traditional controller/agents
one. In order to run a grid node (GigaSpaces Container GSC), a discovery service (Lookup Service LUS)
in the network and an agent (GigaSpaces Manager GSM) running on each host are required. This architec-
ture makes difficult to create auto-deploying data grids. Moreover, XAP is released under a commercial li -
cense model which does not match with the spreading of components over a network spanning through dif-
ferent organizations. Cacheonix has been disregarded because the per-processor license model does not
cope with the employ in a Desktop Grid fashion architecture which should collect as many PCs as possible.

45

Average star-
tup time

Stored entries Average store time
for entry

Average single entry
read time

java.util.Hashtable 1 24,064 1 1

Oracle Coherence 3.5.2 382.76 55,296-55,808 6.9 3

Terracotta Ehcache 1.7.1 31.47 24,064-46,080 3.13 11.1

Hazelcast 1.8 223.8 35,328-36,864 5.21 4

JBoss Infinispan 4.0 RC3 22.66 24,064-46,080 2.23 -

Apache Jakarta JCS 1.3 0.9 22,528-23,040 1.51 -

Table 1: Data Grid results summary. All time measures use the performance of Hashtable in the
same as measure unit.
Each test has been executed at least three times in different periods to compensate possible
background activities in the host. In the graphs, the x-axis represents the data chunks alloc-
ated in sequence. The blue lines represent the total allocated heap, the red lines the time
elapsed to allocate each block.

As clearly shown in Figure 8, the java.util.Hashtable had such a constant behaviour,
so that the three lines almost coincide. For this reason, this implementation has been used as
reference and all other time measures have been normalized to that.

Surprisingly, the storage capacity of many implementations (Coherence, Ehcache and
Hazelcast) outperforms the plain local storage, due to a very efficient serialization of the ob-
jects in a compressed form. Obviously, since nothing comes for free, and write operations in
Data Grids are from 2 to 7 times slower than in Hashtable.

46

Figure 8: Single node allocation test, local Hashtable. The x-axis represents the chunks allocated.
The blue lines represent the total allocated memory, the red lines the time elapsed to allocate each block.
This test has been executed three times but the lines almost coincide.

0

10

20

30

40

50

60

0
20000
40000
60000
80000
100000
120000
140000

Allocated memory [kbyte]

Elapsed time per block

Figure 9: Single node allocation test, Oracle Coherence 3.5.2
0

10

20

30

40

50

60

0
20000
40000
60000
80000
100000
120000
140000

Allocated memory [kbyte]

Elapsed time per block

Ehcache has a cache-oriented design, rather than being cluster-oriented, and applies by de-
fault a write-behind strategy. At write time, it stores the entry as-is, showing performances
near to the plain Hashtable. Then, when it reaches a configurable memory limit, it en-
queues the entries candidate to compression or overflow to the disk in a spool, according to
the current policy (LRU or LFU). A background task performs these operation effectively. If
the spool capacity is reached or the background task cannot operate at the same speed at
which the entries are spooled, e.g. because it writes to the disk, exceeding entries are dis-
charged from the memory and lost. This is an acceptable behaviour for a cache, in which a
missed entry should be recoverable from the original source. Unfortunately, when setting
Ehcache to use the perpetual eviction policy, in which entries are never discharged, the
asynchronism between the operations at the user and background levels result in an erratic
behaviour, in both storage capacity and elapsed time, as shown in Figure 10. It can be ob-
served that the load lines interrupt at different steps, ranging from 24k to 46k chunks. This is
the only implementation showing a such a behaviour, being the capacity variations in other
IMDG less than 10%.

The Hazelcast library has demonstrated some problems to detect the OutOfMemoryError
condition, sometimes because it occurs in the service thread and it does not propagate to the
main thread; as a result, the application hangs instead of crashing24. A similar problem seems
sporadically affecting Infinispan too, but it was tested in a not yet stable release.

24 The problem has been submitted to the maintainer of the project.

47

Figure 11: Single node allocation test, Hazelcast 1.8
0

10

20

30

40

50

60

0

20000

40000

60000

80000

100000

120000

140000

Allocated memory [kbyte]

Elapsed time [ms]

Figure 10: Single node allocation test, Ehcache 1.7.1
0

10

20

30

40

50

60

0

20000

40000

60000

80000

100000

120000

140000
Allocated memory [kbyte]

Elapsed time

Infinispan was tested at the end of 2009 in a pre-release stage and it shown some troubles
not easy to fix, without offering evident improvements. Nevertheless, the roadmap25 of the
project suggests to keep an eye on it, since JBoss plans to implement the state-of-the-art fea-
tures set of Data Grids.

JCS has a design similar to Ehcache, but the documentation is not kept updated and it was
very difficult to configure it correctly.

After these preliminary tests, Infinispan and JCS were no further investigated. Indeed, JCS
is not actively maintained from 2007 and its performances, roughly equal to the plain
Hashtable, did not warrant the use. On the other hand, the beta release of Infinispan was
too unstable for a real use.

In order to check if contextual settings have influenced the results, some tests have been re-
peated under different conditions: using a Bea JRockit 32 bit JVM, the overall behaviour
was the same but, as expected, each instance could accommodate more data (for example,
Coherence allocated over 144 blocks instead of about 110). Moreover, using different object
types, such as small String, seemed of no influence. Instead, very large objects could ex-
hausted the memory much faster than as expected compared to the equivalent amount of
small objects. This issue need a deeper investigation in case of systems designed to deal
with large data such as image files.

25 http://community.jboss.org/wiki/infinispanroadmap (last accessed 15 Jan 2010)

48

Figure 13: Single node allocation test, JCS 1.3
0

10

20

30

40

50

60

0

20000

40000

60000

80000

100000

120000

140000
Allocated memory [kbyte]

Elapsed time

Figure 12: Single node allocation test, Infinispan 4 RC3
0

10

20

30

40

50

60

0

20000

40000

60000

80000

100000

120000

140000

Allocated memory [kbyte]

Elapsed time

3.1.2 Entry retrieval test
An entry retrieval and read performance test has been performed on the same data used in
the previous experiment. Read of entries has been tested both in the same order they have
been stored and in a random one. The results are shown from Figure 14 to 16. The x-axis
represents the time elapsed to read all the entry in a chunck.

Oracle Coherence has shown a very homogeneous behaviour. The spikes, visible in Figure
14, are probably due to the Garbage Collector activity.

Ehcache has shown less predictability and worst performances, probably for the same reas-
on detected in the write test.

Finally, the behaviour of Hazelcast was a little chaotic, but affordable and time-bound.

49

Figure 14: Coherence read test. Green lines show sequential read time per entry, purple lines show
random reads. Time measures are scaled to the Hashtable performance.

0

10

20

30

40

50

60

Figure 15: Ehcache read test
0

10

20

30

40

50

60

Figure 16: Hazelcast read test
0

10

20

30

40

50

60

In all the platforms, accessing the entries in a random order seems to have a small, but no-
ticeable, impact on performances.

3.2 Memory allocation effectiveness

To investigate the behaviour of In-Memory Data Grid for memory allocation, other tests
have been performed to verify the capability of effective memory usage.

The write tests of Section 3.1, have been repeated reserving 4 Gbyte for the heap. Results
are shown in Figures 17 to 19. Test ran in the same conditions of above.

Oracle Coherence, in Figure 17, seems unable to exploit more than 1.5 Gbyte of memory26.
However, thanks to a better compression, Coherence still stores more objects than the other
implementations.

Ehcache confirms a less efficient memory usage, using around 3 Gbyte of RAM to allocate
less than half of the objects allocated by Hazelcast. The only product capable to scale up to
4 Gbyte is Hazelcast, as shown in Figure 19.

In all the experiments, the interference of the Garbage Collector (GC) was quite evident
when the memory allocation grown, with spikes in allocation time lines (less visible in Co-
herence due to the less amount of used memory). The GC in most of the Java Virtual Ma-

26 After a conversation with the Oracle Coherence technical support, the test has been repeated on a different
platform obtaining the correct Coherence behaviour. The problem is under investigation.

50

Figure 17: Coherence 4 Gbyte allocation test. In the x-axis the chunks allocated. The blue lines represent
the total allocated memory, the red lines the time elapsed to allocate each block.Time scale is the same of
the Figure 8, memory scale is in Mbyte instead of kbyte.

0

10

20

30

40

50

60

0
500
1000
1500
2000
2500
3000
3500
4000

Elapsed time [ms]

Allocated memory [Mbyte]

Figure 18: Ehcache 4 Gbyte allocation test.
0

10

20

30

40

50

60

0
500
1000
1500
2000
2500
3000
3500
4000

Elapsed time [ms]

Allocated memory [Mbyte]

chines has greatly improved over the years. Nevertheless, applications using large heaps
might still manifest a "Stop-the-World" behaviour and it is not uncommon that a garbage
collection phase requires tens of seconds to complete. These delays might be acceptable if
the latency is not a big deal. Unfortunately, the Data Grids under examination have a P2P
network layer which marks as suspect a peer not responding to the heartbeat notification. A
long wait for the heartbeat produces a rearrangement of data partitions, resulting in further
delays. In fact, from the cluster's perspective, the node that does not respond for long time
(ranging from 5 seconds for Ehcache to 300 seconds for Hazelcast, using default values)
might be dead and the cluster is allowed to exclude it from the configuration. When the
node resumes after the long GC phase, it has to re-join the cluster and this requires a lot of
new work, further worsening the response time. Instead, the “split brain syndrome”, where
two or more instances attempt to control the cluster is unlikely to occur. IMDGs are spe-
cifically designed to cope with this problem and, in the assumed scenario, the client inter-
face is defined as the “authoritative” node.

Based on similar observations, there are suggestions [Ime08] that applications based on P2P
Data Grids could benefit from splitting the RAM between a set of JVMs running in the
same host, instead of reserving all the memory for a single JVM, allocating a Virtual Ma-
chine per CPU core. In this way, it is supposed the effect of the GC might be reduced be-
cause the heap size of the individual JVMs is smaller and the GC process is spread across
the cluster, reducing the impact on the individual machine.

3.3 Clustered operations

At this point we know that some Data Grid implementations work as declared, at least in
isolation, but since they are designed for distributed and high concurrent applications, we
need to analyse their behaviour in a clustered configuration.

The capability of memory aggregation using different nodes/heap combinations has been
explored in this test. Since this architecture supposes a setup based on data partitions, and

51

Figure 19: Hazelcast 4 Gbyte allocation test.
0

10

20

30

40

50

60

0
500
1000
1500
2000
2500
3000
3500
4000

Elapsed time [ms]

Allocated memory [Mbyte]

Ehcache does not have this built-in capability27, this platform has not been tested in this con-
figuration. To avoid the overhead caused by the network layer, but offering enough cores to
simulate a small cluster, the test has been performed using an Amazon EC2 High-CPU Extra
Large Instance with 8 cores and 7 GB of memory, running Linux Fedora 64-bit and Sun 64
bit JDK 6 Java Virtual Machine. Results are shown in Figures 20 and 21. On the x-axis ap-
pears the cluster size, in the y-axis the storage capacity on the left graph and the elapsed
time on the right graph, measured as in the previous load test.

At a first glance a write test does not involve the Garbage Collection, but in these architec-
tures objects instantiated by the application are copied in a serialized form in the Grid and
then discharged, thus becoming eligible for the GC. Hence, this test also verifies the correct-
ness of the hypothesis about splitting memory among different JVMs to limit GC overhead.

Some products claim their partitioned memory allocation can exploit the aggregation of the
memory of all nodes in a single storage space. In this case, assuming all the n nodes, includ-
ing the user own PC, have hm heap memory available, the expected total accessible storage
is havailable = n hm / k, where k is the number of configured backup copies (usually 1).

Coherence shows clear benefits in memory aggregation, as visible in Figure 20. In a cluster
with more than two nodes, the storage capability grows as expected in a roughly linear way.
Moreover, the aggregate memory is close to the whole memory: 8 nodes with 512 Mbyte of
heap, 4 with 1024 Mbyte, or 2 with 2048 Mbyte, can allocate around the same amount of

27 The client application could implement the strategy by itself, as explained in http://ehcache.org/Ehcach-
eUserGuide.html#id.s32.3 (last accessed 10 Jan 2010). Unfortunately, this strategy lacks of the automatic
relocation of block nor offers an obvious way to handle nodes dynamically joining and leaving the cluster.

52

Entries storage capacity Time elapsed

Figure 20: Oracle Coherence: storage capacity and time by nodes in the cluster. Each test has been
managed to not exceed the host hardware, using up to 8 instances for 8 cores and no more than 6 Gbyte
of RAM. The 4 Gbyte line is the capacity obtained allocating the memory in a one node configuration.

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

512 Mbyte 1024 Mbyte 2048 Mbyte 4096 Mbyte

objects. However, using several JVMs in a single machine resulted in less storage capability
and high overhead in writing time, without any visible benefit.

From the point of view of memory effectiveness, Hazelcast simply ignores the clustering.
Elapsed time grows, as shown in Figure 21, but not in an evident way such as in Coherence,
and the storage capability does not change.

After these results, the proposal of using multiple JVM on the same host to minimize the
impact of Garbage Collector seems not well funded. As an example, shown in Figure 22, the
behaviour of one JVM allocating 4 Gbyte of heap or four instances with 1 Gbyte each are
not clearly distinguished.

Another sensitive point is the operation throughput. We tested two scenarios, a mostly-read
and a balanced-write, in a cluster configuration. In each case, we provided to not saturate
the system, setting a limit for each node heap in a way the total heap being largely lower

53

Entries storage capacity Time elapsed

Figure 21: Hazelcast: storage capacity and time by nodes in the cluster

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

Figure 22: Oracle Coherence, multiple instance on the same host, replicated configuration.
Configuration with 512 Mbyte of heap exhausted the memory early, the crash point of other
configurations is outside the graph.

0

50

100

150

200

250

300

0
200
400
600
800
1000
1200
1400
1600

Allocated heap 4096 Mbyte 1 instances 2048 Mbyte 2 instances
1024 Mbyte 4 instances 512 Mbyte 8 instances

512 Mbyte 1024 Mbyte 2048 Mbyte 4096 Mbyte

than physical RAM, and running from two up to six nodes to ensure at most two free cores
for handling background threads. Again the performances of the dummy local Hashtable
have been used as measure unit.

In the mostly-read scenario, read operations are approximatively ten times more than the
write operations. Differently from the results reported in Section 3.1.1, in this environment
the performances of the Hashtable are less consistent, with a standard deviation of around
14%. This is caused by the virtualized environment, but it is not considered a critical point
for the test, since the full run for the Hashtable elapsed few seconds, while in Data Grids
spans over several minutes. The results are summarized in Table 2 and in Figure 25.

54

2 nodes 3 nodes 4 nodes 5 nodes 6 nodes

Coherence Mixed op/t 0,0286 0,0210 - 0,0148 0,0105

Write op/t 0,0115 0,0099 - 0,0073 0,0053

Read op/t 0,0339 0,0238 - 0,0166 0,0117

Hazelcast Mixed op/t 0,0245 0,0170 0,0121 0,0116 0,0097

Write op/t 0,0172 0,0094 0,0051 0,0043 0,0039

Read op/t 0,0258 0,0187 0,0141 0,0145 0,0117

Table 2: Mean throughput for single node in clustered configuration..Values recorded for 4-node
Coherence cluster present anomalies, but the test could not be reproduced on the same platform. 1 t unit
is the equivalent performance of Hashtable

a) Mean throughput for node b) Aggregate throughput for cluster

Figure 23: Throughput for node in cluster configuration. 1 is the throughput of Hashtable

2 nodes 3 nodes 4 nodes 5 nodes 6 nodes
-0,01

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

2 nodes 3 nodes 4 nodes 5 nodes 6 nodes
0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

Coherence total Coherence w rite Coherence read Hazelcast total Hazelcast w rite Hazelcast read

The throughput per each node sensibly decreases with the cluster growth, but the aggregate
throughput increases.

Both platforms benefit from a warm-up phase. Even when the cluster is started in advance,
to let the P2P negotiation stabilize, it seems the population of an empty map requires a while
to uniformly distribute the keys in the cluster and to initialize near caches, and performances
improved after a little period, in the order of tens of seconds. This phenomenon should be
taken into account for deployment on-the-fly, as an additional issue discouraging too short
tasks. The warm-up phase is noticeable in Figure 24, referring to Coherence. Both green
lines, representing the read throughput in entry per second of each node, stabilize at the
middle of the graph. Hazelcast has a similar behaviour and thus it is not presented here.

The tests have been repeated with a balanced number of interleaved write and read opera-
tions. Also in this case, Coherence and Hazelcast had a similar behaviour which was not dis-
similar from the previous test, only with a decrease of around 20% in the number of opera-
tions per second.

It is interesting to analyse the fault-tolerance of the cluster. Both products can easily handle
the loss of one node at time. In Figure 25, each line shows one of five nodes in a Hazelcast
cluster running the balanced read test, in which two nodes have been killed during execu-
tion. After a while, to allow the cluster reassigning the partitions, the work restarts and con-
tinues at the same speed.

55

Figure 24: Oracle Coherence, 6-node cluster, interleaved read:write 1:10, throughput per second. Green
lines represent the read throughput of each node, the red lines the write throughput. Entries are complex
object with variable length array and collections as members..

0

500

1000

1500

2000

2500

3000

Figure 25: Cluster throughput per node , highlight rectangles show the loss of one node each
0

200

400

600

800

1000

1200

1400

We also performed informal tests against a traditional RDBMS, in this case MySQL which
has the reputation to be one of the fastest DB engine available. We found that the perform-
ances are strictly related to the O/R mapping applied. If the objects to be saved can be
mapped on a single row of a table, MySQL can slightly outperform the best of the Data
Grids we tested. But, as long as that the object includes a Collection field with variable
length, which requires a normalization of the database and another table at least, the per-
formances drop dramatically. We experienced ten times slower performances by just adding
a variable length array of double to a class. Nevertheless, since MySQL and similar
products cannot be deployed on-the-fly in a P2P network, this configuration has not been
further investigated.

56

4 Experiments and results

The main goal of this work is to investigate if and how the emerging technology of In-
-Memory Data Grids, born in the community of business and web software, is easily ex-
ploitable by the developers of data massive applications in fields such as bioinformatics,
data mining and machine learning.

In most cases, these applications are created by domain specialists, rather than by software
engineers, who focus on their specific algorithms. The dissertation statement is that the Data
Grids and the programming model they expose, wrapped by an abstraction layer, offer to a
non-programmer specialists interfaces suitable to build distributed parallel applications with
a minimal effort. In the trade-off between simplicity and performances, In-Memory Data
Grids swap an easy-to-understand programming model and decent overall performances
with a lack of fine grained control and sub-optimal resource usage. Nevertheless, they seems
suitable to replace the current approach to distributed computation applied in many popular
applications, which apply home-made solutions or have no distributed capability at all.

Known use cases for a Data Grid, explicitly advertised by the main vendors, are caching, in
which frontend applications request data from a Data Grid rather than backend data sources,
analytics, in which applications query the Data Grid, transactions, where the Data Grid acts
as a transactional record system hosting both the data and the business logic, and Complex
Event Processing (CEP) in which the system looks for sequences in a event stream trying to
match a pattern and notifying “complex events” of interest. Classic applicative domains are
market and reference data analysis, financial risk management, algorithmic trading, and
fraud detection [ora08][gem05].

All these applications are designed for a scenario providing a stable server infrastructure and
predeterminate tasks. Our goal is to exploit Data Grids as distributed datastore and check-
pointing facility in volatile networks to satisfy the computational requirements of interactive
data mining. To verify these hypothesis, several tests have been performed. To investigate
specific data mining scenarios, we applied the proposal technology to a pre-existing applica-
tion we have already used in the recent past, which performs the l1l2 regularization protocol
on a traditional Desktop Grid architecture.

57

In this chapter, we provide a short background of the l1l2 distributed application and describe
the testbed infrastructure. Then we provide an overview of the architecture of the Data Grid-
aware version of l1l2 and show some performance results. Referring to the points discussed
in Section 2.1.4, i.e. parallelization of data mining applications, the experiments apply both
the decomposition of the data table in regions each assigned to different hosts, and the more
classic technique of distributed parameter sweeps.

The experience coming from l1l2 is then applied to a general purpose data mining Workflow
application in order to evaluate the advantage for programmer in using IMDGs coupled with
MapReduce programming model.

4.1 Background

Distributed cross-validation and its use, such as the feature selection, is a well known topic
in both the theoretical research and the proof-of-concept software. Production-grade support
is instead less common and only few open source data mining applications have an imple-
mentation which is easy to use.

In order to evaluate the performance of In-Memory Data Grids in this class of tasks, we por-
ted on this platform a framework we already used [BF09] to developed a distributed version
of a program for the selection of relevant genes from DNA microarray data based on the l1l2

algorithm originally presented by [ZH05] and then studied and implemented by
[DMDV+08][DMTV09].

Denoting with X the gene expressions matrix and with Y the vector of the classes labels, the
l1l2 regularization aims to find β defined as:

=argmin∥Y−X ∥2

2
 ∥∥1∥∥2

2

where the least square error is penalized with the l1 and l2 norm of the coefficient vector. The
parameter ε in the functional is fixed a priori and governs the amount of correlation we wish
to take into account. The features corresponding to nonzero values in the optimal coefficient
vector are those selected as relevant. In practice, we use the selection protocol that combines
the selection step described above with a Regularized Least Squares (RLS) classification
phase.

min ∥Y−X∥2

2
 ∥∥2

2

where X is the submatrix obtained by only using the columns of X corresponding to the
variables selected in the first step. l1l2 translated in pseudocode is shown in Listing 15.

58

One of the main challenge from the data analysis perspective, is to design an appropriate al-
gorithms able to find the variables relevant to a given process, with good generalization
properties on new data and avoiding the so-called selection bias [AM02]. In principle, the
only way to assess predictive accuracy of a system is to classify a set of independent new
cases. But in cases such as DNA microarray, obtaining new data is very expansive when not
possible at all, so it is advisable to estimate the correct accuracy estimated from the data at
hand using cross-validation methods.

In cross-validation methods, data are partitioned into two complementary subsets called
training set and testing set, then using the training set to learn the parameters and the testing
set to estimate the error on those parameters. Common cases of cross-validation split the
sample into two partitions with a test:training ratio of 1/3:2/3, with three rotations of the

59

dataset = {Matrix X, Vector Y}
n = rowcount(X) // n. Sample
d = columncount(X) // features

Vector β
DoubleMatrix xt = x.transpose();

// Step size σ0
// if σ0 is not specified in input, it evaluates from dataset
σ0 = estimateSigma0(dataset)

tolerance = 0.01 // tolerance for stopping rule
kmax = 10000 // maximum number of iterations

// Element-wise right array division
Matrix XT = transpose(X) / (n * σ)

// initialize beta vector with RLS solution of
// ||Y – X * β ||2

Vector β0 = RLS(X,Y) // initialize beta vector with RLS solution

// initialization
σ = σ0 + µ
µs = µ / σ

// l1l2 algorithm
k = 0
repeat {

Vector β = thresholding(β0 *(1 – µs) + XT * (Y – X * β0), ts);

} until (k < kmax && ∀ i = 1..n |β[i]-β0[i]| ≤ |β0[i]| * tolerance/(k+1))

Listing 15: l1l2 pseudo code

sets, or the 1:9, with ten rotations, also known as 10-folds cross validation. Usually such
cross validations are used to estimate the errors on one, sometimes two, parameters.

The procedure applied to microarrays has quite different constrains. Microarrays presents
about 54,000 features28, are expensive and time-consuming to produce, and the genetic dis-
eases under investigation are often, and fortunately, rare. Thus, usually such analysis can
rely on few dozen of samples only. In such cases, the most widely adopted resampling pro-
cedure is the leave-one-out cross validation, where the number of partitions equals to the
number of samples and the procedure is repeated for each sample. Moreover, the l1l2 al-
gorithm requires to estimate two different parameters, the term τ which controls the l1l2

phase and term λ which controls the RLS, thus it requires two nested loop of cross-valida-
tion. As results, a single run of feature selection usually requires several thousands repetition
of the learning/test cycle.

4.2 The classic approach

The original release of the l1l2 framework was implemented as a set of MATLAB [matl]
scripts called L1L2_TOOLBOX. It runs on a single hi-end workstation, spending a time in the
magnitude of weeks to perform a full analysis of a data set collected from 20-50 microar-
rays.

Cross-validation is an obviously parallel procedure, since it involves the execution of many
independent tasks. We exploited the availability of ShareGrid infrastructure, described
ahead, to develop a grid-enabled version on the L1L2_TOOLBOX. The refactoring mainly re-
quired to unwind the two nested loops, dynamically generate a Job Descriptor File, as de-
scribed in Section 2.2.3, and then submit the scripts and the data to the grid.

In the first phase, we used the infrastructure in three complex experiments, reported in Table
3, in which the computation is only a small, but significant, part. After a tuning of the con-
figuration, the distributed application gave us remarkable benefits with little effort. The
speed up obtained was more promising that the dry numbers seem indicate. The first experi-
ment was performed during Christmas 2008 holidays, when most of the computer rooms in
Universities were closed and only few hosts were running the grid computation. A post-ex-
periment diagnose suggested that when sufficient PCs are available, the benefits would be
effective. The second experiment was used to evaluate an optimal task allocation strategy.
The conclusion was that the size of each task should be not too small, to pay off the transfer
time (many of the hosts were in Turin), but also not too big, to lower the probability of a stu-
dent in the computer room starting to use the machine. Being the PCs in ShareGrid non ded-

28 Referring to Affymetrix HG-U133 Plus 2.0 GeneChip

60

icated resources, the local activity is preemptive and it kills suddenly the background com-
putation, which must restart on another machine. We empirically evaluated the right size of
task such as it might complete in around five minutes. The second improvement was to use
a scheduling strategy which replicated the tasks on different grid machines, if idle, and run
them simultaneously. This further reduced the probability of a task being killed in all its in-
stances and restarted. The results of these optimizations are highlighted by the third experi-
ment, which reports a speed up of 36 time. For our users, this means switching from a wait
of three weeks to less than one day. After these trial experiments, the infrastructure has been
used for other computations [SBDM+09].

Experiment
name

samples features questions CPU time (h) Wall-c-
lock
time
(h)

1 Brain tumor 68 54913 6 ~ 3000 1200

2 Ependymomas 19 54913 9 1302 316

3 Breast cancer 198 up to 22238 2981 437 12

Table 3: Main gene selection experiments. Wall clock, from the launch of the experiment to the return of
last result, time includes data transfer. CPU time is the sum of all single tasks run time recorded on the
remote node and match with the estimated time required for a single workstation. One week is 168 hours.
Despite the satisfying performance improvement, several issues still remain to be solved. As
explained in the in the introduction, this solution suffers from many of the flaws frequently
found in scientific applications:

– the user needs to handle several different tools at the same time;

– the granularity of the tasks, once distributed, is fixed;

– troubleshooting is cumbersome and out-of-band;

– there is not an obvious way to distribute tasks requiring different library/base applic-
ations;

– data distribution is primitive;

– there is not checkpointing facility and the task restarts from the beginning when
killed by the local user activity;

– input, output and interprocess data exchange is based on files.

61

Moreover, the solution adopted resulted results tightly bound to the algorithms we have im-
plemented on it , not scalable, and not easily generalizable to other applications.

4.3 The distributed testbed infrastructure

In both the original l1l2 and the new Data Grid-enabled experiments, we exploited ShareG-
rid, an existing Desktop Grid infrastructure, to distribute the computation across several
PCs. ShareGrid [ACGB+08] is a collaborative project which involves several Universities in
Northern Italy. Each partner allows the others to use his own computational resources on a
reciprocity basis. As of October 2009, the participants to ShareGrid were the Department of
Computer Science of the University of Piemonte Orientale, the Department of Computer
Science, the Department of Economic and Financial Sciences "G. Prato", and the Depart-
ment of Drug Science and the Re.Te.-Centro di Interesse Generale d'Ateneo Reti e Tele-
comunicazioni of the University of Torino, TOP-IX, the Torino Internet traffic exchange
point, the CSP - Innovazione nelle ICT, and the Department of Computer and Information
Science of the University of Genova.

The ShareGrid infrastructure is based on OurGrid middleware, developed at the Universid-
ade Federal de Campina Grande (Brazil) and sponsored by HP. OurGrid is based on a two
level peer-to-peer architecture, as described in Figure 26. At the first level, a department cre-
ates its own desktop grid infrastructure, installing on each PC an agent and using a central
supervisor (manager or peer) to coordinate them. At the second level, the supervisors of dif-
ferent organizations connect in a mesh to establish a P2P network.

62

Figure 26: The ShareGrid/OurGrid architecture

OurGrid is designed to support only the execution of the so-called Bag-of-Tasks applica-
tions, consisting in a set of independent tasks that do not communicate among them [CG89].
Despite their limitations, Bag-of-Tasks are used in a variety of domains, such as parameter
sweeps, simulations, computational biology, and computer imaging.

We successfully used ShareGrid for different research works [BFSV09][BF09][FL09], but
the lack of coordination between tasks, especially concerning splitting strategies and check-
pointing, suggested us to develop the solution presented here. Unfortunately, not all ShareG-
rid’s sites are suitable to run P2P Data Grids; the major obstacles found were incompatible
JVM versions on the hosts and troubles with multicast traffic in some LAN configurations.
Since one of the features of grid toolkits is to allow the selection of the resources, after a
scouting run of a probe program, we identified the peers compatible with our experiment
and then run the test on these nodes only.

4.3.1 Framework architecture
Over ShareGrid we apply this overall strategy to add checkpoiting, shared storage, and other
features supplied by Data Grids to the application. The user, using the standard OurGrid
tools, deploys the Data Grid nodes and additional libraries on several machine. As observerd
in the previous analysis, Data Grids is not usually designed to work over WAN or in parti-
tioned networks, hence the hosts must be selected from the same LAN. The hosts might also
been selected to meet the application requirements, such as available memory, operative sys-
tems, etc.... When the nodes start, they discover each other and establish an overlay net-
work, as illustrated in Figure 27.

63

Figure 27: The user deploys Data Grid nodes using the grid tools and selecting suitable resources. At
startup, the nodes discovered each other and setup an overlay network, distributing data partitions
providing at least one backup for each partition

If a node leaves the Data Grid, for instance for the crash of the PC or because somebody on
the local console starts to work on it, the other nodes rearranges partitions assignment to en-
sure the presence of backups, as in Figure 28. When the Data Grid cluster is established, the
user can start his application, on its own PC if connected to the same LAN, or in another
node of the remote grid.

Any subtask of the application can be sent to the node hosting the partition and executed
concurrently. The data in the Grid can survive to the loss of one or several nodes if the inter-
val between each crash allows the partitions to be reallocated.

4.4 Data Grid-aware l1l2

The first step to this new architecture was the porting of the code to a version entirely re-
written in Java. A preliminary version was prepared mapping the original MATLAB code to
Java, using JAMA [jama] as the base matrix manipulation library. The access to JAMA API
is mediated by few abstraction classes, which allow the easy replacement of the library for
linear algebra and matrix manipulation. It is worth noting that microarray matrices are
dense, therefore different matrix implementations could hardly make a difference in
memory footprint. Potential benefits can be expected from libraries which apply a strategy
based on views rather than on copies for certain operations, but these are rare in l1l2 .

Preliminary tests were also performed with UJMP [ABN09], which offers a more modern
design and can seamlessly integrate other matrix libraries aside the built-in functions. In our

64

Figure 28: In case of Data Grid node leaves the cluster, the Data Grid rearranges partitions. The
underlying Desktop Grid infrastructure could restart the crashing node. When the user application has a
subtask associated to a specific data, it is routed to the nodes hosting that data in their partitions and
executed locally

test UJMP performs more than two times slower than JAMA29, and in the current release it
requires additional libraries to implement some features such as Singular Value Decomposi-
tion, without offering notable benefits to our application. The support UJMP should be de-
sirable for its capability of exposing Map objects, backended on disk possibly, as UJMP
matrices, thus outlining a good integration with IMDG.

This first Java release of the l1l2 framework, hereafter referred as L1L2Base, was used as
baseline for all remaining comparisons. As preliminary step, L1L2Base was compared with
the original L1L2_TOOLBOX. Tests on a Windows XP platform shown that the Java imple-
mentation is slightly slower than the original L1L2_TOOLBOX executed in MATLAB, but
outperforming twice the same script executed using the open source GNU Octave [Eat02].

This was a critical point: MATLAB is a commercial product whose license does not allow a
distributed use, especially in a grid infrastructure spanning multiple institutions such as
ShareGrid. To be complaint with the license, we adopted GNU Octave, which is highly
compatible with MATLAB, but considerably slower. In the grid implementation, the huge
number of running machines partially compensate this deficiency. However, the perform-
ance boosting obtained by using Java is largely sufficient to justify the switch to the new im-
plementation.

4.4.1 A Data Grid framework
The L1L2Base implementation has serious memory requirements, as shown in Figure 29,
that could dramatically increase in a parallel execution, due to the increasing number of
matrices instantiated as intermediate results.

29 This contrasts with the benchmarks published by UJMP (http://www.ujmp.org/java-matrix/benchmark/ last
accessed 1 Nov 2009) which, on a limited set of operations (a single matrix multiplication and a single
matrix transposition), seems indicate a completely different performance ranking among Octave, JAMA
and UJMP. However, l1l2 application includes several matrix operations.

65

Figure 29: Java VisualVM console showing the memory allocation and the CPU utilization required to
load 10 samples (image from a dual-core CPU, with the basic single thread l1l2 implementation).

In-Memory Data Grids offer the opportunity of facing both the memory footprint and the
computation performances at the same time.

The specific structure of data collected by microarrays, with few lines having many columns
adopting the classical tabular representation of data mining, and the specific protocol of
leave-one-out cross-validation, have suggested to load the data on the Data Grid associating
each row to an entry. The size of each row resulted around 430 kbyte, probably too large to
obtain optimal performances with some Data Grid implementations, but the tests with l1l2

did not manifest any anomaly. Being each line stored in the Data Grid, in a partitioned con-
figuration possibly, the tasks are submitted to each node. Each task is defined by a tuple
from the parameter space to explore and by a set of keys associated with lines forming the
training set. For a generalised implementation, also the keys of the test set are included in
the task definition, although in this specific case they could be derived as the complement of
the training set. This also avoid to implement a naming strategy to keep separate entries in
the map belonging to the dataset from others with different origin; even if some other pro-
cess save a new entry in the Data Grid map, providing the key is not present, there is no pos-
sible overlapping.

If the underlying Data Grid implementation supports targeted or key-based routing, the task
will execute on a node owning locally at least one of the involved entries. In this execution
phase, because of the nature of leave-one-out cross-validation, in which each task needs all
the dataset except one entry, and the design of partitioned Data Grid, in which redundancy is
minimized, there is no chance to do a better job, and some network load is unavoidable.
However, any other mechanism, such as shared file systems, RDBMS, etc... will need to
transfer all the data to the node running the task. In Data Grid it is possible to use Near
Cache feature, configurable at deployment time, to handle repeated access to the same keys
in an efficient way.

At each stage, the task saves in the Grid its partial results, associated with a meaningful key,
in the sense that the key alone permit to reproduce the result. As an example, each iteration
of the inner loop of l1l2, is determined by a tuple of values from the parameter space and a
set of row used for training. Thus, a class InnerLoopParameters is defined and an in-
stance is used to keep the values at each iteration and as the key to store the result of the it-
eration. This design brings two benefits: first, it is easy to generate the complete list of
InnerLoopParameters combinations without actually computing the partial results. Then
each key can be sent to a different node for a parallel computation. The second benefit is
that the task, before starting a computation, can check the map in the Data Grid to verify the
presence of the entry; if so, the result has been already computed and the task can read it,
proceeding directly to the next step. Saving the entry should be an idempotent operation to

66

ensure that multiple put() of the same key will not produced wrong effects but useless
computation. Not always this is possible, since some machine learning methods, such as K-
means clustering, rely on steps including random decisions. However, a careful design of
the implementation can avoid these situations.

Saving the partial results associated with the values that generate them as key allows, in
case of node crashing, the dead task can restart on another node and recover the results ob-
tained so far. Thus, the checkpointing feature comes for free in a Data Grid.

The other interesting advantage over traditional grid approach comes from their underlying
P2P architecture and MapReduce execution model. In a pure P2P implementation, each
node is equivalent and each task running on a remote node can launch other distributed tasks
as well. This characteristic might be accessible only in grids with a fine-grained API. In fact,
at that level, there is an uniformity between the functions that the user invoke to submit a
task and the functions that the task itself can invoke when running on a remote node.

In general, recursive task submission is error prone and should be handled as harmful by a
casual developer. As in multithread programming, the most probable result is a deadlock or
a race condition. The MapReduce programming model can help in this context. Although
being criticized for its lacks of expressiveness or as a “step backwards” [DWS08], the
MapReduce model was designed to “allows programmers without any experience with par-
allel and distributed systems to easily utilize the resources of a large distributed system”
[DG04].

In Data Grids that in a broad sense support the MapReduce model, the risks factors intro-
duced by careless programming are reduced. In fact, each framework supposes to receive a
“map function” which accepts one parameter and produces a list of results, and a “reduce
function” that accepts a list of results and returns one value. If such an API is combined with
the Java generics facility, it is hardly to produce unwanted harmful code. It should be noted
that, at the present, only few Java-based grids middlewares, such as GigaSpaces XAP and
GridGain, support both MapReduce and generics.

4.4.2 Performances
To evaluate the performances of the system in a real scenario, we have repeated the same
computation in two different configurations. In the first case, we used our departmental
cluster composed of 20 dual Intel Xeon servers connected through a dedicated Gbit Ethernet
network. Having not external interference, this facility provided a baseline of repeatable res-
ults. The tests have been repeated on two different ShareGrid sites during normal activity
time in remote computer rooms. In both cases, each computation has been executed re-
peatedly. The number of repetitions ranging from at least three in the cluster, to some dozen

67

on ShareGrid, varying with the availability of the remote hosts. In the results, we show the
average time for each test set. The computation consists in a feature selection run on a syn-
thetic dataset which we normally use to validate and to test l1l2 implementations. Experi-
ments have been repeated with 3k, 15k, 50k and 200k datasets, where the number indicates
the thousand of cells in the matrix.

Results obtained from the cluster, summarized in Figure 30, show the Data Grid-enable l1l2

can scale when adding nodes, in the x-axis, even if less than expected. Execution times, in
y-axis, are normalized to the one elapsed by the two nodes setup. For each dataset and node
configuration, the standard deviation of the experiment was usually less then 10%, except
for the strange behaviour of the 50k dataset which seems more susceptible to the cluster
size, resulting sometimes faster than the ideal speed.

The same tests have been repeated on ShareGrid. As expected, due to the dynamic of
Desktop Grid infrastructures, the results were more variable e sometimes unpredictable. As
exemplified in Figure 31, small datasets could have some benefits from the distribution in a
Desktop Grid, as shown by the 12k dataset experiment executed on Turing lab, but larger
problems suffer from the contention with local user activities, resulting in inconsistent per-
formances.

An interesting point is that many executions on ShareGrid had to deal with node crashes.
We experienced up to six nodes leaving and five nodes joining the cluster in a single run,
with delays ranging from 15 seconds to 5 minutes, depending on data size and target labor-
atory. Rarely these events have caused the computation interruption.

68

a) execution time b) speed up

Figure 30: l1l2 cluster experiments. In the x-axis, the number of nodes in the cluster, in the y-axis, on the
left, the execution time compared to the two-nodes result for the same dataset, on the right, the speedup.

0 5 10 15 20 25
0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25

3k 12k 50k 200k expected

The data analysis has filtered out some outlier values. Less than a dozen of runs required
more than ten times to complete, in few cases more than one hundred times, without no
evident correlation with the status or the activity of the target LAN. Node logs might give
some hints, but unfortunately the current OurGrid architecture returns the logs at the task
fulfilment only, while frequently the PC is switched off or rebooted before the hosted Data
Grid node shutdowns gracefully. Being many of the PCs owned by other organizations, it
was not possible to read logs at runtime directly from the node console.

4.5 Data Grid integration with existing applications

The scenario presented in previous sections provides basic services and algorithms. In the
aim of evaluate IMDG as distributed framework for data mining applications providing a
programmer-friendly programming models, we have evaluated different applications, de-
scribed in Section 2.1.1. We present here only the results obtained from KNIME. Previous
prototypes based on Weka have shown several problems, due to the legacy of code smell
[Flo99], the pre-Java 5 multithread techniques, and its old design. The main obstacle to in-
terface with a Data Grid, which handles serializable object only, was the foundation class
weka.core.Instances, as noted in Section 2.1.3, which cannot used nor extends as-is.
The refactoring needed to convert Weka to an interface-based design is out of the scope of
this work. Debellor re-uses Weka and thus present similar problems.

69

a) execution time, 12k dataset b) execution time, 50k dataset

Figure 31: l1l2 ShareGrid experiments. In the x-axis, the number of nodes in the cluster, in the y-axis, the
execution time compared to the two-nodes result for the same dataset. The Turing lab is based on
Microsoft Windows XP systems, the Dijkstra lab on Sun Solaris 10.

0 5 10 15 20 25 30 35
0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30 35
0

0,5

1

1,5

2

2,5

3

3,5

4

turing lab dijkstra lab expected

KNIME is based on a plugin architecture compliant to the OSGi platform [osgi] provided by
the Eclipse platform [eclp]. This allows for a great extensibility e a clear separation of con-
cerns in design. Being KNIME a visual Workflow Manager, the “building blocks” are iden-
tifiable with the workflow nodes, even if OSGi modules (bundle) can provide many differ-
ent services entry point. As an example, the services of a computational grid might be ex-
posed to the programmer as a platform-wide service through an API, or might be presented
to the user as a workflow metanode. The first option represents a valid choice to implement
the support for Data Grid. Unfortunately, it could require an heavy work in some core
classes, producing an incompatible fork of the original project.

Thus, for the sake of simplicity, we have implemented the modules to access the Data Grid
as nodes. Creating a node plugin is, in general, quite straightforward, just requiring to
provide a concrete implementation of few methods in a skeleton generated by a wizard. In
our case, there was complication. Many of the core interfaces and classes, such as
org.knime.core.data.DataTable and its implementations, o.k.c.d.DataRow, and
o.k.c.node.BufferedDataTable, do not implement the Serializable interface.
These classes cannot be used as-is to move data from and to the Data Grid. Since element-
ary components, such as o.k.c.d.DataCell are serializable instead, we solved this prob-
lem implementing a new data type (Port Object) which encapsulates serializable compon-
ents in a new class hierarchy which maps the core classes. In the prototype, the user needs to
explicitly transfer the data to and from the Data Grid and special nodes are required to ma-
nipulate them. These nodes delimiting the scope of Data Grid are introduced as prototypical
level without any logic inside. Node which operate on data are copied and adapted form the
default KNIME release.

70

Figure 32: Data Grid-aware nodes in KNIME. The upper workflow reads a text file, split lines in records
and filter the resulting data rows in order to compute basic statistics. The lower workflow operates the
same data operations, but loading data in the Data Grid.

Thus, the prototype works as shown in Figure 32: data from a standard node are loaded into
the Data Grid, then are elaborated by specialized version of nodes, sharing the same code-
base of equivalent defaults, and finally the rows are collected from the Data Grid and re-
turned to the local workflow.

This looks like the design of KNIME built-in database node group, with an important differ-
ence: it is only a tactical design choice to ensure the compatibility with the main project. As
we will see, the pre-existing code can be converted to supports Data Grid natively.

To support different IMDG implementations, we developed a simple façade framework,
named SDGF (Simple Data Grid Façade), which abstracts basic operations and presents
them in with an uniform interface. Some details about SDGF are described in Section 4.6. In
SDGF, the backend IMDG implementation can be choosen at deployment time, using a sys-
tem property.

In this new design, plugin nodes require an unusual approach. The current programming
idiom is expecting to iterate on data rows, applying some operation on them. For example,
in the original code of node “Row Filter”, shown in Listing 16, the whole input table is iter-

71

protected BufferedDataTable[] execute(
final BufferedDataTable[] inData,
final ExecutionContext exec) throws Exception {

DataTable in = inData[0];
// ... initialisation code ...

BufferedDataContainer container =
exec.createDataContainer(in.getDataTableSpec());

try {
int count = 0;
RowFilterIterator it =

new RowFilterIterator(in, m_rowFilter, exec);
while (it.hasNext()) {

DataRow row = it.next();
count++;
container.addRowToTable(row);
exec.setMessage("Added row " + count + " (\""

+ row.getKey() + "\")");
}

// ... catch clauses ...

return new BufferedDataTable[]{container.getTable()};
}

Listing 16: Snippet from class
org.knime.base.node.preproc.filter.row.RowFilterNodeModel

ated and rows meeting certain criteria are copied in a new data table. In this case, “the data
go to the task”, sometimes in literal meaning: if the table, for instance, is backended in a text
file, to iterate through it implies read the file line-by-line from the disk. In Data Grid, to ob-
tain any benefit, the flux must be inverted and the tasks moves where the data are. Being the
storage unit of the Data Grid the associative map, this means each task must be targeted to a
map.

The equivalent Data Grid-aware version of “Row Filter”, based on the SDGF framework
and shown in Listing 17, creates a Task object, specialized for data copy, and sends it to the
Data Grid specifying the target map. The underlying IMDG implementation, if capable, will
spread the task on the nodes and each node will execute it locally against owned entries.

The Task interface of SDGF, and its subinterfaces such as CopyTask, has basically the
same role of a Callable or Runnable. The main constrains in Data Grids is that each ob-
ject must be serializable, thus Task extends Serializable. In the example, it is not pos-
sible to instantiate an anonymous class, since the model of a workflow node in KNIME is
not serializable. In other cases, having an interface which extends both Callable and
Serializable could help the programmer to quickly implement small tasks.

The Data Grid maps are handled by name, to ensure the maximum compatibility among IM-
DGs and the possibility to switch directly to the backend implementation API if advance
features, not provided by SDGF, are needed.

Submitting a task on the Grid returns a Future, as in the familiar model of
j.u.c.Executor, which allows asynchronous execution and, if the underlying middle-
ware has this capability, also allows the cancellation of the task. This supports some usabil-
ity features normally required in a GUI. Unfortunately, in this architecture is hard to provide
a progress bar; since it is not clear how to compute the progress ratio and where execute the
callback updating the values in such a parallel environment with an unknown number of
nodes. Moreover, obtaining some information from the remote nodes, even if the middle-
ware supports messaging, could result in an excessive network overhead.

72

The MapReduce model can be applied as well. For example, it is easy to use a reduce-only
procedure to compute basic statistics on a distributed table. The map() part is not required
by SDGF which automatically creates a 1:1 map. In Listing 18 the usage of a reduce()
function to compute a statistic table holding statistical moments, such as mean, variance,
column sum, count missing values, minimum and maximum values, etc... is shown.

73

public static class Filter implements CopyTask<SRowKey, SDataRow> {
// ... plumbing code ...

@Override
public SDataRow execute(SRowKey key, SDataRow row)

throws Exception {
if (m_filter.matches(row)) {

return value; // Copy to the new map if matchs
}
else {

return null;
}

}
}

protected DatagridConnection[] execute(final PortObject[] inData,
final ExecutionContext exec) throws Exception {

DatagridConnection in = (DatagridConnection) inData[0];
// ... initialisation code ...

Map sink = Datagrid.newMap(m_mapname); // Create sink map

CopyEntryTask<SRowKey, SDataRow> filterTask = new Filter();
filterTask.setSinkMap(m_mapname);
Future future = Datagrid.submit(in.getMapName(), filterTask);
future.get(); // Wait for completion

// ... plumbing code ...
return new DatagridConnection[] {dgTable};

}

Listing 17: A Data Grid-aware rewriting of RowFilter code

The MapReduce-aware versions of many machine learning algorithms are available. As
already noted, MapReduce is not a new programming technique and does not perspect rad-
ically different performances on parallel system. It is designed to cope with the difficulty of
distributed computations in both execution on unreliable hardware and programming by ex-
perienced programmers. Since performances of parallel versions of machine learning al-
gorithm are more dependant on the algorithm itself rather than by the middleware which ex-
ecutes them, we concentrate our tests on basic tasks, such as filtering and conversions, fo-
cusing on the benefit for the programmer.

74

public static class StatReducer
implements ReduceTask<SDataRow, StatisticsTable> {

private final DataTableSpec dataSpec;

// ... plumbing code ...

public StatisticsTable reduce(List<SDataRow> results)
throws Exception {

// A modified version of default StatisticsTable
// which allow incremental operations
StatisticsTable stat = new StatisticTable(dataSpec);

for (SDataRow row : results) {
stat.addToAllMoment(row);

}

return stat;
}

}

protected DatagridConnection[] execute(final PortObject[] inData,
final ExecutionContext exec) throws Exception {

// ... plumbing code ...

StatReducer reduceTask = new StatReducer(m_mapname);

Future future = Datagrid.mapReduce(dg.getMapName(),
null, reduceTask); // null map() is handle

automatically
// to 1:1 map

StatisticsTable stats = future.get();

// ... plumbing code ...
}

Listing 18: A MapReduce implementation of basic statistics

4.5.1 A basic ETL test
In many cases, an IMDG might act as a store for transient data continuously flowing from
sensors, diagnostic services, or OLTP systems. As an example, we could think to a Data
Grid feed from system logs, emails, and SNMP trap events, which keeps copies of the ori-
ginal data for a short period. In this case, losing some data, due to overload or network prob-
lems or discharged old ones, is an acceptable event. The infrastructure could be used to dis-
cover anomalies or behavioural patterns for intrusion detection, failure prediction, or spam
fighting.

The raw data must be preprocessed to adapt to the system. Such phase, known as ETL (Ex-
tract, Transform, Load) is a crucial process in data mining. Typical ETL is time consuming,
because data are recorded on databases or files that, having an architecture designed to en-
sure integrity maintenance, slow down this type of operation which often does not require
the same high level of integrity insurance. Even in well-designed infrastructure, the database
is usually the bottleneck due to the fact that RDBMS can only scale up (buying more power-
ful, and expensive, hardware), and not scale out by adding other inexpensive servers.

We can expect In-Memory Data Grids might speed up ETL processes for continuous opera-
tion, such as in systems which continuously receive new data, in two way: firstly, the data
are transformed on their arrival and not at load time, secondly, the processed data are keept
as POJO (or other optimized form) rather than as database or textual data, without the over-
head introduced by marshalling/unmarshalling operations.

For the same reasons, an In-Memory Data Grid could also be used has backend for passiva-
tion and checkpointing, hiding to the programmer most of the complexity of handling a con-
figurable support for object persistence. Moreover, in situations in which the same pre-pro-
cessed data have to be used in different clients or in long batch operations, table stored in
the Data Grid could be shared with other applications and clients can detach from the Data
Grid and return later to collect the results.

To test this scenario, we performed a cycle of ETL to analyse a log file generated by an
Apache web server and designed a typical web analytic job, consisting in the extraction of
cumulative statistics form an web server log file. The log lines are tokenized, then the fields
are converted in the appropriate Java type. The resulting objects are then processed, such as
extracting the network from the IP address, to compute aggregate statistics about bytes
downloaded per network, preferred pages and their hit numbers and the set of user agents
(browsers).

Lines came from a real web site Apache httpd server log, and have been loaded in the Data
Grid, in batch starting form 1,000 lines to reach 512,000 ones. The tests have ran on our de-

75

partmental cluster, using a pool ranging from 1 to 8 nodes. Each machine have two Intel
Xeon processors, and uses Slackware 64bit Linux and a Sun 64 bit JDK 6 Java Virtual Ma-
chine with a heap limit of 768 Mbyte.

After loading, the data was processed in this order:

1) each line was loaded in a table or map of the Data Grid using a progressive identifier
as key; The typical log line and a sample of the result is shown in Listing 19.;

2) using a regular expression, each line was splitted in an String array of its compon-
ents, invalid line were discharged, and resulting arrays were stored on the Data Grid;

3) each String array was copied in new array of objects of the correct class, convert-
ing the byte transmitted into an Integer, the timestamp into a Date, etc... Result-
ing arrays were also stored in the Data Grid; not convertible values were reported as
null and handled as missing values;

4) from the whole table statistics were extracted: source network of the request and
bytes downloaded per network, preferred pages and their hit numbers, and most
common user agents.

76

// Typical log lines
95.108.128.242 - - [17/Sep/2009:06:41:12 +0100] "GET
/manuali/eudora5/smtpeudora.html HTTP/1.1" 200 5101 "-"
"Yandex/1.01.001 (compatible; Win16; I)"
65.55.207.119 - - [17/Sep/2009:06:41:35 +0100] "GET / HTTP/1.1" 200
10452 "-" "msnbot/2.0b (+http://search.msn.com/msnbot.htm)"
195.210.89.37 - - [17/Sep/2009:06:41:50 +0100] "HEAD
/genuanet/mrtg/scpo-month.png HTTP/1.1" 200 - "http://www.unige.it/"
"libwww-perl/5.805"

// Statistics
Byte/network:

130.251.121=1356063104
83.224.68=5590464
...

Url/hits:
/genuanet/wm/=2368
/genuanet/mrtg/ling.html=1152
...

Browsers:
msnbot/2.0b (+http://search.msn.com/msnbot.htm)
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
...

Listing 19: Typical Apache log lines and analytic results

The tests have used the code of our KNIME custom nodes. As backend, both Coherence and
Hazelcast have been used. Each operation has been performed using as much parallelisms as
the underlay middleware could offer. Specifically, using Oracle Coherence, the operations
on lines were implemented as instances of InvocableMap.EntryProcessor and the ag-
gregate statistics were computed with instances of ParallelAwareAggregator.

Being the Data Grid configured to use one backup copy, the result of a two-nodes cluster
have not significance, since this configuration handle exactly the same data of a single node,
just adding a high communication overhead.

Coherence has been tested in various configurations. One of the most interesting feature is
the Asynchronous Store Manager backend on a NIO buffer30. In this case, the operations in-
volving data storage, as shown in Figure 33, require more time as the number of nodes
grow, but the operation with a high degree of parallelism scale better.

30 http://coherence.oracle.com/display/COH34UG/async-store-manager (last accessed 31 Jan 2010)

77

Loading phase Splitting phase

Conversion phase Aggregation phase
Figure 33: Coherence with Asynchronous backend ETL test, 128,000 log lines sample. Note the different
scale of aggregation phase.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

1 2 3 4 5 6 7 8
0

1

2

3

4

5

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

Hazelcast shows a different behaviour; as shown in Figure 34. The complete test required
about the same time independently by the number of nodes (except in the case of a single
node).

Variation in the phases are more likely due to erratic network and host conditions, as visible
in the details graphs in Figure 35.

78

Loading phase Splitting phase

Conversion phase Aggregation phase
Figure 35: Hazelcast ETL test, 64,000 log lines sample, details.

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

Figure 34: Hazelcast ETL test, using 64,000 log lines sample

1 2 3 4 5 6 7 8

loading splitting converting aggregating

This behaviour is due to the synchronous architecture of Hazelcast; both load/store opera-
tions and distributed task executions are blocking and the algorithms cannot exploit concur-
rent execution to increase performances. Obviously, in other contexts such as Web Applica-
tion clustering, this behaviour, which does not depend on the number of nodes, might be an
advantage.

4.6 Some details on the Simple Data Grid Façade framework

To test the different Data Grid implementations, we developed the Simple Data Grid
Façade (SDGF), a lightweight abstraction library which offers an uniform API to many
Data Grids. SDGF is inspired to other well known libraries with similar goals, such as
SLF4J (Simple Logging Façade for Java) [slf4j] which serves as an abstraction for various
logging frameworks.

This library is by far from having a production-grade quality, however its use provided some
suggestions. SDGF works at a low level and aims to be used as a connection provider. Up-
per level abstractions can be found by other projects, such as Cascading [casc] or Granules.

4.6.1 Instantiation pattern
The Data Grid is accessed through the it.unige.disi.sdgf.Datagrid class, which
implements a singleton, handles the lifecycle of a driver class, and mediates the access to
the backend. Drivers implement the i.u.d.s.Provider interface, exposing a Service

79

Figure 36: Class diagram of SDGF

Provider Interface (SPI) and wrapping the IMDG with a specific adaptor. A local imple-
mentation based on j.u.c.ConcurrentMap and j.c.u.ExecutorService is provided
for both testing and fallback purposes.

Since many IMDGs do not offer a suitable execution layer, in such cases the missing fea-
tures are provided integrating GridGain. Support for other computational grid implementa-
tions, such as JPPF, is possible.

The concrete Provider is specified using a system property. This design is close to many
other Java services, such as JAXP [CW02]. Although, this is not a OSGi-friendly solution,
the effort to assembly a service bundle was out of the scope of this work.

4.6.2 Task as serializable Callable
In SDGF, all tasks implement a specialized interface derived from Task. This interface has
the same role of Callable in the package j.u.c. The main method is execute(key,
value), which operates on an entry. The code must be reentran and can raise exceptions;
this design is close to Oracle Coherence and IBM WebSphere eXtreme Scale, while other
implementations, such as GemStore GemFire or GigaSpaces XAP, use a model similar to
Runnable. Unfortunately, Runnable does not help the programmer in preventing the per-
ils of concurrent programming. It presents several dangerous points that a programmer
needs to face with: returning a value require some attention to shared resources, there is not
an obvious way to deal with exceptions, start() and join() must be explicitly invoked,
etc... Moreover, the API should make transparent to the programmer the underlying distribu-
tion, but using class member as both input arguments and the returning value could lead to
some confusion, since the programmer could perceive both as local variables and not as
copy or proxy of remote shared data. Thus, this model is not supported in SDGF.

Task is not used as-is: each implementation has specific strong point to exploit, while other
usage patterns are not directly supported and required adaptors. For this reason, SDGF of-
fers several specialized subinterfaces, each one mapping to some specific feature of the
backend. Missing features are emulated.

4.6.3 Built in Completion service
Many IMDGs support a grid-aware ExecutorService, but no one could be integrated
with the standard ExecutorCompletionService. In fact, this component has hidden de-
pendencies from FutureTask, at least in Java 6, which is not serializable [Fer09]. SDGF
offers an advanced support to a grid-aware completion service.

80

4.6.4 Unsupported features and future directions
SDFG is in a preliminarily stage. Many features are not supported because they were not
need for any specific test in this work. At the moment, for example, event notification is un-
supported. Other features are not implemented by design. An example is the resource injec-
tion using annotations. This technique is applied by many frameworks, such as GigaSpaces
XAP, GridGain, and WebSphere eXtreme Scale, but it seems still unfamiliar to many Java
programmers. Moreover, it requires the dynamic discovery at runtime, which could degrade
the overall performances.

81

5 Conclusions and future work

Let us come back to our original question asking whether In-Memory Data Grid is a techno-
logy suitable for distributed Data Mining. The answer cannot be neither a definitive yes nor
a definitive no since lights and shadows has emerged.

Concerning their use as distributed storage systems, IMDGs seem fitting the architecture of
typical data mining applications. In fact, the storage model based on familiar Map is very
similar to the internal data structure used by most of recent data mining programs. Older ap-
plications could rely on an array representation of data, often inherited by the core libraries
of machine learning algorithms, which would require more work to be adapted. Instead, lib-
raries more focused on ETL operations might integrate seamlessly with this new technology.
From this viewpoint, Data Grids could offer to distributed Java applications a scalable stor-
age space, capable to handle objects as-is without impedance mismatch, with an integrated
checkpointing facility, and fault tolerance mechanisms in Desktop Grid architectures. Al-
though not standardized yet, storage APIs exposed by different products appear as similar
and, with a tiny adaptation layer, almost all implementations seem interchangeable. Some is-
sues are still open, such as the behaviour when the memory usage is near its limit, which
results in an application crash instead of providing a graceful degradation.

A promising usage scenario seems that of permanent infrastructures dedicated to continuous
analysis of streaming data coming from remote systems and having an authoritative storage,
that can be found for example in fraud detections, anomalies searching in system logs, or
spam fighting. In this use case, the absence of ACID properties is no crucial, and older
samples could be discharged, since the goal is detecting abnormal behavioural pattern ex-
ploring recent data and comparing them with existent models.

Storage features have been considered as the primary APIs of Data Grids, but this techno-
logy is proposed as a support to move computational tasks where the data are stored. Unfor-
tunately, the current status of the majority of the products resulted still immature. The tests
discussed in Chapters 3 and 4, have shown that often these products do note scale as expec-
ted or can not handle faults in cluster nodes.

Another major problem is the difficult in the translation of the MapReduce programming
model when it is ported to Java. Every implementation presents a different API, often in-

82

cluding some specific (an not-well documented) idiosyncrasy, thus making the code de-
veloped for one platform not easily portable onto another one. This introduces several costs.
A programmer has to restart from scratch to switch to a different product, and a project is
stuck to the original choice once a specific product has been adopted. This recalls the “old
days” when each RDBMS required its specific libraries to be used. Technologies such as
ODBC, JDBC, etc... have greatly simplified the life of programmers who do not have to
worry anymore about the database until the deployment time. Also database producers have
benefit from API-level interoperability, since new products will have no opportunity to
emerge if switching to them is too costly. We hope such a situation could emerge for In-
-Memory Data Grid as well.

5.1 Open source full-featured IMDG

From the experience learned during our tests, Oracle Coherence emerged as a stable and
performing solution. Unfortunately, Coherence as well as many other platforms cannot
really be used in academic studies because of their license. Commercial solutions, in fact,
offer a full support and a very stable implementation, but pose serious limitations to the us-
age in Desktop Grids within academic infrastructures because the licenses are expensive,
and usually set limits in the number of CPUs or in the network boundary. Moreover, often
they are too complex to manage without a skilled technical staff, easier to find in a stable in-
frastructure rather than in a “deploy on the fly” scenario.

It becomes evident the need of an open source solution, even with limited functionalities,
but ready and easy to use. Hazelcast is a possible candidate but at the moment it offers
strong capabilities on the storage side, while it has a poor distributed model for computa-
tion. JBoss Infinispan is a promising project, but its distributed execution capabilities are far
to be implemented. In the roadmap, their are estimated for release 5.1.0.

We hope our Simple Data Grid Façade framework, once mature for a stable release, could
help in this process, allowing the programmers to abstract from the underlying Data Grid
implementation.

83

6 Appendix: A Java Data Grids survey

In-Memory Data Grids are currently a hot topic in the business and web-oriented developer
community, but have received a little attention from the developers of scientific oriented ap-
plications. Most of the main features of Data Grids are not new and often were already
present in “distributed cache” engines. In this survey, we will consider applications that
define themselves “data grid”, or “distributed cache” or “distributed tuple space”, providing
they have a native binding for Java.

Data Grid solutions are available as both commercial products such as Oracle Coherence,
GemStone GemFire Enterprise, GigaSpaces XAP, or IBM WebSphere eXtreme Scale and
open source projects, such as JBoss Infinispan and its predecessor JbossCache, Hazelcast, or
Terracotta Ehcache.

In order to provide an overview of production-grade products suitable for Desktop Grid in-
stallations, the following implementations, in some cases only loosely identifiable as Data
Grids, have been left out for their status at the end of 2009:

– Memcached (http://memcached.org/), because it has a client/server API access

– OSCache (http://www.opensymphony.com/oscache/), since it appears not more sup-
ported with the last release date back to 2007 and the last bug fixed in the January

– SwarmCache (http://swarmcache.sourceforge.net/), XSTM (http://www.xstm.net/),
Whirlycache (https://whirlycache.dev.java.net/), and cache4j (http://cache4j.source-
forge.net/) because they are stick on beta or first released and not actively developed
for more than 3 years.

– JBoss cache, since it is being to be replaced by Infinispan

– Cacheonix because it is licensed per-processor (http://www.cacheonix.com/) and the
unavailability of publicly released documentation

– FKcache (http://jcache.sourceforge.net/) and SHOP.COM Cache System
(http://code.google.com/p/sccache/) because, although actively maintained, they are
completely new cache-oriented projects, with a very small team, currently in beta re-
lease

84

Besides the functional features enumerated in the Section 2.3, other characteristics are ob-
served:

– General description, licensing, status, architecture and base libraries

– Eviction policy, multilevel cache, fail-over support

– Configuration mechanisms

– Networking features

– Querying and indexing capabilities

Features not reported here could be available in additional plugins or could be present but
officially undocumented or unsupported.

These results is provided “as is” without warranty of any kind, either express or implied, in-
cluding, but not limited to, the implied warranties of non-infringement, merchantability or
fitness for a particular purpose.

6.1.1 Oracle Coherence
http://www.oracle.com/technology/products/coherence/

Latest release 3.5.3, January 2010

Oracle defines Coherence “A JCache-compliant in-memory distributed data grid solution”.
Oracle acquired Tangosol Inc. in March 2007. Coherence was the top product of Tangosol
and is now part of the commercial offer of Oracle.

Coherence is commercially available in three edition: Standard, Enterprise and Grid. Grid
Edition is also available for free download for testing and developing prototypes31.

Every edition is distributed as a single JAR file of approximatively 4.5 Mbyte.

6.1.2 IBM WebSphere eXtreme Scale
http://www.ibm.com/software/webservers/appserv/extremescale/

Release 7.0.0, December 2009.

IBM claims “WebSphere eXtreme Scale is an in-memory grid”.

Commercial license based on Processor Value Units (PVU). A free trial version is available,
with the limitation of 8 hours of continual use. After that, the instance must be restarted.

Previously named ObjectGrid, until 2008, it is an ORB based product.

31 Read the OTN License carefully before download

85

6.1.3 JBoss Infinispan
http://www.jboss.org/infinispan

Latest release 4.0.0 Release Candidate 4, 2 February 2010 (for commercial reasons, the first
release is directly numbered as 4.x, to not overlap with previous JBoss Cache releases).

JBoss defines Infinispan as “an extremely scalable, highly available data grid platform -
100% open source, and written in Java”.

JBoss, a subsidiary of Redhat , Inc., developed a popular clustered caching library named
JBoss Cache since 2003. In April 2009, JBoss announced JBoss Cache will be discontinued
and it introduced a new product, named Infinispan. It requires Java 6.

Infinispan is released under GNU LGPL license.

6.1.4 Hazelcast
http://www.hazelcast.com/

Latest release 1.8, 15 December 2009

The web site announces “Hazelcast Provides In-Memory Data Grid” and “Hibernate
Second Level Cache”. It consists of one only jar file, sizing 750 kbyte, without any external
dependencies.

Hazelcast is released under Apache open source license.

6.1.5 Ehcache
http://ehcache.org/

Latest release 1.7.2, 11 January 2010

In origin, Ehcache was “an open source, standards-based cache” only. Ehcache has recently
merger with Terracotta in August 2009, hence there is an integration plan of the two
products which generate a version more similar to a In-Memory cluster solution than a
simple cache.

In the current release, Ehcache has few dependencies on external library and a modular ar-
chitecture. Ehcache is released under Apache Software License Version 2.0.

6.1.6 Gigaspace XAP
http://www.gigaspaces.com/xap

Latest release 7.0.2, Decempber 2009.

86

GigaSpaces says “XAP In-Memory Data Grid delivers an in-memory cache for fast data ac-
cess, and an advanced distributed cache for extreme performance and scalability.” XAP is
one of the few products exposing the JavaSpaces API.

GigaSpaces XAP is offered in a variety of license models, including perpetual, annual sub-
scription, and pay per use. Free developer and academic editions available.

6.1.7 GemStone GemFire Enterprise
http://www.gemstone.com/products/gemfire

Latest release 6.0.1, April 2009.

GemFire Enterprise is defined as an “in-memory distributed data management platform”.

Production licenses are usually node-locked and limited to a fixed number of CPUs, but oth-
er licensing models can be negotiated. Evaluation expiring evaluation licenses available
upon request. A development licenses for development and testing only.

6.1.8 Jakarta JCS
http://jakarta.apache.org/jcs/

Latest formal release 1.3, June 2007; snapshot 1.3.3.2, June 2009.

Jakarta JCS (Java Caching System) is “a distributed caching system”. Although the term
“Data Grid” in not used to describe the product, it share many features with IMDG. JCS has
a dependency from Doug Lea’s concurrent package [Lea04].

JCS is released under Apache Software License Version 2.0.

87

6.2 Data storage

API: from the programmers viewpoint, the API are the most visible point. Main API style
are illustrated in Section 2.3, as java.util.Map, JSR-107 JCache, and
JavaSpace/TupleSpace. In addition, an implementation might support the
j.u.c.ConcurrentMap API, an extension of Map which add the atomic non-locking oper-
ations based on the Compare-and-swap (CAS) technique putIfAbsent(key, value),
remove(key, value) , replace(key, value) and replace(key, oldValue,
newValue). This interface avoid using locks to execute common procedure such as check-
ing the presence of a key value before to save a new entry.

Entry container name: almost all the products use the term “entry” to identify the key-ob-
ject pair as elementary storable element, but there is not accordance on the name to assign to
the elementary container of entries, which has the same conceptual role of table in relational
databases.

Serialization: in order to be transmitted over the wires, Java object must be serialized.
Many Data Grid implementations also store in the partition a serialized version of the object
instead of an handle to its representation in the heap memory. Java includes a standard seri-
alization mechanism, but it is know as inefficient [vNMH+02], thus many implementation
uses a custom serialization format. In this case, programmers can advantages of this imple-
menting externalization method as preferred by the implementation.

Pluggable serialization: the serialization mechanisms can be customized using plugin.

Passivation: the capability of deactivate an entry by moving it from memory to backend
storage when certain condition are meet (usually analogues to the eviction policy).

Multimap: a MultiMap is a specialized map where a key can be associate with multiple val-
ues. The benefit of specialized implementation of MultiMap instead of using something
such as Map<K, List> in Data Grids is tied to serialization: adding or removing an ele-
ment form a List stored as an entry of a Map requires the whole list being deserialized then
serialized and stored again after the update. For long list, this process is very expansive.
MultiMap avoid this problem associating whit the key a list of the serialized version of ele-
ments.

Query and indexing: when data partitions are spreads across the cluster, iterate over the
entries and look for ones meeting some criteria is possible but very inefficient, especially in
those implementation which not offers parallel distributed execution. Many Data Grids im-

88

plement some support for queries. SQL-like, XPath, LDAP, etc... No current products full
supports SQL, specifically multi-table operations are not available.

Unique id generator: a function to generate an identifier unique within the whole cluster.

O
ra

cl
e

C
oh

er
en

ce

IB
M

 e
X

tre
m

e
Sc

al
e

JB
os

s I
nf

in
is

pa
n

H
az

el
ca

st

Eh
ca

ch
e

G
ig

as
pa

ce
 X

A
P

G
em

St
on

e
G

em
Fi

re

Ja
ka

rta
 JC

S

API style
Map 1) Concurre

ntMap

Concurre
ntMap

2)

3)
JSR107

Map
Jini

JDBC
Map custom

Entry container name cache,
named
cache

cache map cache space
data

region
4)

cache

Serialization River custom Custom
5) custom

Pluggable
serialization X X

Passivation X

Multimap X 6)

Query and indexing filters OGQL,
4)

SQL-like,
JPA

SQL-like,
XPath OQL Index,

pattern

Unique id generator X

Notes:
1) WebSphere eXtreme Scale exposes two API, ObjectMap and EntityManager,

similar to Map but not compatible with it.
2) Hazelcast also implements the distributed version of other Java standard data struc-

tures, specifically java.util.Set, java.util.List, java.util.Queue, and
their concurrent versions.

3) Implements a proprietary API in which entries (Element) must be create explicitly.
4) GemFire documentation define as “cache” the whole entry set handled by a node,

which can include several regions; regions can be nested, which produces similar ef-
fect of MultiMaps.

5) XAP can control the serialization mode using different mechanisms.
6) WebSphere eXtreme Scale supports the Object Grid Query Language (OGQL)

which is similar to JPQL.

89

6.3 Networking

Multicast discovery: in most of implementation, IP multicast is the default protocol to the
discovery process. During discovery, nodes locate each other and negotiate to join the dis-
tributed system. The membership and discovery facility keeps also track of the membership
list and makes the members aware of the identities of the other members in the distributed
system.

Client/server: in this configuration, clients and servers are organized into separate distrib-
uted system, usually communicating through network. The cluster could also support non-
Java clients or standard protocols.

P2P: in this context, a In-Memory Data Grid provide a Peer-to-Peer (P2P) architecture if the
client and the server might run in the same JVM exchanging data as intra-JVM object. From
the programmers perspective, this means that an application moved on another host without
a network connection work as-is.

Super peer: or “super client”, or “lite client” model, where client application is cluster
member with no storage. The client may employ an near cache.

Hub: in case of complex networks, in which not all the nodes are mutually reachable, a
node can act as store&forward gateway to another remote node over segmented LAN or
WAN.

JGroups: it is a toolkit for reliable multicast communication over different protocol stack,
not only IP Multicast. It has NAT-traversal capability, joining and leaving handling, notifica-
tion about joined/left/crashed members, point-to-multipoint and point-to-point messaging. It
is used as base library by many projects. Thus all that projects have similar configurations
syntax and support similar capabilities. Development of JGroups has been started by Bela
Ban during his post-doc at Computer Science Department at Cornell University, in 1999.
More information on http://www.jgroups.org/ (last accessed 07 Feb 2010)

JMS: a Java Message Service (JMS) [jms], usually in a Publish/Subscribe configuration,
can be used to pushes changes between nodes or from nodes to client near cache.

90

O
ra

cl
e

C
oh

er
en

ce

IB
M

 e
X

tre
m

e
Sc

al
e

JB
os

s I
nf

in
is

pa
n

H
az

el
ca

st

Eh
ca

ch
e

G
ig

as
pa

ce
 X

A
P

G
em

St
on

e
G

em
Fi

re

Ja
ka

rta
 JC

S

Multicast discovery X 1) X X X X

Client/Server C++
.NET

native
REST REST SOAP

REST
C++
.NET

C++
.NET RMI

P2P X 2) X X X X

Super peer 3) X X X

Hub X X

JGroups X 4) 5) X

JMS X 4) 6)

Notes:
1) Based on JGroups.
2) eXtreme Scale can be configured in a P2P topology regarding the nodes partition

stores, but still requires a catalog server.
3) Partitioned configuration can disable local storage, resulting in a client-only node.
4) Optional.
5) Also Terracotta clustering.
6) Including server features.

91

6.4 Data distribution

Distributed cache and In-Memory Data Grids could adopt several topologies to spread the
data across the nodes. Replication has been studied extensively and different distributed dis-
tribution strategies have been proposed in the literature:

Data replication: all data are fully replicated to all cluster members. for availability (and
performance)

Data partitioning: the full key-space is divided in a fixed number of virtual blocks (or seg-
ments or shards). Then each block is assigned to to a node (owner of the block); in case of
fault tolerant partitioning, one or more backup (or replica) copies of the block are assigned
to other nodes. Each entry is store in the node owning the corresponding key plus in all the
nodes hosting the backups. A common assignment strategy is set the block count to a prime
number, then having a coordinator or catalog node (usually the oldest) which assign the
ownership of each block and backups to the nodes. In pure Java implementations, entries
belong to the block resulting form a computation such as key.hashCode() %
blockCount or similar.

Near caching: (or Local, or L1): a local view proxy maintains a subset of the partitions
data, allowing the client to read distributed data without any remote operations.

Memory Management and Eviction Policy: when memory is about to exhausting, the
Data Grid could discharge (evict) some entries to make room for newer ones. Common
policies are perpetual (never discharge), well known FIFO, LRU (Least Recently Used),
LFU (Least Frequently Used), …. Usually eviction policy can be configured per-region, in
some case, also per-entry. Some implementations allow to plug-in a custom provider for the
eviction policy. Products which not implement a perpetual eviction strategy are not included
in this survey, since are not suitable as Data Grid.

Moreover, also the mechanism to propagate changes in data could be:

– Data copy: new elements placed in a cache and element removals are replicated are
replicated to others nodes

– Data destroy: an entry is removed completely from the cache with a distributed syn-
chronous the operation

– Data invalidation: the entry value is set to null. Being entry is invalid, a subsequent
get() causes the cache to retrieve the value from the original source

– Write-Through and Write-Behind

92

Batch Write: especially in conjunction with a persistent backend, the ability of bundling
into a single operation many different updates. In some implementations, the changes might
also coalesced into a single backend operation if occurred to the same piece data. E.g. in
case two successive update of the same entry happened before the Write-Behind delay, only
the latest could be apply to the backend storage.

Asynchronous replication: to guarantee the consistency among distributed cache, all the
products support synchronous operations. These are a serious bottleneck, since all are sup-
ported between partitions of the distributed cache (primarily used to synchronize partitions
with their backup copies on other machines).

Persistent backend storage: allows to load and store the map entries from and to a persist-
ent storage such as relational database. When an entry is retrieve via its key and it does not
exist in-memory, the engine will try to load the entry from the storage. Similarly, when an
entry is stored on the cache, the engine will also store it into the backed. Storing can be per-
form synchronously (write-through) with no-delay or asynchronously (write-behind) after a
configurable delay.

Cache initialization: or “warm startup” is the capability of read the initial state from an ex-
ternal source. This is a distinct feature from persistent backend, since the data are only read,
and not saved on the backend, and all the data are read, not only the entries occurring in
cache miss. This feature speed up cache initialization because usually skip any lock control.

93

Figure 37: Possible data distribution topologies in Data Grid

JVM1

Near cache

“myCache” Partition

Block 1

Block 2
Backup

JVM2

“myCache” Partition

Block 1
Backup
Block 3

JVM1

Near cache

“myCache” Partition

Block 2

Block 3
Backup

“herCache” Replica “herCache” Replica “herCache” Replica

client client

O
ra

cl
e

C
oh

er
en

ce

IB
M

 e
X

tre
m

e
Sc

al
e

JB
os

s I
nf

in
is

pa
n

H
az

el
ca

st

Eh
ca

ch
e

G
ig

as
pa

ce
 X

A
P

G
em

St
on

e
G

em
Fi

re

Ja
ka

rta
 JC

S

Data replication X X 1) X X X X

Data partitioning X X X X X

Near cache X X X X X X X

Eviction policies
LRU
LFU

TTL
LRU
LFU

memory

LRU
LFU
FIFO

LRU
FIFO

All-In-
Cache

memory

LRU
Heap
limit
TTL

LRU

Per-entry policies X X

Pluggable policy X X X

Write-Through X X X

Write-Behind X 2) X

Batch Write X 3) X X

Asynchronous
operations 4) X X X X

Persistent backend Disk
Database many plugin Disk Hibernate disk

Cache initialization X X X JDBC
plugin

Notes:
1) The same result can be obtained setting the backup replica number to

Integer.MAX_VALUE
2) Only writing on the persistent backend
3) Coalesed changes also supported
4) As backend for distributed partitions.

94

6.5 Transactions and database integration

Distributed locks: are usually acquired on a key. Usual algorithms are pessimistic, optim-
istic and Multiversion concurrency control (MVCC) locking. Cluster wide (eagerly) must be
supported, in some cases also supported local-only locking associated to cluster wide trans-
actions.

Time-bound locks: sometimes associated to deadlock detection.

Transactions isolation: advanced implementation offers other transaction isolation levels
besides the serializable one provided by locks. Some Data Grid provides repeatable read, in
which keyset and entryset cannot change once selected from the map, or read committed, in
which data retrieved by a selection may be modified by some other transaction and became
visible when it commits.

Transaction manager: support to cooperate in distributed transaction manager

Trigger: allows to validate, reject or modify mutating operations against a map.

Cache plugins: many data access frameworks include the support for a pluggable second
cache manager to be used below the persistence layer and completely transparent to the ap-
plication. The Data Grid could be include plugins for frameworks such as Hibernate and
JPA.

95

O
ra

cl
e

C
oh

er
en

ce

IB
M

 e
X

tre
m

e
Sc

al
e

JB
os

s I
nf

in
is

pa
n

H
az

el
ca

st

Eh
ca

ch
e

G
ig

as
pa

ce
 X

A
P

G
em

St
on

e
G

em
Fi

re

Ja
ka

rta
 JC

S

Distributed locks X X X

Time-bound locks X X X

Transactions isolation Repeatabl
e-read
Read

committe
d

Repeatabl
e-read
Read

committe
d

Read
committe

d
1) Repeatabl

e-read

Transaction manager JTA
JCA
XA

J2EE JTA J2EE
JCA JTA JTA

Spring
J2EE
JTA

Triggers X 2) 3)

Cache plugin Hibernate
JPA Hibernate Hibernate Hibernate

Notes:
1) Provided by Spring Framework.
2) Interceptors.
3) Used in authorization.

96

6.6 Data affinity, data routing and fault recovery

Data affinity: IMDG providing data affinity, or co-location, could ensure that entries re-
lated in the same group is contained within the same data partition. For example, in a mas-
ter-detail pattern such as an “Order-Item”, the entire collection of Item objects belonging to
an Order may be co-located in the same data partition of the Order object.

Data affinity ensures that all relevant data is managed on a single primary cache node. In
some implementations, affinity may span multiple partitions managed by the same host.
Usually, data affinity is specified in terms of keys, not values.

Main benefit of data affinity are:

– only a single node is required to manage queries and transactions against a set of re-
lated items;

– all concurrency operations can be managed locally, avoiding the need for clustered
synchronization.

Zones: allows for rules-based block allocation, enabling optimized topology for Grids span-
ning across physical locations. As an example, nodes in the same zone could have a syn-
chronous replication and nodes in different zoned could be asynchronously replicated.

Fault recovery: mechanisms for automatically recovery from cluster errors.

O
ra

cl
e

C
oh

er
en

ce

IB
M

 e
X

tre
m

e
Sc

al
e

JB
os

s I
nf

in
is

pa
n

H
az

el
ca

st

Eh
ca

ch
e

G
ig

as
pa

ce
 X

A
P

G
em

St
on

e
G

em
Fi

re

Ja
ka

rta
 JC

S

Data affinity X X 1)

Zones X 2) X

Fault recovery X X X

Notes:
1) Data regions (maps) can themselves be nested and contain child data regions.
2) In compatibility mode with JBoss 3, will be discontinued.

97

6.7 Event and messaging

Cluster events: listeners for membership events are notified when members added or leave
the cluster

Partition events: listeners for partition events are notified when primary partitions, replicas,
or block, is created, moved or disposed.

Map/cache events: listeners for map/cache events are notified when a storage has finished
pre-loading, or an entry is stored or evicted.

Entry events: listeners for entry events are notified when a specific entry is modified.

Local entries events: notifications are provided for events occurring in the local partition
only; some implementations can emulate this feature using a cluster-wide listeners, which
receive all events, and a filter to ignore not local ones.

Continuous query: with the continuous query facility, the clients application registers a
listener associated to a query expressions. Then, events are sent to client listeners any time a
change in the data cluster satisfies the query.

O
ra

cl
e

C
oh

er
en

ce

IB
M

 e
X

tre
m

e
Sc

al
e

JB
os

s I
nf

in
is

pa
n

H
az

el
ca

st

Eh
ca

ch
e

G
ig

as
pa

ce
 X

A
P

G
em

St
on

e
G

em
Fi

re

Ja
ka

rta
 JC

S
Cluster events X X X

Partition events X X

Map/cache events X X X X X X X X

Entry events X X

Local entry events X

Continuous query X X X

98

6.8 Distributed and data-aware execution

Task name: there is not accordance on the name of the elementary execution unit. Common
choices are function, job, or task. The latter two are cause of confusion, since system provid-
ing a way to split the work unit into smaller parts, also named them jobs or tasks. As ex-
ample, for GridGain “Grid task gets split into jobs when GridTask.map(List,
Object) method is called” 32, while JPPFJob class in JPPF “represent a JPPF submission
and hold all the required elements: tasks, execution policy, task listener, data provider”33. In
this dissertation, a basic indivisible work unit is identify as task, and an collection of correl-
ate tasks is called job. Sometimes also the term “agent” is used, but normally the agent is
the service component running in daemon mode on remote host which handle the incoming
requests.

Distributed executor: distributed executors automatically span a single task submission
among all or specified nodes.

ExecutorService: the system exposes an API compatible with the interface
java.util.concurrent.ExecutorService,

Task cancellation: the remote task can be cancelled.

Execution callbacks: even in products where the task execution is asynchronous in nature,
it is possible that a call to get a result is a blocking (either indefinitely or for a specific
timeout). Products supporting callbacks adds the ability to register an listener which will be
executed once a result arrives.

Targeted execution: the ability of execute an agent (or task) against an entry in any map of
data, sending it to the Grid node owning the entry and then executing it locally at that node.
In many cases, it is much more efficient to move the serialized form of the agent (usually a
few hundred bytes) than moving the data to the execution host, handling distributed concur-
rency control, coherency and data updates. The agent can be routed according to the key of
the entry, or according to a query result, or to a specific node.

Parallel execution: if the agent is targeted to multiple key, owned by different nodes, some
IMDGs allow the parallel execution of the task on each node. To be parallel, it is required
the execution could be truly asynchronous: some framework, such as Hazelcast, present an

32 http://www.gridgainsystems.com/wiki/display/GG15UG/Grid+Tasks+And+Grid+Jobs (last access 4 Aug
2009)

33 http://www.jppf.org/api/org/jppf/client/JPPFJob.html (last access 4 Aug 2009)

99

asynchronous interface to the programmer, based on java.util.concurrent.Future,
but internally handle the task synchronously, not exploiting parallelism.

MapReduce: some IMDG includes a framework or template classes for the MapReduce
programming model.

MapReduce generics: Map and Reduce classes or parameters are defined using Java gener-
ics.

Fault tolerance: when a task is invoked from a client and the original request fails due to a
server-side issue (the node owning the target key goes down, or a network partition), the cli-
ent or another peer automatically retries the function execution. Since the task execution
service is usually not transactional, this can result in multiple execution or partially executed
results.

Integration with computational grids: some products offers out-of-the-box can integrate
with computational oriented grids, such as GridGain or JPPF. Integration support could be
offered by the computational grid.

100

O
ra

cl
e

C
oh

er
en

ce

IB
M

 e
X

tre
m

e
Sc

al
e

JB
os

s I
nf

in
is

pa
n

H
az

el
ca

st

Eh
ca

ch
e

G
ig

as
pa

ce
 X

A
P

G
em

St
on

e
G

em
Fi

re

Ja
ka

rta
 JC

S

Task name Agent,
Entry

Processor
agent Callable

Task

Processin
g Unit,

task
function

Distributed executor X X X X

ExecutorService X X

Task cancellation X X X

Execution callbacks X X X

Targeted execution Key
based,
node

based,
query
based

Query
based

Key
based,
node
based

Key
based

Map
based
Node
based
Query
based

Parallel execution 1) X X X

MapReduce X X X X

MapReduce generics X

Fault tolerance X X X

Computation grid
integration GridGain 2) GridGain

JPPF

Notes:
1) Parallel execution is available with Enterprise and Grid editions only
2) GridGain has an adapter for JBoss cache

101

6.9 Security

Authenticated join to the cluster: a node must present a valid token to join the cluster;
mostly used in P2P architectures

Autenticated access and user management: a client application must present a valid token
to access and operate in the Data Grid; mostly used in client/server architecture.

Authorization level or roles: client can be authorized to specific operations; as example,
clients can be authorized or not to perform insert, read, update, invalidate, or delete opera-
tions on cache or to perform queries, etc... Administration authorization are a different topic.
Many P2P implementation, once allowed the access using a token, have no limitation on the
action the client can perform. Authorization is often delegated to a standard access manager,
such as Java Authentication and Authorization Services (JAAS).

Traffic encryption: supported protocols.

O
ra

cl
e

C
oh

er
en

ce

IB
M

 e
X

tre
m

e
Sc

al
e

JB
os

s I
nf

in
is

pa
n

H
az

el
ca

st

Eh
ca

ch
e

G
ig

as
pa

ce
 X

A
P

G
em

St
on

e
G

em
Fi

re

Ja
ka

rta
 JC

S

Authenticated join
X shared

keys password X

shared
keys
SSL

LDAP

Authentication
X

Password
SSL

certificate
Kerberos

X

Password
SSL

certificate
LDAP

Authorization
JAAS

JAAS
Tivoli
Access

Manager

X X

Traffic encryption shared
keys

certificate
TLS/SSL SSL SSL SSL

102

6.10 Management

Demo client: the toolkit includes a demo client for testing purpose.

Admin console: description of the management console.

JMX: supports Java Management Extensions (JMX) Agent.

O
ra

cl
e

C
oh

er
en

ce

IB
M

 e
X

tre
m

e
Sc

al
e

JB
os

s I
nf

in
is

pa
n

H
az

el
ca

st

Eh
ca

ch
e

G
ig

as
pa

ce
 X

A
P

G
em

St
on

e
G

em
Fi

re

Ja
ka

rta
 JC

S

Demo client CLI GUI CLI

Admin console JMX web JOPR web CLI
GUI

CLI
API

JMX X X 1) X X X

Notes:
1) Partial support

103

7 Appendix: Amendment One to the OTN License

104

8 References

[ABCD+08] Brian Amedro, Vladimir Bodnartchouk, Denis Caromel, Christian Delbe, Fabrice Huet,
and Guillermo L. Taboada. Current State of Java for HPC, INRIA Technical Report RT-0353,
2008. http://hal.inria.fr/inria-00312039/en (last access 23 July 2009)

[ABJ05] Gabriel Antoniu, Luc Bougé, and Mathieu Jan. “JuxMem: An Adaptive Supportive
Platform for Data Sharing on the Grid”, in Scalable Computing: Practice and Experience, vol. 6,
pp.45-55, Sep 2005. See also http://juxmem.gforge.inria.fr/ (last accessed 26 Nov 2009)

[ABN09] Holger Arndt, Markus Bundschus, and Andreas Nägele. “Towards a Next-Generation
Matrix Library for Java”, 33rd Annual IEEE International Computer Software and Applications
Conference (COMPSAC) 2009.

[AC04] Cosimo Anglano and Massimo Canonico. "A Comparative Evaluation of High-Performance
File Transfer Systems for Data-intensive Grid Applications", 13th IEEE International Workshop
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE-2004),
Emerging Technologies for Next-Generation Grid Track (ETNGRID), Modena, Jul 2004.

[ACGB+08] Cosimo Anglano, Massimo Canonico, Marco Guazzone, Marco Botta, Sergio Rabellino,
Simone Arena, Guglielmo Girardi. "Peer-to-Peer Desktop Grids in the Real World: The
ShareGrid Project", Cluster Computing and the Grid CCGRID '08, 2008.

[ACKL+02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
“SETI@home: An Experiment in Public-Resource Computing”, Communications of the ACM,
vol. 45, n. 11, Nov 2002. Available on line http://setiathome.berkeley.edu/sah_papers/cacm.php
(last accessed 18 Dec 2009)

[AM02] Christophe Ambroise and Geoffrey McLachlan, "Selection bias in gene extraction on the
basis of microarray gene-expression data", Proceedings of the National Academy of Sciences,
vol. 99, n. 10, p. 6562, 2002.

[And04] David P. Anderson. “BOINC: A System for Public-Resource Computing and Storage”, in
Proceedings of 5th IEEE/ACM International Workshop on Grid Computing, Nov 2004.

[app] Accelrys Pipeline Pilot, http://accelrys.com/products/scitegic/ (last accessed 11 Jan 2010)

[Arn09] Holger Arndt. "The Java Data Mining Package – A Data Processing Library for Java", 33rd

Annual IEEE International Computer Software and Applications Conference (COMPSAC),
2009.

[BBBC+06] Rosa M. Badia, Olav Beckmann, Marian Bubak, Denis Caromel, Vladimir Getov,
Ludovic Henrio, Stavros Isaiadis, Vladimir Lazarov, Maciek Malawski, Sofia Panagiotidi, Nikos
Parlavantzas, and Jeyarajan Thiyagalingam. Lightweight Grid Platform: Design Methodology,
CoreGRID Institute on Systems, Tools, and Environments, technical report TR-0020, Jan 2006.

[BCDG+08] Michael R. Berthold , Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter,
Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, and Bernd Wiswedel. "KNIME: The

105

Konstanz Information Miner", Data Analysis, Machine Learning and Applications, pp. 319-326,
Springer Berlin Heidelberg, 2008. see also KNIME - Konstanz Information Miner.
http://www.knime.org/ (last access 6 Jan 2010)

[BDLK] Kanishka Bhaduri, Kamalika Das, Kun Liu, and Hillol Kargupta. The Distributed Data
Mining Bibliography, http://www.cs.umbc.edu/~hillol/DDMBIB/ (last access 31 Jan 2010)

[BF09] Annalisa Barla and Marco Ferrante. “Deployment of a Regularized Feature Selection
Framework on an Overlay Desktop Grid”, International Workshop on High Performance
Computational Systems Biology HiBi '09, Trento (I), pp. 103-104, 2009.

[BFSV09] Curzio Basso, Marco Ferrante, Matteo Santoro, and Alessandro Verri. “Automatic
annotation of 3D multi-modal MR images on a Desktop Grid”, in Proceedings of the MICCAI-
Grid 2009 Workshop, London (UK), 2009. Available online
http://www.i3s.unice.fr/~johan/MICCAI-Grid09/MICCAI-Grid_2009_Proceedings_FINAL.pdf
(last accessed 7 Nov 2009)

[BHKM+04] Rosa Badia, Robert Hood, Thilo Kielmann, Christine Morin, Stephen Pickles, Massimo
Sgaravatto, Paul Stodghill, Nathan Stone, Heon Y. Yeom. “Use-Cases for Grid Checkpoint and
Recovery”, Global Grid Forum Request for Comments GWD-XXX-00x-7, Nov 2004.

[Bre00] Eric Brewer, Towards Robust Distributed Systems, keynote at ACM Symposium on
Principles of Distributed Computing PODC, 2000. Available online
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf (last accessed 15 Aug
2009)

[Bul01] Mark Bull, Lorna Smith, Lindsay Pottage, and Robin Freeman. “Benchmarking Java against
C and Fortran for Scientific Applications”, Proceedings of the 2001 joint ACM-ISCOPE
conference on Java Grande, Palo Alto, California, pp. 97-105, 2001

[cacm] Special issue “End-user development”, Communications of the ACM, vol. 47, issue 9,
September 2004. Available under subscription http://cacm.acm.org/magazines/2004/9 (last
accessed 27 Oct 2009)

[Cap07] Franck Cappello, “3rd generation desktop grids”, in Proceedings of the 1st XtremWeb Users
Group Workshop (XW’07), Hammamet, Tunisia, Feb 2007.

[casc] Cascading, http://www.cascading.org/ (last accessed 10 Feb 2010)

[CBKB+08] Sungjin Choi, Rajkumar Buyya, Hongsoo Kim, Eunjoung Byun, Maengsoon Baik,
Joonmin Gil, and Chanyeol Park. A Taxonomy of Desktop Grids and its Mapping to State-of-the-
Art Systems, Technical Report GRIDS-TR-2008-3, Grid Computing and Distributed Systems
Laboratory, The University of Melbourne, Australia, Feb. 20, 2008.

[CBSA+03] Walfredo Cirne, Francisco Brasileiro, Jacques Sauvé, Nazareno Andrade, Daniel
Paranhos, Elizeu Santos-Neto e Raissa Medeiros. “Grid Computing for Bag of Tasks
Applications”, Third IFIP Conference on E-Commerce, E-Business and E-Goverment, São
Paulo, Sep 2003.

[CFKS+01] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven Tuecke. "The
Data Grid: Towards an Architecture for the Distributed Management and Analysis of Large
Scientic Datasets", Journal of Network and Computer Applications, v. 23, pp. 187–200, 2001.

[CG89] Nicholas Carriero and David Gelernter. How to write parallel programs: a guide to the
perplexed, ACM Computing Surveys, vol. 21, issue 3, pp. 323-357, Sep 1989.

[CKLY+06] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y.

106

Ng, and Kunle Olukotun. “Map-Reduce for Machine Learning on Multicore”, in Proceedings of
NIPS 19, 2006.

[CKV98] Denis Caromel, Wilfried Klauser, and Julien Vayssiere. “Towards Seamless Computing
and Metacomputing in Java”, in Concurrency: Practice and Experience (editor Geoffrey C.
Fox), vol. 10, pp.1043-1061, John Wiley & Sons, Ltd., Sep.-Nov. 1998.

[CLHK+06] Jeffrey C. Carver, Lorin M. Hochstein, Richard P. Kendall, Taiga Nakamura, Marvin V.
Zelkowitz, Victor R. Basili, and Douglass E. Post. “Observations about Software Development
for High End Computing”, CTWatch Quarterly, vol. 2, n. 4A, Nov 2006.
http://www.ctwatch.org/quarterly/articles/2006/11/observations-about-software-development-
for-high-end-computing/ (last accessed 26 Oct 2009)

[CM02] Sebastian Celis and David R. Musicant. Weka-Parallel: Machine Learning in Parallel,
Carleton College, Technical Report, 2002.

[Coh09] Uri Cohen. Inside GigaSpaces XAP, technical paper, 2009. See also
http://www.gigaspaces.com/wiki/display/XAP7/7.0+Documentation+Home (last accessed 9 Nov
2009)

[cohe] Oracle Coherence. http://www.oracle.com/technology/products/coherence/index.html (last
accessed 12 Feb 2010)

[CSGA07] Kelvin Cardona, Jimmy Secretan, Michael Georgiopoulos, and Georgios
Anagnostopoulos. A Grid Based System for Data Mining Using MapReduce, Technical Report
TR-2007-02, The AMALTHEA REU Program, 2007. Available on line http://www.amalthea-
reu.org/pubs/amalthea_tr_2007_02.pdf (last accessed 04 Jan 2010)

[CW02] Robert C. Seacord and Lutz Wrage. Replaceable Components and the Service Provider
Interface, Technical Note CMU/SEI-2002-TN-009, Jul 2002.

[Deu94] Peter Deutsch. The Eight Fallacies of Distributed Computing, 1994, see also
http://blogs.sun.com/jag/resource/Fallacies.html (last accessed 5 Aug 2009)

[DG04] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on Large
Clusters”, OSDI'04: Sixth Symposium on Operating System Design and Implementation, San
Francisco, Dec 2004.

[DMDV+08] Augusto Destrero, Sofia Mosci, Christine De Mol, Alessandro Verri, and Francesca
Odone. "Feature selection for high dimensional data", Computational Management Science,
2008. Available on line ftp://ftp.disi.unige.it/person/MosciS/PAPERS/CompManSc.pdf

[DMTV09] Christine De Mol, Sofia Mosci, Magali Traskine, and Alessandro Verri. "A regularized
method for selecting nested groups of relevant genes from microarray data", Journal of
Computational Biology, vol. 16, pp. 1-15, Apr 2009.

[DvNH06] Niels Drost, Rob V. van Nieuwpoort, and Henri E. Bal. “Simple locality-aware co-
allocation in peer-to-peer supercomputing”, in GP2P: Sixth International Workshop on Global
and Peer-2-Peer Computing, Singapore, May 2006.

[DWS08] David DeWitt; Michael Stonebraker. "MapReduce: A major step backwards" blogpost,
Database Column, http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-
step-backwards/ (last accessed 8 Feb 2010)

[DZLC04] Janez Demšar, Blaž Zupan, Gregor Leban, and Tomaz Curk. "Orange: From
Experimental Machine Learning to Interactive Data Mining", in Proceedings of the 8th European

107

Conference on Principles and Practice of Knowledge Discovery in Databases PKDD 2004, Pisa,
Italy, Sep 2004. See also http://www.ailab.si/orange/ (last accessed 21 Jan 2010)

[Eat02] John W. Eaton. GNU Octave Manual, Network Theory Limited publisher, 2002. See also
http://www.octave.org/ (last access 8 Feb 2010)

[eclp] The Eclipse Project. http://www.eclipse.org/ (last access 5 Oct 2009)

[ehc] Terracotta Ehcache. http://ehcache.org/ (last accessed 26 Nov 2009)

[Fer00] Marco Ferrante. “Accedere ai servizi di directory con LDAP”, Computer
Programming, n. 93, pp. 78-81, Jul 2000.

[Fer08] Marco Ferrante. “JXTA: a dead end way to Grid?”, JM4Grid 2008, Genoa, 21 Feb 2008.

[Fer09] Marco Ferrante. “Grid semplificato con Java”, Computer Programming, n. 17, vol. 4, pp.
48-55, Oct 2009.

[FL09]Marco Ferrante and Laura Lo Gerfo. Annotazione automatica di immagini con sistemi
desktop grid, DISI Technical Report DISI-TR-09-04, Sep 2009.

[Flo99] Martin Fowler. Refactoring. Improving the Design of Existing Code, Addison-Wesley, 1999.

[Fos05] Ian Foster. “Globus Toolkit Version 4: Software for Service-Oriented Systems”, IFIP
International Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779, pp
2-13, 2005.

[GCCC85] David Gelernter, Nicholas Carriero, Sarat Chandran e Silva Chang. “Parallel
Programming in Linda”, in Proceedings of the IEEE International Conference on Parallel
Processing, Aug 1985.

[gem05] GemStone Systems, Inc. GemFire Enterprise Data Fabric Facilitates Agile Risk
Management at a Financial Service Provider, Sep 2005

[jsdl] Global Grid Forum. Job Submission Description Language (JSDL) Specification, Version 1.0,
Nov 2006. Available on line http://www.gridforum.org/documents/GFD.56.pdf (last accessed 26
Nov 2008)

[ggp] GridGain platform. http://www.gridgain.com/ (last accessed 9 Nov 2009)

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1994.

[GL02] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of Consistent
Available Partition-Tolerant Web Services”, ACM SIGACT News, vol. 33, Jun 2002.

[Goe05] Brian Goetz. “Java theory and practice: Urban performance legends, revisited”, IBM
developerWorks, Sep 2005, http://www.ibm.com/developerworks/java/library/j-jtp09275.html
(last accessed 1 Dec 2009)

[Goe06] Brian Goetz. Java Concurrency in Practice. Addison-Wesley, 2006.

[gsg] GemStone GemFire. http://www.gemstone.com/products/gemfire/ (last accessed 26 Nov 2009)

[Ham00] Howard Hamilton. C4.5 Tutorial, 2000
http://www2.cs.uregina.ca/~dbd/cs831/notes/ml/dtrees/c4.5/tutorial.html (last accessed 1 Jan
2010)

[Ham04] Graham Hamilton. Multithreaded toolkits: A failed dream? blogpost
http://weblogs.java.net/blog/kgh/archive/2004/10/multithreaded_t.html (last access 31 Jan 2010)

108

[haz] Hazelcast. http://www.hazelcast.com/ (last accessed 26 Nov 2009)

[HKY93] Tim Howes, Steve Kille, and Wengyik Yeong. Lightweight Directory Access Protocol,
IETF 1777, 1993.

[ibm] IBM WebSphere eXtreme Scale. http://www-
01.ibm.com/software/webservers/appserv/extremescale/ (last accessed 27 Nov 2009)

[IG96] Ross Ihaka and Robert Gentleman. “R: A Language for Data Analysis and Graphics”,
Journal of Computational and Graphical Statistics, v. 5, n. 3, pp. 299-314, 1996.

[Ime08] Slava Imeshev. Distributed Cache Latency and JVM Heap Size blogpost, Aug 09, 2008,
http://www.jroller.com/imeshev/entry/effect_of_jvm_heap_size (last accessed 10 Jan 2010)

[jama] The MathWorks and the National Institute of Standards and Technology (NIST). JAMA: A
Java matrix package, 2005. http://math.nist.gov/javanumerics/jama/ (last accessed 1 Nov 2009)

[jbi] JBoss Infinispan. http://www.jboss.org/infinispan (last accessed 26 Nov 2009)

[jini] JINI. http://www.jini.org/wiki/Main_Page (last access 30 April 2009)

[jms] Sun Mycrosystems. Java Message Service (JMS) specification,
http://java.sun.com/products/jms/ (last access 28 Jan 2010)

[jppf] Java Parallel Processing Framework. http://www.jppf.org/ (last access 20 May 2009)

[jsr107] JSR 107: JCACHE - Java Temporary Caching API. http://jcp.org/en/jsr/detail?id=107 (last
accessed 26 Nov 2009)

[kep] Kepler Project. http://kepler-project.org/ (last access 15 Nov 2009)

[knc] KNIME Cluster Execution. http://www.knime.com/products/knime-cluster-execution (last
accessed 21 Jan 2010)

[KZK04] Rinat Khoussainov, Xin Zuo, and Nicholas Kushmerick. "Grid-enabled Weka: A Toolkit
for Machine Learning on the Grid", ERCIM News, n. 59, Oct 2004.

[Lau03] Francis C. M. Lau. “Towards a Single System Image for High-Performance Java”, Parallel
and Distributed Processing and Applications, pp. 95-126, 2003

[Lea04] Doug Lea. Package util.concurrent,
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html (last accessed
13 Mar 2009)

[LFGL01] Gregor von Laszewski, Ian Foster, Jarek Gawor, and Peter Lane. “A Java Commodity
Grid Kit”, Concurrency and Computation: Practice and Experience, vol. 13, n. 8-9, pp. 643-662,
2001.

[LLM88] Michael Litzkow, Miron Livny, and Matt Mutka. “Condor - A Hunter of Idle
Workstations”, in Proceedings of the 8th International Conference of Distributed Computing
Systems, pp. 104-111, Jun 1988. See also http://www.cs.wisc.edu/condor/ (last accessed 6 Nov
2009)

[matl] The MathWorks, Inc. MATLAB®, http://www.mathworks.it/ (last access 8 Feb 2010)

[MSKW+06] Ingo Mierswa, Martin Scholz, Ralf Klinkenberg, Michael Wurst, Timm Euler. “YALE:
Rapid Prototyping for Complex Data Mining Tasks", in Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-06), 2006.

[MZC08] Cristian Mateos, Alejandro Zunino, and Marcelo Campo. “A survey on approaches to

109

gridification”, Software - Practice and Experience, n. 38, pp. 523-556, John Wiley & Sons, Ltd.,
2008. DOI: 10.1002/spe.847

[ora08] Oracle Corporation. Oracle Coherence: Providing Extreme Performance, Predictable
Scalability, and Continuous Availability for Mission-Critical Java Applications, Dec 2008.

[osgi] OSGi Service Platform, Core Specification, Release 4, Version 4.1, OSGi Alliance, 2007

[p2pmpi] P2P-MPI http://grid.u-strasbg.fr/p2pmpi/ (last accessed 12 Oct 2009)

[PEF08] Shrideep Pallickara, Jaliya Ekanayake, and Geoffrey Fox. “An Overview of the Granules
Runtime for Cloud Computing”, Proceedings of the IEEE International Conference on e-
Science, Indianapolis, Dec 2008. See also http://granules.cs.colostate.edu/ (last accessed 16 Nov
2009)

[PBGP+01] Michael Philippsen, Ronald F. Boisvert, Vladimir Getov, Roldan Pozo, José E. Moreira,
Dennis Gannon, and Geoffrey Fox. “ Javagrande - high performance computing with Java ”, in
PARA'00: Proceedings of the 5th International Workshop on Applied Parallel Computing, New
Paradigms for HPC in Industry and Academia, pp. 20-36, Springer-Verlag, 2001.

[proactive] OASIS Research Team. ProActive Programming: A Comprehensive Solution For
Multithreaded, Parallel, Distributed, And Concurrent Computing, version 4.0.2, 27 Oct. 2008.

[Qui93] Ross Quinlan. C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San
Mateo, CA, 1993.

[rmi] Sun Microsystems, Inc. Java Remote Method Invocation Specification, May 1996, Revision
0.9.

[SBDM+09] Tiziana Sanavia, Annalisa Barla, Barbara Di Camillo, Sofia Mosci, Gianna Toffolo.
"Function-based analysis of microarray data via l1-l2 regularization", 2009 ISMB/ECCB
Conference.

[Seg07] Judith Segal. “Some Problems of Professional End User Developers”, IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC 2007), 2007.

[Seg08] Judith Segal and Chris Morris “Developing Scientific Software”, IEEE Software, vol. 25, n.
4, pp. 18-20, Jul/Aug 2008.

[SHSS+07] Hermes Sengera, Eduardo R. Hruschkaa, Fabrício A. B. Silvaa, Liria M. Satob, Calebe P.
Bianchinib, and Bruno F. Jeroscha. Exploiting idle cycles to execute data mining applications on
clusters of PCs, Journal of Systems and Software, vol. 80, is. 5, Elsevier, May 2007.

[SHW98] Luis F. G. Sarmenta, Satoshi Hirano, Stephen A. Ward. “Towards Bayanihan: Building an
Extensible Framework for Volunteer Computing Using Java”. ACM 1998 Workshop on Java for
High-Performance Network Computing, Palo Alto, California. Also published in Concurrency:
Practice and Experience, vol. 10, pp. 1015-1019, 1998. See also
http://groups.csail.mit.edu/cag/bayanihan/ (last accessed 10 Oct 2009)

[slf4j] Simple Logging Facade for Java (SLF4J), (last accessed 11 Feb 2010)

[SMB07] Christoph Sieb, Thorsten Meinl, and Michael R. Berthold. “Parallel and distributed data
pipelining with KNIME”, The Mediterranean Journal of Computers and Networks, Vol. 3, No.
2, 2007

[spss] IBM SPSS Modeler, http://www.spss.com/software/modeling/modeler/ (last accessed 11 Jan
2010)

110

[SS98] Luís Moura Silva and João Gabriel Silva. “System-Level versus User-Defined
Checkpointing”, in Proceedings of the Seventeenth IEEE Symposium on Reliable Distributed
Systems, 1998.

[ssp] The SemiSpace project, http://www.semispace.org/semispace/ (last access 1 Feb 2010)

[sun96] Sun Microsystems, Inc. Java Object Serialization Specification, May 1996, Revision 0.9.

[Sut66] William R. Sutherland. The on-line graphical specification of computer procedures.
Massachusetts Institute of Technology. Dept. of Electrical Engineering. Ph.D Thesis. 1966.

[tav] Taverna workbench. http://taverna.sourceforge.net/

[terr] Terracotta. http://www.terracotta.org/ (last accessed 23 Nov 2009)

[tri] The Triana Project. http://www.trianacode.org/

[tspace] IBM TSpaces, http://www.almaden.ibm.com/cs/TSpaces/ (last access 1 Feb 2010)

[TTV05] Domenico Talia, Paolo Trunfio, and Oreste Verta. "Weka4WS: a WSRF-enabled Weka
Toolkit for Distributed Data Mining on Grids", in Proceedins of the 9th European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD 2005), Porto, Oct 2005.

[VC08] Monica Vlădoiu and Zoran Constantinescu. “A Taxonomy for Desktop Grids from Users'
Perspective”, in Proceedings of The World Congress on Engineering 2008, pp. 599-604.

[vNMH+02] Rob V. van Nieuwpoort, Jason Maassen, Rutger Hofman, Thilo Kielmann, and Henri E.
Bal. “Ibis: an efficient Java-based grid programming environment”, in Joint ACM Java Grande-
ISCOPE 2002 Conference, Seattle, Nov. 2002.

[vNMK+05] Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann, and Henri E. Bal. “Satin:
Simple and efficient Java-based Grid programming”, Scalable Computing: Practice and
Experience, vol. 6, pp. 19-32, Sep 2005.

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and
techniques, 2nd Edition, Morgan Kaufmann, San Francisco, 2005.

[WFTH+99] Ian H. Witten, Eibe Frank, Len Trigg, Mark Hall, Geoffrey Holmes, and Sally Jo
Cunningham. "Weka: Practical Machine Learning Tools and Techniques with Java
Implementations", in Proceedings of the ICONIP/ANZIIS/ANNES'99 Workshop on Emerging
Knowledge Engineering and Connectionist-Based Information Systems, pp. 192-196, 1999.

[wfmc] Workflow Management Coalition. Terminology & Glossary. Technical Report Document
Number WFMC-TC-1011, 1999, Issue 3.0.

[WN08] Piotr Wendykier and James G. Nagy. Image Processing on Modern CPUs and GPUs,
Emory University Technical Report TR-2008-023, submitted for publication.
http://mathcs.emory.edu/technical-reports/techrep-00148.pdf (last access 27 April 2009)

[Woj08] Marcin Wojnarski. "Debellor: A Data Mining Platform with Stream Architecture",
Transactions on Rough Sets IX, Lecture Notes in Computer Science, vol. 5390, pp. 405-427,
Springer-Verlag, 2008.

[WRW96] Ann Wollrath, Roger Riggs, and Jim Waldo. “A Distributed Object Model for the Java
System”, In Proceedings of the USENIX 1996 Conference on Object-Oriented Technologies,
Toronto, June 1996.

[WWWK94] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A Note on Distributed
Computing, Sun Microsystems technical report TR-94-29, 1994. Available online

111

http://research.sun.com/technical-reports/1994/smli_tr-94-29 (last accessed 19 Aug 2009)

[ZH05] Hui Zou and Trevor Hastie. "Regularization and variable selection via the elastic net",
Journal of the Royal Statistical Society, Series B, Jan 2005. Available on line
http://www.blackwellsynergy.com/doi/abs/10.1111/j.1467-9868.2005.00503.x (last accessed 24
Apr 2009)

112

	1 Introduction
	2 Background
	2.1 Data mining and machine learning tools for scientific research
	2.1.1 Reference applications
	2.1.2 Java issues with large data set
	2.1.3 Memory issues in data mining
	2.1.4 Exploitable parallelism in data mining

	2.2 Java-based grid computing
	2.2.1 Accessing the grid
	2.2.2 Checkpoint and shared storage
	2.2.3 Desktop Grids as deployment tool

	2.3 Distributed Data Storage
	2.3.1 Data Grid APIs
	2.3.2 Execution layer and programming model
	2.3.3 The MapReduce support
	2.3.4 Facing the CAP theorem

	3 Comparison between different IMDG implementations
	3.1 In-Memory Data Grids platforms
	3.1.1 Load capacity test on a single node
	3.1.2 Entry retrieval test

	3.2 Memory allocation effectiveness
	3.3 Clustered operations

	4 Experiments and results
	4.1 Background
	4.2 The classic approach
	4.3 The distributed testbed infrastructure
	4.3.1 Framework architecture

	4.4 Data Grid-aware l1l2
	4.4.1 A Data Grid framework
	4.4.2 Performances

	4.5 Data Grid integration with existing applications
	4.5.1 A basic ETL test

	4.6 Some details on the Simple Data Grid Façade framework
	4.6.1 Instantiation pattern
	4.6.2 Task as serializable Callable
	4.6.3 Built in Completion service
	4.6.4 Unsupported features and future directions

	5 Conclusions and future work
	5.1 Open source full-featured IMDG

	6 Appendix: A Java Data Grids survey
	6.1.1 Oracle Coherence
	6.1.2 IBM WebSphere eXtreme Scale
	6.1.3 JBoss Infinispan
	6.1.4 Hazelcast
	6.1.5 Ehcache
	6.1.6 Gigaspace XAP
	6.1.7 GemStone GemFire Enterprise
	6.1.8 Jakarta JCS
	6.2 Data storage
	6.3 Networking
	6.4 Data distribution
	6.5 Transactions and database integration
	6.6 Data affinity, data routing and fault recovery
	6.7 Event and messaging
	6.8 Distributed and data-aware execution
	6.9 Security
	6.10 Management

	7 Appendix: Amendment One to the OTN License
	8 References

