

Design and Implementation of Autonomic Computing System for Server Cluster

·35·

Design and Implementation of Autonomic Computing System
for Server Cluster

Wenjie Liu1 Yuntao Zhou2
1 Department of Software and Theory (School of Computer), Northwestern Polytechnical University, Xi’an,

710072, China

Email：liuwenjie@nwpu.edu.cn

2 Department of Lab and Device Management, Northwestern Polytechnical University, Xi’an, 710072, China

Email：zhouyuntao@nwpu.edu.cn

Abstract
Aiming at the problem that servers cluster cannot
rapidly deploys system and maintenance cost is high, on
the basis of studying the autonomic computing and
analyzing the features of cluster system, this paper
designed and implemented an autonomic computing
system for servers cluster. The designed system can
mask the complexity of hardware and auto-control the
cluster system, which realized the software and
hardware cooperative work. Agent technique is used to
collect the cluster status information and report it to
autonomic computing system automatically, which then
realizes the system self- check and self-recovery. After
describing the system structure and modules functions,
the autonomic computing features are described, which
can auto-deploying the system and recovering the fault,
then reduce the cost and realize the system
self-management.

Keywords ： Servers cluster; Autonomic Computing;
Multi-agent System; Cooperative work; Self-Management

37B1 Introduction

In the past, when enterprises users build their
application system, there are only two kinds of
architecture that can be selected. One is based on
mainframe; the other is based on client/server cluster.

The first kind of architecture has high performance,
high flexibility and high availability, but it costs much
in buying hardware devices, and there are many
functions that are never used, therefore resources are
wasted. The second kind of architecture allows users to
add hardware devices according their needs, but this
kind of system is not real cluster, and it lacks of
necessary availability and manageability, which makes
users pay much in application upgrading and
management.

With the occurrence of network, a new architecture,
which has high performance/price comparison, comes
into being and becomes the mainstream - distributed
cluster architecture. When users want to accomplish
their tasks, this architecture provides more computing
ability and transparent data access ability, at the same
time, realizes the high performance and high reliability.

But one coin has two sides, there are many
problems in this kind of structure, such as, after
hardware fault occurs, the SPOF (Single Point of Fault)
status lasts long, which will take long time to check the
cluster system configuration, to find out the fault point,
to install software patches or find the difference of
hardware/software. So it cannot deal with the increased
load. To solve the above problems, higher availability
management and more effective hardware utility are
needed.

IBM’s senior vice president, Paul Horn, proposed the
concept of autonomic computing in March 2001. He noted

2008 International Symposium on Distributed Computing and Applications for Business Engineering and Science

·36·

that autonomic computing system must have four features:
self-configuration, self-optimization, self-healing and
self-protection. The aim of autonomic computing
environment is to make IT system reach the level of RAS
(High Reliability, High Availability, and High
Serviceability) [1-2]. The core of the concept is to use
software to auto-control the complex hardware system
therefore reduce the management cost.

This paper takes the servers cluster as management
object, designed and implemented an autonomic
computing system. By using this system, servers cluster
can configure itself, find the hardware fault and recover
itself automatically, which realizes the autonomic
features and accomplish the aim of self-management.

38B2 Cluster system analysis

Cluster system contains many homogeneous or
heterogeneous computers, which are connected to
accomplish specified tasks cooperatively. It provides
high performance services continuously. Servers cluster
are a group of independent servers, which can be
regarded as a single server in the network, and can be
managed as a single system. The single system provides
the client station with high reliable service. A cluster
system contains many servers that share data storage,
each server communicates with others across inner LAN.
When fault occurs in one of the servers, the application
running in this server will be taken over by another
server automatically. Severs cluster can provide quite
high performance none-stopping service, because each
server can take on part of the computing task. As cluster
system owns the performance of many servers, the
system computing ability will increase also. At the same
time, when fault occurs in one of the servers, system can
separate this server from others by using special
software, realize the new load balance by the load shift
mechanism among servers, and simultaneously notify
the administrators by signals [3-4].

Practice proves that cooperative work in the cluster
has much higher computing ability than mainframe,
super computer and fault tolerance system, moreover

owns the lower cost.
But there are also disadvantages in cluster system

as following [5].
It cannot rapidly deploy software: For large-scale

cluster system, to deploy software rapidly on each node
of the system needs much time and human power.

It cannot rapidly shift roles: Application requires
that each server can shift to another role in different time.
For example, in data center, sometimes more web
service is required; sometimes more video service is
needed. This requires servers to shift rapidly between
two services to meet the needs of different time.

Maintenance costs are high: With the increase of
nodes count, the fault chances also increase, and system
recovery costs become high. How to reduce the time of
recovering system and maintenance costs becomes a
problem in cluster system.

This paper designed and implemented an
autonomic computing system for cluster system, which
can solve the above problems and reduce the
management cost. The designed system has the
following features:

1) Rapidly deploy the system software;
2) Automatically recover system when fault occurs;
3) Optimize system automatically;
4) Protect system when illegal invasion occurs.

39B3 Design of autonomic computing
system

At present, there are two kinds of ways to build
cluster system. One is to connect the backup server to
the main server, when the main server is failure, backup
server will take over all the tasks. The other is to
connect multiple servers together, all the servers work
cooperatively to do the same task, therefore improve the
response time of large -scale application. Also, each
server takes on some fault tolerance task, when fault
occurs in one server, system will separate that server
from others and accomplish new load balance [6]. PC
servers usually use two servers to build cluster system.

Design and Implementation of Autonomic Computing System for Server Cluster

·37·

UNIX system often uses 8 servers to build cluster, and
the OpenVMS of Compaq can support 96 servers cluster.
The system we designed is aiming at the UNIX server’s
cluster, by adding a management server to the cluster
system to manage the cluster, by adding agents to the
servers of cluster to get the health status of servers and
communicate with the management server, by using the
Ignite-UX to realize the software deployment across
network [7-8].

To realize the system self-management and
autonomic features, we designed the following system
architecture.

127B3.1 Architecture

Socket

Socket+XML

Servers Cluster

…

LAN

Management server

Unix

Server

Agent

Unix

Server

Agent

Ignite-UX

LAN

Resource Database

Client

Figure1 Architecture of Autonomic System

The system is divided into three layers, client,
management server and servers cluster. The three
layers communicate with each other by LAN. Client
communicates with management server by socket and
XML; management server communicates with cluster
system by socket. To communicate and operate the
servers in the cluster, Ignite software must be installed
on each UNIX server. Ignite-UX uses "pull" and
"push" to deploy OS software across network, and can
rapidly deploy system in the first time, or copy this
configuration to other systems across network. This
ability can save the time of the administrators therefore
reduce the cost. By this way, rapid cluster system

deployment can be achieved. Moreover, an agent is
installed on each server to communicate with
management server, deal the request and return the
result. It is actually a background daemon process, by
which management server can get the servers status
and send request. It is the core of the autonomic
computing system.

Client sends varied requests to management server,
such as OS installation, software/patches installation,
system backup, system recovery, system hardware status
inquiry and so on.

Management server receives the requests and
executes different operations according to request type.
If the request is to query resource information,
management server will get the information from
resource database, and return the results with XML
format. If the request is to install software on cluster
servers, management server will firstly divide the
servers of cluster into object servers and Ignite-UX
server. For example, 8 nodes cluster can be divided into
7 object servers and one Ignite-UX server. Then
management server will use the image file on the
Ignite-UX server to deploy the object servers
simultaneously. After the installation finished, results
will be returned to client and resource database will be
updated.

Resource database stores the OS type and version
of each node of the cluster, the software and patches
version installed in each node, current OS status and
disk storage size, etc. The information in the database
will be dynamically updated according to the node
status.

128B3.2 Modules Constitution

In the autonomic computing system, the core is the
management server. It is the brain of the whole system.
It receives the client request, parses the XML data and
sends commands to cluster servers, updates the resource
database information according to the server status. The
realization of this part contains the following modules.

1) Service Control
2) Communication Control

2008 International Symposium on Distributed Computing and Applications for Business Engineering and Science

·38·

3) Resource Control
4) Events Control
5) Monitor Control
Moreover, agent is also the core module in the

system. It is installed on UNIX server, which is to
receive commands from management server, execute the
commands and return the results.

The autonomic computing system modules
constitution is as following:

Socket + X
M

L

C
om

m
unication

Control

Service Control

Session Data
Socket

Event

Control

XML

DB Control
Resource

Control

Monitor

Control

C
om

m
unication Control (Socket)

LAN

Server Cluster

Agent

Cluster

Driver

Ignite

UX

Management Server LAN

Figure 2 Modules Constitution

Service Control： Service control is the scheduling
center, which is monitoring the events from events
control module all the time. If new event is received,
this module will extract XML data from the event, parse
the information and judge the request type. If the request
type is to query resource information, then service
control will access XML database across resource
control module, package the result information and send
it to event control module, at last return the result to the
client user. If the request type is to operate the servers of
cluster, such as system backup or recovery, Unix script
execution and etc., service control will call resource
control module to parse the XML data to string type,

send these strings in bytes to the agents installed in the
servers of cluster by socket, then the agents will call the
different shell scripts to execute the operations on the
actual servers. The result information will be returned to
resource control module by socket. After receiving the
result from resource control, Service control will
package the result information into events, and send
events to event control module; finally result
information will be returned to the client user across
communication control module.

Communication Control: Communication control
is to build connection between client and management
server, receive the requests from clients, forward the
XML data and return the results. To deal the requests of
multiple clients, we build a Session Data for each client
to save the status, port and IP information. As there are
multiple clients in the system, many users may operate
one server, for example, one user sends a command of
"OS Start", and then the other user sends a command of
"OS Stop", after executing the two commands, the
server OS is stopped. If the first user wants to know the
final status of that server, he should refresh the client
GUI manually. To solve the problem, we use polling
mechanism to get server status every five seconds,
return the information to client, and then refresh the
client GUI automatically.

Resource Control: Resource control is to manage
the server hardware and status information, including
adding data, modifying data, and deleting data from
XML database. To assure the validation and integrity of
the data, before one client wants to get the server status,
the server resources will be locked. After one request is
dealt, the server resource will be unlocked.

Events Control: Event control is to manage the
events in the system. Each client has a session data in
the system to store events information, and the client
requests will be sent to management server as different
events. All the events from different clients will be
queued. Event control will get the event information
from session queue and build the events queue. The
events that are not dealt will be sent to service control

Design and Implementation of Autonomic Computing System for Server Cluster

·39·

module, and the events dealt will be sent to
communication control module. The result information
will be again saved in session data, and then returned to
client by communication control module. The events
control procedure is as following:

Event Control

Get Session Data

Inbox Queue Send Queue

Session Data

Send Queue Received Data

Communication Control

Socket List

Monitor Socket

Receive Send

By Session Socket

Session Queue

Send

Succeed

Fail

Get Session Data

Figure3 Events Control Procedure

As figure3 shows, the Session Data stores the
received data from client and the return result in Send
Queue. Event control gets the session data into Inbox
Queue, and sends the dealt events in Send Queue to
Session Data. If succeed to send, the communication
control will receive the events by monitoring socket and
then send the dealt events to the Send Queue in Session
Data. If failed to send, the events that are not dealt will
be added into the Send Queue of Session Data directly.
This means the socket error may occur. The
Communication control builds a socket list and Session
Queue to communicate with multiple users.

Monitor Control: Monitor control is to monitor
the server’s status in the cluster. It receives the report
from the agents installed in the servers. If one server
status has changed, the agent on it will send new status
report to monitor control. The monitor control will
update the server status information in XML database
and send "Status Change" event to the event control
module. At last the event will be return to the client and
Client GUI will be updated too.

Agents: The agent on each server is a demon

running in background. It is the crucial module, which
makes the system own the ability of self-check,
self-recovery. If we say the management server is the
brain of the cluster system, then the agent is the nerve of
each server. It perceives the health status of each server
and reports it to management server. It receives the
commands from management server and executes them,
which is like that the brain tells the arms to stretch out
or hold down. The agent is monitoring the request at one
port, if new request comes, it will get the information,
parse it into different command, and execute the
command by cluster communication driver and
Ignite-UX. The command type can be OS installation,
software backup, patches update and so on. The final
realization on each server is across shell scripts provided
by UNIX core. Moreover, agent will check the hardware
information every 30 seconds, then send health status
report to monitor control module. If fault or error occurs
in the server, the error information will be returned to
management server at once.

129B3.3 Autonomic Computing Features

The servers in the cluster system accomplish one task
cooperatively, providing a high performance environment
for end users. If the cluster system owns the autonomic
computing features that are, self-configuration,
self-optimization, self-healing and self-protection, the
system will work more effectively, and the system
management will be much easier, therefore system
management cost will be reduced [9-10].

The autonomic computing system we designed in this
paper is for cluster system to realize self -management. The
designed system has the following four features:

Self-configuration: Management server maintains two
tables, one stores the server’s status information, and the
other stores the server’s load information. The data in these
two tables will be updated according to the real time
information provided by monitor control module. When
management server finds the workload of one server has
exceeded the upper limit threshold value, it will find another
server whose workload is normal to replace that server.

Self-healing: Health check is an important function in

2008 International Symposium on Distributed Computing and Applications for Business Engineering and Science

·40·

cluster system, which provides the automatic error check
mechanism. This function is done by monitor control
module. After some time, monitor control module will send
request to collect hardware information of servers, the
agent in each server will receive the request and collect the
status information of each server and send health report to
monitor control module. If error is found on one server,
management server will use the backup image file on
Ignite server to recover that server.

Self-optimization: This function is done by monitor
control module. It will send the commands of software
upgrade and patches update to the cluster system after
some time. The servers will download the new
software/patches from Ignite server and update themselves,
therefore optimize themselves.

Self-protection: In the autonomic computing system,
we divide the user into two groups, common user and
administrators. Common users cannot execute the
operations such as "OS install", "System recovery", "User
Management”, and so on. Moreover, as to system
installation and system recovery, password is requested
before operation execution, which can reduce the risk and
protect system from unsafe invasion.

40B4 Summary and future work

On the basis of analysis the problem in current cluster
system, this paper designed and implemented an
autonomic computing system for servers cluster based on
multi-agent technique, which can make the cluster system
work more effectively, make the complex system
management become much easier, and make the system
has the ability to manage themselves. The system designed
has been put into practice, which has been proved to realize
rapid software configuration, rapid error recovery and rapid
application shift. But as the business needs vary quickly,
the confirmed factors in system may vary accordingly. So
now there is some incomplete design in system, which is
the subject to study and improve in the future.

References

[1] ERAPHIN B. CALO and DINESH VERMA, “Toolkit for

Policy Enablement in Autonomic Computing”, ICAC-04,

International Conference on Autonomic Computing. IEEE

Computer Society, National Science Foundation, IBM

Corporation, SUN Microsystems, April 2004

[2] JEFF O. KEPHART, DAVID M. CHESS, “The Vision of

Autonomic Computing”, Computer Journal, IEEE Computer

Society, January 2003 issue

[3] Yoshihiro Tohma. Incorporating Fault Tolerance into an

Autonomic-Computing Environment. IEEE Computer

Society Vol. 5, No. 2; February 2004

[4] Zoran Constantinescu. Towards an Autonomic Distributed

Computing System. Proceedings of the 14th International

Workshop on Database and Expert Systems Applications

(DEXA’03). IEEE Computer Society, 2003

[5] Rajkumar Buyya, “High Performance Cluster Computing”,

Architecture and System, Beijing, Electronic Polytechnic

Publishing Company，2001, pp. 15-17

[6] Kephart JO, Walsh WE. An artificial intelligence perspective on

autonomic computing policies. In: Verma D, Devarakonda M,

Lupu E, Kohli M, eds. Proc. of the 5th IEEE Int’l Workshop on

Policies for Distributed Systems and Networks. New York:

IEEE Computer Society, 2004. 3-12

[7] CATHERINE H. CRAWFOND and ASIT DAN. EModel:

Addressing the Need for a Flexible Modeling Framework in

Autonomic Computing. Computer Journal, IEEE Computer

Society, January 2002 issue

[8] Tianfield H. Multi-Agent autonomic architecture and its

application in E-medicine. In: Liu JM, Faltings B, Zhong N,

Lu RQ, Nishida T, eds. Proc. of the IEEE/WIC Int’l Conf.

on Intelligent Agent Technolocy (IAT 2003). Los Alamitos:

IEEE Computer Society, 2003. 601-604

[9] R. Sterritt, “Towards Autonomic Computing: Effective

Event Management”, Computer Journal, IEEE Computer

Society, January 2003 issue

[10] CATHERINE H. CRAWFOND and ASIT DAN, “E-Model:

Addressing the Need for a Flexible Modeling Framework in

Autonomic Computing”, Computer Journal, IEEE Computer

Society, January 2002 issue

	Design and Implementation of Autonomic Computing Systemfor Server Cluster

