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ABSTRACT 

Real-time graphics processing on the cloud poses significant challenges in terms of 

processing capability, data transmission, and the management of latency. The 

rendering of large and complex graphics data requires large processing power and 

significant storage that low-powered machines are unlikely to handle capably. In 

addition, the transmission of graphics may introduce considerable delays, leading to 

poor interactivity. Numerous works have been carried out taking these issues into 

account, most of which being based on level of detail (LOD) and image based 

rendering (IBR) techniques. However, there are many tradeoffs that need to be 

carefully studied in order to realize some of the benefits of cloud computing for three 

dimensional (3D) networked graphics. In this project, we explore the state of the art 

remote rendering, or in other words, moving the rendering of complex graphics data 

into a cloud system. A networked rendering paradigm based on our proposed 

pipeline-splitting method is introduced to facilitate a remote-rendering system with 

the aim of partitioning the rendering workload between the client and server. We 

also propose a visibility streaming method for networked applications to reduce the 

transmission capacity required. One of the main advantages of our proposed 

methods is that it is easy to scale up at the server side by distributing the workload to 

be handled in different machines, leading to a significant improvement at the server 

side in terms of performance. 
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Chapter 1 

Introduction 

Chapter contents 

1.1. Overview .................................................................................................. 1 

1.2. Research motivation ................................................................................ 3 

1.3. State the problem ..................................................................................... 3 

1.4. Research questions ................................................................................... 5 

1.5. Thesis contributions ................................................................................. 6 

1.6. Thesis structure ........................................................................................ 6 

1.1. Overview 

3D graphics have seen exponential growth since the introduction of the technology 

through film and popular culture [1-3]. Continued advances in real-time graphics 

recently led to the birth of numerous real-time multimedia applications on the 

Internet, namely online games and virtual shopping. There are four primary concerns 

with respect to graphics applications on cloud computing: (1) Latency: the time it 

takes to transmit graphics content from the server to the client; (2) Reliability: How 

often data is lost or corrupted; (3) Bandwidth: How much data can be sent in a given 

time; (4) End user devices capacity: graphics processing capability as well as battery 

capacity. All of these considerations, as well as trade-offs, need to be taken into 

account. 
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3D graphics rendering places huge processing demands on end-user devices. 

Different approaches have recently proposed moving this processing load from the 

user device into the cloud [4-5]. While at first this appears to be a promising 

proposal, there are many tradeoffs that need to be carefully studied in order to realize 

some of the benefits of cloud computing for the rendering of 3D graphics. The 

transfer of graphics content, especially large 3D models [6],  over the network may 

suffer from transmission latency and low bandwidth connections. In addition, 

graphics processing is considered as a time-consuming process, and in the event that 

the server has to serve a large number of clients, it may become overloaded; the 

rendering workload can be shifted into the client to take advantage of its graphics 

processing capability and relieve the server from the computational burden [7-9]. 

However, this will further increase the processing demands on the client. In terms of 

the network, sufficient bandwidth needs to exist to support larger transfers of data 

between the client and the cloud. The network will also need to be of low enough 

latency to support real time services and interactivity. From the server side, the 

servers will also require sufficient processing capacity to handle the 3D rendering in 

a timely manner. 

In this thesis, we study the different approaches to various problems regarding 

networked graphics applications in cloud computing. Our focus is on solutions that 

can effectively reduce memory cost, computational workload at client, and network 

communication overhead. More specifically, we explore the state of the art of remote 

rendering solutions applied for thin clients which lack the processing power and are 

memory-limited. A networked rendering paradigm based on our pipeline-splitting 

method is introduced to facilitate remote rendering system with the aim to split the 

workload between the client and server. We also propose a method which relies on 
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server-side processing of visibility for 3D mesh streaming. To deal with the 

substantial workload at the server, we present a parallel framework that can distribute 

the computational workload at the server side to be processed in different machines. 

This can lead to a significant improvement at the server side in terms of performance. 

1.2. Research motivation 

The widespread development of handheld devices in the last decade has increased 

the demand for multimedia services. Mobile devices are normally not powerful 

enough to handle computational-intensive applications, thus, the emergence of cloud 

computing may be important to end-users as it can assist less powerful devices to 

support computationally expensive applications. 

3D graphics are becoming widespread across the Internet, as can be seen in 

numerous applications such as virtual museums, online games, and other services 

that use virtual reality or visualization. These applications are carried out not only via 

personal computers (PCs), but also through various mobile devices. This trend will 

undoubtedly grow in the years ahead, leading to an increasingly larger amount of 

data that are to be placed on end-user devices. In this thesis, we aim to find solutions 

that can reduce the computational workload, and memory cost at the client as well as 

transmission latency. Therefore, our research has the potential to assist the ubiquitous 

availability of such applications with the aid of cloud computing.     

1.3. Statement of the problem 

Interactive 3D applications often require massive computational resources that low-

powered devices are unlikely to capably handle. A possible solution is to offload a 
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portion of computations to servers on the cloud, leaving remaining parts to be 

processed by the client; this can save the client in terms of battery and storage. 

However, there remains a problem with respect to the transmission of graphics 

content over the network. Energy efficiency is also a critical problem to mobile 

devices. Cloud computing can save mobile client energy but in some cases it can lead 

to more energy usage as the data transmission between the client and the server 

requires energy. 

 
Figure 1. Sharing computations between the client and cloud, the yellow part expressed 

the computation is performed on the cloud, and the blue part expressed the 
computation is performed locally 1 

In this thesis, we are going to investigate these tradeoffs in particular cases. 

Specifically, the following factors are taken into consideration: 

1. Transmission latency 

2. Rendering capability of the client and the server 

3. The transmission of graphics datasets over the network 

4. The rendering performance of the system 

                                                        
1  Project group “Algorithms for 3D rendering using Cloud Computing”: http://www.hni.uni-
paderborn.de/en/algorithms-and-complexity/teaching/algorithms-for-3d-rendering-using-cloud-
computing/ 
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5. Memory cost at the client side 

6. Energy consumption at the client 

The focus of this thesis is on the methods and techniques that can be applied to deal 

with aforementioned issues. Therefore, reducing the impact of the transmission 

latency, memory capacity, and rendering capability of thin clients is considered to be 

vital in this research. 

1.4. Research questions 

Regarding networked graphics applications, much work has been done to reduce 

transmission latency as well as assisting low-powered end-user machines. Most 

existing approaches focus on reducing graphics data to be processed at the client by 

simplifying the complexity of the graphics scenes to fit the client’s rendering 

capabilities (level of details techniques) [10]. However, the process of simplification 

reduces the quality of rendered images and introduces some delay. Therefore, for 

large-scale scenes, it could be of great benefits to thin clients if all processing, 

including rendering, is carried out at the server. Image based rendering techniques 

can be employed to further relieve the client from the rendering workload, making it 

possible to render very complex 3D scenes on mobile devices. Unfortunately, image 

quality may suffer due to the limited size of the rendered image and the lack of 

information to construct new images at novel viewpoints (3D image warping 

techniques) [11]. In this research, we aim to investigate tradeoffs of existing 

approaches. Specially, our focus is finding methods which can fulfill the following 

demands: 

1. Methods to split up the workload between the server and the client. 
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2. Methods to reduce computational workload and memory cost at the client. 

3. Methods to reduce transmission latency. 

4. The scalability at the server side. 

1.5. Thesis structure 

The thesis is structured as follows: 

 Chapter 1: Introduction. This chapter presents an overview of our research 

and its highlighted contributions. 

 Chapter 2: Literature review. This chapter presents background knowledge 

for our research. Relevant work are also briefly presented and discussed in 

this chapter. 

 Chapter 3: A networked paradigm for remote rendering. This chapter 

demonstrates a paradigm for networked rendering pipeline. We also present a 

remote rendering implementation making use of the paradigm. Our proposed 

method is then thoroughly compared with other rendering models. 

 Chapter 4: A visibility-based streaming framework for networked graphics. 

This chapter presents a selective streaming framework that can effectively 

reduce the underline-processing workload processing at the client as well as 

reducing the overhead of transmitting data over the network. 

 Chapter 5: Conclusion. The thesis is concluded, and details of future work to 

be carried out are also presented in this section. 

1.6. Thesis contributions 

Major contributions of this thesis are listed below: 
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 A novel method to split up the rendering pipeline is presented aiming to break 

up the rendering workload from the point that geometry processing is 

performed at the server, leaving the remaining parts to be done at the client. 

 We propose a new networked rendering paradigm for remote rendering based 

on our pipeline-splitting method. Experimental results show that our method 

can effectively reduce memory costs and computational workloads at the 

client.   

 We present a study of visibility-based streaming for networked graphics 

applications. A visibility streaming method also is introduced to support the 

interactivity between the server and client.  

 We also present a parallel framework for visibility streaming that can 

distribute the computational workload at the server to be processed in 

different machines. Experiment results demonstrate that our method can 

reduce memory cost and network communication overhead. 

 

1.7. Publications 

The publications arising from this research are listed as listed as follows: 

 Dong Nguyen, Farzad Safaei, Raad Raad, “A networked rendering paradigm 

for remote rendering”, Special issue on “Cloud computing”, Journal of 

Software Engineering and Applications, 2012, submitted: 29th August 2012 
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Chapter 2 

Literature review 

Chapter contents 

2.1. Background knowledge ........................................................................... 8 

2.1.1. Mesh representation of graphics................................................................................. 8 
2.1.2. Graphics rendering ..................................................................................................... 9 
2.1.3. Parallel rendering ..................................................................................................... 12 
2.1.4. Visibility culling ......................................................................................................... 12 
2.1.5. Computer graphics on thin clients ............................................................................. 13 
2.1.6. Remote rendering in the cloud .................................................................................. 14 
2.1.8. Energy efficiency for mobile devices ......................................................................... 16 

2.2. Client-server rendering architecture .....................................................17 

2.2.1. Client-side method ................................................................................................... 17 
2.2.2. Server-side method .................................................................................................. 17 
2.2.3. Hybrid method ......................................................................................................... 18 

2.3. Graphics streaming .................................................................................19 

2.3.1. Image-based streaming ............................................................................................. 19 
2.3.2. Mesh streaming ........................................................................................................ 20 
 

2.1. Background knowledge 

2.1.1. Mesh representation of graphics 

Three dimensional (3D) graphics objects can be presented as a set of polygons or 

what is so-called polygonal mesh. In this thesis we consider only triangle mesh since 

it is one of the most prevalent representations of 3D objects. Any none-triangular 

polygons can be triangulated after a number of simple steps. 
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Figure 2. 3D mesh representation of a 3D object2 

Basically, there are three types of information to present a 3D mesh, including 

geometry information, connectivity information, and photometry information. We 

can present a mesh as M = (V, F)  where V is a list of vertices 1 2 n(v , v , ..., v )  and F  

is a list of triangles 1 2 m(tri , tri , ..., tri ) . Each vertex coordinate can be expressed by 

three floating-point values (x, y, z)  and each triangle (or a face) is expressed by three 

integers referring to three vertices that form the triangle. 

2.1.2. Graphics rendering 

Graphics rendering is the process of simultaneously generating 2D images from 3D 

scenes. Graphics data before being displayed on the screen must undergo a number 

of stages in a so-called graphics rendering pipeline. A graphics pipeline typically 

consists of a number of stages including vertex processing, primitive assembly, 

geometry processing, clipping and culling, rasterization, and fragment processing. 

                                                        
2 2 Source: http://en.wikipedia.org/wiki/Polygon_mesh 
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Figure 3. A typical rendering pipeline 

Vertex processing: Vertex shaders are responsible for vertex processing by 

performing operations such as vertex transformation, lighting calculation. The 

outputs of this stage are individual vertices. 

Primitive assembly: In this stage, transformed vertices are grouped based on 

connectivity information to be converted into primitives (polygons, lines, points). 

 

Figure 4. Primitive assembly3 

Geometry processing: The geometry processing stage happens prior to 

culling/clipping and after primitive assembly. It receives primitives from previous 

stage to further process them. Unlike other stages, the geometry stage is capable of 

generating new primitives from existing ones. 

                                                        
3 3 Source: http://www.lighthouse3d.com 
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Clipping and culling: This stage is responsible for eliminating invisible primitives 

and those which fall outside of the viewing frustum.  

 

Figure 5. The occluded objects and those which fall outside of the viewing frustum are 

eliminated4 

Rasterization: The rasterization stage is responsible for converting every primitive, 

into a set of fragments. The output of this stage will be passed on to the fragment 

processing stage for further processing. 

 

Figure 6. Rasterization stage converting primitives into fragments5 

Fragment processing stage: A fragment output from the rasterization stage is the size 

of a pixel, but it is not a real pixel. In fragment processing, data must undergo a 

                                                        
4 http://www.gamasutra.com/view/feature/164660/sponsored_feature_next_generation_.php?print=1 
5 http://sharavaa.blogspot.com.au/2012/03/graphics-pipeline.html 
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number of tests (e.g. depth test, stencil test, alpha test), and become a real pixel to be 

displayed on the screen after getting passed all those tests. 

2.1.3. Parallel rendering 

Parallel rendering is essential for the rendering of large graphics datasets [12-13] and 

large tiled display [14]. There has been much work devoted to parallel rendering in 

the literature. A classification of parallel rendering has been described in [15], in 

which parallel rendering is classified into sort-first, sort-middle, and sort-last 

rendering. Recent work on interactive rendering makes use of parallel rendering to 

achieve a better rendering performance. Lamberti et al. [16] presented a rendering 

cluster based on Chromium [17-19] to support remote rendering on handheld 

devices. The system can handle multiple user interactions by making use of a 

“token” protocol. Parallel rendering can also be applied to volume rendering [20] by 

dividing volumes into smaller ones and then distributing them to different rendering 

machines to be handled. 

2.1.4. Visibility culling 

Visibility culling is extremely essential for the rendering of large and complex 3D 

scenes. The primary goal of culling techniques is to eliminate primitives that are 

invisible from the current viewpoint and prevent them from being further processed. 

This reduces the processing time as this is proportional to the size of remaining 

visible set. Visibility culling can be roughly classified into view-frustum culling, 

back-face culling, occlusion culling [21]. Back-face culling [22] culls primitives 

which face away from the viewer, and view-frustum culling [23] eliminates 
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primitives which fall outside of the viewing frustum, while occlusion culling 

techniques discard primitives which are occluded by others [24]. 

 

Figure 7. Visibility culling techniques [24] 

To date, an enormous amount of work has been done regarding visibility culling 

techniques. Yoon et al. [25] presented an algorithm for interactive display of 

complex environments using cluster hierarchies and occlusion culling. Engelhardt 

and Dachsbache [26] proposed a method for visibility determination of a large 

number of objects which can improve the rendering performance by culling invisible 

primitives at geometry shaders.  

2.1.5. Computer graphics on thin clients 

3D graphics applications on thin devices, especially handheld devices, have been 

named as one of the fastest growing segments of the graphics industry in recent 

years. However, there remains a fundamental issue; 3D graphics applications 

normally necessitate large amounts of computing resources, battery power and 

storage, while thin devices tend to be limited in these resources. Virtual Network 
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Computing (VNC6) attempts to allocate computing resources to the clients, thus 

makes it possible to run 3D graphics applications on thin clients. A VNC server 

stores all rendered images in a frame buffer and sends the content to client on 

demand through the use of Remote Frame Buffer (RFB) protocol. VirtualGL [27] 

makes use of VNC protocol for the network streaming of graphics content to thin 

devices which lack graphics rendering capability. The client sends out OpenGL 

commands to be processed in the remote Graphics Processing Unit (GPU) at the 

server side and reads back the rendered images.  

 

Figure 8. VirtualGL operations7 

2.1.6. Remote rendering in the cloud 

Cloud computing is considered as a promising factor for 3D graphics technologies. 

The idea is to render graphics data, compress the rendered images at the server side, 

and send the results to the clients to be further processed. Cloud computing offers 

great potential in the gaming industry with several solutions in this area. For 

                                                        
6 http://en.wikipedia.org/wiki/Virtual_Network_Computing 
7 http://virtualgl.org 
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example, OnLive8 is known as a cloud gaming solution based on the image-based 

rendering approach. Graphics data stored in the cloud is rendered and streamed to 

clients on demand. Similar to OnLive, OTOY9 provides various types of real-time 

graphics services in the cloud such as computer applications, video games, High 

Definition media content, and film/video special effect graphics through server side 

rendering. 

There has been a great deal of attention paid by researchers to remote graphics 

rendering using cloud computing infrastructure. Okamoto et al. [28] introduce an 

interactive rendering system for large 3D mesh models based on cloud computing. 

The system makes use of both image-based rendering and model-based rendering 

techniques to balance the workload between the client and server. Winter et al. [29] 

propose a hybrid approach to facilitate graphics processing on thin clients. An 

adaptive mechanism is proposed to select an appropriate transmission method 

according to the scenarios of scenes. Jurgelionis et al. [30] introduced a hybrid 

approach based on Game@Large [31-32]. This solution is fairly flexible since it can 

support both low- and high-powered devices concurrently by applying two streaming 

approaches. For small displays like handheld devices, the server performs the 

rendering tasks and streams rendered images and audio data to the client. For high-

end devices, the client possesses its own graphics processing unit and is capable of 

performing rendering by itself; hence graphics commands are encapsulated and 

transmitted to the client to be processed locally. 

                                                        
8 http://www.onlive.com 
9 http://www.otoy.com/ 
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2.1.8. Energy efficiency for mobile devices 

The need for energy efficiency is very critical for mobile devices since the advance 

of battery technology is insufficient to meet the demand of mobile users. Cloud 

computing has tremendous potential to save mobile energy. However, the tradeoff 

between energy consumed by computation and the energy consumed by 

communication needs to be carefully considered. Miettinen and Nurminen [33] 

pointed out that there must be a break-even point for computation offloading. For the 

sake of efficiency, the energy consumed by the local computation (Elocal) must not 

exceed the energy consumed by communication (Ecloud), or in other words Ecloud <  

Elocal. Let D be the amount of Data to be transferred in bytes and C be the 

computation for the workload in CPU cycles, we have: cloud
eff

DE  = 
D

 and 

local
eff

CE  = 
C

. Where Deff and Ceff are device specific data transfer and computing 

efficiencies. To be beneficial, the following inequality must hold: 

eff

eff

CC  > 
D D

 

An analysis presented by Karthik and Yung-Hsiang Lu [34] indicates that the energy 

saved by computation offloading depends on wireless bandwidth (B), the amount of 

computation  to be performed (C), and the amount of data to be transmitted (D). 

According to the analysis, the energy saved can be calculated as follows: 

i
c tr

PC D×(P  - )  - P ×
M F B

 

Where: C is the number of instructions required for the computation, M is the speed, 

in instructions per second, of the mobile. The speed of the server is F time faster than 
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that of mobile device (S = F x M). Pc, Pi, Ptr respectively are the energy consumption, 

in watts, for computing, while idle, and for sending and receiving data. This indicates 

that not all applications are energy efficient when migrated to the cloud, at some 

point it is more efficient to perform the computation locally rather than remotely. 

2.2. Client-server rendering architecture  

Graphics processing in client/server architecture can be roughly divided into three 

categories: client-side method, server-side method, and hybrid method [35-37]. 

2.2.1. Client-side method 

In this method, the server simply sends graphics data to the client and the client is 

responsible for rendering the entire 3D models. The conventional method of client-

side rendering involves transmitting graphics commands to the client and is to be 

processed locally [38-39]. This method can reduce workload at the server, but it 

increases the processing demand on the client. This is suited for small applications, 

but is inappropriate for complex applications that require high rendering power. 

Moreover, graphics data to be transmitted to the client may be large leading to a long 

downloading time. To make it possible for the transfer of larger models, the server 

may perform the simplification and conversion operations to calculate a progressive 

representation composed of a simplified model and a series of mesh refinements that 

the client will progressively download and display [40-42]. 

2.2.2. Server-side method 

In contrast to the client-side method, this method involves the server as completely 

responsible for graphics processing. The server renders the 3D scenes and transmits 
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the rendered images to the client to be displayed [43-45]. This is highly beneficial to 

thin clients which often lack specialized hardware and are memory-limited [16, 46-

47], such as mobile devices [48-49]. However, the limitation of this method is that 

the server may become congested when serving a large number of clients and an 

appropriate network connection, that is, sufficient bandwidth, need to exist. This may 

be fine for fixed type networks, but may not be appropriate for wireless networks. In 

addition, the latency due to the constant transmission of rendered images from the 

server to client may reduce responsiveness and interactivity. Image based rendering 

(IBR) techniques can be implemented in the client to improve frame rates and to deal 

with the transmission delay [11, 50]. However, there are some tradeoffs between the 

image quality and transmission latency [45]. 

2.2.3. Hybrid method 

In this method, both the client and server get involved in the rendering process. 

Rendering tasks are partially accomplished at the server and the remainder is 

performed at the client. Therefore, the rendering workload can be shared between the 

server and client [37, 51]. However, deciding which parts to be performed at the 

client and which parts to be performed at the server is not an easy task. Noguera et al. 

[37] proposed a technique to split the rendering workload between the server and the 

client based on the view volume. The client is responsible for rendering the terrain 

which is close to the viewer and the server renders the terrain far away from the 

viewer. Diepstraten et al. [52], in a different manner, split the process of image 

generation in order to balance workload between the client and the server. The server 

partially renders the 3D scene and sends 2D primitives to be processed on the client. 
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However, this may lead to the downgrading of image quality since the client has to 

rely on feature lines to draw the image. 

2.3. Graphics streaming 

The transmission of graphics datasets through the network is considered a major 

bottleneck due to the bandwidth limitation and the size of data to be sent. In this 

section, we consider two ways of transmitting graphics data from the server to the 

client: Image-based streaming, and Mesh streaming.  

2.3.1. Image-based streaming 

Image-based streaming has been widely used in remote rendering system [53-54]. 

Panka et al. [55] proposed a framework to facilitate remote visualization on mobile 

devices, in which graphics data is rendered at a the server side, the rendered images 

then are compressed and streamed to the client as a video stream. Boukerch et al. 

[46-47] have presented a rendering method based on image-based rendering 

technique to assist the streaming of images over the network. A packetization scheme 

and a feedback mechanism have also been proposed to deal with the variations of the 

wireless network bandwidth. 

Compression is highly essential for image-based streaming to make effective use of 

network capacity for the streaming of complex 3D scenes over the network [56]. 

Various compression techniques for graphics streaming have been considered in the 

literature. For example, Cortelazzo and Zanuttigh [57] present a predictive 

compression scheme making use of JPEG and JPEG-2000 for remote visualization 

based on image-based rendering techniques. Constantinescu and Vlădoiu [58] 
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proposed an adaptive compression method for remote rendering, an appropriate 

compression scheme according to the variation of frame rate is selected from 

different ones, for example, ZLIB, LZO, BZIP2, RLE, to be used. 

MPEG-4 [59-61] is used for image-based streaming systems, this trend becomes 

promising especially as most handheld devices are capable of decoding MPEG-4 

[62]. Liang Cheng, et tal., [63] make use of MPEG-4 streaming for their remote 

rendering system. They also propose a fast motion estimation algorithm to assist the 

encoding process. 

2.3.2. Mesh streaming 

In contrast to image-based streaming, in mesh streaming, the geometric data is 

streamed to the client to be rendered. There has been a growing body of research 

with respect to streaming mesh over the network. Progressive mesh (PM) streaming 

[64] aims to minimize the transmission cost and rendering cost at the client. In this 

method, a coarse model is first sent to the client, and then a series of refinements will 

be streamed to improve the image quality [65]. Therefore, this reduces the waiting 

time as it can enable interactions without a full download of data. 

To construct a PM representation, the original mesh M


is simplified through a series 

of edge collapses (ecol) to yield a much simpler base mesh 0M and a sequence of 

refinements. The simplified model ( 0M ) is first transmitted to the client, and 

progressive meshes then refine the object by the continual transmission of 

refinements. 

0n 1 1 ecolecol ecol
n 1 0M M ... M M
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At the client side, an inverted sequence, the so-called vertex split (vsplit), is 

employed to refine the model from the coarse model to original one. 

0 1 n 1vsplit vsplit vsplit
0 1 nM M ... M M

 

     

Progressive mesh streaming can achieve good interactivity however it may suffer 

from low-quality of images. 

In view-dependent streaming, the server progressively streams geometry data to the 

client with respect to the current viewing parameters. Rusinkiewicz and Levoy 

proposed a view-dependent streaming method based on QSplat10 [66] to facilitate the 

streaming of complex 3D models. Yang et al. [67] introduced a patch-based view 

dependent streaming technique. First, the mesh is partitioned into a number of 

patches which are compressed offline and streamed to the client on demand. The 

client relies on received patches and the connectivity information to perform the 

rendering by itself. However, one drawback of the method is that it causes an 

unsmooth change at the client side due to the alternation of patches. Schneider and 

Martin [36, 68] have proposed an adaptive framework for the transmission of 

graphics data in the client/server environment. A number of factors are taken into 

account, such as network conditions, user preferences and the rendering capabilities 

of the client and server in order to select an appropriate transmission method to 

stream 3D models to the client.  

                                                        
10 http://graphics.stanford.edu/software/qsplat/ 



 

22 
 

 

Chapter 3 

The networked paradigm for remote 
rendering 
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3.1. Introduction 

In recent years, networked three dimensional (3D) applications have become more 

demanding in terms of processing capacity. Geometry processing including vertex 

transformations, lighting calculations and triangle assembly appears challenging due 

to the complexity of 3D models and restricted capabilities of graphics hardware in 

mobile devices – otherwise known as a thin client. Therefore, it is expected to take 

advantage of cloud computing for the computation of a portion of the rendering 

tasks, leaving remaining tasks to be computed by the client. 
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To date, existing approaches to graphics rendering on thin clients make use of 

various techniques such as mesh compression [69-70], mesh simplification [71] to 

assist the rendering of huge mesh on mobile devices.  However, there remain some 

major disadvantages of using such techniques. First, the mobile device is required to 

be capable of performing the rendering by itself. Secondly, there must be a trade-off 

between the frame rate and image quality [72-73]. Although image-based rendering 

techniques can be of great use to facilitate the rendering on mobile devices at a 

relatively low cost, it appears inappropriate to such systems that require a full control 

of image size. Additionally, there remains an issue regarding the image quality due to 

the use of 3D warping techniques [11, 50].   

In this chapter, we provide an approach to graphics rendering on thin clients. Our 

approach attempts to reduce the computational workload and memory cost at the 

client. We develop a hybrid framework, in which both the server and the client get 

involved in the rendering process. First, a pipeline-splitting method is proposed with 

the aim of decoupling the geometry processing stage from the rendering pipeline. 

Different from conventional pipeline-splitting methods, our approach relies on 

transform feedback mode11 to obtain data from the buffer object in the graphics card. 

This achieves hardware acceleration for geometry processing while hardware support 

still remains available for the rasterization stage as soon as the data is put back to be 

rasterized in the graphics card. Next, we introduce a networked paradigm for remote 

rendering based on our pipeline-splitting method. A theoretical analysis is presented, 

and then an implementation based on client/server architecture is built to investigate 

the proposed paradigm. The experimental results shown that our method can reduce 

memory cost and computational workload at the client and the processing time at the 
                                                        
11 http://www.opengl.org/registry/specs/NV/transform_feedback.txt 
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server. Moreover, as the rasterization stage is executed at the client, our approach 

gives the end users full control of the image size on the screen. 

3.2. Rendering pipeline analysis 

In general, a rendering pipeline typically consists of a number of stages including 

vertex processing, geometry processing, rasterization, and fragment processing. For 

the sake of simplicity, we consider the pipeline with only two separated stages. The 

first stage named geometry processing is responsible for vertex transformations, 

lighting calculations, and triangle assembly. The second stage named rasterization is 

a combination of clipping/culling, rasterization, and fragment processing. 

 

Figure 9. A typical rendering pipeline 

From this perspective, we will present an analysis of the rendering pipeline in terms 

of processing time. It is worth noting that the determination of the most time-

consuming stage in the graphics rendering pipeline is challenging as each stage 

depends on various factors. For example, the processing time at the geometry 

processing stage depends on the number of primitives while the processing time at 

rasterization stage depends on the number of input primitives, the viewing angle, and 

the image resolution. 

For clarity, let pT  be the processing time of the entire pipeline, and gT  be the 

processing time of the geometry processing stage. The total execution time pT  is 

equal to the sum of the execution times for the two stages: geometry processing and 
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rasterization. gT  can be roughly estimated by disabling rasterization stage to prevent 

primitives from being rasterized. Note that we do not take into account the time taken 

to clear and swap the buffer during the rendering for the sake of simplicity. 

  

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 10. A set of 3D models are used in the test, (a) Atenean - 7546 vertices, 15014 
triangles, (b) Venus - 19847 vertices, 43357 triangles, (c)  Happy - 399864 vertices, 

800000 triangles, (d) Blade - 800124 vertices, 1599996 triangles 

 

 

(a) 

 

(b) 

Figure 11. Processing time at geometry processing stage compared to the rendering 
time – the test was done on NVIDIA Geforce 9500 GT – (a) tested with 3D models with 
number of faces is less than 200k, (b) tested with 3D models with number of faces is less 

than 1600k 
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(a) 

 

(b) 

Figure 12. Processing time at geometry processing stage compared to the rendering 
time in case of dragon model – graphics card: NVIDIA Geforce 9500GT (a) the number 

of faces is less than 100K (b) the number of faces is less than 1M 

 

(a) 

 

(b) 

Figure 13. Processing time at geometry processing stage compared to the rendering 
time in case of happy model – graphics card: NVIDIA Geforce 9500GT (a) the number 

of faces is less than 100k (b) the number of faces is less than 1200k 

We investigate the impact of the image resolution and the number of primitives to 

the processing time at geometry processing stage and the rendering time of the entire 

pipeline. Figure 12, 13, 14 demonstrate some experimental results obtained from the 

test. It further indicates that for complex 3D models and small image size, 

tremendous amount of time is spent at geometry processing stage. Therefore, it is 

desirable to offload the geometry processing stage to a dedicated server, and the 
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rasterization stage is handled at the client. This can balance the rendering workload 

between the client and the server to some extent. 

3.3. Networked rendering framework 

In this section, we describe a scheme for remote rendering based on our pipeline-

splitting method. At first, we present a paradigm for a networked rendering pipeline 

that extends the traditional rendering pipeline to include network transmission of 

geometry data. The rendering pipeline is divided so that some stages of it are 

offloaded to the remote server and the remainders remain at the client. 

 

Figure 14. Different architectures of networked rendering pipeline, (a) the entire 
pipeline is placed on server, (b) geometry is placed on server, rasterization is on client, 

(c) the entire pipeline is placed on client 
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3.3.1. Pipeline splitting method 

Typically, the rendering pipeline resides on a single machine. It is difficult to divide 

a graphics rendering pipeline into stages due to the tight coupling of the geometry 

and rasterization stages. The idea of breaking rendering pipeline has existed for some 

time. Williams et al. [74-75] proposed a method to separate the geometry stage and 

rasterization stage by adding two extensions to OpenGL library: triangle-feedback 

and triangle-rasterize. The triangle-feedback function passes all primitives through 

the geometric portion without rasterizing them while the triangle-rasterize function 

takes the data from geometric portion and put it into rasterization stage. To achieve 

hardware acceleration for rasterization, a vertex program is implemented to pass 

primitives into the hardware rasterizer on the graphics card. Graphics hardware 

acceleration, however, remains undone for geometry processing. Banerjee et al. [76-

77] combined Mesa3D12 and socket networking code together to build RMesa 

(Remote Mesa) which can break the rendering pipeline into sub stages. The client 

can offload some stages in the pipeline to the remote server to be processed and then 

get the result back. Unfortunately, the approach offers no graphics hardware-

acceleration for both geometry processing and rasterization. 

We take a different approach to split the rendering pipeline based on transform 

feedback mode. The use of transform feedback makes it possible to capture vertex 

attributes of the primitives processed by geometry processing stage. Vertex attributes 

are selected to store in a buffer, or several buffers separately which can be retrieved 

some time later. The rest of pipeline can be discarded by disabling rasterization stage 

to prevent primitives from being rasterized. This way uncouples geometry processing 

                                                        
12 http://www.mesa3d.org/ 
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stage from rasterization stage. The transformed primitives copied from transform 

feedback buffer then can be rasterized in a different machine. Note that the entire 

process happens inside the pipeline, therefore our method supports hardware-

acceleration to both geometry processing and rasterization stage. 

 

Figure 15. Transform feedback operation – vertices are transformed and stored in the 
transform feedback buffer object which can be obtained in the middle 

3.3.2. Remote rendering based on the pipeline-splitting method 

We now introduce a remote rendering framework making use of the pipeline-

splitting method that we have presented earlier. The basic concept is similar to 

image-based rendering, the major difference is that the sever sends back transformed 

primitives instead of rendered images to the client. 
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Table 1. Notation 1 

Symbols Quantity 

F  List of faces constructed the mesh 

cF  The remaining faces after culling 

M, N  The number of faces stored in F  and cF  respectively 

CHUNK  Number of faces stored in a packet 

p  Number of packets to be sent to the client 

 

 

Figure 16. Client-server architecture for the proposed framework 

In our proposed framework, the server performs geometry processing on demand 

according to the viewing parameters received from the client. The back-face culling 

method [22, 78] then is employed to cull invisible primitives from transformed ones. 

The remaining primitives then are packaged to be sent to the client for rasterization. 

To deal with restrictions in network performance and bandwidth, we take into 

account the network protocol for the data transmission. For the sake of transmission 

efficiency, it is important that UDP is employed for data transmission and TCP is 

used for exchanging messages and commands. To further reduce the latency, 

graphics content is packetized or can be compressed prior to the transmission. A 
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chunk of primitives is grouped in a packet to be sent to the client for further 

processing. The number of packets to be sent for the rendering of a frame can be 

calculated as follows: 

p = M/CHUNK  = αN/CHUNK                       (Equation 1) 

Where α = M/N  is culling ratio (0 < α  1 ). It is worth noting that the value of α  

depends on the shape of the 3D model and the position of the model corresponding 

with the camera. 

Table 2. The average value of α  tested with several 3D models 

Model The average value of α  

Shark 0.445504 

Beethoven 0.575944 

Car 0.500286 

Ateneum 0.526975 

Dragon 0.429286 

Bunny 0.498222 

a. Transmission latency 

Supposed that the time taken to transmit a packet to the client is pt . pt depends on 

network capacity ( bw ) and the size of packet ( ps ): p pt =s /bw . 

Table 3. Time to transmit a packet 

CHUNK 
pt (secs) 

10 Mbps 100 Mbps 

600 0.03456 0.003456 

300 0.01728 0.0017728 

200 0.01152 0.001152 

100 0.00576 0.000576 
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Let T  be the transmission time of all primitives after performing back-face culling. 

This is equivalent to the transmission of p packets: 

p pT = p×t  = αN/CHUNK ×(s /bw)                (Equation 2) 

It can be seen that the transmission latency is linearly proportional to the number of 

faces N . 

Table 4. A theoretical estimation of the time it takes to transmit 3D models with 
different level of details (α  = 0.5) 

N p  
(CHUNK = 600) 

T (secs) 

10 Mbps 100 Mbps 

10000 8 0.27648 0.027648 
20000 17 0.58752 0.058752 
40000 34 1.17504 0.117504 
60000 50 1.728 0.1728 
80000 67 2.31552 0.231552 

100000 84 2.90304 0.290304 
 

 

Figure 17. A theoretical analysis of transmission latency (α  = 0.5) 
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b. Bandwidth requirements 

Table 5. Notation 2 

Symbols Quantity 

  Time to send a request to server 

st  Processing time at the server 

T  Time to transmit data to the client 

ct  Processing time at the client 

t  The total amount of time for a frame 

 



st

ct

T

 

Figure 18. Analytical cost model of the proposed framework 

The main limitation of our framework, however, is the network connection between 

the server and the client. With the help of culling process, the amount of data has 

been reduced significantly. However, it might take a considerable amount of time to 

transfer data over the low-bandwidth network causing poor interactivity. Therefore, 

there must be a trade-off between the frame rate and the network capacity. The 

question then is how much bandwidth is needed to achieve a frame rate of FPS. This 

results in an essential upper-bound on the total processing time which should not be 

greater than 1/FPS.    

s ct = τ + t  + t  + T  1/FPS                      (Equation 3) 
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The server is assumed to be very powerful and the size of request data is very small 

so that   and st  is very small, therefore: 

ct  t  + T  1/FPS                         (Equation 4) 

Substituting the earlier obtained equations we have: 

p cαN/CHUNK ×(s /bw) + t   1/FPS             (Equation 5) 

Thus:  

p cbw  (s αN/CHUNK)/(1/FPS - t )            (Equation 6) 

Denote 0 p cbw  = (s αN/CHUNK)/(1/FPS - t ) , we can see that 0bw depends on the 

total number of faces and the rendering capability of the client. 

 

Figure 19. Bandwidth requirements in case 0.5  , CHUNK = 600 , FPS = 10 , ct  
varies 
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Figure 20. Bandwidth requirements in case α=0.5 , CHUNK = 600 , FPS = 10 , N  varies 

 

3.3.3. Parallel geometry processing 

In terms of the performance at the server side, it is expected to perform 

geometry processing in parallel. The advantages of parallel processing are 

twofold. On the one hand, it speeds up the processing at the server side. On the 

other hand, it enhances the system capacity to be capable of serving multiple 

clients concurrently. In this section, we present a framework for parallel 

geometry processing. We extend our networked rendering paradigm by 

dividing the total number of primitives per frame by the number of available 

server. 
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Figure 21. Parallel geometry processing framework 

 Table 6. Notation 3 

Symbols Quantity 

F  
The original mesh which consists of N  
primitives 1 2 NF = {f , f , ..., f }  

1 2 MF , F ,..., F  Sets of primitives decoupled from F  

1 2 Mc c cF , F , ..., F  Sets of remaining primitives after culling 

The operation can be briefly described as follows. The 3D mesh F  is first divided 

into sets of primitives: 1 2 MF,F ,...,F  which are to be handled in M  servers 

respectively (
M

i
i 1

F F


 , and i jF F 1 i j M      ). Each server in the parallel 

framework operates similarly to a single server in the networked paradigm that we 

have presented earlier. Consequently, the outputs of the servers are sets of visibly 

transformed primitives 
1 2 Mc c cF , F , ..., F  which are then transmitted to another machine 

for rasterization on the same basis. The client in turn receives 
icF  from the servers 

and performs the rasterization stage as soon as all data has been received. The 

method, of course, can speed up the geometry processing as the geometry processing 

computation is processed in parallel in different machines. However, it is worth 
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noting that as the client side is not scaled up, the processing time at the client remains 

unchanged. 

The following presents some images obtained from our tests with the distributed 

geometry processing framework. First, we use two servers for geometry processing. 

The client receives transformed primitives from both servers and performs 

rasterization by itself. The second test with three servers operates on the same basis, 

except the workload now is to be handled in three different servers.  

           

Figure 22. Parallel framework with two servers 

 
(a) 

 
(b) 

 
(c) 

Figure 23. (a) Geometric data processed at geo-node1 (no rasterization discarded), (b) Geometric 
data processed at geo-node2 (no rasterization discarded), (c) Rasterization is done at the client 
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Figure 24. Geometric data is distributed to 3 servers for geometry processing, the transformed 
primitives then is transmitted to the client to be rasterized there 

This parallel framework can be applied to sort-middle parallel rendering as the 

rasterization stage is parallelized to be performed in different machines.  In sort-

middle parallel rendering, geometry processing and rasterization are performed on 

separate processors in many systems, which has been found to be the most natural 

place to break up the pipeline. 

   

Figure 25. Our parallel framework can be applied to sort-middle rendering  
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3.4. Experimentation 

We have implemented a remote rendering system on Windows in C++ using 

OpenGL making use of the proposed pipeline-splitting method to split the rendering 

workload between the server and client. The server we used in the test is Intel ® 

Core ™ i7 CPU, 3.24 GB of RAM, with NVIDIA GeForce 9500. A DELL T6600, 

Intel® Core™ 2 Duo CPU 2.2 GHz, 2G RAM is used as a client. 

a. Processing time in the pipeline 

We make a comparison between local rendering and our method in terms of 

processing time in the rendering pipeline at the client side. It shows that, our method 

can reduce the processing time at the client significantly, especially for 3D models 

with high levels of detail, as the number of faces processing at client has been 

reduced and the geometry processing stage has been performed at the remote server. 

Table 7. A comparison between our proposed method and local rendering in terms of 
processing time 

Model Num of verts Num of faces 
Local rendering 

(milliseconds) 

Our method 

(milliseconds) 

Beethoven 2521 5030 4.2 2.7 

Car 5247 10474 7.2 4.8 

Ateneam 7546 15014 10 6.0 

Dragon 10006 20000 17 8.0 

Venus 19847 43357 32 18 

Bunny 34834 69451 48.6 27.6 
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Figure 26. Comparison between our method and local rendering in terms of processing 
time at client (image size = 400x400) 

We also compare our method with server-side rendering in terms of processing time 

at the server. We take into account the time taken to copy data out of the pipeline. 

For example, in the case of server-side rendering, we measure the processing time of 

the entire pipeline plus the time taken to copy data from the frame buffer to CPU. 

And in our method, we measure the processing time at geometry processing stage 

and the time to copy data from the transform feedback buffer. When the number of 

primitives to be processed is small and the image size is large, the processing time at 

the server is significantly reduced in our method compared to that of server-side 

rendering. Note that when the fragment processing is relatively cheap, the transform 

feedback could end up being a major bottleneck leading to more processing time at 

the server in our method compared to that of server-side rendering. 
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Figure 27. A comparison between server-side rendering and our method in terms of 
processing time tested with dragon model 

 

Figure 28. A comparison between server-side rendering and our method in terms of 
processing time tested with happy model 
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Figure 29. A comparison between server-side rendering and our method in terms of 
processing time tested with bunny model 

b. Storage requirements 

As back-face culling is performed at the server, the number of faces to be handled at 

the client is significantly reduced. As can be seen in the Figure below, about 40-50% 

of the faces are actually processed at the client. As such, our method would be of 

great benefits to thin clients since they are limited in their storage capacity. 

 

Figure 30. Average number of faces processed at the client 
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c. Network communication 

The data transfer capabilities is considered to be the major bottleneck in the remote 

rendering. Network communication for the proposed framework is built on TCP/IP 

sockets. We employ UDP for the transmission of graphics datasets and TCP for 

sending commands from client to server and vice versa. We have previously 

presented a theoretical analysis of transmission latency in section 3.3.2. Therefore, 

this experiment is also able to verify the theoretical analysis of our proposed 

framework. Our test is conducted in both a 10 Mbps and 100 Mbps Ethernet 

connections. 

To further reduce the transmission latency, we can make use of a 

compression/decompression technique. However, it is worth noting that the process 

of compression/decompression may also introduce some delays to the system. 

Table 8. Transmission latency 

Model Num of verts Num of faces 
Latency (seconds) 

10 Mbps 100 Mbps 

Shark 468 734 0.0380 0.0043 

Apple 867 1704 0.0750 0.0084 

Ant 468 912 0.0380 0.0044 

Beethoven 2521 5030 0.1778 0.0199 

Car 5247 10474 0.3432 0.0337 

Ateneam 7546 15014 0.3840 0.0469 

Big dodge 8477 16646 0.5261 0.0543 

Dragon 1 10006 20000 0.6247 0.0641 

Dragon 2 12509 24999 0.7673 0.0802 

Dragon 3 15014 30000 0.9296 0.0956 

Dragon 4 17517 35000 1.0741 0.1117 

Venus 19847 43357 1.2881 0.1359 

Bunny 34834 69451 2.1737 0.2124 
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Figure 31. Transmission latency 

   

Figure 32. Client-side viewer 

 

3.5. Summary and conclusion 

In this chapter, we have investigated the graphics rendering pipeline in terms of 

processing time. A novel pipeline-splitting method is presented with the aim of 

splitting the renderings workload between the server and the client. An advantage of 

our method is that it can achieve hardware-acceleration on both geometry processing 

and rasterization stage. We have also proposed a networked rendering paradigm 

based on our pipeline-splitting method to facilitate remote rendering on thin clients. 
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Experimental results shown that our method can reduce memory cost and 

computational workload at the client compared to that of client-side rendering 

method and processing time at the server compared to that of server-side rendering 

method. The work also can be applied to distributed-rendering as we distribute 

geometry processing and rasterization to be handled on different machines in the 

cloud. However, the method faces a challenge to meet real time requirement due to 

the transmission latency. To overcome this challenge, a number of techniques can be 

considered to employ in order to reduce amount of data to be sent over the network 

such as mesh simplification and mesh compression. Additionally, in our proposed 

paradigm, we can see that a majority of the transmitted data between consecutive 

frames is likely to be redundant. In the next chapter, we will exploit this fact to 

propose a method which can reduce the amount of data to be sent per request 

therefore reduce the transmission latency. 
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Chapter 4 

A visibility-based streaming framework 
for networked graphics 
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4.1. Introduction 

Interactive network-systems based on client/server architecture are posing new 

challenges to computer graphics. Large 3D models consisting of millions of 

primitives are challenging to store and render. Additionally, the transmission of large 

graphics datasets is considered to be a critical bottleneck in networked graphics 

applications. To reduce the waiting time and the amount of data being processed at 

the client, it is desirable to transmit only visible portions of the model to the client 

with respect to client’s current viewpoint.  
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There is a significant body of work that delves into visibility-based streaming, and 

most are based on determination of primitives which are potentially visible from the 

client’s current viewpoint [79-80]. The determination of visible primitives needs the 

collaboration of both the client and server. There are two methods for client/server 

collaboration. In the first one, the server is fully responsible for determining visible 

primitives that need to compensate the client for a proper rendering. In the second 

method, the client determines objects to be requested and the server sends these 

objects back to client on demand. These two methods respectively have great impacts 

on the server and the network connection workload. 

In the previous chapter, we have introduced a remote rendering framework based on 

our pipeline-splitting method. The method can save the client in terms of processing 

time and computational workload. However, the number of primitives transmitted 

across the network may be still very high after back-face culling leading to high 

transmission latency. Therefore, this method is not suitable for latency-sensitive 

applications. In this chapter, we take a different approach for 3D mesh streaming 

based on server-side processing of visibility information. The pipeline-splitting and 

back-face culling methods are used for the determination of visible primitives. The 

server keeps track of primitives currently stored in the client’s cache and transmits 

only visible primitives which are new to the client in order to reduce the number of 

primitives transmitted across the network. To deal with the computational workload 

at the server, we also present a parallel framework to scale the server side so that the 

computational workload can be processed in different machines in parallel. 
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4.3. Visibility-based streaming method 

4.3.1. A theoretical analysis for visibility streaming 

As the network bandwidth and transmission latency have become a critical 

bottleneck for interactive graphics, the back-face culling method can be of great use 

to the network transmission [23, 79, 81]. However, a slight change in the viewpoint 

might lead to a considerable number of new primitives that the network is unlikely to 

afford in real time. The visibility streaming method takes into account the client’s 

cache and transmits only additional primitives that are not stored in the client’s for 

the rendering of the next frame. Therefore, the amount of data to be sent is 

significantly reduced. In this chapter, we present a theoratical analysis for visibility 

streaming, in which a number of factors is examined, such as number of primitives 

needs to be sent to the client for the rendering of the next frame, the corresponding 

latency, and bandwidth requirement. 

 

Figure 33. A movement of the camera from viewpoint P1 to viewpoint P2 



 

49 
 

  

Figure 34. (a) – The model captured from the current viewpoint, - (b) New primitives 
appear from the movement 

For the sake of simplicity, we consider an ideal case in which the 3D object has a 

spherical shape with radius r , composed of fN faces. The camera is assumed to 

move around a concentric sphere with radious R ( R > r ).  

 

Figure 35. Spherical-shape object with radius r, composed of Nf faces 

The general problems can also be considered by covering the object with a sphere 

then projecting all the primitives of the object into a sphere. In this case, the 

distribution of the primitives across the sphere is non-homogeneous as the shape of 

the object is no longer spherical.  
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We also assume that the viewing frustum is sufficient to cover the entire object. To 

estimate the number of faces the server needs to compensate for the movement of the 

camera from 1P  to 2P , we consider the plane formed by 1P , 2P  and O intersected the 

two spheres presented in the following figure. 

 

Figure 36. The intersection between the plane formed by three points (P1, P2, O) and 
the two concentric spheres 

Table 9. Notation 4 

Symbols Quantity 

fN  Total number of faces of the mesh 

n  Total number of faces to be sent to the client 

sphereS  The area of the entire sphere (the mesh) 

intersections  
The area of the spherical spherical cap where new 
primitives lie on 

We consider an ideal case: the 3D object is a sphere with radius r and is composed of 

Nf  faces uniformly distributed on the sphere (see Figure 13). The movement of 

camera (from P1 to P2) is assumed to be around a concentric sphere with radius R  

(R  >  r). We presume that the client has all information for the viewing of the 

camera at P1 . We also assume that the viewing frustum is sufficient to cover the 
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entire visible part of the 3D object. Note that all visible faces are lying on a half of 

the sphere (Figure 13).  New primitives to be sent can be calculated as follows: 

intersection f
f

sphere

s Nn =  × N  = φ
s 2π                                  

(Equation 7) 

 
 

(a)  (b) 

Figure 37: (a) Viewing frustum, (b) The movement of the viewing camera 

Denotes fs as  the  size  of  a  face,  and  bw  is  the  network bandwidth. The total 

number of faces to be sent to the client for the rendering of the next frame is n. From 

1 we have: 

f f
trans

n×s nst  =  = φ
bw 2πbw

                          (Equation 8) 

Suppose FPS is the frame rate per second that we expect to achieve. Similarly, we 

can calculate the requirement of the bandwidth as follows: 

f f

c

N sφbw  ×
2π 1/FPS - t

                         (Equation 9) 

To reduce transmission latency, we take into account two cases of caching according 

to how data will be stored at the client: 

Total caching:  the client stores all information received from the server in its local 

cache. The cache will be updated after every move of the camera. This can reduce 
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the transmission latency as there is no need to download primitives that have been 

received in previous viewpoints. As soon as the camera has gone through all possible 

positions there will be no more information to be transmitted from the server and the 

transmission latency ends up being zero. We consider the movement of the camera as 

follows: 

 
 

Figure 38. (a) The movement of camera, (b) slow movement of the camera 

It is worth noting that to get the client cache updated with all the data from the 

server, the camera must undergo a number of positions from P1 to P2. When the 

camera approaches Pn all data has been updated in the cache. Let ti be the 

transmission latency for the movement from Pi to Pi+1. So the total transmission 

latency for the movement from P1 to P2 is 
n-1

i
i=1

t (Note that we do not take into 

account the initial time the client takes to download data at the viewpoint P1). After 

this (the movement from P1 to P2), the transmission latency for the next movement 

becomes significantly reduced as most of the data has been downloaded and stored in 

the cache. There is possibly the case that the camera will not complete the journey 

from P1 to P2. Therefore the number of faces stored in the cache will be far less than 

the number of faces of the 3D model. Assuming that the camera completes its 
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journey at Pk, let ni be the number of faces to be sent for the movement of the camera 

from Pi to Pi+1, we can calculate the number of faces stored in the client cache 

(denoted as N) as follows: 

k-1 k-1
f f f

i i
i=1 i=1

N N NN =  + n  =  + θ
2 2 2π                (Equation 10) 

Let’s 1 nP OP  = θ , we now can calculate N as follows: 

fN θN = (1 + )
2 π                             

Equation (11) 

Selective caching:  the client stores only information which is necessary for the 

rendering at the current viewpoint. Only the previous viewpoint is taken into account 

for the computation of additional primitives to be sent to the client. Therefore, for 

prolonged interactions with the object, significant amount of data is needed to be sent 

to the client for the rendering of the next frame. This will result in the long 

transmission latency, but it can reduce the processing time as the number of 

primitives being processed at the client has been reduced. 

The server is responsible for computing the list of primitives to be sent to the client 

for the rendering of next frame and list of primitives to be removed from the client 

cache. Let ck be the list primitives remaining after culling (corresponding with the 

frame k) at the server side, rmk be the list of primitives to be removed from the client 

cache, and rk be the list of additional primitives to be sent to the client for the 

rendering of frame k. rmk+1 and rk+1 can be calculated as follows: 

k+1 k k k+1rm  = c  - (c   c )                         (Equation 12) 

k+1 k+1 k k+1rm  = c  - (c   c )                        (Equation 13) 
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The client has a cache that stores all primitives which are used for the rendering of 

the last frame (frame k). As soon as the client receive rmk+1 and rk+1, it needs to 

calculate the display list including primitives for the rendering of the next frame 

based on the data stored in the cache and the data received from the server. Based on 

the earlier calculation, we can determine the number of faces stored in the cache in 

case of selective caching corresponding with the angle iθ as follows: 

f iN θN = (1 + )
2 π

                               (Equation 14) 

4.3.2. Visibility-based framework for mesh streaming 

In our proposed method, the server is responsible for computing the display list 

which consists of all visible primitives at the current viewpoint according to the 

viewing parameters received from client. The server itself has a map (indices of 

primitives) of the display list that is currently stored in the client’s cache. It then 

computes a residual list containing visible primitives which are new to the client. The 

residual list is sent to the client for the rendering of the next frame. 

To compute the residual list at the server, we make use of transform feedback mode. 

The server only performs geometry processing without actually having to render the 

3D model by disabling the rasterization stage. The transformed primitives can be 

obtained at this mid-stage through the transform feedback buffer. A back-face culling 

algorithm (see Listing 1) is employed to cull away invisible primitives. To reduce 

transmission latency, only visible primitives which are not stored in the client are 

selected to be sent to the client. 
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Listing 1. The pseudo code for back-face culling 

Vec3 vd = viewing_direction 

FOR EACH triangle IN Meshes { 

 Vec3 p1 = triangle.point[0] 

 Vec3 p2 = triangle.point[1] 

Vec3 p3 = triangle.point[2] 

 

 Vec3 e1 = p3 – p1 

 Vec3 e2 = P3 – p2 

 

 Vec3 surfaceNormal = crossProduct(e1, e2) 

float angle = dotProduct(vd, surfaceNormal) 

IF angle < 0 THEN render the triangle 

ELSE discard the triangle 

} 

 

 

  

Figure 39. A back-face culling, cull all triangles faced away from the camera 

The client maintains a display list which includes only visible primitives 

corresponding with current viewpoint. For a viewpoint change, as soon as the client 

receives the residual list from the server, it performs rendering with the current 

display list and the received residual list. The new display list then is generated by 

discarding invisible primitives and is stored in the cache for the next rendering. 

Table 10. Notation 6 

Symbols Definitions 

iF = {f }, i = 0-N  List of faces constructed the mesh 

ivVF = {f }, i = 0-k  List of visible faces 

icCF = {f }, i = 0-p  List of faces storing in the client’s cache 
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ir
RF = {f }, i = 0-q  List of faces to be sent to the client (residual list) 

idDL = {f }, i = 0-m  Display list which is obtained at the client 

 

The operations on the server and client are briefly summarized as follows: 

Server: 

1. The server performs  geometry processing with the input mesh 0 1 N{f , f , ..., f }  

according to the request from client to compute the list of visible faces 

0 1 kv v vVF = {f , f , ..., f } (k<N)  

2. The sever keeps track of list of faces (
0 1 pc c cCF = {f , f , ..., f }) currently stored in 

the client. It then computes a residual list of faces which is in VF , but not 

stored in the client 
0 1 qr r rRF = VF - (VF CF) = {f , f , ..., f }  (q<k) . RF  is sent to the 

client for the rendering of the next frame. 

Client: 

1. The client renders its own data 
0 1d d dmDL = {f , f , ..., f }and is waiting for the 

updated data from the server 

2. As soon as the client receives the residual list (RF) from the server, it renders 

the received data to generate the complete image of the model corresponding 

with the current viewpoint. The cache then will be updated with the new 

information based on a caching mechanism.  

4.3.3. Parallel framework for visibility-based streaming 

To deal with the substantial workload at the server, we propose a parallel framework 

for visibility mesh streaming. The computational workload at the server side can be 

handled in different machines in parallel. 
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Figure 40. Parallel visibility streaming architecture 

Table 11. Notation 7 

Symbols Definitions 

iF = {f }, i=1-N  List of faces constructed the mesh 

is , i = 1-M  List of servers 

iF , i =1-M  List of primitives is handling at server is  

iVF , i = 1-M  List of visible primitives computed by server is  

iRF , i = 1-M  List of primitives computed by server is  to be 
sent to the client 

iCF , i = 1-M  List of primitives storing in the client’s cache 

Assuming that the system has M servers, the mesh storing at the server side consists 

of N faces, 1 2 NF = {f , f , ..., f } . First, the mesh is divided into M parts: 1 2 MF, F , ..., F , 

each iF  holds a set of primitives which is part of F (
M

i
i=1

F = F ). iF  is distributed to 

server is ( i 1 M  ) to be handled. Each server is is responsible for determining list 

of visible faces, the so-called iVF , from iF  ( i=1-M ) according to the viewing 

parameters received from client based on the back-face culling method that we have 

presented earlier. Every server is  keeps track of all primitives selected from iF  

which are currently stored at the client (denotes set of those primitives as iCF ). The 

residual list iRF can be easily calculated by comparing iCF  and iVF  

( i i i iRF = VF-(VF CF) ), therefore only visible primitives from iVF which are not 
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stored in the client’s cache ( iCF ) are transmitted to the client to construct the new 

display list. As soon as the client receives all iRF ( i=1-M ) from the servers, it builds 

the display list by combining all iRF ( i=1-M ) with its current cache CF . 

Table 12. List of models used in the test 

Model name Model index Num of verts Num of faces 
Beethoven 1 2521 5030 
Car 2 5247 10474 
Ateneam 3 7546 15014 
Dragon 4 15014 30000 
Venues 5 19847 43357 
Bunny 6 34834 69451 
Horse 7 48485 96966 
Blade 8 110131 220672 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 41. Parallel visibility streaming with 2 servers – dragon model: (a) image 
captured at the server 1 (without discarding rasterization), (b) image captured at the 

server 2 (without discarding rasterization), (c) image captured at the client 

 
(a) 

 
(b) 

 
(c) 

Figure 42. Parallel visibility streaming with 2 servers – horse model: (a) image 
captured at the server 1 (without discarding rasterization), (b) image captured at the 

server 2 (without discarding rasterization), (c) image captured at the client 
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Table 13. Parallel framework tested with two servers  

Model 
index 

Server 1 Server 2 client 

Num of 
faces 

Num of 
faces sent 

per request 

Num of 
faces 

Num of faces 
sent per 
request 

Num of faces 
to be 

rendered 

Num of faces 
received per 

request 

1 2515 12 2515 13 3480 24 
2 5237 22 5237 21 5355 44 
3 7507 53 7507 53 8962 106 
4 15000 130 15000 145 15929 276 
5 21678 163 21678 161 21889 324 
6 34725 394 34725 322 35175 716 
7 48483 1661 48483 1635 54249 3296 
8 110336 3322 110336 3300 117623 6622 

4.4. Experimental results and discussion 

We implemented a visibility-based streaming system in C++, with rendering 

performed through an OpenGL library. This includes the client and server modules 

connected via a TCP socket (or multiple TCP socket connections in the case of a 

parallel framework). A number of 3D models were used in the test ranging from 

small (which is composed of thousands of primitives) to large models (which is 

composed hundred thousands to millions of primitives). 

    

Figure 43. Several 3D models were used in the test 

The residual list consisting of the number of primitives to be sent per request 

depends much on the complexity of the 3D models as we have previously analysed. 

Figure below presents the change of residual list according to the complexity of the 

3D models ( fN ) in terms of average number of faces to be sent per request and the 

transmission latency. 
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)a(  

 

 
)b(  

Figure 44. (a) Average number of faces sent per request, (b) Transmission latency 

In our system, the server keeps track of primitives which are stored at the client. 

Therefore, the number of primitives to be sent to the client can be reduced. In 

addition, the number of primitives processing at the client can be significantly 

reduced, by up to 40-50%.  

    

Figure 45. Number of faces to be sent per request is pretty small compared with to total 
number of faces of the original model 



 

61 
 

 

Figure 46. The number of faces processing at the client is significantly reduced 

 
Table 14. Average number of faces processing at the client and average number of faces 

to be sent per request 

Model Num of verts Num of faces Avg. Num of faces 
processed at the client 

Avg. Num of faces 
sent per request 

Shark 468 734 389 5 
Beethoven 2521 5030 3319 59 
car 5247 10474 5611 85 
Ateneum 7546 15014 9300 106 
Dragon 1 10006 20000 10290 143 
Dragon 2 12509 24999 12956 152 
Dragon 3 15014 30000 15421 172 
Dragon 4 17517 35000 18038 187 
Venus 19847 43357 22588 213 
Bunny 34834 69451 37791 482 
Horse 48485 96966 47172 666 
Blade 1 54926 110336 56505 1054 
Blade 2 110131 220672 113038 1986 
Blade 3 220559 441345 232789 3373 
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4.5. Summary and conclusion 

In this chapter, we have presented a visibility-based method for 3D streaming that 

can effectively reduce the transmission latency. Based on a theoretical analysis, we 

found the relationship between the number of primitives to be sent to the client 

according to the viewpoint change and a number of factors such as the complexity of 

the 3D models and the movement of the camera. It is worth noting that our 

framework can work with pretty large 3D models, however, there must be a limit 

since the residual list is linearly proportional to the number of faces of the 3D model. 

In addition, the server is fully responsible for computing residual list; therefore, we 

also proposed a parallel framework for visibility-based streaming to scale the 

computational workload at the server side and to serve a large number of concurrent 

connections from clients.  
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5.1. Thesis summary 

The thesis has been presented in several chapters. We can summarize our work as 

follows: 

 We reviewed state-of-the-art approaches of remote rendering, 3D networked 

graphics, and graphics streaming. The trade-offs of methods, techniques are 

also addressed and discussed. 

 We introduced a new networked rendering paradigm for remote rendering. A 

novel method to split up the rendering pipeline is presented, aiming to break 

the rendering workload from the point that geometry processing is performed 

at the server, leaving the remaining parts to be done at the client.  
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 We presented an implementation to illustrate our networked-rendering 

paradigm. Experimental results showed that our method can undoubtedly 

reduce memory cost and computational workload at the client while 

simultaneously yielding high quality images. However, the transmission 

latency is considered a critical bottleneck in our system. For complex 3D 

models and low bandwidth network connections, it takes a considerable 

amount of time to transmit graphics datasets for the rendering of each frame, 

thus leading to poor performance. 

 A theoretical approach of visibility streaming is presented. We introduced a 

visibility streaming to support the transmission of 3D models across the 

network. A method is proposed to select visible primitives to be sent to the 

client based on a transform-feedback mode. To deal with the substantial 

workload at the server, we presented a parallel framework that can distribute 

the computational workload at the server to be processed on different 

machines. Our method can effectively reduce memory costs and network 

communication overhead. 

5.2. Future work 

The future approaches can be summarized as follows: 

 Mesh compression and mesh streaming techniques can be applied to our 

current approach to further reduce the transmission latency. 

 A sort-middle parallel rendering can be implemented based on our pipeline-

splitting method. 
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 We are currently employing TCP and UDP for data transmission for our 

remote rendering implementation. A transmission protocol can be developed 

to assist the transmission of graphics datasets over the network 

5.3. Conclusion 

In this thesis, we has presented several approaches to facilitate graphics rendering on 

thin clients based on cloud computing. We have introduced a networked paradigm 

for remote rendering based on our pipeline-splitting method. The use of this method 

makes it possible to split the rendering workload between the server and the client. 

However, the transmission latency may be high due to the large number of primitives 

transmitted across the network. In this regard, we have also presented a visibility-

based streaming framework that can reduce the amount of data to be sent over the 

network as well as the number of primitives processed at the client. To deal with the 

computational workload at the server, a parallel framework is introduced with the 

aim of parallelizing the processing of the workload at the server side. This allows the 

system to be capable of handling a large number of concurrent connections from 

clients. 
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APPENDIX I – RENDERING PIPELINE ANALYSIS 

Model Num of verts Num of tris 
Proc. Time of the 

entire pipeline  
(Tp) 

Proc. Time at 
geometry stage  

(Tg) 

Blade 1 800124 1599996 10.9403 8.77252 
Blade 3 700080 1399999 9.57553 7.67594 
Blade 5 600028 1200000 8.21207 6.57963 
Blade 7 499994 1000000 6.85253 5.48452 
Blade 8 399945 800000 5.49629 4.38925 
Dragon 4 300077 600000 4.12693 3.28573 
Happy 3 199928 400000 2.83945 2.192 

Dragon 12 100144 199971 1.56762 1.10597 
Dragon 13 99992 200000 1.56549 1.10554 
Happy 1 99953 200000 1.50261 1.09773 
Blade 14 99763 200000 1.48668 1.14384 

Dragon 34 10006 180000 1.42428 0.88582 

dragon 10006 159999 1.29218 0.77404 

big dodge 8477 140000 1.15377 0.663107 
ateneam 7546 120000 1.0134 0.55275 
big atc 6906 100000 0.872652 0.439507 
space station 5749 60000 0.606373 0.217334 
car 5247 39999 0.479758 0.106373 
street lamp 4440 20000 0.338954 0.00149783 
hind 3218 20000 0.336794 0.00141132 
airplane 1335 16646 0.200367 0.00139806 
chopper 1066 15014 0.198095 0.00139591 
shark 468 13594 0.192828 0.00139543 
Dragon 1 90135 10237 0.158857 0.00139532 

Dragon 5 80116 10474 0.138811 0.00188587 

Dragon 9 70098 8828 0.103738 0.00139389 
Dragon 13 60082 6448 0.0724985 0.0014083 
Blade 1 49735 2452 0.0505488 0.00139578 
Dragon 26 30033 2094 0.050346 0.0013941 
Dragon 30 20020 734 0.0351187 0.00139944 
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APPENDIX II – SOME CODES USED FOR NETWORKED 

RENDERING PARADIGM 

Listing 2. Declare transform feedback buffer to record vertex attributes 

 
// Transform feedback buffer 
glGenBuffers(1, &tfvbo); 
glBindBuffer(GL_ARRAY_BUFFER, tfvbo); 
glVertexPointer(3, GL_FLOAT, sizeof(point), BUFFER_OFFSET(0)); 
glNormalPointer(GL_FLOAT, sizeof(point), BUFFER_OFFSET(12)); 
glBufferData(GL_ARRAY_BUFFER, _mesh->triangles.num * 3 * 

sizeof(point), 0, GL_STATIC_DRAW); // we're going to record vertex 

position and vertex normal 

 

 

Listing 3. Snipped code to declare vertex attributes to be recorded to shader programs 

 
glActiveVaryingNV( shaderProgram, "vertex_position\0" ); 
glActiveVaryingNV( shaderProgram, "vertex_normal\0" ); 
 
// link to shader program 
glLinkProgram(shaderProgram); 
GLint linkOk = 0; 
glGetProgramiv(shaderProgram, GL_LINK_STATUS, &linkOk); 
if (!linkOk) 
{ 
 std::cout << "Error linking shader program" << std::endl; 
}  
 
// put the shader program into use 
glUseProgram(shaderProgram); 
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Listing 4. A snipped code described how to capture vertex attributes to a transform feedback 
buffer 

 
// transform feedback 
 
int loc[] =  
{ 
 glGetVaryingLocationNV(shaderProgram, "vertex_position"),  
 glGetVaryingLocationNV(shaderProgram, "vertex_normal"),  
}; 
 
glTransformFeedbackVaryingsNV(shaderProgram, 2, loc, 
GL_INTERLEAVED_ATTRIBS_NV); 
glBindBufferBaseNV(GL_TRANSFORM_FEEDBACK_BUFFER_NV, 0, tfvbo); 
glBeginTransformFeedbackNV(GL_TRIANGLES); 
glBeginQuery(GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN_NV, query); 
 
glEnable(GL_RASTERIZER_DISCARD_NV); // disable rasterization 
 
// draw model 
drawVBO(); 
 
glDisable(GL_RASTERIZER_DISCARD_NV);//re-enable rasterization 
 
glEndQuery(query); 
glEndTransformFeedbackNV(); 

 

Listing 5. A snipped code to retrieve vertex attributes from transform feedback buffer 

 
/* Obtain tri data from transform feedback buffer */ 
tri* tfbuffer = new tri[numofIndices]; 
glBindBuffer(GL_ARRAY_BUFFER, tfvbo); 
tri* bufferData = new tri[numofIndices]; 
bufferData = (tri*) glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE); 
assert( bufferData != NULL );  
memcpy(tfbuffer, bufferData, numofIndices * sizeof(tri)); 
glUnmapBuffer(GL_ARRAY_BUFFER); 
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 APPENDIX III – SOME CODES USED FOR VISIBILITY-BASED 

STREAMING FRAMEWORK 

1. Server 

Listing 6. Snipped code to compute list of primitives to be sent to the client among visible 
primitives 

 

/* 

 * Check to see if a primitive is stored in the client’s cache  

 * if the returned value is: 

 *          + -1  : the primitive is not in the client’s cache 

 *          + else: the primitve is already in the client’s cache 

 * Notes: the index of primitive is used for calculation for the 
sake of 

 * simplicity 

 */ 

int in_last_list(int index, int _mi, int _ma) 

{ 

 int _min, _max;    /* range of primitives, the index of each 
*/ 

                         /* primitiv lies within _min and _max     
*/ 

 

 _min = _mi; 

 _max = _ma - 1; 

 

 do  
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 { 

            if (index < last_display_list[_min])     /* not in the 
range */ 

  { 

   return -1; 

   break; 

  } 

  else if (index > last_display_list[_max])/* not in the 
range */ 

  { 

   return -1; 

   break; 

  } 

  else if (index == last_display_list[_min]) 

  { 

   return _min; 

   break; 

  } 

  else if (index == last_display_list[_max]) 

  { 

   return -2; 

  } 

  else 

  { 

                  /* narrow the range */ 

   _min++; 

   _max--; 

  } 

 

 } while (_min <= _max); 



 

76 
 

 

 if (_min > _max) 

 { 

  return -1; 

 } 

} 

 

/* 

 * Each visible primitive is checked by using the function 
in_last_list, 

 * only primitives which are not stored in the client’s cache are 
slected 

 * to be sent to the client for the rendering of the next frame   

*/ 

void compute_residual_list() 

{ 

 int k = 0; 

 int idx; 

 

 

 int _mi = 0; 

 int _ma = num_last_list; 

 

 for (int i = 0; i < num_curr_list; i++) 

 {            

  idx = in_last_list(curr_display_list[i], _mi, _ma); 

 

             /* If the primitive is not in the client’s cache */ 

             /* put it in the list to be sent to the client */ 

  if (idx == -1) 
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  { 

   res_display_list[k] = curr_display_list[i]; 

   residual_tri_list[k] = 
triArray[curr_display_list[i]]; 

   k++; 

  } 

  else if (idx >= 0) 

  { 

   _mi = idx; /* mark the min value to fasten the 
process */ 

  } 

 } 

 

      /* num of primitives to be sent to the client */ 

 num_res_list = k; 

 

 /* save curr_display_list to the cache (to be 
last_display_list) */ 

 for (int i = 0; i < num_curr_list; i++) 

 { 

  last_display_list[i] = curr_display_list[i]; 

 } 

 num_last_list = num_curr_list; 

} 

 

Listing 7. Snipped code to retrieve primitive data from buffer object and then perform culling to 
select visible primitives 
/* 

 * Primitive data can be retrieved from buffer objects by using  

 * glMapBuffer/glUnmapBuffer 
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 * Culling method is then employed to cull away invisible 
primitives 

 * Compute list of primitives to be sent to the client by using 
the 

 * function compute_residual_list 

 */ 

 

void retrive_buffer() 

{ 

      /* Retrieve primitive data from buffer object */ 

 tri* tfbuffer = new tri[numofIndices]; 

 glBindBuffer(GL_ARRAY_BUFFER, tfvbo); 

 tri* bufferData = new tri[numofIndices]; 

 bufferData = (tri*) glMapBuffer(GL_ARRAY_BUFFER, 
GL_READ_WRITE); 

 assert( bufferData != NULL );  

 memcpy(tfbuffer, bufferData, numofIndices * sizeof(tri)); 

 glUnmapBuffer(GL_ARRAY_BUFFER); 

 

 /* perform culling */ 

 tri _t; 

 vec3 p1, p2, p3;    /* the three points formed the 
triangle */ 

 vec3 n;     /* surface normal */ 

 vec3 cv = vec3(0, 0, -1); /* camera vector - viewing 
direction */ 

 

 float angle; 

 

 int k = 0; 
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 for (int i = 0; i < numofIndices; i++) 

 { 

  _t = tfbuffer[i]; 

 

  p1 = vec3(_t.p[0].x, _t.p[0].y, _t.p[0].z); 

  p2 = vec3(_t.p[1].x, _t.p[1].y, _t.p[1].z); 

  p3 = vec3(_t.p[2].x, _t.p[2].y, _t.p[2].z); 

 

  n = (p1 - p2) ^ (p2 - p3); 

 

  angle = n * cv; 

 

  if (angle < 0) 

  {    

   k++; 

   curr_display_list[k] = i; 

  } 

 } 

 

 num_curr_list = k; 

 

      /* Compute list of primitives to be sent to the client */ 

 compute_residual_list(); 

} 
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2. Client 

Listing 8. Snipped code to update primitive data at client as soon as it received data from the 
server 
/* 

 * Update the client’s cache with primitives received from the 
server 

 */ 

 

void update_buffer() 

{ 

 for (int i = 0; i < num_res_tris; i++) 

 { 

  curr_tri_list[i + num_curr_tris] = res_tri_list[i]; 

 } 

 

 num_curr_tris += num_res_tris; 

 

 glDeleteBuffers(1, &vbo[1]); 

 

      /* Put data in the buffer to be drawn */ 

 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]); 

 glVertexPointer(3, GL_FLOAT, sizeof(point), 
BUFFER_OFFSET(0)); 

 glNormalPointer(GL_FLOAT, sizeof(point), BUFFER_OFFSET(12)); 

 glBufferData(GL_ARRAY_BUFFER, num_curr_tris * sizeof(tri), 
curr_tri_list, GL_STATIC_DRAW); 

} 
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