
University of Wollongong
Research Online

University of Wollongong Thesis Collection University of Wollongong Thesis Collections

2012

Different approaches to the facilitation of graphics
rendering on thin clients based on cloud
computing
Dong Nguyen Thanh
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
Nguyen Thanh, Dong, Different approaches to the facilitation of graphics rendering on thin clients based on cloud computing, Master
of Engineering - Research thesis, School of Electrical, Computer and Telecommunications Engineering, University of Wollongong,
2012. http://ro.uow.edu.au/theses/3783

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/theses
http://ro.uow.edu.au/thesesuow
http://ro.uow.edu.au/
http://ro.uow.edu.au/

DIFFERENT APPROACHES TO THE
FACILITATION OF GRAPHICS RENDERING

ON THIN CLIENTS BASED ON CLOUD
COMPUTING

A thesis submitted in partial fulfillment of requirements for the award of the degree

Master of Engineering by Research

by

Dong Nguyen Thanh

School of Electrical, Computer and Telecommunications Engineering

UNIVERSITY OF WOLLONGONG

August 2012

This page intentionally left blank

I

Statement of originality

I, Dong Nguyen Thanh, declare that this thesis, submitted in partial fulfillment of the

requirements for the award of Master of Engineering – Research, in the School of

Electrical, Computer and Telecommunications Engineering, University of

Wollongong, is wholly my own work unless otherwise referenced or acknowledged.

The document has not been submitted for qualifications at any other academic

institution.

Dong Nguyen Thanh

August 31, 2012

II

TABLE OF CONTENTS

LIST OF FIGURES .. V

LIST OF TABLES.. VII

LIST OF ABBREVIATIONS... VIII

ABSTRACT .. IX

ACKNOWLEDGEMENT ... X

INTRODUCTION... 1

1.1. Overview .. 1

1.2. Research motivation .. 3

1.3. Statement of the problem .. 3

1.4. Research questions .. 5

1.5. Thesis structure .. 6

1.6. Thesis contributions ... 6

1.7. Publications.. 7

LITERATURE REVIEW ... 8

2.1. Background knowledge .. 8

2.1.1. Mesh representation of graphics ... 8

2.1.2. Graphics rendering .. 9

2.1.3. Parallel rendering .. 12

2.1.4. Visibility culling .. 12

III

2.1.5. Computer graphics on thin clients ... 13

2.1.6. Remote rendering in the cloud .. 14

2.1.8. Energy efficiency for mobile devices .. 16

2.2. Client-server rendering architecture .. 17

2.2.1. Client-side method .. 17

2.2.2. Server-side method ... 17

2.2.3. Hybrid method .. 18

2.3. Graphics streaming .. 19

2.3.1. Image-based streaming ... 19

2.3.2. Mesh streaming ... 20

THE NETWORKED PARADIGM FOR REMOTE RENDERING 22

3.1. Introduction ... 22

3.2. Rendering pipeline analysis .. 24

3.3. Networked rendering framework ... 27

3.3.1. Pipeline splitting method ... 28

3.3.2. Remote rendering based on the pipeline-splitting method 29

3.3.3. Parallel geometry processing ... 35

3.4. Experimentation .. 39

3.5. Summary and conclusion ... 44

A VISIBILITY-BASED STREAMING FRAMEWORK FOR NETWORKED GRAPHICS 46

4.1. Introduction ... 46

4.3. Visibility-based streaming method ... 48

4.3.1. A theoretical analysis for visibility streaming ... 48

4.3.2. Visibility-based framework for mesh streaming 54

IV

4.3.3. Parallel framework for visibility-based streaming 56

4.4. Experimental results and discussion ... 59

4.5. Summary and conclusion ... 62

CONCLUSION .. 63

5.1. Thesis summary ... 63

5.2. Future work ... 64

5.3. Conclusion ... 65

REFERENCES ... 66

APPENDIX I ... 71

APPENDIX II .. 72

APPENDIX III ... 74

V

List of figures

Figure 1. Sharing computations between the client and cloud, the yellow part expressed the
computation is performed on the cloud, and the blue part expressed the computation is
performed locally ..4

Figure 2. 3D mesh representation of a 3D object...9

Figure 3. A typical rendering pipeline... 10

Figure 4. Primitive assembly .. 10

Figure 5. The occluded objects and those which fall outside of the viewing frustum are
eliminated .. 11

Figure 6. Rasterization stage converting primitives into fragments 11

Figure 8. Visibility culling techniques .. 13

Figure 9. VirtualGL operations ... 14

Figure 10. A typical rendering pipeline ... 24

Figure 11. A set of 3D models are used in the test .. 25

Figure 12. Processing time at geometry processing stage compared to the rendering time ... 25

Figure 13. Processing time at geometry processing stage compared to the rendering time in
case of dragon model ... 26

Figure 14. Processing time at geometry processing stage compared to the rendering time in
case of happy model ... 26

Figure 15. Different architectures of networked rendering pipeline 27

Figure 16. Transform feedback operation – vertices are transformed and stored in the
transform feedback buffer object which can be obtained in the middle 29

Figure 17. Client-server architecture for the proposed framework 30

Figure 18. A theoretical analysis of transmission latency .. 32

Figure 19. Analytical cost model of the proposed framework .. 33

Figure 20. Bandwidth requirements in case 0.5 , CHUNK = 600 , FPS = 10 , ct varies 34

Figure 21. Bandwidth requirements in case α=0.5 , CHUNK = 600 , FPS = 10 , N varies .. 35

Figure 22. Parallel geometry processing framework.. 36

Figure 23. Parallel framework with two servers .. 37

VI

Figure 24. (a) Geometric data processed at geo-node1 (no rasterization discarded), (b)
Geometric data processed at geo-node2 (no rasterization discarded), (c) Rasterization is done
at the client .. 37

Figure 25. Geometric data is distributed to 3 servers for geometry processing, the
transformed primitives then is transmitted to the client to be rasterized there 38

Figure 26. Our parallel framework can be applied to sort-middle rendering 38

Figure 27. Comparison between our method and local rendering in terms of processing time
at client (image size = 400x400) ... 40

Figure 28. A comparison between server-side rendering and our method in terms of
processing time tested with dragon model .. 41

Figure 29. A comparison between server-side rendering and our method in terms of
processing time tested with happy model .. 41

Figure 30. A comparison between server-side rendering and our method in terms of
processing time tested with bunny model.. 42

Figure 31. Average number of faces processed at the client .. 42

Figure 32. Transmission latency ... 44

Figure 33. Client-side viewer ... 44

Figure 34. A movement of the camera from viewpoint P1 to viewpoint P2 48

Figure 35. (a) – The model captured from the current viewpoint, - (b) New primitives appear
from the movement .. 49

Figure 36. Spherical-shape object with radius r, composed of Nf faces 49

Figure 37. The intersection between the plane formed by three points (P1, P2, O) and the two
concentric spheres .. 50

Figure 14: (a) Viewing frustum, (b) The movement of the viewing camera 51

Figure 15. (a) The movement of camera, (b) slow movement of the camera 52

Figure 43. A back-face culling, cull all triangles faced away from the camera 55

Figure 44. Parallel visibility streaming architecture .. 57

Figure 45. Parallel visibility streaming with 2 servers – dragon model 58

Figure 46. Parallel visibility streaming with 2 servers – horse model 58

Figure 47. Several 3D models were used in the test .. 59

Figure 48. (a) Average number of faces sent per request, (b) Transmission latency 60

Figure 49. Number of faces to be sent per request is pretty small compared with to total
number of faces of the original model... 60

Figure 50. The number of faces processing at the client is significantly reduced 61

VII

List of tables

Table 1. Notation 1... 30

Table 2. The average value of α tested with several 3D models ... 31

Table 3. Time to transmit a packet .. 31

Table 4. A theoretical estimation of the time it takes to transmit 3D models with different
level of details (α = 0.5) .. 32

Table 5. Notation 2... 33

Table 6. Notation 3... 36

Table 7. A comparison between our proposed method and local rendering in terms of
processing time .. 39

Table 8. Transmission latency ... 43

Table 9. Notation 4... 50

Table 11. Notation 6 ... 55

Table 12. Notation 7 ... 57

Table 13. List of models used in the test ... 58

Table 14. Parallel framework tested with two servers ... 59

Table 15. Average number of faces processing at the client and average number of faces to
be sent per request .. 61

VIII

LIST OF ABBREVIATIONS

2D Two-dimensional

3D Three-dimensional

CPU Central processing unit

CUDA Compute Unified Device Architecture

FPS Frame per second

GLX OpenGL Extension to the X Window System

GPU Graphics Processing Unit

IBR Image based rendering

JPEG Joint Photographic Experts Group

LOD Level of Detail

MPEG Moving Picture Experts Group

PC Personal computer

RFB Remote Frame Buffer

RTP Real-time Transport Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

VNC Virtual Network Computing

IX

ABSTRACT

Real-time graphics processing on the cloud poses significant challenges in terms of

processing capability, data transmission, and the management of latency. The

rendering of large and complex graphics data requires large processing power and

significant storage that low-powered machines are unlikely to handle capably. In

addition, the transmission of graphics may introduce considerable delays, leading to

poor interactivity. Numerous works have been carried out taking these issues into

account, most of which being based on level of detail (LOD) and image based

rendering (IBR) techniques. However, there are many tradeoffs that need to be

carefully studied in order to realize some of the benefits of cloud computing for three

dimensional (3D) networked graphics. In this project, we explore the state of the art

remote rendering, or in other words, moving the rendering of complex graphics data

into a cloud system. A networked rendering paradigm based on our proposed

pipeline-splitting method is introduced to facilitate a remote-rendering system with

the aim of partitioning the rendering workload between the client and server. We

also propose a visibility streaming method for networked applications to reduce the

transmission capacity required. One of the main advantages of our proposed

methods is that it is easy to scale up at the server side by distributing the workload to

be handled in different machines, leading to a significant improvement at the server

side in terms of performance.

X

Acknowledgement

Foremost, I would like to thank my principal supervisor, Professor Farzad Safaei for

his motivation, encouragement, immense knowledge, and guidance. This work would

not have been possible without his help.

Besides, my special thanks also go to my co-supervisor, Dr Raad Raad for his

insightful comments, and assistance.

I am grateful to the staff of the School of Electrical, Computer and

Telecommunications Engineering for giving me support and help during my study at

the University.

Thanks also to my fellow students and friends, who have helped me during my study

at the University.

I would also like to thank my soccer friends for a wonderful time of fun and fitness

on every weekend.

Last but not the least, I would like to express my deepest gratitude to my parents and

my brother who have supported me during my studies and research projects. Without

their encouragement and support, it would have been impossible for me to finish this

work.

XI

1

Chapter 1

Introduction

Chapter contents

1.1. Overview .. 1

1.2. Research motivation .. 3

1.3. State the problem ... 3

1.4. Research questions ... 5

1.5. Thesis contributions ... 6

1.6. Thesis structure .. 6

1.1. Overview

3D graphics have seen exponential growth since the introduction of the technology

through film and popular culture [1-3]. Continued advances in real-time graphics

recently led to the birth of numerous real-time multimedia applications on the

Internet, namely online games and virtual shopping. There are four primary concerns

with respect to graphics applications on cloud computing: (1) Latency: the time it

takes to transmit graphics content from the server to the client; (2) Reliability: How

often data is lost or corrupted; (3) Bandwidth: How much data can be sent in a given

time; (4) End user devices capacity: graphics processing capability as well as battery

capacity. All of these considerations, as well as trade-offs, need to be taken into

account.

2

3D graphics rendering places huge processing demands on end-user devices.

Different approaches have recently proposed moving this processing load from the

user device into the cloud [4-5]. While at first this appears to be a promising

proposal, there are many tradeoffs that need to be carefully studied in order to realize

some of the benefits of cloud computing for the rendering of 3D graphics. The

transfer of graphics content, especially large 3D models [6], over the network may

suffer from transmission latency and low bandwidth connections. In addition,

graphics processing is considered as a time-consuming process, and in the event that

the server has to serve a large number of clients, it may become overloaded; the

rendering workload can be shifted into the client to take advantage of its graphics

processing capability and relieve the server from the computational burden [7-9].

However, this will further increase the processing demands on the client. In terms of

the network, sufficient bandwidth needs to exist to support larger transfers of data

between the client and the cloud. The network will also need to be of low enough

latency to support real time services and interactivity. From the server side, the

servers will also require sufficient processing capacity to handle the 3D rendering in

a timely manner.

In this thesis, we study the different approaches to various problems regarding

networked graphics applications in cloud computing. Our focus is on solutions that

can effectively reduce memory cost, computational workload at client, and network

communication overhead. More specifically, we explore the state of the art of remote

rendering solutions applied for thin clients which lack the processing power and are

memory-limited. A networked rendering paradigm based on our pipeline-splitting

method is introduced to facilitate remote rendering system with the aim to split the

workload between the client and server. We also propose a method which relies on

3

server-side processing of visibility for 3D mesh streaming. To deal with the

substantial workload at the server, we present a parallel framework that can distribute

the computational workload at the server side to be processed in different machines.

This can lead to a significant improvement at the server side in terms of performance.

1.2. Research motivation

The widespread development of handheld devices in the last decade has increased

the demand for multimedia services. Mobile devices are normally not powerful

enough to handle computational-intensive applications, thus, the emergence of cloud

computing may be important to end-users as it can assist less powerful devices to

support computationally expensive applications.

3D graphics are becoming widespread across the Internet, as can be seen in

numerous applications such as virtual museums, online games, and other services

that use virtual reality or visualization. These applications are carried out not only via

personal computers (PCs), but also through various mobile devices. This trend will

undoubtedly grow in the years ahead, leading to an increasingly larger amount of

data that are to be placed on end-user devices. In this thesis, we aim to find solutions

that can reduce the computational workload, and memory cost at the client as well as

transmission latency. Therefore, our research has the potential to assist the ubiquitous

availability of such applications with the aid of cloud computing.

1.3. Statement of the problem

Interactive 3D applications often require massive computational resources that low-

powered devices are unlikely to capably handle. A possible solution is to offload a

4

portion of computations to servers on the cloud, leaving remaining parts to be

processed by the client; this can save the client in terms of battery and storage.

However, there remains a problem with respect to the transmission of graphics

content over the network. Energy efficiency is also a critical problem to mobile

devices. Cloud computing can save mobile client energy but in some cases it can lead

to more energy usage as the data transmission between the client and the server

requires energy.

Figure 1. Sharing computations between the client and cloud, the yellow part expressed

the computation is performed on the cloud, and the blue part expressed the
computation is performed locally 1

In this thesis, we are going to investigate these tradeoffs in particular cases.

Specifically, the following factors are taken into consideration:

1. Transmission latency

2. Rendering capability of the client and the server

3. The transmission of graphics datasets over the network

4. The rendering performance of the system

1 Project group “Algorithms for 3D rendering using Cloud Computing”: http://www.hni.uni-
paderborn.de/en/algorithms-and-complexity/teaching/algorithms-for-3d-rendering-using-cloud-
computing/

5

5. Memory cost at the client side

6. Energy consumption at the client

The focus of this thesis is on the methods and techniques that can be applied to deal

with aforementioned issues. Therefore, reducing the impact of the transmission

latency, memory capacity, and rendering capability of thin clients is considered to be

vital in this research.

1.4. Research questions

Regarding networked graphics applications, much work has been done to reduce

transmission latency as well as assisting low-powered end-user machines. Most

existing approaches focus on reducing graphics data to be processed at the client by

simplifying the complexity of the graphics scenes to fit the client’s rendering

capabilities (level of details techniques) [10]. However, the process of simplification

reduces the quality of rendered images and introduces some delay. Therefore, for

large-scale scenes, it could be of great benefits to thin clients if all processing,

including rendering, is carried out at the server. Image based rendering techniques

can be employed to further relieve the client from the rendering workload, making it

possible to render very complex 3D scenes on mobile devices. Unfortunately, image

quality may suffer due to the limited size of the rendered image and the lack of

information to construct new images at novel viewpoints (3D image warping

techniques) [11]. In this research, we aim to investigate tradeoffs of existing

approaches. Specially, our focus is finding methods which can fulfill the following

demands:

1. Methods to split up the workload between the server and the client.

6

2. Methods to reduce computational workload and memory cost at the client.

3. Methods to reduce transmission latency.

4. The scalability at the server side.

1.5. Thesis structure

The thesis is structured as follows:

 Chapter 1: Introduction. This chapter presents an overview of our research

and its highlighted contributions.

 Chapter 2: Literature review. This chapter presents background knowledge

for our research. Relevant work are also briefly presented and discussed in

this chapter.

 Chapter 3: A networked paradigm for remote rendering. This chapter

demonstrates a paradigm for networked rendering pipeline. We also present a

remote rendering implementation making use of the paradigm. Our proposed

method is then thoroughly compared with other rendering models.

 Chapter 4: A visibility-based streaming framework for networked graphics.

This chapter presents a selective streaming framework that can effectively

reduce the underline-processing workload processing at the client as well as

reducing the overhead of transmitting data over the network.

 Chapter 5: Conclusion. The thesis is concluded, and details of future work to

be carried out are also presented in this section.

1.6. Thesis contributions

Major contributions of this thesis are listed below:

7

 A novel method to split up the rendering pipeline is presented aiming to break

up the rendering workload from the point that geometry processing is

performed at the server, leaving the remaining parts to be done at the client.

 We propose a new networked rendering paradigm for remote rendering based

on our pipeline-splitting method. Experimental results show that our method

can effectively reduce memory costs and computational workloads at the

client.

 We present a study of visibility-based streaming for networked graphics

applications. A visibility streaming method also is introduced to support the

interactivity between the server and client.

 We also present a parallel framework for visibility streaming that can

distribute the computational workload at the server to be processed in

different machines. Experiment results demonstrate that our method can

reduce memory cost and network communication overhead.

1.7. Publications

The publications arising from this research are listed as listed as follows:

 Dong Nguyen, Farzad Safaei, Raad Raad, “A networked rendering paradigm

for remote rendering”, Special issue on “Cloud computing”, Journal of

Software Engineering and Applications, 2012, submitted: 29th August 2012

8

Chapter 2

Literature review

Chapter contents

2.1. Background knowledge ... 8

2.1.1. Mesh representation of graphics... 8
2.1.2. Graphics rendering ... 9
2.1.3. Parallel rendering ... 12
2.1.4. Visibility culling ... 12
2.1.5. Computer graphics on thin clients ... 13
2.1.6. Remote rendering in the cloud .. 14
2.1.8. Energy efficiency for mobile devices ... 16

2.2. Client-server rendering architecture ...17

2.2.1. Client-side method ... 17
2.2.2. Server-side method .. 17
2.2.3. Hybrid method ... 18

2.3. Graphics streaming ...19

2.3.1. Image-based streaming ... 19
2.3.2. Mesh streaming .. 20

2.1. Background knowledge

2.1.1. Mesh representation of graphics

Three dimensional (3D) graphics objects can be presented as a set of polygons or

what is so-called polygonal mesh. In this thesis we consider only triangle mesh since

it is one of the most prevalent representations of 3D objects. Any none-triangular

polygons can be triangulated after a number of simple steps.

9

Figure 2. 3D mesh representation of a 3D object2

Basically, there are three types of information to present a 3D mesh, including

geometry information, connectivity information, and photometry information. We

can present a mesh as M = (V, F) where V is a list of vertices 1 2 n(v , v , ..., v) and F

is a list of triangles 1 2 m(tri , tri , ..., tri) . Each vertex coordinate can be expressed by

three floating-point values (x, y, z) and each triangle (or a face) is expressed by three

integers referring to three vertices that form the triangle.

2.1.2. Graphics rendering

Graphics rendering is the process of simultaneously generating 2D images from 3D

scenes. Graphics data before being displayed on the screen must undergo a number

of stages in a so-called graphics rendering pipeline. A graphics pipeline typically

consists of a number of stages including vertex processing, primitive assembly,

geometry processing, clipping and culling, rasterization, and fragment processing.

2 2 Source: http://en.wikipedia.org/wiki/Polygon_mesh

10

Figure 3. A typical rendering pipeline

Vertex processing: Vertex shaders are responsible for vertex processing by

performing operations such as vertex transformation, lighting calculation. The

outputs of this stage are individual vertices.

Primitive assembly: In this stage, transformed vertices are grouped based on

connectivity information to be converted into primitives (polygons, lines, points).

Figure 4. Primitive assembly3

Geometry processing: The geometry processing stage happens prior to

culling/clipping and after primitive assembly. It receives primitives from previous

stage to further process them. Unlike other stages, the geometry stage is capable of

generating new primitives from existing ones.

3 3 Source: http://www.lighthouse3d.com

11

Clipping and culling: This stage is responsible for eliminating invisible primitives

and those which fall outside of the viewing frustum.

Figure 5. The occluded objects and those which fall outside of the viewing frustum are

eliminated4

Rasterization: The rasterization stage is responsible for converting every primitive,

into a set of fragments. The output of this stage will be passed on to the fragment

processing stage for further processing.

Figure 6. Rasterization stage converting primitives into fragments5

Fragment processing stage: A fragment output from the rasterization stage is the size

of a pixel, but it is not a real pixel. In fragment processing, data must undergo a

4 http://www.gamasutra.com/view/feature/164660/sponsored_feature_next_generation_.php?print=1
5 http://sharavaa.blogspot.com.au/2012/03/graphics-pipeline.html

12

number of tests (e.g. depth test, stencil test, alpha test), and become a real pixel to be

displayed on the screen after getting passed all those tests.

2.1.3. Parallel rendering

Parallel rendering is essential for the rendering of large graphics datasets [12-13] and

large tiled display [14]. There has been much work devoted to parallel rendering in

the literature. A classification of parallel rendering has been described in [15], in

which parallel rendering is classified into sort-first, sort-middle, and sort-last

rendering. Recent work on interactive rendering makes use of parallel rendering to

achieve a better rendering performance. Lamberti et al. [16] presented a rendering

cluster based on Chromium [17-19] to support remote rendering on handheld

devices. The system can handle multiple user interactions by making use of a

“token” protocol. Parallel rendering can also be applied to volume rendering [20] by

dividing volumes into smaller ones and then distributing them to different rendering

machines to be handled.

2.1.4. Visibility culling

Visibility culling is extremely essential for the rendering of large and complex 3D

scenes. The primary goal of culling techniques is to eliminate primitives that are

invisible from the current viewpoint and prevent them from being further processed.

This reduces the processing time as this is proportional to the size of remaining

visible set. Visibility culling can be roughly classified into view-frustum culling,

back-face culling, occlusion culling [21]. Back-face culling [22] culls primitives

which face away from the viewer, and view-frustum culling [23] eliminates

13

primitives which fall outside of the viewing frustum, while occlusion culling

techniques discard primitives which are occluded by others [24].

Figure 7. Visibility culling techniques [24]

To date, an enormous amount of work has been done regarding visibility culling

techniques. Yoon et al. [25] presented an algorithm for interactive display of

complex environments using cluster hierarchies and occlusion culling. Engelhardt

and Dachsbache [26] proposed a method for visibility determination of a large

number of objects which can improve the rendering performance by culling invisible

primitives at geometry shaders.

2.1.5. Computer graphics on thin clients

3D graphics applications on thin devices, especially handheld devices, have been

named as one of the fastest growing segments of the graphics industry in recent

years. However, there remains a fundamental issue; 3D graphics applications

normally necessitate large amounts of computing resources, battery power and

storage, while thin devices tend to be limited in these resources. Virtual Network

14

Computing (VNC6) attempts to allocate computing resources to the clients, thus

makes it possible to run 3D graphics applications on thin clients. A VNC server

stores all rendered images in a frame buffer and sends the content to client on

demand through the use of Remote Frame Buffer (RFB) protocol. VirtualGL [27]

makes use of VNC protocol for the network streaming of graphics content to thin

devices which lack graphics rendering capability. The client sends out OpenGL

commands to be processed in the remote Graphics Processing Unit (GPU) at the

server side and reads back the rendered images.

Figure 8. VirtualGL operations7

2.1.6. Remote rendering in the cloud

Cloud computing is considered as a promising factor for 3D graphics technologies.

The idea is to render graphics data, compress the rendered images at the server side,

and send the results to the clients to be further processed. Cloud computing offers

great potential in the gaming industry with several solutions in this area. For

6 http://en.wikipedia.org/wiki/Virtual_Network_Computing
7 http://virtualgl.org

15

example, OnLive8 is known as a cloud gaming solution based on the image-based

rendering approach. Graphics data stored in the cloud is rendered and streamed to

clients on demand. Similar to OnLive, OTOY9 provides various types of real-time

graphics services in the cloud such as computer applications, video games, High

Definition media content, and film/video special effect graphics through server side

rendering.

There has been a great deal of attention paid by researchers to remote graphics

rendering using cloud computing infrastructure. Okamoto et al. [28] introduce an

interactive rendering system for large 3D mesh models based on cloud computing.

The system makes use of both image-based rendering and model-based rendering

techniques to balance the workload between the client and server. Winter et al. [29]

propose a hybrid approach to facilitate graphics processing on thin clients. An

adaptive mechanism is proposed to select an appropriate transmission method

according to the scenarios of scenes. Jurgelionis et al. [30] introduced a hybrid

approach based on Game@Large [31-32]. This solution is fairly flexible since it can

support both low- and high-powered devices concurrently by applying two streaming

approaches. For small displays like handheld devices, the server performs the

rendering tasks and streams rendered images and audio data to the client. For high-

end devices, the client possesses its own graphics processing unit and is capable of

performing rendering by itself; hence graphics commands are encapsulated and

transmitted to the client to be processed locally.

8 http://www.onlive.com
9 http://www.otoy.com/

16

2.1.8. Energy efficiency for mobile devices

The need for energy efficiency is very critical for mobile devices since the advance

of battery technology is insufficient to meet the demand of mobile users. Cloud

computing has tremendous potential to save mobile energy. However, the tradeoff

between energy consumed by computation and the energy consumed by

communication needs to be carefully considered. Miettinen and Nurminen [33]

pointed out that there must be a break-even point for computation offloading. For the

sake of efficiency, the energy consumed by the local computation (Elocal) must not

exceed the energy consumed by communication (Ecloud), or in other words Ecloud <

Elocal. Let D be the amount of Data to be transferred in bytes and C be the

computation for the workload in CPU cycles, we have: cloud
eff

DE =
D

 and

local
eff

CE =
C

. Where Deff and Ceff are device specific data transfer and computing

efficiencies. To be beneficial, the following inequality must hold:

eff

eff

CC >
D D

An analysis presented by Karthik and Yung-Hsiang Lu [34] indicates that the energy

saved by computation offloading depends on wireless bandwidth (B), the amount of

computation to be performed (C), and the amount of data to be transmitted (D).

According to the analysis, the energy saved can be calculated as follows:

i
c tr

PC D×(P -) - P ×
M F B

Where: C is the number of instructions required for the computation, M is the speed,

in instructions per second, of the mobile. The speed of the server is F time faster than

17

that of mobile device (S = F x M). Pc, Pi, Ptr respectively are the energy consumption,

in watts, for computing, while idle, and for sending and receiving data. This indicates

that not all applications are energy efficient when migrated to the cloud, at some

point it is more efficient to perform the computation locally rather than remotely.

2.2. Client-server rendering architecture

Graphics processing in client/server architecture can be roughly divided into three

categories: client-side method, server-side method, and hybrid method [35-37].

2.2.1. Client-side method

In this method, the server simply sends graphics data to the client and the client is

responsible for rendering the entire 3D models. The conventional method of client-

side rendering involves transmitting graphics commands to the client and is to be

processed locally [38-39]. This method can reduce workload at the server, but it

increases the processing demand on the client. This is suited for small applications,

but is inappropriate for complex applications that require high rendering power.

Moreover, graphics data to be transmitted to the client may be large leading to a long

downloading time. To make it possible for the transfer of larger models, the server

may perform the simplification and conversion operations to calculate a progressive

representation composed of a simplified model and a series of mesh refinements that

the client will progressively download and display [40-42].

2.2.2. Server-side method

In contrast to the client-side method, this method involves the server as completely

responsible for graphics processing. The server renders the 3D scenes and transmits

18

the rendered images to the client to be displayed [43-45]. This is highly beneficial to

thin clients which often lack specialized hardware and are memory-limited [16, 46-

47], such as mobile devices [48-49]. However, the limitation of this method is that

the server may become congested when serving a large number of clients and an

appropriate network connection, that is, sufficient bandwidth, need to exist. This may

be fine for fixed type networks, but may not be appropriate for wireless networks. In

addition, the latency due to the constant transmission of rendered images from the

server to client may reduce responsiveness and interactivity. Image based rendering

(IBR) techniques can be implemented in the client to improve frame rates and to deal

with the transmission delay [11, 50]. However, there are some tradeoffs between the

image quality and transmission latency [45].

2.2.3. Hybrid method

In this method, both the client and server get involved in the rendering process.

Rendering tasks are partially accomplished at the server and the remainder is

performed at the client. Therefore, the rendering workload can be shared between the

server and client [37, 51]. However, deciding which parts to be performed at the

client and which parts to be performed at the server is not an easy task. Noguera et al.

[37] proposed a technique to split the rendering workload between the server and the

client based on the view volume. The client is responsible for rendering the terrain

which is close to the viewer and the server renders the terrain far away from the

viewer. Diepstraten et al. [52], in a different manner, split the process of image

generation in order to balance workload between the client and the server. The server

partially renders the 3D scene and sends 2D primitives to be processed on the client.

19

However, this may lead to the downgrading of image quality since the client has to

rely on feature lines to draw the image.

2.3. Graphics streaming

The transmission of graphics datasets through the network is considered a major

bottleneck due to the bandwidth limitation and the size of data to be sent. In this

section, we consider two ways of transmitting graphics data from the server to the

client: Image-based streaming, and Mesh streaming.

2.3.1. Image-based streaming

Image-based streaming has been widely used in remote rendering system [53-54].

Panka et al. [55] proposed a framework to facilitate remote visualization on mobile

devices, in which graphics data is rendered at a the server side, the rendered images

then are compressed and streamed to the client as a video stream. Boukerch et al.

[46-47] have presented a rendering method based on image-based rendering

technique to assist the streaming of images over the network. A packetization scheme

and a feedback mechanism have also been proposed to deal with the variations of the

wireless network bandwidth.

Compression is highly essential for image-based streaming to make effective use of

network capacity for the streaming of complex 3D scenes over the network [56].

Various compression techniques for graphics streaming have been considered in the

literature. For example, Cortelazzo and Zanuttigh [57] present a predictive

compression scheme making use of JPEG and JPEG-2000 for remote visualization

based on image-based rendering techniques. Constantinescu and Vlădoiu [58]

20

proposed an adaptive compression method for remote rendering, an appropriate

compression scheme according to the variation of frame rate is selected from

different ones, for example, ZLIB, LZO, BZIP2, RLE, to be used.

MPEG-4 [59-61] is used for image-based streaming systems, this trend becomes

promising especially as most handheld devices are capable of decoding MPEG-4

[62]. Liang Cheng, et tal., [63] make use of MPEG-4 streaming for their remote

rendering system. They also propose a fast motion estimation algorithm to assist the

encoding process.

2.3.2. Mesh streaming

In contrast to image-based streaming, in mesh streaming, the geometric data is

streamed to the client to be rendered. There has been a growing body of research

with respect to streaming mesh over the network. Progressive mesh (PM) streaming

[64] aims to minimize the transmission cost and rendering cost at the client. In this

method, a coarse model is first sent to the client, and then a series of refinements will

be streamed to improve the image quality [65]. Therefore, this reduces the waiting

time as it can enable interactions without a full download of data.

To construct a PM representation, the original mesh M

is simplified through a series

of edge collapses (ecol) to yield a much simpler base mesh 0M and a sequence of

refinements. The simplified model (0M) is first transmitted to the client, and

progressive meshes then refine the object by the continual transmission of

refinements.

0n 1 1 ecolecol ecol
n 1 0M M ... M M

21

At the client side, an inverted sequence, the so-called vertex split (vsplit), is

employed to refine the model from the coarse model to original one.

0 1 n 1vsplit vsplit vsplit
0 1 nM M ... M M

Progressive mesh streaming can achieve good interactivity however it may suffer

from low-quality of images.

In view-dependent streaming, the server progressively streams geometry data to the

client with respect to the current viewing parameters. Rusinkiewicz and Levoy

proposed a view-dependent streaming method based on QSplat10 [66] to facilitate the

streaming of complex 3D models. Yang et al. [67] introduced a patch-based view

dependent streaming technique. First, the mesh is partitioned into a number of

patches which are compressed offline and streamed to the client on demand. The

client relies on received patches and the connectivity information to perform the

rendering by itself. However, one drawback of the method is that it causes an

unsmooth change at the client side due to the alternation of patches. Schneider and

Martin [36, 68] have proposed an adaptive framework for the transmission of

graphics data in the client/server environment. A number of factors are taken into

account, such as network conditions, user preferences and the rendering capabilities

of the client and server in order to select an appropriate transmission method to

stream 3D models to the client.

10 http://graphics.stanford.edu/software/qsplat/

22

Chapter 3

The networked paradigm for remote
rendering

Chapter contents

3.1. Introduction ..22

3.2. Rendering pipeline analysis ..24

3.3. Networked rendering framework...27
3.3.1. Pipeline splitting .. 28

3.3.2. Remote rendering based on the pipeline-splitting method 29
3.3.3. Distributed geometry processing ... 35

3.4. Experimentation ...39

3.5. Summary and conclusion..44

3.1. Introduction

In recent years, networked three dimensional (3D) applications have become more

demanding in terms of processing capacity. Geometry processing including vertex

transformations, lighting calculations and triangle assembly appears challenging due

to the complexity of 3D models and restricted capabilities of graphics hardware in

mobile devices – otherwise known as a thin client. Therefore, it is expected to take

advantage of cloud computing for the computation of a portion of the rendering

tasks, leaving remaining tasks to be computed by the client.

23

To date, existing approaches to graphics rendering on thin clients make use of

various techniques such as mesh compression [69-70], mesh simplification [71] to

assist the rendering of huge mesh on mobile devices. However, there remain some

major disadvantages of using such techniques. First, the mobile device is required to

be capable of performing the rendering by itself. Secondly, there must be a trade-off

between the frame rate and image quality [72-73]. Although image-based rendering

techniques can be of great use to facilitate the rendering on mobile devices at a

relatively low cost, it appears inappropriate to such systems that require a full control

of image size. Additionally, there remains an issue regarding the image quality due to

the use of 3D warping techniques [11, 50].

In this chapter, we provide an approach to graphics rendering on thin clients. Our

approach attempts to reduce the computational workload and memory cost at the

client. We develop a hybrid framework, in which both the server and the client get

involved in the rendering process. First, a pipeline-splitting method is proposed with

the aim of decoupling the geometry processing stage from the rendering pipeline.

Different from conventional pipeline-splitting methods, our approach relies on

transform feedback mode11 to obtain data from the buffer object in the graphics card.

This achieves hardware acceleration for geometry processing while hardware support

still remains available for the rasterization stage as soon as the data is put back to be

rasterized in the graphics card. Next, we introduce a networked paradigm for remote

rendering based on our pipeline-splitting method. A theoretical analysis is presented,

and then an implementation based on client/server architecture is built to investigate

the proposed paradigm. The experimental results shown that our method can reduce

memory cost and computational workload at the client and the processing time at the

11 http://www.opengl.org/registry/specs/NV/transform_feedback.txt

24

server. Moreover, as the rasterization stage is executed at the client, our approach

gives the end users full control of the image size on the screen.

3.2. Rendering pipeline analysis

In general, a rendering pipeline typically consists of a number of stages including

vertex processing, geometry processing, rasterization, and fragment processing. For

the sake of simplicity, we consider the pipeline with only two separated stages. The

first stage named geometry processing is responsible for vertex transformations,

lighting calculations, and triangle assembly. The second stage named rasterization is

a combination of clipping/culling, rasterization, and fragment processing.

Figure 9. A typical rendering pipeline

From this perspective, we will present an analysis of the rendering pipeline in terms

of processing time. It is worth noting that the determination of the most time-

consuming stage in the graphics rendering pipeline is challenging as each stage

depends on various factors. For example, the processing time at the geometry

processing stage depends on the number of primitives while the processing time at

rasterization stage depends on the number of input primitives, the viewing angle, and

the image resolution.

For clarity, let pT be the processing time of the entire pipeline, and gT be the

processing time of the geometry processing stage. The total execution time pT is

equal to the sum of the execution times for the two stages: geometry processing and

25

rasterization. gT can be roughly estimated by disabling rasterization stage to prevent

primitives from being rasterized. Note that we do not take into account the time taken

to clear and swap the buffer during the rendering for the sake of simplicity.

(a)

(b)

(c)

(d)

Figure 10. A set of 3D models are used in the test, (a) Atenean - 7546 vertices, 15014
triangles, (b) Venus - 19847 vertices, 43357 triangles, (c) Happy - 399864 vertices,

800000 triangles, (d) Blade - 800124 vertices, 1599996 triangles

(a)

(b)

Figure 11. Processing time at geometry processing stage compared to the rendering
time – the test was done on NVIDIA Geforce 9500 GT – (a) tested with 3D models with
number of faces is less than 200k, (b) tested with 3D models with number of faces is less

than 1600k

26

(a)

(b)

Figure 12. Processing time at geometry processing stage compared to the rendering
time in case of dragon model – graphics card: NVIDIA Geforce 9500GT (a) the number

of faces is less than 100K (b) the number of faces is less than 1M

(a)

(b)

Figure 13. Processing time at geometry processing stage compared to the rendering
time in case of happy model – graphics card: NVIDIA Geforce 9500GT (a) the number

of faces is less than 100k (b) the number of faces is less than 1200k

We investigate the impact of the image resolution and the number of primitives to

the processing time at geometry processing stage and the rendering time of the entire

pipeline. Figure 12, 13, 14 demonstrate some experimental results obtained from the

test. It further indicates that for complex 3D models and small image size,

tremendous amount of time is spent at geometry processing stage. Therefore, it is

desirable to offload the geometry processing stage to a dedicated server, and the

27

rasterization stage is handled at the client. This can balance the rendering workload

between the client and the server to some extent.

3.3. Networked rendering framework

In this section, we describe a scheme for remote rendering based on our pipeline-

splitting method. At first, we present a paradigm for a networked rendering pipeline

that extends the traditional rendering pipeline to include network transmission of

geometry data. The rendering pipeline is divided so that some stages of it are

offloaded to the remote server and the remainders remain at the client.

Figure 14. Different architectures of networked rendering pipeline, (a) the entire
pipeline is placed on server, (b) geometry is placed on server, rasterization is on client,

(c) the entire pipeline is placed on client

28

3.3.1. Pipeline splitting method

Typically, the rendering pipeline resides on a single machine. It is difficult to divide

a graphics rendering pipeline into stages due to the tight coupling of the geometry

and rasterization stages. The idea of breaking rendering pipeline has existed for some

time. Williams et al. [74-75] proposed a method to separate the geometry stage and

rasterization stage by adding two extensions to OpenGL library: triangle-feedback

and triangle-rasterize. The triangle-feedback function passes all primitives through

the geometric portion without rasterizing them while the triangle-rasterize function

takes the data from geometric portion and put it into rasterization stage. To achieve

hardware acceleration for rasterization, a vertex program is implemented to pass

primitives into the hardware rasterizer on the graphics card. Graphics hardware

acceleration, however, remains undone for geometry processing. Banerjee et al. [76-

77] combined Mesa3D12 and socket networking code together to build RMesa

(Remote Mesa) which can break the rendering pipeline into sub stages. The client

can offload some stages in the pipeline to the remote server to be processed and then

get the result back. Unfortunately, the approach offers no graphics hardware-

acceleration for both geometry processing and rasterization.

We take a different approach to split the rendering pipeline based on transform

feedback mode. The use of transform feedback makes it possible to capture vertex

attributes of the primitives processed by geometry processing stage. Vertex attributes

are selected to store in a buffer, or several buffers separately which can be retrieved

some time later. The rest of pipeline can be discarded by disabling rasterization stage

to prevent primitives from being rasterized. This way uncouples geometry processing

12 http://www.mesa3d.org/

29

stage from rasterization stage. The transformed primitives copied from transform

feedback buffer then can be rasterized in a different machine. Note that the entire

process happens inside the pipeline, therefore our method supports hardware-

acceleration to both geometry processing and rasterization stage.

Figure 15. Transform feedback operation – vertices are transformed and stored in the
transform feedback buffer object which can be obtained in the middle

3.3.2. Remote rendering based on the pipeline-splitting method

We now introduce a remote rendering framework making use of the pipeline-

splitting method that we have presented earlier. The basic concept is similar to

image-based rendering, the major difference is that the sever sends back transformed

primitives instead of rendered images to the client.

30

Table 1. Notation 1

Symbols Quantity

F List of faces constructed the mesh

cF The remaining faces after culling

M, N The number of faces stored in F and cF respectively

CHUNK Number of faces stored in a packet

p Number of packets to be sent to the client

Figure 16. Client-server architecture for the proposed framework

In our proposed framework, the server performs geometry processing on demand

according to the viewing parameters received from the client. The back-face culling

method [22, 78] then is employed to cull invisible primitives from transformed ones.

The remaining primitives then are packaged to be sent to the client for rasterization.

To deal with restrictions in network performance and bandwidth, we take into

account the network protocol for the data transmission. For the sake of transmission

efficiency, it is important that UDP is employed for data transmission and TCP is

used for exchanging messages and commands. To further reduce the latency,

graphics content is packetized or can be compressed prior to the transmission. A

31

chunk of primitives is grouped in a packet to be sent to the client for further

processing. The number of packets to be sent for the rendering of a frame can be

calculated as follows:

p = M/CHUNK = αN/CHUNK (Equation 1)

Where α = M/N is culling ratio (0 < α 1). It is worth noting that the value of α

depends on the shape of the 3D model and the position of the model corresponding

with the camera.

Table 2. The average value of α tested with several 3D models

Model The average value of α

Shark 0.445504

Beethoven 0.575944

Car 0.500286

Ateneum 0.526975

Dragon 0.429286

Bunny 0.498222

a. Transmission latency

Supposed that the time taken to transmit a packet to the client is pt . pt depends on

network capacity (bw) and the size of packet (ps): p pt =s /bw .

Table 3. Time to transmit a packet

CHUNK
pt (secs)

10 Mbps 100 Mbps

600 0.03456 0.003456

300 0.01728 0.0017728

200 0.01152 0.001152

100 0.00576 0.000576

32

Let T be the transmission time of all primitives after performing back-face culling.

This is equivalent to the transmission of p packets:

p pT = p×t = αN/CHUNK ×(s /bw) (Equation 2)

It can be seen that the transmission latency is linearly proportional to the number of

faces N .

Table 4. A theoretical estimation of the time it takes to transmit 3D models with
different level of details (α = 0.5)

N p
(CHUNK = 600)

T (secs)

10 Mbps 100 Mbps

10000 8 0.27648 0.027648
20000 17 0.58752 0.058752
40000 34 1.17504 0.117504
60000 50 1.728 0.1728
80000 67 2.31552 0.231552

100000 84 2.90304 0.290304

Figure 17. A theoretical analysis of transmission latency (α = 0.5)

33

b. Bandwidth requirements

Table 5. Notation 2

Symbols Quantity

 Time to send a request to server

st Processing time at the server

T Time to transmit data to the client

ct Processing time at the client

t The total amount of time for a frame

st

ct

T

Figure 18. Analytical cost model of the proposed framework

The main limitation of our framework, however, is the network connection between

the server and the client. With the help of culling process, the amount of data has

been reduced significantly. However, it might take a considerable amount of time to

transfer data over the low-bandwidth network causing poor interactivity. Therefore,

there must be a trade-off between the frame rate and the network capacity. The

question then is how much bandwidth is needed to achieve a frame rate of FPS. This

results in an essential upper-bound on the total processing time which should not be

greater than 1/FPS.

s ct = τ + t + t + T 1/FPS (Equation 3)

34

The server is assumed to be very powerful and the size of request data is very small

so that and st is very small, therefore:

ct t + T 1/FPS (Equation 4)

Substituting the earlier obtained equations we have:

p cαN/CHUNK ×(s /bw) + t 1/FPS (Equation 5)

Thus:

p cbw (s αN/CHUNK)/(1/FPS - t) (Equation 6)

Denote 0 p cbw = (s αN/CHUNK)/(1/FPS - t) , we can see that 0bw depends on the

total number of faces and the rendering capability of the client.

Figure 19. Bandwidth requirements in case 0.5 , CHUNK = 600 , FPS = 10 , ct
varies

35

Figure 20. Bandwidth requirements in case α=0.5 , CHUNK = 600 , FPS = 10 , N varies

3.3.3. Parallel geometry processing

In terms of the performance at the server side, it is expected to perform

geometry processing in parallel. The advantages of parallel processing are

twofold. On the one hand, it speeds up the processing at the server side. On the

other hand, it enhances the system capacity to be capable of serving multiple

clients concurrently. In this section, we present a framework for parallel

geometry processing. We extend our networked rendering paradigm by

dividing the total number of primitives per frame by the number of available

server.

36

Figure 21. Parallel geometry processing framework

 Table 6. Notation 3

Symbols Quantity

F
The original mesh which consists of N
primitives 1 2 NF = {f , f , ..., f }

1 2 MF , F ,..., F Sets of primitives decoupled from F

1 2 Mc c cF , F , ..., F Sets of remaining primitives after culling

The operation can be briefly described as follows. The 3D mesh F is first divided

into sets of primitives: 1 2 MF,F ,...,F which are to be handled in M servers

respectively (
M

i
i 1

F F

 , and i jF F 1 i j M). Each server in the parallel

framework operates similarly to a single server in the networked paradigm that we

have presented earlier. Consequently, the outputs of the servers are sets of visibly

transformed primitives
1 2 Mc c cF , F , ..., F which are then transmitted to another machine

for rasterization on the same basis. The client in turn receives
icF from the servers

and performs the rasterization stage as soon as all data has been received. The

method, of course, can speed up the geometry processing as the geometry processing

computation is processed in parallel in different machines. However, it is worth

37

noting that as the client side is not scaled up, the processing time at the client remains

unchanged.

The following presents some images obtained from our tests with the distributed

geometry processing framework. First, we use two servers for geometry processing.

The client receives transformed primitives from both servers and performs

rasterization by itself. The second test with three servers operates on the same basis,

except the workload now is to be handled in three different servers.

Figure 22. Parallel framework with two servers

(a)

(b)

(c)

Figure 23. (a) Geometric data processed at geo-node1 (no rasterization discarded), (b) Geometric
data processed at geo-node2 (no rasterization discarded), (c) Rasterization is done at the client

38

Figure 24. Geometric data is distributed to 3 servers for geometry processing, the transformed
primitives then is transmitted to the client to be rasterized there

This parallel framework can be applied to sort-middle parallel rendering as the

rasterization stage is parallelized to be performed in different machines. In sort-

middle parallel rendering, geometry processing and rasterization are performed on

separate processors in many systems, which has been found to be the most natural

place to break up the pipeline.

Figure 25. Our parallel framework can be applied to sort-middle rendering

39

3.4. Experimentation

We have implemented a remote rendering system on Windows in C++ using

OpenGL making use of the proposed pipeline-splitting method to split the rendering

workload between the server and client. The server we used in the test is Intel ®

Core ™ i7 CPU, 3.24 GB of RAM, with NVIDIA GeForce 9500. A DELL T6600,

Intel® Core™ 2 Duo CPU 2.2 GHz, 2G RAM is used as a client.

a. Processing time in the pipeline

We make a comparison between local rendering and our method in terms of

processing time in the rendering pipeline at the client side. It shows that, our method

can reduce the processing time at the client significantly, especially for 3D models

with high levels of detail, as the number of faces processing at client has been

reduced and the geometry processing stage has been performed at the remote server.

Table 7. A comparison between our proposed method and local rendering in terms of
processing time

Model Num of verts Num of faces
Local rendering

(milliseconds)

Our method

(milliseconds)

Beethoven 2521 5030 4.2 2.7

Car 5247 10474 7.2 4.8

Ateneam 7546 15014 10 6.0

Dragon 10006 20000 17 8.0

Venus 19847 43357 32 18

Bunny 34834 69451 48.6 27.6

40

Figure 26. Comparison between our method and local rendering in terms of processing
time at client (image size = 400x400)

We also compare our method with server-side rendering in terms of processing time

at the server. We take into account the time taken to copy data out of the pipeline.

For example, in the case of server-side rendering, we measure the processing time of

the entire pipeline plus the time taken to copy data from the frame buffer to CPU.

And in our method, we measure the processing time at geometry processing stage

and the time to copy data from the transform feedback buffer. When the number of

primitives to be processed is small and the image size is large, the processing time at

the server is significantly reduced in our method compared to that of server-side

rendering. Note that when the fragment processing is relatively cheap, the transform

feedback could end up being a major bottleneck leading to more processing time at

the server in our method compared to that of server-side rendering.

41

Figure 27. A comparison between server-side rendering and our method in terms of
processing time tested with dragon model

Figure 28. A comparison between server-side rendering and our method in terms of
processing time tested with happy model

42

Figure 29. A comparison between server-side rendering and our method in terms of
processing time tested with bunny model

b. Storage requirements

As back-face culling is performed at the server, the number of faces to be handled at

the client is significantly reduced. As can be seen in the Figure below, about 40-50%

of the faces are actually processed at the client. As such, our method would be of

great benefits to thin clients since they are limited in their storage capacity.

Figure 30. Average number of faces processed at the client

43

c. Network communication

The data transfer capabilities is considered to be the major bottleneck in the remote

rendering. Network communication for the proposed framework is built on TCP/IP

sockets. We employ UDP for the transmission of graphics datasets and TCP for

sending commands from client to server and vice versa. We have previously

presented a theoretical analysis of transmission latency in section 3.3.2. Therefore,

this experiment is also able to verify the theoretical analysis of our proposed

framework. Our test is conducted in both a 10 Mbps and 100 Mbps Ethernet

connections.

To further reduce the transmission latency, we can make use of a

compression/decompression technique. However, it is worth noting that the process

of compression/decompression may also introduce some delays to the system.

Table 8. Transmission latency

Model Num of verts Num of faces
Latency (seconds)

10 Mbps 100 Mbps

Shark 468 734 0.0380 0.0043

Apple 867 1704 0.0750 0.0084

Ant 468 912 0.0380 0.0044

Beethoven 2521 5030 0.1778 0.0199

Car 5247 10474 0.3432 0.0337

Ateneam 7546 15014 0.3840 0.0469

Big dodge 8477 16646 0.5261 0.0543

Dragon 1 10006 20000 0.6247 0.0641

Dragon 2 12509 24999 0.7673 0.0802

Dragon 3 15014 30000 0.9296 0.0956

Dragon 4 17517 35000 1.0741 0.1117

Venus 19847 43357 1.2881 0.1359

Bunny 34834 69451 2.1737 0.2124

44

Figure 31. Transmission latency

Figure 32. Client-side viewer

3.5. Summary and conclusion

In this chapter, we have investigated the graphics rendering pipeline in terms of

processing time. A novel pipeline-splitting method is presented with the aim of

splitting the renderings workload between the server and the client. An advantage of

our method is that it can achieve hardware-acceleration on both geometry processing

and rasterization stage. We have also proposed a networked rendering paradigm

based on our pipeline-splitting method to facilitate remote rendering on thin clients.

45

Experimental results shown that our method can reduce memory cost and

computational workload at the client compared to that of client-side rendering

method and processing time at the server compared to that of server-side rendering

method. The work also can be applied to distributed-rendering as we distribute

geometry processing and rasterization to be handled on different machines in the

cloud. However, the method faces a challenge to meet real time requirement due to

the transmission latency. To overcome this challenge, a number of techniques can be

considered to employ in order to reduce amount of data to be sent over the network

such as mesh simplification and mesh compression. Additionally, in our proposed

paradigm, we can see that a majority of the transmitted data between consecutive

frames is likely to be redundant. In the next chapter, we will exploit this fact to

propose a method which can reduce the amount of data to be sent per request

therefore reduce the transmission latency.

46

Chapter 4

A visibility-based streaming framework
for networked graphics

Chapter contents

4.1. Introduction ..46

4.3. Selective mesh streaming method ...48
4.3.1. A theoretical analysis for visibility streaming ... 48
4.3.2. Visibility-based framework for mesh streaming .. 54

4.3.3. Parallel framework for visibility-based streaming 56

4.4. Experimental results and discussion ..59

4.5. Summary and conclusion..62

4.1. Introduction

Interactive network-systems based on client/server architecture are posing new

challenges to computer graphics. Large 3D models consisting of millions of

primitives are challenging to store and render. Additionally, the transmission of large

graphics datasets is considered to be a critical bottleneck in networked graphics

applications. To reduce the waiting time and the amount of data being processed at

the client, it is desirable to transmit only visible portions of the model to the client

with respect to client’s current viewpoint.

47

There is a significant body of work that delves into visibility-based streaming, and

most are based on determination of primitives which are potentially visible from the

client’s current viewpoint [79-80]. The determination of visible primitives needs the

collaboration of both the client and server. There are two methods for client/server

collaboration. In the first one, the server is fully responsible for determining visible

primitives that need to compensate the client for a proper rendering. In the second

method, the client determines objects to be requested and the server sends these

objects back to client on demand. These two methods respectively have great impacts

on the server and the network connection workload.

In the previous chapter, we have introduced a remote rendering framework based on

our pipeline-splitting method. The method can save the client in terms of processing

time and computational workload. However, the number of primitives transmitted

across the network may be still very high after back-face culling leading to high

transmission latency. Therefore, this method is not suitable for latency-sensitive

applications. In this chapter, we take a different approach for 3D mesh streaming

based on server-side processing of visibility information. The pipeline-splitting and

back-face culling methods are used for the determination of visible primitives. The

server keeps track of primitives currently stored in the client’s cache and transmits

only visible primitives which are new to the client in order to reduce the number of

primitives transmitted across the network. To deal with the computational workload

at the server, we also present a parallel framework to scale the server side so that the

computational workload can be processed in different machines in parallel.

48

4.3. Visibility-based streaming method

4.3.1. A theoretical analysis for visibility streaming

As the network bandwidth and transmission latency have become a critical

bottleneck for interactive graphics, the back-face culling method can be of great use

to the network transmission [23, 79, 81]. However, a slight change in the viewpoint

might lead to a considerable number of new primitives that the network is unlikely to

afford in real time. The visibility streaming method takes into account the client’s

cache and transmits only additional primitives that are not stored in the client’s for

the rendering of the next frame. Therefore, the amount of data to be sent is

significantly reduced. In this chapter, we present a theoratical analysis for visibility

streaming, in which a number of factors is examined, such as number of primitives

needs to be sent to the client for the rendering of the next frame, the corresponding

latency, and bandwidth requirement.

Figure 33. A movement of the camera from viewpoint P1 to viewpoint P2

49

Figure 34. (a) – The model captured from the current viewpoint, - (b) New primitives
appear from the movement

For the sake of simplicity, we consider an ideal case in which the 3D object has a

spherical shape with radius r , composed of fN faces. The camera is assumed to

move around a concentric sphere with radious R (R > r).

Figure 35. Spherical-shape object with radius r, composed of Nf faces

The general problems can also be considered by covering the object with a sphere

then projecting all the primitives of the object into a sphere. In this case, the

distribution of the primitives across the sphere is non-homogeneous as the shape of

the object is no longer spherical.

50

We also assume that the viewing frustum is sufficient to cover the entire object. To

estimate the number of faces the server needs to compensate for the movement of the

camera from 1P to 2P , we consider the plane formed by 1P , 2P and O intersected the

two spheres presented in the following figure.

Figure 36. The intersection between the plane formed by three points (P1, P2, O) and
the two concentric spheres

Table 9. Notation 4

Symbols Quantity

fN Total number of faces of the mesh

n Total number of faces to be sent to the client

sphereS The area of the entire sphere (the mesh)

intersections
The area of the spherical spherical cap where new
primitives lie on

We consider an ideal case: the 3D object is a sphere with radius r and is composed of

Nf faces uniformly distributed on the sphere (see Figure 13). The movement of

camera (from P1 to P2) is assumed to be around a concentric sphere with radius R

(R > r). We presume that the client has all information for the viewing of the

camera at P1 . We also assume that the viewing frustum is sufficient to cover the

51

entire visible part of the 3D object. Note that all visible faces are lying on a half of

the sphere (Figure 13). New primitives to be sent can be calculated as follows:

intersection f
f

sphere

s Nn = × N = φ
s 2π

(Equation 7)

(a) (b)

Figure 37: (a) Viewing frustum, (b) The movement of the viewing camera

Denotes fs as the size of a face, and bw is the network bandwidth. The total

number of faces to be sent to the client for the rendering of the next frame is n. From

1 we have:

f f
trans

n×s nst = = φ
bw 2πbw

 (Equation 8)

Suppose FPS is the frame rate per second that we expect to achieve. Similarly, we

can calculate the requirement of the bandwidth as follows:

f f

c

N sφbw ×
2π 1/FPS - t

 (Equation 9)

To reduce transmission latency, we take into account two cases of caching according

to how data will be stored at the client:

Total caching: the client stores all information received from the server in its local

cache. The cache will be updated after every move of the camera. This can reduce

52

the transmission latency as there is no need to download primitives that have been

received in previous viewpoints. As soon as the camera has gone through all possible

positions there will be no more information to be transmitted from the server and the

transmission latency ends up being zero. We consider the movement of the camera as

follows:

Figure 38. (a) The movement of camera, (b) slow movement of the camera

It is worth noting that to get the client cache updated with all the data from the

server, the camera must undergo a number of positions from P1 to P2. When the

camera approaches Pn all data has been updated in the cache. Let ti be the

transmission latency for the movement from Pi to Pi+1. So the total transmission

latency for the movement from P1 to P2 is
n-1

i
i=1

t (Note that we do not take into

account the initial time the client takes to download data at the viewpoint P1). After

this (the movement from P1 to P2), the transmission latency for the next movement

becomes significantly reduced as most of the data has been downloaded and stored in

the cache. There is possibly the case that the camera will not complete the journey

from P1 to P2. Therefore the number of faces stored in the cache will be far less than

the number of faces of the 3D model. Assuming that the camera completes its

53

journey at Pk, let ni be the number of faces to be sent for the movement of the camera

from Pi to Pi+1, we can calculate the number of faces stored in the client cache

(denoted as N) as follows:

k-1 k-1
f f f

i i
i=1 i=1

N N NN = + n = + θ
2 2 2π (Equation 10)

Let’s 1 nP OP = θ , we now can calculate N as follows:

fN θN = (1 +)
2 π

Equation (11)

Selective caching: the client stores only information which is necessary for the

rendering at the current viewpoint. Only the previous viewpoint is taken into account

for the computation of additional primitives to be sent to the client. Therefore, for

prolonged interactions with the object, significant amount of data is needed to be sent

to the client for the rendering of the next frame. This will result in the long

transmission latency, but it can reduce the processing time as the number of

primitives being processed at the client has been reduced.

The server is responsible for computing the list of primitives to be sent to the client

for the rendering of next frame and list of primitives to be removed from the client

cache. Let ck be the list primitives remaining after culling (corresponding with the

frame k) at the server side, rmk be the list of primitives to be removed from the client

cache, and rk be the list of additional primitives to be sent to the client for the

rendering of frame k. rmk+1 and rk+1 can be calculated as follows:

k+1 k k k+1rm = c - (c c) (Equation 12)

k+1 k+1 k k+1rm = c - (c c) (Equation 13)

54

The client has a cache that stores all primitives which are used for the rendering of

the last frame (frame k). As soon as the client receive rmk+1 and rk+1, it needs to

calculate the display list including primitives for the rendering of the next frame

based on the data stored in the cache and the data received from the server. Based on

the earlier calculation, we can determine the number of faces stored in the cache in

case of selective caching corresponding with the angle iθ as follows:

f iN θN = (1 +)
2 π

 (Equation 14)

4.3.2. Visibility-based framework for mesh streaming

In our proposed method, the server is responsible for computing the display list

which consists of all visible primitives at the current viewpoint according to the

viewing parameters received from client. The server itself has a map (indices of

primitives) of the display list that is currently stored in the client’s cache. It then

computes a residual list containing visible primitives which are new to the client. The

residual list is sent to the client for the rendering of the next frame.

To compute the residual list at the server, we make use of transform feedback mode.

The server only performs geometry processing without actually having to render the

3D model by disabling the rasterization stage. The transformed primitives can be

obtained at this mid-stage through the transform feedback buffer. A back-face culling

algorithm (see Listing 1) is employed to cull away invisible primitives. To reduce

transmission latency, only visible primitives which are not stored in the client are

selected to be sent to the client.

55

Listing 1. The pseudo code for back-face culling

Vec3 vd = viewing_direction

FOR EACH triangle IN Meshes {

 Vec3 p1 = triangle.point[0]

 Vec3 p2 = triangle.point[1]

Vec3 p3 = triangle.point[2]

 Vec3 e1 = p3 – p1

 Vec3 e2 = P3 – p2

 Vec3 surfaceNormal = crossProduct(e1, e2)

float angle = dotProduct(vd, surfaceNormal)

IF angle < 0 THEN render the triangle

ELSE discard the triangle

}

Figure 39. A back-face culling, cull all triangles faced away from the camera

The client maintains a display list which includes only visible primitives

corresponding with current viewpoint. For a viewpoint change, as soon as the client

receives the residual list from the server, it performs rendering with the current

display list and the received residual list. The new display list then is generated by

discarding invisible primitives and is stored in the cache for the next rendering.

Table 10. Notation 6

Symbols Definitions

iF = {f }, i = 0-N List of faces constructed the mesh

ivVF = {f }, i = 0-k List of visible faces

icCF = {f }, i = 0-p List of faces storing in the client’s cache

56

ir
RF = {f }, i = 0-q List of faces to be sent to the client (residual list)

idDL = {f }, i = 0-m Display list which is obtained at the client

The operations on the server and client are briefly summarized as follows:

Server:

1. The server performs geometry processing with the input mesh 0 1 N{f , f , ..., f }

according to the request from client to compute the list of visible faces

0 1 kv v vVF = {f , f , ..., f } (k<N)

2. The sever keeps track of list of faces (
0 1 pc c cCF = {f , f , ..., f }) currently stored in

the client. It then computes a residual list of faces which is in VF , but not

stored in the client
0 1 qr r rRF = VF - (VF CF) = {f , f , ..., f } (q<k) . RF is sent to the

client for the rendering of the next frame.

Client:

1. The client renders its own data
0 1d d dmDL = {f , f , ..., f }and is waiting for the

updated data from the server

2. As soon as the client receives the residual list (RF) from the server, it renders

the received data to generate the complete image of the model corresponding

with the current viewpoint. The cache then will be updated with the new

information based on a caching mechanism.

4.3.3. Parallel framework for visibility-based streaming

To deal with the substantial workload at the server, we propose a parallel framework

for visibility mesh streaming. The computational workload at the server side can be

handled in different machines in parallel.

57

Figure 40. Parallel visibility streaming architecture

Table 11. Notation 7

Symbols Definitions

iF = {f }, i=1-N List of faces constructed the mesh

is , i = 1-M List of servers

iF , i =1-M List of primitives is handling at server is

iVF , i = 1-M List of visible primitives computed by server is

iRF , i = 1-M List of primitives computed by server is to be
sent to the client

iCF , i = 1-M List of primitives storing in the client’s cache

Assuming that the system has M servers, the mesh storing at the server side consists

of N faces, 1 2 NF = {f , f , ..., f } . First, the mesh is divided into M parts: 1 2 MF, F , ..., F ,

each iF holds a set of primitives which is part of F (
M

i
i=1

F = F). iF is distributed to

server is (i 1 M) to be handled. Each server is is responsible for determining list

of visible faces, the so-called iVF , from iF (i=1-M) according to the viewing

parameters received from client based on the back-face culling method that we have

presented earlier. Every server is keeps track of all primitives selected from iF

which are currently stored at the client (denotes set of those primitives as iCF). The

residual list iRF can be easily calculated by comparing iCF and iVF

(i i i iRF = VF-(VF CF)), therefore only visible primitives from iVF which are not

58

stored in the client’s cache (iCF) are transmitted to the client to construct the new

display list. As soon as the client receives all iRF (i=1-M) from the servers, it builds

the display list by combining all iRF (i=1-M) with its current cache CF .

Table 12. List of models used in the test

Model name Model index Num of verts Num of faces
Beethoven 1 2521 5030
Car 2 5247 10474
Ateneam 3 7546 15014
Dragon 4 15014 30000
Venues 5 19847 43357
Bunny 6 34834 69451
Horse 7 48485 96966
Blade 8 110131 220672

(a)

(b)

(c)

Figure 41. Parallel visibility streaming with 2 servers – dragon model: (a) image
captured at the server 1 (without discarding rasterization), (b) image captured at the

server 2 (without discarding rasterization), (c) image captured at the client

(a)

(b)

(c)

Figure 42. Parallel visibility streaming with 2 servers – horse model: (a) image
captured at the server 1 (without discarding rasterization), (b) image captured at the

server 2 (without discarding rasterization), (c) image captured at the client

59

Table 13. Parallel framework tested with two servers

Model
index

Server 1 Server 2 client

Num of
faces

Num of
faces sent

per request

Num of
faces

Num of faces
sent per
request

Num of faces
to be

rendered

Num of faces
received per

request

1 2515 12 2515 13 3480 24
2 5237 22 5237 21 5355 44
3 7507 53 7507 53 8962 106
4 15000 130 15000 145 15929 276
5 21678 163 21678 161 21889 324
6 34725 394 34725 322 35175 716
7 48483 1661 48483 1635 54249 3296
8 110336 3322 110336 3300 117623 6622

4.4. Experimental results and discussion

We implemented a visibility-based streaming system in C++, with rendering

performed through an OpenGL library. This includes the client and server modules

connected via a TCP socket (or multiple TCP socket connections in the case of a

parallel framework). A number of 3D models were used in the test ranging from

small (which is composed of thousands of primitives) to large models (which is

composed hundred thousands to millions of primitives).

Figure 43. Several 3D models were used in the test

The residual list consisting of the number of primitives to be sent per request

depends much on the complexity of the 3D models as we have previously analysed.

Figure below presents the change of residual list according to the complexity of the

3D models (fN) in terms of average number of faces to be sent per request and the

transmission latency.

60

)a(

)b(

Figure 44. (a) Average number of faces sent per request, (b) Transmission latency

In our system, the server keeps track of primitives which are stored at the client.

Therefore, the number of primitives to be sent to the client can be reduced. In

addition, the number of primitives processing at the client can be significantly

reduced, by up to 40-50%.

Figure 45. Number of faces to be sent per request is pretty small compared with to total
number of faces of the original model

61

Figure 46. The number of faces processing at the client is significantly reduced

Table 14. Average number of faces processing at the client and average number of faces

to be sent per request

Model Num of verts Num of faces Avg. Num of faces
processed at the client

Avg. Num of faces
sent per request

Shark 468 734 389 5
Beethoven 2521 5030 3319 59
car 5247 10474 5611 85
Ateneum 7546 15014 9300 106
Dragon 1 10006 20000 10290 143
Dragon 2 12509 24999 12956 152
Dragon 3 15014 30000 15421 172
Dragon 4 17517 35000 18038 187
Venus 19847 43357 22588 213
Bunny 34834 69451 37791 482
Horse 48485 96966 47172 666
Blade 1 54926 110336 56505 1054
Blade 2 110131 220672 113038 1986
Blade 3 220559 441345 232789 3373

62

4.5. Summary and conclusion

In this chapter, we have presented a visibility-based method for 3D streaming that

can effectively reduce the transmission latency. Based on a theoretical analysis, we

found the relationship between the number of primitives to be sent to the client

according to the viewpoint change and a number of factors such as the complexity of

the 3D models and the movement of the camera. It is worth noting that our

framework can work with pretty large 3D models, however, there must be a limit

since the residual list is linearly proportional to the number of faces of the 3D model.

In addition, the server is fully responsible for computing residual list; therefore, we

also proposed a parallel framework for visibility-based streaming to scale the

computational workload at the server side and to serve a large number of concurrent

connections from clients.

63

Chapter 5

Conclusion

Chapter contents

5.1. Thesis summary ..63

5.2. Future work...64

5.3. Conclusion ...65

5.1. Thesis summary

The thesis has been presented in several chapters. We can summarize our work as

follows:

 We reviewed state-of-the-art approaches of remote rendering, 3D networked

graphics, and graphics streaming. The trade-offs of methods, techniques are

also addressed and discussed.

 We introduced a new networked rendering paradigm for remote rendering. A

novel method to split up the rendering pipeline is presented, aiming to break

the rendering workload from the point that geometry processing is performed

at the server, leaving the remaining parts to be done at the client.

64

 We presented an implementation to illustrate our networked-rendering

paradigm. Experimental results showed that our method can undoubtedly

reduce memory cost and computational workload at the client while

simultaneously yielding high quality images. However, the transmission

latency is considered a critical bottleneck in our system. For complex 3D

models and low bandwidth network connections, it takes a considerable

amount of time to transmit graphics datasets for the rendering of each frame,

thus leading to poor performance.

 A theoretical approach of visibility streaming is presented. We introduced a

visibility streaming to support the transmission of 3D models across the

network. A method is proposed to select visible primitives to be sent to the

client based on a transform-feedback mode. To deal with the substantial

workload at the server, we presented a parallel framework that can distribute

the computational workload at the server to be processed on different

machines. Our method can effectively reduce memory costs and network

communication overhead.

5.2. Future work

The future approaches can be summarized as follows:

 Mesh compression and mesh streaming techniques can be applied to our

current approach to further reduce the transmission latency.

 A sort-middle parallel rendering can be implemented based on our pipeline-

splitting method.

65

 We are currently employing TCP and UDP for data transmission for our

remote rendering implementation. A transmission protocol can be developed

to assist the transmission of graphics datasets over the network

5.3. Conclusion

In this thesis, we has presented several approaches to facilitate graphics rendering on

thin clients based on cloud computing. We have introduced a networked paradigm

for remote rendering based on our pipeline-splitting method. The use of this method

makes it possible to split the rendering workload between the server and the client.

However, the transmission latency may be high due to the large number of primitives

transmitted across the network. In this regard, we have also presented a visibility-

based streaming framework that can reduce the amount of data to be sent over the

network as well as the number of primitives processed at the client. To deal with the

computational workload at the server, a parallel framework is introduced with the

aim of parallelizing the processing of the workload at the server side. This allows the

system to be capable of handling a large number of concurrent connections from

clients.

66

REFERENCES

[1] S. Livatino, "Virtual Museum of Contemporary Art," in Artificial Reality and Telexistence,
17th International Conference on, 2007, pp. 151-156.

[2] D. Biella, et al., "Virtual Museum Exhibition Designer Using Enhanced ARCO Standard," in
Chilean Computer Science Society (SCCC), 2010 XXIX International Conference of the,
2010, pp. 226-235.

[3] S. Fleck, et al., "3DTV - Panoramic 3D Model Acquisition and its 3D Visualization on the
Interactive Fogscreen," in Image Processing, 2006 IEEE International Conference on, 2006,
pp. 2989-2992.

[4] W. Shi, et al., "Scalable Support for 3D Graphics Applications in Cloud," presented at the
Proceedings of the 2010 IEEE 3rd International Conference on Cloud Computing, 2010.

[5] Y. Okamoto, et al., "Image-Based Network Rendering of Large Meshes for Cloud
Computing," International Journal of Computer Vision, vol. 94, pp. 12-22, Aug 2011.

[6] D. L. Kenneth Moreland, David Koller, and Greg Humphreys, "Remote rendering for
ultrascale data," Journal of Physics: Conference Series, Volume 125, Number 012096,
2008.

[7] H. Shun-Yun, et al., "FLoD: A Framework for Peer-to-Peer 3D Streaming," in INFOCOM
2008. The 27th Conference on Computer Communications. IEEE, 2008, pp. 1373-1381.

[8] H. Shun-Yun, et al., "Peer-to-Peer 3D Streaming," Internet Computing, IEEE, vol. 14, pp.
54-61, 2010.

[9] C. Chien-Hao, et al., "Bandwidth-aware Peer-to-Peer 3D streaming," in Network and
Systems Support for Games (NetGames), 2009 8th Annual Workshop on, 2009, pp. 1-6.

[10] Q. Dinghu, et al., "Mesh simplification method based on vision feature," in Wireless
Mobile and Computing (CCWMC 2011), IET International Communication Conference on,
2011, pp. 398-402.

[11] P. Bao and D. Gourlay, "A framework for remote rendering of 3-D scenes on limited
mobile devices," Multimedia, IEEE Transactions on, vol. 8, pp. 382-389, 2006.

[12] X. Jiang, et al., "A Parallel Framework for Interactive Rendering of Massive Complex
Scenes on PCs Cluster," 2007, pp. 978-983.

[13] Z. Yanfeng, et al., "Parallel Rendering for Large-Scale Crowd Based on Dynamic
Feedback," in Digital Media and Digital Content Management (DMDCM), 2011 Workshop
on, 2011, pp. 172-175.

[14] K. Moreland, et al., "Sort-last parallel rendering for viewing extremely large data sets on
tile displays," presented at the Proceedings of the IEEE 2001 symposium on parallel and
large-data visualization and graphics, San Diego, California, 2001.

[15] S. Molnar, et al., "A sorting classification of parallel rendering," Computer Graphics and
Applications, IEEE, vol. 14, pp. 23-32, 1994.

[16] F. Lamberti and A. Sanna, "A Streaming-Based Solution for Remote Visualization of 3D
Graphics on Mobile Devices," Visualization and Computer Graphics, IEEE Transactions on,
vol. 13, pp. 247-260, 2007.

[17] G. Humphreys, et al., "Chromium: A stream-processing framework for interactive
rendering on clusters," Acm Transactions on Graphics, vol. 21, pp. 693-702, Jul 2002.

67

[18] B. Paul, et al., "Chromium renderserver: Scalable and open remote rendering
infrastructure," Ieee Transactions on Visualization and Computer Graphics, vol. 14, pp.
627-639, May-Jun 2008.

[19] L. Sastry, et al., "Supporting Distributed Visualization Services for High Performance
Science and Engineering Applications A Service Provider Perspective," in Cluster
Computing and the Grid, 2009. CCGRID '09. 9th IEEE/ACM International Symposium on,
2009, pp. 586-590.

[20] G. Xiwei and L. Hai, "Parallel Volume Rendering Based on LOD Method," in Bioinformatics
and Biomedical Engineering (iCBBE), 2010 4th International Conference on, 2010, pp. 1-6.

[21] J. D. Foley, et al., Computer graphics: principles and practice (2nd ed.): Addison-Wesley
Longman Publishing Co., Inc., 1990.

[22] H. Zhang and I. Kenneth E. Hoff, "Fast backface culling using normal masks," presented at
the Proceedings of the 1997 symposium on Interactive 3D graphics, Providence, Rhode
Island, United States, 1997.

[23] J. H. Clark, "Hierarchical geometric models for visible surface algorithms," Commun. ACM,
vol. 19, pp. 547-554, 1976.

[24] D. Cohen-Or, et al., "A survey of visibility for walkthrough applications," Visualization and
Computer Graphics, IEEE Transactions on, vol. 9, pp. 412-431, 2003.

[25] Y. Sung-Eui, et al., "Interactive view-dependent rendering with conservative occlusion
culling in complex environments," in Visualization, 2003. VIS 2003. IEEE, 2003, pp. 163-
170.

[26] T. Engelhardt and C. Dachsbacher, "Granular visibility queries on the GPU," presented at
the Proceedings of the 2009 symposium on Interactive 3D graphics and games, Boston,
Massachusetts, 2009.

[27] VirtualGL http://www.virtualgl.org/
[28] Y. Okamoto, et al., "Image-Based Network Rendering of Large Meshes for Cloud

Computing," Int. J. Comput. Vision, vol. 94, pp. 12-22, 2011.
[29] D. D. Winter, et al., "A hybrid thin-client protocol for multimedia streaming and

interactive gaming applications," presented at the Proceedings of the 2006 international
workshop on Network and operating systems support for digital audio and video,
Newport, Rhode Island, 2006.

[30] A. Jurgelionis, et al., "Platform for distributed 3D gaming," Int. J. Comput. Games Technol.,
vol. 2009, pp. 1-15, 2009.

[31] I. Nave, et al., "Games@large graphics streaming architecture," in Consumer Electronics,
2008. ISCE 2008. IEEE International Symposium on, 2008, pp. 1-4.

[32] P. Eisert and P. Fechteler, "Low delay streaming of computer graphics," in Image
Processing, 2008. ICIP 2008. 15th IEEE International Conference on, 2008, pp. 2704-2707.

[33] A. P. Miettinen and J. K. Nurminen, "Energy efficiency of mobile clients in cloud
computing," presented at the Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing, Boston, MA, 2010.

[34] K. Kumar and L. Yung-Hsiang, "Cloud Computing for Mobile Users: Can Offloading
Computation Save Energy?," Computer, vol. 43, pp. 51-56, 2010.

[35] G. P. Gwenola Thomas, Kadi Bouatouch, "A client-server approach to image-based
rendering on mobile terminals," 2005.

[36] I. M. Martin, "Hybrid transcoding for adaptive transmission of 3D content," in Multimedia
and Expo, 2002. ICME '02. Proceedings. 2002 IEEE International Conference on, 2002, pp.
373-376 vol.1.

[37] J. M. Noguera, et al., "Navigating large terrains using commodity mobile devices,"
Computers & Geosciences, vol. 37, pp. 1218-1233, 2011.

[38] G. Jung and S. Jung, "A Streaming Engine for PC-Based 3D Network Games onto
Heterogeneous Mobile Platforms," in Technologies for E-Learning and Digital

68

Entertainment. vol. 3942, Z. Pan, et al., Eds., ed: Springer Berlin / Heidelberg, 2006, pp.
797-800.

[39] A. Mohr and M. Gleicher, "HijackGL: reconstructing from streams for stylized rendering,"
presented at the Proceedings of the 2nd international symposium on Non-photorealistic
animation and rendering, Annecy, France, 2002.

[40] G. Hesina and D. Schmalstieg, "A Network Architecture for Remote Rendering," presented
at the Proceedings of the Second International Workshop on Distributed Interactive
Simulation and Real-Time Applications, 1998.

[41] M. Isenburg and P. Lindstrom, "Streaming meshes," in Visualization, 2005. VIS 05. IEEE,
2005, pp. 231-238.

[42] H. T. Vo, et al., "Streaming Simplification of Tetrahedral Meshes," Visualization and
Computer Graphics, IEEE Transactions on, vol. 13, pp. 145-155, 2007.

[43] X. Liu, et al., "A hybrid method of image synthesis in IBR for novel viewpoints," presented
at the Proceedings of the ACM symposium on Virtual reality software and technology,
Seoul, Korea, 2000.

[44] Z. J. Y. Lei, D. Chen, and H. Bao, "Image-Based Walkthrough over Internet on Mobile
Devices," in Proc. GCC Workshops, pp. 728-735, 2004.

[45] Y. a. C.-O. Mann, D., "Selective Pixel Transmission for Navigating in Remote Virtual
Environments," Eurographics '97, Volume 16, Number 3, 1997.

[46] A. Boukerche, et al., "A real-time transport protocol for image-based rendering over
heterogeneous wireless networks," presented at the Proceedings of the 8th ACM
international symposium on Modeling, analysis and simulation of wireless and mobile
systems, Montral, Quebec, Canada, 2005.

[47] A. Boukerche, et al., "A 3D image-based rendering technique for mobile handheld
devices," in World of Wireless, Mobile and Multimedia Networks, 2006. WoWMoM 2006.
International Symposium on a, 2006, pp. 7 pp.-331.

[48] S. M. Seitz and C. R. Dyer, "View morphing," presented at the Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques, 1996.

[49] H.-C. Huang, et al., "Disparity-based view morphing\—a new technique for image-
based rendering," presented at the Proceedings of the ACM symposium on Virtual reality
software and technology, Taipei, Taiwan, 1998.

[50] P. Bao and D. Gourlay, "Low bandwidth remote rendering using 3D image warping," in
Visual Information Engineering, 2003. VIE 2003. International Conference on, 2003, pp.
61-64.

[51] M. Levoy, "Polygon-assisted JPEG and MPEG compression of synthetic images," presented
at the Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques, 1995.

[52] J. Diepstraten, et al., "Remote Line Rendering for Mobile Devices," presented at the
Proceedings of the Computer Graphics International, 2004.

[53] H. Y. Shum and S. B. Kang, "A review of image-based rendering techniques," Visual
Communications and Image Processing 2000, Pts 1-3, vol. 4067, pp. 2-13, 2000.

[54] L. McMillan and G. Bishop, "Plenoptic modeling: an image-based rendering system,"
presented at the Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, 1995.

[55] M. Panka, et al., "Visualization of multidimensional data on distributed mobile devices
using interactive video streaming techniques," in MIPRO, 2011 Proceedings of the 34th
International Convention, 2011, pp. 246-251.

[56] G. Y. Zhang and L. Zhao, "Web-based Virtual Walkthrough of Panoramas," Ndt: 2009 First
International Conference on Networked Digital Technologies, pp. 233-237, 2009.

69

[57] G. M. Cortelazzo and P. Zanuttigh, "Predictive image compression for interactive remote
visualization," in Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings
of the 3rd International Symposium on, 2003, pp. 168-173 Vol.1.

[58] a. M. V. Zoran Constantinescu, "Adaptive compression for remote visualization," Buletinul
Universitatii Petrol - Gaze din Ploiesti, vol. LXI, No. 2/2009,, pp. 49-58, 2009.

[59] L. Chiariglione, "MPEG and multimedia communications," Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 7, pp. 5-18, 1997.

[60] D. Milovanovic and Z. Bojkovic, "MPEG-4 video transmission over Internet," in
Telecommunications in Modern Satellite, Cable and Broadcasting Services, 1999. 4th
International Conference on, 1999, pp. 309-312 vol.1.

[61] A. Puri and A. Eleftheriadis, "MPEG-4: an object-based multimedia coding standard
supporting mobile applications," Mob. Netw. Appl., vol. 3, pp. 5-32, 1998.

[62] Y. Noimark and D. Cohen-Or, "Streaming scenes to MPEG-4 video-enabled devices,"
Computer Graphics and Applications, IEEE, vol. 23, pp. 58-64, 2003.

[63] A. B. Liang Cheng, Renato Pajarola, and Magda El Zarki, "Real-time 3D graphics streaming
using MPEG-4," p. 16, 2004.

[64] H. Hoppe, "Progressive meshes," 1996, pp. 99-108.
[65] N.-S. Lin, et al., "View-dependent JPEG 2000-based mesh streaming," presented at the

ACM SIGGRAPH 2006 Research posters, Boston, Massachusetts, 2006.
[66] S. Rusinkiewicz and M. Levoy, "Streaming QSplat: a viewer for networked visualization of

large, dense models," presented at the Proceedings of the 2001 symposium on
Interactive 3D graphics, 2001.

[67] Y. Sheng, et al., "A progressive view-dependent technique for interactive 3-D mesh
transmission," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 14,
pp. 1249-1264, 2004.

[68] B.-O. Schneider and I. M. Martin, "An adaptive framework for 3D graphics over
networks," Computers & Graphics, vol. 23, pp. 867-874, 1999.

[69] K. Daeyoung, et al., "A distance-based compression of 3D meshes for mobile devices,"
Consumer Electronics, IEEE Transactions on, vol. 54, pp. 1398-1405, 2008.

[70] M. Jianping, et al., "Mobile 3D graphics compression for progressive transmission over
wireless network," in Computer-Aided Design and Computer Graphics, 2009.
CAD/Graphics '09. 11th IEEE International Conference on, 2009, pp. 357-362.

[71] M. Isenburg, et al., "Large mesh simplification using processing sequences," in
Visualization, 2003. VIS 2003. IEEE, 2003, pp. 465-472.

[72] M. Corsini, et al., "Watermarked 3-D Mesh Quality Assessment," Trans. Multi., vol. 9, pp.
247-256, 2007.

[73] G. Lavou\ and \#233, "A roughness measure for 3D mesh visual masking," presented at
the Proceedings of the 4th symposium on Applied perception in graphics and
visualization, Tubingen, Germany, 2007.

[74] J. L. Williams and R. E. Hiromoto, "Sort-middle multi-projector immediate-mode
rendering in Chromium," in Visualization, 2005. VIS 05. IEEE, 2005, pp. 103-110.

[75] J. L. Williams and R. E. Hiromoto, "A proposal for a sort-middle cluster rendering system,"
in Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications, 2003. Proceedings of the Second IEEE International Workshop on, 2003, pp.
36-38.

[76] K. S. Banerjee and E. Agu, "Remote execution for 3D graphics on mobile devices," in
Wireless Networks, Communications and Mobile Computing, 2005 International
Conference on, 2005, pp. 1154-1159 vol.2.

[77] E. Agu, et al., "A middleware architecture for mobile 3D graphics," in Distributed
Computing Systems Workshops, 2005. 25th IEEE International Conference on, 2005, pp.
617-623.

70

[78] J. Hultquist, "Backface culling," in Graphics gems, S. G. Andrew, Ed., ed: Academic Press
Professional, Inc., 1990, pp. 346-347.

[79] V. Vani, et al., "3D Mesh Streaming based on Predictive Modeling," Journal of Computer
Science, vol. 8, pp. 1123-1133.

[80] P. J. N. Soumyajit Deb, "Remotevis: Remote visualization of massive virtual
environments," presented at the Proceedings of National Conference on Communication,
2004.

[81] C. Bouville, et al., "Efficient compression of visibility sets," Lake Tahoe, NV, 2005, pp. 243-
252.

71

APPENDIX I – RENDERING PIPELINE ANALYSIS

Model Num of verts Num of tris
Proc. Time of the

entire pipeline
(Tp)

Proc. Time at
geometry stage

(Tg)

Blade 1 800124 1599996 10.9403 8.77252
Blade 3 700080 1399999 9.57553 7.67594
Blade 5 600028 1200000 8.21207 6.57963
Blade 7 499994 1000000 6.85253 5.48452
Blade 8 399945 800000 5.49629 4.38925
Dragon 4 300077 600000 4.12693 3.28573
Happy 3 199928 400000 2.83945 2.192

Dragon 12 100144 199971 1.56762 1.10597
Dragon 13 99992 200000 1.56549 1.10554
Happy 1 99953 200000 1.50261 1.09773
Blade 14 99763 200000 1.48668 1.14384

Dragon 34 10006 180000 1.42428 0.88582

dragon 10006 159999 1.29218 0.77404

big dodge 8477 140000 1.15377 0.663107
ateneam 7546 120000 1.0134 0.55275
big atc 6906 100000 0.872652 0.439507
space station 5749 60000 0.606373 0.217334
car 5247 39999 0.479758 0.106373
street lamp 4440 20000 0.338954 0.00149783
hind 3218 20000 0.336794 0.00141132
airplane 1335 16646 0.200367 0.00139806
chopper 1066 15014 0.198095 0.00139591
shark 468 13594 0.192828 0.00139543
Dragon 1 90135 10237 0.158857 0.00139532

Dragon 5 80116 10474 0.138811 0.00188587

Dragon 9 70098 8828 0.103738 0.00139389
Dragon 13 60082 6448 0.0724985 0.0014083
Blade 1 49735 2452 0.0505488 0.00139578
Dragon 26 30033 2094 0.050346 0.0013941
Dragon 30 20020 734 0.0351187 0.00139944

72

APPENDIX II – SOME CODES USED FOR NETWORKED

RENDERING PARADIGM

Listing 2. Declare transform feedback buffer to record vertex attributes

// Transform feedback buffer
glGenBuffers(1, &tfvbo);
glBindBuffer(GL_ARRAY_BUFFER, tfvbo);
glVertexPointer(3, GL_FLOAT, sizeof(point), BUFFER_OFFSET(0));
glNormalPointer(GL_FLOAT, sizeof(point), BUFFER_OFFSET(12));
glBufferData(GL_ARRAY_BUFFER, _mesh->triangles.num * 3 *

sizeof(point), 0, GL_STATIC_DRAW); // we're going to record vertex

position and vertex normal

Listing 3. Snipped code to declare vertex attributes to be recorded to shader programs

glActiveVaryingNV(shaderProgram, "vertex_position\0");
glActiveVaryingNV(shaderProgram, "vertex_normal\0");

// link to shader program
glLinkProgram(shaderProgram);
GLint linkOk = 0;
glGetProgramiv(shaderProgram, GL_LINK_STATUS, &linkOk);
if (!linkOk)
{
 std::cout << "Error linking shader program" << std::endl;
}

// put the shader program into use
glUseProgram(shaderProgram);

73

Listing 4. A snipped code described how to capture vertex attributes to a transform feedback
buffer

// transform feedback

int loc[] =
{
 glGetVaryingLocationNV(shaderProgram, "vertex_position"),
 glGetVaryingLocationNV(shaderProgram, "vertex_normal"),
};

glTransformFeedbackVaryingsNV(shaderProgram, 2, loc,
GL_INTERLEAVED_ATTRIBS_NV);
glBindBufferBaseNV(GL_TRANSFORM_FEEDBACK_BUFFER_NV, 0, tfvbo);
glBeginTransformFeedbackNV(GL_TRIANGLES);
glBeginQuery(GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN_NV, query);

glEnable(GL_RASTERIZER_DISCARD_NV); // disable rasterization

// draw model
drawVBO();

glDisable(GL_RASTERIZER_DISCARD_NV);//re-enable rasterization

glEndQuery(query);
glEndTransformFeedbackNV();

Listing 5. A snipped code to retrieve vertex attributes from transform feedback buffer

/* Obtain tri data from transform feedback buffer */
tri* tfbuffer = new tri[numofIndices];
glBindBuffer(GL_ARRAY_BUFFER, tfvbo);
tri* bufferData = new tri[numofIndices];
bufferData = (tri*) glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE);
assert(bufferData != NULL);
memcpy(tfbuffer, bufferData, numofIndices * sizeof(tri));
glUnmapBuffer(GL_ARRAY_BUFFER);

74

 APPENDIX III – SOME CODES USED FOR VISIBILITY-BASED

STREAMING FRAMEWORK

1. Server

Listing 6. Snipped code to compute list of primitives to be sent to the client among visible
primitives

/*

 * Check to see if a primitive is stored in the client’s cache

 * if the returned value is:

 * + -1 : the primitive is not in the client’s cache

 * + else: the primitve is already in the client’s cache

 * Notes: the index of primitive is used for calculation for the
sake of

 * simplicity

 */

int in_last_list(int index, int _mi, int _ma)

{

 int _min, _max; /* range of primitives, the index of each
*/

 /* primitiv lies within _min and _max
*/

 _min = _mi;

 _max = _ma - 1;

 do

75

 {

 if (index < last_display_list[_min]) /* not in the
range */

 {

 return -1;

 break;

 }

 else if (index > last_display_list[_max])/* not in the
range */

 {

 return -1;

 break;

 }

 else if (index == last_display_list[_min])

 {

 return _min;

 break;

 }

 else if (index == last_display_list[_max])

 {

 return -2;

 }

 else

 {

 /* narrow the range */

 _min++;

 _max--;

 }

 } while (_min <= _max);

76

 if (_min > _max)

 {

 return -1;

 }

}

/*

 * Each visible primitive is checked by using the function
in_last_list,

 * only primitives which are not stored in the client’s cache are
slected

 * to be sent to the client for the rendering of the next frame

*/

void compute_residual_list()

{

 int k = 0;

 int idx;

 int _mi = 0;

 int _ma = num_last_list;

 for (int i = 0; i < num_curr_list; i++)

 {

 idx = in_last_list(curr_display_list[i], _mi, _ma);

 /* If the primitive is not in the client’s cache */

 /* put it in the list to be sent to the client */

 if (idx == -1)

77

 {

 res_display_list[k] = curr_display_list[i];

 residual_tri_list[k] =
triArray[curr_display_list[i]];

 k++;

 }

 else if (idx >= 0)

 {

 _mi = idx; /* mark the min value to fasten the
process */

 }

 }

 /* num of primitives to be sent to the client */

 num_res_list = k;

 /* save curr_display_list to the cache (to be
last_display_list) */

 for (int i = 0; i < num_curr_list; i++)

 {

 last_display_list[i] = curr_display_list[i];

 }

 num_last_list = num_curr_list;

}

Listing 7. Snipped code to retrieve primitive data from buffer object and then perform culling to
select visible primitives
/*

 * Primitive data can be retrieved from buffer objects by using

 * glMapBuffer/glUnmapBuffer

78

 * Culling method is then employed to cull away invisible
primitives

 * Compute list of primitives to be sent to the client by using
the

 * function compute_residual_list

 */

void retrive_buffer()

{

 /* Retrieve primitive data from buffer object */

 tri* tfbuffer = new tri[numofIndices];

 glBindBuffer(GL_ARRAY_BUFFER, tfvbo);

 tri* bufferData = new tri[numofIndices];

 bufferData = (tri*) glMapBuffer(GL_ARRAY_BUFFER,
GL_READ_WRITE);

 assert(bufferData != NULL);

 memcpy(tfbuffer, bufferData, numofIndices * sizeof(tri));

 glUnmapBuffer(GL_ARRAY_BUFFER);

 /* perform culling */

 tri _t;

 vec3 p1, p2, p3; /* the three points formed the
triangle */

 vec3 n; /* surface normal */

 vec3 cv = vec3(0, 0, -1); /* camera vector - viewing
direction */

 float angle;

 int k = 0;

79

 for (int i = 0; i < numofIndices; i++)

 {

 _t = tfbuffer[i];

 p1 = vec3(_t.p[0].x, _t.p[0].y, _t.p[0].z);

 p2 = vec3(_t.p[1].x, _t.p[1].y, _t.p[1].z);

 p3 = vec3(_t.p[2].x, _t.p[2].y, _t.p[2].z);

 n = (p1 - p2) ^ (p2 - p3);

 angle = n * cv;

 if (angle < 0)

 {

 k++;

 curr_display_list[k] = i;

 }

 }

 num_curr_list = k;

 /* Compute list of primitives to be sent to the client */

 compute_residual_list();

}

80

2. Client

Listing 8. Snipped code to update primitive data at client as soon as it received data from the
server
/*

 * Update the client’s cache with primitives received from the
server

 */

void update_buffer()

{

 for (int i = 0; i < num_res_tris; i++)

 {

 curr_tri_list[i + num_curr_tris] = res_tri_list[i];

 }

 num_curr_tris += num_res_tris;

 glDeleteBuffers(1, &vbo[1]);

 /* Put data in the buffer to be drawn */

 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);

 glVertexPointer(3, GL_FLOAT, sizeof(point),
BUFFER_OFFSET(0));

 glNormalPointer(GL_FLOAT, sizeof(point), BUFFER_OFFSET(12));

 glBufferData(GL_ARRAY_BUFFER, num_curr_tris * sizeof(tri),
curr_tri_list, GL_STATIC_DRAW);

}

	Coverpage.pdf
	University of Wollongong
	Research Online
	2012

	Different approaches to the facilitation of graphics rendering on thin clients based on cloud computing
	Dong Nguyen Thanh
	Recommended Citation

