
1

A Proximity-aware Load Balancing in Peer-to-Peer based

Volunteer Computing Systems

Toktam Ghafarian 1, Hossein Deldari1, Bahman Javadi3, Rajkumar Buyya2

1Department of Computer Engineering

Ferdowsi University of Mashhad, Iran

2Cloud Computing and Distributed Systems Laboratory

Department of Computing and Information Systems

The University of Melbourne, Australia

3School of Computing, Engineering and Mathematics

University of Western Sydney, Australia

Email: ghafarian@stu-mail.um.ac.ir, hd@ferdowsi.um.ac.ir, b.javadi@uws.edu.au

rbuyya@unimelb.edu.au

Abstract

One of the main challenges in peer-to-peer based volunteer computing systems is efficient resource discovery

algorithm. Load balancing is a part of resource discovery algorithm and aims to minimize the overall response

time of the system. This paper introduces an analytical model based on distributed parallel queues to optimize

the average response time of the system in a distributed manner. The proposed resource discovery algorithm

consists of two phases. In the first phase, it selects peers in a load-balanced manner based on QoS constraints of

request. In the second phase, a proximity-aware feature is applied to select the peer with minimum

communication overhead among selected peers in the first phase. Two dispatching strategies are proposed for the

load balancing based on stochastic analysis of routing in the distributed parallel queues. These policies adopt

probabilistic and deterministic sequences to redirect requests to the capable peers in the system. Simulation

results show that the proposed resource discovery algorithm improves the response time of user’s requests by a

factor of 1.8 under a moderate load.

Keywords: peer- to- peer computing, volunteer computing, resource discovery, load

balancing, distributed parallel queue, proximity-aware scheduling

2

1. Introduction

Volunteer computing (VC) which benefits from idle cycles of desktop computers is an

attractive cost-efficient platform for running scientific projects with heavy computation

requirements [1-4]. Some of popular volunteer computing systems are BOINC [5], condor-

like grid system [6-8], Entropia [9], XtremeWeb [10], Aneka [11], SZTAKI [12], QADPZ

[13], and IPOP/WOW [14]. Peer-to-Peer (P2P) based VC systems represent a decentralized,

self-organized, and scalable environment for running applications such as PastryGrid [15],

BonjourGrid [16], ShareGrid [17], Condor-Flock P2P [18], and Self-Gridron [19].

 Resource discovery algorithm has a great impact on overall performance of these systems.

One of the main challenges for designing an efficient resource discovery algorithm is the load

balancing policy. The objective function of load balancing is minimizing the overall response

time of the system.

The main contribution of this work is to propose a proximity-aware load balancing strategy

in the resource discovery algorithm of P2P-based VC systems. In our previous work [20] a

distributed proximity-aware architecture for resource discovery in P2P-based VC systems was

proposed. This architecture is named CycloidGrid, it distributes an incoming load among

peers based on communication overhead and current load of peers. In CycloidGrid, we have

shown that if we consider communication overhead among peers in the resource discovery

algorithm, the average response time of the system decreases. In this research we focus on

minimizing average response time and decreasing the overhead of resource discovery

algorithm by stochastic analysis of routing in distributed parallel queues. The proposed

policies are knowledge-free (i.e. they are not dependent on current load of each peer). Thus,

they do not impose any overhead on the system. Also, deadline is added to the QoS

constraints of BoT requests.

The proposed resource discovery algorithm consists of two parts. In the first part, a number

of peers are selected fairly by one of the dispatching policies based on stochastic analysis of

routing in the distributed parallel queues. The dispatching strategies take into account QoS

constraints of request such as CPU speed and RAM or disk space requirements. In the second

part, the proposed resource discovery algorithm decreases the communication overhead by

selecting a peer with minimum communication delay among the advertised peers in the first

part. Millions of heterogeneous resources are disseminated across geographically distributed

peers in the P2P-based volunteer computing systems; therefore, running a job on a node with

lower communication overhead can reduce the communication delay, and increase the overall

performance. In summary our paper includes the following contributions:

3

• Providing an analytical queuing model for load balancing in P2P-based volunteer

computing systems based on parallel non-observable queues;

• Adapting the proposed analytical model for distributed resource discovery policy;

• Proposing a probabilistic and deterministic dispatch policy for load balancing in the

system to meet the QoS requirements of each request;

• Evaluating the proposed policies under realistic workload models and different

number of peers to show scalability of the system.

The rest of this paper is organized as follows. Section 2 presents a literature review. Section

3 discusses CycloidGrid environment including architecture and the resource discovery

policy. Section 4 presents analytical queuing model for load balancing in P2P-based VC

systems. This analytical model is based on routing in parallel queues. The proximity-aware

load balancing policy is presented in Section 5. This section gives a detailed overview of

applying analytical model for load balancing in the system. Section 6 describes the

performance evaluation of the proposed policy under a realistic workload model. Conclusion

and future directions are presented in Section 7.

2. Related Work

There are several research works that have investigated load balancing and QoS constraints

in the resource discovery algorithm of P2P-based volunteer computing systems. These

researches can be divided into two categories: the first category is the load balancing based on

information gathered from the peers on the system (knowledge-based approach). The second

category uses analytical model for load balancing with the knowledge-free approaches, but

these works have not considered QoS constraints. In the first category, we highlight the

following works:

Kim et al. [21] proposed an approach for load balancing in the resource discovery

algorithm of P2P-based desktop grid systems. The resource discovery algorithm is considered

as routing problem in the CAN [22] space. CPU speed, memory, and disk space are

considered as QoS constraints for each request. It searches a node whose coordinate in all

dimensions satisfies or exceeds QoS constraints. The matchmaking algorithm distributes jobs

among capable resources evenly based on aggregated load information along each dimension

of the CAN overlay network. This method neglected proximity-aware feature.

Abdullah et al. [23] suggested a dynamic and self-organizing model for resource discovery

in ad hoc grids. In this work, three types of agents named customer, producer, and

matchmaker were introduced. The whole identifier space is divided into zones which has a

4

dedicate matchmaker. The matchmaker uses a continuous double auction to perform resource

allocation, and looks for matches among producers and consumers according to QoS

requirements of the request. Required resource size, resource availability, deadline, and

budget were studied as QoS constraints. The authors defined a mechanism to calculate the

matchmaker workload (TCost) based on the number of request/offer messages to be processed

in the ad hoc grid. TCost based on threshold is applied for dynamic segmentation and de-

segmentation, and balancing a load among different matchmakers. Moreover, resource

discovery algorithm ignores proximity of nodes.

Mastroianni et al. [24] proposed a super-peer based resource discovery algorithm for P2P-

based volunteer computing systems. Their resource discovery algorithm consists of two

phases: job-assignment and data-download phase. In the job assignment, a job manager

generates a number of job’s advert based on QoS constraints like characteristics of platform,

and sends them to the local super-peer and some of other super-peers in the system. Workers

generate a job query. Then, job query travels the network through the super peer

interconnections until its time-to-live parameter decreases to zero or the job query finds a

matching job’s advert. In the data-download phase, the worker sends a data query, and

downloads a data file from a closest data centre. In this work, load balancing is ignored.

Lazaro et al. [25] proposed a decentralized resource discovery algorithm that meets QoS

constraints of request in P2P-based VC systems. The authors used KBR overlay network, and

the requested number of resources are considered as QoS constraints. Three main agents

(worker, client, and matchmaker) were defined in the system. A worker sends advertisements

to multiple matchmakers in the system. When a client needs resources, it asks matchmaker,

and matchmaker searches among advertisements in order to find possible matches. In this

work only QoS requirements of request is studied, but load balancing and proximity-aware

feature are neglected.

 Di et al. [26] presented a decentralized scheduling algorithm for dynamic load balancing in

a self-organized desktop grid environment. A dynamic Newscast model [27] is used as

unstructured P2P overlay. In this research, each peer gathers load information of its neighbors

based on epidemic gossip protocol. The average load level on participating nodes is used to

distinguish overloaded and under loaded nodes in the system. A node is in a load balanced

state if its current load closes to average load level. If it is overloaded or under loaded, it is

improved by migrating any process into it or out from it. An autonomous scheduler designed

on each node performs process migration. The system decreases migration overhead by

5

considering process workload and bandwidth between two relative nodes. QoS constraints of

request are ignored in their work.

In the second category there are a few research works that use knowledge-free method for

load balancing in the grid systems. Some of these works are:

 Di et al. [28] improved a previous work [26] to design a conflict-minimizing load

balancing algorithm, which can balance uneven workload in dynamic P2P desktop grids. In

this work, each heavy loaded node selects light loaded node for task migration based on a

distributed Bernoulli probabilistic model. They argued that asynchronously selecting target

light node by each heavy loaded node in the competitive circumstances could be regarded as a

set of Bernoulli trials. By using the decentralized Bernoulli model, decision conflict of task

migration is decreased, and the efficiency of load balancing method is improved. This work is

a combination of knowledge-free and knowledge-based method. Because at first any peer

gathers load information of its neighbors based on epidemic gossip protocol; then, it uses

Bernoulli model to improve the performance of load balancing algorithm.

Chatrapati et al. [29] considered the grid system as n heterogeneous computing resources

connected by a communication network using m users. Each node is modeled as an M/M/1

queuing system, and all jobs are supposed to have the same size .The communication

overhead between two nodes is considered independent of the nodes ,and computed by total

traffic through the network. They used a competitive equilibrium solution for load balancing

in computational grids. The competitive equilibrium problem of load balancing finds

equilibrium prices for the computing resources; then, it specifies allocation of user jobs to the

nodes at these prices such that each user optimizes objective function against budget

constraints. In this work authors proposed a load balancing strategy based on knowledge-free

method but in a centralized manner. Also, the resource discovery algorithm ignores QoS

constraints of each job in the system.

Table 1 presents a comparison among these studies and the proposed load balancing policy

in this paper, in terms of platform, QoS constraints, load balancing, and proximity-aware

feature.

3. CycloidGrid Environment

In this section, a brief overview of CycloidGrid architecture and resource discovery policy is

provided. Interested readers can refer to [20] for more detail about CycloidGrid.

6

Table 1: comparison among previous studies and proposed load balancing policy
Studies Platform QoS constraints Load balancing

policy

Proximity-aware

feature

Kim et al. [21] CAN overlay

network

CPU speed, Memory,

and disk space

Knowledge-based No

Abdullah et al. [23] Ad hoc grid Required resource size,

resource availability,

deadline, and budget

Knowledge-based No

Mastroianni et al.

[24]

Super-peer

overlay network

characteristics of

platform

No Relatively, just

for downloading

data file

Lazaro et al. [25] KBR overlay

network

requested number of

resources

No No

Di et al. [26] Unstructured

P2P overlay

network based

on Newscast

model

No Knowledge-based Relatively, just

for load migration

Di et al. [28] Unstructured

P2P overlay

network based

on Newscast

model

No Combination of

knowledge-based and

knowledge-free

method.

No

Chatrapati et al.

[29]

Centralized

system

No Knowledge-free

based on M/M/1

queuing system

No

The proposed load

balancing policy

Cycloid CPU speed, memory/

Disk space, and

deadline

Knowledge-free

based on GI/GI/1

queuing system

Yes

3.1 Resource and application models

Any volunteer resource in VC systems (e.g. desktop, laptop, tablet computers, smart

phones, and servers) can be assumed as a resource in CycloidGrid [42]. These resources are

heterogeneous, and have intermittent or permanent Internet connectivity [41]. Resource and

peer are used interchangeably in this paper. Each job is considered to be a Bag of Tasks (BoT)

application containing some of independent parallel tasks, which will be run on a single

resource. Because some of resources in VC systems have less connectivity [41] (e.g. wireless

connection); thus, many tasks are assigned at once to keep the resource busy until the next

connection.

3.2 Architecture

CycloidGrid is a proximity-aware resource discovery architecture in P2P-based volunteer

computing systems. It uses Cycloid [30] as a P2P overlay network. Cycloid is a constant-

degree structured P2P overlay with nodes where l is a dimension. All nodes are

classified into some clusters. Each node is identified with a pair of indices

where is a cubical index identifying its position among existing clusters.

Whereas, k is a cyclic index that identifies its position among l nodes in its cluster.

lln 2.=

)...,(021 aaak ll −−

021 ...aaa ll −−
l2

Three types of nodes are defined in CycloidGrid. These nodes are called reporting node,

host node, and client node. The reporting nodes are responsible for keeping resource attribute

values of peers in the system. These attributes include model, operating system, CPU speed,

RAM, and available hard disk. Host node can find suitable resource to run a job, when it

receives a lookup request, and it can run its associated jobs. The client node sends a lookup

request for running a job. It keeps executable code of the job, input and generated output files.

Decision tree (DT) is applied to classify resources based on resource attributes into some

clusters, as it is shown in Figure1. Four attribute values are selected in each level of DT.

Consequently, the number of clusters in DT is clusters. 102445 =

7

Figure 1. Decision tree for classification of resources based on their attributes.

Each cluster of DT keeps the attribute values of subset of resources with identical operating

system and processor model, and close CPU speed, RAM, and hard disk size. These clusters

assign to the first 1024 clusters of CycloidGrid, and they are called reporting clusters. The

remaining clusters of CycloidGrid are called host clusters. Consequently, we have two types

of cluster in CycloidGrid: reporting clusters and host clusters. Reporting clusters keep

reporting nodes, and host clusters contain host/client nodes. Each reporting cluster contains

three reporting nodes with similar resource attribute values. One of these reporting nodes is

Model Hard Disk

Space

RAM
CPU

Speed

.

.

.

.

.

.

Operating

 System

Operating

 System

.

.

.

Hard Disk

Space

.

.

.

RAM

.

.

.

CPU

Speed

8

called primary reporting node that has the largest cyclic index in the corresponding cluster,

and the other ones are called replica reporting node. Replica nodes have snapshot of resource

information of primary node.

3.3 Resource Discovery Policy

Each request (job) is served within a single peer in CycloidGrid. It has the following

characteristics:

• Number of independent tasks

• Estimation of each task duration

• QoS constraints in terms of minimum CPU speed, minimum RAM or disk space

requirement, and deadline.

Figure 2 illustrates a scenario in which a resource is selected for running a request. At first,

client node sends a lookup request for its job to the randomly active host node in the system

(step 1). The selected host node is called an injection node. The injection node acts as a

scheduler for this request. This node has two queues such that one queue belongs to the

lookup request, and another one belongs to the jobs that should be executed on this node.

Each injection node uses decision tree to find reporting clusters can be useful to search

according to the QoS constraints of this request. As it was mentioned earlier, every reporting

cluster has one primary and two replica nodes with the same resource attribute values. In this

phase, injection node selects a reporting node with minimum communication overhead among

these three reporting nodes in each selected reporting cluster (step 2). Communication

overhead in this research is computed by a network model based on queuing theory discussed

in Section 6.

Each reporting node searches among its resource attribute values to find a resource that

satisfies QoS constraints. (step 3). It uses a load balancing policy that is explained in two

following sections. Finally, the reporting node selects a resource among its resources, and

sends the address of the selected resource to the injection node (step 4). The injection node

receives some resource offers for running its request from multiple reporting nodes. If the

request does not have the deadline, the injection node will select a resource with minimum

communication overhead to itself and the client node of this request. Whereas, if the request

has deadline, the injection node will select a resource with higher priority to maximum CPU

speed and lower priority to minimum communication delay. In order to optimize these two

parameters, at first a resource with maximum CPU speed is selected; then, a resource with

minimum communication delay is selected. If the selected resource in these two stages is

identical, this resource will be selected. Otherwise, the resource with next minimum

communication delay is selected until half of resources are chosen. If half of resources are

selected, and they are not identical with the resource having maximum CPU speed; then, the

resource with next maximum CPU speed is selected. This process continues until these two

resources are overlapped. The selected resource is called run node (step 5). The injection node

sends a job profile to the run node (step 6). Finally, the run node puts this request in its queue,

downloads the source code and input files of this request, and returns generated output files

(step 7).

9

Figure 2. Resource discovery policy in CycloidGrid environment.

4. Analytical Queuing Model

As we discussed in Section 3.3, each request is received by an injection node; then, it is

redirected to subset of reporting nodes. Because each reporting node contains subset of

resource attribute values, and it advertises suitable resource to run a request; therefore, the

load balancing policy is considered in the reporting nodes of the system. The analytical model

discussed in this section is applied in each reporting node to balance a load among its resource

pool. The resource pool of each reporting node is divided into logical clusters. Each logical

cluster contains subset of resources with close CPU speed. Thus, each reporting node is

assumed to have a number of logical clusters. The objective function is to find the optimal

arrival rate of incoming requests to each logical cluster a way that incoming requests are

distributed evenly among the logical clusters in each reporting node. This section is followed

by our proposed load balancing policy built upon the analytical model provided in this

section.

1

Queue | J | J | J
1 2 3

Client node

Injection node

Selected
reporting nodes

5

3 2

Reporting node

Reporting node

Reporting node

4
6

7

. Run node

.

The analytical model is based on routing in parallel queues. The queuing model that

represents the whole system is shown in Figure 3. In this model, it is assumed that the

requests arrive into the system from all of client nodes with arrival rateλ and variance .

These requests are sent to the injection nodes; then, they are redirected to a subset of reporting

nodes. These reporting nodes are selected by a decision tree based on QoS requirements.

Therefore, each reporting node receives a subset of arrival requests in the system. This subset

is estimated according to the following formula in each reporting node.

2
Iσ

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥

<
=

RR
R
R

RR
R
R

P

i

m

i

i
i

i

α

α

*

*
ˆ

10
1

<<
≤≤
α

ki (1)

where is a routing probability of incoming requests to reporting node i. is the number of

resources in reporting node i ,and

iP̂ iR

R , are average and maximum number of resources

among all reporting nodes, respectively.

mR

α is a calibration factor between 0 and 1. For the

sake of clarity, Table 2 gives the list of symbols that is used in this paper with their

definitions.

Based on Figure 3, reporting node i receives incoming requests with arrival rate ,

and its variance can be computed by Wald’s equation [32] as follows:

λλ ii P̂ˆ =

2

22
2

)ˆ(
)ˆ1()(ˆ

i

iiI
I P

PP
i

−+
=

−λσ
σ (2)

By having arrival rate and variance of incoming requests to each reporting node, we aim to

find the optimal arrival rate of these requests to each logical cluster in order to balance the

requests in the system. In this analytical model, each logical cluster (LC) can be considered as

a server with the given service rate. Therefore, by assuming a logical cluster as a single queue,

and the reporting node as a router that redirect incoming requests to the logical clusters, the

problem can be considered as a routing in the distributed parallel queues [33, 34]. Each

reporting node acts as router in front of a number of logical clusters as heterogeneous multi-

server parallel queues. The objective function in each reporting node can be expressed as

follows:

 (3))~(~minˆˆmin
1
∑
=

=
iN

j
jjii TET λλ

10

Equation 3 aims to find the optimal arrival rate jλ
~ to each LC queue j in the reporting node

i. However, any reporting node with arrival rate routes incoming requests to the LC queues

immediately after its arrival according to the routing probability

iλ̂

jP~ . It is supposed that there is

no queue in the reporting node, and it is fast enough to do that because each reporting node

only find capable resources and it is not used for running a job. We model each LC with a

single server queue. Therefore, in reporting node i LC queue j has the arrival rate ijj P λλ ˆ~~
=

and its variance can be computed as follows by Wald’s equation [32] as follows:

2

22
2

)~(

)~1()ˆ(~

j

jijI
I P

PP
i

j

−+
=

−λσ
σ (4)

11

Figure 3. Queuing model for resource discovery in CycloidGrid

Service time of LC queue j follows a given distribution with mean jS jj xSE =][and the

coefficient of variance
j

s
s x

C j

j

σ
= .We consider a general distribution for the inter-arrival time

as well as the service time for each LC queue in the queuing model. Therefore, each LC queue

can be modeled as a GI/GI/1 queue. The GI/GI/1 queue is referred to a single-server queue

1

~
Nλ

Injection
node 1

Injection
node 2

Injection
node m

Reporting node 1

Reporting node 2

Reporting node k

Reporting node i

.

.

.

1̂λ

2λ̂

iλ̂

kλ̂

Cluster 1

Cluster

1N

1
~λ

2
~λ

Cluster 2

Cluster 1

Cluster
 kN

.

.

. .
.
. .

.

.

λ

Client node

Client node

.

.

.

Client node Cluster 2 1
~λ

2
~λ

KNλ
~

with first-in-first-out discipline and with a general distribution of the sequences for inter-

arrival and service time (GI stands for general independent or general in brief).

Table 2: Description of symbols used in the queuing model.
Symbol

definition Symbol definition

λ Arrival rate of jobs into the system

2
jIC The squared coefficient of variance for the

arrival rate on cluster j at any reporting node

2
Iσ Variance of arrival rate of jobs into the

system

2
jSC The squared coefficient of variance for service

time on cluster j at any reporting

node

iλ̂ Arrival rate of jobs into a reporting

node i

jT~ Average response time of incoming requests on

cluster j at any reporting node

2
iIσ Variance of arrival rate of jobs into a

reporting node i ∑
=

=
iN

j
ji TT

1

~ˆ
 Average response time of incoming requests at

reporting node i

iP̂ Routing probability of arrival rate to

reporting node i

N Number of resources in the system

iN Number of logical clusters in reporting

node i
K Number of reporting nodes in the system

iR Number of resources in reporting node

i
mS Maximum average of processing speed among

all logical clusters at any reporting

node

jλ
~ Arrival rate of jobs into logical cluster j

after load distribution at any reporting

node

jS Average processing speed of cluster j at any

reporting node

jP~ Routing probability of arrival rate of

logical cluster j in any reporting node

BoTS Average of BoT size

jx Average service time of jobs on cluster

j in any reporting node

BoTE Average of task execution time in BoT request

jS Service time distribution of cluster j at

any reporting node

12

The approximated expected response time of LC queue j is computed by following Equation

[34]:

)~)((2

]~[
1

22

jj

SI
jj x

CC
xTE jj

λ−

−
+=

−
 (5)

In Equation 5 we can replace by the following formula, 2
jIC

 (6))1)ˆ((~1~ 22222 −+==
ijj IijjII PC σλλσ

Since
i

j
jP

λ

λ
ˆ

~
~ = ,hence

)1)ˆ((ˆ

~
1 222 −+=

ij Ii
i

j
IC σλ

λ

λ
 (7)

The objective function expresses in Equation 3 is solved by an extended version of the

approach developed by Li [35] (See Appendix A), so the optimal arrival rate for LC queue j

will be

)(ˆ2)ˆ(1

ˆ)1()ˆ(111~
22

222

zx

xC

xx jiIi

jiSIi

jj
j

i

ji

−+−

−+−
−=

λσλ

λσλ
λ (8)

If we use constraint , we have 0ˆ~...~~)~,...,~,~(2121 =−+++= iNN ii
C λλλλλλλ

)(ˆ2)ˆ(1

ˆ)1()ˆ(111ˆ
22

222

11 zx

xC
xx jiIi

jiSIi
N

j j

N

j j
i

i

ji
ii

−+−

−+−
=+− ∑∑

== λσλ

λσλ
λ (9)

A closed form solution for Equation 9 is impossible [35]. Therefore, we use a numerical

solution proposed by Li [35]. A numerical solution uses bisection algorithm and searches z in

a range of [lb,ub]. From Equation 8. 0~
≥jλ we can get

2

)1(2
jS

j

xC
xz j

−
−≤ (10)

For all , Therefore the upper bound of z is iNj ≤≤1

)
2

)1(
min(

2
jS

j

xC
xub j

−
−= (11)

13

And in Equation 9 let

)(ˆ2)ˆ(1

ˆ)1()ˆ(11)(
22

222

zx

xC

x
z

jiIi

jiSIi

j
j

i

ji

−+−

−+−
=

λσλ

λσλ
φ (12)

Therefore, we simplify the Equation 9 as follows:

 ∑ ∑
= =

=−
i iN

j

N

j
ji

j

z
x1 1

)(ˆ1 φλ (13)

 If we consider Equation 13, we have

 i

N

j

N

j j
j

i i

x
ub λφ ˆ1)(

1 1

−≥∑ ∑
= =

 (14)

And lower bound of z can be worked out based on Equation 15. lb can be obtained by

dividing by 2 ub repeatedly until the following condition is met.

 i

N

j

N

j j
j

i i

x
lb λφ ˆ1)(

1 1
−≤∑ ∑

= =

 (15)

5. Proposed Load Balancing Policy

The proposed load balancing policy in each reporting node is comprised of two parts. The

first part determines how the analysis mentioned in the previous section is applied in each

reporting node for job allocation to each logical cluster. In fact, the first part finds optimal

arrival rate jλ
~ for each logical cluster. The second part concerns the dispatch policies in each

reporting node among logical clusters based on the routing probability gained by the first part.

5.1 Job Allocation Policy

In the analysis of Section 4, we consider several assumptions as follows:

• Each logical cluster in every reporting node have a GI/GI/1 queue;

• Each logical cluster queue serves arriving requests in the FCFS fashion;

• To serve a request, its resource is found by the round robin policy within target logical

cluster a way that this resource satisfies the QoS constraints of the request;

• A request (job) has bag of task (BoT) structure.

14

We use general distribution for the service time of each logical cluster. The average service

time for each request in the logical cluster j can be approximated as follows:

j

m
BoTBoTj S

SESx = iNj ≤≤1 (16)

In Equation 16 the service time of each request can be approximated as the product of the

average BoT size and the average execution time of each task. This value is scaled by the

division of maximum average processing speed of all logical clusters in each reporting node

by average processing speed of cluster j. The job allocation policy to logical clusters in each

reporting node is represented in the form of pseudo-code in Algorithm 1.

In Algorithm 1, the average service time of logical cluster j is computed based on Equation

16 in steps 1 to 3. In Step 4 ub is calculated based on Equation 11 as the minimum value

among all computed values for logical clusters in the previous steps. lb is initialized with half

of ub at Step 5 and halved until the condition in Step 6 based on Equation 15 is satisfied.

Steps 10-15 show the bisection algorithm mentioned in previous section to find the proper

value of z. ε is the expected precision at Step 10 and initializes to . Finally, in steps 17-19

the optimal arrival rate for each logical cluster is determined.

710−

5.2 Dispatch Policies

We consider three dispatch policies among logical clusters, namely BilRCDP, BerRCDP,

and NRCDP. These policies differ in two ways. First, they differ in how they compute routing

probabilities jP~ (
i

j
jP

λ

λ
ˆ

~
~ =) for each logical cluster. Second, they differ in how they choose the

sequence of requests sent to each logical cluster. BilRCDP and BerRCDP use the optimal

arrival rate that is computed by the proposed load balancing policy; whereas, NRCDP is used

just for comparison with these two policies. In fact, NRCDP is the simplest way for brokering

in this case. In this dispatch policy, the routing probability jP~ for any logical cluster is

considered to be equal, and logical clusters are sorted according to their average CPU speed.

Within each logical cluster, resources are examined for QoS constraints of request in a round

robin manner.

Both BerRCDP and BilRCDP use the same routing probabilities. In these two policies, the

arrival rate for each logical cluster (jλ
~) is computed by Algorithm 1. The routing probability

15

of these polices for each logical cluster in reporting node i can be computed as
i

j
jP

λ

λ
ˆ

~
~ = . These

policies differ in how they choose the sequences of requests sent to each LC queue.

Algorithm 1: job allocation policy to logical clusters in each reporting node

Input: jIi x
i
,,ˆ 2σλ for all iNj ≤≤1

Output: jλ
~

 the optimal arrival rate of requests to different logical clusters, for all iNj ≤≤1

1 for to do 1←j iN

2
j

m
BoTBoTj S

SESx =

3 end

4)
2

)1(
min(

2
jS

j

xC
xub j

−
−← for all iNj ≤≤1

5
2

ublb ←

6 while i

N

j

N

j j
j

i i

x
lb λφ ˆ1)(

1 1
−>∑ ∑

= =

 do

7
2
lblb ←

8 end

9 Find the Lagrange multiplier z to solve Equation 9 by searching z between the range [lb , ub] using the

bisection algorithm.

10 while)(ε>− lbub do //ε is the expected precision

11)
2

(ublbz +
←

12 if (∑∑
==

−≤
ii N

j
i

j

N

j
j x

z
11

ˆ1)(λφ) Then

13 ubz ←

14 else lbz ←
15 end

16 Compute the optimal arrival rate by Equation 8 for each logical cluster

17 For to do 1←j iN

18
)(ˆ2ˆ1

ˆ)1(ˆ111~
22

222

zx

xC

xx jiIi

jiSIi

jj
j

i

ji

−+−

−+−
−←

λσλ

λσλ
λ

19 end

16

In the BerRCDP policy, routing probabilities are used without any special sequencing of

requests sent to each LC queue. Thus, BerRCDP is memory-less that it does not consider

which request is sent to which LC queue; whereas, the BilRCDP policy takes into account the

past sequence of routing with a little overhead. BilRCDP is a generalized form of round robin

manner, and it considers the sequence of routing called the billiard sequence [36]. The

authors in [36] suggested the method to implement the billiard sequence, and they generated it

as follows:

 }{min
j

jj

jb P
YX

j
+

=
∀

 (17)

Where is a target queue, and and are vectors of integers with size n. keeps the

number of requests sent to queue j and specifies which queue is the fastest. is set to

one for the fastest queue and zero for other queues [33]. is initialized to zero, and it is

updated to

bj jX jY jY

jX jX

jY

1+=
bb jj YY after selecting the target queue. is a routing probability of

incoming requests that are sent to the queue j.

jP

Algorithm 2 demonstrates BilRCDP dispatch policy. In this algorithm, initially, the fastest

logical cluster is found based on average service time for each logical cluster in Step 1. jP~ is

sent to this algorithm based on Algorithm 1, and jx is computed by Equation 16.

variables are initialized to zero in steps 2 to 5. One is assigned to the fastest logical

cluster in Step 6. shows the number of requests that are dispatched to logical cluster j, and

initially assigns to zero at Step 4. In Steps 8-14, the value of adapted billiard sequences are

computed, and the logical cluster with minimum value is selected. Then, of selected logical

cluster is incremented by 1 at Step 15. In Steps 16 to 20, all resources within selected logical

cluster are examined for QoS constraints. If one of the resources satisfies QoS constraints, this

resource will be selected at Step 18; otherwise, other resources on this logical cluster will be

examined by a round robin manner. The round robin policy within each logical cluster is

justifiable, because resources that their CPU speed is close are grouped in the same logical

cluster. If none of the resources satisfies the QoS constraints, another logical cluster will be

selected and this process continues (Step 21, 22).

YX ,

jY

jY

The BerRCDP dispatch policy selects the random logical cluster based on routing

probability computed by Algorithm 1. In this dispatch policy, selection of logical cluster is

17

random, but each logical cluster gives a request based on its routing probability. After

selecting a logical cluster, each resource in the target logical cluster is examined for QoS

constraints in the round robin manner.

Algorithm 2: BilRCDP dispatch policy at each reporting node

Input: jj x,~λ for all logical cluster j , iNj ≤≤1

Output: selected resource () jr

1.)(xustertLogicalClfindFastesusterfastestLCl ←

2. foreach logical cluster j do

3. 0←jX

4. 0←jY

5. end

6. 1←usterfastestLClX

7. Valuemaxmin ←

8. foreach logical cluster j do

9.
j

jj

P
YX

C ~
+

=

10. if (c<min) then

11. C←min

12. jselCluster ←

13. end

14. end

15. 1+← selClusterselCluster YY

16. foreach resource m in SelCluster do

17. if (resource m satisfy QoS constraints) then

18. mj resourcer ←

19. else check another resource in SelCluster based on round robins manner

20. end

21. if (none of resources in SelCluster does not satisfy QoS constraints) then

22. goto 7

23. else return() jr

Table 2 gives a comparison among three dispatch policies. These policies are compared

according to the method for computing the routing probability of each logical cluster, the

18

sequence of choosing target logical cluster, and time complexity. The time complexity of each

dispatch policy is computed in two cases. The first one is for finding target logical cluster. In

this case, the time complexity of BilRCDP is higher than the others and it is related to number

of logical clusters in the reporting node. Whereas, in the second case it is computed for

finding suitable resource to serve a request within selected logical cluster. The time

complexity in this case is equal for all three policies as it is related to number of resources in

one logical cluster.
Table 2: Comparison among three dispatch policies

Criteria BilRCDP BerRCDP NRCDP

How to compute

routing probability

for each logical

cluster

The routing

probabilities of logical

clusters are different

and they are computed

by Algorithm 1

The routing

probabilities of logical

clusters are different

and they are computed

by Algorithm 1

The routing

probabilities of logical

clusters are equal

The sequence of

choosing target

logical cluster

Billiard sequence Random Round-robin strategy

Time complexity of

finding target

logical cluster

)(iNO)1(O)1(O

Time complexity of

searching within

target logical

cluster

)(
i

i

N
R

O)(
i

i

N
R

O)(
i

i

N
R

O

6. Performance Evaluation

In order to evaluate the performance of proposed policies, we implemented CycloidGrid

simulator as a discrete event simulator. CycloidGrid is written in Java and it is an extended

version of Cycloid simulator [30] to emulate the P2P-based volunteer computing systems.

 Physical network in CycloidGrid is emulated by Brite topology generator [37]. A physical

network with n computers which are connected by Waxman model and different link

bandwidth are generated by Brite topology generator. The bandwidth between two nodes is

between 10Mbps to 1Gbps with uniform distribution [31, 44].

Xtremlab trace [38] is used in this research to emulate resources in the CycloidGrid

simulator. Xtremlab trace is exported from BOINC database where the information is

collected by client or server in the BOINC.

19

The coefficient of variance (
Mean

StDevCV =) of the service time within each logical cluster can

be assumed as 1.1 () to model the performance variability of resources in volunteer

computing systems according to the Xtremlab traces.

jSC

The performance metric related to the response time of requests to be considered in all

simulation scenarios is average response time (ART). The ART of R given requests is defined

as follows:

R

dw
ART

R

j

l

k
kj

j

j∑ ∑
= =

+
= 1 1

)(
 (18)

where is the waiting time of request j, is the number of tasks in request j, and is the

weighted run time of task k in request j. The weighted run time of each task is a scaled down

value of run time on a computer with higher speed. The waiting time of request j is computed

by the following equation:

jw jl
jkd

)(,2)max(222 ∑+++= ′ ririicj LLLw
l

lrc dLMax (19)

where is the communication overhead for sending a request between the client node and

the injection node, represents the communication delay between the injection node and

each of selected reporting nodes. The maximum of this time is added to the waiting time of

the job, because the injection node contacts the selected reporting nodes in parallel.

represents communication overhead between the injection node and the run node. Also, the

last term is the maximum of communication delay between the client node and the run node

() for sending input files and the summation of run time for waiting tasks in the run

node’s queue.

icL 2

riL ′2

riL 2

rcL 2

A network model based on queuing theory is applied to compute a communication

overhead between two peers [20]. In this analytical model, each connection between two

peers is modeled by a GI/GI/1 queue, and it is assumed that each peer receives two types of

traffic: background traffic of the Internet and a part of workload traffic that is imported into

the system by the client nodes. Therefore, we have compound distribution with arrival rate mλ

and variance as input traffic to each peer. Thus, the communication overhead between two

peers can be computed by the following Equation [20].

2
mIσ

20

 ∑
+=

Ψ+⎥
⎦

⎤
⎢
⎣

⎡
Ψ−

+Ψ=
d

si
m

mm

mm
m i

L
1

22

)1(2
2

λ
λσ

 (20)

where is the service time of associated queue to each connection, and it is calculated as

follows:

mΨ

 netnetm Fβα +=Ψ 5.0 (21)

where netα is the network latency, netβ is an inverse of bandwidth along the link between two

adjacent peers based on routing algorithm in the P2P network, and F is a flow size transmitted

between two peers. The last term of Equation 20 is calculated as a summation of along the

route between adjacent peer to the source node and destination peer based on routing

algorithm of the P2P overlay network. Interested readers can refer to our previous work [20]

for more detail.

mΨ

6.1 Workload Model

The workload model for simulations is based on Grid Workload Archive [39]. In this

model, the inter-arrival time has Weibull distribution, and the request duration follows

Normal distribution as listed in Table 3. As in the volunteer computing systems the task

duration is large, the square of task duration is considered.

Table 3: Input parameters for the workload model.

Parameters Distribution/Value Reference

Inter-arrival time Weibull (25.4,95 =≤≤ βα) [39]
No. of tasks Weibull (76.1,11.2 == βα) [39]

Task duration Normal (1.6,5.873.2 =≤≤ σm) [39]
Internet inter-arrival time Weibull (15.0,06.0 == βα) [43]

Internet flow size Pareto (05.1,3 == βα) [43]
Inter-arrival time of peer

churn
Poisson (83.466.0 ≤≤τ) [21]

Each BoT request can have QoS constraints including minimum CPU speed, minimum

RAM, disk space requirements, and the deadline. The methodology used by Irwin et al. [45]

is utilized to assign the deadline to each request. According to this methodology, the requests

are classified into two classes. These classes are Low Urgency (LU) jobs and High Urgency

(HU) jobs. A BoT request in HU class has low ratio of deadline to runtime; whereas, a request

in LU class has high ratio of deadline. In our experiments, the ratio of deadline for HU

21

requests follows normal distribution with mean 4 and variance 2; meanwhile, the ratio of

deadline for LU requests is three times longer with mean 12 and variance 6.

We generate the workload for 1 day, where 2.5 hours is considered as the warm-up phase to

avoid bias before the system reaches steady-state. Each experiment is performed on each of

these workloads separately. For the sake of accuracy, each experiment is carried out several

times by using different workloads and average of results is reported. In all the reported

results, CV is less than 0.01. The number of resources is equal to 1000 and 3000 peers with

heterogeneous computing speeds.

In order to generate different workloads, we modified two parameters one at a time.

Therefore, to change the inter-arrival time, we modified the first parameter of Weibull

distribution (the scale parameterα) as shown in Table 3. Thus, the number of jobs increases

from 10000 (i.e. 9=α) to 19000 (i.e. 5=α). Also, to have requests with different duration, the

mean of normal distribution changes from 2.73 to 8.5 that is mentioned in Table 3. The

average task duration in BoT changes from 44 to 109 minutes.

Peer churn is modeled by a Poisson distribution [21] with average inter-arrival time (τ)

differentiates from 0.66 minutes to 4.83 minutes that is presented in Table 3. Thus, from 10%

to 70% of peers leave the system when average inter-arrival time varies from 4.83 to 0.66

minutes; whereas, some nodes join the system.

We consider the background traffic of the Internet follows the Weibull distribution [43] as

shown in Table 3. Also, the Internet flow size follows the Pareto distribution according to

[43]. The mean of Pareto distribution is considered as the flow size for the Internet traffic.

Each BoT request is assumed to have an input file. A ratio of communication cost to

computation cost is applied in various studies on scheduling BoT requests [40]. This ratio is

called communication-to-computation ratio (CCR). Therefore, we consider the file size of

each BoT request is CCR times of its computation time. It is worth noting that in this

research, we focus on balanced BoT application in which computation and communication

time are important. Thus, a BoT request with CCR=2 is taken into account.

6.2 Simulation Results

Figures 4-7 present ART versus inter-arrival time and average task duration for different

policies. In these figures, average task duration is kept in the medium size (66.55 minutes) for

ART versus inter-arrival time. Also, the inter-arrival time has kept in the medium size

(i.e. 86.7=α) for ART versus average task duration. Each request has minimum CPU speed,

minimum RAM or disk space requirements as QoS constraints.

22

In Figure 4, we consider 1000 peers in the system where the system is relatively static, and

no peer joins or leaves during the experiment. As we expected, by reduction of inter-arrival

time, the ART dramatically increases too. But, BilRCDP policy controls the ART by

distributing the load evenly in the system. Meanwhile, NRCDP approaches the saturation

point exponentially. BilRCDP marginally surpasses the BerRCDP with improvement factor

of 23%, 19% in Figure 4(a) and Figure 4(b), respectively. The improvement of BilRCDP in

theses figures with respect to NRCDP is 36% and 29%, respectively. Figure 4(c) and 4(d)

compares these policies with the CAN policy proposed by Kim et al. [21]. This study is

selected for comparison because they considered minimum CPU speed, RAM, and disk space

requirements as QoS constrains of request, and the load balancing policy is implemented in

their work. As one can see in Figure 4(c) and 4(d), ART of the proposed policies is much

lower than CAN. However, the overhead of CAN is lower than our proposed load balancing

policies. The average number of messages sent for each request in CAN is almost 20

messages; whereas, this average increases to 50 messages per request in our proposed

policies. The number of messages in the proposed policies is 2.5 times of CAN; meanwhile,

the improvement factor of BilRCDP is 70% compare to CAN. The most of messages in the

proposed policies are exchanged among the injection node and selected reporting nodes and a

small fraction of them are sent for managing churn in the system.

In Figure 5, the number of peers is the same as the previous experiment, but peers join or

depart from the system with the average inter-arrival time 38.2=τ minutes. In this

experiment, after 1000 nodes initially join the system, some nodes leave; meanwhile, some

nodes join the system.

55.566.577.588.59
400

500

600

700

800

900

1000

1100

1200

α

A
R

T(
ho

ur
s)

BerRCDP
BilRCDP
NRCDP

40 50 60 70 80 90 100 110
300

400

500

600

700

800

900

1000

1100

average task duration (minute)

A
R

T
(h

ou
rs

)

BerRCDP
BilRCDP
NRCDP

 (a) (b)

23

55.566.577.588.59
10

3

10
4

10
5

α

A
R

T(
ho

ur
s)

BerRCDP
BilRCDP
SNRCDP
CAN

40 50 60 70 80 90 100 110
10

2

10
3

10
4

average task duration (minute)

A
R

T
(h

ou
rs

)

BerRCDP
BilRCDP
SNRCDP
CAN

 (c) (d)

Figure 4. Average response time resulting from different policies with 1000 peers and static environment. The
experiments are carried out by modifying (a,c) the α parameter in inter-arrival time, (b,d) the average duration
of task in BoT.

The departure rate of peers in this experiment is 20% of all peers in the system. In this

experiment when a node leaves the system, all of assigned job on the leaving node are

reassigned to another peers. Because the leaving peers are selected randomly, possibly

selecting the nodes with fewer jobs causes the reduction of ART in some situations such

6=α in Figure 5(a) for BerRCDP and NRCDP policies. In this experiment BilRCDP

surpasses BerRCDP and NRCDP with the improvement factor of 18%, 21% in Figure 5(a)

and 17%, 22% in Figure 5(b), respectively.

55.566.577.588.59
350

400

450

500

550

600

650

700

α

A
R

T(
ho

ur
s)

BerRCDP
BilRCDP
NRCDP

40 50 60 70 80 90 100 110
250

300

350

400

450

500

550

600

650

700

average task duration (minute)

A
R

T
(h

ou
rs

)

BerRCDP
BilRCDP
NRCDP

 (a) (b)

Figure 5. Average response time resulting from different policies with 1000 peers and dynamic environment.
The experiments are carried out by modifying (a) the α parameter in inter-arrival time, (b) the average duration
of task in BoT.

In Figure 6, we increase the number of peers to 3000 peers in the system, but the system

keeps in the static state and no node joins or leaves the system during the simulation. As it is
24

shown, the BilRCDP still achieves a better performance with respect to BerRCDP and NRCDP

with improvement factor of 8%, 10% in Figure 6(a) and 7%, 8% in Figure 6(b), respectively.

The performance of BerRCDP decreases with increasing number of peers in the system. As we

explained in Section 5, after selecting a resource by BerRCDP sequence, this resource is

examined on QoS constraints. If it meets the QoS constraints, it will be selected; otherwise,

another resource are examined. The QoS constraints have the performance impact on

BerRCDP policy by changing the recommended sequence in this policy. This impact is less

effective on the performance of the BilRCDP policy.

55.566.577.588.59
300

350

400

450

500

550

600

650

700

α

A
R

T(
ho

ur
s)

BerRCDP
BilRCDP
NRCDP

40 50 60 70 80 90 100 110
250

300

350

400

450

500

550

600

650

700

750

average task duration (minute)

A
R

T
(h

ou
rs

)

BerRCDP
BilRCDP
NRCDP

 (a) (b)

Figure 6. Average response time resulting from different policies with 3000 peers and static environment. The
experiments are carried out by modifying (a) the α parameter in inter-arrival time, (b) the average duration of
task in BoT.

Figure 7 shows the experimental results for 3000 peers in the dynamic environment. In this

experiment, peers leave or join to the system with average inter-arrival time 38.2=τ minutes.

The departure rate of peers from the system is 20% of peers similar to the second experiment.

The BilRCDP has improvement factor of 8%, 14% in Figure 7(a) and 5%, 8% in Figure 7(b)

with respect to BerRCDP and NRCDP, respectively.

Figure 8 presents ART for 1000 peers versus the average inter-arrival time of peer churn.

The average inter-arrival time of peer churn varies from 4.83 minutes to 0.66 minutes.

However, from 10% (83.4=τ minutes) to 70% (66.0=τ minutes) of all peers (with step of

5%) leave the system; meanwhile, some nodes join the system. In this figure, the inter-arrival

time and average task duration of BoT request are kept in the medium size (86.7=α , avg.

task duration= 66.55 minutes). As illustrated in this figure, BilRCDP, BerRCDP, and NRCDP

have similar behavior with decreasing the average inter-arrival time till 1.98 minutes. In this

point, 25% of peers leave the system. After that, they start to oscillate; whereas, changes of

ART in NRCDP has bigger step than other two policies. This simulation shows that the
25

system is resistant against the churn. The performance of the system does not decrease, if the

churn rate increases.

55.566.577.588.59
250

300

350

400

450

500

550

600

650

α

A
R

T(
ho

ur
s)

BerRCDP
BilRCDP
NRCDP

40 50 60 70 80 90 100 110
200

250

300

350

400

450

500

550

600

average task duration (minute)

A
R

T
(h

ou
rs

)

BerRCDP
BilRCDP
NRCDP

 (a) (b)

Figure 7. Average response time resulting from different policies with 3000 peers and dynamic environment.
The experiments are carried out by modifying (a) the α parameter in inter-arrival time, (b) the average duration
of task in BoT.

012345
300

350

400

450

500

550

Average inter-arrival time of peer churn (minute)

A
R

T(
ho

ur
s)

BerRCDP
BilRCDP
NRCDP

Figure 8. Average response time resulting from different policies with 1000 peers. The simulations are carried

out by modifying the average inter-arrival time of peer churn.

Figure 9 presents the impact of high urgency jobs and arrival rate on the percentage of jobs

that meet the deadline. In this experiment, the number of peers equals to 1000 peers in static

environment, and we consider the jobs with deadline, minimum CPU speed, and minimum

RAM or disk space requirements as QoS constraints. In Figure 9(a), various percentage of HU

jobs are considered. For example, if the percentage of HU jobs is 40%, the percentage of

26

remaining LU jobs is 60%. Also, the inter-arrival time and average task duration of BoT

request are kept in the medium size (86.7=α , avg. task duration = 66.55 seconds). We

decrease the average task duration in this workload from minute to second; therefore, the BoT

execution time is decreased from hours to minutes. The reason is VC requests normally have

long deadline in order of weeks considering availability of resource because of dynamic

nature of volunteers [46]; thus, reduction of execution time can simulate the high urgency

requests with meaningful deadlines in the VC environments. Meanwhile, in Figure 9(b) the

average task duration and the percentage of HU jobs are kept in the medium size (avg. task

duration =66.55 seconds, the percentage of HU jobs =40%). As depicted in Figure 9, almost

99% of jobs meet the deadline by BilRCDP policy, and this policy is robust with respect to

increase of HU jobs and arrival rate of jobs. BerRCDP has almost stable behavior with

increase of HU jobs while its performance decreases with increase of arrival rate. It shows

that BilRCDP distributes the load more evenly than BerRCDP. Because the percentage of

missed deadline jobs is increased in BerRCDP with increase of arrival rate. The performance

of NRCDP is increased with the increase of high urgency jobs; meanwhile, its performance is

decreased with increase of arrival rate.

0 20 40 60 80 100

40

50

60

70

80

90

100

% of High Urgency (HU) jobs

%
 P

ec
en

ta
ge

 o
f j

ob
 th

at
 m

ee
t t

he
 d

ea
dl

in
e BerRCDP

BilRCDP
NRCDP

55.566.577.588.59
40

50

60

70

80

90

100

α

%
 P

ec
en

ta
ge

 o
f j

ob
 th

at
 m

ee
t t

he
 d

ea
dl

in
e BerRCDP

BilRCDP
NRCDP

 (a) (b)

Figure 9. The percentage of jobs that meet the deadline versus the percentage of high urgency jobs (a) and the α
parameter in inter-arrival time (b).

7. Conclusions

In this paper, we propose an analytical model for load balancing in peer-to-peer based

volunteer computing systems. We consider the requests are arriving into the system in BoT

form, and each request has some QoS constraints such as minimum CPU speed, minimum

RAM or disk space requirements, and deadline. The proposed policies for load balancing are

27

28

based on distributed parallel queues and knowledge-free approach; therefore, it does not

impose any additional overhead on the system. The proposed resource discovery algorithm

has two phases. In the first phase, it takes into account the load balancing feature in the

system; whereas, in the second phase the proximity-aware feature is considered and the

resource with minimum communication overhead is selected. Three dispatch policies namely

BilRCDP, BerRCDP, and NRCDP are considered to distribute requests to the peers in the

system. We compared the performance of these policies in different circumstances. The

results of the experiments indicated that BilRCDP significantly decreases the average

response time of the system with improvement factor of 13.12%, 18.5% in average with

respect to BerRCDP and NRCDP, respectively. The proposed load balancing policy is

proximity-aware, and selects the run node with minimum communication overhead; thus, it

has better performance for BoT requests with large input/output file and considerable

communication overhead. Also, the influence of the load balancing policy is highlighted for

the longer running jobs, and high variations in job execution time.

As part of future work, we intend to consider data intensive application in the form of

directed acyclic graph to evaluate the effectiveness of proposed policy on these applications.

We think that proximity-aware feature can decrease the communication overhead on these

applications sufficiently. Another interesting extension would be using Cloud resources in

some of peers. Some applications have QoS requirements that could not be satisfied by the

available resources of the VC systems, Clouds resources can be used in order to handle QoS

requirements of these applications.

Acknowledgments

This project was partially supported by Iran Telecommunication Research Centre (ITRC).

The authors would like to thank Rodrigo N. Calheiros, Mohsen Amini, and Amir Vahid for

useful discussions.

References

[1] Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D (2002) SETI@home: an experiment in public-

resource computing. Communications of the ACM 45:56-61. doi:10.1145/581571.581573

[2] Beberg AL, Ensign DL, Jayachandran G, Khaliq S, Pande VS (2009) Folding@home: Lessons from eight

years of volunteer distributed computing. Proceedings of IEEE International Symposium on Parallel and

Distributed Processing (IPDPS) 1-8. doi: 10.1109/IPDPS.2009.5160922

[3] Fedak G, HE H, Lodygensky O et al (2008) EDGeS: A Bridge between Desktop Grids and Service Grids.

Proceedings of the third ChinaGrid Annual Conference (ChinaGrid) 3-9. doi: 10.1109/ChinaGrid.2008.44

29

[4] Guinnessy P (2003) Climate@home. Physics Today 56:38. doi: dx.doi.org/10.1063/1.1650221

[5] Anderson DP (2004) BOINC: a system for public-resource computing and storage, Proceeding of Grid

Computing (Grid) 4-10. doi: 10.1109/GRID.2004.14

[6] Epema DHJ, Livny M, Dantzig RV, Evers X, Pruyne J (1996) A worldwide flock of condors: load sharing

among workstation clusters. Future Generation Computer Systems 12:53-65.

[7] Litzkow MJ, Livny M, Mutka MW (1998) Condor - a hunter of idle workstations. Proceedings of

International Conference on Distributed Computing Systems (ICDCS) 104-111. doi: 10.1109/DCS.1988.12507

[8] Thain D, Tannenbaum T, Livny M (2005) Distributed computing in practice: the condor experience.

Concurrency - Practice and Experience 17: 323-356.

[9] Chien A, Calder B, Elbert S, Bhatia K (2003) Entropia: architecture and performance of an enterprise

desktop grid system. Journal of Parallel and Distributed Computings 63: 597-610.

[10] Cappello F, Djilali S, Fedak G, Herault T, Magniette F, Neri V, Lodygensky O (2005) Computing on large

scale distributed systems: XtremWeb architecture, programming models, security, tests and convergence with

grid. Future Generation Computer Systems 21:417-437 doi: dx.doi.org/10.1016/j.future.2004.04.011.

[11] Chu X, Nadiminti K, Jin C, Venugopal S, Buyya R (2007) Aneka: next-generation enterprise grid platform

for e-science and e-business applications. Proceedings of the IEEE International Conference on e-Science and

Grid Computing (e-Science) 151-159 . doi: 10.1109/E-SCIENCE.2007.12

[12] Marosi AC, Gombas G, Balaton Z, Kacsuk P, Kiss T (2008) SZTAKI desktop grid: building a scalable,

secure platform for desktop grid computing. Making Grids Work VII : 365-376. doi: 10.1007/978-0-387-78448-

9_29

[13] Vladoiu M, Constantinescu Z (2009) Development journey of QADPZ - A desktop grid computing

platform. International Journal of Computers, Communications and Control 4: 82-91.

[14] Wolinsky DI, Agrawal A , Boykin P, Davis J, Ganguly A, Paramygin V, Sheng P , Figueiredo R (2006) On

the design of virtual machine sandboxes for distributed computing in wide area overlays of virtual workstations.

Proceedings of International Workshop on Virtualization Technology in Distributed Computing (VTDC) 8. doi:

10.1109/VTDC.2006.8

[15] Abbes H, Cerin C, Jemni M (2008) PastryGrid: decentralisation of the execution of distributed applications

in desktop grid. Proceedings of International Workshop on Middleware for Grid Computing (MGC) 1-6. doi:

doi.acm.org/101145/1462704.1462708

[16] Abbes H, Cerin C, Jemni M (2009) Bonjourgrid: Orchestration of multi-instances of grid middlewares on

institutional desktop grids. IEEE International Symposium on Parallel and Distributed Processing (IPDPS) 1-8.

doi:10.1109/IPDPS.2009.5161140.

[17] Anglano C , Canonico M, Guazzone M , Botta M , Rabellino S, Arena S ,Girardi G (2008) Peer-to-Peer

desktop grids in the real world: the ShareGrid project. Proceedings of IEEE International Symposium on Cluster

Computing and the Grid (CCGrid 2008) 609-614. doi: 10.1109/CCGRID.2008.23

[18] Butt AR, Zhang R, Hu CY (2006) A self-organizing flock of condors. Journal of Parallel and Distributed

Computings 66:145–161.

[19] Byun E, Kim H, Choi S, Lee S, Han YS, Gil JM, Jung SY (2008) Self-gridron: Reliable, autonomous, and

fully decentralized desktop grid computing system based on neural overlay network. Proceedings of the

International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA) 569-

575.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Cosimo%20Anglano
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Massimo%20Canonico
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Marco%20Guazzone
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Marco%20Botta
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Sergio%20Rabellino
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Simone%20Arena
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Guglielmo%20Girardi

30

[20] Ghafarian T, Deldari H, Javadi B, Yaghmaee MH, Buyya R (2012) CycloidGrid: A proximity-aware P2P-

based resource discovery architecture in volunteer computing systems. Future Generation Computer Systems, In

Press. doi:10.1016/j.future.2012.08.010.

[21] Kim JS, Nam B, Keleher P, Marsh M, Bhattacharjee B, Sussman A (2008) Trade-offs in matchmaking job

and balancing load for distributed desktop grids. Future Generation Computer Systems 24:415-424. doi:

10.1016/j.future.2007.07.007.

[22] Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001) A scalable content addressable network.

Proceedings of the conference on Applications, technologies, architectures, and protocols for computer

communications (SIGCOMM) 161-172. doi: 10.1.1.140.3129

[23] Abdullah T, Alima LO, Sokolov V, Calomme D, Bertels K (2009) Hybrid resource discovery mechanism in

ad hoc grid using structured overlay. Proceedings of the International Conference on Architecture of Computing

Systems. In:Lecture Notes in Computer Science, vol. 5455 , Springer, pp. 108-119.

[24] Mastroianni C, Cozza P, Talia D, Kelley I, Taylor I (2009) A scalable super-peer approach for public

scientific computation. Future Generation Computer Systems 25: 213-223. doi: 10.1016/j.future.2008.08.001.

[25] Lazaro D, Marques JM, Vilajosana X (2010) Flexible resource discovery for decentralized P2P and

volunteer computing systems. Proceedings of Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE) 235-240. doi: 10.1109/WETICE.2010.44

[26] Di S, Wang CL, Hu DH (2009) Gossip-based dynamic load balancing in a self-organized desktop grid.

Proceedings of the 10th High-Performance Computing Asia (HPCAsia) 85–92. doi: 10.1.1.160.260

[27] Ganesh A, Kermarrec AM, Massoulie L (2003) Peer-to peer membership management for gossip-based

protocols. IEEE Transaction on Computers 52:139–149. doi:10.1109/TC.2003.1176982

[28] Di S, Wang CL (2010) Conflict-minimizing dynamic load balancing for P2P desktop grid . Proceeding of

11th IEEE/ACM International Conference on Grid Computing(Grid) 25-28. doi:

dx.doi.org/10.1109/GRID.2010.5697946

[29] Chatrapati K, Ujwala Rekha J, Vinaya Babu A (2010) Competitive equilibrium approach for load balancing

a computational grid with communication delays. Journal of theoretical and applied Information Technology

19:126-133.

[30] Shen H, Xu C, Chen G (2006) Cycloid: a scalable constant-degree p2p overlay network. Performance

Evaluation 63:195-216. doi:10.1016/j.peva.2005.01.004

[31] Bouguerra MS, Kondo D, Trystram D , On the scheduling of checkpoints in desktop grids (2011).

Proceeding of 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) 305-

313. doi: 10.1109/CCGrid.2011.63

[32] Ross SM (1997) Stochastic processes. John Wiley and Sons, New York.

[33] Anselmi J, Gaujal B (2010) Optimal routing in parallel, non-observable queues and the price of anarchy

revisited. Proceedings of 22th International Tele traffic congress (ITC) 1-8. doi: 10.1109/ITC.2010.5608745

[34] Guo X, Lu Y, Squillante MS (2004) Optimal probabilistic routing in distributed parallel queues. ACM

SIGMETRICS Performance Evaluation Review 32: 53-54. doi:10.1145/1035334.1035355.

[35] Li K (2008) Optimal load distribution in non dedicated heterogeneous cluster and grid computing

environments. Journal of Systems Architecture 54: 111-123. doi:10.1016/j.sysarc.2007.04.003

[36] Hordijk A, der Laan DV (2004) Periodic routing to parallel queues and billiard sequences. Mathematical

Methods of Operations Research 59: 173-192. doi:10.1007/s001860300322.

[37] Medina A, Lakhina A, Matta I, Byers J (2001) BRITE: an approach to universal topology generation.

Proceedings of International Symposium on Modelling, Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS) 346 - 353. doi: 10.1.1.94.2118

[38] Malecot P, Kondo D, Fedak G (2006). XtremLab: a platform for observation and characterization Grids of

PCs on the Internet. Proceeding of Parallel meetings of the French(RenPar).

[39] Iosup A, Sonmez O, Anoep S, Epema D (2008) The performance of Bags-of-Tasks in large-scale distributed

systems. Proceedings of the International Symposium on High Performance Distributed Computing (HPDC) 97-

108. doi: 10.1145/1383422.1383435

[40] da Silva FAB., Senger H (2011) Scalability limits of Bag-of-Tasks applications running on hierarchical

platforms. J. Parallel Distrib. Comput. 71:788-801.

[41] Kondo D, Anderson DP, McLeod VII J. (2007) Performance evaluation of scheduling policies for volunteer

computing, Proceedings of IEEE International Conference on e-Science and Grid Computing (e-Science) 415-

422. doi: 10.1109/E-SCIENCE.2007.57

[42] Anderson DP (2011) Emulating volunteer computing scheduling policies , Proceeding of IEEE

International Parallel & Distributed Processing Symposium (IPDPS) 1839-1846. doi: 10.1109/IPDPS.2011.343

[43] Basher N, Mahanti, A, Williamson C, Arlitt M (2008) A comparative analysis of web and peer-to-peer

traffic, Proceeding of International world wide Web conference (WWW) 287-296. doi:

10.1145/1367497.1367537

[44] Elwaer A, Harrison A, Kelley I, Taylor I (2011) Attic: A case study for distributing data in BOINC projects

, IEEE International Parallel & Distributed Processing Symposium (IPDPS) 1863-1870. doi:

10.1109/IPDPS.2011.348

[45] Irwin D, Grit L, Chase J (2004) Balancing risk and reward in a market-based task service, IEEE

International Symposium on High Performance Distributed Computing (HPDC) 160-169. doi:

10.1109/HPDC.2004.1323519

[46] Heien EM, Anderson DP, Hagihara K (2009) Computing low latency batches with unreliable workers

in volunteer computing environments. J Grid Computing 7:501–518. doi: 10.1007/s10723-009-9131-6

Appendix
A. Proof of Equation 8

To solve the objective function of Equation 3 we extend the approach developed by Li [35],

since
iNλλλ ~...~~

21 +++ is fixed, the problem is equivalent to minimize

)
)~1(2

)(~
~()~(~ˆˆ)~,...,~,~(

1

22

1
21 ∑∑

== −

−
+===

i
jj

i

i

N

j jj

SIjj
jj

N

j
jjiiN x

CCx
xTETZ

λ

λ
λλλλλλ

By substitute Equation 7 in the above Equation, we have

 ∑
= −

−−+

+=
i ji

i

N

j jj

SIi
i

j
jj

jjN x

Cx
xZ

1

222

21)
)~1(2

))1)ˆ((ˆ

~
1(~

~()~,...,~,~(
λ

σλ
λ

λ
λ

λλλλ

31

In order to minimize)~,...,~,~(21 iNZ λλλ the Lagrange multiplier system is used,

)~,...,~,~()~,...,~,~(2121 ii NN CzZ λλλλλλ ∆=∆

That is, N Equations

j

N

j

N ii
C

z
Z

λ

λλλ

λ

λλλ
~

)~,...,~,~(
~

)~,...,~,~(2121

∂

∂
=

∂

∂

For all ,and iNj ≤≤1)~,...,~,~(21 iNC λλλ is the constraint 0ˆ~...~~
21 =−+++ iNi

λλλλ ,and z is

the Lagrange multiplier. We have

2

22222
21

)~1(ˆ2

)))()~(2~43(ˆ)~2(~)~2(~)ˆ((
~

)~,...,~,~(

jji

jjjjSijjjjjIjij

j

N

x

xxCxxxZ
jii

λλ

λλλλλλσλλ

λ

λλλ

+−

−++−−+−+−
=

∂

∂

Thus, we can get 0~)~(2 =++ jjjjj cba λλ , where

zxxxxa jiijjIijj i

232222)(ˆ2ˆ)(2)()ˆ()(λλσλ −++−=

, zxxxxb jijijIijj i
λλσλ ˆ4)(ˆ42)ˆ(2 222 +−−=

And zCxxc iSjijij j
λλλ ˆ2ˆˆ3 2 −−=

We have

)(ˆ2)ˆ(1

ˆ)1()ˆ(111~
22

222

zx

xC

xx jiIi

jiSIi

jj
j

i

ji

−+−

−+−
−=

λσλ

λσλ
λ

We have steady state situation if
j

jjj x
x 1~1~

<⇒< λλ ,consequently the other value for jλ
~ is

not acceptable.

32

	Acknowledgments

