
i

Deanship of Graduate Studies

Al-Quds University

PC Grid Computing Environment

In

Higher Education Institutions

Bader Ahmed Bader Ajrab

M.Sc. Thesis

Jerusalem-Palestine

1434/2013

ii

PC Grid Computing Environment

In

Higher Education Institutions

Prepared By:

Bader Ahmed Bader Ajrab

B.Sc. Electrical Engineering, 1998, Birzeit University,

Ramallah, Palestine

Supervisor: Dr. Labib Arafeh

A thesis submitted in Partial fulfillment of requirements for

the degree of Master of Electronics and Computer

Engineering/ Department of Electronics and Computer

Engineering/ Faculty of Engineering/ Graduate Studies -

Al-Quds University

1434/2013

iv

Dedication

To my beloved parents, brothers, sisters, wife, and my children: Ahmad, Zina

and Juman.

Bader Ajrab

vi

Acknowledgement

I would like to thank my advisor Dr. Labib Arafeh, for his wise guidance and continuous

encouragement.

I am so grateful to Al-Quds Open University‟s Administration and Information and

Communication Technology Center (ICTC) staff for facilitating this research.

I owe my wife for her endless support, understanding, patience, and also for her great help

and encouragement.

Jerusalem, June 2013

Bader Ajrab

vii

Abstract

Last decade witnessed a comprehensive revolution in technology; a revolution that had a

great effect on people‟s lifestyle. It made great resources (CPU power, storage, memory,

communication speed, and graphic processing units) available on regular PCs; such

resources were not even available on servers in the past.

These ample resources have exceeded the actual needs of regular PC users (such as word

processing and web surfing) so that these resources are not fully utilized.

In Higher Education Institutions (HEI), there is a great need for computational resources;

large amounts of data are being accumulated and manipulated, in addition, a great portion

of scientific experiments and student graduation projects need complex computational

power that cannot be provided by a single desktop computer. On the other hand,

supercomputers and/or dedicated clusters are not affordable by most HEIs in Palestine.

The convenient solution is to build a local PC Grid Computing environment by harnessing

wasted computer resources from computers available in HEI computer labs with minimum

or no cost, by deploying open-source grid computing frameworks.

In this research, Jerusalem Branch and Bethany study center at Al-Quds Open University

have been chosen as a testbed for exploring the building and testing of a local PC Grid.

At first, the researcher tested the actual CPU utilization in a sample of computer lab PCs

for 7 working days from 08:00 to 15:30 and revealed that CPU utilization does not exceed

10% for 90% of the experiment time.

Then, the researcher tested two frameworks to build a local desktop grid: Alchemi .NET;

as an example of an open-source PC Grid computing framework, and Berkeley Open

Infrastructure for Network Computing (BOINC) as an example for Public Resource

Computing framework.

Alchemi was easy to install and configure (plug-and-play). It has also been noticed that

application execution time in Alchemi–based grid is inversely proportional to the number

of Executor nodes involved; which is a great advantage.

On the other hand, Alchemi causes network communication overhead; it also absorbs all

available idle CPU power from Executor nodes causing CPU heating which is not a green

approach.

Furthermore Alchemi had poor performance on PCs running Windows 7 compared to

similar PCs running Windows XP.

BOINC server module runs on a dedicated Linux machine (mostly Debian) which requires

more system administration skills than plug-and-play Alchemi.

Deploying BOINC clients on 3 gradually up to 43 computer lab PCs (total of 71 CPU

cores) produced up to 106 GFLOPS provided that CPU utilization for connected PCs was

set to 50% only. Assuming same experiment conditions, a total of 3550 CPU cores

viii

available in QOU computer labs is expected to produce around 5.27 TeraFLOPS gained

from wasted CPU cycles.

Network impact was also tested; routing delay and network traffic caused about 4.55% loss

in the total gained GFLOPS for a 6 Mbps line and 13.63% loss in a 2 Mbps line.

BOINC client was also tested under windows XP and windows 7. It ranked competitive

performance on Windows 7 compared to Windows XP (up to 57%).

Keywords: Grid Computing, BOINC, Alchemi.NET, Public Resource Computing,

Volunteer Computing, Computational Power, PC Grid, Desktop Grid.

ix

Table of Contents

DEDICATION .. iv

DECLARATION ... v

ACKNOWLEDGEMENT ... vi

ABSTRACT ... vii

TABLE OF CONTENTS ... ix

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

LIST OF APPENDICES ... xvii

Chapter One

INTRODUCTION ... 1

1.1. Introduction .. 1

1.2. Motivation .. 2

1.3. Problem Description and Approach ... 2

1.4. Limitations of the study .. 3

1.5. Challenges .. 3

1.6. Contributions .. 3

1.7. Literature Survey .. 4

1.7.1. Availability of computer resources in Enterprise Desktop PCs 4

1.7.2. Power of Local PC Grid .. 5

1.7.3. The University of Westminster case study .. 6

1.7.4. Literature Survey Summary .. 7

1.8. Thesis organization ... 7

Chapter Two

BACKGROUND .. 9

2.1. Introduction .. 9

2.2. Grid Computing .. 9

x

2.3. Definition .. 9

2.4. Classification of Grids according to scope of resource sharing 10

2.4.1. Cluster Grids .. 10

2.4.2. Enterprise Grid ... 11

2.4.3. Utility Grid .. 12

2.4.4. Partner/Community Grids.. 12

2.5. Grid Architecture .. 13

2.6. PC Grid Computing .. 14

2.7. Public Resource Computing ... 15

2.8. Grid Middleware... 16

2.8.1. Entropia ... 16

2.8.2. Grid MP ... 17

2.8.3. XtremWeb ... 17

2.8.4. distributed.net .. 17

2.8.5. HTCondor .. 18

2.8.6. Alchemi.NET ... 18

2.8.7. BOINC ... 19

2.8.7.1. BOINC server ... 20

2.8.7.2. Task server components ... 21

2.8.7.3. BOINC client .. 22

2.8.7.4. The Database .. 23

2.9. Summary ... 24

Chapter Three

METHODOLOGY .. 25

3.1. Description of experiment environment ... 25

3.2. Description of experiments ... 27

3.2.1. Measuring CPU utilization .. 27

xi

3.2.2. Examining Alchemi .NET ... 27

3.2.3. Examining BOINC .. 27

3.3. Summary ... 29

Chapter Four

EXPERIMENTS AND RESULTS ... 30

4.1. Part One: Measuring CPU utilization ... 30

4.2. Part Two: Examining Alchemi .NET ... 32

4.2.1. Testing Performance .. 33

4.2.2. Operating System effect .. 37

4.2.3. Testing network effect ... 38

4.3. Part Three: Examining BOINC .. 38

4.3.1. Testing Performance .. 38

4.3.2. Testing Network effect .. 41

4.3.3. Testing Operating System effect ... 41

4.4. Results and discussion .. 42

4.4.1. Part one: Measuring CPU utilization in computer lab PCs 42

4.4.2. Part two: Results of examining Alchemi .NET ... 43

4.4.3. Part three: Results of examining BOINC .. 50

4.5. Summary ... 52

Chapter Five

CONCLUSION AND FUTURE WORK ... 53

5.1. Conclusion .. 53

5.2. Future Work .. 54

REFERENCES .. 56

Appendix A: CPU power at QOU Computer labs ... 60

Appendix B: Current Setup at QOU ... 62

B.1. General information ... 62

xii

B.2. Computer labs .. 62

B.3. Networking .. 63

B.4. Lab PCs .. 65

B.5. PC Specifications ... 66

B.6. Authentication and Authorization .. 68

Appendix C: Dr. Rajkumar Buyya’s offer .. 69

Appendix D: Alchemi .NET installation .. 70

D.1. Common requirements... 70

D.2. Installing the Manager ... 70

D.3. Installing the Executor ... 71

Appendix E: BOINC installation ... 73

E.1. Installing BOINC server: ... 73

E.1.1. Choosing hardware: .. 73

E.1.2. Installing Software: ... 74

E.2. Creating and running a BOINC project ... 75

E.3. Deploying BOINC Clients ... 77

Appendix F: GLOSSARY ... 81

 83 .. ملخص

xiii

List of Tables

Table No. Table Title Page

Table 2.1 PRC, Local PC Grid, and Grid comparison 16

Table 3.1 Specifications of experiment PCs 26

Table 3.2 The value of n for CPUs used in experiments 28

Table 4.1 Average execution time for PI calculator 34

Table 4.2 Execution time (in seconds) of PI calculator for increasing work

loads

35

Table 4.3 Operating system effect on Alchemi 37

Table 4.4 Recorded vs. expected performance for BOINC example project 40

Table 4.5 Network effect on BOINC performance 41

Table 4.6 OS effects on BOINC client for different CPU and RAM 41

Table 4.7 Comparison between actual and ideal execution time, speed up factor 44

Table 4.8 Execution time (in seconds) for different decimal digits of PI 47

Table 4.9 a and c and R
2

of recorded data 48

Table B.1 Communication line bandwidths between ICTC and QOU

branches/SC

65

Table B.2 Total number of PCs in QOU labs. 66

xiv

List of Figures

Figure No. Figure Title Page

Figure 1.1 Thesis Description 2

Figure 1.2 Local Desktop Grid at the University of Westminster 7

Figure 2.1 A typical form of cluster computing 11

Figure 2.2 Example Enterprise Grid infrastructure 11

Figure 2.3 Utility Grid architecture 12

Figure 2.4 Example of a partner grid 13

Figure 2.5 Common Grid Architecture 14

Figure 2.6 PC Grid Computing classification 14

Figure 2.7 A layered architecture for Alchemi framework 18

Figure 2.8 Distributed components and their relations 19

Figure 2.9 BOINC architecture 20

Figure 2.10 BOINC task server components 21

Figure 2.11 BOINC daemons and components 21

Figure 2.12 BOINC client overview 23

Figure 3.1 Jerusalem and Bethany SC sites 25

Figure 4.1 Screenshot of CPU Usage logger tool interface 30

Figure 4.2 Snapshot of sample log file 31

Figure 4.3 Average CPU utilization 32

Figure 4.4 Alchemi Grid 33

Figure 4.5 Average execution time for PI calculator (100 digits) 34

Figure 4.6 Speed up factor vs. number of Executors 35

Figure 4.7 A plot of workload vs. execution time with varying number of

Executors

36

Figure 4.8 Speed up factor for increased workload with varying number of 36

xv

Executors

Figure 4.9 Operating system effect on Alchemi 37

Figure 4.10 BOINC testing process 38

Figure 4.11 Monitoring server status 39

Figure 4.12 Computing preferences webpage 39

Figure 4.13 Harvested GFLOPS vs. number of CPU cores involved 40

Figure 4.14 Actual vs. ideal execution time 45

Figure 4.15 Trend line for actual execution time 46

Figure 4.16 Actual vs. ideal speed up factor 47

Figure 4.17 A plot of thread size vs. execution time 48

Figure 4.18 Alchemi Console showing available vs. used CPU power 50

Figure 4.19 Gained GFLOPS with Trend line 51

Figure B.1 QOU branches and study centers 62

Figure B.2 Computer lab distribution in QOU 63

Figure B.3 QOU network topology 64

Figure B.4 Memory distribution overview. 67

Figure B.5 Storage capacity overview 67

Figure B.6 Operating system distribution overview 67

Figure C.1 Snapshot of Dr.Buyya's offer 69

Figure D.1 Alchemi Manager GUI 71

Figure D.2 Alchemi Executor GUI 72

Figure E.1 Installing BOINC server block diagram 73

Figure E.2 Software installation block diagram 74

Figure E.3 Creating a sample BOINC project 75

Figure E.4 Starting BOINC project 76

Figure E.5 Stopping the BOINC project 76

xvi

Figure E.6 Deploying BOINC client block diagram 77

Figure E.7 Attaching BOINC client to the test project 77

Figure E.8 BOINC client attached to test project 78

Figure E.9 BOINC client uploading tasks 78

Figure E.10 BOINC client uploading finished jobs 78

Figure E.11 BOINC project configuration file on the client side 80

xvii

List of Appendices

Appendix A CPU Power in QOU Computer labs 60

Appendix B Current setup at QOU 62

Appendix C Dr. Rajkumar Buyya‟s offer 69

Appendix D Alchemi .NET installation 70

Appendix E BOINC installation 73

Appendix F Glossary 81

1

Chapter One

Introduction

1.1. Introduction

The term Grid or Grid Computing is derived from the electric power grid. It is a general

term that combines different technologies and solutions to different target groups.

A Grid Computing system slices complex tasks into small subtasks that are sent to multiple

interconnected computers to complete tasks more efficiently and quickly.

Since it emerged, grid computing was deployed on dedicated, high performance nodes and

clusters only, but in the last two decades the processing power of Personal Computers

(PCs) increased noticeably (according to Moore's law: the complexity of the chip doubles

every 18 months) (Moore,1965). Local Area Networks (LANs) bandwidths increased to

1.0 Gbps. Also the Internet increased in bandwidth and expanded to the consumer market.

Moreover, studies proved (Mutka, 1992) that the processors in PCs are most likely

underutilized (idle) most of the time while PCs are running, and many PCs are not even

turned on much of the time.

Due to these advances in CPU power and network bandwidth, new concepts such as Local

Desktop Grid, and Public Resource Computing (PRC) emerged.

Local Desktop Grid, or Local PC Grid, harvests idle resources on non-dedicated ordinary

desktop PCs in companies, universities, hospitals, and other institutions. These harvested

resources are then harnessed to perform specific complex tasks.

Public Resource Computing technology, or Volunteer Computing, is a form of high

performance computing in which volunteers from around the world donate a portion of

their computers’ resources to a computationally intensive research computation (so called

“projects”) (Anderson, 2003). Researchers who do not have access to supercomputing

facilities can use PRC to increase their ability to process compute-intensive data at little to

no extra cost.

In the case of Higher Educational Institutions (HEI), large number of PCs (and thus CPU

power) are idle most of the time especially in computer laboratory PCs, so it will be useful

(or maybe even profitable) to make use of this fact by building a Local PC Grid from such

PCs and deploying complex computations on it without the need to purchase new hardware

or equipment. This will serve student software projects that consume CPU power (such as

simulation and image rendering), also will serve managerial software (such as

manipulating accumulative averages for all university students for several years).

The primary goal of this thesis is to build a local PC grid in Al-Quds Open University

(QOU) as a testbed distributed environment using two approaches:

2

 First: by deploying an open source grid computing middleware (Alchemi .NET).

 Second: by deploying customized open source PRC framework (BOINC).

For each approach, the overall performance is measured, and factors such as network

connection and Operating System (OS), are tested.

Fig. 1.1: Thesis description

Fig. (1.1) illustrates the expected goal of the research.

1.2. Motivation

This research is motivated by the advances being made in the field of Grid computing and

Public Resource Computing and the advantages being derived by various disciplines

through the adoption of Public Resource Computing technologies.

Palestinian HEI cannot afford supercomputers, but still a huge computational power is

needed (e.g. data analysis, simulation, research, or visualization). A solution is found

inside the walls of most of HEI; large number of Personal Computers (PCs) - especially

computer laboratory PCs - are idle most of the time, so it will be beneficial to build a local

PC grid and deploy such heavy computations on it without the need to purchase new

hardware or equipment. This will not only serve student research goals, it will also serve

managerial software run by the institution.

1.3. Problem Description and Approach

QOU contains 114 computer labs (Computer, Internet, Multipurpose (multimedia and

eLearning), continuing education, and Information and Communication Technology

laboratories (ICT)). These labs contain nearly 1850 PCs (about 3550 CPU cores) running

Microsoft Windows OS (ICTC, 2013), for detailed information about QOU labs please

refer to Appendices A and B.

These PCs are upgraded and maintained continuously, but yet their utilization is not full.

The idea is to build a virtual HPC out of these wasted resources in a way that sets expenses

to minimum. The best approach is to build a Local PC Grid using a grid middleware.

3

This middleware must meet the following requirements:

1. Open source: in order to set costs to minimum.

2. Runs under Microsoft Windows OS; the standard platform in QOU computer labs.

3. Easy to deploy and maintain under Active Directory Environment.

4. Secure: data and authentication information must be encrypted

5. Scalable: number of involved PCs can increase or decrease without need to reinstall

or reconfigure the grid.

6. Centrally managed and monitored by the institution.

7. Reliable: can perform requested task with least errors.

8. Supports legacy applications: little or no change in application source code

9. Green solution: power consumption must be set to minimum.

1.4. Limitations of the study

There are some limitations that need to be acknowledged and addressed regarding the

present study:

1. Study concentrates on measuring computational resources available in CPUs.

Measuring Graphical Processing Unit (GPU) computational resources will not be

addressed since it is beyond the scope of this research.

2. Study considers computers available in computer labs in Jerusalem Branch and

Bethany Study Center (SC) at QOU only. This is a pilot study, and this number of

PCs does not represent a real sample, but can provide as with an exploration of the

power of local PC grid computing when a more QOU branches are included.

3. Study is limited to PCs available in computer laboratories and does not include

servers or computers used by academic/administrative staff for security matters.

4. By computer laboratories we mean: Internet, Multipurpose (Multimedia and

eLearning), Communications (ICT), and Continued Education Labs

5. Study is performed on these PCs during work hours (08:00 – 15:30) from Saturday

to Wednesday only.

6. Experiments in this study are performed on PCs with Microsoft Windows OS (XP

Professional and x86 Windows 7 Professional x86) only.

1.5. Challenges

Major challenge was building the BOINC server (refer to chapter four) since it needs great

knowledge in Linux administration and related services such as MySQL, Apache server,

and PHP.

1.6. Contributions

To summarize, the researcher's main contributions are:

1. Revealing actual CPU utilization in computer lab PCs.

2. Providing a description of a grid-based infrastructure for aggregating idle computer

laboratory PCs‟ resources in HEI and issues involved in building such a system.

4

3. Examining a local PC Grid middleware (Alchemi .NET) as a master-executer

model for building PC grid computing.

4. Examining a PRC computing middleware (BOINC) to build a local PC Grid

Computing environment.

1.7. Literature Survey

We have reviewed, studied and analyzed several references, journal papers and articles

concerning grid computing, volunteer computing and local desktop grid. We have summed

up the most important and relevant articles within our knowledge in this chapter of the

thesis.

1.7.1. Availability of computer resources in Enterprise Desktop PCs

One of the earlier studies about the availability of computational resources in ordinary

workstations was the one performed by Matt W. Mutka in 1992 at the University of

Wisconsin. He traced the intervals of user activity and the idle intervals on 17 workstations

for a 4-month period and stated that desktop PCs can be under-utilized by as much as 75%

of the time (Mutka, 1992).

Also Mr. Acharya and co-researchers studied the performance of workstations available in

workstation pools in Universities of Berkeley, Wisconsin, and Maryland. The number of

workstations involved was 60, 300, 40, respectively in each “pool. Results showed that the

average idle time for desktop machines ranged from 60% to 80% of the day (Acharya et

al., 1997).

Another interesting related research was performed at University of Coimbra – Portugal. In

this article, Domingeus and co-researchers quantified the usage of main resources (CPU,

main memory, disk space, and network bandwidth) of Windows 2000 machines from

classroom laboratories. For that purpose, 169 machines of 11 classroom laboratories of an

academic institution were monitored over 77 consecutive days. Samples were collected

from all machines every 15 minutes for a total of 583653 samples. Results showed that

resources idleness in classroom computers was very high; the average CPU idleness was

97.93%, unused memory averaging 42.06%, and unused disk space of the order of

gigabytes per machine (Domingues et al., 2005). These results confirm the potentiality of

computing resource for harvesting, especially for PC grid computing schemes.

Vlădoiu and co-researchers (Vlădoiu et al., 2009) represented their observations regarding

the availability of computing resources to be used in a desktop grid. The results were from

an undergraduate student laboratory of PCs. The researches were mostly concerned with

the availability of computational resources during work hours, that is, from 08:00 till 20:00

hour during several days, when computers from labs are actually used intensively. From a

rough estimate, the researchers noticed that computers are available for computations about

50-60% of the time during weekdays, between 08:00 and 20:00. The availability is close to

95-100% during the night. This amount reached to approximately 75-80% availability of

computers during a 24 hours interval of a working day, growing to 90-95% during

weekends. They concluded that a lot of computing power is available in university

laboratories, which can easily be used for scientific experiments, provided that an

appropriate resource-harvesting system is available (Vlădoiu et al., 2009).

5

One may notice that the researchers in the previous article were only concerned in the

number of the available running PCs not in the percentage of idle CPU time for every PC

in the laboratory.

1.7.2. Power of Local PC Grid

PC Grid Computing is divided into three main categories namely, open, closed and semi-

open grids (Tachikawa, 2006). Tachikawa defined open grids as the grid that is comprised

of PCs connected through the internet and owned by individuals who are willing to offer

their PCs‟ idle processing power for free. Whereas, closed grids are constructed by

business enterprises and other organizations, depending on their existing PCs that are

connected through LANs. He also mentioned that semi-open grids are grids built by

enterprises that offer their grid services for local businesses to jointly provide the local

community with shared computing resources. He introduced a proposal for the

construction of a semi-open grid out of the 1.5 million PCs found in Japanese elementary,

junior and senior high schools (an average of about 30,000 PCs per prefecture). He

estimated that the resulting grid would have a computing power of 3 Tera Floating Point

Operations per Second (TeraFLOPS), which is beyond 500 GFLOPS - the minimum

performance for a supercomputer at that time (2006), indicating that the proposed grid

would provide CPU power comparable to a supercomputer (Tachikawa, 2006).

Tachikawa built his estimation on a fact that PCs produced in 2000 or later are expected to

perform at 1 GFLOPS. Then he considered that older machines among the participating

PCs may perform at about one tenth of this figure, that is, 100 MFLOPS. Assuming that

theses PCs are in an ideal state, the resulting grid in one prefecture would have a

computing power of 100 MFLOPS×30,000 machines that gives 3 TFLOPS. This

estimation is rough and neglects important factors such as network effect.

There are several middleware that can be deployed to build a local PC Grid computing

environment such as Alchemi (Buyya et al., 2005), HTCondor (HTcondor, 2013), and

Berkeley Open Infrastructure for Network Computing (BOINC) (Anderson, 2005).These

software are briefly presented in chapter three. Several articles have described the

construction and the benefits of local PC grid to perform heavy computations. These

include:

 Agus Setiawan and his colleagues from the computer science Dept. at the University

of Melbourne in Australia proposed and developed an application for symmetric key

cryptography (called GridCrypt) using Alchemi framework (Buyya et al., 2005). They

performed a runtime comparison for the GridCrypt application using 4 Executor nodes

each with the same specification of Pentium 4/ 2400 MHz processor and 512 MB of

memory and running Windows 2000 Professional operating system and interconnected

over a shared student laboratory LAN network of 100 Mbps. The Alchemi manager

was installed on a separate computer together with SQL Server 2000. A separate user

machine was used to initiate the execution of the GridCrypt application. (Setiawa et

al., 2004). They reported a reasonable performance improvement when 2 and 4

Executors were used roughly 120% and 130% respectively. (Setiawa et al., 2004)

 In their research, Trifa and colleagues (Trifa et al., 2011) employed volunteer

computing technology (BOINC) to speed up the Arabic OCR process (Optical

Character Recognition) based on the DTW (Dynamic Time Warping) algorithm.

6

During these experiments, they used 16 dedicated homogeneous workstations: 3.0

GHz CPU, 512 MB RAM and running Windows XP professional. They reported that

as the number of workstations involved increases, the algorithm execution time

decreases and the speedup factor increases. When all the 16 workstations were used,

the execution time reached the value 1450 seconds and the speedup factor reached the

value of 15. This produced a factor of more than 830 recognized characters per second

competing with commercial Arabic OCR tools at that time. (Trifa et al., 2011).

The speedup factor that Trifa used was found by calculating the ratio of execution time for

every level of the experiment with the execution time for one workstation.

 González and his co-authors (González et al., 2008) discussed the possibility of

cancelling the need for user accounts to connect BOINC clients to projects by focusing

on available resources. This allowed an institution to remotely manage all its BOINC

enabled resources from a centralized point of view. They performed an experiment on

60 out of 3000 GNU/Linux PCs at three computer laboratories at distant campuses of

the University of Extremadura - Spain for a period of 40 days. They observed the

available resources during experiment period and built their estimation of computing

power to be nearly 15.69 GFLOPS of CPU time. (González et al., 2008).

 Another example is the work of Zhou and colleagues (Zhou et al., 2009). They

implemented an internal computing Grid inside the Geneva University Hospital

(HUG); their objective was to provide computing power to researchers inside the HUG

with a minimum cost and disturbance for the hospital system administrators. The

testbed was performed on 20 standard desktop PCs with a 2.8GHz CPU and 768MB

RAM. Linux was installed in a virtual machine on each PC, this virtual machine

served as a Grid computing node, the back-end middleware in use for each

computation node is Condor. Usability was evaluated by using an application that

submitted 50 jobs. In each job 1000 images are treated and results are automatically

collected. This application was executed on a dedicated server, a remote Grid resource

(located in Finland) and the local Grid inside HUG. An overall time comparison is:

807min., 537min., and 240min. respectively. This result exhibits the improvement of

the application efficiency using Grid technology.

1.7.3. The University of Westminster case study

The Centre for Parallel Computing at University of Westminster in UK built a local

desktop grid system that consists of 1500 Windows-based laboratory PCs serving 20,000

students, and distributed over six campuses (UWM, 2012). Fig. (1.2) presents the system

showing the various campuses.

The unused resources of laboratory PCs were employed to run computation-intensive tasks

for university researchers such as powerful simulation programs used by bio-scientists,

linking results together in a sophisticated workflow, to understand how molecules

potentially bind together. Researchers using the Westminster Local Desktop Grid have

found that they can shorten a typical execution time from weeks to hours. (Westminster,

2012). Another advantage of this approach is that the University no longer has to pay

£500,000 every four years just to upgrade their supercomputer; the upgrade process of the

local desktop grid is less expensive and happens automatically when upgrading the

laboratory PCs themselves to pace with technology trends (Westminster, 2012).

7

Fig. 1.2: Local PC Grid at the University of Westminister (UWM, 2012)

1.7.4. Literature Survey Summary

From the above survey one can notice the ample computing resources found within the

boundaries of hospitals, universities, companies, or even secondary schools.

The researches performed on local PC grid were positive in the way that encourages

building a grid computing environment in a Palestinian HEIs since supercomputers are not

affordable.

Our approach is different from previous works by focusing on computer lab PCs available

at Al-Quds Open University as an example of a Higher Education Institution. The research

studies factors that affect the overall performance of the grid such as network traffic and

operating system.

The performance metrics used include the execution time, speed up factor, the total

GFLOPS, and the total credit (a credit is a description of the overall contribution of a

certain PC in the grid).

1.8. Thesis organization

This thesis is presented in five chapters. The first chapter is an introductory chapter;

motivation, problem description, limitations, challenges, and main contributions are

presented, then reviews of previous research in the field of PC grid computing and PRC are

surveyed.

Chapter two presents background information about concepts of grid computing, PC grid

computing, PRC, and presents most common PC grid enabling frameworks.

Research methodology is represented in chapter three, QOU sample environment is

described and computer lab statistics are provided.

8

While chapter four presents the experimental work and discusses results, it describes the

implementation of Alchemi .NET and BOINC frameworks to build local PC grid,

deploying sample application, discusses major results comparing them with other

researches in field, provides a summary of the research.

Chapter five highlights how the aim and the objectives of this research have been met with

suggestions for future work in the field.

9

Chapter Two

Background

2.1. Introduction

In this chapter an introduction to grid computing is introduced, grid computing is defined,

and types and benefits of Grid computing are then discussed in general.

PC grid computing and PRC are explained, most common grid enabling frameworks are

presented, and finally two examples are discussed in detail: Alchemi as an example for an

Enterprise grid middleware and BOINC as an example of PRC framework.

2.2. Grid Computing

The term Grid or Grid computing takes its name from an analogy with the electrical

"power grid". It was developed in the mid 1990‟s with the growth of high speed networks

and the Internet that allowed distributed computer systems to be readily interconnected.

Grid computing has become one of the most important techniques in high performance

computing (HPC) by providing resource sharing in science, technology, engineering, and

business. By taking advantage of the Internet and high speed networks, geographically

distributed computers can be used collectively for collaborative problem solving.

Grid Computing is a general term that combines different technologies and solutions to

different target groups. Concepts associated with the term range from cluster computing,

High Performance Computing (HPC), utility computing, peer-to-peer (P2P) computing,

Public Resource Computing (PRC) to specific new types of infrastructure.

2.3. Definition

In the Information technology literature, various definitions of Grid Computing are noted;

these definitions encounter modifications and/or broadening over the years according to

new emerging technologies. The first and most cited definition of Grid Computing was

suggested by Foster and Kesselman (1998):

"A computational grid is a hardware and software infrastructure that provides

dependable, consistent, pervasive, and inexpensive access to high-end

computational capabilities".

The above definition has been modified twice by the grid experts; once by Foster,

Kesselman, and Tuecke in their paper entitled “Anatomy of the Grid” (Foster et al., 2001),

and again by Foster and Kesselman in the second edition of their book “The Grid2: The

Blueprint for a New Computing Infrastructure” (Foster and Kesselman, 2004).

10

The definition was refined in order to address social and policy issues, stating that Grid

computing is concerned with “coordinated resource sharing and problem solving in

dynamic, multi-institutional virtual organizations.” (Foster et al., 2001)

According to Foster (2002), a Grid system is therefore a system that:

 Coordinates resources that are not subject to centralized control

 Uses standard, open, general-purpose protocols and interfaces

 Delivers nontrivial qualities of service (QoS).

From the above argument, we can say that grid computing is the collaboration of

distributed interconnected computers and resources to achieve common higher

performance computing and resource sharing.

The term resources that can be shared on the grid means:

 Processing power or computing cycles: A network of distributed high performance

computers working like a single huge computer.

 Data storage: making a grid of disk devices and file systems that is remotely

accessible through the network and works like a large external storage device.

 Communications

 Application software

 Scientific instruments: group of distributed and networked sensors from which data

can be collected for specific purposes, such as global environmental monitoring

system.

2.4. Classification of Grids according to scope of resource sharing

Depending on the scope of resource sharing involved, the following Grid Computing

approaches can be distinguished (Magoulès et al., 2009):

1. Cluster Grids

2. Enterprise Grids

3. Utility Grid Services

4. Partner/Community Grids

These four different types of Grids are explained in more detail below.

2.4.1. Cluster Grids

Cluster Grids, or clusters, are a collection of co-located computers connected by a high-

speed local area network and designed to be used as an integrated computing or data

processing resource as shown in Fig. (2.1).

11

Fig. 2.1: A typical form of cluster computing (Stanoevska et al., 2010)

A cluster is a homogeneous entity. Its components differ primarily in configuration, not

basic architecture. Cluster Grids are local resources that operate inside the firewall and are

controlled by a single administrative entity that has complete control over each component

(Foster and Kesselman, 1998).

2.4.2. Enterprise Grid

The term Enterprise Grid is used to refer to application of Grid Computing for sharing

resources within the bounds of a single company (Goyal and Lawande, 2005). All

components of an Enterprise Grid operate inside the firewall of a company, but may be

heterogeneous and physically distributed across multiple company locations or sites and

may belong to different administrative domains as illustrated in Fig. (2.2).

Fig. 2.2: Example Enterprise Grid infrastructure (Stanoevska et al, 2010)

12

With specific Enterprise Grid middleware, the available IT resources are virtualized and

can be managed in a unified and central way. They can also be allocated to processes

according to demand.

2.4.3. Utility Grid

A Grid that is owned and deployed by a third party service provider is called a Utility Grid.

The service being offered via a Utility Grid is utility computing, i.e. compute capacity

and/or storage in a pay-per-use manner. A Utility Grid operates outside the firewall of the

user as depicted in Fig. (2.3).

Fig. 2.3:Utility Grid architecture (Stanoevska et al, 2010)

The user does not own the Utility Grid and does not have control over its operation. Utility

Computing furthermore provides scalability and flexibility of IT resources on demand.

2.4.4. Partner/Community Grids

Partner or Community Grids are a specific type of Grids that can provide support for the

establishment of a VO based on IT resource sharing among collaborating entities.

In a Partner/Community Grid each participating partner provides a certain part of its

infrastructure for sharing and either defines the rules under which the resources can be

used by other partners or accepts the community rules for resource donation.

The architecture of a Partner/Community Grid can be viewed as a collection of

independent resources (for example Cluster Grids or other resources) interconnected

13

through a global Grid middleware, and accessible, optionally, through a portal interface as

illustrated in Fig. (2.4).

Fig. 2.4: Example of a partner grid (Stanoevska et al, 2010)

2.5. Grid Architecture

Grid architecture refers to those aspects of a grid system that are taken into consideration

when a grid is designed and implemented. Grid architecture is a layered architecture, these

layers are:

 Application layer: consists of grid applications and the Application Programming

interfaces (APIs) from a user‟s perspective.

 The middleware layer: which includes the software and packages used for grid

implementation, for example Alchemi, BOINC.

 Resource layer: covers the resources available to the grid such as storage,

processing capabilities and other application-specific hardware.

 The network layer: which deals with the network components like routers,

switches, and the protocols used for communication between any two systems in

the grid.

Fig. (2.5) below illustrates the common Grid architecture.

14

2.6. PC Grid Computing

Grid computing meets the needs of virtual organizations by sharing resources of centrally-

managed, supercomputers, HPCs, or clusters. Whereas; PC grid computing (or Desktop

Grid computing) addresses the potential of harvesting idle computing resources of

distributed, ordinary desktop PCs (in a company, a university, at home, etc.). These

resources can be part of the same local area network (LAN) in the case of enterprises, or

can be geographically spread and connected via a wide area network (WAN) such as the

Internet for public resource computing (or volunteer computing).

Given the number of desktop computers across the world, this represents an enormous

computing resource. The immediate implication of this is that software applications can

potentially run substantially faster. In enterprises, this also means that the potential of

enterprise computing resources can also be potentially increased.

PC Grid Computing can be categorized according to scale, platform, organization, and

resource provider (Choi S. et al., 2007) as shown in Fig. (2.6).

Fig. 2.6: PC Grid Computing classification (Choi S. et al., 2007)

Fig. 2.5: Common Grid Architecture (adapted from Stanoevska et al, 2010)

15

Fig. (2.6) shows a classification of PC grid computing systems; in this research we are

concerned with PC Grid computing in HEI namely, Al-Quds Open University-Jerusalem

Branch, meeting the requirements presented in Chapter one, so from the above

categorization we are interested in:

 Enterprise: since we are building a grid for the HEI not for public volunteers.

 Centralized: the designed grid must be monitored and administered centrally by the

HEI.

 Middleware: a Java applet is a small application that is written in Java and launched

from a webpage in a browser. Java applet grid is not recommended in this research

since we need to restrict the students‟ access to the grid middleware, and this

cannot be achieved with java applets. But a middleware that runs as a service at

computer startup with suitable permissions cannot be controlled by unprivileged

student.

 LAN: in order to reduce information security penetration, the PC grid must run

inside the HEI firewall not on the Internet.

2.7. Public Resource Computing

Public Resource Computing (PRC) (also referred to as “Volunteer Computing” or “Internet

computing”) is a form of high performance computing (HPC) in which volunteers from

around the world donate a portion of their computers’ resources to a computationally

intensive research project(s) (Baldassari, 2006). Researchers who do not have access to

supercomputing facilities can use PRC to increase their ability to process compute-

intensive data at little to no extra cost.

There are several PRC frameworks that facilitate the creation of PRC projects by managing

many of the responsibilities of the client and server. One of the most widely used PRC

frameworks is the Berkeley Open Infrastructure for Network Computing (BOINC)

(BOINC, 2012). The advantage of using BOINC is that it abstracts much of the complexity

involved in creating and maintaining a large PRC project.

BOINC manages all network communications between the clients and the server, so there

is no need for a PRC project developer to write any network code. BOINC manages the

project database and connections to it, so developers do not need to write any database

connection code or SQL queries.

BOINC handles the distribution of work units and collection of results; it can recover from

situations in which clients receive a work unit, but never return a result or return an

erroneous result. The BOINC is designed to be highly scalable and the system can

currently support on the order of tens of millions of client requests per day (Anderson et

al., 2005). BOINC structure will be discussed in the following sections.

There are several differences between Grid computing and PC Grid Computing (PRC and

Local PC Grid), in several aspects, these differences are summarized the Table (2.1)

16

Table 2.1: PRC, Local PC Grid , and Grid comparison (Choi S. et al., 2007)

Item
PC Grid

Grid
PRC Local PC Grid

Resource

Desktop

 Anonymous resource

provider

Desktop

 within a corporation,

university, etc.

Supercomputer, cluster,

scientific instruments,

database, storage,

Connection

 Non dedicated poor

bandwidth

 Immediate presence

(connectivity)

 Consider firewall,

NAT, Dynamic

address

 Non dedicated

intermediate bandwidth

 More constant

connectivity than PRC

Dedicated high speed,

bandwidth

Heterogeneity

High heterogeneous

 Need resource

grouping

 Intermediate

heterogeneous

 Less heterogeneous than

PRC

Low heterogeneous

Dedication

 Non-dedicated

 High volatile

o Need an

incentive

mechanism

 Non-dedicated

 Low volatile (non-

business hours)

o Need an incentive

mechanism

Dedicated

 Be able to use

reservation

Trust

Malicious volunteer

 Need result

certification

Low trustworthy resource

provider

High trustworthy resource

provider

Failure Unreliable (faulty)
Unreliable

 More reliable than PRC

More reliable than

desktop grid

Manageability

Individual-based

administration

 Totally distributed to

individual

 Difficult to manage

Individual-based

administration

 More controllable than

PRC

Domain-based

administration

o Professional

administrator

Application

(job)

 Independent

(mainly)

 Computation-

intensive (mainly)

 High-throughput

(mainly)

 Independent (mainly)

 Computation-intensive

(mainly)

o Data-intensive

(possible)

 High throughput

(mainly)

 Independent or

dependent

 Computation or

data-intensive

 High performance

(mainly)

2.8. Grid Middleware

The most common PC grid middleware packages include: Entropia (Chien et al., 2003).),

distributed.net (distributed.net, 2013), Grid MP (UNIVA, 2013), XtremWeb (Germain et

al., 2000), HTCondor (HTCondor, 2013), Alchemi .NET (Buyya et al., 2005), and BOINC

(BOINC, 2012).

These middlewares are briefly presented in the following sections.

2.8.1. Entropia

Entropia is a commercial product that is sold as part of Entropia‟s PC Grid enterprise

solution developed in 2001 (Chien et al., 2003). Entropia facilitates a Windows desktop

grid system by aggregating desktop resources into a single logical resource. It is based on a

centralized architecture in which a central job manager administers various desktop clients.

17

The node manager provides a centralized interface to manage all of the clients on the

Entropia grid, which is accessible from anywhere on the enterprise network.

In 2004, Entropia Company ceased commercial operations, and its original website

(http://www.entropia.com/) is currently unavailable (Wikipedia, 2013).

2.8.2. Grid MP

The Grid MP is a commercial distributed computing software package that is developed

and sold by UNIVA (formerly known as United Devices) (UNIVA, 2013). It also supports

harnessing and aggregation compute resources available on corporate networks. It

basically has a centralized architecture, where a Grid MP Service acting as a manager

accepts jobs from the user, schedules them on the resources having pre-deployed Grid MP

agents. The Grid MP agents can be deployed on clusters, workstations or desktop

computers. Grid MP agents receive jobs and execute them on resources, advertise their

resource capabilities on Grid MP services and return results to the Grid MP services for

subsequent collection by the user.

2.8.3. XtremWeb

XtremWeb is a Peer-to-Peer, JAVA-based volunteer computing system developed at the

University of Paris-Sud, France (Germain et al., 2000). It implements three distinct

entities, the coordinator, the workers and the clients, to create a so-called XtremWeb

network. Clients are software instances available for any user to submit tasks to the

XtremWeb network. They submit tasks to the coordinator, providing binaries and optional

parameter files and permit the end user to retrieve results. Workers are software parts

spread among volunteer hosts to compute tasks.

Popular XtremWeb deployments are XWHEP: XtremWeb for High Energy Physics

(Xtremweb-HEP, 2013), and XtremWeb-CH project - which can be considered as the

updated version of the original XtremWeb, aims at building an effective Peer-To-Peer

system for high performance computing, based on a completely symmetric model where

nodes are both providers and consumers. (Xtremweb-CH, 2013) (Bellavista et al., 2010)

A peer-to-peer solution is not a suitable solution in the case of HEI; project submission and

administration must by through the HEI only.

2.8.4. distributed.net

A very similar framework is the distributed.net project. It is a volunteer computing

middleware that attracts participants to help in two main projects:

 RC5: that aims to decipher encrypted messages submitted from RSA Company as a

puzzle with cash prizes for those who solve them. The company's aim is to test the

security of their own products and to demonstrate the vulnerability of encryption

schemes they consider inadequate (distributed.net, 2013).

 OGR (Optimal Golomb Ruler). A Golomb Ruler is a mathematical term given to a

set of whole numbers where no two pairs of numbers have the same difference. An

OGR is a regular ruler, except that the marks are placed so that no two pairs of

marks measure the same distance. The search for OGRs becomes exponentially

http://www.entropia.com/

18

more difficult as the number of marks increases, and this required the help of

volunteers from the globe. (distributed.net, 2013)

The focus of the distributed.net project is on these two specialized computing challenges;

the server code cannot be obtained and thus used for any other projects or applications.

2.8.5. HTCondor

HTCondor (formerly known as Condor till 2012) is a High Throughput Computing (HTC)

environment developed at the department of Computer Science, University of Wisconsin,

Madison, USA (HTCondor, 2013).

HTCondor provides a job queuing mechanism, scheduling policy, priority scheme,

resource monitoring, and resource management. Users submit their serial or parallel jobs to

HTCondor, HTCondor places them into a queue, chooses when and where to run the jobs

based upon a policy, carefully monitors their progress, and ultimately informs the user

upon completion (HTCondor, 2013)

2.8.6. Alchemi.NET

Alchemi .NET is designed basically to build an Enterprise PC Grid, but it also supports

PCR computing. Alchemi is built as layered architecture as shown in Fig. (2.7). Alchemi

follows the master-worker parallel programming paradigm (Kruskal and Weis, 1948) in

which a central component dispatches independent units of parallel execution to workers

and manages them. In Alchemi, this unit of parallel execution is termed „grid thread‟ and

contains the instructions to be executed on a grid node, while the central component is

termed „Manager’ (Buyya et al., 2005).

Fig. 2.7 A layered architecture for Alchemi framework (Buyya et al., 2005).

19

Fig. (2.7) represents the different layers of Alchemi framework, a „grid application‟

consists of a number of related grid threads. Grid applications and grid threads are exposed

to the application developer as .NET classes/objects via the Alchemi .NET API. When an

application written using this API is executed, grid thread objects are submitted to the

Alchemi Manager for execution by the grid. Alternatively, file-based jobs (with related

jobs comprising a task) can be created using an XML representation to grid-enable legacy

applications for which precompiled executables exist. Jobs can be submitted via Alchemi

Console Interface or Cross-Platform Manager web service interface, which in turn convert

them into the grid threads before submitting then to the Manager for execution by the grid.

Programming environment of Alchemi is object oriented .NET API as the name implies,

this enables wiring grid applications in any .Net – supported programming language.

The atomic unit of independent parallel execution is grid thread with many grid threads

comprising a grid application (Buyya et al., 2005).

Fig. 2.8: Distributed components and their relations (Buyya et al., 2005)

Fig (2.8) shows the distributed components of Alchemi: manager, executer, cross platform,

and user nodes.

Alchemi became licensed after 2006. The new version of Alchemi is called Aneka which is

a commercial package for Private cloud/grid enabling (ManjraSoft, 2012).

We e-mailed Dr. Rajkumar Buyya, the developer of Alchemi and Aneka, and CEO of

Manjrasoft Ltd., requesting pricing of Aneka licensing in order to get a full feasibility

study for the purpose of this research, Mr. Buyya‟s offer is shown in Appendix B.

Despite this fact, Alchemi .NET is still functional and well documented; it can still be

deployed to construct a local desktop grid.

2.8.7. BOINC

Berkeley Open Interface for Network Computing (BOINC) is an open source middleware

platform for PRC. It was developed in February 2002 by U.C. Berkeley Spaces Sciences

Laboratory by the group that developed and continues to operate SETI@home lead by Dr.

20

David Anderson (BOINC, 2012). SETI@HOME tries to fine extraterrestrial life by

analyzing radio signals (SETI, 2013).

BOINC is designed to be a free structure for anyone wishing to start a volunteer computing

project. It is a set of software modules that enable the use of idle CPU cycles on a personal

computer to do scientific computing.

BOINC is the most popular DG system today with the aggregated computational power of

more than 2,576,332 participants is about 8,361.840 TeraFLOPS, thus providing one of the

most powerful “supercomputers” in the world (BOINCstats, 2013) (TOP500, 2013).

The structure of BOINC is simple. BOINC follows the client-server architecture; the server

generates work units (WU), distributes them to clients and collects their results. Each PC,

acting as a client, communicates with the server to get WUs which include executables and

input files and return results of computation, BOINC is not peer-to-peer; the clients do not

communicate with each other (Anderson, 2005).

These components are shown in Fig. (2.9) and are introduced in detail below.

Fig. 2.9 : BOINC architecture (adapted from Anderson et al., 2005)

Fig. (2.9) describes BOINC architecture showing server and client components

2.8.7.1. BOINC server

BOINC server runs on Linux and uses Apache, PHP, and MySQL as a basis for its web

and database systems, which easily scales to projects of any size.

BOINC server consists of the following components:

 Web interfaces: uses Apache web server and PHP, for user account and team

management, message boards, current server status, and other features.

 The task server: creates tasks, posts them to clients, and processes returned tasks.

 The data server: downloads input files and executables, and uploads output file,

uses HTTP protocol.

These components share various data stored on disk, including relational databases and

upload/download files.

21

The most important server is the task server. BOINC daemons periodically check the state

of the database and perform any needed tasks within their area of responsibility

Below we go into details of these daemons and a few other components that construct the

BOINC server.

2.8.7.2. Task server components

Referring to the article entitled: “High-Performance Task Distribution for Volunteer

Computing” (Anderson et al., 2005). Task server components are described in Fig. (2.10).

Fig 2.10: BOINC task server components (adapted from Anderson et al., 2005)

BOINC daemons are described in Fig. (2.11) and discussed below.

Fig. 2.11: BOINC daemons and components (adapted from Anderson et al., 2005)

22

1. The work generator creates new jobs and their input files. For example, the

SETI@home work generator reads digital tapes containing data from a radio

telescope, divides this data into files, and creates jobs in the BOINC database.

2. The scheduler handles requests from BOINC clients. Each request includes a

description of the host, a list of completed instances, and a request for additional

work, expressed in terms of the time the work should take to complete. The reply

includes a list of instances and their corresponding jobs.

3. The feeder restructures the scheduler‟s database access. It maintains a shared-

memory segment containing static database tables such as applications, platforms,

and application versions, and a fixed-size cache of unsent instance/job pairs. The

scheduler finds instances that can be sent to a particular client by scanning this

memory segment. A semaphore synchronizes access to the shared-memory

segment.

4. The transitioner examines jobs for which a state change has occurred (e.g., a

completed instance has been reported). Depending on the situation, it may

generate new instances; flag the job as having a permanent error, or trigger

validation or assimilation of the job.

5. The validator compares the instances of a job and selects a canonical instance

representing the correct output. It determines the credit granted to users and hosts

that return the correct output, and updates those database records.

6. The assimilator handles job that are “completed”: i.e., that have a canonical

instance or for which a permanent error has occurred. Handling a successfully

completed job might involve writing outputs to an application database or

archiving the output files.

7. The file deleter deletes input and output files that are no longer needed.

8. The database purger removes jobs and instance database entries that are no

longer needed, first writing them to XML log files. This bounds the size of these

tables, so that they act as a working set rather than an archive. This allows

database management operations (such as backups) to be done quickly.

2.8.7.3. BOINC client

Four components construct the BOINC client: core client, manager, screensaver, and

command line tool.

These components are shown in Fig. (2.12) and presented below.

23

Fig. 2.12: BOINC client overview

1. The core client takes care of scheduling among jobs from different projects, possibly

preempting jobs, downloading and uploading results to the different projects it is

attached to (BOINC, 2012).

2. BOINC manager enables control over the core client via user preferences. Some of

these preferences are project specific and some are not. As a project specific

preference the user can set a minimum and a maximum amount of work the client

should keep on the computer for the given project. (BOINC, 2012)

3. The screensaver displays application specific graphics as a screensaver just to attract

and entertain volunteer users in the first place. (BOINC, 2012)

4. BOINC command tools provide non-GUI version of BOINC manager. (BOINC,2012)

The client is available for Windows and Linux on Intel x86 architectures, for Mac OS X on

PowerPC, and Solaris on Sparc architectures, but since it is open source it should not be

too difficult to get it running on other platforms as well.

BOINC client empowers users with plenty of configuration options to choose from,

including the network bandwidth the client is allowed to use, number of CPUs, time

schedule, and percentage of CPU time available to BOINC tasks. To further reward users

for their perceived disadvantage, the project team is encouraged to publish daily statistics

with top contributing users, countries, and teams. But mainly, participants donate their

computing power for they are genuinely interested in scientific research and feel good

about being able to take part and make contribution to humanity.

2.8.7.4. The Database

A MySQL database stores all information relevant to the BOINC server complex. This

includes information about registered users and their associated hosts, about applications

24

and application versions, about BOINC core clients and the versions involved and of

course about WUs and their associated results. Basically the entire state of the server is

stored in this database and queried by among others the above mentioned daemons

(BOINC, 2012).

2.9. Summary

In this Chapter, we introduced the Grid computing technology in general, and discussed

the PC grid computing and Public Resource Computing.

Common PC Grid enabling middleware are then presented focusing on design and features

of Alchemi .NET and BOINC.

Chapter three presents the research methodology.

25

Chapter Three

Methodology

3.1. Description of experiment environment

All experiments in this research were performed in Jerusalem Branch and Bethany Study

Center (SC) at QOU. These two sites were selected as pilot study sample of QOU

branches.

Although this pilot study sample does not represent a real sample, which must be at least

20% of study community, but it can be used for exploring the power of a local PC grid in

QOU. More accurate results can be gathered when scaling up the testbed to include most

QOU branches and study centers.

Jerusalem Branch includes three labs: Computer, Internet and Multipurpose (multimedia +

eLearning) labs. Bethany SC includes one lab which is used for a dual purpose; as a

computer and an Internet lab. All PCs in both sites are interconnected with local area

network (LAN) of 100Mbps speed.

Jerusalem Branch site is not connected directly to Bethany site; it is connected to

Information & Communication Technology Center (ICTC) building in Ramallah (IPVPN 2

Mbps line), Bethany Study Center site is connected to ICTC (6 Mbps IPVPN line) as

illustrated in Fig (3.1). More information about QOU current setup is presented in

Appendices A and B.

The two locations fall into different subnets; subnet in Jerusalem branch is 10.12.x.x and in

Bethany SC 10.13.x.x

Fig. 3.1: Jerusalem and Bethany SC sites

26

Total number of PCs = 32 (in Jerusalem Branch) + 11 (in Bethany SC) = 43 PCs.

More details about specification of these PCs are provided in Table (3.1).

Table 3.1:Specifications of experiment PCs

 Lab Sum PCs
RAM

(GB)

CPU

description

CPU

cores
OS

Jerusalem

Branch

Computer 16

9 4.0
Intel Core i3-

3.3 GHz
18

Microsoft Windows 7

Professional x86

3 2.0
Intel Core 2 Due

- 3.3 GHz
6

Microsoft Windows 7

Professional x86

2 2.0
Intel Core 2 Due

- 2.33 GHz
4

Microsoft Windows 7

Professional x86

1 2.0
Intel Core 2 Due

- 2.13 GHz
2

Microsoft Windows 7

Professional x86

1 0.75
Intel Pentium 4-

2.4 GHz
1

Microsoft Windows 7

Professional x86

Multipurpose

(multimedia +

eLearning)

8 8 1.0
Intel Core 2 Due

2.33 GHz
16

Microsoft Windows XP

Professional x86 SP3

Internet 8

7 3.0
Intel Pentium 4-

3.0 GHz
7

Microsoft Windows XP

Professional x86 SP3

1 0.5
Intel Pentium 4-

3.2 GHz
1

Microsoft Windows XP

Professional x86 SP3

Bethany

Study

Center

Computer/

Internet
11

5 0.5
Intel Pentium 4-

3.2 GHz
5

Microsoft Windows XP

Professional x86 SP2

1 1.0
Intel Pentium 4-

3.2 GHz
1

Microsoft Windows XP

Professional x86 SP3

1 1.0
Intel Core 2 Due

- 3.3 GHz
2

Microsoft Windows XP

Professional x86 SP2

1 1.0
Intel Dual-Core

- 2.5 GHz
2

Microsoft Windows XP

Professional x86 SP3

3 4.0
Intel Core i3-

3.3 GHz
6

Microsoft Windows 7

Professional x86 SP3

Total number of PCs 43 Total Cores 71

The number of CPU cores described in Table (3.1) above was obtained from CPU

datasheets provided by CPU manufacturer (Intel) website. (Intel, 2013)

The experiments where performed during work hours (08:00 – 15:30), from Saturday to

Wednesday only. Lab PCs are turned on at 08:00, students can freely log in to any vacant

PC and start working, but they are prohibited from shutting down the used PC; they have

to leave it on so that the next student doesn‟t have to wait for PC boot-up process.

During the experiments, we made sure that grid middleware (Alchemi or BOINC) runs in

the background while the student is using the PC.

27

3.2. Description of experiments

Three major experiments are performed:

1. Measuring CPU utilization

2. Examining Alchemi .NET

3. Examining BOINC

3.2.1. Measuring CPU utilization

Although previous researches showed that CPUs are underutilized; we need to reveal the

actual CPU utilization in computer labs and present this fact in figures. For this purpose,

we used a tool called CPU Usage Logger (CPU logger, 2012), this tool was set to run on

computer startup. It then automatically begins recording average CPU utilization each 5

seconds in a plain text log file saved on the local hard drive.

The log files are then imported and analyzed using Microsoft Excel 2007.

3.2.2. Examining Alchemi .NET

Testing Alchemi .NET is performed by installing Alchemi Manager on one PC, and then

installing Alchemi Executer on 8 PCs. Executors are to be attached manually to the

Manager by entering correct settings. Finally a grid application is to be run in the manager

and the overall performance is observed.

Alchemi Manager and Executors are to be installed on identical PCs; they have the same

hardware components: Intel Core 2 Due, 2.33 GHz processor /1.0GB RAM / Microsoft

Windows XP Professional.

The test application is the computation of the value of PI to n decimal digits. The algorithm

used allows the computation of the p
th

 digit without knowing the previous digits. (Bellard,

2013)

There are several example applications that come with the Alchemi Software Development

Kit (SDK) that can be used to test the grid performance such as: Prime Number Generator,

Alchemi Renderer, and Mandelbrot (Alchemi, 2012), but the PI calculator is mostly used

in Alchemi testing (Buyya, 2005), so it was used here in order to compare obtained results

with those of other researches.

Execution time is adopted as the performance metric here; the PI calculator example

calculates and shows the execution time after each trail.

3.2.3. Examining BOINC

In this part of the experiment, we adopted Giga Floating Point Operations Per Second

(GFLOPS) as the performance metric of the BOINC grid. GFLOPS value is the amount of

floating point operations a CPU can handle per second.

Theoretical expected GFLOPS can be calculated from the following equation:

GFLOPS = F × C × n………………………………………………… (4.1)

28

 F : CPU frequency (GHz)

 C : number of CPU cores

 n : number of floating-point operations per CPU cycle

The value of n is CPU-specific; we can get this value from the microprocessor compliance

metrics of the CPU provided by the CPU manufacturer.

Table (3.2) lists frequency, number of cores, and the value of n for each CPU used in

experiments. (Intel, 2013)

Table 3.2: The value of n for CPUs used in experiments

CPU type
Frequency

(GHz)

Number

of Cores
n GFLOPS

Intel Pentium 4 CPU 2.40 1 2 4.80

Intel Pentium 4 CPU 3.00 1 2 6.00

Intel Pentium 4 CPU 3.20 1 2 6.40

Intel Core 2 Duo CPU E6400 2.13 2 4 17.04

Intel Core 2 Duo CPU E6550 2.33 2 4 18.64

Intel Core 2 Duo CPU E8600 3.33 2 4 26.64

Intel Core 2 Duo CPU T6570 2.10 2 4 16.80

Intel Core2 Duo CPU T7300 2.00 2 4 16.00

Intel Pentium Dual-Core CPU E5200 2.50 2 4 20.00

Intel Core i3-2120 3.30 2 8 52.80

In order to reduce CPU heating and guarantee a green solution we have to reduce the used

CPU time to 50% only, this value is recommended by the creators of BOINC (BOINC,

2012).

Number of connected PCs will be increased step by step as follows:

1. First Experiment: 3 PCs (selective PCs form computer and Internet labs)

2. Second Experiment: 8 PCs (Internet lab in Jerusalem branch)

3. Third Experiment: 16 PCs (Computer lab in Jerusalem branch)

4. Fourth Experiment: 24 PCs (both Internet and Computer labs)

5. Fifth Experiment: 33 PCs (Computer + Internet + Multipurpose labs)

6. Sixth Experiment: 43 PCs (Computer + Internet + Multipurpose labs in Jerusalem

and the computer lab in Bethany)

For each step, the gained GFLOPS are to be recorded.

Credit performance metric is used instead of GFLOPS when testing the OS effect.

Credit is a measure of how much work a computer has done, A BOINC project gives

credit for the computations a computer performs for it. BOINC's unit of credit, the

Cobblestone, is 1/100 day of CPU time on a reference Computer (BOINC, 2012).

29

BOINC has a built-in crediting system to encourage volunteers to contribute and compete

in BOINC projects, the more a volunteer contributes to a project -or several projects- the

more credit he earns (BOINC, 2012), this credit is a description of the number of verified

work units performed by a certain client and reflects the computational power of that PC.

We chose to record the credit since it is more significant for small number of PCs,

GFLOPS are hard to compare since it provides integer readings only.

3.3. Summary

In this chapter, the research environment was described, and the intended experiments

were described in general.

Next chapter represents the performed experiments of Alchemi and BOINC in detail, and

provides discussion of obtained results.

30

Chapter Four

Experiments and Results

4.1. Part One: Measuring CPU utilization

The purpose of this part is to measure CPU utilization in the Computer laboratory PCs in

order to reveal the actual idle computational resources in these PCs.

For this purpose, the CPU Usage Logger (CPU logger, 2012). This small, simple and

reliable freeware utility offers a handy way for developers and software testers to easily

monitor and log CPU usage (utilization) for any period of time. The optionally produced

log file is tab delimited and easily importable into Microsoft Excel for further trending and

analysis (CPU logger, 2012)

The tool calculates a 5-second moving average of CPU usage by averaging 10 samples

taken at 500ms intervals as shown in Fig. (4.1).

Fig. 4.1: Screenshot of CPU Usage logger tool interface

The following data is optionally logged to an outside tab-delimited log file if so desired:

 Date of reading

 Time of reading

 The 5-second moving average (last 10 samples averaged)

31

 Maximum CPU usage that occurred during the 5 second period (the max of the

numbers that were averaged)

 Percentage of utilization falling in the 90-100% range since starting logging.

 Percentage of utilization falling in the 80-90% range since starting logging

 Percentage of utilization falling in the 70-80% range since starting logging

 Percentage of utilization falling in the 60-70% range since starting logging

 Percentage of utilization falling in the 50-60% range since starting logging

 Percentage of utilization falling in the 40-50% range since starting logging

 Percentage of utilization falling in the 30-40% range since starting logging

 Percentage of utilization falling in the 20-30% range since starting logging

 Percentage of utilization falling in the 10-20% range since starting logging

 Percentage of utilization falling in the 0-10% range since starting logging

This tool was deployed on 14 PCs in the computer laboratory in Jerusalem Branch. The

tool was run during working hours (08:30 to 15:30) for 7 working days, CPU utilization

readings were saved in log files in plain text format.

Although the duration of the measurement is short, but during this period, the computer lab

was used intensively for semester registration, assignment solving, research editing, and

practical examinations training, thus, measurements reflect good description of CPU

utilization. More accurate results can be obtained by running the tool for a longer period of

time (i.e. for one semester).

Fig. (4.2) illustrates a snapshot of a sample log with description of each field.

Fig. 4.2: Snapshot of sample log file

32

Using Microsoft Excel 2007 data tools, every log file was imported into a separate excel

spreadsheet, the average was calculated for every range of every PC using the AVERAGE

function, then these averages are averaged for the 14 PCs and are plotted as described in

Fig. (4.3).

Fig. 4.3: Average CPU utilization

It can be noticed from Fig. (4.3) above that average CPU utilization falls in the 10-0%

region for nearly 90% of the time.

4.2. Part Two: Examining Alchemi .NET

Testing Alchemi .NET ver. 1.0.6 (Sourceforge, 2012) is performed by installing Alchemi

Manager on one PC, then installing Alchemi Executer on several PCs, and finally

deploying grid application and observing the overall performance.

A grid is created by installing Executors on each machine that is to be part of the grid and

linking them to a central Manager component (Alchemi, 2012).

In order to test Alchemi .NET, the Alchemi Manager was installed on one PC and Alchemi

Executers were deployed on eight PCs located in Jerusalem branch multipurpose lab.

Steps for installing Alchemi grid are illustrated in Appendix D.

Alchemi Manager and Executors were installed on identical PCs; they have the same

hardware components: Intel Core 2 Due, 2.33 GHz processor /1.0GB RAM / Microsoft

Windows XP Professional.

Screenshot for the resulting grid is shown in Fig. (4.4):

1.57% 0.33% 0.23% 0.26% 2.43% 0.81% 0.49% 0.99% 1.93%

90.66%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

90-100 80-90 70-80 60-70 50-60 40-50 30-40 20-30 10-20 0-10

T
im

e
P

er
ce

n
ta

g
e

Average CPU Utilization

Average CPU utilization vs. Time percentage

33

Fig 4.4: Alchemi Grid

Fig. (4.4) presents the Alchemi grid; one Manager node with three Executor nodes.

The next step after building the grid was to test it by running an example grid application.

The Alchemi .NET distribution package contains a source code for example applications

(alchemi-1.0.6-sdk-net-2.0.zip) from which we chose the PI Calculator example developed

in C# .NET. PI Calculator calculates the value PI for n decimal digits (default is 100 digits)

4.2.1. Testing Performance

The experiment was performed in Jerusalem branch multipurpose lab. One Executer was

attached to one Manager and the example grid application (PI calculator for 100 digits)

was run, and execution time is recorded.

Then we increased the number of grid PCs to 8, one PC at a time, and recorded execution

time at each step, every step is repeated for 5 times and the average execution time is

calculated.

The Execution time can be recorded from the PI calculator program console automatically.

Speed up factor for a number of Executors is the ratio of the average execution time of one

Executor to the average elapsed execution time.

Table (4.1) shows recorded results and calculated speed-up factor.

34

Table 4.1: Average execution time for PI calculator

Executers

Average

Execution

Time(sec)

Speed up

 Factor

1 61.89 1.00

2 33.77 1.83

3 27.26 2.27

4 20.77 2.98

5 16.02 3.86

6 14.39 4.30

7 14.20 4.36

8 13.78 4.49

It can be noticed from Table (4.1) that execution time decreases when increasing number

of grid PCs involved. Executors increased from 1 to 8 but average time elapsed from 61.89

seconds to 13.78 seconds only. The above results are illustrated in Fig. (4.5).

Fig. 4.5: Average execution time for PI calculator (100 digits)

Fig. (4.5) presents the average execution time in seconds vs. the number of Executor nodes

involved.

Speed up factor is plotted against the number of Executors involved, and presented in

Fig.(4.6).

35

Fig. 4.6: Speed up factor vs. number of Executors

Fig.(4.6) illustrates how the speed up factor tends to be constant as the number of

Executors increases.

Alchemi was then tested for a more complex calculation; the test was performed for a

range of workloads (calculating 1000, 1200, 1400, 1600, 1800, 2000 and 2200 decimal

digits of PI), each with one to eight Executors enabled. The workload was sliced into 10

threads; each thread is to calculate 10 decimal digits of PI. Execution time was recorded as

the elapsed clock time for the test program to complete. Results are listed in Table (4.2).

Table 4.2: Execution time of PI calculator (in seconds) for increasing work loads

 Decimal Digits of PI

Executers 1000 1200 1400 1600 1800 2000 2200

1 Executers 751.26 927.91 1214.96 1370.16 1652.72 1898.35 2205.97

2 Executers 358.63 442.06 450.95 645.85 767.24 901.88 1046.24

3 Executers 238.97 301.42 371.84 440.43 518.64 612.01 712.50

4 Executers 185.91 229.67 276.44 334.95 378.77 465.35 541.05

5 Executers 149.95 186.66 228.00 272.52 322.48 376.98 445.68

6 Executers 127.33 156.84 191.74 231.32 270.28 314.25 368.09

7 Executers 107.16 133.51 163.93 197.65 237.65 268.03 311.57

8 Executers 98.15 121.47 147.85 181.72 208.15 240.56 278.63

Table (4.2) presents the execution time for increasing workload with increasing number of

Executors; these results are plotted and depicted in Fig. (4.7).

36

Fig 4.7: A plot of workload vs. execution time with varying number of Executors

Fig. (4.7) shows that as the workload increases, the efficiency of the grid increases in terms

of execution time.

Speed up factor is plotted in Fig.(4.8).

Fig. 4.8: Speed up factor for increased workload with varying number of Executors

Fig. (4.8) depicts the speed up factor for increased workload with varying number of

Executors, It is noticed that the speed up factor is directly proportional to the number of

Executors in this range.

37

4.2.2. Operating System effect

It is important to test the OS effect on the local PC grid since we have two different OSs in

the labs: windows XP and windows 7. Windows 7 is expected to be dominant in the near

future, so we need to know the effect of this upgrade on the local PC grid.

In this section we compare the performance of Alchemi grid under two different operating

systems.

The Alchemi Grid is tested twice: once with Executor node (Intel Pentium 4/3.0 GHz

CPU/1.0GB RAM) running windows XP, and the other is with the same Executor node

running windows 7. The PI calculator program was set to calculate 100 decimal digits and

Execution time is recorded, 5 trials each time. Table (4.3) shows experiment results.

Table 4.3: Operating system effect on Alchemi

OS
Average execution

time(sec)

Windows XP 32.68

Windows 7 72.16

Figure (4.9) presents a chart of data in Table (4.3).

Fig. 4.9: Operating system effect on Alchemi

From Table (4.3) and Fig. (4.9) it is obvious that execution under Windows XP is

32.68/72.17 = 45.29% faster than that of Windows 7.

A possible explanation for this result is that Windows 7 was released on 2007 (Microsoft,

2012), and Aneka (the new licensed version of Alchemi) was released on 2009

(ManjraSoft, 2012). The tested version of Alchemi (released 2006) was not developed to

take advantage of new features of Windows 7 environment.

38

4.2.3. Testing network effect

In order to examine network effect on Alchemi Grid, the Manager node was located in

Jerusalem branch computer lab and the Executor nodes were located in Bethany SC

computer lab and again the PI calculator sample application is run.

It has been noticed that calculations were not performed at all; job threads were not sent

from the Manager to any of the Executors, although these Executors are connected to the

Manager and show in the manager console.

According to Alchemi support mailing list (Alchemi, 2013), this is a Domain Name Server

problem that can be solved by editing the C:\WINDOWS\system32\drivers\etc\hosts

file located on the hard drive of the Manager PC and adding an entry of each executer

computer name and IP address.

This solution is not appropriate for large scale local PC grid environment, and this reveals

a disadvantage of Alchemi.

4.3. Part Three: Examining BOINC

In this section, BOINC performance is tested. The BOINC server is installed and a project

is created and run, and then BOINC clients are deployed on lab PCs, and they are attached

to the created project, Fig. (4.10) illustrates the overall process.

Fig 4.10: BOINC testing process

Detailed steps for installing BOINC grid are illustrated in Appendix E.

4.3.1. Testing Performance

To test the performance of the grid, we attached a small number of PCs then increased

them gradually monitoring the output performance measured in GFLOPS, the number of

generated GFLOPS can be recorded from the test project portal: http://10.12.0.100/test.

A screenshot of the Test project portal is illustrated in Fig. (4.11).

http://10.12.0.100/test

39

Fig 4.11: Monitoring server status

Fig. (4.12) shows a screenshot of the project status portal page, current GFLOPs can be

read directly from the server portal as indicated.

Maximum CPU utilization was set to 50% only; this was performed by customizing the

general computing preferences for the created grid user (testgrid) from the following link

http://10.12.0.100/test_ops on the project‟s portal. Fig. (4.13) presents the screenshot of

computing preferences webpage.

Fig. 4.12: computing preferences webpage

http://10.12.0.100/test_ops

40

Table (4.4) shows the recorded compared to expected performance and utilization

percentage of the BOINC grid.

Table 4.4: Recorded vs. expected performance for BOINC example project

Number of

connected

PCs

number

of cores

harvested

GFLOPS

expected

GFLOPS

50% of

expected

GFLOPS

utilization

3 5 4 28.8 14.4 27.78%

8 8 11 48.4 24.2 45.45%

16 31 35 606.24 303.12 11.55%

24 39 51 654.64 327.32 15.58%

33 55 63 1129.84 564.92 11.15%

43 71 104 1320.48 660.24 15.75%

Table (4.4) lists the harvested GFLOPS vs. the number of PCs and CPU cores involved.

Expected GFLOPS were calculated by matching each CPU used in the experiment with

GFLOP value provided by CPU manufacturer and listed in table (3.2), this value is then

multiplied by 50% since this is the maximum set value for CPU utilization in this

experiment.

Utilization percentage is the ratio of gained GFLOPS to the 50% of expected GFLOPS.

Data in Table (4.4) is plotted and presented in Fig.(4.13).

Fig. 4.13: Harvested GFLOPS vs. number of CPU cores involved

Fig.(4.13) describes the direct relation between harvested GFLOPS and number of CPU

cores involved.

41

4.3.2. Testing Network effect

In order to experience the network effect, two readings of GFLOPS were taken; one with

BOINC server and 8 clients located in Jerusalem branch and the other with the BOINC

server located in Bethany SC.

Readings are listed in Table (4.5).

Table 4.5: Network effect on BOINC performance

Description
Gained

GFLOPS

Server and clients in Jerusalem 11

Server in Bethany and clients in Jerusalem 9

percentage loss 18.18%

Table (4.5) presents the total gained GFLOPS in both situations, note that loss due to

network effect is 11-9 = 2 GFLOPS, which is a percentage of 18.18%.

The communication line between Jerusalem branch and ICTC is 2 Mbps, between Bethany

SC and ICTC is 6 Mbps, thus the 18.18% loss is caused essentially by the slower link.

For the BOINC server to be located in ICTC, this loss is reduced to minimum due to

reduction of routing delay.

4.3.3. Testing Operating System effect

Last test is this section is the effect of OS (for different CPU and RAM) on the overall

contribution of a certain PC in the BOINC based grid.

To perform the test, we have chosen a PC running Windows XP and attached it to the

BOINC test project. Two different CPUs are used each time, and for each CPU a different

value of RAM is used, credit is recorded for each case.

After that, Windows 7 is installed and same procedure is applied. Readings are recorded at

the end of each working day (total of 7 hours each).

Table (4.6) lists the recorded credit for each situation.

Table 4.6: OS effects on BOINC client for different CPU and RAM

Windows XP Windows 7

CPU 3000
(Dual Core)

3000
(Dual Core)

3000 3000 3000
(Dual Core)

3000
(Dual Core)

3000 3000

RAM (GB) 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5

PC Credit 2958.56 3604.16 1263.89 1775.51 3722.22 4287.04 1983.80 2341.13

Performance improvement percentage 26% 19% 57% 32%

42

Table (4.6) presents credit values recorded for each setup and performance improvement

percentage. Performance improvement percentage is calculated by dividing the difference

between adjacent Windows 7 credit and windows XP credits by the windows XP credit.

One can note that Windows 7 performance is better that Windows XP performance at all

cases. One can also note that the CPU is the major factor that contributes in the total credit.

The Performance improvement percentage was calculated by dividing the host credit

difference by the credit of windows XP.

Example:

- Windows XP credit for a 3.0 GHz Dual- Core CPU / 1.5 GB RAM =3604.16,

- Windows 7 credit for a 3.0 GHz Dual- Core CPU / 1.5 GB RAM = 4287.04

- Difference = 4287.04 - 3604.16 = 682.88

- Performance improvement = 682.88/3604.16 = 18.95%

4.4. Results and discussion

The three main experiment parts that were performed are:

1. Measuring CPU utilization in computer lab PCs

2. Building and testing Alchemi –based grid

3. Building and testing BOINC –based grid

These experiments are and described in sections 4.1, 4.2 and 4.3 respectively, results of

each part are discussed here.

4.4.1. Part one: Measuring CPU utilization in computer lab PCs

The test has been performed on 14 PCs in the computer lab. Readings were taken for 7

work days during work hours only (08:00 to 15:30).

It has been revealed that average CPU utilization does not exceed 10% CPU utilization for

nearly 90% of the test time.

This result comes in favor with other results presented by other researchers:

 Mutka stated that desktop PCs can be under-utilized by as much as 75% of the time

(Mutka, 1992)

 Acharya and co-researchers stated that idle time for desktop machines ranged

from 60% to 80% (Acharya et al., 1997)

 Domingues and co-researchers noted that average CPU idleness is 97.93%

(Domingues et al., 2005)

43

 Vlădoiu and co-researchers the computational availability approximately 75-80%

during work hours (Vlădoiu et al., 2009).

It is worth noting that in (Vlădoiu et al., 2009) the researchers were only concerned in the

number of the available running PCs not in the percentage of idle CPU time for every PC

in the laboratory which is more accurate; consider a case of a running PC that performs

heavy tasks, such PC cannot be considered as “available”.

The process of collecting and analyzing CPU utilization data was performed manually; i.e.

log files were collected from each machine and imported to Microsoft Excel. An automatic

mechanism was introduced by Han and Gnawali (Han et al., 2012), in their article they

built a C++ application to measure CPU usage and installed as a Windows Service on all

computers in the lab.

Every second, the process monitor calculated each process CPU usage by using Windows

Management Instrumentation API. The process monitor then transmits the list of processes

and their CPU utilization to a database server over wired Ethernet.

The result of their measurement was that the fraction of CPU utilization while user is not

logged in stayed below 30% on most machines, due to real-time back up and viruses scans

and other background processes (Han et al., 2012).

Our results emphasize the fact that idle CPU power is ample in PCs available in computer

labs, and can be harnessed to build a local PC Grid environment.

4.4.2. Part two: Results of examining Alchemi .NET

After testing the Alchemi Framework, several points can be highlighted:

 Installation: Alchemi was easy to install and deploy (plug-and-play), with no need to

worry about scripts and configuration files.

System requirements are simple: .NET framework for both Executor and Manager

Nodes, and SQL server for Manager Node only.

 Overall Performance: two experiments were performed to test the grid, for both

experiments, 8 identical Executors were involved, and the PI calculator was set to

calculate 10 decimal digits for each thread:

1. First: Alchemi was set to calculate 100 decimal digits of PI

2. Second: Alchemi was set to calculate decimal digits of PI from 1000 up to

2200, adding 200 decimal digits each time just to increase workload.

1. Results for the first experiment:

Table (4.7) summarizes the results obtained from Table (4.1)

44

Table 4.7: Comparison between actual and ideal execution time and speed up factor

Executers

average

execution

time (sec)

ideal

execution

time (sec)

actual

speed up

 factor

ideal

speed up

factor

1 Executor 61.89 61.89 1.00 1

2 Executor 33.77 30.95 1.83 2

3 Executor 27.26 20.63 2.27 3

4 Executor 20.77 15.47 2.98 4

5 Executor 16.02 12.38 3.86 5

6 Executor 14.39 10.32 4.3 6

7 Executor 14.2 8.84 4.36 7

8 Executor 13.78 7.74 4.49 8

Table (4.7) compares between actual execution time and speed up factor values along with

expected values.

Ideal execution time is based upon an assumption that execution time reduces in a fraction

according to the involved Executors, for example: in this experiment the execution time

when we used one Executor was 61.89 and when using 2 executers, the work load is

divided equally between them, so the expected execution time is 61.89/2 and so on.

Referring to (Trifa et al., 2011) the actual speedup factor that Trifa used was found by

calculating the ratio of actual execution time for every level of the experiment with the

recorded execution time for one Executor.

For example: the actual speed up factor when 8 Executors are used is 61.89/13.78 = 4.49,

while the ideal speed up factor is 8 since we used 8 Executors.

The theoretical performance of Alchemi is can be expected according to the following

equation:

 (

)………………………………………………………..(4.2)

Where:

T(n) = expected execution time for n Executors, n is a positive integer ≠ zero

T(1) = recorded execution time for one Executor

Fig.(4.14) presents the difference between actual vs. ideal execution time.

45

Fig. 4.14: Actual vs. ideal execution time

Based on Table (4.8) and Fig. (4.14), equation (4.2) can be written as follows taking into

consideration slow down factors like network traffic and CPU occupancy:

 ……………………………………………………….. (4.3)

Where a and c are constant coefficients, these coefficients represent the error produced by

network communication and volatile CPU power availability.

To be able to a measure how well recorded outcomes are replicated by the model we will

use the coefficient of determination, denoted R
2
 and pronounced R squared. The model is

said to closely represent the recorded outcomes if R
2

is closer to one (Coefficient of

determination, 2013).

Using Microsoft Excel Trend line utility, it has been found that the function that best fits

the recorded values is y = 59.453 x
-0.753

, and R
2
 value equals 0.9837 which is close to one,

this means that the trend line nearly fits the actual data.

46

Fig. 4.15: Trend line for actual execution time

Fig. (4.15) describes the trend line of the actual recorded execution time.

Accordingly, a in equation (4.3) equals 59.453/61.89 which yields 0.961, and c equals

0.753.

Speed up factor:

Fig (4.16) represents the comparison between actual and ideal speed up factor, one can

notice that actual speed up factor in this experiments tends to be constant after the 5
th

Executor; this means that adding more Executors will not significantly improve the overall

performance of the Alchemi grid.

This result comes in favor with the results of Luther and co-researchers (Luther et al.,

2005), the reason behind this is that increasing the number of Executors creates a network

overhead that delays the total execution time (Luther et al., 2005)

47

Fig.4.16: Actual vs. ideal speed up factor

Fig. (4.16) presents the difference between actual and ideal speed up factor. Note that after

the 5
th

 Executor the speed up factor tends to be constant.

2. Results for the second experiment:

The workload was increased in this experiment, the grid performance was observed and

execution time was recorded.

Table (4.8) presents the recorded execution time for each value of calculated decimal digits

of PI.

Table 4.8: Execution time (in seconds) for different decimal digits of PI

 Decimal Digits of PI

Executers 1000 1200 1400 1600 1800 2000 2200

1 Executers 751.26 927.91 1214.96 1370.16 1652.72 1898.35 2205.97

2 Executers 358.63 442.06 450.95 645.85 767.24 901.88 1046.24

3 Executers 238.97 301.42 371.84 440.43 518.64 612.01 712.50

4 Executers 185.91 229.67 276.44 334.95 378.77 465.35 541.05

5 Executers 149.95 186.66 228.00 272.52 322.48 376.98 445.68

6 Executers 127.33 156.84 191.74 231.32 270.28 314.25 368.09

7 Executers 107.16 133.51 163.93 197.65 237.65 268.03 311.57

8 Executers 98.15 121.47 147.85 181.72 208.15 240.56 278.63

Applying the same approach from the previous experiment, we calculated the a and c

coefficients, these coefficients along with R-square values are presented in Table (4.9).

48

Table 4.9: a and c and R
2
of recorded data

Decimal

digits
a c R

2

1000 0.965 0.977 0.999

1200 0.967 0.976 0.999

1400 0.883 0.970 0.983

1600 0.958 0.971 0.998

1800 0.951 0.986 0.997

2000 0.972 0.989 0.999

2200 0.972 0.987 0.999

Average 0.979 0.953 0.996

Comparing results in Table (4.9) with results from previous experiments, one can notice

that the overall performance of the grid is very close to ideal theoretical model described in

equation (4.2). We can conclude that for heavy workloads, the efficiency of Alchemi is

better.

Fig. (4.8) also describes that the speed up factor is directly proportional to the number of

Executors in hand.

On the other hand, in this experiment, we set each thread in the PI calculator to calculate

only 10 decimal digits. Comparing with (Luther et al., 2005), the researchers set the thread

to calculate 50 decimal digits. It is noticed that the execution time in their experiment is

less than execution time for our experiment, for example: at 2200 decimal digits on 6

Executors, our reading is 368.09 seconds and their reading is about 80 seconds although

they performed the experiments on old Pentium III 1.7 GHz/512 MB desktops. Fig.(4.17)

illustrates the results of Luther and co-researchers.

Fig. 4.17:A plot of thread size vs. execution time (Luther et al., 2005)

The above comparison implies that Alchemi threads transfer have great overhead on the

network, this overhead causes delay in overall execution time.

49

 Operating system effect:

When testing the Alchemi performance under windows XP and Windows 7 for same

hardware. Average Execution time under Windows XP was recorded to be 32.68 seconds

compared to 72.16 seconds for Windows 7; thus execution under Windows XP is (72.17 -

32.68)/32.68= 120.8% faster than that of Windows 7.

We did not find any article that supports this since all surveyed articles concerning

Alchemi described its deployment under Windows 2000 (Setiawa et al., 2004) or windows

XP (Vecchiola et al.,2007).

This shortage in Alchemi prevents us from deploying it in QOU, since QOU updates

hardware and software regularly, and windows 7 will be the default OS in the near future.

 Network effect:

When connecting Executors in a subnet to a Manager in another subnet, it has been noticed

that job threads were not sent from the Manager to any of the Executors, although these

Executors can “see” the Manager and appear in the Alchemi Manager Console.

This fact records a shortage in the Alchemi framework probably in "hopping" jobs from

one subnet to the other. An approach that needs testing is to use that Alchemi hierarchy

model, where there is a Manager node in each subnet that acts as an Executor for a central

Manager, it receives job threads and distributes them to underlying Executors in the subnet

then collects and sends results to the “General Manager” (Alchemi, 2012).

 CPU utilization:

Alchemi was observed to consume all available idle CPU power, this is illustrated in Fig.

(4.19). There is no available option in Alchemi Manager to limit the CPU allowable usage

to a certain percentage.

This is apparently an advantage, but the fact is the more the CPU is busy the more it is

heated and the more the PC consumes electricity for cooling, this increases cost and

violates green solution requirement of the PC Grid.

50

Fig. 4.18: Alchemi Console showing available vs. used CPU power

Fig. (4.18) illustrates how Alchemi consumes all available CPU power to perform thread

calculations.

4.4.3. Part three: Results of examining BOINC

 Installation:

One of the disadvantages of BOINC is the installation complexity. BOINC server runs in

Linux machines and requires Linux administration skills to install and run software

prerequisites.

 Performance:

As described in section 4.4, PCs were attached to the sample project on the BOINC server,

and the total performance was observed and recorded in terms of GFLOPS. Results are

presented in Table (4.5).

Expected GFLOPS are calculated using equation (4.1), keep in mind that CPU utilization

for client PCs was set to 50% in order to minimize CPU heating.

Utilization was calculated by dividing the gained GFLOPS by the ideal GFLOPS.

Data presented in Table (4.5) is plotted in Fig.(4.20), a trend line is also plotted.

The trend line is linear, its equation is:

Y = 1.49 X – 4.62 …………………………………………………………… (4.4)

Available CPU

power

Used CPU

power

51

Where: Y represents gained GFLOPS and X represents number of cores involved. The

constant (– 4.62) can be neglected for large number of CPU cores.

As noticed in Fig. (4.19), R
2
 equals 0.9893 which is close to 1, this means that equation

(4.4) strongly describes the actual performance of the BOINC grid.

Fig. 4.19: Gained GFLOPS with Trend line

Although, the explored 71 cores cannot be used as a scientific sample, we can show that

for a total of 3550 CPU cores that are available at QOU computer labs (Appendix A)

holding the same limitations and assumptions of the same experiment conditions, we

expect to gain 1.49(3550) – 4.62 = 5270 GFLOPS = 5.27 TeraFlops.

Although, we have obtained these promising and potential results, we need to have a

scientific sample before coming to a formal declaration.

 Operating system effect:

BOINC client performance was tested under Windows XP and Windows 7 with changes

made to CPU, RAM each time. Results showed that BOINC has ranked great performance

under windows 7; range of performance improvement percentage is from 19% to 57%.

 Network effect

Table (4.6) presented the total loss in GFLOPS due to communication traffic to be

18.18%.

The communication line between Jerusalem branch and ICTC is 2 Mbps, between

Bethany SC and ICTC is 6 Mbps, thus the 18.18% loss is caused essentially by the slower

link. The 2 Mbps causes 6/8 of delay which equals 13.64% and the other fraction of the

delay is caused by the 6Mbps line (around 4.56%). Network delay can be decreased by

locating the BOINC server in ICTC.

52

4.5. Summary

In this Chapter, several experiments have been performed: First, the CPU utilization was

measured in order to reveal the actual utilization of computer lab PCs, then the Alchemi

framework was installed and tested, and finally the BOINC framework was installed and

tested. Major results and findings were also highlighted and discussed.

Chapter five represents the conclusion and suggestions for future work.

53

Chapter Five

Conclusion and Future Work

5.1. Conclusion

The general objective of this work is to introduce a local PC grid computing environment

in Higher Educational Institutions presenting QOU as an example case (Jerusalem Branch),

by harvesting idle CPU power available in regular, LAN connected, Computer lab PCs

running Windows Operating System in these institutions.

This objective was successfully reached by two approaches: one is by deploying a PC grid

computing middleware (Alchemi .NET), and the other is by customizing a Public Resource

Computing (BOINC) for local PC grid usage.

The first finding in this research is that CPU utilization in computer labs is very low. The

average CPU utilization for a 7 working days (0800: 15:30) is less than 10% for 90% of

the time, this comes in agreement with all surveyed researches in the field.

Our results emphasize the fact that idle CPU power is ample in PCs available in computer

labs, and can be harnessed to build a local PC Grid environment.

When testing Alchemi as the first approach, it has been found that Alchemi was very easy

to install and run. In addition, Alchemi was also powerful and reliable when deploying

heavy computation. The execution time was used as the performance evaluation parameter

and was found to meet the ideal case.

The expected execution time has been modeled as

Expected Execution Time (EET) is ET(n) = T(1)/n,

where: T(1) is the experimental execution time for one Executor and

n is an integer representing the number of Executors.

Alchemi was deployed on eight Executors, and a curve fitting to the resulting readings was

performed, the resulting model for Experimental Execution Time (T(n)) was:

T(n)= 0.979 T(1) /n
-0.953

The relation between the two models was measured by coefficient of determination, R
2

which is found to be 0.996; this means that the model is very close to ideal case

Despite of Alchemi‟s advantages, it was revealed that it has some shortages that include:

54

1. Alchemi couldn‟t send jobs between different subnets, thus it can only be deployed

in one branch in QOU environment, an approach that needs testing is to use that

Alchemi hierarchy model (Alchemi, 2012).

2. Not green! : Alchemi was observed to consume all available idle CPU power; there

is no available option in Alchemi Manager to limit the CPU allowable usage to a

certain percentage.

3. Alchemi proved poor performance when running under Windows 7. Execution time

under Windows XP was recorded to be 120.8% faster than that of Windows 7. This

shortage in Alchemi prevents us from deploying it; QOU updates hardware and

software regularly, and windows 7 will be the default OS in the near future.

4. Alchemi causes network traffic overhead that may delay transferring other

important data especially when given small shrinks of jobs for each Executor.

When testing BOINC as the second approach, we were able to gain 108 GFLOPS out of 71

CPU cores with nearly no cost.

Curve fitting of observed GFLOPS produced the following relation between involved

cores (X) and gained GFLOPS (Y)

Y = 1.49 X – 4.62

Which is very close to the actual curve (R
2
 = 0.9893).

We were able to estimate a total of nearly costless 5.27 TeraFLOPS for 3550 CPU cores

available in computer lab PCs. Although, we have obtained these promising and potential

results from small exploration sample, we need to have a scientific sample before coming

to a formal declaration.

When comparing BOINC client performance under windows XP then Windows 7, BOINC

client running under Windows 7 produced more work compared with windows XP,

improvement percentage is from 19% up to 57%. This result is encouraging since it is

expected for Windows 7 to replace windows XP in Computer labs in the near future.

Some decrease in computation was observed due to communication between clients and

server, the delay caused by the 6Mbps line was estimated to be around 4.56%. This delay

can be dramatically reduced when locating the BOINC server in ICTC, the central hub of

QOU.

Despite the above advantages of BOINC, the main disadvantage is the complication of the

setup process; BOINC server runs on Linux machines and requires Linux administration

skills to install and run software prerequisites that are mostly performed from the

command prompt not from GUI.

5.2. Future Work

Although, we have obtained promising initial results, but still the following

recommendations may help to further contributions in PC Grid computing:

55

1. Our research was limited to harnessing idle CPU power available in Computer Lab

PCs, without any addressing to the Graphical Processing Unit (GPU) power. GPU

possess huge computational power that needs to be explored and utilized in a grid

computing environment.

2. Distributed file storage needs also to be addressed in HEI. Large hard drive

capacities are available but a small portion is used; for instance: a 500 GB hard

drive is the minimum standard these days, but for a computer lab PC uses a

maximum of 100 GB only and the rest is not used.

3. A study of the peak times of data traffic on the HEI LAN during working hours

needs also to be addressed, so as to stop running grid applications in such periods

of time to avoid network traffic delay.

4. Finally, BOINC client performance was tested under Windows XP and Windows 7,

but now Windows 8 has hit the market; and sooner or later it will be available in

HEI computer labs. A new stable version of BOINC client is available (version

7.0.64) since 17/April/2013; testing it under Window 8 is a great idea for future

work.

56

References

1. Acharya A., Edjlali G., and Saltz J., “The utility of exploiting idle workstations for

parallel computation”. Proceedings of the ACM SIGMETRICS '97 international

conference on Measurement and modeling of computer systems, p.p. 225-234, 1997.

2. Alchemi support mailing list, http://www.mail-archive.com/alchemi-

users@lists.sourceforge.net/msg00484.html, (accessed on 08/04/2013)

3. Alchemi User Guide, http://sourceforge.net/projects/alchemi/files/alchemi - .NET

2.0/ ,(accessed on 04/12/2012).

4. Anderson, D., Korpela, E. and Walton, R., “High-Performance Task Distribution for

Volunteer Computing”, Proceedings of the First IEEE International Conference on e-

Science and Grid, . Melbourne, Australia, 2005.

5. Anderson, D., “Public Computing: Reconnecting People to Science”, Conference on

Shared Knowledge and the Web, Residencia de Estudiantes, Madrid, Spain, Nov. 17-

19, 2003.

6. Baldassari J., “Design and Evaluation of a Public Resource Computing Framework”,

Worcester Polytechnic Institute, 2006.

7. Bellard F., Computation of the n
th

 digit of PI in any base in O(n
2
), (accessed on

07/06/2013)

8. Bellavista P., Chang R., Chao H, Lin S, Sloot P., ”Advances in Grid and Pervasive

Computing”, 5th International Conference Proceedings”, Hualien, Taiwan, Springer,

2010.

9. BOINC wiki, http://www.boinc-wiki.info/, (accessed on 04/01/2013).

10. BOINC: Berkeley Open Infrastructure for Network Computing.

http://boinc.berkeley.edu/ (accessed on 12/12/2012).

11. BOINCstats, http://www.boincstats.com/ , (accessed 10/04/2013)

12. Buyya R., Luther A., Ranjan R. , Venugopal S.. "Alchemi: A .NET-based Enterprise

Grid Computing System", 6th International Conference on Internet Computing

(ICOMP'05), Las Vegas, 2005.

13. C. Kruskal , A. Weiss, “Allocating independent subtasks on parallel processors”, IEEE

Transactions on Software Engineering, 11:1001-1016, 1984.

14. Caphyon, http://www.advancedinstaller.com , (accessed on 03/01/2013).

15. Chien A., Calder B., Elbert S., and Bhatia K., “Entropia: Architecture and

Performance of an Enterprise Desktop Grid System”, Journal of Parallel and

Distributed Computing, Volume 63, Issue 5, Academic Press, USA, May 2003.

16. Choi S., Kim H., Byun E., Baik M., Kim S., Park C., Hwang C., “Characterizing and

Classifying Desktop Grid”, Seventh IEEE International Symposium on Cluster

Computing and the Grid (CCGrid'07), IEEE 2007.

17. Cloudbus, http://www.cloudbus.org/~alchemi/, (accessed on 10/05/2011).

http://www.mail-archive.com/alchemi-users@lists.sourceforge.net/msg00484.html
http://www.mail-archive.com/alchemi-users@lists.sourceforge.net/msg00484.html
http://sourceforge.net/projects/alchemi/files/alchemi%20-%20.NET%202.0/
http://sourceforge.net/projects/alchemi/files/alchemi%20-%20.NET%202.0/
http://www.boinc-wiki.info/
http://boinc.berkeley.edu/
http://www.boincstats.com/
http://www.advancedinstaller.com/
http://www.cloudbus.org/~alchemi/

57

18. Coefficient of determination, http://www.coefficientofdetermination.com/, (accessed

12/05/2013).

19. CPU logger, http://sourceforge.net/projects/cpu-usage-log/, (accessed on 02/03/2012).

20. Debian, http://www.debian.org, (accessed on 10/06/2012).

21. distributed.net, http://www.distributed.net , (accessed 10/01/2013)

22. Domingues P., Marques P., Luis Silva L., “Resources Usage of Windows Computer

Laboratories”, Proceedings of the International Conference on Parallel Processing

Workshops (ICPPW‟05), 2005.

23. Foster, I., “What is the grid? A three-point checklist”, Grid Today, 20/07/2002.

Available online http://dlib.cs.odu.edu/WhatIsTheGrid.pdf , (accessed on 18/03/2013).

24. Foster, I. and Kesselman, C.,”The grid: Blueprint for a new computing infrastructure”,

Morgan Kaufmann, San Francisco, CA,1998.

25. Foster, I. and Kesselman, C., “The Grid 2: Blueprint for a New Computing

Infrastructure”, Morgan Kaufmann, 2
nd

 ed., ch.4. San Francisco, CA, 2004.

26. Foster, I., Kesselman, C. and Tuecke, S., “The Anatomy of the grid: Enabling scalable

virtual organizations”, International Journal of High Performance Computing

Applications, 15(3): 200-222, 2001.

27. Foster, I., Kesselman, C. and Tuecke, S., “What is the Grid? A Three Point Checklist”,

s.l. : Grid Today, 2002.

28. Germain C., Neri V., Fedak G., Cappello F., “XtremWeb: building an experimental

platform for Global Computing”, Proceedings of the 1
st
 IEEE/ACM International

Workshop on Grid Computing (Grid 2000), Bangalore, India, 12/2000.

29. González, D., Gil, G., De Vega, F., Segal, B.,”Centralized BOINC Resources Manager

for Institutional Networks”, IEEE, 2008.

30. Goyal B, Lawande S.,”Grid Revolution: An Introduction to Enterprise Grid

Computing”. McGraw-Hill, Emeryville, CA, 2005.

31. Han D., Gnawali O., “Understanding Desktop Energy Footprint in an Academic

Computer Lab”, Green Computing and Communications (GreenCom) Conference,

IEEE, 2012.

32. HTCondor, http://research.cs.wisc.edu/htcondor/index.html, (accessed 11/01/2013)

33. ICTC, “Official statistics provided by Information & Communication Technology

Center”, QOU, 2013.

34. Intel microprocessor export compliance metrics,

http://www.intel.com/support/processors/sb/cs-017346.htm, (accessed on 09/06/2013).

35. Luther A., Buyya R., Ranjan R., Venugopal S., “Peer-to-Peer Grid Computing and a

.NET-based Alchemi Framework”, High Performance Computing: Paradigm and

Infrastructure, Wiley Press, 2005.

36. Magoulès F., Pan J., Tan K, Kumar A., “Introduction to Grid Computing”, CRC Press,

2009.

http://www.coefficientofdetermination.com/
http://sourceforge.net/projects/cpu-usage-log/
http://www.debian.org/
http://www.distributed.net/
http://dlib.cs.odu.edu/WhatIsTheGrid.pdf
http://research.cs.wisc.edu/htcondor/index.html
http://www.intel.com/support/processors/sb/cs-017346.htm
http://www.cloudbus.org/~alchemi/files/alchemi_bookchapter.pdf
http://www.cloudbus.org/~alchemi/files/alchemi_bookchapter.pdf

58

37. ManjraSoft, http://www.manjrasoft.com/, (accessed on 02/04/2012).

38. Microsoft Incorporation, http://www.microsoft.com/, (accessed on 04/04/2012).

39. Microsoft Technet, http://technet.microsoft.com/en-us/library/cc780036(WS.10).aspx,

(accessed on 13/02/2013).

40. Moore, G., "Cramming more components onto integrated circuits", Electronics

Magazine, Volume 38, Number 8, April 19, 1965.

41. Mustafee N., “A grid computing framework for commercial simulation packages”,

School of Information Systems, Computing and Mathematics Brunel University, UK,

May, 2007.

42. Mutka M., “Estimating capacity for sharing in a privately owned workstation

environment”. IEEE Transactions on Software Engineering 1992, 18(4):319-328.

43. Oracle, https://www.virtualbox.org/, (accessed on 11/06/2012).

44. QOU, Al-Quds Open University website, http://www.qou.edu/ , (accessed on

03/02/2013)

45. Semeria C., “Multiprotocol Label Switching: Enhancing Routing in the New Public

Network”, Juniper Networks, 2001.

46. SETI, http://setiathome.berkeley.edu/, (accessed on 04/01/2013)

47. Setiawa A., Adiutama D., Liman J., Luther A., Buyya R., “GridCrypt: High

Performance Symmetric Key Cryptography Using Enterprise Grids”, Proceedings of

the 5th International Conference on Parallel and Distributed computing, Applications

and Technologies, 2004.

48. SourceForge, http://sourceforge.net/projects/alchemi/files/alchemi - .NET 2.0/Alchemi

v.1.0.6/, (accessed on 04/12/2012).

49. Stanoevska K., Wozniak T., Ristol S., “Grid and Cloud Computing: A Business

Perspective on Technology and Applications”, Springer, 2010.

50. SZTAKI, Computer and Automation Research Institute of the Hungarian Academy of

Sciences (MTA), http://www.desktopgrid.hu, (accessed on10/06/2012)

51. Tachikawa, M., “PC Grid Computing: Using Increasingly Common and Powerful PCs

to Supply Society with Ample Computing Resources”, Science and Technology.

Quarterly Review No.18/January, 2006.

52. TOP500 list, http://www.top500.org/list/2012/11/, (accessed 10/04/2013).

53. Trifa, Z., Labadi M., Khemakhem M., “Arabic Cursive Characters Distributed

Recognition using the DTW Algorithm on BOINC: Performance Analysis”,

International Journal of Advanced Computer Science and Applications (IJACSA),

Vol. 2, No.3, March, 2011.

54. Univa, http://www.univa.com/, (accessed 09/01/2013).

55. UWM, The University of Westminster website,

http://wgrass.wmin.ac.uk/index.php/Desktop_Grid:Westminster_Local_DG, (accessed

10/08/2012).

http://www.manjrasoft.com/
http://www.microsoft.com/
http://technet.microsoft.com/en-us/library/cc780036(WS.10).aspx
https://www.virtualbox.org/
http://www.qou.edu/
http://setiathome.berkeley.edu/
http://sourceforge.net/projects/alchemi/files/alchemi%20-%20.NET%202.0/Alchemi%20v.1.0.6/,
http://sourceforge.net/projects/alchemi/files/alchemi%20-%20.NET%202.0/Alchemi%20v.1.0.6/,
http://www.desktopgrid.hu/
http://www.top500.org/list/2012/11/
http://www.univa.com/
http://wgrass.wmin.ac.uk/index.php/Desktop_Grid:Westminster_Local_DG

59

56. Vecchiola C., Nadiminti K., Buyya R., “Image Filtering on .NET-based Desktop

Grids”, GCC '07 Proceedings of the Sixth International Conference on Grid and

Cooperative Computing, pp 582-592, IEEE, 2007.

57. Vlădoiu M., Constantinescu Z., NegoiŃă C., “Availability of Computational

Resources for Desktop Grid Computing”, Seria Matematică - Informatică – Fizică,

Seria Matematică - Informatică - Fizică Vol. LXI, No. 1/2009.

58. Westminster news and events, http://www.westminster.ac.uk/news-and-

events/news/2011/university-of-westminster-launches-new-diy-supercomputer-saving-

hundreds-of-thousands-of-pounds, (accessed 20/08/2012).

59. Wikipedia, http://en.wikipedia.org/wiki/Entropia,_Inc._(company), (accessed

02/01/2013).

60. Wilkinson, B., “Grid Computing: Techniques and Applications”, 1
st
 ed., Chapman &

Hall/CRC Press LLC, Florida, USA, 2008.

61. Xtremeweb-CH, http://www.xtremwebch.net/, (accessed 08/01/2013)

62. Xtremweb-HEP, http://www.xtremweb-hep.org/, (accessed 08/01/2013)

63. Zhou X, Depeursinge A., Niinimaki M., Geissbuhler A., and Müller H., “Grid

Computing Inside Hospitals Using Virtualization Technology: A Secure Solution for

Heavy Computing Tasks”, HUG Research Daym Geneva, Switzerland, 2009.

http://www.westminster.ac.uk/news-and-events/news/2011/university-of-westminster-launches-new-diy-supercomputer-saving-hundreds-of-thousands-of-pounds
http://www.westminster.ac.uk/news-and-events/news/2011/university-of-westminster-launches-new-diy-supercomputer-saving-hundreds-of-thousands-of-pounds
http://www.westminster.ac.uk/news-and-events/news/2011/university-of-westminster-launches-new-diy-supercomputer-saving-hundreds-of-thousands-of-pounds
http://en.wikipedia.org/wiki/Entropia,_Inc._(company)
http://www.xtremwebch.net/
http://www.xtremweb-hep.org/

60

Appendix A: CPU power at QOU Computer labs

CPU Type

P
e
n

ti
u

m
 4

D
u

a
l

C
o

re

C
o

r
e2

 D
u

o

D
 p

r
o
c
e
ss

o
r

C
o

r
e

i3

C
o

r
e

i5

C
e
le

r
o

n
 D

Number of Cores/CPU 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 4 4 1

Branch/SC CPU Frequency 1.7 2.0 2.4 2.8 3.0 3.2 3.6 1.8 2 2.2 2.33 2.4 3.0 3.6 3.06 3.1 3.2 3.3 3.1 3.2 3.06

Jenin

Computer

48

24 24

96

Internet 15

12

27

ICT

4

4

Multipurpose 9

6

15

Visually impaired

4

4

CE

16

16

Tubas

Computer

21

25

46

Internet

2

4 4

2

5

17

Multipurpose

1

7

8

Tulkarem

Computer

23 2 1

7 2 2

9 23

69

Internet

18

10 4

32

ICT

1

3

4

Multipurpose

5

3

6

14

Nablus

Computer 2

2

1

20

1 50

76

Internet 18

1

4

23

ICT

1

1 1

1

4

Multipurpose

5

7

12

Jericho

Computer

2

1

17

20

Internet

10

10

Multipurpose

2

5

7

Jerusalem

Computer

1

1 2

3

9

16

Internet

7 1

8

Multipurpose

8

8

Beit- Sahour

Computer

23

18

41

Internet

16

16

Multipurpose

5

5

Bethlehem

Computer

2

4 4

18

15

29

72

Internet

19

1

20

ICT

1

3

4

Multipurpose

10

6

16

Dura

Computer

5

19

17

2

43

Internet

18

18

Multipurpose

2

4

1

1

8

61

Appendix A: CPU power at QOU Computer labs

CPU Type

P
e
n

ti
u

m
 4

D
u

a
l

C
o

re

C
o

r
e2

 D
u

o

D
 p

r
o
c
e
ss

o
r

C
o

r
e

i3

C
o

r
e

i5

C
e
le

r
o

n
 D

Hebron

Computer

24

21

46

25

116

Internet

23

23

ICT

3

3

Multipurpose

22

22

Visually impaired

3

3

North Gaza
Computer

25

25

50

Internet

6

7

7

20

Gaza

Computer

24

48 24 96

Internet

12

12 24

Multipurpose

10

10

Middle Gaza

Computer

20

5

15 10 50

Internet

6

6

6 18

Multipurpose

10

10

Khan Younis

Computer

15

23

10 48

Internet

15

10

25

Multipurpose

8

8

Rafah

Computer

45

45

Internet

15 15

Multipurpose

11 11

Jenin SC
Computer

15

10

25

Internet 8

4

8

20

Bedia SC
Computer

21

21

Internet

32

32

Bethany SC Computer

6

1

1

3

11

Yatta

Computer

28

19

47

Internet 14

11

25

Multipurpose

1

1

PCs 66 23 89 1 133 117 1 94 117 231 118 7 14 71 10 3 64 409 23 165 88 1819

Cores 66 23 89 1 133 117 1 188 234 462 236 14 28 142 20 6 128 818 92 660 88 3553

62

Appendix B: Current Setup at QOU

B.1. General information

Since its establishment in 1991, QOU grew rapidly to become the largest academic

community in Palestine, providing open education to over than 61764 students in various

specializations (QOU, 2013).

QOU's campus is distributed over every Palestinian province in West bank and Gaza strip,

a total of 19 branches and 3 study centers. Fig (B.1) illustrates the geographic distribution

of these branches and Study Centers (SC).

Fig. B.1: QOU branches and study centers (QOU, 2013)

B.2. Computer labs

Computer labs in QOU are classified into the following categories:

1. Computer labs: used for educational purposes, students' practices, training and

assignments solving, besides some practical lectures in IT subjects.

2. Internet labs: for Internet usage for academic purposes, and for using portal services

of QOU website.

3. Information and Communication Technology (ICT) labs: these labs contain

electronic and communications training kits, components, and measurement

instruments. These labs are used in practical training of Information and

Communication Technology courses in Technology and Applied Science Faculty.

4. Multipurpose labs: these labs are used for two purposes: eLearning and browsing

multimedia-aided courses.

63

5. Continuing Education (CE) labs: these labs are used IT training courses, especially

in Branches where there are many training courses organized for the local

community.

6. Computer labs for visually impaired students: these labs are equipped with special

devices and computer applications to help visually impaired students.

The percentage of each lab category to the total number of labs is presented in Fig. (B.2).

Fig. B.2: computer lab distribution in QOU

B.3. Networking

The main computer center at QOU is called "Information & Communication Technology

Center (ICTC)"; it is located in Ramallah city. All data centers are located there; all

branches and study centers are connected directly to ICTC via Internet Protocol Virtual

Private Network (IPVPN) lines (ICTC, 2013).

Fig (B.3) presents the network topology in QOU.

64

Fig. B.3: QOU network Topology

Fig (B.3) illustrates how branches and study centers are connected to ICTC; it is shown

that the connection type is IPVPN with bandwidth varying from 2.0 Mbps to 10.0 Mbps.

Multiprotocol Label Switching (MPLS) technology is used. MPLS offers simpler

mechanisms for packet-oriented traffic engineering and multiservice functionality with

greater scalability by separating routing information from packet data using labels

(Semeria, 2001).

Bandwidth of each line connecting branches and SC is presented in Table (B.1).

65

Table B.1: communication line bandwidths between ICTC and QOU branches/SC

Branch/SC
Bandwidth

 (Mbps)

Jenin 8

Tubas 6

Tulkarem 8

Nablus 6

Qalqilya 6

Salfit 10

Ramallah 6

Jericho 6

Jerusalem 2

Beit-Sahour 6

Bethlehem 6

Dora 6

Hebron 8

North Gaza 6

Gaza 6

Middle Gaza 6

Khan Yunis 6

Rafah 6

Jenin SC 6

Bedia SC 6

Bethany SC 6

Yatta Branch 6

B.4. Lab PCs

According to a recent statistics provided from ICTC (ICTC, 2013), the total number of PCs

located in 112 labs is 1819 PC, from which there are 1147 PCs located in computer labs

and 411 in internet labs.

Table (B.2) lists every branch and SC in QOU with available PCs in each lab.

66

Table B.2: Total number of PCs in QOU labs.

Branch/SC

C
o

m
p

u
te

r

In
te

rn
et

IC
T

M
u

lt
ip

u
rp

o
se

C
E

V
is

u
a

ll
y

 i
m

p
a

ir
ed

T
o

ta
l

P
C

s

Jenin 98 27 5 16 16 3 165

Tubas 45 7 0 7 0 0 59

Tulkarem 76 32 3 17 0 0 128

Nablus 78 20 4 12 0 0 114

Qalqilya 44 16 0 12 13 0 85

Salfit 25 21 0 4 15 0 65

Ramallah 80 51 3 10 0 3 147

Jericho 17 8 0 8 0 0 33

Jerusalem 16 8 0 8 0 0 32

Beit-Sahour 38 12 0 5 0 0 55

Bethlehem 64 20 4 15 0 0 103

Dora 43 18 0 12 0 0 73

Hebron 127 23 3 12 0 3 168

North Gaza 42 15 0 0 1 0 58

Gaza 98 15 0 7 0 0 120

Middle Gaza 48 20 0 14 1 0 83

Khan Yunis 52 26 0 9 1 0 88

Rafah 47 15 0 5 0 0 67

Jenin SC 25 14 0 8 0 0 47

Bedia SC 21 31 0 0 0 0 52

Bethany SC 11 0 0 0 0 0 11

Yatta 50 12 0 2 0 0 64

Total PCs 1147 411 22 183 47 9 1819

B.5. PC Specifications

QOU paces up with latest hardware specifications in computer labs and upgrades/scales up

lab PCs on a regularly basis, these specifications are presented in detail in Appendix A,

digest is represented below:

 CPU frequencies: CPU frequencies range from single-core Intel Pentium 4/1.7

GHz up to dual-core Intel Core i5/3.2 GHz.

 Total number of CPU cores: 3553

 Physical Memory (RAM): memory ranges from 128MB up to 4GB. Memory

percentage is distribution is shown in Fig. (B.4):

67

Fig. B.4: Memory distribution overview.

 Storage: hard drives capacities range from 40 GB up to 500GB. Storage capacity

distribution percentage is shown in Fig. (B.5):

Fig. B.5: Storage capacity overview

 Operating System: All lab PCs have Microsoft Windows installed, two releases of

Microsoft windows are deployed: Microsoft Windows XP professional, and

Microsoft Windows 7 professional, Fig. (B.6) represents the operating system

distribution.

68

Fig. B.6: Operating system distribution overview

B.6. Authentication and Authorization

Authentication and authorization in QOU labs is handled by Domain controllers running

Active Directory (AD) (Microsoft TechNet, 2013) installed on Windows Server (2003 or

2008 releases).

With AD Domain Controller, students willing to use lab PCs log on with limited

privileges; they cannot install software packages and change system configuration.

69

Appendix C: Dr. Rajkumar Buyya’s offer

We e-mailed Dr. Rajkumar Buyya CEO of ManjraSoft Ltd., the developer of

Alchemi.NET and Aneka, requesting pricing of Aneka Licensing so as to get a full

feasibility study for the purpose of this research.

The figure shows the email sent to Mr. Buyya and his reply.

C.1: Snapshot of Dr.Buyya's offer

A copy of Dr. Buyya's offer is shown below:

……..

Here is a snapshot of pricing from our proposal document:

4.1 Licensing – Three (3) year subscription includes;

1. ANEKA 2011 Version 2.0 .NET Cloud/Grid Computing Software including

a. Enterprise license

b. Software updates

2. Educational Materials

4.2 Pricing – The standard commercial price is US$29,000 for enterprise edition. For your University

(educational and research use), Manjrasoft offers “enterprise” license (3 year subscription) at a discounted

rate of US$10,000 per site (i.e., a single College/Institute level) deployment.

4.2.1 As a special consideration, Manjrasoft is waiving annual maintenance fee for this procurement and

upgrades during the subscription period will be made available free of cost.

……….

70

Appendix D: Alchemi .NET installation

This appendix documents the installation, configuration, and operation of the various parts

of the Alchemi framework for setting up Alchemi grids.

The latest version (version 1.0.6) of Alchemi .NET package was downloaded from

Sourceforge (Sourceforge, 2012).

The downloaded Alchemi package consists of the following elements:

1. Alchemi-1.0.6-sdk-net-2.0.zip: Test examples source codes.

2. Alchemi.ExecutorExecSetup.msi: The Alchemi executer, if we want to install it as

a normal Windows desktop application.

3. Alchemi.ExecutorService.msi: The Alchemi executer, if we want to install it as a

normal Windows service.

4. Alchemi.ManagerExecSetup.msi: The Alchemi manager, if we want to install it as

a normal Windows desktop application.

5. Alchemi.ManagerServiceSetup.msi: The Alchemi manager, if we want to install it

as a windows service.

6. XPManagerSetup.msi: The Cross-Platform Manager, which is a web services

interface that exposes a portion of the functionality of the Manager in order to

enable Alchemi to manage the execution of grid jobs.

Both Manager and Executer can be installed and run as normal applications, or as windows

services that can be controlled from "services" in control panel. We have chosen to install

the Manager and the Executer in the normal mode (application mode) not windows service

mode in order to gain easier control on the start/stop of experiment procedure.

D.1. Common requirements

 Microsoft .NET framework (version 2.0) (Microsoft, 2012) was installed on both

the Manager and the Executor PCs.

D.2. Installing the Manager

Before installing the Manager, the following software must be installed:

 Microsoft SQL server 2005 (Microsoft, 2012).

 Microsoft Visual Studio 2005 was installed on the manager PC in order to compile

example grid applications (Microsoft, 2012).

 The Manager Setup installer (Alchemi.ManagerExecSetup.msi) was used to install

Alchemi Manager as a windows application. Default system administrator

password (sa) was used to install the database during the installation process.

Default users and group permissions were set during installation: these are three

71

accounts; Executor (password: executor), user (password: user) and admin

(password: admin) belonging to the 'Executors', 'Users' and 'Administrators' groups

respectively.

Fig. (D.1) presents the GUI of the Alchemi Manager. The GUI shown is used to start /stop

the Manager Service.

Fig. D.1: Alchemi Manager GUI

 The Manager can be run from:

Start Programs Alchemi Manager Alchemi Manager.

The database configuration settings used during installation automatically appear

when the Manager is first started.

 Clicking the "Start" button starts the Manager.

 When closed, the Manager is minimized to the system tray.

Note: Alchemi .NET console was also installed on the Manager PC.

D.3. Installing the Executor

We used the Executor setup installer (Alchemi.ExecutorExecSetup.msi) to install the

Executor as a windows application.

72

Executers were installed in the dedicated mode (computational tasks are sent from the

manager to the executer automatically) in order to automate the calculation process without

student intervention.

 The Executor can be run from:

Start Programs Alchemi Executor Alchemi Executor.

Fig. D.2: Alchemi Executor GUI

Fig. (D.2) presents the GUI of the running Alchemi Executor in the dedicated mode.

 The host and port of the Manager to connect to are entered.

 Clicking the "Connect" button connects the Executor to the Manager.

 When closed, the Executor sits in the system tray

73

Appendix E: BOINC installation

This appendix documents the installation process of BOINC server, creating and running a

BOINC project, then the installation of BOINC clients.

E.1. Installing BOINC server:

This step consists of two stages: choosing hardware then installing software (operating

system, BOINC server and its dependencies), see Fig. (E.1).

Fig.E.1: Installing BOINC server block diagram

E.1.1. Choosing hardware:

Although a dedicated server is needed to run a BOINC-based local desktop grid, the

BOINC server requires low cost server hardware. The recommended hardware

configuration for more than 1000 connected PCs (SZTAKI, 2012):

 Processor: 2000 MHz Intel Pentium

 Hard disk: 100GB

 Internet: 100Mbit/sec

And the recommended hardware requirements up to 100 connected PCs are (SZTAKI,

2012):

 Processor: Intel Pentium 1000 MHz

 Hard disk: 60 GB

 LAN: 100 Mbps

In this experiment, the total number of PCs involved is 43, and the above requirements are

suitable.

To insure portability of BOINC server, we chose to install the server on a 64-bit virtual

machine using "Oracle VM Virtualbox 4.2.8" package (Oracle, 2012) having the

following hardware configuration:

 Processor: Intel Core2 Duo T7300/2.0 GHz

 Hard disk: 60 GB

 Memory: 2.0 GB

 LAN: 100 Mbps

Choose
hardware

Install Debian
Linux

Configure
networking

Install server
dependencies

install
BOINC
server

74

E.1.2. Installing Software:

The software requirements installation processes are shown in Fig. (D.2)

Fig.E.2: Software installation block diagram

1. Operating System installation: BOIC server runs almost on any up-to-date Unix or

Linux variant machine (BOINC 2012). Debian version 6.0 – 64bit Linux (Debian,

2012) was installed with minimum modules.

2. Network configuration: The range of IPs in Jerusalem branch is 10.12.0.1 ~

10.12.0.254, and for Bethany study center 10.13.0.1 ~ 10.13.0.254.

The created Debian machine was located in Jerusalem branch and was given

following network configuration:

o Static IP 10.12.0.100

o Subnet mask : 255.255.0.0

o Default gateway: 10.12.0.1

o Host name: debian6

3. BOINC server dependencies installation: BOINC server needs the following

components to run:

 make 3.79+, m4 1.4+, libtool 1.5+,

 autoconf 2.58+, automake 1.8+, GCC 3.0.4+ pkg-config 0.15+

 Python 2.2+ with MySQLdb module 0.9.2:+

 MySQL 4.0.9 or higher (with mysql-dev(el), and mysql-client)

 SQLite 3.1 or higher (packages sqlite-dev(el) and SQLite)

 Apache web server with mod_ssl and PHP5+

 PHP5 with cli support and the GD and MySQL modules (packages php5-cli

and php5-gd)

 OpenSSL version 0.9.8+

These components were installed using Advanced Packaging Tool (apt-get install)

command (Debian, 2012).

Note: email system such as "exim4" is needed for BOINC if it is run in a public

environment, but in this case (local grid) there is no need to set up an email system.

4. BOINC server setup:

The BOINC server package can be installed using apt-get command. The following

line was added to the /etc/apt/sources.list file (SZTAKI, 2012):

Install OS

(Debian)

Configure
networking

Install server
dependencies

install BOINC
server

75

deb http://www.desktopgrid.hu/debian/ squeeze szdg

Afterwards, the following command is used to install the BOINC server:

apt-get install boinc-server

Note: this approach also installs the BOINC server dependencies automatically and no

need to install them manually as in step 3 above.

E.2. Creating and running a BOINC project

A BOINC project is the environment under which the grid application runs (BOINC,

2012), project installation block diagram is shown in Fig (E.3):

Fig.E.3: Creating a sample BOINC project

We ran the built-in make_project script as follows:

./make_project --url_base http://10.12.0.100 --test_app test

This command created a project named test and:

o Created the project directory and its subdirectories (~/projects/test/..) with required

permissions.

o Created the project's encryption key.

o Created and initialized the MySQL database.

o Copied source and executable files into (~/projects/test/) folder.

o Generated the project's configuration file config.xml.

With the --test_app option, the project will compile a built-in test application and required

daemons to generate and handle work for it. The test application is an example single-

thread native BOINC application. This example application converts an input text file from

lower case to upper case; source code is found in /usr/lib/boinc-server/apps/upper_case.

The BOINC server package comes with a web interface to simplify monitoring and

control. The web page can be reached from the following URL in our case:

http://10.12.0.100/test/

in order to control access to the web page we copied test.httpd.conf into the apache server

root dir /etc/apache2/httpd.conf .

We also generated a username/password file for the administrative web interface using:

htpasswd -cb ~/projects/test/html/ops/.htpasswd bajrab Passw0rd123

create project
environment

set project
permissions

compiling
application

Install client
application

install
master

application

START
Project

http://10.12.0.100/test/

76

The administrative page can be accessed from http://10.12.0.100/test_ops then typing in

the above username and password (bajrab/Passw0rd123).

For testing purposes, we need to run the example application for a long period of time; this

was done by running the crontab -e, and adding an entry to run the project's cron script:

055510515520525530535540545550555 * * * * test/bin/start --cron

~/projects/test/bin/xadd is run to add platform and application records to the BOINC

database.

Also ~/projects/test/bin/update_versions is run in order to release new application

versions. It creates database entries and copies files to the download directory.

The project is ready to run, running the project is done using the following command

~/projects/test/bin/start.

This command starts all BOINC server daemons related to the test project: feeder,

transitioner, file_deleter, work generator, validator and assimilator, Fig. (E.4) illustrates the

start command output.

Fig.E.4: Starting BOINC project

The project is now ready to send work units to clients and receive results from them.

We can stop the sample test project using the stop command as shown in Fig. (E.5)

Fig.E.5: Stopping the BOINC project

http://10.12.0.100/test_ops

77

E.3. Deploying BOINC Clients

The last part in the installation process after the BOINC server is up and running and the

project is ready to handle jobs, is installing clients in lab PCs. Fig (E.6) shows a block

diagram for the deployment process:

Fig.E.6: Deploying BOINC client block diagram

1. Downloading client:

The BOINC client was downloaded from http://boinc.berkeley.edu/download.php .

The last stable version was v7.0.28, size is 8.01 MB, filename:

boinc_7.0.28_windows_intelx86.exe , it supports windows 32bit (2000/XP/Vista/7).

2. Client Deployment:

We installed the BOINC client on one PC and attached it manually to the test project,

this is illustrated in Fig. (E.7).

During installation process, we were prompted to create a project user, a user is

created:

 User name: testgrid

 Email: bajrab@qou.edu

 Password: pa$$w0rD123

This user will be used to connect all experiment PCs.

Fig.E.7: Attaching BOINC client to the test project

get recent boinc
client package for

windows

choose installation
scenario

configure
installation package

according to
scenario

END

http://boinc.berkeley.edu/download.php

78

The experiment was successful, and the BOINC client started to download work units from

BOINC server, processed them, and uploaded results back to the server. A screenshot of

BOINC manager GUI is presented in Fig. (E.8)

Fig.E.8: BOINC client attached to test project

Task status is presented in Fig. (E.9).

Fig.E.9: BOINC client uploading tasks

Fig. (E.9) presents the task tab that shows the task status of the BOINC client.

Figure (E.10) shows tasks being obtained from server.

Fig.E.10: BOINC uploading finished jobs

The finished jobs or tasks are returned back to server as shown in Fig. (E.10)

The next step is to deploy BOINC client on experiment PCs.

The BOINC Client Software can be deployed on a large number of PCs in one of three

methods: a single-user installation, shared installation, or service installation (BOINC wiki,

2013)

79

 In the single-user installation case, the BOINC manager only runs when the user

that installed it logs in. Other users can't run the BOINC Manager .

 Shared installation allows any user that logs in to run BOINC manager.

 As for the service installation, the BOINC core client runs as a service that starts at

boot time.

For the QOU campus environment, the BOINC client must be deployed to meet the

following restrictions:

 The BOINC Client must run all the time (even when no one is logged in).

 Project attachment must be automatic.

 BOINC manager must be disabled: no user intervention is required in client

configuration (the student cannot attach to or disconnect from a project, cannot

create a new user, or start/stop/pause/exit the BOINC client).

 Screen saver must be disabled: no screensaver is needed because it looks strange

for students, they may think the PC is occupied/busy and choose not to use it.

 To insure security, no internet connection is required for the BOINC client since it

runs within the university's LAN.

 For a large number of PCs, deployment must be performed automatically, not

manually.

The above restrictions can be achieved by obtaining and customizing the MSI (Microsoft

installer) version of BOINC, not the .exe one.

We ran the boinc_7.0.28_windows_intelx86.exe with the "/a " option to get the MSI

version of BOINC (BOINC.msi) in order to customize it. boinc.msi was edited using the

advanced installer tool v.10 (Caphyon, 2013), and the following properties were altered:

 ENABLEPROTECTEDAPPLICATIONEXECUTION2 from 0 to 1

 ENABLESCREENSAVER from 1 to 0

Setting ENABLEPROTECTEDAPPLICATIONEXECUTION2 to 1 should cause the

installer to install BOINC as a service.

Setting ENABLESCREENSAVER to 0 should prevent the installer from setting the

screensaver by default.

After the boinc.msi file is ready, we copied the account_10.12.0.100_test.xml file from the

BOINC data folder of a preciously installed BOINC project to the installation package

folder "CommonAppData". This file contains URL for test project with encrypted

authentication information.

A screenshot of the account_10.12.0.100_test.xml file is shown in Fig. (D.11).

80

Fig.E.11: BOINC project configuration file on the client side

Fig. (E.11) shows the account _10.12.0.100_test.xml file, note the encrypted authenticator

used to connect core client to BOINC server.

The deployment process can be automated in Active Directory domain using Group Policy

(GP). A package was assigned per-machine, it was automatically and silently installed

when the target client computers started.

81

Appendix F: Glossary

AD Active Directory

APIs Application Programming interfaces

BAM BOINC account manager

BOINC Berkeley Open Infrastructure for Network Computing

CE Continuing Education

CPU Central Processing Unit

DG Desktop Grid

DTW Dynamic Time Warping

FCFS First Come First Served

GFLOPS Giga Floating Point Operations per Second

GPU Graphical Processing Unit

GUH Geneva University Hospital

GUI Graphical User Interface

HEI Higher Education Institutions

HPC High Performance Computing

HTC High Throughput Computing

ICT Information and Communication Technology

ICTC Information & Communication Technology Center

IPVPN Internet Protocol Virtual Private Network

LAN Local Area Network

MPLS MultiProtocol Label Switching

OCR Optical Character Recognition

OGR Optimal Golomb Ruler

OS Operating System

P2P Peer-to-Peer

PC Personal Computer

PRC Public Resource Computing

QoS Quality of Service

QOU Al-Quds Open University

RAM Random Access Memory

SC Study Center

SDK Software Development Kit

82

SQL Sequential Query Language

UNIVA United Devices Inc.

VCSC Virtual Campus Supercomputing Center

VO Virtual Organization

WAN Wide Area Network

WU Work Units

83

 التعليم العاليالحوسثة الشثكية للحواسية الشخصية في مؤسسات

 إعذاد: تذر أحمذ الأجرب

 إشراف: د. لثية عرفة

 ملخص
نقد شٓد انؼقد انًبظٙ صٕزح ركُٕنٕعٛخ شبيهخ كبٌ نٓب ثابن اثصاس اٙ ًَاػ ٛابح انجياسأ ٛاش رَٓاب ظا سد يإاز ْب هاخ

. ْارِ انحٕاظٛت اني صاٛخظسػخ يؼبنغخ ٔظؼخ ذاكسح ٔظؼخ ر صُٚٛخ ٔظسػخ ارصبل ثيجكخ الإَزسَذ(ػهٗ رعٓصح يٍ)

 ػهٗ رعٓصح ان ٕا و قجم رٔقبد نٛعذ ثجؼٛدح. زٗ نى ركٍ نززٕ س انًٕاز

ٔخبصاخ - يٕاز رعٓصح انحٕاظٛت اني صاٛخٔقد بظذ ْرِ انًٕاز ػٍ بعبد انًعز ديٍٛ انؼب ٍٚٛ ثحٛش رصجحذ

 PC نًحهٛاخ ثعٓاصح انحٕاظاٛت اني صاٛخانحٕظاجخ انياجكٛخ ا كاسح يٍ ُْاب ُيأدركٌٕ خبيهخ يؼظى انٕقذأ -انًؼبنظ

Grid Computingانحٕظااجخ انزعٕػٛااخ . َٔيااأد كاارنر كااسحVolunteer Computing ثحٛااش ٚعاازعٛغ يعااز دو

هًعبًْخ ٙ رثحبس غجٛخ ٔ هكٛخ ٔكًٛٛب ٛخ ر دو انجيسٚخ ٌٔ ر َٗ رأصٛس نحبظٕثّ ننقدزاد انفب عخ ثبانحبظٕة رٌ ٚزجسع

 ظٕة.ػهٗ اظز دايّ اني صٙ نهحب

ٔانًحبكابح ٔرحهٛام انؼهًٛاخ إناٗ قادزح عابثٛخ ػبنٛاخ لإعاساح اثثحابس يؤظعابد انزؼهاٛى انؼابنٙرحزابط ٔيٍ عٓخ رخاسٖأ

ْٔاٙ ثبْظاخ اناضًٍ أsupercomputersأ ٔيضم ْرِ انقدزح انحعبثٛخ رحزبط إنٗ رعٓصح ٕاظٛت ب قاخ انع ًخ انجٛبَبد

عٓاصح انحٕاظاٛت ان بيهاخ ثًإاز ُياأد انحبعاخ إناٗ رعا ٛس انسْاب. ٛرٕ انفهعاعُٛٛخانغبيؼبد يؼظى ثحٛش لا رعزعٛغ

ا٘ اب ق انقادزح ٙ ي زجساد انحبظٕة ٙ انًزٕ سح اني صٛخ انحسو انغبيؼٙ نززعب س يؼب نزيكم عٓابش بظإة هابْس

 .يُ فعخ عداثزكهفخ

 اٙ رعٓاصح انحٕاظاٛت اني صاٛخ اٙ ثقٛبض يؼادل اظاز داو انًؼبنغابد اثزداحا نزحقٛق ْرا اثيس ثيكم ػًهٙ قبو انجب ش

انًفزٕ اخ)ط...و(. شاًهذ اندزاظاخ ي زجساد انحبظٕة ٙ سع انقدض ٔيسكص خديبد انؼٛصزٚخ انزبثؼٍٛ نغبيؼخ انقدض

. ٔقد خهصذ انُزاب ظ إناٗ رٌ يؼادل 15:30 زٗ 08:00يٍ اندٔاو انسظًٙ نهغبيؼخ عٓبشاأ رى يساقجخ ر ا ٓب ٙ رٚبو 14

 ٕقذ.% يٍ ان90% ٙ 10ْرِ اثعٓصح لا ٚزغبٔش انٕٛيٙ نهًؼبنظ ٙظز داو انفؼهٙ الا

 اٙ اسع انقادض ٔيسكاص خاديبد رغسثخ صيزٍٛ يفزٕ زٙ انًصادزيٍ خلال قبو انجب ش ثجُبح َظبو انحٕظجخ انيجكٛخ صى

أ سانٛبرظااز -عبيؼااخ يٛهجاإزٌ رعاإٚس(يااٍ Alchemi .NET َااذ.: إ ااداًْب ر اح)انكًٛااٙؼُٛااخ اظزكيااب ٛخكانؼٛصزٚااخ

انٕلاٚاابد انًزحادح اثيسٚكٛاخ ْٔااٙ يصاًًخ رصاالا -عبيؼاخ ثٛسكهاٙ رعاإٚسياٍ BOINC صيااخ ثُٕٚار ْاٙ ٔاثخاسٖ

 انًحهٛخ. انحٕظجخ انيجكٛخٔنكٍ رى ر صٛصٓب نز دو نهحٕظجخ انزعٕػٛخ

ٔثابنسغى ياٍ قادزرٓب ٔثبنسغى يٍ ظإٓنخ إػادا ْب ٔرياهٛهٓب ٔر ا ٓاب انؼابنٙ Alchemiٔقد رجٍٛ نهجب ش رٌ رقُٛخ رنكًٛٙ

أ إلا رٌ ْرِ انزقُٛخ لا ًٚكُٓب رٕشٚغ انًٓابو انحٕظاجٛخ ػهاٗ انياجكبد انفسػٛاخ اٙ ػهٗ ر فٛط ٔقذ رُفٛر انجسايظ انًؼقدح

 . XPيقبزَخ ثُٕٚدٔش 7 سٔع انغبيؼخ انً زهفخأ كًب رٌ رنكًٛٙ رهٓس ر احا ظٛئب ػُد رغسثزّ ػهٗ َظبو ُٔٚدٔش

يؼظى ٔقذ انزُفٛر ٚعٛغ ٙ انزٕاصام انياجكٙ ثاٍٛ رنكًٛٙ ٚعجت ظهعب ػهٗ انيجكخ ٛش رٌ ٔقد رجٍٛ نهجب ش كرنر رٌ

انًؼابنظ يإاز ّٛ نزحدٚد َعجخ اظز داو رٔ خٛبز . َبْٛر ػٍ ػدو ٔعٕ آنٛخ Executorsٔانًُفرٍٚ Managerانًدٚس

 اٙ انعبقاخ انزكابنٛ شٚاب ح ًؼابنظ ٔثبنزابنٙ زعخ اسازح ان ٙ ب ازرفبػانًزٕ سحأ ٕٓ ًٚزص ْرِ انًٕاز كهٓب يًب ٚعجت

 .انكٓسثب ٛخ

ْٔرا ٚؼُٙ رَّ لا ثد يٍ ر صٛص عٓابش Linuxخب و ثُٕٚر لا ٚؼًم إلا ػهٗ يُصخ نُٕٛكط ٔثبنُعجخ نزقُٛخ ثُٕٚرأ ئٌ

ػُاد خب و نٓرا انهسض ٔٚؼُٙ كرنر رٕ س يٓبزاد ػبنٛخ اٙ انؼًام كًادٚس َظابو نهُٛإكطأ ْٔارِ شاكةم صاؼٕثخ نهجب اش

 ثأنكًٛٙ. ريهٛم ثُٕٚر يقبزَخ

كاٍ يادٚس انُظابو ثزحدٚاد انؼدٚاد ياٍ ان ٛابزاد يضام َعاجخ اظاز داو يٍ عٓخ رخسٖ ئٌ خب و ثُٕٚر ٚحزٕ٘ نٕ خ رحكاى رمً

 نهًؼبنظ ٔٔقذ اظز دايّ. clientانؼًٛم

84

.و. يٕشػاخ ثاٍٛ َٕاح يؼبنظ(عٓابش بظإة ش صاٙ اٙ ي زجاساد ط.. 71) 43ٔقد خهصذ رغسثخ ثُٕٚر انزٙ شًهذ

يغ اثخر ثؼٍٛ الاػزجبز رَّ رى رحدٚد اظاز داو انًؼابنظ عٛغب هٕة/س 106 سػٙ انقدض ٔانؼٛصزٚخ إنٗ انزًكٍ يٍ صد

َاإاح يؼاابنظ ااٙ عًٛااغ 3550رٌ انزُجااؤأ ٔ عاات ْاارِ انُزٛغااخ ًٛكُُااب % قااػ نهز فااٛط يااٍ اظاازٓلا انعبقااخ50إنااٗ

 ظًٍ يحد اد ْرِ اندزاظخ.يغبَٛخ رٛسا هٕة/س 5.27ي زجساد ط...و. ظزُزظ يب ٚقبزة

% نه اػ انار٘ 4.55نٛكإٌ clients ٔانؼًالاح serverٔقد رًكٍ انجب ش يٍ رقدٚس يدٖ رأصٛس َقام انجٛبَابد ثاٍٛ ان اب و

 يٛغبثذ/س. 6ظسػزّ

رحاذ اب. ٛاّ َظٛاسِ يُب عاب ئَاّ قاد رهٓاس ر احا 7ٛئاخ ُٔٚادٔش رحذ ث BOINC clientثُٕٚر ػًٛمٔػُد حص ر اح

رصام ياٍ 7يحد اد انزغسثخأ ٛش رَّ كبَاذ َعاجخ انزحعاٍ اٙ اث اح رحاذ ثٛئاخ ُٔٚادٔش ظًٍ َفط XPُٔٚدٔش ثٛئخ

 .XP% قٛبظب نُٕٚدٔش 57- 19%

انحٕظجخ انيجكٛخأ انحٕظجخ انزعٕػٛخأ انحٕاظٛت اني صٛخأ ي زجساد انحبظٕةأ ثُٕٚرأ رنكًٛٙأ كلمات مفتاحية:

 عبيؼخ انقدض انًفزٕ خأ رَٕٚخ.

