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ABSTRACT

The embracement of information and computation technologies to an enormous
extent has resulted in environment contamination drastically. Moreover, the in-
troduction of the IoT and big data applications have garnered a massive amount of
digital data. Processing and analysing these data demand vast computing re-
sources, proportionately. The major downside of producing and using computing
resources in such volumes is the deterioration of the Earth’s environment. The pro-
duction process of the electronic devices involves hazardous and toxic substances
which not only harms human and other living being’s health but also contaminate
the water and soil. The production and operations of these computers in largescale
also results in massive energy consumption and greenhouse gas generation. More-
over, the low use cycle of these devices churns out a huge amount of not-easy-to-
decompose e-waste. In this outlook, instead of buying new devices, it is advisable
to use the existing resources to their fullest, which will minimize the environmen-

tal penalties of production and e-waste.

On the other hand, the advancement of computing technology has miniaturized
computers into the scale of few millimetres or centimetres. The new-age proces-
sors of the smart mobile devices (SMDs) such as smartphones and tablets require
less power and dissipate less heat while offering significant computation capability.
This brings to a new breed of revolutionary computing technology - the SMD com-
puting. Evolution of SMDs has actually realized the miniaturization of computing

devices with processing capability as par to a microcomputer.

Furthermore, a grid of such SMDs cumulatively can garner enough processing
power to resolve complex computational jobs. The philosophy of combining com-
putation power of numerous public-owned SMDs to escalate the computation
power leads to the idea of mobile crowd computing (MCC). MCC utilizes the idle
computing resources of public's SMDs, available voluntarily or in return of incen-
tives, providing a feasible and cost-effective, flexible, and scalable high-perfor-

mance computing solution.

In this thesis we advocate for adopting MCC to abate the use of traditional HPCs

such as data centres and supercomputers. We aim to establish MCC as the most
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feasible computing system solution to achieve sustainable computing. Towards
this, we present a detailed comparison, between MCC and other HPC systems such
as supercomputers and Grid and Cloud Computing, in terms of environmental ef-
fects (e.g., energy consumption, greenhouse gas generation, etc.), which confirms

the advantages of MCC as a sustainable HPC system.

Though several empirical works have established the feasibility of mobile-based
computing for various applications, there is a lack of comprehensive coverage on
MCC. In this regard, we aim to explore the fundamentals and other nitty-gritty of
the idea of MCC in a comprehensive manner. Starting with an explicit definition
of MCC, we present the enabling backdrops and the detailed architectural layouts
of different models of MCC, along with categorising different types of MCC based
on infrastructure and application demands. MCC is extensively compared with
other HPC systems (e.g., desktop grid, cloud, clusters and supercomputers) and
other similar mobile computing systems (e.g., mobile grid, mobile cloud, ad-hoc
mobile cloud, and mobile crowdsourcing). MCC being a complex system, various
design requirements and considerations are extensively analysed. We meticulously
mention the potential benefits of MCC, with special discussions on the ubiquity
and sustainability of MCC. The issues and challenges of MCC are critically pre-
sented in the light of further research scopes. Importantly, several real-world ap-

plications of MCC are identified and propositioned.

To achieve satisfactory performance and QoS of an MCC system, selecting the most
suitable resources (SMDs) is crucial. For this, the essential prerequisite is to profile
and assess the resource parameters and their present status precisely. However,
considering the heterogeneity and dynamicity of these resource parameters, pro-
filing them, and assessing their fitment for different requirements is not trivial. As
a result, selecting the most suitable SMDs as resource provider also becomes con-
founding. In this chapter, we present a methodological approach to profile the can-
didate SMDs for assessing their resources to be considered for job scheduling. For
profiling, we considered various resource parameters, some of which are collected
instantaneously, some are accumulated from logged data, and some parameters

are derived by analysing the log data.

The selection of appropriate SMDs is generally made based on the computing



capability of an SMD, which is defined by its various fixed (e.g., CPU and GPU
power, no. of cores, RAM, etc.) and variable (e.g., current CPU and GPU load, bat-
tery remaining, etc.) resource parameters. As the selection is made on different
criteria of varying significance, the resource selection problem can be duly repre-
sented as an MCDM problem. However, for the real-time implementation of MCC
and considering its dynamicity, the resource selection algorithm should be time-
efficient. Considering that we aim to find out an MCDM method that would be
most suitable to be used for resource selection in such a dynamic and time-con-
straint environment. For this, we present a comparative analysis of various MCDM
methods under asymmetric conditions with varying selection criteria and alterna-
tive sets. In this comparative study, we considered the Entropy method to decide
criteria weights and EDAS, ARAS, MABAC, MARCOS, and COPRAS methods for
resource ranking. We considered four different sizes of decision matrices for eval-
uation. We executed each program with four datasets on a Windows-based laptop
and also on an Android-based smartphone to evaluate the average runtime. Be-
sides time complexity analysis, we perform sensitivity analysis and ranking order
comparison to check the correctness, stability, and reliability of the rankings gen-

erated by each method.

Scheduling is an important aspect for MCC like any other distributed systems. The
overall performance and the integrity of the MCC can be assessed by factors such
as execution time, resource utilisation, load balancing, etc. An efficient task sched-
uler should conform to these requirements. Conversely, an inefficient scheduling
method will have a negative impact on the QoS of MCC. Furthermore, considering
the battery-powered constrained energy of the MCC resources, i.e., the SMDs, it is
crucial to minimise the energy consumption to complete the scheduled task. This
can be achieved to some extent by optimising the task scheduling to the appropri-
ate SMDs. However, considering only energy efficiency might lead to a huge load
imbalance among SMDs, i.e., the most energy-efficient SMDs would be overloaded
most of the time. In a dynamic and heterogeneous system like MCC, it is nontrivial
to realise an optimised scheduler, in view of the fact that scheduling in a heteroge-
neous distributed system is an NP-complete problem. To address this, we present

two scheduling solutions. In the first one, we propose a heuristic algorithm for



resource-aware scheduling in MCC with the objectives of minimising makespan
and maximising resource utilisation and load balancing. Before scheduling, the re-
source strength of each SMD is calculated by considering several static and dy-
namic resource parameters such as CPU clock speed, number of cores, its present
load, available RAM and battery, and device temperature. The work is analysed and
validated by extensive simulations with synthetic as well as collected datasets. Ex-
perimenting with diverse simulation scenarios confirms the consistency and relia-
bility of the proposed algorithm. Our algorithm exhibits significant improvements
compared to other popular metaheuristic algorithms such as PSO, GA, and a heu-
ristic algorithm MCT in terms of the considered objectives. The statistical hypoth-
esis tests viz. ANOVA and post hoc tests are carried out to demonstrate the effec-
tiveness of the proposed work. In the second solution, we propose a PSO-based
scheduling algorithm to minimise the overall energy consumption among a set of
SMDs designated to execute a set of MCC tasks while maintaining a satisfactory
load balance level. The proposed method is analysed and validated by extensive
simulations with synthetic as well as collected datasets. The work is compared with
popular heuristic (MCT, MinMin, MaxMin, and PPIA) and metaheuristic (GA) op-
timisation algorithms, displaying significant improvements over others in terms of
the considered objectives. Here also, ANOVA is carried out to demonstrate the

distinctiveness of the proposed PSO-based algorithm.

In a local MCC, where the SMDs are connected to the MCC coordinator through a
local network such as WLAN, the availability of the SMDs become crucial for the
attainment of MCC and maintaining its QoS. Schedule jobs to the fleeting SMDs
would result in frequent job offloading and, in the worst case, job loss, which would
affect the overall performance and the QoS of MCC. In a Local MCC, generally, a
set of users are available for a certain period regularly. Based on this information,
the chances of a user being available for a certain duration from a given point of
time can be predicted. In this chapter, we provide an effective model to predict the
availability of the users (i.e., their SMDs) in such an MCC environment. We argue
that before submitting a job to an SMD, the stability of it is to be assessed for the
duration of execution of the job to be assigned. If the predicted availability period

is greater than the job size, then only the job should be assigned to the SMD. An
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accurate prediction will minimize the unnecessary job offloading or job loss due to
the early departure of the designated SMD. Along with experimenting with a read-
ymade API available in Keras named ConvLSTM, we propose an advanced convo-
lutional feature extraction mechanism that is applied to LSTM and GRU-based
time-series prediction models for predicting SMD availability. To collect user mo-
bility data, we considered a research lab scenario, where real mobility traces were
recorded with respect to a Wi-Fi AP. We compared the prediction performances
of convolutional LSTM and GRU with the basic LSTM and GRU and ARIMA in
terms of MAE, RMSE, R?, accuracy, and perplexity. In all the measurements, the
proposed convolutional LSTM exhibited considerably better prediction perfor-

mance.

Besides a centralised system, MCC can also be implemented as a P2P system where
the participating SMDs may borrow resources from each other, when needed. Here,
a resource-deficient SMD user would be able to seeks it neighbouring resource-rich
SMDs' help to carry out a resource-wanting job. It would relieve users from going
to the cloud. However, user mobility imposes a serious challenge in P2P MCC
(PMCCQ). User's unpredicted mobility makes the PMCC unstable. To address this,
we aim to find a stable cluster of SMD users who would likely to be ideal candidates
to form an ad-hoc PMCC. We propose a novel mobility prediction method to assess
the probability of a group of SMD users to be relatively static with respect to each
other. We submit an algorithm to estimate the relative stability of an SMD with
respect to its neighbourhood over a period of time, irrespective of its geographical
location. We assess the short-term relative stability between a group of SMD users
as well as the long-term mobility pattern between them. For both the experiments,
we have used the UCSD dataset that comprises real-traces of 235 mobile device
users for 78 days across 402 APs. Furthermore, sometimes it may happen that the
required service is not available within the immediate network of the service re-
quester. In this case, we suggest to have a carrier that would carry the request to a
service provider in another network, get the service from it and handover to the
requester. Here also, considering the mobility of the service consumer, provider,
and the carrier should be crucial for proper and timely service exchange. Consider-

ing this, we further present a service provisioning model in PMCC based on the
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mobility patterns of the above-mentioned three entities. In the second experiment,
we specifically focussed to get the information - a) average time gap after a user
connects to an AP, b) average duration he/she remains connected to an AP, and c)
a set of four users who remains connected to a particular AP simultaneously. Know-
ing the mobility patterns of the service consumer, provider, and the carrier, in
terms of the above-mentioned information, is helpful to bind them in particular
time frames. This allows avoiding the liveness problem (consumer waits for the
service indefinitely) and availability problem (carrier returns with the service but
cannot find the consumer). The estimated results of both experiments are analysed

and validated using different metrics.

We aspire to establish a proof-of-concept for the feasibility and use of MCC as a
sustainable edge computing solution (MCC-edge). The widespread adoption of
utility-based real-time applications has placed the necessity of widescale deploy-
ment of edge computing infrastructure. Crowdsourced edge computing is deemed
a suitable way out. For the experiment case, we consider a typical smart HVAC
system of an office building. We aim to process the HVAC data in real-time using
the MCC-edge setup within the building for auto adjustment of the AC controller
and error notifications. To maintain the ideal comfort level of the occupants, we
present an extensive calculation using the dew point and heat index of the room.
Along with a general framework of MCC-edge, a high-level layered architecture of
the MCC-edge for HVAC is presented. We report the module-wise design and im-
plementation procedures with exhaustive details. The performance of MCC-edge
is statistically compared with the commercial edge and cloud computing solutions
in terms of cost, energy consumption, and latency, showing a significant advantage

over the two.

Finally, to carry forward the accomplishment of the MCC vision, the future pro-
spects are briefly elucidated. In this thesis, we tried to cover every aspect, in gen-
eral, that is required to know to understand MCC. We position this work as a pre-
liminary reference for the interested researchers, both novice and experienced,
who are keen to work on MCC, as well as other stakeholders willing to explore the

benefits of MCC.
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Introduction

“There must be a better way to make the things we want, a way that doesn’t spoil

the sky, or the rain or the land.” --- Paul McCartney

1.1 Escalating Environmental Perils

In recent years, the impact of the changing environment and climate has been ex-

perienced worldwide and, on many occasions, severely. The effect ranges from

Antarctic glacier melting to the expansion of the Sahara Desert. For instance, in

the year 2017, the U.S. was hit by several devastating natural disasters that range

from floods and hurricanes to droughts and wildfires. Let us take a look at some of

them, which caused major damage and indicate the operation of the environment

[1]:

Hurricanes Irma, Harvey, and Maria: The U.S. was hit by three category-4 hur-
ricanes during 2017. The storm and the accompanying rainfall led to an un-
precedented rise in sea level, resulting in a devastating flood. Hurricane Har-
vey was fuelled by record-breaking rainfall (reportedly, 1-in-25,000-year rain).
Atmospheric river storms in California: Throughout the winter season of 2017,
different parts of California were hit by several back-to-back extreme atmos-
pheric river storms that produced record rainfall and flooding in the state.
Spring snow/rainfall and floods: In the mid-March, the Northeast U.S. received
snowfall at an astonishing rate of 7 inches per hour totalling to 42 inches,
thanks to the winter storm Stella. In the late-April, the Midwest U.S. was dev-
astatingly flooded due to heavy rainfall of up to 15 inches. The percentage of
heaviest 1% of rainy and snowy days has been increased from by 53 and 92 in
the Midwest and the Northeast U.S. respectively during the years 1958 through
2016.

High plains flash drought: In the July, flash drought gripped the Dakotas and
Montana that led to one of Montana’s worst wildfires causing agricultural

losses of $2.5 billion.



« C(alifornia experienced a record heat: On September 1, the temperature in San
Francisco reached 106°F breaking its all-time heat record. Actually, from late
August through early September, the whole California experienced the worst
state-wide heat wave ever recorded, and many parts of it broke daily, monthly,
and all-time temperature records. In fact, heat waves have become more fre-
quent across the U.S.

« Plains on fire: A few weeks after the record heat wave in September, California
was hit by the deadliest and most destructive fires in state history, killing 40
people and destroying a total of 8,323 structures. Earlier, around in March,
places like Kansas, Oklahoma, Colorado, and Texas were blazed by major fires.
The fire of Oklahoma was the largest wildfire on record in the state breaking
the previous record just set one year prior. These fires are not one-off incidents.
The wildfire incidents are consistently increasing over the years in the western
U.S. grasslands or the Great Plains region. Since the 1970s, in every decade,
more than 100,000 acres of extra grass and shrubland caught fire than the pre-
vious decade. In a study covering over a three-decade period (1984-2014), it is
observed that the total area burned by large wildfires in the Great Plains rose
by 400%.

o Summer in winter: Generally, if the ratio of days that record the highest tem-
perature and the days that of lowest temperature is evenly balanced, the cli-
mate is supposed to be stable. But for the past three decades, the balance has
been disrupted. Due to the consistently warm climate, the number of record
high-temperature days have begun to outpace the number of record low-tem-
perature days. In the month of February, there were 34 instances of heat-rec-
ord breaking for every cold-record breaking in different parts of the U.S. As a
result of this growing imbalance, the February was one of Chicago’s warmest
on record.

o Reduced snowing in winter: Since 1884, Chicago had the least snow cover dur-
ing the months of January and February. This is attributed mainly to the un-
seasonably and atypical warm and rainy weather. The climate change caused a
significant reduction in snow cover extent over high northern latitudes during

the last 100 years.



The worldwide impact of environmental idiosyncrasies has forced us to deliberate
on to figure out the reasons for these abnormal behaviours of nature. Is there any
common and explainable reason behind this? Yes, the main and explainable reason

behind this is suspected to be pollution and global warming.

The phenomenon of global warming and climate change is largely man-made and
has been accelerating at a rapid and unprecedented way since the Industrial Revo-
lution began in the late 1700s [2]. According to NASA, since 1880, the average tem-
perature of the Earth has risen 0.8 °C which is projected to increase further, ac-
cording to the U.S. Environmental Protection Agency (EPA), between 1.13 and 6.42

°C over the next 100 years.

The main reason for the warming of the Earth is the greenhouse gas effect that
obstructs the infrared and heat radiation to escape from Earth toward space. Gases
that contribute most to the greenhouse effect include water vapour, CO,, Methane,
N.O, CFCs, etc. Most of these gases are human-produced and are responsible for
increasing the Earth's temperature over the past 50 years. Among these, CO, is the
most common greenhouse gas in the atmosphere. For instance, in 2012, CO, re-
portedly accounted for nearly 82% of all greenhouse gas emissions in the U.S. In
the last 150 years, mainly due to the industrial activities, the atmospheric CO, levels
are raised from 280 ppm (parts per million) to 410 ppm which is further expected
to be degraded to 450 ppm by 2035 unless greenhouse gas emissions are controlled

strictly [3].

Electricity generation is one of the major sources of carbon pollution, because in
most of the countries, still today, the majority of the electricity is generated by
burning fossil fuels. For example, even a developed nation like Australia gets 73%

and 13% of its electricity by burning coal and gas, respectively [4].

1.2 Environmental Impact of ICT

Besides other industries, the rapid advancement of the ICT industry (that includes
computers and peripherals, computer and telecommunication networks and asso-
ciated equipment, and the data centres) has soared the energy consumption like

never before. At present, globally, nearly 10% of the total energy is consumed by



the ICT industry. Factually, the total global energy demand is estimated at 20,000
TWh, whereas ICT is accountable for using 2,000 TWh [5]. This huge energy con-
sumption produces roughly 1.7% (530 Mt) of the total CO, emissions [6] ICT’s car-
bon footprint is roughly equal to the carbon emission from the aviation industry’s
fuel burning. Experiencing the ultra-penetration of ICT into every sphere of human
life that results in increased energy consumption rate by 20% per year, it is ex-
pected that the world's energy consumption of ICT will be double by 2030. Out of
total energy consumption by ICT, two-thirds are attributed to the devices, data

centres while the rest goes for the telecommunication networks.

The production and use of the ICT commodities have triggered several negative

impacts on the environment. The major concerns are discussed in the following.

Use of natural resources: Use of natural resources in the production of the ICT
products has a reason for natural resource depletion from the Earth; thus, unbal-
ancing the natural diversity. To back this argument, let us check out the following

statistics [7]:

e The amount (in terms of weight) of fossil fuel and chemicals required in man-
ufacturing an average desktop computer is at least 10 times of its own weight.
This ratio is much more than in the case of an automobile or refrigerator,
which require fossil fuels by 1-2 times their weight.

o To make a microchip, on average, 16000 litres of water, 1.6 kg of fossil fuel, 0.7
kg of chemicals are used [8] [9] while making a computer with a 17-inch CRT
monitor it accounts for 1500 litres of water, 240 kg of fuel, 22 kg of chemicals

which costs a total material of 1.8 tons [10] [11].

Energy consumption: Device production and operations consume huge energy.
For example, nearly 30,000 megajoules of energy is used in the manufacturing of
an average computer. The energy consumption demands more energy production,

which increases the carbon footprint [12].

Effects of the manufacturing process: The production of computer hardware
causes havoc pollution. The different parts of a computer and its peripherals con-

tain several harmful heavy metals. Along with the environment, these toxic heavy



metals are really dangerous to human and animal health. Long-term exposure to
these elements may be fatal to the workers and their families and also the neigh-
bouring communities. Some of the most hazardous metals that damagingly effect

hominoid health are:

e Antimony (Sb): Immediate contact to antimony may cause aggravated irrita-
tion of the eyes, skin, and lungs. Long-term exposure to this toxic metal can
impend stomach pain, diarrhoea, vomiting, stomach ulcers, pulmonary edema
(swelling due to the accumulation of interstitial fluid in an organ or any area
of the body), chronic bronchitis, chronic obstructive pulmonary disease
(COPD, includes both chronic bronchitis and emphysema), pneumoconiosis,
altered electrocardiograms, spontaneous abortion, and menstrual irregulari-
ties.

o Arsenic (As): Arsenic is one of the most toxic metals found in the Earth ground.
It has severe impacts on human health. Long-term exposure to high levels
of arsenic is highly cancerous and is one of the main reasons for skin, bladder,
and lung cancer. Arsenic is also associated with heart disease. Small amounts
(<5 mg) of arsenic ingestion (through water or pesticides/ insecticides) cause
nausea, vomiting, abdominal pain, and diarrhoea. Acute poisoning due to a
lethal dose of arsenic (100 mg to 300 mg) may lead to death.

o Beryllium (Be): Exposure to beryllium fumes and particles causes chronic be-
ryllium disease (a fatal respiratory disease). Beryllium also has the potential to
harm different organs like the liver, kidneys, heart, and nervous system. This
carcinogen metal may cause lung cancer also.

e Cadmium (Cd): Cadmium is a highly toxic element, and if inhaled in excessive
level can cause death. Long-time exposer cadmium can damage kidneys and
bones. Excessive exposure may harm lung functions and increase the risk of
lung cancer.

e Chromium (Cr): Chromium compounds affect the respiratory tract badly re-
sulting in diseases like asthma, chronic bronchitis, chronic irritation, chronic
pharyngitis, chronic rhinitis, congestion and hyperaemia, polyps of the upper

respiratory tract, tracheobronchitis, etc. High dose of chromium exposure may



even lead to lung, nasal, or sinus cancers. Cases of sperm damage and the male
reproductive system also been observed as a result of chromium exposure.

o Cobalt (Co): Though cobalt is beneficial for humans because it is a metal con-
stituent of vitamin Bi2, high concentrations of cobalt may promote various ad-
verse health effects. High concentrations of cobalt may affect human health,
causing vomiting and nausea, vision problems, heart problems, and thyroid
damage. As per clinical experiments, cobalt has also been classified to be car-
cinogenic.

o Lead (Pb): Lead affects the kidneys and reproductive systems. Even low levels
of lead can be harmful to a child’s nervous system and mental development.

e Mercury (Hg): Mercury is linked to brain and kidney damage. It also affects
the nervous, digestive, and immune systems. Mercury is seriously harmful to
the developing foetus and young children, affecting the nervous and cognitive
system.

o Selenium (Se): Selenium is known to have many benefits (mainly due to its
antioxidant properties) to human health if it is consumed in moderate level.
But a high dose of it has several adverse health effects. Overexposure of sele-
nium may cause an accumulation of fluid in the lungs. Selenium is also at-
tributed to health menaces like bad breath, bronchitis, bronchial asthma,
shortness of breath, nausea, vomiting, abdominal pain, diarrhoea, enlarged
liver, conjunctivitis, and pneumonitis. High concentrations of selenium are as-
sociated with skin cancer, prostate cancer, and diabetes. High enough levels of

selenium can be the cause of death.

In addition to the above-mentioned, other metals such as aluminium (Al), barium
(Ba), copper (Cu), gallium (Ga), gold (Au), iron (Fe), manganese (Mn), palladium
(Pd), platinum (Pt), silver (Ag), and zinc (Zn) are also used in manufacturing a PC.

Exposure to these metals in considerable amount is harmful to organisms.

The chemicals involved in the production of computers also damage the environ-
ment and the health of living beings. For example, nitrogen trifluoride (NF;), used
in LCD, thin-film photovoltaic cells and microcircuit manufacturing, has 17,000

times greater potential to cause global warming as compared to CO. [13]. BFR,



another important substance used in computer production, may lead to thyroid
damage and undeveloped foetus. The oil-based paints that are used for the finished
products are also extremely toxic in nature. All of these metals and chemicals and
toxic materials causes water contamination and air pollution damaging the global

environment.

Burden of hazardous e-waste: We are experiencing an e-waste tsunami. E-waste,
one of the fastest-growing types of waste worldwide, has become a serious threat
to the Earth. Globally, in 2014, the per inhabitant e-waste generation was recorded
as 5.8 kg, which had been increased to 6.3 kg in 2017 and is expected to reach 7.0
kg by 2022 [14] [15]. Worldwide, 20 to 50 million tons of e-waste are generated every
year [16]. The increase in production and buying of computing devices, along the
changing technology has seriously contributed to increasing electronic waste. As a
matter of fact, approximately 9o% of the discarded computer accessories are not

recycled but dumped openly.

Among the total solid waste deposited in landfills, 70% of the hazardous waste is
accounted to e-waste [16]. This huge amount of e-waste releases a substantial
amount of toxic materials, volatile organic chemicals, and heavy metals which not
only exhaust resources but causes environmental pollution and global climate
change. The toxic elements due to improper waste disposal pollute the soil, making
them infertile which become impotent to support crops and other plant life [17].
This deters the production of foods, which eventually leads to malnourishment of
the natives and the nationals. Furthermore, the contaminated food farmed on the

polluted soil may be the source of serious illness.

Many often, the e-wastes are sent to the developing countries to be dumped in the
landfills. People extract valuable materials such as gold, silver, and copper from the
discarded electronics by burning the substances. This produces hazardous gas and
smoke (due to the presence of other toxic materials) by which not only the air but

water also gets polluted.

Industrial discharge: Untreated industrial discharges like oil, toxic chemicals,

and sewage contaminate the water bodies like rivers and lakes. The polluted water



is dangerous for the aquatic creatures. For instance, over 8,000 marine lives were
reported dead six months after the disastrous Deepwater Horizon oil spill in 2010
that affected 16,000 miles of U.S. coastline [17]. Also, consuming the fish and sea-
food from the contaminated water can have serious health effects, especially to
children and pregnant women. Besides, chemical fumes, smoke, and other indus-
trial emission pollute the air. Moreover, the solid discharge from industry is huge,

and most are nondegradable.

The environmental impact of the production of computers and mobile devices
(e.g., tablets and smartphones) is so immense that, to equalise it, we would have

to use each device for between 33 and 89 years [18] [19].

In line with the obligations for complex problems and applications, along with the
massive increase in big data generated from innumerable sources, the need for
high-performance computing (HPC) has increased enormously. And more require-
ment for computers leads to more productions and more uses of computers which

means more environmental hazards and pollution.

If we do not reconsider our device consumption model and carry on at the current
pace, it is supposed that by 2050 we might need 8.5 planets to absorb the carbon
monoxide and 6, 3.5, and 3.5 planets to meet demands for steel, cement, and wood,

respectively [20].

1.3 Sustainable Computing

Whatsoever the negative impacts of computers have on the environment; we can-
not head them off from our livings. We need them in every step of our daily life.
Actually, we need more and more powerful computers day by day for various pur-
poses. In view of that, we need to consider seriously to minimize the environmental
impacts of producing and using computers. Altogether, to mitigate the environ-
mental hazards due to computing devices, we need to concentrate on green and

sustainable computing.

1.3.1 Defining Sustainable Computing

Sustainable computing is a methodology that embraces a range of policies,



procedures, programs, and attitude for using information technology (IT). It is a
holistic approach that includes power control and management, wastage manage-
ment and education concerning the deployment of IT. The concept of sustainable
computing considers the total ownership cost, environmental impact and the ben-
efit of the technology. It should consider minimizing the use of hazardous materi-
als, maximizes energy efficiency during the product’s lifetime, and recyclability of
the product and the factory waste. Sustainable computing is important for all clas-

ses of systems, ranging from handheld systems to largescale data centres.

1.3.2 Elements of Sustainable Computing

The four aspects, as shown in Fig. 1.1, are considered as the core elements of sus-

tainable computing. In the following, we discuss them in brief.

Fig. 1.1. Elements of sustainable computing

Society: The society is one of the important key elements of sustainable compu-
ting. The ever-increasing demand for computer leads to manufacturing and pur-
chase puts a lot of negative effects on the environment. But it is the people of so-
ciety whose careful selection of computing devices and judicious use and manage-
ment may minimize the negative impact on the environment. People wisdom and

awareness could possibly reduce the carbon footprint and conserve energy.

Economy: The environment pays the price of a rising economy. Today’s world
economy is changing rapidly. These changing economies force the use of ICT
hugely at all levels of business processing. Meeting the big market demand, indus-

tries are also bringing new technologies every other day. This fast-changing
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economy, thus, puts a negative impact on the environment. Stringent business pol-
icy, supporting green computing model would enable to reduce the negative im-
pact. Perhaps, well-calculated and measured policies would able to restrain the

negative effect of the economy on the environment.

Ecology: As already discussed in Section 1.2, excessive use of computers over the
last two decades has resulted in millions of tons of e-waste. This e-waste is contin-
ually damaging the environment by contaminating the soil and water. Besides,
computer manufacturing has increased air and water pollution. Further, extensive
usages of computers ensue enormous power consumption resulting in more green-
house gas emission. The overall negative impact on the environment is disrupting
the ecological balance, thereby changing the marine and land life, vegetation and
climate. The water and air pollution profoundly impacted the land and water spe-
cies, including the endangered species. The toxic in water or soil may pass through
food may cause genetic and neurological changes which may pass on to genera-
tions in larger animals, including human beings. Governments, civic bodies, and
industries have important roles to play in tackling the endangering e-waste man-
agement problem. Strict government and administration guidelines needed to
check the abundant use of toxic materials and dumping and releasing e-wastes in
the open lands. Some general responsibilities of governments and industries are

listed in Fig. 1.2 and Fig. 1.3, respectively.

Technology: As we progress, the environmental condition continues to deterio-
rate due to the adverse consequences of the industrial development on the envi-
ronment. The technological advancement in every sector has made it worse due to
more demands from people. In other words, technology is one of the culprits be-
hind the ill environmental health. But considering the stage at which we are now,
the only hope is also the advanced technologies towards sustainable developments.
Sustainable technology and sustainable computing are important components of
that. Fig. 1.4 shows the goals for sustainable technologies and sustainable develop-

ment.



Frame unambiguous and feasible e-waste management policies.

Define concrete regulations for implementing the policies.

Make stringent laws to enforce the regulations.

Revamp and review the existing laws and policies periodically.

e

Set up state/country wise regulatory agencies.

Make provision for harsh punishment for the individual and companies in case of
non-compliance of e-waste regulations.

Also, make provision for incentives for proper compliance of the rules.

1

Set up sufficient numbers of government operated and technically equipped
dismantling and recycling sites.

|

Designate or create sufficient number of dumping grounds in every localities.

Design and implement an efficient e-waste collection channel.

1

Create trained and registered workforce for dismantling and recycling.

Take initiatives to build tie-ups with industries and other stakeholders in order to
explore the opportunities and solutions for providing recycling services.

|

Conduct public awareness programs on e-waste managementat in regular intervals
through different channels.

|

Encourage and provide sufficient financial and other supports for R & D activities
related to e-waste management to private and public research institutions.

D00 00080 08 0800 0 [

Fig. 1.2. Government's responsibilities in e-waste management [21]
1.4 Computational Measures Adopted for Sustainable Computing

To attain sustainable computing, the computing fraternity mainly focussed on en-
ergy efficiency. The improvement of energy efficiency of any given computer sys-
tem without affecting the reliability factor is a major challenge to overcome in al-
most all the computing domains, be it a low power embedded device or a large-
scale server. Here, the key concern is the measures regarding how to reduce the
power consumption where the fault tolerance technique needs computation and
state redundancy, increasing the power consumption and a balanced trade-off be-
tween them. The trade-off can be managed by combining the techniques that com-
prise of both hardware as well as the software where it is literary impractical to
concentrate over a single component or a level of the system on attaining adequate

power consumption and as well as reliability. In the following, we discuss a few
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such computational measures, aiming to minimise the energy consumption of the

computers and data communication.

Realise the importance of e-waste management and take responsibility.

Abide by the government's e-waste policies and regulations.

Establish a functional and efficient e-waste management department.

Frame organisational policies to accomplish successfull e-waste management.

Redisgn the production and operation plans to minimise e-waste.

Hire qualified and trained workers for dismantling and recycling e-waste.

Consult with experts, regularly, to know about the latest developments towards
e-waste management and incorporate state-of-the-art practices.

Try to use bio-degradable materials wherever possible.

Establish proper disposal systems for the employees for disposing e-waste.

Periodical auditing should be done in order to make sure of that the required
and suitable practices are followed.

Educate consumers about the environment threats of their products and how to
follow proper disposal procedures.

W
1 s I

Fig. 1.3. Role of industries and corporates in e-waste management
Low-power processors: For sustainable computing, it is essential that processors
consume low power. Processors in computing devices consume a considerable
amount of energy. This energy consumption varies linearly with the processor
clock speed. To process, the increasing jobs demand clock speed is increased, re-
sulting in high energy consumption. But not all the jobs require a powerful proces-
sor. Submitting the low-end jobs to the low-end processor will save significant en-
ergy. Even when the processor is idle, it consumes energy. In that case, also, a low
power processor will waste less power. The development of low-power processors
allows them to use very less battery power. Due to their low power consumption
characteristics, they are suitable for mobile-based computing for a longer duration.
It is an ongoing challenge to best fit the performance with power consumption.
The chip designers are struggling to attain the most appropriate power-perfor-

mance balance. The processor circuit is reduced, and the distance between the
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interfacing circuits are minimized to reduce energy consumption. Often the
memory and the input and output port are onboard fabricated to reduce the power
consumption. Manufacturers like Intel and AMD are putting forward new proces-
sor technologies where a single processor can do the job of multiple processors
consuming an equal amount of energy. The multi-core processor technology (dual,
quad, or octa-core processors) enhances the computing performance significantly
by enabling parallel computing capability in a single processor package. The multi-
core processor reflects as multiple processors working together with performance
very higher than a single processor at lower clock speeds. The voltage consumption

per core is less and thus, typically consuming less power [22].

eFossil fuel

oE-waste
eEnergy consumption
eWater wastage

ePaper
ePlastic
eCans
eBatteries

ePolythin
eThermocols

eOther nondegradable
products used in FMCG

*Wind power
eWater force
eBio-fuel
eSolar energy
eWaste water

Sustainable
technology

eDon't waste electricity
water, fuel & food

eConserve water
eStop replacing gadgets
too frequently

Fig. 1.4. Goals for sustainable development [23]
Energy-efficient storage: Secondary storage devices (e.g., hard drive) are electro-
mechanical devices which consume huge energy while accessing data from the
magnetic disc. The magnetic plate sizes, the speed of data accession, read-write
head movement, and data transfer is some of the factors which affect energy con-
sumption. The development of a new storage device like SAS (Serial Attached SCSI)

with the advantage of a 2.5-inch plate size model provides high performance with
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less energy consumption in comparison to a traditional 3.5-inch model. Similarly,
for less I/O-intensive applications, SATA (Serial ATA) provide high yield with less

power consumption [22].

Algorithmic efficiency: The efficiency of an algorithm counts on the computa-
tional resources used by the algorithm. The increasingly complex algorithms need
more space and time, which increases processor cycles consumption and thus the
power. To attain maximum energy efficiency of an algorithm, its resource utiliza-
tion needs to be minimized. For attaining sustainable computing, it is necessary
that the algorithms used in computation job are energy efficient or could be said
to have the requirement of less hardware. For example, the time complexity of a
hashing-based search is very less as compared to a linear search. This ensures hash-
ing based search uses less processor cycle and hence consumes less energy. In a
study at Harvard, it is found that 7 grams of CO, are produced for an average
Google search, which Google doubts and claim it to be 0.2 grams. Irrespective of
the claims, it is clear that an inefficient algorithm in terms of resource complexity
could lead to the consumption of huge energy. Thus, for having sustainable com-
puting, the energy efficiency of the algorithm should be considered as one critical
parameter. Switching to an efficient algorithm would be a sustainable solution for

energy-efficient computing.

Efficient resource allocation: Processing job requires various computational re-
sources like processor, memory (internal and external), I/O devices, and other de-
vices. For maximizing computational productivity, it demands an efficient strategy
of resource allocation. The processes executing in parallel often may require re-
sources which may be shared and held by other processes. A process holding a
resource while not using it consumes a lot of resource energy. Efficient and intel-
ligent resource allocation may help to solve problems like starvation and deadlock
situation. The optimal resource allocation strategy ensures resources are properly
allocated on time and requirement basis to processes and are properly released,

thus saving extra power consumptions.

Energy-efficient routing: Routing is an optimization task of selecting an efficient

and reliable network path for routing data packets. The various criteria for optimal
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path selection depend upon the distance between source and target, network
bandwidth, shortest delay, and constraints like limited node power, restricted
wireless link capacity, etc. It is seen as the number of hops increases, the network
path selection and transmission of data packets through different hops makes rout-
ing energy consuming. In sustainable computing, it is crucial that energy efficient

routing protocols are used which uses fewer hops for delivering the packets.

Energy-efficient display: In a computer system, in comparison to the other com-
ponents and peripherals, the display device (monitor) consumes the most energy.
Even when the computer is idle, the display device continually keeps consuming
energy. For sustainable computing, display devices should be energy efficient.
There are two ways seen for reducing energy consumption by display devices. One
is integrating low power consumption technology for display, and other is efficient
power management, which makes sure the display device hibernates when it is in
an idle state. Earlier, the use of CRT technology consumed a lot of energy, but their
replacements by LCD and subsequently, LED technologies have reduced the power
consumption considerably. Further, in comparison to LCD monitors which typi-
cally use a cold-cathode fluorescent bulb to provide light for the display, the LED
monitors use an array of LEDs. Thus, LED reduces the amount of electricity used

for display; moreover, LEDs are mercury-free and nontoxic as compared to LCDs.

Operating system support: The importance of designing an energy efficient sys-
tem has gained attention with the proliferation of portable and battery-operated
devices, e.g., laptops, PDAs, mobile phones, etc. Various hardware solutions have
been proposed as a method to minimize energy consumption where the energy-
efficiency in terms of software solution is comparatively unexplored yet. As soft-
ware is the driving force behind given hardware, the decisions undertaken during
software designs generally have a major impact on the overall system energy con-
sumption. OS as system software manages the different components and resources
of a computing device. From the research perspective, apart from the memory
management in the OS, the remaining areas were never given focus in respect to
energy efficiency. One of the functionalities of the OS is resource accession and

scheduling them for use. Most of the time, when the computing system is idle or
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not in use, the OS continually keeps accessing the different resources, and this
makes the computer to consume energy continually. In sustainable computing, the
OS must be energy efficient where the computing resources must be cleverly and

efficiently used to avoid unnecessary energy consumption.

Efficient power management: Hardware stuffs in a computer, consume huge en-
ergy even when they are not in use (but kept on). For sustainable computing, it is
absolutely necessary that the computer conserves energy. The criteria of power
management for devices like CPU, GPU, and computer peripherals, e.g., monitor,
printer, etc. that they are able to manage the power efficiently by turning off or
switching to a low-power state when non-active. Several efficient power manage-
ment techniques available that make computers [24], HPC systems [25], data cen-
tres [26], and mobile devices [27] [28] [29] energy-efficient. For efficient power
management, the computer hardware devices abide the ACPI, an open standard,
which allows the operating system to control and manage the device power di-
rectly, and hence when not required are set to off. CPU generally consumes high
power with an increase in job processing and also cause heating and thus extra
power is required for cooling. New power management programs called ‘un-
dervolting’ allows setting the CPU power manually. There are automatic undervolt
programs available which automatically increases the CPU power on demand like
"SpeedStep" on Intel processors, "PowerNow!" or "Cool'n'Quiet" on AMD chips,
LongHaul on VIA CPUs, and LongRun with Transmeta processors. Currently, most
servers consume approximately 70% of the maximum power even when they are
idle and consumes 80% of their maximum when they are working at 20% of their
peak utilization. In the server, power management is disabled to keep up the re-
sponse time and performance. But, enabling the processor power management
may allow the server to save energy consumption up to 50% in the idle state [22].
Highly efficient and properly designed power supplies reduce the power loss within
a server, which results in significantly less energy consumption and heat genera-

tion while in operation.

1.5 Sustainable Computing Paradigms

In the previous section, we checked out some computing measures that are
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discretely applied to attain energy efficiency. In this section, we discuss the com-
puting system paradigms or approaches that as a whole would facilitate to attain
sustainable computing. One of the strategies to attain sustainable computing is to
utilise the existing resources optimally and fully, minimising the requirement of
new devices, which ultimately would reduce the environmental impact caused by
the production process and the e-waste. In the following, we briefly discuss these
approaches while their environmental advantages and the associated issues are

summarised in Table 1.1.

Grid computing: Grid computing is a distributed system that allows seamless ac-
cess to a computing grid made of a collection of computing resources connected
through a network. Grid computing offers supercomputing like computing power
utilizing intra- and/or inter-organizational computing resources such as desktops,
clusters, RAIDs, etc. It can impressively save organizations’ IT budget. Instead of
spending on third-party computing resources (e.g., the cloud) organizations can
make use of their existing IT infrastructure. In-house computing resources can be
utilized to form a grid or pool of resources. For sustainable computing, grid com-
puting is a suitable approach. The flexibility to adopt different computational de-
vices supports in reusing the idle heterogeneous devices for computing by the pro-
cess called CPU cycle stealing. This is an excellent feature which makes use of ex-
isting unused active computing devices (desktop computers, clusters and super-
computers) which otherwise in their idle state wastes enormous processing cycles
as well as energy. The Grid, on the basis of the job requirement, scales up its com-
putational power from the available connected devices. This makes sure that only
the required number of computational devices are used without keeping the entire
resources on hold. This, in comparison to other HPC facility (supercomputers),
makes sure that the cost and energy are saved and would allow reusing the existing

computing infrastructure at their best.

Cloud computing: The concept of cloud computing may be stated as a shared
pool of configurable computing resources along with quality services which can be
rapidly provided on-demand basis with limited effort [30]. The cloud computing

services (hardware and software) can be scaled to any number of computer
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requests and thus eliminate the need for private data centres. For a business or-
ganization, the cost incurred for subscribing cloud service is comparatively very
less than maintaining private data centres. The cloud technology, by its resource
sharing approach, has actually discouraged business enterprises for opting private
data centres. Thus, reducing the number of data centres has significantly contrib-
uted to energy saving. In this view, recently, Google has claimed that the use of

cloud technology has reduced existing data centres power consumption by 50%.

Serverless computing: The concept of cloud computing has brought the server-
less model, which allows dynamic handling and allocation of machine resources
(hardware and services) on-demand basis. This eliminates the cost for purchasing
and maintenance of privately-owned servers. The cloud technology allows re-
source sharing, which makes optimum use of cloud resources in parallel for multi-
ple purposes on a large scale. Serverless computing adds another layer of abstrac-
tion atop cloud infrastructure. It can be assumed as the more exclusive version of
PaaS in cloud. In PaaS, a minimum set of resources must be maintained at the
client's end, whereas in serverless computing everything is deported to the remote
server. The developers are freed from worrying about anything but their runnable
code and functions which should be run and tested in the cloud server [31]. As per
the on-demand service provisioning principle of cloud, serverless computing is also
able to scale up quickly by spawning new instances of resources as they are re-
quested. Moreover, it also scales down quickly by shutting resources down when
they are not required or if their use period is exhausted. This saves a lot of energy
consumption. Serverless codes need not be run in any specific server; rather, they
can run anywhere through the Internet. This means the serverless applications can
be deployed in the edge of the network that is close to the end users [32]. This will
not only reduce the latency but also saves a significant amount of energy by elim-
inating the need for unnecessary data transmission [30]. Individual private servers
consume huge energy. The ratio of job processing to energy consumption is dis-
proportionate, with immense energy is consumed while the server remains un-
derused. Serverless computing saves energy consumption in running those servers.

Therefore, this model is considered a key approach to sustainable computing.
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Using terminal servers: The concept of terminal servers contributes to green
computing. The use of terminal server along with the thin clients gives users the
impression that the computation is carried in the very same terminal, while the
actual computation takes place in the terminal server. The thin client uses up to
the 1/8th amount of energy in comparison to workstations and thus considerably
reduces energy consumption. There has been an increase in the use of terminal
servers and thin clients to create virtual labs. The terminal server software include
Terminal Services (now Remote Desktop Services) for Windows platform and
Linux Terminal Server Project (LTSP) for the Linux platform while Windows Re-

mote Desktop and Real VNC can provide a thin client.

Virtualization: Provision of assigning workloads to the servers on one-to-one ba-
sis may cause resource underutilization. This can be avoided by virtualization. Vir-
tualization is the process of logically parting a server into multiple virtual servers
or server instances sharing the same hardware resources and allows processing
multiple applications or jobs on different virtual servers. Furthermore, virtualiza-
tion supports the distribution of works among virtual server instance, ensuring the
server resources are used effectively. Dedicated application server consumes more
resources than is justified by their workload. By virtualization, a physical server
acts as multiple server instances, consuming less energy in comparison to separate
dedicated servers. It is seen with this process of server consolidation up to 25% of
power can be saved [22]. For performing virtualization requires better hardware
resources as a high-end processor, good memory and storage, ensuring perfor-
mance effectiveness of virtual servers. The concept of virtualization was first con-
ceived by IBM in the 1960s for mainframe computers, and later on, the concept was
implemented for x86 computers in 1990s. Many software companies have come up
with software solutions for virtualization; this includes Linux container which ef-
fectively uses resources to reduce energy consumptions. Microprocessor manufac-
turers like Intel and AMD have incorporated virtualization enhancements to the

x86 processor for supporting virtual computing.

Among these five approaches discussed above, grid and cloud computing are the

most prominent initiatives which have minimised the requirement of owning



20

personal computer systems considerably. They have also replaced the need for cen-

tralised HPC systems such as supercomputers and mainframes to some extent.

Though grid computing intends to fully utilise the existing resources, cloud com-
puting does not intend to do so. Cloud computing needs additional resources to
provide cloud services. The centralised resources such as data centres, at the cloud
service provider’s end, consumes massive energy leading to greenhouse gas emis-
sion substantially. In fact, data centres capture one-third share of the total energy
consumption of ICT. A well-known report [33] of the year 2010 stated that the elec-
tricity consumption by data centres had risen by 56% in five years; whereas, during
the same period, the overall increase in U.S. electricity usage was only 36%. This
statistic reflects the seriousness of the energy requirements of the data centres,
which has become more severe in recent years. If the right measures are not taken

in due course, data centres are sure to become a grave threat to the environment.

Table 1.1. Environmental advantages and issues of the sustainable computing approaches

Computing

approaches

Environmental advantages

Issues

Grid compu-
ting

Utilising existing idle resources fa-
cilitates less energy consumption
and minimise environmental haz-
ards due to the manufacturing and
operation of the computing sys-
tems required otherwise.

Needs fast and reliable LAN and WAN
connections.

In the volunteered grid, it is difficult to
motivate the resource owner to lend their
resources.

In the case of the non-volunteered grid
(e.g., commercial grids), the services
might be costly.

Not only setting up and managing the grid
resources but also accessing them often
require expertise.

Cloud com-
puting

It eliminates the need for private
computers, servers, and data cen-
tres which has significantly con-
tributed to energy saving.

The data centres, comprising the large
servers and computers, and associated
cooling systems consume massive power.
Accessing the cloud service depends on
the internet connection. The instability/
unreliability and unavailability of connec-
tion hold back accessing the cloud.
Involves security and privacy issues.

It is true that cloud computing eradicates
the big upfront investment on computing
resources but accessing the right service is
not that cheap either.

Involves data transfer cost.

Since cloud services are typically generic,
they lack flexibility.

The user/client has minimal control of
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Computing
approaches

Environmental advantages

Issues

Serverless
computing

It saves the energy requirement for
running privately-owned servers.
It also scales down quickly by shut-
ting resources down when they are
not in use. This saves a lot of en-
ergy consumption.

Serverless codes not necessarily be
run on any specific server. Hence,
the serverless applications can be
deployed at the edge of the net-
work, i.e., close to the end-users
[32]. This will not only reduce the
latency but also saves a significant
amount of energy by eliminating
the need for unnecessary data
transmission [30].

their own applications as the cloud service
infrastructure is entirely owned, man-
aged, and monitored by the service pro-
vider.

Switching or migrating to a different
cloud service provider is often complex or
infeasible.

Not suitable for real-time applications
which require low latencies.

Also, not suitable for applications which
need long execution times.

Everything operates in stateless fashion;
hence, handling state using stateless func-
tions is a real issue.

After some time of being idle, the function
will require to go through a cold start
which not only takes up to a few seconds
but also consumes energy.

Using termi-

The processing and storage re-

Running applications on a remote server

nal servers quirements for client machines are | always involve performance issues.
minimal because a terminal server | There are chances of terminal servers get-
hosts all the application logic | ting bottlenecked with overloaded re-
which also runs on the server. quests. Hence, the terminal server needs
The thin client uses up to 1/8" | to be powerful enough to be able to han-
amount of energy in comparison to | dle all connections.
workstations and thus considera- | If the terminal server is not backed up,
bly reduces energy consumption. | there is a high risk of downtime due to a
single point of failure.
If the communication network is not reli-
able, the system will be affected harshly.
Virtualization | Effective resource utilisation leads | The required hardware specification (e.g.,

to fewer production and less e-

wastage.
A single physical server acting as
multiple server instances con-

sumes considerably less energy in
comparison to separate dedicated
servers.

It requires quantitively less hard-
ware to run similar applications
than dedicated systems, which
leads to fewer device production
and less e-wastage.

The absence of the usage of the lo-
cal hardware or software cuts the
overall energy consumption.

memory, processor, etc.) is much higher
for the same task executed in a native
computer.

Involves complex troubleshooting, in case
of failure.

Degraded performance than a physical
server.

Suffers from availability issue which dis-
courages using virtual servers for mission-
critical applications.

Has major security issues.
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1.6 MCC as Sustainable Computing

The computational measures and approaches for sustainable computing discussed
in Section 1.4 and 1.5 are not sufficient for realising sustainable computing abso-

lutely. In this section we introduce the concept of MCC and its sustainable benefits.

1.6.1 Mobile Crowd Computing

Object-oriented programming brought the revolution in software development by
introducing the concepts of reusability and polymorphism, which allow software
modules to be used multiple times for multiple purposes. This saves a significant
amount of manhours and cost. We envisage the same role of MCC in sustainable

computing.

In the previous section, we understood that grid computing has been successful in
utilising the existing devices. But the problem with grid computing is that desktops
are losing popularity; in fact, the same for laptops. On the other side, SMDs such
as smartphones, phablets, and tablets are gaining huge acceptance as the new com-
puter with the computing power they offer thanks to the power-packed hardware.
The technological progress of SMDs, such as powerful SoCs with multicore CPUs
and GPUs, has made them favourable as the primary computing device to many
people. Industries are also showing interest in this direction. Initiatives such as
Microsoft’s Continuum' and Samsung’s DeX? are striving to bring the desktop ex-
perience on the SMDs. Microsoft has endeavoured to run its full version of Win-
dows 10 on the ARM chipsets, the most popular chipset for SMDs. And the great
thing about SMDs is that they have become indispensable to our lifestyle. It is not
feasible to restrain ourselves from using them. So, why don’t we use these devices

of their optimal potential, i.e., for computing purposes as well?

Furthermore, A number of such powerful SMDs, collectively, can offer huge com-
puting capability. A satisfactory HPC may be achieved by making a grid of SMDs

[34]. A typical MCC system can be perceived as a distributive computing

L https://www.microsoft.com/en-in/windows/continuum
2 https://www.samsung.com/global/galaxy/apps/samsung-dex/
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framework where a large job is divided and distributed to the people’s SMDs to be
executed. The philosophy of MCC is to combine computation power of numerous
dispersed SMDs to escalate the overall computation power. The cumulative com-
puting power achieved by such grids of SMDs can tail off the dependency on the

data centres and low-end supercomputers as well.

Since in this proposed computing environment, the public-owned mobile devices
are targeted to be utilised, this particular computing system is named as MCC. The
users can share their SMD resources in a voluntary or incentive basis. The details

discussion on MCC is presented in Chapter 3.

1.6.2 Sustainability of MCC

The concept of sustainable computing considers the total ownership cost, energy
efficiency, environmental impact, and the benefit of the technology. Let us assess

if MCC meets these requirements as a feasible sustainable computing option.

Economic sustainability: Setting up in-house computing infrastructure requires
an upfront investment. It also involves regular expenditure for operational and
maintenance costs. On the other hand, in a dynamic pricing model, using cloud
services in peak hours will be considerably high-priced. Whereas setting up an
MCC would require almost no cost. In an organisational MCC, the available SMDs
on the premises can be effectively utilized for this. Organisations can cut costs sig-
nificantly by adopting the bring your own device (BYOD) policy, obliging the em-

ployees to contribute their devices to MCC.

Energy efficiency: Running an SMD requires less power as compared to comput-
ers. Moreover, the CPUs of the contemporary SMDs are substantially more power-
efficient, with merely 1 to 2 Watts of power consumed at their highest utilization
with the peak load [35]. Therefore, they consume much less energy than other com-
puting systems to perform the same operation. Statistically, the energy consump-
tion of a standard SMD ranges from a few to 10 kWh per year. Therefore, total
energy consumption is 10 TWh per year considering one billion SMDs are in oper-
ation worldwide. This is only 1% of the total energy consumed by ICT which is

typically on the order of 1,000 TWh per year [6]. Furthermore, using MCC will not
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incur any additional energy consumption as compared to dedicated computing in-
frastructure. Also, the availability of battery power eliminates the need for genera-
tor power sources. In effect, the need for electricity generation would be curtailed
to a great extent. This leads to less consumption of fossil fuels, having a positive
impact on the environment. Also, the heat dissipation of the SMDs is marginal
compared to other computing devices; therefore, MCC would allow shunning the
use of a cooling systems as required in traditional and dedicated computing re-
sources, which thus would cut off the energy wastage in cooling. Considering the
above-mentioned aspects, it can be reckoned that MCC would reduce the carbon

footprint considerably.

Environment friendly: MCC supports the reusability approach, i.e., optimal and
multipurpose use of existing devices without going for exclusive and specific pur-
pose ones. This will curtail the production and use of new devices, minimising the
environmental hazards of device production and e-waste significantly [36]. Fur-
thermore, the small size of SMDs also aids in reducing the negative effects since
they require less material in manufacturing and thus produce less manufacturing
waste materials. Further, the contribution of e-waste of discarded phones also is
considerably lesser in amount. A proper policy and implementation along with dis-
ciplined and responsible users can help in controlling and managing e-waste effec-

tively. The environmental benefits of MCC are summarised in Fig. 1.5.

Utility: Besides the economic and environmental benefits, the MCC offers several
other benefits, such as flexibility and scalability. An MCC can be set up anywhere
in an ad-hoc manner. In an organisational MCC, considering the abundance of
available SMDs, a practically zero-cost HPC can be achieved. Due to close proxim-
ity, MCC provides not only low and predictable latency but also configurable la-

tency, making it suitable for time-constrained applications.
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*No need for explicit computing device production as people would anyway
use SMDs.

eProduction of smartphones is much environment-friendly compared to
large computers.

eDue to the small size, the e-waste will be lesser and can be managed more
efficiently.

eNo dedicated cooling systems are required which saves electricity
significantly, hence reduces carbon footprint.

*No power backups, such as large batteries and generators are required.
Pollution due to the battery elements and diesel fuel are avoided.

*SMD processors are typically energy-efficient. They consume much less
energy than other computing systems to perform the same operation.

Fig. 1.5. Environmental advantages of MCC

1.6.3 Environment-friendliness of MCC in Comparison to Other HPC Systems

To establish our argument that MCC is a sustainable alternative to the HPC sys-
tems, in this section, we statistically compare MCC with other computing systems
viz. desktop grid computing, supercomputers, and data centres, in terms of envi-

ronmental impacts.

In recent years, the computing services offered through cloud computing have got
tremendous popularity. People can rent computing resources on usage and re-
quirement basis. The cloud service providers maintain big data centres to cater to
the computing resource needs of the clients. A data centre, abstractly, can be de-
scribed as an abundant number of computers stacked together. To make the cloud
service available 24x7, these computers are always kept on which makes them very
hot. As a result, a huge amount of power is consumed not only to run these com-
puters but also to keep them cool. About 30 billion watts of electricity is needed to
run the data centres (comparable to the electricity generated from 30 nuclear
power plants) which cause nearly 17% of the total carbon footprint caused by tech-
nology [37]. Data centres consumed 416.2 TWh of electricity in the year 2015 only
which is roughly 3% of the global electricity supply [38]. A single data centre can
consume more power than an average town. To provide uninterrupted power sup-
ply in case of power failure, the data centres run generators that emit diesel ex-
haust. Today’s data centres cause roughly 0.3% of overall carbon emissions [s],

which is equivalent to the carbon footprint generated by the airline industry [38].
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Of the total global greenhouse gas emissions, the power-hungry data centres ac-
count for nearly 2%. This is putting an immense impact on the environment, lead-
ing to global warming. The bad news is, every four years, this energy requirement
is getting doubled and the total energy requirement of the data centres, globally,
will increase threefold in the next decade. By 2025, data centres are expected to use
20% of the world’s energy [39]. The efficiency of the data centre is measured in
terms of PUE. PUE compares the non-computing energy to the amount of energy
to power actual machines. Data centres operate at 70% of overhead energy. It
means another 0.7 units are used behind the infrastructure of the data centres. So,
the total PUE goes up to 1.7 [37]. Typically, the PUE of the common data centres is

about 2.0 [5].

Due to their computing capacity and power, the energy requirements of supercom-
puters are gigantic and might well be equivalent to that of a small city. The correct
response relates to electricity; specifically, 17.8 megawatts of power is required to
run Tianhe-2, one of the Topsoo ranking supercomputer boasting 33.9-petaflop
through 3.12-million processors. An exaflop (1,000 petaflops) computer needs ap-
proximately 500 megawatts, which is equivalent of the total output of an average-
size coal plant, and enough electricity to cater the needs of all the households in a

city like San Francisco [40].

Though desktop grid computing involves lesser power consumption than the
above-mentioned two systems, the average desktops and laptops still consume
more power than SMDs. As mentioned earlier, the desktop grid is an affordable
option for sustainable computing and can lower the environmental impacts of su-
percomputers and data centres considerably. However, MCC promises to minimize
it further. Table 1.2 summarises the comparative environmental impacts of SMDs,

desktops and laptops, data centres, and supercomputers.

Though MCC can reduce the amount of e-waste to a great extent the extensive
adoption of SMDs becomes worrisome for likely e-waste generation. Therefore, it
is extremely crucial to opt for the proper disposal of discarded devices and try to
recycle as much as possible. The role of governments and industries towards this

direction is already discussed in Section 1.3.2. Fig. 1.6 lists the responsibilities of the
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users and the responsible authorities suggesting what to be done when the SMDs

are discarded.

Table 1.2. Comparing environmental impacts of SMDs with data centres, supercomputers, and
Grid computing (desktops and laptops)

Environ Supercom- Grid Computing
mental Data centre Smartphone
impacts puter Desktop Laptop
Energy con- 200 TWh/year 17.8 mW 100-150 Wh, | 60 Wh, 1.5-3 Wh.
sumption [5]. for Tianhe- | 600 300-150 An average
2, the 33.9- | kWh/year kWh/year | phone needs 2
petaflop su- | [41]. [41]. kWh/year.
percom-
puter with
3.12-million
proces-
sors [40].
CO: emission | 171,630 kg CO- 0.175 mil- 380 kg/ 227to 270 | 16 kg/year [45].
in the manu- | [42]. lion kg/ desktop kg/laptop | An average
facturing pro- = Around 0.3% of | year per (a | [43]. [44]. mobile emits
cess overall carbon supercom- 35 kgs of car-
emissions [s]. puter, bon while
equivalent manufacturing
capacity of [46].
1000 PCs).
Other envi- Along with the Same as The metals | Almostall | The hazardous
ronmental common haz- data cen- contained the hazard- | metals such as
hazards ardous materials | tres. in PC’s ous ele- Al, Ag, Au, Cu,
such as Fe, Cu, commonly ments of Fe, Pb, Hg, Cd,
Al, Ag, Au, Pt, include Al, desktops etc. are needed
Pd, Pb, Hg, As, Ag, As, Au, | are also in smartphone
Cd, Se and hexa- Ba, Be, BFR, | foundina | manufacturing
valent Cr and Cd, Co, Cr, | laptop, but | also, but in
BFRs, other Cu, Fe, Ga, the quan- much less
harmful ele- Hg, Mn, Pb, | tityisless | quantity than
ments such as Pd, Pt, PVC,  aslaptops | desktops and
ethylene/ pro- Sb, Se,and | are typi- laptops.
pylene glycol for Zn. Most of | cally
cooling systems, them are smaller
diesel fuel for really haz- | than desk-
backup genera- ardous and | tops.
tors, lead-acid contami-
batteries for nate soil,
UPSs, and com- water, and
pressed gases for air, if
fire suppression not properl
makes data cen- y disposed
tre real peril to off [49].
the environment
[47] [48].
E-waste gen- | 32360 metric 9.3 million | 41698.8 3230 metric | In India, out of
erated tons of e-waste tons/year metric tons | tons [51]. 650 million
in 2018. [50] [51]. mobile users,
40% have
changed their
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Environ Supercom- Grid Computing
mental Data centre Smartphone
impacts ROEEE Desktop Laptop
phones in 2017,
generating
huge e-waste.
[52]
In the USA,
yearly, nearly
150 million mo-
bile phones are
discarded.
Weight frac- | N.A.” NAS 47.2Fe, 0.9 | 19.5Fe 2.4 | 0.8 Fe, 0.3 Cy,
tion of mate- Cu, 2.8 Al 1.0 Cu, 37.6 plastic,
rials (%) plastic, 9.4 | 25.8 plas- 30.3 PCB, 20.4
PCB [53]. tic, 13.7 battery [53].
PCB, 14.4
battery
[53].
E-waste de- Decomposing is | Same as As the The same The continuous
composition | challengingasa | data cen- number of | problem, growth in
huge volume of | tres. users is very | but moder- = smartphone
e-waste gener- large scale, | ate due to | users with very
ated due to a the proper | less equip- | brief use-cycles
large scale of and system- | ment as is a great chal-
components. Re- atic decom- | compared | lenge in terms
quire large position of | to desktop. | of decompos-
dumping round; e-waste is ing and recy-
risk of toxic met- really diffi- cling as the
als and chemi- cult. Most lack of aware-
cals; and con- of the com- ness and eager-
tamination risk. puters are ness among the
But, since the public- public. But if
data centres are owned or the civic au-
generally owned owned by thorities take
by big compa- small or- active roles and
nies/ institutes, ganizations. are able to con-
they are ex- Most of vince people
pected to follow them do the necessity of
the systematic not follow proper disposal
decomposing the proper of discarded
and recycling decomposi- devices, the
process. tion and re- problem can be
cycling pro- tackled.
cesses.

* Despite of our best effort, we couldn’t find reliable data.
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User identifies and collect old smartphones and accessories

The user drops e-wastes into the collection boxes at selected outlets

The recyclers collect and transport devices to the disposal and recycling facility.
Proper disposal and urban mining take place at the facility.

Recovered materials are recycled and used to produce new products.

Fig. 1.6. Procedures to be followed for SMD e-waste management [54]

1.7 Motivation of this Study

Our main motivation for exploring MCC is its sustainable benefits, as discussed in
Section 1.6. We understood that using the devices that are already in use for com-
putational and other purposes would reduce the requirement of buying IT infra-
structure separately because the public would buy SMDs for their own purposes,
anyway. Moreover, the utilization of these public-owned SMDs to achieve MCC
instead of traditional HPC will reduce the requirement for dedicated large com-

puters.

In this section, we discuss the rationales which we believe favours and comple-
ments the idea of MCC, making our motivation stronger. Thereafter, we shall es-
tablish the potential opportunities through which the benefits of MCC can be

reaped.

Specifically, the inducement factors (benefits, opportunity, and potential) of MCC
discussed in this section in addition to the discussions in Section 1.6 and Section

3.5 motivated us in fostering the proposed system.

1.7.1 Powerful SMD Hardware

Over the last few years, the SMD industry has seen an unprecedented focus on the
hardware. Be it CPUs or GPUs or even DSPs, the processing capability of SMDs, to
meet various purposes, has been increased exceptionally. The CPU and memory

architectures are designed and tuned to boost heterogeneous computing. The
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development of ARM processors, the most popular processor architecture used in
SMDs and supported by most of the major SMD operating systems, has made them
a serious contender in consideration for a range of scientific applications due to
their high competence in floating point performance. The GPUs are also engi-
neered to enhance GPGPU computing performance. The modern SMD GPUs are
capable of delivering more than 8oo GFLOPS. Advancement of CPU, GPU and
DSPs has led to massively powerful SoCs. SoC like Tegra X1 from NVIDIA can de-
liver 1 TFLOPS while the computing cores with clock frequencies 2.5 to 3 GHz have
become common [55]. Advancement on each module, though separately, makes
the SMD, as a whole unit, a great possibility to become a powerful computing plat-

form.

In the foreseeable future, more powerful processors with more cores are antici-
pated. With dense fabrication technologies like 7 nm and less, more muscle can be
put up in a single core which will enable shoving more computing capacity without
compromising the chip size. The future SMDs loaded with these powerful SoCs

will be, in the true sense, the little computing giants.

1.7.2 Mass Adoption of SMDs

The SMD market has witnessed astonishing growth in the recent years. According
to the recent research market statistics, globally smartphone shipments had
reached 1.55 billion [56]. As per a study made by IDC, a USA-based major data an-
alytics company, a 5.7% growth has been noted in the YoY change in global
smartphone shipment in the year 2021 with 1,354.8 million of smartphone units
have been shipped globally compared to 1,281.2 million in 2020; and it is expected
to reach 1.52 billion units in 2025 [57]. An estimation by Statista, a leading market
and consumer data provider, suggests that the number of global smartphone sub-
scriptions will reach about 7.7 billion by 2027 [58] [59], while in India, the
smartphone userbase is predicted to reach 0.97 billion by 2025 [60]. In May 2019,
at the annual developers conference, Google proclaimed that it had more than 2.5

billion active Android devices [61].
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As per a report from BankMyCell3, presently 48.37% of the world’s population own
a smartphone. Adding the number of tablet users with these statistics, therefore,
there is a great probability of finding a sufficient number of SMDs at a populous
place. Thus, it can be confirmed that the huge adoption of SMDs across the world

has put a big platform for MCC.

1.7.3 Abundant Idle Resources

It has been observed that the majority of SMDs are not being used to their capacity.
Studies suggest that normal users interact with their SMDs only for a few hours
(on average two to four) in a day [62] [63]. So, a huge amount of processing capa-
bility remains unused and wasted. Even when SMDs are in use, it is highly probable
that some of the CPU cores and the GPUs, alongside DSPs, ISPs, etc., remain free.
An enormous processing capability can be generated if these unused processing

powers are tapped and exploited properly (opportunistically).

1.7.4 Popularity of Crowdsourcing

Recently, the crowdsourced systems are gaining increasing popularity involving
various applications [64] [65] [66] [67] [68]. In these systems, depending on the
application’s demand, different resources and information of the users and their
devices are shared [69] [70]. We perceive MCC also as a crowdsourced system
where the users share their SMDs’ computing resources. Witnessing public’s non-
inhibition in sharing, we strongly believe that MCC would also be well acknowl-

edged by the users as in case of other crowdsourced systems.

1.7.5 Implementational Opportunities for MCC

Considering the benefits and potential of MCC we envisage its wide-range utiliza-
tion. Not only as HPC or organisation computing infrastructure, it can be imple-
mented for ad-hoc mobile cloud computing as well as edge computing, as dis-

cussed below.

Organisational HPC: Due to the holistic adaptation of IT-enabled services, the

organisational computing requirements have been increased staggeringly. In an

3 https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
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organisational computing setup, besides the financial burden, the traditional in-
house computing facility has several factors which put more load on the environ-
ment and human health. Some of these factors are listed in Fig. 1.7. These are con-
sidered significant hindrance for sustainable computing. On the other hand, along
with economic and utility benefits, in Section 1.6, we have realised the environ-
mental advantages offered by MCC. The MCC can reduce the two-thirds share of

ICT energy consumption on the count of the use of computers and data centres.

Ad-hoc mobile cloud: In traditional mobile cloud computing, the computation-
ally intensive tasks are offloaded from the mobile devices to the cloud for execution
[71]. However, due to latency or unavailability of internet connection, accessing
cloud services are not always desirable. This can be mitigated through MCC. A vir-
tual cloud can be set up in ad-hoc manner by using the collective computing power
of a group of spatially adjacent SMDs [72]. Due to widescale SMD user base, there
is a great probability of finding a sufficient number of SMDs not only at a populous
place but also at scantily crowded locations. This infrastructural flexibility of MCC
and the omnipresence of SMDs, would make it possible to form an ad-hoc cloud
anywhere, allowing to achieve on-demand pervasive and ubiquitous computing
[73]. In this ad-hoc mobile cloud, a mobile device can offload the computing-in-
tensive jobs to the cloud which would be executed by the mobile devices in the

cloud [40].

Edge computing: The wide adoption of [oT and sensor-based applications has led
to the continuous generation of a huge amount of data. For actionable analysis,
these data need to be processed in real-time. Cloud computing has been a popular
option for this. However, the significant latency makes cloud services unsuitable
for real-time applications [30]. For this, edge computing solutions are being pro-
posed where data are being processed at the edge of the network [74]. But setting
up these local data processing architectures will incur a considerable additional
cost, besides the usual environmental liability. Also, as these solutions are offered
by specific vendors, they naturally tend to involve high costs. Another problem
with vendor-offered solutions is that there is a minimum scope of interoperability

with legacy systems and solutions from other vendors as they tend to be closed and
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tightly coupled. This increases the IT infrastructure cost further. In view of these
issues of the proprietary edge systems, we believe that MCC can be considered as
a feasible edge computing system [75]. Especially, the SMDs available in the vicin-

ity can be leveraged to process the in-campus IoT data [76].

1.7.6 Aim and Scope of the Work

The primary aim of this study is to establish MCC as a flexible computing system
that can provide centralised HPC as well as ad-hoc computing. Though the MCC
approach sounds simplistic, successful implementation is not straightforward. It
involves several research issues such as designing a suitable architectural frame-
work, finding best suitable SMDs, fair and optimised scheduling, mitigating user
mobility, minimizing unnecessary job offloading, ensuring fault tolerance, moti-
vating people for volunteer participation, devising appropriate incentive models,

among others.

Besides, theoretically establishing MCC as a sustainable computing solution, in
this work, we limit our focus of study to only a few selective aspects. The perfor-
mance of MCC largely depends on appropriately scheduling the tasks to the most
suitable SMDs. For this an efficient scheduling algorithm is needed. Additionally,
the primary criterion for correct scheduling is to find and determine the most suit-
able SMDs as computing resources for a given task. Similarly, assessing the availa-
bility of SMDs is important to maintain the QoS. Only proposing a concept meta-
physically is not enough to establish it. In view of that, we envision presenting a
proof-of-concept prototype of MCC as an organisational edge computing infra-

structure.

Though MCC can be set up ubiquitously on an ad-hoc basis, we limited the scope
of our proposed system primarily within the periphery of a campus or within a
building such as an office and residential buildings, educational institutes, hospi-

tals and clinics, shopping malls and retail marts, etc.
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Coolant Heavy cooling is required to mitigate the heat generated from the computing
systems.

This consumes massive electricity.

The coolant used in the air conditioners causes global warming and ozone
layer depletion.

Batteries Huge batteries are required for continuous power backup.

Commonly used lead-acid batteries have adverse effects on human health
and the environment.

If not properly disposed of they may contaminate the soil and water.

Cleaning Dusting and cleaning are important in organisational computing systems for
materials efficient operation.

Varieties of cleaning solution are available, and most of them are toxic as
they contain bleach, ammonia, or chlorine.

These toxic cleaning solutions have an adverse effect on human health.
Diesel fuel Diesel fuel-based power generators are often used in case of power failure.

These generators are used especially at the sites which experience recurring
power failure, and batteries can not support for longer durations.

Diesel fuel produces an enormous amount of CO, and other chemicals which
causes global warming as well as affect human health.

Electronic  Electronic equipment have a finite lifespan.

waste
Most of the computer peripherals need to be replaced by 3-5 years which is
increasing the amount of e-waste enormously.
The e-wastes are not easily degradabel and are harmful to the environment
if dumped on the open landfills.

Fire With electronic equipment there is always chances of fire due to short

suppression circuits, etc. Therfore fire suppression sytems are commonly employed.

Various chemicals used in the fire system may be harmful to the
environment such as ozone layer depletion and global warming.

These chemicals are toxic and may find its way to underground water or to
rivers, thus, contaminating the water resources.

Packaging  The packaging materials of the computing equipment purchased by the
organisations add huge waste every year.

Some materials like foams, thermocols, plastic bag, and plastic support
accessories are nonbiodegradable and need proper recycling.

Dumping these on the open area may harm the environment.
Office Running cooling and heating equipments and lights in the office for the
premises entire day/night causes considerable electricity consumption and wastage.

Daily office chores produce lots of paper, plastics, and packaging wastes.

Floor cleaning, glass pane, computers, and carpets also produce chemical
wastes.

Fig. 1.7. Factors that affect the environment indirectly in an organisational computing setup [77]
1.8 Research Objectives

In line with the above-mentioned aim and scope of this study, we designed our
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research objectives as listed below:

o Understand the gravity of sustainable computing
To convince ourselves of the requirement of sustainable computing, we genu-
inely need to realize the serious concern of the deteriorating environment of
the Earth. Moreover, we need to recognize the role of the traditional and ex-
isting computing system in this. Based on this understanding, we would be
able to identify the more threatening and addressable aspects.

« Establish MCC as a feasible sustainable computing option
As we claim that MCC can be perceived and implemented as a sustainable
computing solution, we need to establish the rationality behind this. Specifi-
cally, we aspire to:
o Ascertain the sustainable benefits of MCC
o Frame the layout of a generalised architecture of MCC
o Identify the major challenges of MCC and suggest the probable way outs

and research progress

e Develop a systematic approach to profile the static and dynamic re-
source information of the SMDs for MCC
In MCC, the essential prerequisite is to profile and assess the resource param-
eters and their present status precisely. However, considering the heterogene-
ity and dynamicity of these resource parameters, profiling them and assessing
their fitment for different requirements is not trivial. We aim to develop a
model and systematic methodology to profile the static and dynamic resource
parameters of the SMDs in real-time.

o Select the suitable SMDs as per their static and dynamic resources
To achieve satisfactory performance and QoS, selecting the best resources
(SMDs) is crucial. Scheduling the MCC tasks to the most suitable SMD as pr
the task requirements would impact the efficiency of MCC significantly. Suit-
ability of an SMD can be determined based on multiple criteria (e.g., CPU and
GPU power including clock frequency and the number of cores, battery re-
maining, probable availability period, past history of reliability, cost of service,

pre-load (whether overloaded or not), mobility behaviour, etc.). Considering
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the heterogeneity of the assessment parameters selecting the most suitable
SMD poses an interesting research problem.

Design resource-aware and energy-aware scheduler for MCC

Scheduling is an important aspect for MCC like any other distributed systems.
The overall performance and the integrity of the MCC can be assessed by fac-
tors such as execution time, resource utilisation, load balancing, etc. An effi-
cient task scheduler should conform to these requirements. Conversely, an in-
efficient scheduling method will have a negative impact on the QoS of MCC.
Furthermore, considering the battery-powered constrained energy of the MCC
resources, i.e., the SMDs, it is crucial to minimise the energy consumption to
complete the scheduled task. This can be achieved to some extent by optimis-
ing the task scheduling to the appropriate SMDs. However, considering only
energy efficiency might lead to a huge load imbalance among SMDs, i.e., the
most energy-efficient SMDs would be overloaded most of the time. In a dy-
namic and heterogeneous system like MCC, it is nontrivial to realise an opti-
mised scheduler, in view of the fact that scheduling in a heterogeneous distrib-
uted system is an NP-complete problem.

Determine the availability of an SMD to improve QoS of MCC

To maintain the QoS of MCC, determining the SMD availability is important.
Ideally, an MCC task should be assigned to the SMD that has the maximum
probability of being connected to the MCC network until the completion of
the assigned task. Leaving an SMD without sending the result back would in-
crease the overload for task offloading. Frequent task offloading would hamper
the MCC performance significantly. Hence, it is required to assess the proba-
bility and the confidence of a particular or a set of SMDs being staying for a
certain period of time (till completion of the job that is to be assigned).
Explore the suitable approaches for mobility-aware service provisioning
in MCC

Mobility is a crucial issue in mobile computing, especially for a local MCC
where the SMDs are connected through WLAN or other short-range commu-
nications. For a successful implementation of MCC, this has to be addressed.

There is a requirement for finding the best possible ways to ensure the MCC
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service provisioning mitigating the user mobility.

o Present a proof-of-concept of MCC for practical application and imple-
mentation
To assess and convince the feasibility of MCC, it is important to present a
working model of it. In this work, we would aim to present a proof-of-concept
of MCC with the minimalistic features, which can be considered as a prototype

for further development.

1.9 Thesis Structure

The thesis is structured as following. Fig. 1.8 illustrates a hamburger organisation

of the thesis.

Fig. 1.8. Hamburger model of the thesis organisation

Chapter 1: We try to establish the need and importance of sustainable computing
and how MCC would help achieving it. The primary aim of this chapter is to inves-
tigate and unveil the environmental impacts of the existing computing systems and
set the background of presenting the need for an alternate sustainable solution in

order to minimise the environmental hazards. Here, we aim to establish MCC as
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the sensible and feasible solution to sustainable computing while highlighting the
environmental benefits and the enablers of MCC in achieving the goal of sustaina-

ble computing.

Chapter 2: We look into the similar work found in literature. We report the re-
search works and projects that are close to the overall concept of MCC. We also

explore the related work of the individual research presented in chapters 3 to 8.

Chapter 3: We present the technicalities and the working of MCC in details, which
include the probable models and architectures suitable for different implementa-
tions of MCC. Besides the sustainable benefits discussed in Chapter 1, other ad-
vantages of MCC are also mentioned. Furthermore, the issues and challenges asso-
ciated with MCC implementation along with the open research problems are me-

ticulously analysed.

Chapter 4: We present a methodological approach to profile the candidate SMDs
to assess their resources for job scheduling. The intricacies of the designing, devel-
opment, and implementation of the SMD profiling and selection, the two neces-

sary components in realizing an organisational MCC, are presented in detail.

Chapter 5: We aim to find out a suitable MCDM method for resource selection in
a dynamic and time-constraint environment like MCC. For this, we present a com-
parative analysis of various MCDM methods under asymmetric conditions with

varying selection criteria and alternative sets.

Chapter 6: We present two scheduling algorithms for MCC. In the first part, we
use a heuristic approach to propose a resource-aware multicriteria-based schedul-
ing algorithm for MCC. In the second part, we use a PSO-based metaheuristic ap-
proach to propose a load balance aware energy-efficient scheduling algorithm for

MCC.

Chapter 7: We provide an effective model to predict the availability of the users
(i.e., their SMDs) in a local MCC environment to prevent frequent job offloading
and job loss. We propose an advanced convolutional feature extraction mechanism
that is applied to LSTM and GRU-based time-series prediction models for predict-
ing SMD availability.
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Chapter 8: We address the mobility issues of the users in a P2P MCC scenario. In
the first part of this chapter, we aimed to predict a stable group of SMDs so that
resource servicing takes place within the group only. And in the second part, we
propose a service provisioning scheme considering the mobility of the resource

providers and the consumers.

Chapter 9: We aspire to establish a proof-of-concept for the feasibility and use of
MCC as a sustainable edge computing solution (MCC-edge). A typical smart HVAC
system of an office building has been considered for the experiment case. We aim
to process the HVAC data in real-time using the MCC-edge set up within the build-

ing for auto adjustment of the AC controller and error notifications.

Chapter 10: We summarize the thesis while discerning the probable future direc-

tions of MCC and related aspects.
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Related Work

“Research is to see what everybody else has seen, and to think what nobody else has
thought.” --- Albert Szent-Gyorgyi

2.1 Introduction

The concept of MCC is certainly not absolutely new. It is based on several estab-

lished computing paradigms and approaches, as briefly mentioned below.

Distributed computing: In a distributed system, the computing nodes are phys-
ically separated and connected through local or global networks [78]. The compu-

ting units work collaboratively to achieve a common goal.

Parallel computing: Parallel computing refers to the concurrent execution of
multiple subtasks, descendent from a large task, on multiple processing units [79].
Generally, distributed computing adheres parallel computing though it is not man-

datory for every case.

Cluster computing: To attain HPC, researchers suggested forming a parallel and
distributed computing system by connecting multiple standalone computers
through high-speed LANs [80]. By this, a single, integrated HPC can be garnered

by aggregating the computing capacities of the connected computers [81].

Grid computing: Diverse types of computing resources are connected through a
local or global network forming a grid of resources. In a typical computing grid,
any grid member can consume resources from or provide its resource to other grid

members.

Volunteer computing: Computing resources are voluntarily shared by owners
from across the globe [82] [83]. Though grid and volunteer computing seem simi-
lar, there are a few differences, as listed in Table 2.1. However, many extended grid

computing systems support volunteer computing [84].

P2P computing: It is a decentralised distributed computing system where com-

puting loads are shared among peer computers connected through local or global
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networks [85]. Each participating computer, i.e., a peer node, can work both as a

client and a server, depending on the context of the computation [86].

Opportunistic computing: When two or more devices come into contact, it can
be perceived as an opportunity to share resources, services, and information with
each other. Opportunistic computing, essentially a kind of distributed computing,
exploits the advantages of neighbourhood and proximity among computing de-
vices. The continuous advancement of communication technologies, especially
wireless communication technologies such as cellular, Wi-Fi, WiMAX, Wi-Fi
hotspot, Bluetooth, etc., has broadened the avenue for opportunistic computing
on a large scale. Opportunistic computing does not mean only locating the devices
and accessing their resources opportunistically but also the opportunistic way to
reach those devices [87]. That is termed an opportunistic network, which suggests
finding the best path whenever possible to reach the device involved in opportun-

istic computing, probably in a pervasive manner [88].

CPU scavenging: Resource scavenging refers to tapping the potentially accessible
computing resources whenever they are available and possible [89]. In volunteer
computing, though resources can be availed from holy souls (contributing enti-
ties), they cannot be taken for granted, i.e., it is to be ensured that the normal
functioning of the volunteering node should not be hampered. So, the external
computing task should be executed when the CPU is free or very lightly loaded.
This is known as CPU scavenging and can be perceived as another form of oppor-

tunistic computing [90] [91]. Grid computing follows this approach [92].

Crowdsourced systems: A crowdsourced system is a distributed system whose
constituent components or the whole system are materialised by scrounging the

hardware or software resources owned or generated by the crowd [34].

Crowd computing: Crowd computing is a form of volunteered crowdsourced sys-
tem where computing resources belonging to the general public are utilised to
meet HPC requirements. Some real-life social and scientific problems (e.g., drug
discovery, gene mapping, cancer and AIDS research, mathematical modelling and
simulation etc.) are so complex and computation intensive that they cannot be

solved by means of conventional processing speeds and capabilities within a
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feasible time boundary without employing heavily expensive supercomputers
which most of the research institutes and organisations cannot afford. Crowd com-
puting is a practical alternative to purchasing big compute clusters for carrying out
computations required to solve these problems [93]. Many individuals and organ-
izations come forward to allow these problems to be processed on their computers
when they are not in use. The collective processing power can be compared to
powerful supercomputers, minus the huge cost [55]. Having an internet connec-
tion and willing to participate in crowd computing, a user should download and
install a client application through which he interacts with the project application
running on a server. A middleware helps the client application to communicate to
the server where the crowd computing project is hoisted. The highly jobs are dis-
tributed to the participating computers. The client applications on those comput-
ers opportunistically hunt for the unused computing cycles. On availability, as-
signed computing jobs are executed, and after completion, the results are sent back
to the project’s server. The client application ensures that lending the computing

resources does not affect the user’s own jobs.

Table 2.1. Differences between grid computing and volunteer computing [94]

Grid computing Volunteer computing
Resource Grid resources are generally owned by or- | Resources are usually owned
owner ganisations such as universities, research by the general public.

labs, public organisations, etc.
Resource avail- | The jobs are pushed to the grid resources. | The volunteers pull the com-

ing approach puting jobs.

Resource Both ways. A grid resource provider may One way. Volunteers are
sharing also be a resource consumer. always the resource providers.
Resource class | Organisational Personal

Reliability High Low

Security threat | Low High

Public outreach | Low High

A typical MCC system either follows all of the above-discussed computing para-
digms or most of them. Nearly all of these technologies are decade old and a co-
lossal number of research work can be found on these, addressing various areas. In
this chapter, we focus on only those works which very closely related to the prob-
lems addressed in this thesis. In the following, we examine the related literature
on that basis, as each subsequent chapter is organised as individual section. For

each section, exploring the existing research, we try to find out the research scope.
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2.2 MCC as Computing Paradigm

As mentioned above that several existing computing paradigms have incited the
notion of MCC. In this section, we try to find out the works that incorporate these
computing approaches with mobile computing. We also mention a few prominent

global projects that fostered the idea of MCC in its basic form.

2.2.1 Related Research

In the following, we categorically report the pioneer and recent research works that
specifically relate to computing on mobile devices. The categories are in no way
exclusive because all the concepts discussed below are either overlapping or rep-
resented similarly in the literature. However, we considered only those papers

which deliberated mobile devices as computing resource providers in some way.

Distributed computing: Networked mobile devices are extensively explored for
performing distributed computing [95] [96]. In his Master’s thesis [75], Marinelli
used Android-based smartphones as computing resources by porting Hadoop
Apache to the smartphones. He developed a mobile cloud computing system
named Hyrax that offered a networked computing environment for smartphones.
However, the performance of Hyrax was not up to the mark mainly because of the
inferior smartphones of that period, and also, Hadoop was not optimized for mo-
bile devices. Authors of [97] and [98] proposed a MapReduce-based distributed
computing framework for mobile devices, named Misco, that supports the devel-
opment of distributed data clustering applications on networks of smartphones.
Lee et al. [99] discussed the advantages of using mobile devices for distributed an-
alytics. They carried out distributed analytics with a CPU, memory and/or I/O in-
tensive workload on a Hadoop-based cluster of Android mobile devices and as-
sessed the performance using typical Hadoop benchmarks. The latest Hadoop soft-
ware framework was entirely ported to a high-end device (e.g., Google NEXUS 7
tablet) without degradation of the overall performance. Arnold [100] presented a
framework for distributed computing over smartphones. In [93], the authors did a
feasibility experiment by implementing a small cluster of Android smartphones to
show that a local and mobile ad-hoc cluster can be built using powerful

smartphones. Datla et al. [96] suggested local cooperation of mobile devices to
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execute computing-intensive tasks. Dong et al. [101] proposed a generic random-
ized task assignment framework for participatory computing named REPC, in
which the mobile devices were used as computing devices to process the compu-
ting-intensive tasks. They used pedestrians’ mobile devices to identify wanted
criminals. They implemented it on a testbed of twenty Android smartphones con-
nected through a wireless network in an open area. Dumont [102] designed and
constructed a REST web service based distributed mobile computing system. They
proposed a communication protocol, MEXP, for data exchange between devices.
They tested the system in a biology laboratory scenario. Salem [103] proposed a 4-
tier architecture for a web-based distributed computing system comprising a net-
work of smartphones to execute machine learning models and provide predictions.
Sanches et al. [104] presented a data-centric distributed computing framework.
The proposed infrastructure-less distributed system consists of co-located mobile
devices and can process batches or streams of data generated by the devices. Here,
instead of sending the tasks to specific resource-providing devices, to minimise the
data exchange, the authors proposed to process them at the data generating node

only.

Cluster computing: Biisching et al. [93] presented a proof-of-concept demon-
strating the feasibility of building a mobile cluster. They built a cluster with six
Android mobile phones connected through a USB hub with a controlling node and
evaluated the cluster's performance by running LINPACK, a standard benchmark
for HPC systems. The cluster attained a 75% performance level of the ideal linear
scaling of six times. The 25% deficit was mainly due to network latency and inabil-
ity to exploit the devices’ resources 100% (following the non-intrusive and oppor-
tunistic execution policy). In a similar work, Attia et al. [105] built a mobile cluster
of two Android devices with six cores. They used standard C programming with
MPI for task assignment and communication between two mobiles. As task size
grew, the authors observed significant performance improvement using the cluster

compared to individual processing.

Opportunistic computing: Conti and Kumar [88] observed the prospects in op-

portunistic computing along with opportunistic networks in the context of social
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and pervasive computing. An encouraging discussion on opportunistic computing
can be found in [106]. Murray et al. [107] suggested a crowd computing system
formed by utilising an opportunistic network of cooperative mobile devices in-
spired by human social interaction to achieve large-scale distributed computation.
Shi et al. [108] presented opportunistic mobile computing, where an in-motion de-
vice that needs external resources to run a computational task avails the same from
a resource-providing mobile device that it encounters on its trajectory and gets
connected intermittently. They designed a job distribution and task allocation
scheme for this uncertain and unreliable computing environment. Mtibaa et al.
[109] presented a proof-of-concept of dynamic and adaptive opportunistic mobile
computing. They proposed a generic peer-to-peer computation offloading archi-
tecture to offload the task to various resource-providing entities such as mobile
device clouds, cloudlets, and clouds. For this work, the authors considered both
computation opportunities and network opportunities while counting minimized
response time, reduced energy consumption, and increased network lifetime as of-

floading criteria.

Volunteer computing: Tapparello et al. [110] presented the state-of-the-art of vol-
unteer computing on mobile devices and a literature review of how the different
parallel and distributed computing architectures have been adapted to use mobile
devices for opportunistic computing. Erick Lavoie et al. [11] presented a first-of-
its-kind web browser based distributed computing tool, Pando, for volunteer com-
puting on personal mobile devices. The devices can be connected via either LAN
or VPN, or WAN. The researchers used a declarative concurrent programming
model and implemented it using JavaScript, WebRTC, and WebSockets. Due to its
independence of specific communication protocols or input-output libraries, the
authors claimed Pando is also re-implementable in other programming environ-
ments. To support the HPC requirements in ALICE, one of the four main experi-
ments of CERN’s LHC project, Jenviriyakul et al. [112] developed a prototype of a
volunteer computing platform on mobile devices based on BOINC [113]. The pro-

totype named ALICE Connex exploits and aggregates the unused computing power
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of the volunteer smartphones to calibrate the ALICE’s time-of-flight (TOF) particle

detector.

Enterprise computing: Acknowledging the opportunities and potential, mobile
devices are being proposed to be utilised as organisation-level computing re-
sources. Arslan et al. [114] [35] proposed an enterprise-level distributed computing
framework using SMDs where organisations could leverage the idle SMD resources
of their employees when the devices are left for overnight charging. They imple-
mented a prototype to demonstrate the viability and efficacy of the system called
‘computing while charging’. For executing enterprise applications, Schildt et al.
[115] aimed to utilise the idle CPU cycles of the smartphones given to employees by
the organizations. The goal is to offload a major portion of the enterprise compu-
tation to employees’ mobile phones while charging during working hours. They
designed a Java-based software framework that can distribute computing tasks to
a network of Android devices and personal computers and gather the results. Using
Java gave the researchers twofold advantages: i) they could reuse the existing busi-
ness logic written in Java, and ii) the framework not only supported Android mo-
bile devices but also could run regular desktop or server hardware, allowing seam-

less job distribution.

Mobile grid computing: In early 2000, with the prolificity of mobile phones, re-
searchers endeavoured to incorporate mobile devices to grid computing in differ-
ent ways [116] [117] [18] [119] [120]. Most aimed at extending the desktop grid to
mobile devices, i.e., the accessibility of grid resources from mobile devices. But
gradually, as the mobile devices became more powerful, they were treated as com-
puting units altogether. As a result, they became part of grid computing not only
as resource consumers but also as resource providers [121]. Kurkovsky and Bha-
gyavati [122] [123] proposed a wireless mobile grid to carry out resource-intensive
tasks. Any device in the grid can initiate a task that it cannot execute on its own
due to resource limitations. The task is distributed to one or more devices in the
grid, and after execution, results are collected. Katsaros and Polyzos [124] proposed
a campus-wide hierarchical mobile grid architecture where the resource-providing

mobile nodes are connected through WLANSs. Black and Edgar [125] demonstrated
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the feasibility of using mobile devices as grid resources by implementing the
BOINC client on an Apple iPhone via an emulated x86 virtual machine. The com-
puting tasks were downloaded from a BOINC server, executed on the virtual ma-
chine (mimicking iPhone), and results were sent to the server. Viswanathan et al.
[126] presented a resource-provisioning framework for a hybrid grid comprising
both static and mobile computing grids. The proposed system boasts autonomic
capabilities, such as self-organization, self-optimization, and self-healing, while
considering energy- and uncertainty-aware resource allocation. Sriraman [127] re-
visited the possibilities of using smartphones and tablets in grid computing while

briefly mentioning some challenges and solution approaches.

Ad-hoc mobile cloud computing: The concept of the mobile grid was extended
as an ad-hoc mobile cloud where a minuscule local cloud is formed in an ad-hoc
manner by connecting several mobile devices available nearby [128]. Canepa and
Lee [129] presented a framework for creating an ad-hoc mobile cloud with stable
devices in the vicinity of the resource consumer. They implemented the prototype
in Java and using Hadoop and tested its performance a Korean character recogni-
tion on an OCR and then translating it to Romanize. The authors observed a neg-
ligible (1% on average) performance degradation in carrying out the task in the
mobile cloud than executing it on a single device. Khalifa et al. addressed various
aspects of ad-hoc mobile cloud in their series of works [130] [131] [132] [133]. Miluzzo
[72] presented a theoretical perspective on the feasibility and potential of local
cloud computing made up of a collection of cooperating mobile devices available
nearby for running resource-intensive applications. In [134], while deploying ad-
hoc mobile cloud in a small hospital scenario besides mobile devices, they also
included semi-stationary on-board computing resources of vehicles. Nishio et al.
[135] proposed architecture and mathematical framework for heterogeneous re-
source sharing in a mobile cloud. Based on the idea of service-oriented utility func-
tions, they aimed to develop a unifying utility function which could map all the
heterogeneous resources into a single parameter. Funai et al. [136] proposed and
implemented a mobile computing system connected through an ad-hoc network.

Here, a volunteer mobile device elects itself as a local task distributer and invites
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others to join the ad-hoc cloud for computation via D2D communication such as
Wi-Fi Direct. Remédios [137] presented an early prototype of an infrastructure-less
local mobile cloud for processing locally generated big data. To minimize execu-
tion time and energy consumption, Yaqoob et al. [138] proposed a heterogeneity-
aware task allocation scheme for ad-hoc mobile cloud computing. Shila et al. [40]
proposed an automatic, scalable, and efficient service/resource management
framework for an ad-hoc cloud. The proposed framework is a generic one, i.e., it
considers both static and mobile resources in the vicinity. Balasubramanian and
Karmouch [139] presented a framework of an ad-hoc mobile cloud for P2P laaS
provisioning. In their proposed system, a needy mobile device can search and se-
lect peers and form an ad-hoc network with them. After forming the virtual cloud,
the jobs are obtained from the resource-seeking device, executed, and the results
are sent back. On completion of the tasks, the resources are released. Lately, ad-
hoc mobile clouds are proposed to attain edge computing aiming to meet the need

for time-constraint applications [140] [76].

Mobile crowd computing: Loke et al. [141] argued the feasibility of MCC. They
presented a job distribution approach among the mobile devices in such a network
connected via Bluetooth. In this framework, a mobile device designated as a del-
egator distributes the jobs to other mobile devices designated as workers, which
execute the assigned jobs in a work-stealing fashion. Fernando et al. [142] [143] in-
troduced a crowd computing framework for mobile devices, named Honeybee,
through which mobile devices can share work and utilize local resources, em-
ploying the work-stealing strategy and load balancing among different de-
vices. They proposed a work-stealing method for MCC, which utilises locally avail-
able smartphones, combinedly and collaboratively, to form a local mobile resource
cloud. In his book “Crowd-powered mobile computing and smart things” [144],
Loke discussed various potential aspects of MCC in applications like ubiquitous
computing, context-aware servicing, drone services, and smart things. Prem Ku-
mar et al. [145] developed a client/server-based distributed computing platform by
harnessing the computing power of public mobile devices. To carry out some tasks
through this system, a user must upload a dataset, the executable Java code, and

another that would combine the results. The authors offered a task distribution
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and scheduling algorithm that abstracts the computational heterogeneity of the
devices, task execution complexities, and the uploaded dataset size. The proposed
system also offers storage services utilising the space available on public devices.
For security, they used threshold cryptography on the uploaded files to create en-
crypted shares. Going beyond the mobile phones, Kiindig et al. [146] utilised other
portable smart personal devices, in addition to smartphones, to realise
crowdsourced edge computing. An ad-hoc edge network is formed by connecting
the crowd peers within a nearby neighbourhood. The peers connected in a dynamic
mesh architecture can be task handlers, workers or message brokers. They demon-
strated the applicability of such crowdsourced edge by implementing a video-en-
hanced object search in a campus-based wide local area to generate informative

heat maps or identify a specific object using deep learning techniques.

2.2.2 Global Projects

SETI@home, the first truly crowd computing project, was initiated by the Univer-
sity of California, Berkeley and made public in 1999 to search for evidence of extra-
terrestrial life. For this, they designed BOINC# (Berkeley Open Infrastructure for
Network Computing), an open-source middleware that provides support for vol-
unteer grid computing projects. Since then, many volunteer and crowd computing
projects have been instigated. Some of them have successfully been completed.
Some are still going on. Later, in late 2004, IBM joined hands in the mission to
solve various problems, including medical, environmental and other humanitarian
posers, by launching a grid computing framework named World Community Grid>
(WCG). BOINC and WCG jointly or individually initiated several large-scale pro-
jects focusing on different scientific problems. Some notable projects among them
are Einstein@home® (pulsars and gravitational waves detection),

FightAIDS@Home? (HIV/AIDS research), Folding@home® (disease research),

+https://boinc.berkeley.edu

5 https://www.worldcommunitygrid.org/

6 https://einsteinathome.org/

7 https://www.worldcommunitygrid.org/research/fahb/overview.s
8 https://foldingathome.org
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LHC@home? (high energy physics), etc. GPUgrid.net*® (focuses on problems re-
lated to biomedical research), Citizen Science Grid", and distributed.net? are some
other popular examples of crowd/volunteer computing platforms and applications.
All the projects have a common motivation for reducing costs compared to tradi-

tional HPC systems.

Another online computing community service named grid.org was launched in
2001 which ran several different volunteer computing projects. It started with a
cancer research project aiming to screen the target molecules against known can-
cer target proteins. Successively, varieties of other projects such as finding cures
for small pox and anthrax, analysing human protein folding, hidden Markov mod-

elling and web load testing were introduced.

Though almost all these projects are desktop-based, it won’t be off beam to be op-
timistic, inspired by the attainment of desktop crowd computing, about the suc-
cess of MCC as well. That is why many crowd computing projects are also fitting
themselves to run on smartphones. BOINC published an Android version, which
allows Android devices to join and contribute voluntarily to crowd computing pro-
jects [147] [148]. Users can choose one or more projects among several Android-
supported projects (e.g., Asteroids@home, Rosetta@home and many others) avail-
able. If a user has an Android-based smartphone wish to volunteer his phone’s pro-
cessing cycles, he downloads BOINC client software which receives jobs from a
designated server [149]. Whenever the client application senses an opportunity, it
utilizes a user’s phone’s processor to execute assigned tasks. On completion of the
particular task, the result is sent to the server. But since battery life is a severe
concern to users, the middleware checks for the battery status of the smartphone
before initiating processes. By default, the application runs if the battery level is

over 9o percent or if the phone is being charged. Moreover, BOINC works only

9 https://lhcathome.web.cern.ch/

10 http://gpugrid.net/

11 csgrid.org/csg/

12 http://www.distributed.net/Main_Page
13 www.grid.org
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when the Wi-Fi connection is enabled and available so that the user’s mobile data

is not burned up.

Vodafone Foundation, along with The Garvan Institute of Medical Research in
Australia, came up with a similar project called DreamLab', intending to find a
cure for cancer by pooling the public’s smartphone computing power [150]. Like
BOINC, volunteers simply have to install the DreamLab app and allow it to utilize
their smartphone’s ideal CPU cycles. The app automatically downloads the pro-
cessing task, process it and sends the result back to the Institute. This helps accel-
erate research work to counter different cancers like breast, ovarian, prostate, and
pancreatic cancer. The institute expected to speed up the data crunching processes

up to 3000 times if 100,000 users lend their smartphones to this project.

Ubispark’, a research project nurtured by the Department of Computer Science,
University of Helsinki, aimed to utilise smartphones and other smart devices (e.g.,
smart TVs) for large-scale data processing related to science problems. Like BOINC
for Android and DreamLab, Ubispark also can be downloaded as a regular Android
app by users who are willing to contribute their device's idle computing power. As
per the user’s preference, the app can be set to contribute only when the device is

connected to Wi-Fi and while it is being charged.

Neocortix*®, a USA-based company, is running a commercial MCC project where
users lend their smartphone’s idle processors and earn money. The users need to
download the PhonePaycheck app. The app executes the tasks when the
smartphone is on charge and connected to Wi-Fi. Neocortix has a range of services,
all of which run on the public’'s Android SMDs. The Neocortix Cloud Services,
launched in February 2020, provides a scalable compute service for which a full
Debian Linux is run in a secure container on the SMDs, and is accessible via a
standard SSH interface. The BatchRunner, launched in September 2020, allows us-
ers to launch their own customized batch jobs with minimalistic changes. They

only need to edit a few lines of Python code and run a plain script. It offers many

14 https://www.vodafone.co.uk/mobile /dreamlab
15 https://ubispark.cs.helsinki.fi/
16 https://neocortix.com/
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benefits, such as supporting multiple programming languages, load testing tools,
image renderers, machine learning environments, etc. The company provides user-
friendly tutorials and a certification program for user learning and training. Pock-
etScience, launched in February 2021, is a crowdsourced academic research app
that allows Android/Arm device users to contribute to COVID-19 and other medi-

cal research.

2.2.3 Research Scope

From the above discussions, we observe that much work has been done toward
MCC and other related areas. However, none of them covers MCC wholesomely.
All of them either discussed different aspects of mobile-based computing dis-
cretely or presented some specific empirical works mainly to show the feasibility
of such systems. The only paper we found with a similar presentation theme that
of ours is by Lavoie and Hendren [151]. But they concentrated only on volunteer
computing. Also, this paper does not discuss architectures, design criteria and con-

siderations, advantages, or issues and challenges.

Moreover, most papers were published just after SMD was launched in the market.
Only a few works have been published intermittently since then and also in recent
years. Since the initial launching of the SMDs, they have evolved a long way. To-
day’s SMDs are not only for making phone calls, browsing the internet or keeping
personal notes; rather, they have become full-fledged computers. Many people use
SMDs as computers by hooking them up to external keyboards and mice. In view
of this development, MCC needs to be given a fresh look and perspective with the

potential to achieve more.

Crowd computing has been exercised in sophisticated science and research pro-
jects in the form of volunteer computing (discussed in Section 2.2.2). But despite
the apparent benefits and success of these projects, the idea of MCC is yet to find
its feet in general user applications [152]. Even though MCC has an unbound po-
tential for providing on-demand and ubiquitous computing services, it has not yet
garnered sufficient attention from the research community and other related
stakeholders, including general users. People need to be made aware of the MCC

more convincingly. For this an exclusive documentation is needed that covers
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every aspect, in general, required to know to understand MCC, which can fill the
purpose of a preliminary reference for the interested researchers, both novice and
experienced, who are keen to work on MCC, as well as other stakeholders willing

to explore the benefits of MCC.
2.3 Resource Profiling in MCC

Profiling the potential resources is an important aspect of any distributed compu-
ting where the efficiency of the system mostly depends on the quality and capabil-
ity of the computing resources. It becomes more crucial when we deal with mobile
distributed computing systems such as mobile grid computing or mobile cloud

computing, where the resource providing devices are mobile.

2.3.1 Profiling Mobile Devices’ Information for Smartphone-based Computing
To realise enterprise-level volunteer computing using smartphones, Arslan et al.
[35] profiled the mobile device charging behaviours of users for identifying suitable
scheduling times. Using an Android application, they tracked three states - the
phone being charged, not charging, and switched off. The application logged the
event to a server with a timestamp (recorded at the user’s end) whenever there was
a change in state. Also, to assess the networking activity, they logged the number
of bytes transferred over the wireless interfaces when they were in a charging state.
They also measured the variations in the bandwidth of the mobile devices to pre-
cisely assess the data transmission performance for efficient task scheduling across

different devices.

2.3.2 Research Scope

Though profiling is crucial for understanding the potential resources, surprisingly,
a thorough search of the relevant literature yielded no related article, except the
one discussed above, that deals with extensive resource profiling for mobile com-
puting systems. This opens up a great opportunity to design and implement a suit-

able resource profiling framework for MCC.
2.4 Resource Selection in MCC Using MCDM Method

Choosing the best or the most suitable resources optimally among the available

ones can significantly improve the effectiveness of any distributed system. Various
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approaches are being tried for selecting the resources in mobile distributed com-
puting environments such as mobile grids and mobile clouds. However, depending
on the application requirements, the parameters are considered for selection may
vary. On the other hand, MCDM techniques have been used for decision-making
in several application domains for a long time [153] [154]. They have been exten-
sively used in engineering [155]. Here, we highlight the use of MCDM in the related
areas of distributed computing comparable to MCC. Before that, we point out some
research work addressing optimized resource selection in a mobile computing en-

vironment.

2.4.1 Optimization-based Resource Selection in Mobile Grid/Cloud

Different optimization techniques are used by many researchers for resource se-
lection and task allocation and scheduling. Zhou et al. [156] proposed an optimal
mobile device selection approach for a mobile cloud computing environment con-
sidering the stability of the devices. To find out the mobile devices with maximized
usable computation capabilities in a mobile cloud system, Habak et al. [140]
adopted a greedy heuristic based optimization method that would select the most
suitable mobile device among the available ones. They considered the computation
and bandwidth capacity of the device and its departure time as the selection pa-
rameters. Venkatraman et al. [157] proposed a linear programming based model to
select the best mobile devices in a mobile ad-hoc cloud, considering the devices’
resources such as CPU, RAM, storage, etc., aimed to use. Viswanathan et al. [158]
used an optimization approach to select a mobile node as a computing service pro-
vider in a mobile grid computing for ubiquitous healthcare. Among the considered
selection parameters such as CPU, RAM, available battery, network resources, the
present location of the node and its availability period, some were intended to be
maximized (e.g., response time and resource availability duration) while some

were minimized (e.g., battery consumption).

2.4.2 MCDM for Resource Selection in Distributed Computing

Besides web service selection [159] [160], MCDM methods are also popularly used
for cloud service selection [161] [162] [163]. Youssef [164] used a combination of

TOPSIS and BWM to rank cloud service providers based on nine service evaluation
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criteria, including sustainability, response time, usability, interoperability, cost,
maintainability, reliability, scalability, and security. Singla et al. [165] used Fuzzy
AHP and Fuzzy TOPSIS to select optimal cloud services in a dynamic mobile cloud
computing environment. They considered resource availability, privacy, capacity,

speed, and cost as selection criteria.

MCDM methods are being used to improve the efficiency and effectiveness of job
offloading in mobile cloud computing [166] [167]. To choose the suitable hosts (e.g.,
cloud, cloudlet, and peer mobile devices) for offloading the computing tasks from
a mobile device, Ravi and Peddoju [168] used the TOPSIS method. They considered
the waiting time, the energy required for communication, the energy required for
processing in mobile devices, and connection time with the resource as the selec-

tion criteria.

Mishra et al. [169] proposed an adaptive MCDM model for resource selection in fog
computing, which could accommodate the new-entrant fog nodes without rerank-
ing all the alternatives. The proposed method is claimed to have less response time

and is suitable for a dynamic and distributed environment.

To ensure the quality of the collected data in mobile crowd sensing applications,
Gad-ElRab and Alsharkawy [170] used the SAW method for selecting the most ef-
ficient devices based on computation capabilities, available energy, sensors at-

tached to the device, etc.

MCDM methods have been used for resource selection in grid computing as well.
For instance, Mohammadi et al. [171] used AHP and TOPSIS combinedly for grid
resource selection. They considered cost, security, location, processing speed, and
round-trip time as selection criteria. Abdullah et al. [172] used the TOPSIS method
to select resources for fair load balancing in a multi-level computing grid. For re-
source selection, they considered three criteria expected completion time, resource
reliability, and the resource’s load. Kaur and Kadam [173] used MCDM methods for
a two-phased resource selection in grid computing. They applied the SAW method
to rank the best resources in the local or lower level and then used enriched PRO-
METHEE-II combined with AHP for a global resource selection or to select the best

resources across all the top-ranked resources at each local level. Nik et al. [174]
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used the TOPSIS method to select the resource with the best response time for
asynchronous replicated systems in a utility-based computing environment. To
achieve a shorter response time, they considered four QoS parameters (efficiency,

freshness of data, reliability, and cost) as selection criteria.

2.4.3 MCDM for Smartphone Selection

Several works are proposed for evaluation and selection of smartphones [175] [176]
[177] [178] [179] [180] [181]. Various aspects were considered for selection by match-
ing the consumers’ choices and interests. However, in all these works, smartphones

were considered consumer devices than computing devices.

2.4.4 Comparing Different MCDM Methods

Triantaphyllou, in his book [182], extensively compared the popular MCDM meth-
ods such as WSM, WPS, TOPSIS, ELECTRE, and AHP (along with its variants). The
methods were discussed based on real-life issues, both theoretically and empiri-
cally. A sensitivity analysis was performed on the considered methods, and the ab-
normalities with some of these methods were rigorously analysed. Velasquez and
Hester [183] performed a literature review of several MCDM methods, viz., MAUT,
AHP, fuzzy set theory, case-based reasoning, DEA, SMART, goal programming,
ELECTRE, PROMETHEE, SAW, and TOPSIS. This study aimed to analyse the ad-
vantages and disadvantages of the considered methods and examine their suitabil-
ity in specific application scenarios. Besides these, several other authors attempted
to present comparative studies of different MCDM methods with respect to differ-

ent application areas. Table 2.2 presents a comprehensive list of such works.

2.4.5 Research Scope

As mentioned in Section 2.4.3, the existing works that have used MCDM for
smartphone selection are consumer-centric. Here the main purpose of smartphone
selection is to determine the best device according to the consumer's choice and
preference. These selection criteria focus more on the cosmetic aspects of the
SMDs, such as screen size, camera, design, etc., than their computing. In fact, we
could not find any work that applied MCDM for selecting SMDs as computing re-
sources. Moreover, these selection factors are very much fixed, whereas, in MCC,

the selection parameters are dynamic in nature. Considering this, we need to
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search for an MCDM method that would be suitable for the resource selection

problem in MCC.

As mentioned in Section 2.4.4, several works exist which tried to find out the most
suitable MCDM method appropriate for a particular application or problem do-
main. However, despite our best effort, we could not find any comparative analysis
of MCDM methods for resource selection in a dynamic environment like MCC or
any other related applications. From Table 2.2, it can be observed that barring only
a few works, none has conducted a time complexity analysis. Furthermore, we
found not a single paper that calculated the actual runtime of the MCDM algo-
rithms. For swift job scheduling, which in turn would lead to improved through-
put, the resource selection algorithm should be time-efficient. This prompted us

to search for such an MCDM method.

Table 2.2. Survey of comparative analysis of different MCDM methods
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[209] | AHP, TOPSIS, ELECTRE | Building performance simu- NIV
I1I, and PROMETHEE 11 lation
[210] | AHP, fuzzy AHP, and Aircraft type selection NI
ESM
[211] | AHP, TOPSIS, and SAW Intercrop selection in rubber NI
plantations
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[212] | AHP, TOPSIS, SAW, and | Employee placement NI
PROMETHEE
[213] | TOPSIS, VIKOR, im- Mining method selection
proved ELECTRE, PRO- v Y
METHEE II, and WPM
[214] | AHP, SMART, Incentive-based experiment
and MACBETH (ranking coffee shops within v oW
university campus)
[215] | AHP, fuzzy AHP, and Supplier selection NEIRN
fuzzy TOPSIS
[216] | TOPSIS, SAW, VIKOR, Evaluating the quality of ur- Jlvly N
and ELECTRE ban life
[217] | AHP, MARE, ELECTRE III | Equipment selection v | W
[218] | VIKOR and TOPSIS Forest fire susceptibility NI
mapping
[219] | PIPRECIA, MABAC, Co- Measuring the performance NI VIR VA
CoSo, and MARCOS of healthcare supply chains
[220] | MOORA, MULTI- Optimize the process pa-
MOORA, and TOPSIS rameters in the electro-dis- SRV Y
charge machine
[221] | AHP, AHP TOPSIS, and Mobile-based culinary rec- NI N
fuzzy AHP ommendation system
[222] | TOPSIS, COPRAS, and Evaluation of teachers NI N
GRA
[223] | AHP, TOPSIS, ELECTRE | Urban sewer network plan NI
I1I, and PROMETHEE II selection
[224] | TOPSIS and AHP Dam site selection using GIS v oA
Our | EDAS, ARAS, MABAC, Resource selection in MCC N N N N
work | COPRAS, and MARCOS (discussed in Chapter 5)

2.5 Task Scheduling in MCC

The success of any distributed and collaborative computing based systems very
much depends on the proper scheduling of the tasks at hand. However, optimised
task scheduling in a distributed system, especially in a dynamic environment, is
nontrivial. Researchers have tried different approaches to achieve optimal task
scheduling, considering different parameters pertinent to the application or the

executable task.

With the proliferation of soft computing techniques and artificial intelligence,
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nature-inspired algorithms like PSO, GA, etc., are gradually getting prominence in
the current era because of their ability to find a near-optimal solution for NP-com-
plete problems. Several works are there in which optimisation techniques have
been used for resource selection and task allocation, and scheduling under various
considerations in a range of distributed computing systems [225] such as grid com-
puting [226] [227], cloud computing [228] [229] [230], mobile cloud computing
[156], mobile edge computing [231], vehicular cloud [232] [233], and software-de-

fined networks [234].

2.5.1 Resource-Aware and Multicriteria-based Scheduling in Mobile and Dis-
tributed Computing

Habak et al. [140], in their proposed mobile cloud, named FemtoClouds, aimed to

maximise the usable computation capabilities of the mobile devices for optimised

task scheduling. They followed a greedy heuristic based optimisation approach to

select the desired device considering the parameters like the computation and

bandwidth capacity of the device and its departure time.

For parallel task distribution to a pool of mobile devices in a mobile ad-hoc cloud,
Venkatraman et al. [157] calculated the composition score for the shareable re-
sources (e.g., CPU, RAM, storage) of the devices. Based on the composition score,
they used a linear programming based model to map the tasks to the mobiles ide-

ally so that all the tasks could be executed using a minimum number of devices.

Viswanathan et al. [158] proposed a mobile grid computing framework for ubiqui-
tous healthcare where the service-providing nodes were selected based on several
parameters such as CPU power, memory, available battery, network resources, the
current position of the node, and its availability period. Based on the number of
available service providers for the required duration, the tasks were optimally dis-
tributed and scheduled to them based on certain optimising objectives such as
minimising the battery drain while maximising the response time and availability
time of the resource. For this problem, they adopted a self-optimisation and self-

healing approach.

Various optimisation techniques and strategies have been tried and adopted for
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scheduling in multi-core and heterogeneous distributed systems, considering dif-
ferent scheduling and optimising criteria [235] [236] [237]. Akbari et al. [238] pre-
sented a genetic algorithm based static task scheduling method for heterogeneous
computing systems. They aimed to obtain near-optimal solutions with reasonable
execution time. Sulaiman et al. [239] proposed a genetic algorithm based heuristics
for task scheduling for heterogeneous computing systems. They used a list-based
approach and guided random search to reduce the schedule length and the proce-
dural complexity. Biswas et al. [240] proposed multicriteria-based scheduling algo-
rithms for heterogeneous computing systems to minimise the makespan, energy
consumption, and load-balancing while maximising resource utilisation. They
considered the resource parameters such as CPU speed, memory capacity and re-
sidual energy of the systems. The same authors applied PSO [241] and GA [242], to
achieve optimised scheduling in muti-core systems to minimise makespan and

load balancing and maximise resource utilisation and speed-up ratio.

2.5.2 Energy-Efficient Scheduling in Mobile and Distributed Computing

Optimisation techniques are used for energy-efficient scheduling in heterogeneous
and high-performance computing systems [243] [244] [245]. Considering the bat-
tery limitations of the mobile devices, to conserve the energy, researchers proposed
to offload the power-demanding jobs to the cloud [246] [247] or to other mobile
devices [108] [248] [249]. Several works have been proposed on energy-efficient

scheduling for task offloading from mobile devices to the cloud [250] [251] [252].

Shah and Park [253] presented an energy-efficient resource allocation scheme for
an ad-hoc computational grid of mobile nodes. They aimed to minimise the com-
munication energy of the nodes that are allocated some interdependent tasks to
execute. The authors used the kNN search algorithm to find a group of closest
nodes in a grid so that the overall data travelling path became minimum, which
would minimise energy consumption and communication costs. Shah et al. [254]
proposed another resource allocation scheme for such mobile ad-hoc computa-
tional grids to reduce communication costs, including energy costs. They utilised
user mobility patterns and task dependencies to minimise the communication

cost. Viswanathan et al. [158] adopted a self-optimisation and self-healing
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approach to minimise the battery drain while maximising the resource's response
time and availability time in a mobile grid computing framework for ubiquitous

healthcare.

Chen et al. [255] proposed a heuristic algorithm for resource allocation in an ad-
hoc mobile cloud. They assumed that the devices could harvest energy from the
ambient environment. Hence, their main goal was to minimise the response time
rather than energy consumption. Bonan et al. [256] proposed a PSO-SA (simulated
annealing) based dependent task assignment algorithm for ad-hoc mobile cloud.
They considered time delay, the total energy consumption and fairness of resource
usage of all devices simultaneously. Shi et al. [257] proposed an adaptive scheduler
for local mobile clouds, where the tasks from multiple source nodes could be
scheduled to nearby processing nodes. They aimed to minimise the execution time

of the tasks and the energy consumption.

2.5.3 Research Scope

From the above-cited works, we see that several scheduling algorithms and ap-
proaches for mobile and distributed computing systems are proposed in the liter-
ature. However, we could not find any such readymade solution that suits our pro-
posed concept of MCC. Despite our best effort, we could not find any work that
considered the dynamic resources of SMDs to achieve efficient multicriteria sched-
uling in MCC. Though there are a few similar works (e.g., [140] , [157], [255], [256],
[257]) that attempted task scheduling in mobile clusters, the scale of simulation
(in terms of the number of mobile devices and task size and variety) are not wide-
ranging. Whereas in our experiment, simulation is done on 50 SMDs for two sets
of tasks with the size of 100 and 200 instructions. Also, we consider several addi-
tional resource parameters that are crucial to adjudge the practical fitness of an
SMD as a computing resource. We could not find any energy-efficient scheduling
for MCC that considers load balance also which is very crucial especially in SMD-
based distributed crowdsourced computing. Hence, it open ups the scope for de-
signing efficient scheduling algorithms that fulfil the objectives required to en-
hance the performance of MCC while maintain user satisfaction. A comparative

summary of the related works and this paper is presented in Table 2.3.



Table 2.3. Summary of the works related to resource scheduling

63

) g s ) 40~ 1 s Tg =¥ - ) &
g = £9 £ 3¢ £79 £ = 2 £ 0
= S &0 - SS o SEg &9 £ g @
E 2% =& § 8% g3 EcE E: £ g5
< 2% ©< o =< "% GSE3 §g = =
S & £% A% 58 £ &5 £ Ex
< ] g A O g O ﬁ o= < Nk =
Shah et Mo- |Re- Minimize: Markov Node Distance- Simu-  |As per sim- Compu-
al. [254] bile |source commu- |chain |mobility, based re- lated ulation re- tational
ad- alloca- nication 'model node source al- scenario sults, the |cost was
hoc [tion costs (for distance, location proposed not con-
com- Reduce: |mobil- and task [(DRA) scheme sig- sidered.
puta- task fail- ity depend- |and nificantly
tional ure. man- |encies. next lo- reduced
grids age- cation- the
ment), based re- communi-
pro- source al- cation cost
posed location between
two- (NLRA) interde-
phase schemes pendent
re- [258]. tasks.
source
alloca-
tion
scheme
(TPRA)
(for
task al-
loca-
tion).
Viswa- |Mo- [Select- Maxim- Self-op- CPU Round- |Testbed Thepro- |Makespa
nathan |bile |ing ize: mini- |timisa- power, |robin, of multi- posed solu- |n and re-
et al. grid ser- |mumre- tion memory, FCFS- ple An- tion source
[158] com- |vice- |sidual and available based droid- |achieved utiliza-
puting provid- battery |self-  |battery, |CometCl based symmetric tion were
ing capacity. |heal- |network oud mobile battery not con-
nodes. ing. re- [259]. devices |drainby [sidered as
sources, with exploiting |optimiza-
current hetero- |the varied [tion crite-
position geneous |battery ca- ria.
of the capabili- pacity of
node, ties for the devices.
and its distrib-
availa- uted ob-
bility pe- ject
riod. recogni-
tion.
Habak Mo- |Task |Maxim- |Greedy |Compu- |A pres- |Experi- Thepro- Very
et al. bile  sched- (ize: over- heuris- tation |ence time mental |posed pro- small-
[140] cloud uling [all tic and oblivious |proto-  totype of- |scale sim-
com- through- band- |scheduler|type de- fered better ulation
puting put of the width  (PreOb) |signed |computa- |setup.
cluster, capacity andan |using tion perfor-
resource. ofthe |emu- Android mance
utiliza- mobile |lated. ar- |devices. while con-
tion, and device rival/de- suming
network and its |parture fewer




64

utiliza- depar- |scenario. network re-
tion. ture sources.
time.
Venka- |Ad- Task |Minimize: LPP- CPU, Wang et Simula- [Selecting |Schedul-
traman hoc sched- number |based RAM, al. [260] tor de- the re- ing was
et al. mo- uling |of devices model - storage. signed sources not done
[157] bile required |an that based on by accu-
cloud for task |adapte com- the total  rately as-
execu- d bin prised resource |sessing
tion. packing the sub- \composi- the total
algo- task traf- tion score |resource
rithm. fic gen- improved |require-
erator  theresili- 'ment.
and ence and |Hence
topology overall the allo-
genera- |computa- |cated
tor mod- tion perfor- |tasks
ules. mance. needed to
be par-
tially of-
floaded.
Chenet |[Ad- |Re- Minimize: Pro-  |CPU cy- |With dif- Matlab |The overall Perfor-
al. [255] hoc  |source |response |posed |cles, en- ferent simula- response | mance
mo- alloca- [time and |heuris- ergy simula- |tion time was  |was not
bile tion |overall tical- |con- tion pa- with reduced for |com-
cloud task com- go- sump- |rameter |random |various pared
pletion rithm. tionfor |consider- mobile task de- with
time. task exe- ations. |device |pendency |other al-
cution. and task topologies |gorithms
genera- andtask |or similar
tion sizes. work.
Bonan et Ad-  De- Minimize: PSO-SA Each Binary  |Asimu- [Forlarge |Overall
al. [256] hoc  |pend- |time de- (simu- |task’s PSO and |lated ad- number of through-
mo- ent layand |lated |dataand GA. hoc mo- tasksand |putand
bile |task |totalen- |anneal- linstruc- bile large num- |the en-
cloud |assign- ergy con- |ing) tion cloud |berof ergy con-
ment |sumption based [size, and scenario working  |sumption
Improve: |algo- |depend- that vir- nodes, the |for re-
fairness of rithm. |ency. tually  proposed |ceiving
resource spans for algorithm results
usage. 1oom2. performed |were not
better. consid-
ered.
Shi et al. Local Dy- Minimize: Pro-  Data Round |Alocal |Achieved |Load bal-
[257] mo- namic |execution [posed size, robin, mobile satisfactory lance and
bile task |time and |distrib- compu- greedy, |cloud |throughput resource
cloud sched- |energy |uted tation |and simula- and energy |utiliza-
uling |consump- adap- |capacity, probabil- tion efficiency tion were
tion. tive commu- (istic setup for varied |not con-
proba- |nication sched- |devel- tasksizes, |sidered.
bilistic |distance. julers. oped on and can be
Sched- OM- a viable
uler. NET++ solution for
scheduling
tasks of

real-time




65

applica-
tions.
Akbari |Heter- |Static |Minimize: Pro- Proces- |HEFT-T, Simu- |The pro- |Load bal-
et al. ogene-|task  execution |posed |sors’ HEFT-B, |lated us- posed algo- ance and
[238] ous sched- [time Max- |GA- compu- [CPOP ing C#  rithm resource
com- |uling |imize: based tation [261], by gen- |achieved |utiliza-
puting parallel |algo- |capacity, BGA erating better tion, and
sys- taskas-  rithm. |tasks’ [262], SA |various |scheduling energy
tems signment. compu- [[263], graphs, with less it- \con-
tation |and e.g., fast |erations. sumption
require- SLPSO  Fourier were not
ment, [264] al- transfor- consid-
task par- |gorithms. mation ered.
allelism. (FFT),
molecu-
lar,
Gaussian
graphs
and ran-
dom
graph
with dif-
ferent
parame-
ters.
Sulaima Heter- |Static Minimize: GA- Compu- New GA Simu- |Achieved The con-
netal. |ogene-|task |schedule based |tation |(NGA) |lated da- betterre- |vergence
[239] ous  sched- length heuris- and [265], en- taset, sults than |speed
com- |uling |Reduce: |tic (list- commu- hanced |generat- [the com- |could be
puting proce- based |nication GA for |ing pared algo- bettered.
sys- dural ap- costs.  |task four rithms in  |There is a
tems complex- |proach schedul- |types of |termsof scope for
ity. and ing graphs, |bestresult |usinga
guided (EGA-TS) li.e., ran- |occur- multi-ob-
random [238], dom rences, av- |jective
search). heteroge- graphs, |erage fitness
neous Gaussian makespan, function.
earliest |elimina- average
finish tion, schedule
time FFT, and length ra-
(HEFT) |molecu- tio, average
[261], lar speed-up,
and pre- dynamic |and the
dict the |code average
earliest |task running
finish graph, time and
time having |quicker
(PEFT) |diverse |conver-
[266]. attrib-  |gence time.
utes,
such as
the
number
of tasks
in the
graph,

graph




66

shape,
nodes’
out-de-
gree,
number
of pro-
cessors,
and
commu-
nication
and
compu-
tation
costs.
Biswas Het- Mul- Minimize: Pro- CPU Min-min, |Simu- |Achieved Consid-
et al. ero- ticrite- jmakespan posed |speed, MCT, lated on better re- |ered re-
[240] gene- [ria- , energy re- memory |priority |syn- sults in the source
ous |based consump- source- |capacity based thetic  |simulated |parame-
com- |sched- tion,and |aware |andre- |perfor- |and considera- ters were
puting uling |load-bal- heuris- sidual |mance standard tion. less.
sys- ancing  tical- |energy. improved bench-
tems Maximise: go- algo- mark da-
resource |rithm. rithm tasets.
utilisa- (PPIA),
tion. and GA.
Biswas | Heter- De- Minimize: |Pro- Dy- Gravita- |Simu- | Achieved |Energy
et al. ogene- pend- makespan posed |namicity tional lated on [satisfactory |con-
[241] ous ent and load PSO- |in CPU search al- syn- results sumption
com- work- |balancing based |speed, |gorithm |thetic |compared |was not
puting flow |Maxim- algo- (instruc- |(GSA) and to Cloudy- consid-
sys- sched- (ize:re-  rithm. tion Cloudy- |standard |GSA, and |ered.
tems |uling |source length, |GSA, and bench- HGSA and
utiliza- and re- HGSA. |mark da- equivalent
tion and source tasets. |perfor-
speed-up capabil- mance with
ratio. ity. the GSA.
Biswas et High- |Inde- |Minimize: Pro- |Dy- GA, PSO, |Simu-  The pro-  Energy
al. [242] |per- |pend- |makespan posed |namicity land PPIA |lated on posed algo- con-
for- |ent and load |GA- in CPU syn- rithm per- sumption
mance work- |balancing based |speed, thetic  forms con- \was not
muti- flow |Maxim- |algo- |instruc- and siderably |consid-
core sched- |ize:re- |rithm. tion standard better than |ered
sys- uling [source length, bench- |GA and
tems utiliza- re- mark da- PPIA. For
tion and sources tasets. makespan
speed-up capabil- and load
ratio. ity and balance, it
muta- performs
tion fac- better than
tors. GA; how-
ever, for re-
source uti-
lization
and com-
putation
speed up

the




67

perfor-
mance of
the pro-
posed algo-
rithm and
PSO are
closely
similar.
Our MCC Mul- |Minimize: Pro- |CPU PSO, GA, |Syn- For all the Energy
work 1 ticrite- jmakespan [posed |(clock |and MCT |thetic as |scenarios, |con-
ria- and load |heuris- |fre- well as  |the pro- sumption
based |balancing tical- quency, real da- |posed algo- |is not
dy- Maximise: go- no. of taset rithm sig- |consid-
namic |resource |rithm. cores, (gener- |nificantly |ered,
sched- |utilisa- and cur- ated spe- outper- which
uling |tion. rent cifically |forms PSO can be
for load), for MCC |and GA. crucial
SMDs. RAM experi- Thoughit for mo-
(cur- ment). performs |bile de-
rently better than |vices.
availa- MCT, in
ble), some sce-
battery narios,
(total their per-
capacity formances
and cur- are close.
rent
charge
%), and
device
temper-
ature.
Our MCC En- Minimise: PSO- |CPU MCT, Syn- Proposed Energy
work 2 ergy- |overall  based |clock MinMin, |thetic as algorithm |con-
effi- |energy |pro- [fre- MaxMin, wellas |performs |sumption
cient |consump- posed |quency, land real da- signifi- for data
task  |tion with algo- |no.of PPIA, taset cantly bet- |transfer is
sched- |load bal- rithm. |CPU and GA. |(gener- ter than not con-
uling. |ance. cores, ated spe- others sidered.
and cur- cifically 'while only
rent for MCC |energy effi-
CpPU experi- |ciency is
load. ment). |considered.
For energy
efficiency
with load
balance,
the perfor-
mance dif-
ference is
slightly
marginal.

2.6 Resource Availability Prediction in MCC

Assessing the availability of the resources-providing entities in a distributed
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computing environment is crucial because it affects the system's QoS considerably.
Though in several works, to achieve an improved job scheduling, the suitable re-
sources are targeted based on different criteria, there is not much work found that
addresses the availability issue of the resource, especially in a dynamic environ-
ment. In this section, we try to identify the research works that exactly or sublim-
inally address the resource availability problem in different distributed systems.

We also review the use of deep learning in closely related problems.

2.6.1 Resource Availability Prediction in Mobile Grid/Cloud Computing

Brevik et al. [267] aimed at enabling the grid job scheduler to make on-the-fly de-
cisions by providing live availability predictions. To predict the availability dura-
tion of a resource, they used the Weibull method (parametric model fitting tech-
nique) along with Resample and Binomial methods (non-parametric techniques).
The authors attempted to estimate a specific quantile for the availability distribu-
tion and the confidence for each estimation. Andrzejak et al. [268] attempted to
predict the availability of the grid resources within a time interval [T, T+p], where
p is the prediction interval length with values [1,2]. For this, they used the Naive
Bayes and Decision trees based predictive models. They also aimed to identify the
resource predictability indicators and the factors that incite prediction error. But
these works do not cover the availability prediction of mobile devices in a non-

dedicated mobile grid environment.

Vaithiya and Bhanu [269] proposed a task scheduling algorithm for the mobile
grid, predicting the dynamic availability of mobile resources. To address the node
mobility issue in an ad-hoc mobile grid, Selvi et al. [270] profiled the mobile users'
regular movements over time. But none of these considers the historical charac-
teristics of the devices, which may hinder achieving the optimal effects in SMD

selection.

In FemtoClouds, a mobile device cloud control system presented by Habak et al.
[140], the presence time prediction of mobile devices is incorporated. In this work,
it is assumed that the controller has knowledge of the exact departure time of each
device for each session. But, in practice, some dishonest users may depart before

the declared departure time, while some may be forced to cut off from the network
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due to some genuine reasons such as battery used up. To counter this problem,
Zhou et al. [156] suggested considering the historical characteristics of the devices
to evaluate the record of honouring their departure promise. They proposed a mo-
bile device selection method, considering the status and stability of the devices.
However, both of these works assume that the SMDs declare the departure time

voluntarily, which may not be practical.

Sipos and Ekler [271] proposed a method to estimate mobile devices' availability
where these devices were used to form a distributed storage system in a P2P (peer-
to-peer) fashion. They predicted the actual availability based on the nodes' self-
declared availability or unavailability for the subsequent considered time period.
Different classifiers were used to check the accuracy of the prediction model in the

simulated mobility scenario.

Haryanti and Sari [272] predicted the mobility of a group of resource-providing
nodes with respect to a resource-seeking node. The purpose was to ensure that the
task from the requesting node should be given only to those resource-providing
nodes which are supposed to be in contact with the requesting node until the task
is completed. Farooq and Khalil [121] also proposed a method to predict a time
duration for which a resource-requesting node would remain within reach of the
resource-providing node in a mobile grid. Based on the predicted time, the task
assignment decision is taken. The prediction is based on the previous record of the
time duration of their contact, whereas the contact is calculated by the distance

between them based on their locations, assessed by their GPS coordinates.

2.6.2 Deep Learning for Resource Management and Prediction

Considering its potential, deep learning has been applied in various domains and
applications for different purposes [273] [274] [275] [276] [277] [278] [279] [280]
[281] [282] [283]. Specifically, in time-series forecasting, LSTM [284] [285] [286]
and GRU [287] [288] [289] are widely used.

Many researchers exploited the convolutional aspect of CNN in combination with
LSTM to improve the performance of time-series prediction/forecasting in various

applications, such as for inventory prediction [290], stock price prediction [291]
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[292] [293] [294], gold price forecasting [295], Bitcoin price forecasting [296], tour-
ist flow forecasting [297], sentiment prediction of social media users [298], house-
hold power consumption prediction [299] [300], photovoltaic power prediction
[301], wind power forecasting [302], PM.; prediction [303] [304], predicting NOx
emission in processing of heavy oil [305], forecasting natural gas price and move-
ment [306], urban expansion prediction [307], predicting waterworks operations
at a water purification plant [308], predicting sea surface temperature [309], ty-
phoon formation forecasting [310], crop yield prediction [311], COVID-19 detection

and predictions [312] [313] [314], human age estimation [315], and so on.

Deep learning based techniques are used for efficient resource management and
prediction in cloud [316] [317] [318] [319] [320] [321], edge computing [322] [323]
[324] and other wireless distributed systems [325] [326] [327] [328] [329].

The inherent capability of capturing short-term as well as long-term instances has
led LSTM [330] [331] [332], CNN [333], and convolutional LSTM [334] [335] to be
popularly used in mobility predictions. In his master's thesis [336], Pamuluri com-
pared different deep learning methods, including LSTM, CNN-LSTM, and GRU, to
predict users' mobility with respect to a mobile base station. Cui et al. [337] used
LSTM to predict the availability of mobile edge computing-enabled base stations
depending on the vehicle's mobility for offloading the computation jobs from the
vehicle to the base station. Li et al. [338] used LSTM to track user mobility for effi-

cient dynamic resource allocation across different network slices in a 5G network.

2.6.3 Research Scope

As we mentioned above, assessing the availability of resources in a dynamic dis-
tributed computing system is very crucial. In a truly dynamic environment like
MCC, it becomes more vital because here, the resources are non-dedicated and
tend to be in mobility unexpectedly. However, in spite best of our effort, we could
not find any significant work that endeavours to predict the availability of the

SMDs or the users in a dynamic MCC environment.

2.7 Mobility-Aware Service Provisioning for P2P MCC

It is normal nowadays for users to run numerous applications on their SMDs. They
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perform several essential and not-so-essential tasks using their SMDs. Some of
these tasks are resource-demanding, due to which all SMDs, especially with lower
resource specifications, cannot afford to execute them. In these cases, an affordable
and feasible option is to take the help of the neighbouring SMDs. In other words,
when an SMD needs some additional resource, it avails the resource from a peer
SMD, if available. When this approach is applied to MCC, we call it P2P MCC.
Since, in this type of computing system, both the resource provider and consumer
are mobile, it is crucial to address the mobility issue. In this section, we focus on
the research works related to such P2P mobile computing, mobility tracking and

prediction, and mobility-aware service provisioning.

2.7.1 P2P Mobile Computing

Considering the limitations of low-constraint mobile devices, researchers nurtured
the idea of P2P mobile ad-hoc grid computing [248] [339] [340]. To avoid the la-
tency involved in traditional cloud services, a mobile ad-hoc cloud has been pro-
posed where a number of mobile devices cooperatively form a local, minuscule,
and ad-hoc cloud [129] [341] [342]. To study the feasibility of the ad-hoc mobile
cloud, Biisching et al. [93] built a small-scale proof-of-concept cluster with six An-
droid devices connected through Wi-Fi. Huerta and Lee [129] presented a frame-
work of a virtual mobile cloud that detects the nearby mobile devices of the users,
which will stay in the same area or follow the same movement pattern. Shi et al.
[108] presented a P2P mobile computing system in which a computational task is
offloaded from a resource-constrained mobile device to other mobile devices with
which the initiator device comes into contact on its route. The authors assumed
an ideal network environment where the future contact between resource provid-
ers and consumers can be predicted accurately. However, the system does not ad-

dress the node mobility issue.

2.7.2 Mobility Prediction Approaches

The majority of the mobility prediction schemes collect users’ movement history
somehow and analyse them to assess and predict the mobility patterns of mobile
users. The prediction accuracy depends not only on the method used for collecting

the mobility patterns but also on the algorithm used for mobility prediction.
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Typically, the research on mobility prediction for the infrastructure-based wireless
network is mainly aimed to improve the performance of wireless networks on dif-
ferent aspects such as admission control, QoS, handoff management, etc. These
algorithms, as per literature, can be classified into three major approaches, as

shown in Fig. 2.1 and discussed in the following subsections.

{  Mobility prediction approches

[ 1

i Received signal strength based ||  Movement history based | | GPS based

{| Synthetic-based ||| Trace-based

Movement patterns with Movement with geographic

' Random movement patterns ! dependencies . restrictions

Fig. 2.1. Mobility prediction approaches

2.7.2.1 Movement History Based Mobility Prediction

This class of algorithms predicts the future location of the mobile nodes with the
help of the past and current states of the user and can be further classified into two

categories, as discussed in the following.

2.7.2.1.1 The Synthetic Based Mobility Model

The synthetic-based mobility prediction uses mathematical models (e.g., sets of
equations), which try to capture the movement of the devices by studying users'
mobility [343] [344]. There is significant research on mobility prediction for cellu-
lar networks available in the literature, where the prediction approach is based on

the user's movement history [345].

The mobility prediction algorithm proposed by Lium and Maguire [346] consid-
ered the notion that every human has some extent of consistency in his/her move-
ment. The proposed approach consists of regularity detection algorithms (for pre-
dicting users' future regular movement) and a motion prediction algorithm (for
predicting the next states of a user's movement). For predicting the subsequent
movement trail of the mobile user, the motion prediction algorithm utilizes the
database of regular movement patterns of the users and the random probability
information with constitutional constraints. Therefore, this model is well suited

for regular patterns like hourly, weekly, etc. The regular and random components
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of user movements can correspond with circle/track patterns, or they can be sim-

ulated by the Markov chain model also.

Liu et al. [347] proposed a hierarchic position prediction algorithm in which user's
movements are mapped to previous mobility patterns by the proposed mobility

prediction model.

For simulating the highway traffic that comprises mobile entities travelling in for-
ward and backward directions with different constant speeds, a shadow cluster
concept was proposed by Levine et al. [348]. In this distributed framework, mobile
terminals inform the neighbouring base station about their requirements, position,
and movement parameters, based on which the base stations predict future de-
mands and reserve resources accordingly. To predict mobility, it uses the user's

movement history traces.

Mobility prediction solutions proposed in [349] and [350] assume that the nodes
move according to the random way point mobility model [351]. The mobility pre-
diction algorithm proposed in [352] used different mobility models such as the
movement circle model, movement track model, and the Markov chain model to

model the user mobility behaviour.

Synthetic mobility models are generally simple to model and implement and easy
to use and have been reported as an effective means to solve problems like signal
attenuation and also consume less power. However, the random nature of the syn-
thetic mobility model often fails to capture human movement patterns correctly
and leads to unrealistic-scenarios and non-uniform distribution [353]. The obser-
vation made and the conclusion drawn from such models may be misleading, es-
pecially where the user movements are predictable to some extent (e.g., mobile

users in an educational campus, office, etc.).

2.7.2.1.2 Trace Based Mobility Prediction

In trace-based mobility prediction, the traces are obtained by using the deployed
systems' measurements and typically consist of connectivity logs or location infor-
mation. A trace-based mobility model is developed based on datasets collected

from real scenarios by tracing or monitoring the movements of the persons
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carrying mobile devices. The collected movement traces are then analysed to find

specific mobility patterns of those mobile users.

A significant amount of research work has been done to predict mobility using
movement traces of real-life users [354]. The data collected for movements of real
users are used to predict future locations of the users using various prediction

methods.

Kim et al. [355] proposed a method for estimating the physical location of users
from a sizeable trace data of mobile devices associated with APs in a wireless net-
work. The mobility traces collected by Dartmouth College is used to extract users'
locations and their movement trails which were estimated using methods like tri-

angle centroid, time-based centroid and Kalman filter.

The method proposed by Khalifa and Abbas [356] is supposed to predict the future
locations of mobile users and the duration for which they would remain at those
locations. The algorithm is evaluated using the UCSD dataset. The method is found

to have better prediction accuracy than a third-order (O(3)) Markov predictor

[357].

Burbey and Martin [358] used the UCSD dataset to evaluate the proposed Markov
model based mobility prediction method. The method is based on the data com-
pression algorithm called Prediction by Partial Match, which predicts the location
of a user at a given time. The model was tested by trying to predict the location of

a user by giving a particular future time.

The mobility model proposed by Musolesi and Mascolo [359] uses the concept of
social networking, in which the hosts are grouped based on their social relation-
ships. This clustering is mapped to a topographical space, where the potency of
dynamic social ties determines the movements. The model was validated with real
traces indicating the potential of the synthetic mobility traces as a decent approx-

imation of human movement patterns.

The Autoregressive Hello protocol was proposed by Li et al. [360] for neighbour-
hood discovery. Here, each node and its neighbouring nodes predict their positions

through an ever-updated, auto regression-based mobility model. Each node
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estimates its neighbour's position regularly, using previous location traces. When
the predicted location is very far from the actual location, which causes a topology
distortion, the node transmits a 'hello' message to the state and updates its current
location. This helps in the autocorrection of the mobility model of the concerned

node and its neighbours.

The prediction of topological changes in trace-based mobility prediction requires
constant prediction of the node's location, which may be considered an overhead
in a resource-constrained environment. However, if the location is predicted from
the change of neighbourhood, then it reflects the topological change in the net-
work and helps to determine the node's stability, which is crucial for selecting sta-

ble SMDs in PMC.

2.7.2.2 Received Signal Strength Based Mobility Prediction

In this approach, the mobility of a node is estimated by measuring how much the
received signal strength is dependent on the distance from the source. The esti-
mated values of the node's location and its mobility information are acquired using
signal attenuation versus distance travelled. This type of mobility prediction

method is very simple [361].

A novel mobility metric for mobile ad-hoc networks (MOBIC) was proposed by
Basu et al. [362]. Here, the node with the lowest mobility in the neighbourhood is
selected as the cluster head. Each node assesses the signal strength received from
its neighbours continuously, and based on the variance, the movement rate of that
node relative to the neighbouring nodes is estimated. This mobility measurement
is used for the formation of mobile clusters to improve the scalability of different
services. For selecting a cluster head, MOBIC employs Aggregate Local Mobility
(ALM), a novel mobility metric. However, in the cluster maintenance phase, nodes'
mobility behaviours are not always considered, and hence, a cluster-head does not

guarantee to stand a low mobility characteristic [363].

As an extension of MOBIC, MobDHop, proposed by Er and Seah [364], used a dis-
tributed algorithm to form a stable cluster that can serve as underlying routing

architecture. The variance in received signal strength is used to predict the
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neighbourhood mobility and, based on mobility metric, forms a d-Hop cluster, as
suggested in [362]. Compared to MOBIC, it exercises more samples of the received
signal to estimate the predicted mobility. The prediction model assumes that the
mobility patterns of nodes will be exactly the same in the future as they were in
the recent past. In MAPLE [365], based on the signal strength received from the

cluster head, each host estimates its distance from the corresponding cluster head.

In a wireless network, poor signal reception is frequently experienced due to the
obstruction of different objects such as trees, buildings, etc. The different object
has a significant effect on path loss and received signal strength. However, if the
environmental condition is known, the power of the signal may include the actual
power plus the signal loss. In such a case, the receiver must be aware of the infor-
mation, which requires an extra field in the transmitted packet and results in an

overhead per packet.

2.7.2.3 GPS Based Mobility Prediction

The GPS-based mobility prediction approach uses geographical locational infor-

mation to determine users' mobility patterns [366].

To elect a cluster-head, the algorithm proposed by Wang et al. [367] used GPS to
predict node mobility and location information. The mobility prediction algorithm
proposed by Su et al. [349] is based on location and mobility information provided
by the GPS system. The algorithm uses the Network Time Protocol [368] or GPS
clock to synchronize the nodes to avoid inconsistent data traces. The duration of
a node at a place was determined by using GPS system data like speed, direction,

radio propagation range etc.

To predict the mobility of the node, a novel routing protocol called Zone-Based
Stable Routing (ZBSR) was proposed in [369]. This prediction algorithm uses the
traces collected by GPS. The area is divided into the non-overlapping square zone.
Every zone has a zone-head that does the job of a router in the network and also
keeps the information about the other nodes in that zone. The node ID is used to

decide the path to every zone.

GPS may not work in particular environments (like indoor places, places lacking a
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strong cellular network, etc.) and consumes considerable battery power; hence,

dependence on GPS is undesirable in MCC.

2.7.3 Mobility Tracking

The above-mentioned mobility prediction methods have several limitations, as
mentioned in [370]. Researchers tried different means to track human mobility by
analysing their accompanying devices. For example, to analyse human mobility,
Smoreda et al. [371] discussed the data collection methods from mobile phones. In
[372], users’ mobility is analysed and characterised by the data collected from
smartphones and smartwatches. Williams et al. [373] measured human mobility
based on the user’s mobile phone records and GIS data. Wang and Ak Yildiz [374]
predicted user mobility with respect to a set of mobile switching cells based on the
aggregated history of the mobile users and system parameters. To determine the
user’s current location, Ma, Fang, and Lin [375] considered the user’'s movement

and the current system time.

2.7.4 Mobility and Stability Prediction in Mobile Computing Systems

Shah et al. [254] proposed to use the history of users' mobility patterns in an ad-
hoc mobile grid to select a resource that would probably remain connected for a
longer period. Zhou et al. [156] proposed a device selection method based on the
stability resource status of the devices in a mobile device cloud. In the proposed
model, the cloud controller maintains the historical information of each partici-
pating device. Based on these information, each device’s stability is assessed, which
helps in selecting a suitable device as a resource provider. Haryanti and Sari [272]
predicted the mobility of a group of mobile nodes to identify a cluster of nodes
among the available resources-providing nodes. Each node of that cluster has cor-
responding mobility with respect to the resource-requesting node. The idea was to
identify a stable cluster of nodes, which would ensure the completion of the as-
signed tasks. Farooq and Khalil [121] proposed a mobility model where the previous
records of the contact duration of two devices were used to predict the duration a
resource-providing node may remain in the vicinity of the resource-requesting
node in a mobile grid. Based on the predicted time, the task assignment decision

is taken.
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2.7.5 Mobility-aware Service Discovery and Delivery

Deng et al. [376] proposed a mobile service provisioning architecture for sharing
services among the mobile device user community. Tyagi, Som and Rana [377] pro-
posed a reliability-aware data delivery protocol for MANET (mobile ad-hoc net-
work) based on AODV (ad-hoc on-demand distance vector), considering the speed
of intermediate nodes in the route. Vadde and Syrotiuk [378] studied the impact
of various factors such as QoS architecture, routing protocol, medium access con-
trol protocol, offered load, and mobility and their interactions on service delivery,
based on different measures like real-time throughput, total throughput, and av-
erage delay. Various service discovery protocols are discussed in [379], while a de-
centralized service discovery mechanism is presented in [380]. Chang, Srirama, and
Ling [381] proposed a mobile device-hosted service-oriented workflow-based me-
diation framework for mobile social network in proximity (MSNP). The proposed
framework, named as adaptive mediation framework for service-oriented MSNP
(AMSNP), is based on a public mobile P2P network in which mobile users can in-

teract with the neighbouring mobile devices.

2.7.6 Research Scope

As we saw in the previous sections there are several works that addressed the mo-
bility issue in mobile and ad-hoc systems. However, for P2P resource-provisioning
in an infrastructure-less dynamic environment like MCC, mobility is still an issue.
For P2P resource-provisioning, instead of assessing absolute mobility of the nodes
it is sufficient to assess relative mobility or stability between them which can ac-
commodate the change in absolute mobility and still allow to continue exchange
services. To the best of our knowledge, there is no such work available in the liter-
ature. The existing mobility prediction algorithms proposed in the literature are
good for different applications domain. But they fail to predict the relative stability
of a node with respect to its peers, which is the key to selecting a service providing

SMD in PMCC.

2.8 MCC as Edge Computing

Edge computing is getting popularised as the complementary of cloud computing
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mainly because of its latency advantages [30] [382] [383]. In the following, we re-
port some of prominent research works in which the computing competencies of
the mobile devices are leveraged, especially in some form of edge computing. We
also report the research works, though not many found, that mentions use of edge

computing in smart buildings.

2.8.1 Mobile Devices Edge Computing

In several works, the researchers proposed or experimented with using mobile de-
vices to form local fog/edge computing [384] [385] [386]. Hirsch et al. [387] pro-
posed a resource management scheme for a dew computing model comprising a
mobile cluster made of citizens’ mobile devices for some participatory sensing ap-
plications. The aim of this system is to offer a distributed computing environment
for processing or preprocessing the locally generated sensor data in real-time from
a smart city perspective. In the extended work [388] of this paper, the authors
demonstrated the usefulness of such smartphone-comprised dew computing for
achieving compute-intensive edge jobs such as real-time stream processing using
Tensorflow object recognition models. In their working paper, Kiindig et al. [146]
presented a theoretical model of a crowdsourced edge computing architecture
along with highlighting the rudimentary challenges of this computing system. In
their prototype use case, they distributed some object detection tasks to crowds’
mobile devices on a university campus. Zhang et al. [389] suggested utilizing the
idle GPUs of the peer gamers and other nearby private/professional GPU owners
to form an edge network for high-performance online video gaming. Xing et al.
[390] attempted to minimise the computation latency in a local edge computing
comprised of wireless devices such as smart wearable devices, cell phones, tablets,
and laptops. The computations are offloaded from the user device to the mobile
edge in a P2P fashion. Pan et al. [391] also envisioned optimally offloading the tasks
to other mobile devices aiming at minimizing the energy expense and maximizing
the throughput in a crowdsourced mobile edge computing framework where mo-

bile devices at the edge share their heterogeneous resources with each other.

2.8.2 Edge Computing for Smart Buildings

Several research works recognised the need for and demonstrated the use of edge
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computing for smart buildings [392] [393]. Vilalta et al. [394] presented a fog ar-
chitecture named TelcoFog, as an edge computing service for telecom operators.
The proof of concept was validated in an HVAC environment. Raspberry Pi has

been popularly used in home automation [395] [396] and controlling HVAC sys-
tems [397] [398] [399].

2.8.3 Research Scope

As discussed in Section 2.8.1, establishing mobile and wireless device enabled edge
computing has garnered the researcher's attention. However, the idea is still at a
very nascent stage and needs extensive study for successful implementation. Also,
to the best of our knowledge, no work has been attempted yet to conceptualise and
implement edge computing explicitly using crowdsourced SMDs for real-time pro-
cessing. In this direction, our work, presented in Chapter 9, for implementing edge
computing for a use case of smart HVAC utilising the SMDs available in the vicinity

of the building is certainly the first of its kind.

2.9 Summary

In this chapter, we reported the research works that are related to MCC and the
problems we addressed in this thesis. There are several aspects such as distributed
nature, resource mobility, non-dedicated resources, energy constrained resources,
dynamically changeable resource parameters, etc. make realising MCC challeng-
ing. In this thesis, we covered some selected aspects of MCC such as generalised
architecture of MCC, resource profiling and selection, task scheduling, resource
availability assessment, mobility handling. And to establish the feasibility of MCC
we also presented a proof-of-concept with a use case. Being a distribute system,
MCC naturally inherits several issues from it. Therefore, it is expected that many
of the issues’ solutions also can be found from the existing literature on distributed
systems and computing. However, in this chapter we saw that not all the issues
have existing solutions that can readily be applied on MCC. This is because though
MCC has similarities with other known systems it has its own uniqueness on sev-
eral grounds, as discussed in Chapter 3. Therefore, we needed to think for and
come up with novel solutions that would most suitably be applicable to the context

of MCC presented in this thesis.
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MCC: Concept, Architecture and Research Challenges

“We don'’t have to engage in grand, heroic actions to participate in change. Small
acts, when multiplied by millions of people, can transform the world.”
--- Howard Zinn

3.1 Introduction

The innovation of computers has changed many aspects of mankind. Computers
have not only led to solutions to many existing problems but also to many other
unforeseen and innovative problems that have influenced and eased our life
greatly. Recognising the problem-solving ability, computers are asked for various
purposes, and accordingly, the demand for more powerful computers has grown

steadily.

To meet the high computing demands of organisations, mainframes came into ex-
istence in the 1960’s. At the same time, for number crunching operations, super-
computers were developed that could produce unparalleled performance [400].
With the popularity of microcomputers, the distributed system was the next revo-
lution in HPC in the 1970’s. In the 1990’s, Ian Foster and Carl Kesselman proposed
a new computing paradigm named grid computing as an economical alternative to
the costly supercomputers in which idle computing resources, within the organi-
sation or distributed over the globe, are shared over the network [401]. In early
2000, with the emergence of cloud computing, making forward the vision of grid

computing further, the HPC indeed became utility computing [402] [403] [404].

With the introduction of PDAs by Apple in 1993, the computing horizon changed
drastically. It actually initiated the era of mobile and ubiquitous computing. Since
then, mobile devices have evolved enormously. Over the last couple of years, the
SMD industry has seen an unprecedented focus on hardware. The processing ca-
pability of SMDs to meet various purposes has increased exceptionally, be it CPUs

or GPUs or even DSPs. The CPU and memory architectures are designed and tuned



82

to boost heterogeneous computing. The GPUs are also engineered to enhance

GPGPU computing performance.

Today’s SMDs such as smartphones, phablets, and tablets have become computa-
tionally so powerful that they can easily hands-on defeat yesteryear’s powerful su-
percomputers. For example, NVIDIA’s Tegra Xi, released in 2015, became the first-
ever mobile SoC to reach the Tera-FLPOS mark. It is interesting to mention that
Deep Blue, one of the most powerful computers of that time, which defeated Gary
Kasparov in a much-hyped chess rundown in 1997, displayed a performance figure
of a meagre 11.38 GFLOPS. NVIDIA claims that Tegra X1 is more potent than the
ASCI Red, the first Tera-FLPOS supercomputer of 20 years back, employed for ten
years by the Sandia National Laboratory of Department of Energy, United States.
This significant escalation of the modern-day’s SMD’s capability gives us the con-
fidence to consider them a viable option for carrying out computation-intensive

tasks.

Alongside, thanks to their capability of hosting and supporting various services and
applications, SMDs have become all-purpose and indispensable personal devices
in our daily lives. Consequently, the number of worldwide SMD users has seen a
steep ascent in recent years. Leaving behind desktops, laptops, and notebooks,
SMDs have become the primary computing device for most users [405]. Global
Stats, the research arm of the web analytics firm StatCounter found that for inter-
net uses in October 2016, for the first time, the number of worldwide SMDs users
(51.3%) exceeded the number of desktop users (48.7%) [406]. As per their June 2022

report?, the market share for SMDs and desktops are 62% and 38%, respectively.

However, like desktop users, SMD users also use their devices for a fraction of the
time in a day. Therefore, a huge computing potential remains unutilised. In MCC,
we envisage tapping and exploiting these idle computing resources of the SMDs of
the mass user base, very much like grid computing. We advocate utilizing the col-

lective processing powers of these mighty SMDs to achieve HPC. A substantial

17 https://gs.statcounter.com/platform-market-share /desktop-mobile-tablet
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virtual computing capacity can be garnered utilising the SMD globally (discussed
in Section 3.3.5.1), and MCC can also be employed locally to cater to the needs of
real-time applications. The emergence of big data, IoT, and Al based applications
has escalated the demand for pervasive and ubiquitous HPC significantly [30]. A
local MCC (discussed in Section 3.3.5.2.1) or an ad-hoc MCC (discussed in Section

3.3.5.2.2) can be feasible solutions.

Although the idea of computing on mobile devices is not new, the significant aug-
mentation of today's mobile devices’ competency has prompted many researchers
to explore utilising their computing capabilities in different ways. Researchers pro-
posed to incorporate mobile devices into grid computing to leverage their compu-
ting resources [125] [121] [126]. Few works aimed to utilise the accumulated compu-
ting power of a cluster of smartphones [93] [96]. To minimise communication la-
tency, local clouds have been made utilising neighbouring mobile devices [40] [135]
[128]. Mobile devices are proposed to use for edge and dew computing as well [140]
[76] [387] [388]. Also, utilising volunteered mobile devices to attain MCC has been
introduced in [141] [142] [143]. However, we could not find any paper that exclu-
sively presented the concept and associated aspects of MCC. Seeing the lack of
comprehensive theoretical discussion in the literature, we felt the need to submit

one.

This chapter presents an in-depth study on MCC, attempting to cover every nitty
gritty of this computing paradigm. In the following sections, we explore the feasi-
bility and the promises of this very idea, also mentioning related research works
and projects. We also discuss the obstacles that can be faced to realize this concept
and pledging progress toward their solutions. We suggest some exciting applica-

tion areas of MCC.
In particular, in this chapter, we aim to achieve the followings:

o Extending and re-presenting the concept of MCC.

o Establishing the competence of the modern SMDs as computing devices and
validating achieving HPC utilising them by recognising and associating the fa-
vourable external factors.

e Discussing the idea of crowd and opportunistic computing.
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e Rendering a taxonomy of grid computing that leads to MCC.

 Stating a concrete definition of MCC and identifying its defining properties.

o Presenting exhaustive comparisons between MCC and other HPC systems
such as desktop grid computing, cloud computing, cluster computing and su-
percomputers, and between MCC and other mobile computing systems such
as mobile grid computing and mobile cloud computing, ad-hoc mobile cloud,
and mobile crowdsourcing.

e Laying out different probable general architectures of MCC, including the
working, major components, advantages, and disadvantages of each architec-
ture.

o Identifying different types of MCC depending on the infrastructure and appli-
cations.

o Meticulously analysing the essential requirements and considerations for MCC
system design, development, deployment, and operations.

o Discussing the advantages of MCC with specific discussions on pervasiveness
and sustainability of MCC.

o Elaborately discussing the issues and challenges of MCC while mentioning its
limitations.

« Identifying and recommending the practical applications of MCC in various

scenarios.
3.2 Enabling Backdrops for Realising MCC

In this section, we analyse some other favourable factors that have directly or in-

directly boosted and accelerated the realisation of MCC.

3.2.1 Competence of Contemporary SMDs as Computing Resources

Over the last few years, the SMD industry has seen an unprecedented focus on its
hardware. The processing capability of SMDs to meet various purposes has in-
creased exceptionally, be it CPUs or GPUs or even DSPs. The CPU and memory
architectures are designed and tuned to boost heterogeneous computing. The
GPUs are also engineered to enhance GPGPU computing performance. SMD man-
ufacturers are putting continuous effort into boosting their products to have com-

puter-like capabilities. They are even going further through their attempt to
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bundle multiple SoCs on a single unit [407], which will undoubtedly revolutionise
the ability of SMDs as computing devices. These devices are further augmented by
excellent battery life, storage capacity, networking, and several powerful and effec-
tive sensors on a single platform. In this section, we discuss the decisive properties

of modern SMDs that make them competent computing resources.

3.2.1.1 Advancements in Mobile CPU

The CPU architecture for mobile devices has made unprecedented advancements
in recent years. In the following, first, we mention the key technicalities in this
regard. Then we check out some examples of a few latest SMDs’ CPU specifications

to argue about their computing capabilities.

3.2.1.1.1 Symmetrical Multi-Processing

SMP technology applies to a multi-core shared memory architecture where each
identical core is capable of operating independently but maintaining healthy co-
operation. They tend to share workloads whenever possible, lessening the burden
on a particular core. This allows the cores to run at a lower frequency, resulting in
less power consumption, which is crucial to mobile systems [408]. So, SMP em-
powers SMD processors to not only produce greater performance but also tackle
peak performance demands (thanks to sharing workloads) while limiting the

power appetite of SMDs reasonably.

3.2.1.1.2 Heterogeneous Multiprocessing

Modern ARM-based SMD’s multi-core CPUs comprise two different sets of cores
paired together into a single unit. One set of cores is more powerful than the other.
The powerful cores are for high performance, whereas the other set is for better
power efficiency. The decision to submit jobs to the appropriate core is taken dy-
namically by mapping to the varying computational demand of the application.
This scheme is generally known as HMP, which is fashionably termed big. LITTLE™
by the ARM. When tasks are run on the ‘LITTLE’ cores, they use less power. Hence,
they drain the battery less; however, they may run slightly slower. When tasks run
on the ‘big’ cores, they finish sooner, but they eat more battery. Typically, back-
ground tasks featuring in-order execution are employed to the energy-efficient

‘LITTLE’ cores, whereas the user-interactive tasks featuring out-of-order execution
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are operated by power-incinerating ‘big’ cores, which require being in action typi-
cally for shorter periods. The aim is to use ‘LITTLE’ cores most of the time and use
the ‘big’ cores only for high-frequency operations. Furthermore, when ‘big’ cores
are not in use, they are powered off. The whole concept can save up to fifty percent
of the energy for a standard mobile workload [409]. The prevalent achievement of
the HMP is that of significant average power savings without compromising the

peak performance, which is an essential gain for SMD computing.

3.2.1.1.3 Powerful and energy-efficient CPUs

The first multi-core smartphone, announced at the end of 2010, was the LG Opti-
mus 2X, loaded with the Tegra 2 processor from NVIDIA, with a maximum fre-
quency of up to 1.2 GHz [410] [408]. Since then, all SMD manufacturers have been
in a war to load their products with an increasing number of cores. To buttress this
exigence, the chip makers are regularly coming out with more powerful mobile
processors. Modern SMD CPUs typically consist of two to eight highly efficient
cores. It is very common to find SMDs with a CPU clock speed of more than 2.5
GHz. As per the recent launch, the prime cores of Qualcomm’s Snapdragon 870
and 8+ Gen 1 run at 3.2 GHz, while Kirin 9ooo has 3.13 GHz cores. Moreover, taking
along the HMP concept, the CPUs are adequately balanced for computing power
and energy efficiency by an optimal combination of high-power and high energy-
consuming cores with low-power and energy-saving cores. For example, the Snap-
dragon 8 Gen 1 comprises one Cortex-X2 core of 3.0 GHz, three Cortex-A710 cores
of 2.50 GHz, and four Cortex-As510 cores of 1.80 GHz [411]. Depending on the pro-
cessing requirements, different cores are employed, minimising unnecessary en-

ergy wastage.

3.2.1.2 GPU-Accelerated Computing

Bestowed with number-crunching power, GPUs are the key potency that makes
today’s SMDs powerful computing devices. The CPU cores are generally optimized
for sequential serial processing, whereas a typical GPU consisting of many smaller
and more efficient cores, often known as shader cores, is designed for massively
parallel processing [412]. The inherent parallelism property of a GPU enables it to

execute thousands of parallel threads, handle multiple tasks simultaneously, and
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solve large problems real fast. Several benchmarks have established the superiority

of GPUs over CPUs in terms of raw processing [413].

In GPU-accelerated computing, the compute-intensive segment of the application
is passed on to the GPU; however, the rest of the code is executed on the CPU.
GPU-accelerated computing can deliver exceptional performance if the right pro-
cess is scheduled for the right core. Serial portions of the executable codes are sub-
mitted to CPU cores which are optimized for low latency on a single thread, while
parallel portions of code are sent to GPU’s mass cores which are optimized to max-
imize accumulated throughput. This tactic confers enhanced performance per unit
area than either CPU or GPU cores can alone [414]. In general, accelerated compu-
ting is revolutionizing HPC these days in the way that systems with special accel-
erators offer highly energy-efficient computing delivering the utmost performance
for HPC. So, GPU-accelerated computing plays an important role in SMD compu-
ting not only by executing heavy processes much faster than CPUs but also by con-

suming less energy per computation than CPUs.

With the increasing popularity of virtual reality based gaming apps, SMDs are get-
ting loaded with considerably powerful GPUs. For example, the latest offer from
Qualcomm, the Adreno 730® (used in Snapdragon 8/8+ Gen 1), comprises 768
shading units, with a base and boost clock speeds of 812 MHz and 970 MHz, re-
spectively, producing a hopping 1.8 TFLOPs for single precision (32) floating point

operations, which is a very good offering for computing-intensive parallel tasks.

3.2.1.3 SoC Technology

At the heart of every SMD, there is a module known as a system-on-a-chip (SoC).
The SoC of an SMD is like the motherboard in a desktop computer. It incorporates
various chips and components that make up an entire electronic setup on a single
chip. Among the components are the CPU cores, GPU, multimedia processor, sig-
nal processors (DSP and ISP), security processor, different types of memories with

a memory controller, wireless radios (Wi-Fi, 3/4/5G, etc.), power management

18 https://gadgetversus.com/graphics-card/qualcomm-adreno-730-specs/
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circuits, timers, interfaces, OS, and other utility software. Day by day, the SoCs are
becoming more energy-efficient and smaller despite being more powerful. The ad-
vancement in fabrication technology allowed the manufacturers to pack more
power in the same chip volume. For instance, the Snapdragon 870, 888, and 8 Gen
1are of 7 nm, 5 nm, and 4 nm, respectively. Apparently, SoC has made it materialize
to put a whole computer on a chip and reduced the size to a thumbnail, which is
very crucial to SMDs. Some of the obvious benefits of SoC, from the perspective of

SMD computing, are listed below.

o Higher performance is achieved by embedding heavy computational functions
and logic in a large number of highly integrated circuits [415].

o Smaller footprint and space requirements of SoCs have allowed SMD makers
to place larger batteries for longer power backup.

e SoCs do not demand much power, thanks to the very high level of integration
and considerably shorter wiring, which is a big boon regarding SMD compu-
ting.

e Producing a single chip is far more cost-effective than traditional multi-chip
motherboard-based computers [416]. It has been observed that mobile SoCs
are roughly 70 times cheaper than other HPC systems like PC clusters [417].

o An integrated environment offers greater system reliability.

3.2.1.4 Sufficient Memory

In any distributed computing, dividing a large job into a parallelly runnable num-
ber of small jobs and distributing them to the different nodes for processing is an
overhead. The grain size of the sliced job should be at par with the primary memory
available in the computing node for smooth execution. Though SMDs have a lesser
memory than desktops and laptops, mainly due to the size factor, lately, SMDs are
getting loaded with an abundance of memory (RAM, ROM, and cache) in conjunc-
tion with increased internal data transfer speed. SMDs with 8 GB RAM and 128 GB

ROM are very commonplace. Several high-end phones (e.g., Nothing Phone (1),

19 https://in.nothing.tech/pages/phone-1
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OnePlus 8T%°, OnePlus 10 Pro*, Sony Xperia Pro-12, Red Magic 7?3, and many
more) offer LPDDR5 RAMs of 12 GB and more with ROMs of 256 GB and higher.
And most of these phones allow to expand the inbuilt memory with external flash
memories to 1 TB and more (e.g., Samsung Galaxy S10%4 series phones). This abun-
dance of internal and external memories encourages carrying out data-intensive

tasks besides compute-intensive ones.

3.2.2 SMD Market and User Development

For the last few years, if a single device has to be named, which has impacted the
human lifestyle and business market, most are undoubtedly the smartphone.
Thanks to their all-round capabilities and utilities, the worldwide adoption of
SMDs has exponentially increased in recent years. In 2011, vendors shipped more
smartphones than PCs for the first time in history [418]. A report from Cisco shows
that the number of mobile devices and connections raised to 7.9 billion globally in
2015 from 7.3 billion in 2014 (smartphones 32%, phablets 6% and tablets 2%) [419].
Statista®, a leading market and consumer data provider, estimated that by 2027,
the number of smartphone users would cross 7 billion marks, as shown in Fig. 3.1.
Fig. 3.2 shows the forecasted number of smartphone connections (in millions) in
the top ten countries by 2025, as estimated by Statista. As per GSMA?%, a leading
global mobile market analysis organisation, it is expected that globally there will

be 2.5 billion unique mobile subscribers by 2025 [420].

Besides the justifiable reasons such as reduced usage friction via excelled hardware,
improved user interface, ease of use, and expanded and multidimensional services,
the explode in SMD sales is a result of the aggressive penetration of low-cost SMD
makers in emerging markets [418], in conjunction with affordable 4G data plans
[421]. The cost of SMDs is getting lower following the common business-economic

rule that a higher volume of SMD market helps in reducing design, production,

20 https://www.oneplus.in/8t

21 https://www.oneplus.in/10-pro

22 https://www.sony-asia.com/electronics/smartphones/xperia-pro-i
23 https://www.nubiamart.com/nubia-red-magic-7.html

24 https://www.samsung.com/us/app/mobile/galaxy-s10/

25 https://www.statista.com/

26 https://www.gsma.com/
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and marketing cost, which also leads to faster product evolution with superior per-
formance on a low budget. So, not only the technological demand but also the
economic senses decisively motivate companies to produce SMDs with HPC fea-

tures [417].

20027 . 7 69()
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6000 6200 6400 6600 6800 7000 7200 7400 7600 7800

Fig. 3.1. Estimated number of worldwide smartphone subscriptions (in millions) from 2022 to
2027 [422]
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Fig. 3.2. Estimated number of smartphone connections (in millions) of top ten countries by 2025
[423]

There is a number of factors influencing the growth of SMD use in the global mar-

ket as mentioned below [424]:

« Rapidly falling price of SMDs has accelerated the customers to move from
basic and standard feature phones to smartphones.

o Developing SMD technologies have a reason for the increase in the sale of
low-end SMDs.

o The increasing availability of the highspeed 4G/5G spectrum with increased
mobile broadband connections all around the world.

o The availability of highspeed ‘data-centric’ services and low tariffs has in-
creased the adoption of SMDs in both developed and developing societies.
Further, the availability of cheap data tariffs tailored as per the customers’

needs has also reasoned for smartphone adoption in developing countries.
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o The concept of tailoring the data tariffs for cost-conscious prepaid consumers
can be linked with the selling rate of SMDs.

o Efficient retail channels and supply chain have helped manufacturers to
reach customers from every corner across the globe.

o The government policies in support of the growth of the SMDs and subsidiary
industries have a significant role in price slicing and the growth of mobile

networks.

3.2.3 Increasing Wi-Fi Zones

As the number of mobile devices and connections proliferates, more and more
places are coming under a Wi-Fi zone due to the dense installation of Wi-Fi
hotspots. These hotspots may be commercial or public, including homespots and
community hotspots. Public hotspots can significantly influence the realization of
MCC. Community hotspots use dual SSIDs that allow nonsubscribers to access Wi-
Fi service as guests. Commercial hotspots are also being offered to the public in
places like shops and malls, cafés and restaurants, hotels, railway stations and air-
ports, public transport, etc. A study from Cisco shows that, globally, total public
W-Fi hotspots will grow to 432.5 million by 2020 from 64.2 million in 2015, i.e., a
seven times upsurge, while commercial hotspots are estimated at 9.3 million by
2020 [419]. The advantage of a greater number of hotspots is the reduced cell size
with strong signal coverage, which results in robust crowd computing systems with

low latency in message passing.

3.2.4 Low-cost and Highspeed Mobile Data

The advancements in mobile network technology have made mobile computing
more practical and affordable. The mobile data bandwidth jumped a big leap with
the launch of 4G/4G LTE, rising to 100 MHz from 25 MHz of 3G. This reached a
new high with a massive upscale to 30-300 GHz with 5G networks thanks to the
technologies like EMBB, URLLC, and MMTC. 5G offers speed in the range of 100
Mbps (low-band) - 20 Gbps (high-band). With these advancements, the cost per
unit data transfer rate is significantly lowered. Furthermore, an innovative idea like
5Gi (5G radio interface technology) promises to offer more range at a lower fre-

quency. 5Gi is a joint initiative by IIT Hyderabad, IIT Madras and other premier
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academic institutions in India, along with the Centre of Excellence in Wireless
Technology. The project is backed by the Department of Telecommunications,
Govt. of India. Its potential for large-scale deployment with the enhanced coverage
in remote areas, rural regions and difficult terrains makes 5Gi much more econom-

ical in the countries like India.

GSMA estimated that two-thirds of the world’s mobile connections will be running
on 4G and 5G networks by 2025 [425], while their latest estimation states that there
will be 2 billion 5G connections globally by 2025 [420]. While the full potential of
5G is yet to realise as it is still in its early days, people have already started working
on 6G aiming for more speed and increased bandwidth. Organisations like ITU-R
6G Vision Group [426], Orange [427], North America’s Next G Alliance [428], The
University of Texas (6G@UT?) [429], Oppo [430], MIT-Ericsson [431], to name a
few, have kicked off planning, researching, and working towards 6G. Considering
this, we expect to witness more low-priced mobile data with massively higher

speed. This would boost the vision of MCC substantially.

3.2.5 Highspeed and Energy-efficient Short-range Communication

Modern SMDs are equipped with energy-efficient, high-speed, short-range com-
munication technologies such as BLE [432], NFC, Wi-Fi Direct, etc. These technol-
ogies allow forming ad-hoc or P2P MCC in the absence of WLAN and cellular in-
ternet. Besides low power consumption and high-speed data transfer, BLE offers
several advantages over classic Bluetooth, such as cost minimization, robust trans-
mission with minimised interference, extended connection range, ease of use and
integration [433]. Although NFC requires three times less energy than BLE, the very
short-range coverage makes it a little impractical for MCC. Compared to BLE and
NFC, Wi-Fi Direct offers the highest data transfer speed with greater coverage but
compromises energy efficiency. A comparative statistic of these three technologies

is given in Table 3.1.

27 http://6g-ut.org/
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Table 3.1. Comparing different short-range communication technologies for MCC

Parameters BLE NFC Wi-Fi Direct
Frequency 2.4 GHz 13.56 MHz 2.4 GHz
Data rate Up to 2 Mbps | Up to 424 Kbps Up to 250 Mbps
Range <100 M <4cm <200 m

Power consumption | 0.01-0.50 W | 0.025 W (approx.) K <20 W
Energy efficiency High (15 mA) | Very high (5 mA) | Low
Connection stability | High High Medium

3.2.6 HPC Through MCC

From the above discussions, we are convinced that the capabilities of the modern
SMDs are sufficient to consider them as individual computing units. However, nor-
mal SMD users do not utilise the full potential of their device’s capabilities. In fact,
the majority of SMDs are not being used to their capacity. Studies suggest that
normal users interact with their SMDs only for a few hours (on average, two to
four) in a day [62] [63]. So, a huge amount of processing capability remains unused
and wasted. The market buzz of 8/10 core processors makes the scenario more in-
teresting. Often 2-core processor is sufficient for a regular user unless he operates
heavy applications like 3D games. So even when SMDs are in use, it is highly prob-
able that some of the CPU cores and the GPUs, along with DSPs, ISPs, etc., remain
free. An enormous processing capability can be generated if these unused pro-
cessing powers are tapped and exploited properly (opportunistically). By accumu-
lating these unused resources on a large scale, we can achieve virtual HPC in the
same way as desktop grid computing. For instance, if 100 or more SMDs with
GFLOPS higher than 500 (e.g., Imagination PowerVR GT7900 or NVIDIA Tegra)
are connected together, the accumulated GFLOPS can challenge some of the

mighty supercomputers in the world?3.
3.3 Rudiments of MCC

In this section, we formally and elaborately introduce the concept of MCC along
with its architectures and types while comparing it with other similar computing

systems.

28 https://top500.org/
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3.3.1 Definition and General Properties of MCC

A crowd is a definite collection or group of people with shared purpose and emo-
tions [434]. The term crowd computing has been used by many people to refer to
the involvement of humans in the computation process. No doubt, computers have
evolved into very powerful and ‘intelligent’ machines. However, there are still cer-
tain kinds of tasks that humans can do far better and more accurately than com-
puters owing to their intrinsic cognitive abilities and natural instinct. Crowd com-
puting aspires to fusion human intelligence and computer algorithms to make
computers more knowledgeable and intelligent. Human capabilities are tapped to
solve the computational problems in crowd computing applications (e.g., Wikipe-
dia, Yahoo! Answer, etc.), which are otherwise difficult to accomplish by comput-

ers only.

However, we intend to envisage MCC as only a distributed computing platform.
Our perception of crowd computing resonates with that presented by Murray et

al. [107] and Fernando et al. [142]. We define MCC as the following:

It is a distributed computing approach where public-owned SMDs are opportunisti-
cally utilised in a resource-scavenging fashion for executing computing-intensive

tasks.

According to our proposed idea of MCC, it can generally be characterised by the
following particulars:
o Itisa distributed computing system.

o Every MCC application has a predetermined and defined purpose on which the

corresponding inputs, task properties, and outputs depend.

o The task generator creates distributable tasks dispensed to one or more com-

puting devices (task executors).
o The task generator/distributor and the task executor are different devices.

o The task generator and the task executor are connected through a local or

global network.

o The computing devices (crowdworkers/task executors) are not owned by any

organisation or any single entity; rather, they are owned by the general public
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as their personal devices.
o The crowdworkers provide their SMD resources voluntarily.

o The crowdworkers might demand or receive some incentives for lending their

SMDs.
e Each crowdworker is treated as an individual computing node.

e Each crowdworker is typically mobile in nature; however, it can have different

mobility statuses, as shown in Fig. 3.3.

e The assigned tasks are executed on the executing device in an opportunistic or
CPU-stealing fashion.
o Generally, the tasks are independently executable, but depending on the ap-

plications, there might be dependency and different workflows.

The assigned tasks are supposed to be entirely executed by the crowdworkers

and return the results before leaving the network.

o The task generator collects the results from the crowdworkers and assembles

them correctly to get the final result.

*The device is always static

eThe device is generally mobile

eMobile but relatively static with another device as they move together
eMobile but takes time to relocate from one position to another

eContinuously mobile

Fig. 3.3. Different mobility states of the resource provider and consumer
The common terms used in this chapter in discussing MCC are described in Fig.
3.4

3.3.2 Comparing MCC with Other HPC Systems

We project MCC as an alternative and sustainable HPC system. This section exam-
ines how MCC differs from other popularly known HPC systems. Table 3.2 sum-

marises the comparison between MCC and other HPC systems that are discussed

below.
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eSmart mobile devices such as smartphones, phablets, and tablets.

eGathering of people, but could be generalized as gathering of entities for
resolving an issue by collective decisive power of individuals.

eComputing performed by a number of computing devices in distributed manner
for solving a common computational problem.

eAgents involved in crowd to do functional job like computation, decision making,
etc.

eCollection of SMDs connected through local or global communication networks
in a centralised or P2P fashion to provide aggregated computing power.

*A project wih high computation demand that is catered by MCC.

A task that is originated from the MCC application. It is large and can be many for
a particular application.

eAn MCC task is devided into severall smaller subtasks that are sent to a
crowdworker for processing with definite input and output specifications.

*The output of the executed task on the crowdworker, and is to be returned to the
coordinator.

oIt is the software component of MCC that is responsible for most of the
operations starting from job creation to result aggregation and validation.

eIt is the main part of the coordinator that communicates with the crowdworkers
and performs related operations such as task dispatching and result collection.

eResourceful computing device that hosts the coordinator and runs the
middleware.

ePart of the MCC application, installed on the crowdworker and is responsible
executing the assigned task on the device opportunistically and return result to
the coordinator.

Fig. 3.4. Common terms used in discussing MCC

Table 3.2. Comparing MCC with HPC systems

Comparing MCC Grid Cloud Cluster Super-
parameters computing computing computing computing
Sys- Resource | Highly Scattered Integrated Highly Unified
tem anthology | scattered integrated
setup | Nature of | Dynamic Mostly fixed | Fixed Fixed Fixed
resources
System Small/me- medium/ Large com- | Large or- Large edu-
ownership | dium/large | large organ- | panies ganizations | cational and
organiza- izations, ed- and research in-
tions ucational research stitutions
and institutions
research
institutions
Resource | Individuals | Organiza- Service Organiza- Educational
ownership tions, insti- | providing tions and and
tutes and company research in- | research in-
individuals stitutions stitutions
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Dedicated | No;re- Many often, | Dedicated, Yes Yes
system sources are dedicated, but not for a
acquired but mostly | particular
opportunis- | opportunis- | service con-
tically tic sumer
Archi- | Processing Distributed | Distributed | Centralised/ | Distributed | Centralised
tec- topology distributed
ture Compu- Large Large Very large Many Unified (of
ting node multiple
counts cores/CPUs)
Stateful/ Stateless Can be both | Both NA NA
stateless
Task grain | Smaller Me- Larger Larger Larger
size dium/larger
Resource | Loose Loose/ Medium/ Tight Tight
coupling medium tight
Resource Centralised/ | Centralised/ | Both Centralised | Centralised
access decentral- decentral-
ised ised
Resource Decentral- Decentral- Both Centralised | Centralised
allocation | ised ised
Resource Decentral- Decentral- Both Centralised | Centralised
handling ised ised
Batch pro- | Batch Batch Both Batch Batch
cessing or | processing processing processing processing
interactive
Central- Yes, for Yes; no for Yes Yes Yes
ised centralised | P2P grid
control- MCC; no,
ling for P2P
MCC
Desir- Mobility Yes Yes, for Yes No No
able support mobile grid
prop- | Flexibility | Yes Yes Yes No No
erties | Flasticity | Medium Me- Unbounded | No No
dium/high
Scalability | Scalable Scalable Highly Scalable No
scalable
QoS Load bal- | Moderate Efficient Very Very NA
prop- | ancing efficient efficient
erties | Fault tol- Less Medium High High High
erance
Processing | Medium Low Low Negligible No
latency
Perfor- Good Very good Very good Very good Best
mance
Availabil- | Not guaran- | Mostly Guaranteed | Guaranteed | Surely
ity teed guaranteed guaranteed
Reliability | Less reliable | Mostly Highly Extremely Absolutely
reliable reliable reliable reliable
Compu- Low/high/ High/ Very high Very high Very high
ting very high very high
capacity (depends on
SMD availa-

bility)
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Net- Network Yes Yes Yes Yes No
work- | connectiv-
ing ity
and required
data Distance One hop for | One, in case | Multiple One hop One hop
com- | between local MCC, | ofthe cam- | hops
muni- compu- multiple for | pus grid;
cation | ting global otherwise,
source multiple
and sink hops
Data High for High for High Negligible No
transfer global MCC; | public grid;
latency low for local | low for
MCC campus grid
Connectiv- | WAN/WLA | WAN/LAN | Internet LAN NA
ity N/WiMAX/
hotspot/
Bluetooth/
NFC
Ser- Service Computing | Mostly Various Computing | Computing
vicing | provided computing; | services
also, data
and storage
Option for | No Yes Certainly No No
value
added ser-
vices
Multi-ten- | No, butcan | Yes Yes No No
ancy be
SLA Less scope Usually, Defined and | NA NA
but required = SLAs are de- | followed
fined and
followed
QoS Not Protected Guaranteed | Guaranteed | Absolutely
guaranteed guaranteed
Secu- | Security Low for Low Low Very low No
rity, threat to genuine
pri- host de- MCC appli-
vacy vice cations
and Security High High Very low No No
trust threat
from host
device
Attack vul- | Negligible Negligible Very high No No
nerability | for local for campus
while in MCC, high | grid; other-
transmis- | for global wise, high
sion MCC
Privacyis- | High con- Concern Yes No Absolutely
sue cern no
Trust Very high High for Low for Absolutely | Absolutely
issue public grid | known no no
service
providers
Finan- | Upfront Negligible Very high, Extremely Very high Extremely
cial invest- for setting high high
ment up new
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as- organiza-
pects tional grid;
negligible,
for utilising
existing
computers
in the or-
ganisation
and also for
public grid
Opera- Negligible High for or- | Extremely High Very high
tional cost | for central- | ganizational | high
ised MCG; grid; negli-
otherwise, gible for
none public grid
Mainte- Negligible High for or- | Very high High High
nance for central- | ganizational
overhead | ised MCC; grid; negli-
otherwise, gible for
none public grid
Band- High High Very high Very high None
width uti-
lization
cost
Availing Zero or Zero or Moderate NA NA
price minimal minimal
Business No, but Generally, Absolutely No No
oriented there is no; but can
potential be
Envi- | Energy Very low High Very high High Very high
ron- consump-
men- | tion
tal Environ- Lessdueto | Lessdueto | Very high High High
ef- mental using exist- | using exist-
fects hazard ing devices | ing devices
due to
produc-
tion
E-waste Less High Massive Very high Very high

3.3.2.1 MCC yvs Grid Computing

The fundamental philosophy of grid computing is to voluntarily share idle compu-
ting resources collaboratively [435] [436]. Though grid computing has been used
in different flavours such as data grid, knowledge grid, application grid, sensor
grid, etc., as shown in Fig. 3.5, in this chapter, our reference to grid computing is
limited only to the computational grid [401] [437]. It is obvious that MCC has been
conceptualized from traditional desktop grid computing [438] [439]; hence, they
share many similarities. But there are a few striking differences, as mentioned be-

low, that make MCC distinct from the desktop grid.
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e MCC has more opportunities than the desktop grid because the number of

SMDs used worldwide is significantly higher than desktops.

o Due to their mobility, setting up an MCC is more flexible than desktop grids.

Using a P2P MCC, an ad-hoc HPC can be created anywhere.

o Indesktop grid computing, the internet is used to access distributed resources,
whereas the internet is not necessarily required to build up MCC systems. The
SMDs can be connected through WLAN technologies such as Wi-Fi, WiMAX,

Bluetooth, mobile hotspot, etc.

o Ensuring the availability of SMDs and maintaining reliability is far more chal-
lenging in MCC.

o Architectural limits in SMDs force the client application to have fewer func-
tionalities. The users do not have much to choose except either run or do not
run the application. At max, they can schedule when their phones should be
accessed. Conversely, resource providers in the desktop grid have the luxury
of having more functional client applications. They enjoy more autonomy and

can set multiple preferences for resource sharing.

e Due to the small memory size in SMDs, the distributed tasks should be much

finer-grained than a desktop grid.

o Privacy and trust issues are more critical in MCC since SMDs are far more per-

sonalized devices than desktops.

Both systems have their fortes and limitations, so combining them should comple-
ment each other. We can have a much superior system comprising the flexibility,
accessibility, and obtainability (a large number of SMD users) of MCC and robust-

ness, reliability and security of the desktop grid.

3.3.2.2 MCCvs Cloud Computing

Cloud computing offers abstracted, centralised, and virtually unlimited compu-
ting-related services on demand to the consumers for a fee [440]. Cloud computing
offers various online services such as storage, CPU, GPU, development platforms,
software and endless applications [441] [442]. Although cloud computing provides

several benefits such as Increased processing power, scalability, utility-based



101

pricing, and dynamic, flexible and agile service provisioning, a few crucial issues
such as the requirement of continuous internet connection and significant latency

limit the utility of cloud computing [30].

Grid Computing

Deals with the controlled sharing Integrates information across

and management of distributed heterogeneous data sources
data < >
| Data Grid | | Information Grid |
Deals with knowledge management Provide access to remote software
in the form of distributed metadata and libraries transparently
and ontology processing < >
| Knowledge Grid | | Application Grid |
Collection of distributed Collection of distributed and
computational resources that connected sensors from which data
provide various services < » are collected for specific purposes
| Service Grid | Sensor Grid
v

: Concerned with the . : ”
Desktop computers share their Resour ce-rich mobile devices

computation resources y ;
D offer their resources like usual

idle resources in the grid | ComputnHAEHT |
computational grid
| Desktop as Resource Provider | Scattered, idle Mobile devices are part | Mobile Device as Resource Provider |
desktops' (public or of a computing grid,
— organisational) either as a resource 2 .
Desktop computers avail grid resOUTCE e - provider or consumer Resour ce-deficient mobile
resources when required opportunistically devices, running resource-
| Desktop Grid ) | Mobile Grid j» demandingiComBREEEEEEY
utilise grid resources
Desktop as Resource Consumer | | Mobile Device as Resource Consumer |
Supercomputers are Geographically
connected for resource distributed clusters are
sharing < connected for resource
sharing
| Supercomputer Grid | | Cluster Grid |

Fig. 3.5. A taxonomy of grid computing
Though MCC also aims to provide scalable HPC like there are several fundamental

differences between the two, as mentioned below [34]:

o The service provisioning philosophy is exactly the opposite of the two ap-
proaches. In cloud computing, the public is the service consumer, whereas, in
MCC, they are the service providers.

e Cloud resources are centralized, but in MCC, it is highly distributed.

o InMCC, ensuring crowdworkers’ availability is a real issue, whereas availability
of services anytime is guaranteed in commercial cloud computing.

o Computing services in MCC can be availed without or with minimal cost. But
availing of cloud services always entails money, and the price depends on the
type and duration of the service availed. Compared to MCC, cloud computing

is considerably expensive.
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« Not only computing services but cloud computing offers several other services,
as mentioned above. But MCC is meant for computing services only.

 Establishing and operating cloud infrastructure is hugely expensive, whereas
MCC has almost zero cost in this regard.

e Cloud infrastructure needs dedicated space with continuous cooling and

power backup facility, which is not required in MCC.

3.3.2.3 MCC vs Cluster Computing

In cluster computing, several computers are tightly or loosely connected, generally
through highspeed LANs [443]. The connected computers work as a unified entity,
providing considerable HPC [444] [445]. Though MCC and cluster computing both
intend to provide HPC by amassing multiple computing units, they differ by far in

the following aspects:

o The most significant difference between the two is the resource type. In cluster
computing, the PCs are used for computation. No mobile devices are con-
nected as a resource provider or consumer. Whereas in MCC, only SMDs are
the resource providers.

 Establishing a first-hand cluster computing setup is expensive. However, if the
existing computers are utilized in an organisational cluster, this expense can
be waived. In both cases, the maintenance expense remains, which can be high
depending on the cluster size. MCC has zero or minimum establishment and
maintenance costs.

o Though clusters are mainly used for computations, other clusters, such as
memory and storage clusters, can also be achieved, which cannot be said for
MCC.

o A cluster is formed using wired media in contrast to MCC, which connects the
SMDs wirelessly.

o The computing resources in cluster computing generally belong to a single ad-

ministrative domain, whereas in MCC, they belong to individual users.

3.3.2.4 MCC vs Supercomputers

Supercomputing is the oldest attempt to achieve HPC. It is different from all other



103

HPC paradigms mentioned above. A supercomputer is typically a single, large and
non-portable computer stationed at a fixed location and used for applications with
complex computation demands. Not only fundamentally, but it differs from MCC
in most aspects. The only similarity is the purpose; both aim to fulfil the demands

of computing-intensive resources.

3.3.3 Comparing MCC with Other Mobile Computing Systems
In the following, we shall attempt to clarify MCC's misperception with other ap-
parently similar distributed computing systems involving mobile devices. A sum-

mary of the comparison is presented in Table 3.3.

3.3.3.1 MCC vs Mobile Grid Computing

The concept of mobile grid computing initially came to integrate the mobile de-
vices with a grid computing system so that the grid service could be availed from
mobile devices also [446]. Here, the role of mobile devices was only as resource
consumers. However, considering the advancement of mobile devices, many re-
searchers sensed the opportunity to use them as resource providers as well [447]
[448]. In general, a mobile grid is a usual grid computing system in which mobile
devices also take part as resource consumers, providers, or both. Whereas MCC is
purely a mobile grid comprising only SMDs, and except for a P2P MCC, the SMDs

are always resource providers.

3.3.3.2 MCC vs Mobile Cloud Computing

Though the terms mobile crowd computing and mobile cloud computing seem
nearly homophones, they are different altogether. In MCC mobile cloud compu-
ting, the mobile devices offload their works to the cloud [449] [450]. Due to re-
source limitations in a mobile device, the resource-intensive applications are run
on the cloud though it appears they are running on the client mobile device only
[451]. Here, mobile devices act only as resource consumers. Whereas in MCC, no

external cloud provider is involved.

3.3.3.3 MCC vs Ad-hoc Mobile Cloud

Ad-hoc mobile cloud, as its name suggests, is an on-demand assemblage of neigh-

bouring mobile devices. If a traditional remote cloud service is inaccessible (lack
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of internet connection) or undesirable (to avoid latency), the accumulated services
of its adjacent other mobile devices are utilised to satisfy the need of a mobile de-
vice. In this cloud, the workload and data reside on mobile devices rather than
cloud servers [99]. Typically, there is no centralised control in an ad-hoc mobile
cloud; instead, it follows a P2P architecture. The purpose, architecture and func-
tioning of ad-hoc mobile cloud are pretty similar to ad-hoc MCC, as described in

Section 3.3.5.2.2.

3.3.3.4 MCC vs Mobile Crowdsourcing

Merriam-Webstar?® defines crowdsourcing as - “the practice of obtaining needed
services, ideas, or content by soliciting contributions from a large group of people
and especially from the online community rather than from traditional employees
or suppliers.” Crowdsourcing generally refers to a model for outsourcing tasks to a
broad group of humans or machines, or in some cases, to a small group of experts
or specialists [452]. It aims to procure services such as data, knowledge, computa-
tions, etc., from a large, diverse, and distributed set of service providers (crowd) to
attain a set target or a solution cheaply and quickly [453] [454]. Mobile crowdsourc-
ing refers to accessing services, mainly data, information and knowledge, gener-
ated or captured by mobile devices [455] [456]. Most mobile crowdsourcing appli-
cations’ primary goal is to capture context awareness [457] [458]. Though the gen-
eral perception of mobile crowdsourcing does not consider the computing service,
in our opinion, MCC can be seen as a subset of mobile crowdsourcing if we con-

sider computing as a service.

Table 3.3. Comparing MCC with other mobile computing systems

Comparing Mobile
parameters Mobile grid cloud Ad-hoc mo- Mobile
MCC : . .
computing compu- bile cloud crowdsourcing
ting
Service type = Computing | Computing, Various re- | Computing, Data
data or stor- | source-in- | data or other
age tensive ser- = mobile ser-
vices for vices
mobile ap-
plications

29 https://www.merriam-webster.com/dictionary/crowdsourcing
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Roe of mo- Service pro- = Usually, ser- | Service Both Service provider
bile devices | vider; both vice con- consumer
in case of sumer
P2P MCC
Resource SMDs’ pro- | None (if con- | None Processing Data sensed
shared by cessing sumer) or unit, data or | and generated
mobile de- units (CPU, | processing other mobile | by mobile de-
vices GPU) unit (if pro- services vices
vider)
Service criti- = Very high High High High Low
cality
Importance | Absolutely Important Important = Important Less important
of QoS important
Human in- Not re- Not required | Not re- Not required | May require,
tervention quired after quired after joining | depending on
agreeing to the ad-hoc the service
join MCC mobile cloud

3.3.4 MCC Architectures

Due to the flexibility of the computing nodes in joining each other different topol-
ogies of MCC can be laid out, and based on that, MCC can have different architec-
tural models, as shown in Fig. 3.6. Each of the models is characterized by the way
how the coordinator connects with other coordinators or crowdworkers. In this

section, we discuss each model in detail.

o AN

Extended P2P

Centralised P2P

Extended centralised

Fig. 3.6. Architectural models for MCC

3.3.4.1 Centralized

This is the most prevalent architecture and most suitable to attain HPC through

MCC. In the following, we discuss its basic architecture, components and working.

3.3.4.1.1 Architecture and Working

In a centralized model, the computing tasks across the MCC are managed and con-
trolled by a fixed coordinator from a central point of access. For participating in
the MCC, the SMD user should be pre-agreed to be a crowdworker (i.e., sharing
SMD resources) by installing the MCC frontend application. In this model, the co-
ordinator communicates with crowdworkers and carries out most of the responsi-

bilities such as searching and selecting suitable crowdworker, task creation, task
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scheduling and dispatching to the selected crowdworkers, handling fault issues,

etc.
Table 3.4. Comparing four MCC architectures
Comparing pa- Centralised P2P Extend.e d cen- Extended P2P
rameters tralized
Resource coordi- | Easy Not easy Not complex Complex
nation
Network infra- WLAN/WAN Ad-hoc network | WLAN and/or Ad-hoc network
structure WAN
Resource man- Easy Difficult Moderate Difficult
agement
System mainte- Negligible No mainte- Negligible No mainte-
nance nance nance
Infrastructure Low No cost Low No cost
cost
Scalability Scalable Restricted Highly scalable @ Scalable
Ubiquitous com- | No Yes No Yes
puting
Network traffic is- | High Low High High
sue
Susceptible to Yes No Yes Very less
DoS attack
Single point of Yes No Yes No
failure

For processing a large computing-intensive task through MCC, the coordinator
split it into several microtasks. Each of these microtasks is queued in a task pool
and is dispatched later for processing to suitable crowdworkers. The coordinator
searches for the presently available crowdworkers and records their resource de-
tails. The available connected SMDs create a resource pool. Among them, it selects
the most suitable SMDs as crowdworker for executing the microtasks. The selec-
tion is based on various criteria such as processing power, memory availability,
battery power, network connectivity and bandwidth, mobility, etc. It then sched-
ules the microtasks from the task pool by mapping the task to a designated

crowdworker and dispatching the microtask to that crowdworker.

The selected crowdworkers receive the MCC tasks from the coordinator, execute
them non-intrusively, and return the results to the coordinator. The coordinator
collects the results obtained from each crowdworker and aggregates them to build
the final result. The coordinator's responsibility is to assess the results for error and
their validity. The coordinator is also responsible for handling the faults generated

due to device mobility, data omission, and other reasons (see Section 3.4.1.5). It
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also should take measures to check security and privacy threats (see Section
3.6.2.1). The significant steps for executing MCC tasks in a centralised MCC are

shown in Fig. 3.7.

Crowdworker Task
Task farming —» discoveryand —— scheduling and
selection dispatching

l

Verification .
Returning .
and -« <+—— Task execution
. results
aggregation
Coordinator’s end Crowdworker’s end

Fig. 3.7. Major steps for executing MCC tasks in a centralised MCC
3.3.4.1.2 Major Components
In the following, we briefly mention a centralised MCC's hardware and software

components, which are also graphically represented in Fig. 3.8.
Hardware: A centralised MCC comprises the following hardware components:

e MCC server: This computing component hosts the backend and the middle-
ware and acts as the coordinator. It can be a traditional server, a computer, an
SBC, a non-mobile and high-end SMD, a programmable edge device such as a
Wi-Fi router or switch, or any other competent device having a computational
facility with an OS. The selection of the MCC server depends on the application

it intends to serve and the infrastructural constraints.

e Crowdworker: The crowdworkers are the SMDs that voluntarily take part in
MCC and carry out the designated MCC microtasks.
o Network: The crowdworkers are connected to the server through WLAN or

WAN.

Software: The major software components of a centralised MCC can be catego-

rised as follows:

o Backend: The backend component includes the MCC database and the server

application.

o MCC host application: It is a computing-intensive application or project that

is required to carry out through MCC.
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o Database: It stores the crowdworkers’ details (e.g., login, profile details (see

Section 3.4.2.2.2)) and other required data.

e Middleware: The middleware is the core part of an MCC which coordinates

and accomplishes most of the operations mentioned below. Elaborated discus-

sion on the below-mentioned functionalities can be found in Section 3.4.2.

Resource discoverer: It is responsible for finding out the SMDs in the network.

Resource profiler and monitor: It creates a profile of every SMDs connected to
the coordinator. The profile describes SMD’s software, hardware, perfor-
mance and log information. It further updates the profile for every subse-

quent connection the device makes based on its previous MCC performance.

Resource selector: It selects the suitable crowdworkers from the presently
connected SMDs as per the requirement for executing the MCC microtasks.
The crowdworkers are chosen based on their profile by considering their ca-

pability and performance.

Task farmer: Its job is to split a large MCC task into batches of microtasks and

put them in a task pool.

Task scheduler and dispatcher: The microtasks in the task pool are mapped to

the available crowdworkers for best suitability and dispatched accordingly.

Result aggregator: This module collects the processed results from the

crowdworkers, validates and aggregates them, and prepares the final result.

Fault inspector and handler: This component checks for any fault in the com-

plete process from the task schedule to obtain the final result (see Section

3.4.1.5).

Frontend: The frontend includes the software applications or set of APIs at the

SMD end that allows receiving the tasks from the MCC coordinator, processing

and sending back the response to the coordinator. Following are the key com-

ponents of the frontend:

o Task receiver: It receives the series of tasks from the coordinator and prepares

them for execution.
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o Task executor: It always looks for the availability of free processor cycles in
the SMD and executes the given task opportunistically. This module is re-

sponsible for ensuring non-intrusiveness (discussed in Section 3.4.1.8).

o Result dispatcher: After completion, it sends back the results to the coordi-

nator.

MCC application E Frontend
. N E Frontend

Database Middleware ~ Network :
R E Frontend

MCC coordinator E Frontend

Fig. 3.8. Key components of a centralised MCC
3.34.2 P2P

This architecture is primarily useful in an infrastructure-less MCC scenario. In the

following, we discuss its basic architecture, components, and working.

3.3.4.2.1 Architecture and Working

A peer-to-peer (P2P) model suggests a system where all participating nodes are
equal in different terms. In a general P2P computing system, each node can be a
resource consumer and a resource provider. In this architecture, each SMD com-
municates directly to all other SMDs in the topology. They are responsible for
searching for suitable crowdworkers when the need arises and communicating
with them for the MCC task processing. The resource-seeking SMD broadcasts the
resource requirement in the network. The volunteering SMDs respond by stating
their willingness to donate resources. Based on the responses received, the task
initiator SMD selects the most suitable ones and sends the tasks to them. To keep
up the cluster and task execution, all the SMDs in the cluster continuously broad-
cast messages among themselves. This causes flooding of messages in the network,
creating unnecessary congestion. Also, mitigating faults is more challenging in a

P2P MCC than in a centralised one.

A P2P MCC can have the following three entities:
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o Resource seeker: This is the SMD that requires external computing resources.
It initiates the task and sends it to other crowdworker(s) in the topology.

e Resource provider: The crowdworker executes the tasks received from the re-
source seeker and returns the result. Depending on the task’s computing re-
quirement, one or multiple resource providers might be required.

o Leader: Among the crowdworkers, one is elected as a leader which temporarily
acts as a coordinator. This is optional and is applicable only for pseudo-central-
ised MCC, not required in pure P2P. The resource seeker and the leader are the

same SMD in the latter.
A P2P MCC can work either of the following two ways:

o Pure P2P: Here, a resource-seeking SMD itself acts as a coordinator and is re-
sponsible for all the duties performed by a coordinator, including task initiation,
crowdworker selection, task scheduling, and result collection. This architecture
lacks a centralized coordinator; hence the resource-requesting SMD itself mon-
itors and manages the kind of service it needs from its peer crowdworkers. The
resource seeker may connect with more than one crowdworkers in a one-to-one
mode for availing of the wanted resources. The crowdworkers cannot delegate
the task further to other SMDs.

o Pseudo-centralised: In this form of P2P MCC, among the available
crowdworker, one, besides the resource seeker, is elected as the leader which
temporarily acts as the coordinator. The usual crowdworker management jobs
are done by the leader. The resource-seeking SMD only initiates the tasks and
sends them to the crowdworker designated by the leader and later receives the

results. This architecture gets the advantages of both P2P and centralised MCC.

The responsibilities of each resource seeker, leader and crowdworkers for pure P2P

and pseudo-centralised MCC are shown in Fig. 3.9.

3.3.4.2.2 Major Components

Since the functionality of both centralised and P2P MCC are fundamentally the
same, i.e., executing tasks on other SMDs, the basic components are the same; the
difference is only in their packaging and localisation. The components of a typical

P2P MCC are shown in Fig. 3.10.
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Pure P2P Both cases

Task initiator Task initiator Leader Crowdworker

Fig. 3.9. Responsibilities of the entities in P2P MCC
Hardware: In a P2P system, there is no separate MCC server. Therefore, as hard-
ware, only the SMDs and network will be there. Here, instead of an infrastructure-
based network, an ad-hoc network is used to communicate between SMDs. On
requirement, an ad-hoc network is established between the nearby SMDs through

short-range communication technologies such as Bluetooth, NFC, hotspots, etc.

Software: Since there is no separate coordinator, the job of a coordinator is done
either by the resource seeker itself of by the elected leader. Therefore, the func-
tionalities of the coordinator (including task farming, crowdworker discovery, task
scheduling and dispatching, result collection and aggregation) are embedded with
the SMD-friendly MCC package. In a pure P2P MCC, all the crowdworkers should
have the same software installed. However, in an asymmetrical P2P MCC, except
for the resource seeker and the leader, the other crowdworkers can have only the
front-end installed.

Service l . l
seeker
4 =~

- TN
~

1 oL
Leader <—>/(' Ad-hoc <|<—>l
5 network

Fig. 3.10. General components of a typical P2P MCC
3.3.4.3 Extended Centralized

This model is an extended form of the centralized architecture and is generally
applicable for a largescale MCC. Multiple small centralized MCC clusters are con-

nected hierarchically. A centralised node at the top acts as the chief coordinator,
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as shown in Fig. 3.6. Each central node communicates either with the crowdwork-
ers under it, another centralised node under it, or its parent node for resource find-

ing, task distribution, and load balancing.

The extended centralized model helps in offloading job burdens in individual clus-
ters. A particular centralized cluster primarily searches for resources within it and
processes the tasks independent of other clusters. Due to uncertainty in SMD avail-
ability, the number of crowdworkers in a particular cluster keeps fluctuating. This
often causes a scarcity of resources in a cluster leading to task overloading. If a

coordinator is out of resources, it forwards its tasks to its children or parent.

Combining and extending network connections through multiple coordinators
makes this architecture highly scalable. Though it allows sharing task loads in
largescale, it significantly suffers from the overhead of moderating tasks (submit-
ting microtasks and collecting results) from one cluster to another. Especially if
the clusters are designed to address any specific type of computing problem, mi-
grating the tasks between multiple clusters requires additional design considera-

tions.

3.3.4.4 Extended P2P

This MCC architectural model allows multiple P2P MCC clusters to coordinate and
communicate with each other, extending the small P2P clusters into a large P2P
MCC. Each cluster is represented and coordinated by its leader. All the leaders are
again connected to each other, thus forming a wider P2P MCC, making a normal

P2P MCC more scalable.

If any cluster is found to have a shortage of resources, the leader forwards resource
requests to all the peer leaders. If multiple peer leaders come forward for help, the
task is forwarded to one among them. The leader of this resource-providing cluster
takes the responsibility to get the task executed by the crowdworkers under it and
send back the result to the resource-seeking leader, which in turn forwards it to

the actual resource-seeking SMD.

Each leader keeps the information about other peer leaders and their correspond-

ing clusters. In case of any change in a cluster, it is broadcasted to all the leaders.
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In a dynamic environment like MCC, this message flooding increases data traffic
which is a serious issue for an ad-hoc P2P MCC. Further, improper leader selection

would make the system unstable, which makes its management a complex job.

3.3.5 MCC Types

Fundamentally, MCC can be implemented either as a local set-up (local MCC) or
on a global scale (global MCC) based on the resources exploited and the scale of
the network [124]. Further, a local MCC can be infrastructure-based or infrastruc-
ture-less. The classifications of different MCC types are laid out in Fig. 3.11, while
their topological representations are shown in Fig. 3.12. In the following, we elab-
orate on each of the MCC types. A comparative summary of three MCC types is

presented in Table 3.5.

SMDS are connected to the MCC server through internet
.{ [-—i SMDs are connected to the MCC server through a WLAN

—i SMDs are connected to each other via short-range communication

Fig. 3.11. MCC types classification
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Fig. 3.12. Topological representations of different MCC types

3.3.5.1 Global MCC

Global MCC can be described as a largescale web-based centralized MCC connect-
ing the crowdworkers across the globe. The coordinator in a global MCC is gener-
ally a server or a powerful computer. It runs highly computing resource-demand-
ing applications or projects. As in a centralised MCC, the tasks are farmed into
several batches of microtasks dispatched to crowdworkers via the internet. Since
the crowdworkers are connected through the internet, the crowdworker availabil-

ity issue is not severe because the SMDs are accessible ubiquitously. Since many
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SMDs can be utilised worldwide, a global MCC can garner massive computing
power. Global MCC is incredibly useful in satisfying the computing demands of
large scientific projects that require vast computation power for solving problems
related to physical sciences, astrophysics, mathematics, medicine and health, etc.

[145] [459] [460] [461] [462].

Table 3.5. Comparing three MCC types

Comparin Infrastructure-based Ad-hoc local

paraIIr)leteri e — local MCC MCC
Number of Hundreds of thou- = Few hundreds and less Very few
crowdworkers sands
Network Internet Wi-Fi/WLAN Bluetooth, hotspot
Establishment Organization Organization Anybody, any-

where
Operational Not limited Limited to premises Limited to net-
periphery work range
Cost to SMD owner Internet data (ifap- | No No
plicable)

Operational fault Low Moderate High
due to SMD mobility
Cost for setup Not much Very less None
Reliability High Moderate low

3.3.5.2 Local MCC

Unlike global MCC, a local MCC is connected through local networking. The scope
of this type of MCC is limited to a local geographic area where SMDs are connected
to a coordinator (centralised MCC) through a WLAN or each other (P2P MCC)
through other short-range communication means [463] [464]. Local MCC, based
on the usage of network infrastructure, can be of two types - infrastructure-based
local MCC and ad-hoc local MCC. In the following, we briefly discuss these two
types of local MCC.

3.3.5.2.1 Infrastructure-based Local MCC

An infrastructure-based local MCC system follows a centralised architecture and
consists of a coordinator and the nearby SMDs. Here, the coordinator is fixed and
can be hosted on a mini server, a computer, or an SBC, but the SMDs are ad-hoc,
i.e., they are not enduring. However, in a campus-based MCC, the SMDs are gen-
erally re-entrant, i.e., they are regularly available for a certain duration [465]. The
SMDs are connected to the coordinator through Wi-Fi. Within a particular Wi-Fi

network, a single coordinator manages the crowdworkers connected to that Wi-Fi
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access point. The coordinator creates the microtasks, keeps track of the available
crowdworkers and based on their resource capacity, the tasks are dispatched, and
the results are collected after execution. Whenever a crowdworker connects to a
coordinator, it is assumed that the crowdworker is available and willing to lend its

computing resources voluntarily or in return for some incentives.

Infrastructure-based local MCCs are found in organizational or institutional prem-
ises and cater for local computing. A local MCC can be set up within a campus-
based or in-house environment like a college/university campus, office building,
libraries, restaurant, shopping mall, factories, etc., where the footfalls of the SMD
users are regular and large in number. Organizations may utilise the SMDs availa-
ble within their premises to set up a local MCC that would serve its organisational
computing purposes, not requiring investing in infrastructure-based computers.
By taking advantage of many SMDs, organisations can also achieve HPC instead of
investing in owning HPC infrastructures or spending on cloud services. Further-
more, the local MCC can be utilized as edge computing infrastructure [140] [76]
[143] or mobile cloud computing [40] [75] [72] to process IoT data locally near the
source and the sink in real-time. This is helpful for time constraint applications for
processing time-sensitive data without sending them to the cloud and avoiding

processing delay [30].

3.3.5.2.2 Ad-hoc Local MCC

An ad-hoc local MCC is typically a P2P MCC without any fixed network infrastruc-
ture. Here, the SMDs communicate between themselves through short-range com-
munication technologies such as Bluetooth, NFC, hotspots, etc. An ad-hoc local
MCC can be formed and utilised on requiring computing resources where a group
of SMDs can be found. It can be within a campus such as an office, industry, studio,
institute, laboratory, etc. or outside of campus such as roads, fields, parks, accident

and disaster sites, etc.

The resource-seeking SMD broadcasts the resource requirement in close vicinity.
The neighbouring SMDs willing to donate their resources come together and form
an ad-hoc MCC. In this MCC type, it is not always necessary to have multiple SMDs

to process a task. Depending on the tasks and resource requirements, an ad-hoc
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local MCC can comprise two or more SMDs. If the task size is small and can be
processed by a single crowdworker, the topology might consist of only two SMDs
- resource seeker and resource provider. And if the task size is big and requires
more computation, then other SMDs can be included in the topology to share the

task loads.

An ad-hoc local MCC can fulfil the local and instantaneous computing demands.
As ad-hoc local MCC does not depend on any fixed network infrastructure, it can
be attained anywhere, offering on-demand ubiquitous computing. The ubiquitous
nature of MCC allows the processing of the data where ever it is needed near the

data source or sink.

The high mobility of the crowdworkers in an ad-hoc MCC makes it unstable. In
that case, managing the MCC and maintaining QoS become challenging [124]. As
shown in Fig. 3.3, SMDs may have different mobility statuses. Based on these sta-
tuses, a resource seeker-provider pair in an ad-hoc MCC may be grouped into dif-
ferent possible categories, as shown in Fig. 3.13. Caution needs to be taken when
anyone in the pair is absolutely mobile. If both are mobile and they are moving
together (often observed in a group [466]) they can be treated relatively stable and
is not a matter of concern. The mobility issue is aggravated in the case of an ad-
hoc MCC that follows a pure P2P architecture. A pseudo-centralised architecture
can ease the difficulties to some extent. This architecture will also allow scaling of
the ad-hoc local MCC by setting up multiple local ad-hoc clusters and connecting

them through their respective leaders, as discussed in Section 3.3.5 [467] [468].
3.4 MCC System Design Criteria and Considerations

Designing and developing distributed computing systems are always challenging.
MCC adds extra challenges mainly because the computation is done on
crowdsourced mobile devices. Ensuring acceptable performance and QoS in a sys-
tem where the computing entities are neither controllable nor reliable is challeng-
ing. This section identifies and discusses the requirements and considerations for

designing a functional, efficient and reliable MCC system.
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Static-Pseudostatic
Static-Mobile Static-Temporarily static

Static-Always mobile
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Always mobile-Pseudostatic
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Always mobile-Temporarily static
Pseudostatic-Always mobile
Mobile-Always mobile Temporarily static-Always mobile

Always mobile-Always mobile

Fig. 3.13. MCC taxonomy based on the mobility of the resource provider and consumer

3.4.1 System Design Criteria

The ultimate success of MCC as a system depends on its quality design. The design
goals of an MCC should be to adeptly handle and abstract the inherent issues and
make the MCC robust along with delivering expected QoS. In the following, we
discuss the specific considerations for designing and developing a typical MCC sys-

tem.

3.4.1.1 Abstraction

In computing terms, abstraction refers to hiding trivial details from the system de-
signer and/or end user. Crowdsourced systems always set the challenge of abstrac-
tion due to heterogeneity. The MCC also involves heterogeneity, generally in the

following three aspects:

o Hardware heterogeneity: The SMD market is crowded with a variety of
makes and models. Most of them differ in diverse hardware specifications such
as CPU and GPU clock frequencies, number of cores, other processors such as
DSP and ISP, primary and secondary memory, communication technology

support and interfaces, etc.

o Network heterogeneity: The SMDs might be connected through different
networking technologies such as 3G, 4G, 5G, and WLAN. For local MCC also,
there are various options as communication mediums such as mobile hotspots,

Bluetooth, etc. The SMDs and the coordinator might have different data
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transfer capabilities depending on their hardware and the communication net-
work bandwidth, leading to disparity in communication latencies. Assorted la-
tencies create overhead for the middleware for the dependent and time-sensi-

tive tasks.

o Operating system heterogeneity: The SMDs might have different operating
systems. Although, this heterogeneity is not on a vast scale because, at this
time, only two major mobile operating systems are running on most of the
SMDs. As per market data3?, in June 2022, Android had a market share of 72%,
and the next player, iOS, had 27%. Other mobile operating systems such as
Samsung, KaiOS, Windows, etc., have a negligible presence in the market. Be-
sides, the disparity in the operating systems of the coordinator and the SMDs

also be considered.

Collaborating with diverse SMDs in a unified way by making these heterogeneities
transparent is crucial though not trivial. Obscuring the heterogeneity is also im-
portant to achieve seamless interoperability between different entities in an MCC
system. The issue of heterogeneity is worsened because many SMDs concentrate
on highlighting particular usability (e.g., gaming, photography, music, social net-
working, etc.). Furthermore, in mobile devices, the components are tightly inte-
grated. This helps optimise the purpose of the device made for because the hard-
ware modules are chosen, particularly according to that. But it may also be possible
that the underlying hardware may not support the certain feature(s) of general-
purpose software. In general-purpose computers where hardware is not as tightly
integrated, this may be handled by swapping out the unsupportive module or plug-

ging in an additional module [469].

3.4.1.2 Generalisation

Ideally, an MCC system should not be application or task-specific, i.e., it should
provide a general-purpose computing environment that can support any MCC ap-
plication with various task specifications and requirements. From a software per-

spective, the MCC system should be a kind of ‘plug-n-play’. The task submitter

30 https://gs.statcounter.com/os-market-share/mobile /worldwide
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should not be bothered about task management details, including microtask crea-
tion, data structuring, deciding on processing and storage requirements, etc. It
should not also have any hand in resource management (see Section 3.4.2.2). An
ideal MCC platform should be able to handle all the necessary measures irrespec-
tive of application or MCC task type. An MCC user would only submit a job and
get the desired output that is ready to use. The MCC application should be plat-
form and function independent, i.e., it should be generalised enough so that the
client application can be installed on SMDs covering a wide range of hardware and
operating systems specifications. The coordinator part also should be portable to

any computer/SBC/server with equal working efficiency.

3.4.1.3 Adaptability

A system is said to be adaptable if it sustains the short-term and long-term changes
in the internal and external operational and environmental changes without com-
promising on the usual functionality of the system. The SMD market is probably
the fastest evolving consumer product market globally. Almost every other day, a
new model is launched with upgraded specifications. Commensurately, operating
systems are also frequently upgraded to more recent versions. In addition to that,
the firmware also gets regular updates and patches. An MCC system should be able
to adapt to these changes and revisions effortlessly without requiring to make

changes in the MCC software frequently.

3.4.1.4 Reliability

In MCC, the processing units are not owned and administered by a single author-
ity. As a result, maintaining the reliability of the whole system is a great challenge.
The coordinator is responsible for verifying the results received from each
crowdworker. The erroneous or unsatisfactory results should be discarded and, if
necessary, recomputed. The middleware should have a well-defined verification
policy and mechanism. Serial offenders (the crowdworkers who send erroneous

results regularly) should be blacklisted.

3.4.1.5 Fault-tolerance and QoS

A system is said to be fault-tolerant if it can continue its usual functioning and

provide its service even if it encounters expected and unexpected faults which



120

otherwise might lead to system failure [470]. Due to infrastructure-less-ness and
volatility, MCC is inherently fragile. Besides the process-level failures, the dynamic
and unreliable wireless environment with its inherent problems, such as the prob-
ability of high fault occurrences and bit-error-rates, and random delays [96], can
make the MCC more prone to faults. To avoid these inevitable communication
problems, steady and stable Wi-Fi connections are desirable. Besides, some foul

crowdworker may intentionally relegate the desired service provisioning.

Table 3.6 lists some of the common failures in distributed systems that are equally
applicable to MCC [471] [472]. Here, we refer fault tolerance at the abstraction
level. We do not discuss the fault tolerance at the core hardware and operating
systems level. We believe that the latest Android versions are equipped with suffi-

cient fault tolerance capabilities.

Table 3.6. Failures in MCC

| Failure type Failure site Description
Crash Amnesia MCC coordinator | Halts and restarts in a predefined initial state
failure crash before the crash.

SMD

The app stops working and restarts from a
predefined savepoint.

Partial-amne-
sia crash

MCC coordinator

Halts, and when restarts, some parts start with
the state immediately before the crash while
the rest start in a predefined initial state.

Pause crash

MCC coordinator

Halts and restarts with the state immediately
before the crash.

SMD

The app stops working but restarts with the
state before the crash.

Halting crash

MCC coordinator

Stops and never restarts.

SMD

The app stops working, or the SMD is hanged
or switched off.

Omis- Receive omis- | MCC coordinator | Fails to receive results.
sion fail- | sion SMD Fails to receive tasks.
ure Send MCC coordinator | Fails to send tasks.
omission SMD Fails to send the results.
Re- Value failure | SMD Sends incorrect result.
sponse State transi- | MCC coordinator | Fails to synchronise the flow of control cor-
failure tion failure rectly.
Timing failure SMD Fails to send results within the specified time.
Arbitrary failure SMD Produces arbitrary results at arbitrary times.

Making a system fault-tolerant comprises two phases - fault detection and recov-
ery. Detecting faults in the case of an independent task is not complex. Only while
aggregating the results, it is to be taken care of. But detecting faults for dependent

tasks with multiple workflows is really challenging. Several solutions can be found
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in the literature for the classic distributed system research [470] [472] [473] [474].
However, considering the uniqueness of MCC, incorporating them straightfor-
wardly in MCC would not be effective. The fault can either be at the crowdworker’s
end or at the coordinator’s end. After correctly detecting the fault, it needs to be

handled properly without affecting the integrity of the MCC system.

Over the years, several approaches have been proposed to mitigate faults in dis-
tributed systems [475]. One of the most common approaches is redundancy or rep-
lication [474]. If the same task is submitted to multiple nodes, it is highly improb-
able that all the instances would be faulty. However, the obvious problem with this
approach is the wastage of resources. Furthermore, in MCC, a large task is generally
split into multiple smaller microtasks, each having a certain input, processing and
output load. Excessive replication of these microtasks would enlarge the overall
processing chain, especially if there is interdependency between the microtasks
[124]. This would, in turn, increase the overall completion time. Moreover, as the
processing chain gets longer, the probability of faults also increases. Therefore, a
proper balance between the expected level of fault tolerance and replication is

highly recommended.

Another common approach to imposing fault tolerance in distributed systems is
rollback and recovery. The system periodically maintains checkpoints which save
the system state at particular instances [476]. If the system crashes, it returns to
the most recent checkpoint and restarts. Instead of setting checkpoints, some sys-
tems continuously log the system events [477]. In case of a crash, the system is
restated using the logged information. This logging approach is fine to handle the
coordinator failure but not ideal for SMD failure. Continuous logging would re-
quire considerable space, which is not so affluent in the SMDs. Also, frequent log-
ging would interfere with the processing and slow the execution of tasks. Check-
point is a better option, but setting them too densely would cause additional over-
head for the client app. So, a fair balance must be maintained between the check-

point scales and acceptable loss due to failure.

Replication and recovery are particularly challenging in MCC. It is difficult to im-

plement them in a loosely coordinated environment like MCC, where resources are
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likely to behave erratically, especially in opportunistic MCC. Therefore, it is rec-
ommended to go for a reasonable quasi-opportunistic MCC whenever possible.
Nevertheless, implementing fault tolerance for acceptable QoS is crucial for suc-
cessfully realising MCC, especially for commercial and critical applications. An
ideal middleware should mask all the possible systems faults, i.e., even though
some failure occurs either at the coordinator or the SMD end or in the network, it

should be transparent to the system and should not hamper its usual functionality.

The omission failure generally happens due to network failure. In a global MCC,
replication and recovery are the only options to tackle this. However, in a local
MCQ, it can be handled with a little bit of improvisation to save the task/result
loss. In a Wi-Fi-connected MCC, the signal strengths of the SMDs are monitored.
If a user continues to move away from the access point, the signal strength of the
SMD weakens slowly. Two thresholds of the signal strength are set. Whenever it
starts decreasing, the first threshold is checked. If it crosses the first threshold, the
system will start setting savepoints and taking backups. When it crosses the second
threshold, the job is withdrawn from the SMD and submitted to another one which
starts from the last savepoint. In a P2P MCC, even if the crowdworker tends to
move, the task need not be offloaded if the task initiator is also moving along, i.e.,

they are relatively stable [466].

As the number of task reassignments increases, the QoS gets more affected because
it has to be reassigned to another SMD, which introduces a significant delay or, in
the worst case, would result in job loss [249]. To minimise the task offloading cir-
cumstances, it should be ideal to assign the job to the crowdworker, which is sup-
posed to be stable and would stay within the grid for a long time or at least till the

task is finished and the result is returned, as discussed in Section 3.4.2.2.4.

3.4.1.6 Scalability and Elasticity

A medium or large-scale MCC would have a great number of crowdworkers con-
nected. An ideal MCC should be competently scalable to cope with this large num-
ber of SMDs and the uncertainty in their availability and reliability. Furthermore,
the MCC should be elastic enough to accommodate the sudden up and down surge

in the crowdworker requirement.
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3.4.1.7 User Friendliness

Moreover, resources in crowd computing are possessed and functioned by laymen,
most of whom are non-technical people rather than professionals. Given that, in-

stalling and operating the client application should be straightforward.

3.4.1.8 Non-intrusiveness

One apprehension of the users for participating in MCC is the concern that their
native applications in the SMD might get hampered in running the microtasks. To
avoid this intrusiveness, the resource utilization of the microtasks on a
crowdworker need to be strictly regulated and controlled so that the primary func-
tionalities of the crowdworker in no way get affected. The client application needs
to be designed to ensure that the microtasks will not be running when a resource-
demanding native application is running. A microtask should be allowed to run
only if the resource availability meets a certain threshold [478]. Also, the client
application should be able to automatically lower down or stop resource consump-
tion when the crowdworker’s own computing requirement goes up. Non-intrusive-
ness is one of the vital design goals of MCC, not only for attracting new crowdwork-

ers but also to retain the existing ones [82].

3.4.1.9 Energy Efficiency

As discussed in Section 3.6.1.1, battery constraint is an issue for computing on
SMDs. The fear of fast power loss might deter SMD users from participating in
MCC. Therefore, the client application must maximize energy efficiency in its op-
erations while maintaining the required performance level and QoS. Moreover, in
many MCC use cases, especially real-time sensor-based and loT applications, the
coordinator is hoisted on a battery-operated SBC. In these cases, one of the primary
design goals of the middleware should be to minimise the power consumption ac-

counting for its operations so that the working life span of the SBC extends.

3.4.1.10 SLA, Liabilities and Legalities

A service-level agreement (SLA) typically notes a commitment or pre-set rules and

conditions, describing different aspects of the service, such as quality, availability,
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responsibilities, etc., that are agreed upon by both the service provider (here,
crowdworker) and the service user (MCC host). For a commercial MCC, document-
ing and adhering to a well-defined SLA is very important. Though strict enforce-
ment of SLA in volunteered MCC is not very sensible, it certainly can be for non-
volunteered MCC where the crowdworkers are incentivised for their services. To
maintain a steady QoS, it is to be ensured that the services received from the
crowdworkers are always up to the mark. The common aspects that an SLA for

MCC should cover are:

o Scope: Services that are expected from the crowdworkers, and the services that
are not being covered in the SLA.

o Constraints: Specifying minimum hardware and software requirements for
certain microtasks.

o Computing performance: The minimum performance benchmark in terms
of computation, such as throughput and turnaround time.

e Network performance: Minimum network quality to be maintained for effi-
cient data transmission and to avoid the loss of data and results.

e Timeliness: The results are to be returned within a stipulated time, i.e., till
they are relevant and valid.

o Availability: Once agreed to be a crowdworker, an SMD should be available
for a certain duration in a particular session.

o Workload: The minimum and maximum workload per session for a
crowdworker should be pre-decided.

e Service failure: If any alternative measures can be taken in case of service
failure.

e Truthfulness: The validity of computations and the results to be assured.

o Security: It is to be ensured that there is no security threat or breach from
both crowdworker and MCC ends.

o Penalties: The penalties applied in case of agreement violations (i.e., if a
crowdworker fails to meet the promised service level expectations).

e Termination: Specification of the SLA termination criteria and procedure, en-

suring the associated configuration information is removed from the SMD.
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Furthermore, if the termination is due to an SLA violation, the likely actions

to be taken against the violating party depend on the degree of the breach.

Enforcing the SLA involves some legalities. But in a crowdsourced system, it is non-
trivial to demarcate the liabilities in case of serious failures and resultant losses.
This makes it difficult to set the jurisdiction in case of any law infringement. For
example, who should be held legally responsible if the MCC project sends data to
a crowdworker for unauthorised processing? The legalities get complicated in the
case of a global MCC. Enforcing penalties is challenging as the penalty clauses
might function differently in different countries. For a transparent and legal-has-
sle-free MCC implementation, proper permissions, disclaimers, policies, protec-

tions, encryption, and remedies need to be outlined and implemented at all levels
[479]-

3.4.2 System Design Considerations

The efficiency of an MCC system depends on various factors. Several aspects need
to be carefully considered to run the system efficiently. In this section, we discuss

the most crucial ones among them.

3.4.2.1 Determining Architectural Model

Adopting a suitable architectural model is important for the proper implementa-
tion and utilization of MCC. This choice should vary as per the type of MCC appli-
cation, as well as other environmental conditions. For example, in the case of a
requirement of small-scale organisational HPC (e.g., scientific computing), a cen-
tralised MCC would be ideal. Whereas, in the case of a large-scale HPC and inter-
organisational MCC, a hierarchical system would be preferable. On the other hand,
when the number of available SMDs is less, and the computing load is low, cen-
tralized or P2P architectures may be attractive. The choice of the architecture
needs to be determined by estimating the effectiveness of the architecture in a par-
ticular situation and the performance expectation. However, an ideal architectural
framework should be able to adapt to dynamically changing requirements, com-

plying with the reactive service management architecture for MCC.
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3.4.2.2 Crowdworker Management

The success of any distributed system depends on efficient resource management.
The same applies to MCC as well. In this section, we deliberate the different aspects

of resource (crowdworker) management in the context of MCC.

3.4.2.2.1 Crowdworker Discovery

A crucial and primary feature for the usability of MCC is the discovery of available
SMDs. The MCC system should be able to automatically locate the potential
crowdworkers, either by following periodical or on-demand discovery approaches
[82]. In periodical discovery, the coordinator regularly learns about the connected
crowdworker. The periodic approach can further be categorised as the pull (proac-
tive approach from the coordinator’s end) and push (reactive approach from SMD’s
end) method. In the pull model, the coordinator continuously polls the network to
search for the new crowdworkers. This approach is a bit costly and involves a delay
in the discovery process. In the push method, the crowdworkers spontaneously
declare their availability by alerting the controller whenever it joins the MCC net-
work. But the negative side of this approach is that the control is in the
crowdworker’s hand. For a balanced discovery, a combination of both methods can
be employed. On the other hand, the on-demand discovery (reactive approach
from the coordinator’s end) follows the pull method where the controller checks
for the available crowdworkers only when required, i.e., some tasks are to be exe-

cuted.

For crowdworker discovery, whether to use a periodical push or periodical pull or
an on-demand pull model is an MCC design decision. In either case, the coordina-
tor should be able to handle the false and masqueraded crowdworkers. An effective
crowdworker discovery approach that is compatible with the MCC application re-

quirement and infrastructure would enhance the efficacy of the MCC.

3.4.2.2.2 Crowdworker Profiling

In the context of MCC, SMDs can be characterised by several resource attributes
[36]. Some are fixed in nature, such as the clock frequencies of the CPU and GPU,

no. of cores in CPU and GPU, the processing capability of other on-board
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processors, total memory, battery capacity, etc. Some attributes are variable, i.e.,
their values change dynamically, such as current CPU and GPU loads, available
memory, available battery, and signal strength for communication. Besides, some
other persistent parameters, such as crowdworker’s availability and reliability,
user’s mobility pattern, etc., denote aggregated observations over a period and vary

on a smaller scale compared to the dynamically variable attributes.

In MCC, precisely profiling and assessing these resource attributes is an essential
prerequisite so that the microtasks can be mapped to the most suitable
crowdworker. However, due to the heterogeneity of the SMDs in terms of their
resource types and capacities and the dynamic variability of these resource attrib-
utes, profiling them and assessing their fitment for different requirements are not
trivial. Because capturing and storing these attributes’ values require different pol-
icies and implementations. To profile the static and dynamic resource parameters
of the SMDs in real-time, a systematic methodology and model need to be designed

and developed.

3.4.2.2.3 Crowdworker Selection

Based on the profiled resources of the potential crowdworkers, the most compe-
tent and fitting crowdworkers are selected for the tasks to be executed. Due to
assorted heterogeneity, as discussed in Section 3.4.1.1, it is obvious that not all the
crowdworkers are equally potent in terms of computing ability. Therefore, to get
the best performance out of MCC, selecting the most suitable crowdworker as per
the task requirement in different application scenarios becomes crucial. The pres-
ence of several attributes of different criteria makes the crowdworker selection a

multicriteria decision making problem [480].

The selection parameters differ depending on the MCC model. In an MCC where
the crowdworkers are generally common, the crowdworkers’ historical infor-
mation (such as mobility, availability and resource usage patterns, reliability, etc.)
can be considered. But in an ad-hoc MCC, the MCC coordinator does not have any
historical information about the crowdworkers. The selection should be made on-

the-fly. The problem with the on-the-fly selection is that it may not reflect the
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actuality of the candidate. Because an SMD may seem fittest in the present context,

it may happen that this fitness may not be consistent over a more extended period.

3.4.2.2.4 Crowdworker Availability

One major hindrance in maintaining QoS in MCC is the uncertainty of crowdwork-
ers’ availability. Crowdworkers’ sudden dropping out of the grid severely affects
the performance and QoS of the system. A crowdworker might go off due to con-
nection termination (intentionally or unintentionally), device malfunction/switch
off, or users’ mobility (for local and ad-hoc MCC). The availability issue can be
either overall or for a particular SMD to which a task is to be assigned or already
assigned. Different approaches are needed to handle these two issues, as discussed

in the following.

3.4.2.2.4.1 Availability of Sufficient Crowdworkers

The scale of MCC depends on the number of crowdworkers connected at any point
in time. In fact, the uncertainty of getting sufficient SMDs when required makes
MCC undependable. Especially, running critical and time-bound applications is
not a good idea if there is the slightest probability of unavailability of a sufficient
number of service providers through the course of job completion. To make the
system reliable, it is to be assured that the minimum required number of SMDs
should be available at any point in time, which may not be achievable in all condi-
tions. The good thing is that, as mentioned in Section 3.2.2, due to mass adoption,
there will not be a dearth of SMDs. Even for local MCC also, Loke et al. [141] esti-
mated that there is a high probability of finding a sufficient number of SMDs. Only,
they need to be tapped by motivating the users, maybe with lucrative incentivising

as discussed in Section o and 3.6.2.3.

3.4.2.2.4.2 Availability of a Particular Crowdworker

One major issue in MCC is handling the uncertainty of the device availability due
to various reasons such as users’ mobility, network failure, device malfunction, etc.
[249]. If a crowdworker leaves before completing the assigned task and returning
the result, the task should be resubmitted to another crowdworker and restarted

from the beginning [481]. This negatively affects the performance and QoS of MCC.
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And if this frequently happens for many crowdworkers, the performance degrada-

tion would be substantial.

One way to mitigate this is to have prior knowledge of the probable departure of
the crowdworker before submitting the task. One option is that each crowdworker
declare their availability period when they join an MCC session [140]. However, it
cannot be taken for granted every time. Besides the unintentional causes of leaving
(e.g., network failure, device hanged/switched off, etc.), some dishonest users may
leave before the declared departure time. Another option is to predict the availa-
bility of a particular crowdworker by analysing her connection or availability his-
tory [156]. Before submitting the task to an SMD, the probability of its availability
till the job is finished is assessed. If the predicted availability is greater than or
equal to the job length, then only the job is assigned to that particular SMD [465],
as shown in Fig. 3.14. But every time calculating this before the job submission will
delay the job submission process. To avoid this, the prediction algorithm may run
periodically (with a small periodical gap) in the background, and the job submis-
sion module can consult the availability prediction module before job submission
[36]. This approach is suitable where the crowdworkers are recurring, i.e., they
have a fixed timing pattern of joining MCC. Although the abrupt issues cannot be
evaded by prior planning, the issue of intentional departure can be mitigated rea-

sonably by this approach.
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Fig. 3.14. A crowdworker availability-based task assignment scenario
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3.4.2.2.5 Crowdworker Monitoring

One-time crowdworker selection does not end the course. Depending on the MCC
application and task granularity, tasks must be scheduled regularly. For every
scheduling event, suitable crowdworkers need to be selected. Considering the dy-
namicity of the MCC environment, continuous monitoring is required. The
changes in the status of the variable and persistent resource attributes need to be
regularly updated in the corresponding crowdworker’s resource profile, which
should be reflected in the next crowdworker selection decision. Continuous mon-
itoring is also required to keep track of the unavailability of the existing
crowdworkers. Like discovery, crowdworker monitoring can also follow either of
the three approaches - periodical push, periodical pull, or on-demand pull. In the
periodical pull method, the controller periodically fetches the resource status from
the crowdworkers. In contrast, in the periodical push method, the crowdworkers
send their resource status information periodically to the controller. Here also, a
combination of both of the methods can be employed. In on-demand monitoring,
the controller procures the resource information from the crowdworkers only
when required, i.e., a new task is to be scheduled for which a suitable crowdworker

needs to be selected.

3.4.2.3 Task Farming

The proper utilization of MCC can be realised only when a larger task can be di-
vided into several granular microtasks, which are sent to the crowdworkers for ex-
ecution. Ideally, these tasks should be independent, i.e., parallelly executable. Usu-
ally, the distributed systems follow a predefined task farming policy. However,
static task farming does not hold good in a complex application (e.g., interactive,
real-time, or process with dynamic and variable inputs). In these cases, the mi-
crotasks with varying sizes are created on-the-go. This makes resource discovery,
selection, and scheduling complex. Because the crowdworkers need to be compat-
ible with the tasks to be assigned to them, this mapping is to be done dynamically
for every task assignment. Considering this, innovative approaches are needed to

realise a more straightforward yet robust task farming mechanism.
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3.4.2.4 Task Scheduling

Efficient task scheduling is a crucial feature of distributed computing. It becomes
more important when the computing resources are mobile and crowdsourced. A
non-smart scheduler, to avoid complexity, would follow the straightforward task
allocation approach, i.e., whichever crowdworker is available, send the task-in-
hand to it if it satisfies the resource requirements. But this straightforward ap-
proach not only degrades the system's overall performance but also becomes a se-
rious issue in a crowdsourced system. In the following, we acknowledge some cru-

cial properties that need to be considered for framing a decent scheduling policy.

3.4.2.4.1 Optimized Scheduling

The MCC is comprised of public-owned devices which are vastly diverse in terms
of resource capacity and quality. In such an environment, it is pretty challenging
to assign tasks to SMDs according to their resource capability and usability. An
optimised MCC scheduler should be targeting to minimise the overall makespan
and response time while maximising the throughput. The scheduler should also
target to utilise a minimum number of SMDs to minimise the failure probability
and operational overheads and costs. The microtasks may vary in terms of task
length, resource requirements, errors sensitivity, and result verification require-
ments [83]. An ideal scheduler should adopt an intelligent and dynamic mapping
mechanism for scheduling the tasks to the most appropriate SMD, considering the

above-mentioned decisive factors.

3.4.2.4.2 Energy-aware Scheduling

Due to the limited battery life of the SMDs, an essential criterion of the scheduler
is to be energy-aware. The battery level of the SMDs should be included in the
scheduling criteria, i.e., an SMD with a lower battery level should be refrained from
being assigned tasks frequently. The most energy-consuming attributes are task
processing in CPU/GPU, memory transfer and data transmission (between SMD
and coordinator) [253]. Inefficient scheduling can significantly increase communi-
cation traffic and, in turn, energy consumption. This applies to both global and
local MCC. Controlling the power consumption for processing and memory oper-

ations is mainly in the hand of the client application. Therefore, the client
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application also needs to be energy-efficient, i.e., it should be designed to consume
minimum energy in managing the execution of the assigned task. Furthermore, to
achieve sustainable computing, the scheduler should ensure that the total energy

consumption to complete the task is minimal.

3.4.2.4.3 Balanced and Fair Scheduling

It is commonplace in an opportunistic computing system that a small number of
participatory nodes get overburdened most of the time, while the rest, the larger
segment of the participants, contributes meagrely or, in some cases, not at all. Also,
a typical scheduler might always look for the most competent crowdworkers and
schedule the task to them to achieve a better system performance. But this ap-
proach would overburden a small number of SMDs. Putting excessive load on an
SMD may lead to fast battery drainage and hardware stress, which would coerce
the users to drop out of the MCC. For a satisfactory retention ratio, a decent level
of QoE should be provided to the crowdworkers by implementing a fair and bal-

anced task allocation scheme [482] [483].

This is true for a P2P MCC also. Some users may be eager to use the resources of
other peers without the fair contribution of their own computing resources. These
types of selfish peers are called ‘free riders’. As a result, the good peers become
easily congested and overloaded. To achieve a unbiassed resource utilisation by
tackling with these selfish free riders, proper incentive and pricing schemes or pen-

alty policies are required.

3.4.2.4.4 Dynamic Scheduling

The high mobility of SMDs can debilitate the consistency of the system. If the
SMDs frequently get in and out of the MCC grid, the job scheduling and allocation
would be a real challenge. This factor makes designing an MCC scheduler more
challenging than other traditional distributed computing. An efficient MCC sched-
uler should be adaptive and flexible enough to schedule the task dynamically de-

pending on the availability of the crowdworkers.

3.4.2.5 Resource Scavenging

The MCC client should adopt an efficient, non-intrusive resource scavenging
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policy. Suppose a crowdworker is executing an MCC task, and in a while, if the
SMD needs to carry out some heavy computational job of its own, the MCC job
should be suspended. If the MCC task is time-bound, then the suspended task
might need to be offloaded to another crowdworker and continue thereon. As in
context switching, this shifting procedure is also costly in terms of time, fault tol-
erance, and reliability. So, if the application is delay tolerant, it may be allowed to
halt for a while and wait at the same device instead of offloading the job. The sus-
pended MCC task is resumed when it finishes its own job and the resource is avail-
able once again. The answer to the obvious question, “how long should it wait?”

may be decided on different criteria and considered separately.

3.4.2.6 Opportunistic Computing

An efficient MCC should be able to utilise the opportunistic scenario to its fullest
advantage. We suppose the opportunistic computing aspect is more pertinent to
local MCC. The opportunistic scenario can be pure or quasi, as discussed in the

following.

Pure opportunistic scenario: Whenever an SMD enters the range of a Wi-Fi
hotspot included in a local MCC infrastructure, it will be considered a probable
crowdworker. In this case, the MCC coordinator continuously hunts for a new en-
trant in the local MCC topology. If the SMD pass the minimum threshold criteria
for resources, it is considered for task scheduling. Opportunistic computing does
not guarantee continuous resource availability; thus, reliability and fault tolerance
are also not guaranteed. This could affect mission-critical applications heavily. This
might happen, particularly where the probability of hanging around phone users
at and around a particular location during a specific time interval is awfully unpre-

dictable.

Quasi-opportunistic scenario: Instead of depending on the random nature of
resource availability as in opportunistic computing, in quasi-opportunistic compu-
ting, it is made sure that the resources are available for a certain period [484]. Be-
fore that specified time, no crowdworker should leave once it has been hooked to
an MCC. This can be assured through some pre-agreement (SLA), economic or

other incentives, intelligent prediction of resource availability or by other means.
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For mission-critical and real-time applications, every crowdworker should com-
plete the assigned task without any or with minimal interruption. Exiting the MCC
topology should be avoided until the assigned task is completed. In case of emer-
gency and with prior reporting, a crowdworker is permitted to leave in the midway
only if it is assured that there is a suitable alternative. Quasi-opportunistic compu-
ting can be achieved if the MCC is performed within a campus, where there is a
certain probability of the presence of a certain number of SMDs during a certain
period. For example, institutes (school/college/university), libraries, large govt. of-
fices, corporate houses, production units, shopping malls, cinema halls, public
transport (preferably for long distances), etc., are suitable sites for campus-based
quasi-opportunistic MCC. In these sorts of places, it is possible to predict the num-
ber of accessible SMDs and the time duration of their availability, accordingly to

which the MCC tasks should be scheduled.

3.4.2.7 Workflow Management

Ensuring fault tolerance in MCC becomes more complicated if the tasks involve
multiple workflows. A workflow system can be defined as a collection of synchro-
nous or asynchronous processing tasks, executed on the same or different nodes
and organized to accomplish a bigger goal [485]. A distributed task with workflows
is expensive to recreate if not completed successfully. A failed workflow may have
severe ripple effects. Therefore, improper workflow management would destabilise
the system. An ideal workflow manager should be able to orchestrate the whole
operation by synchronising and managing the processes correctly and timely. A
workflow can fail due to network failure, device unresponsiveness, unexpected la-
tency, or incorrect intermediary results. Many efforts have been made toward han-
dling workflow management in distributed computing [475], grid computing [486]
[487], mobile computing [488], and ubiquitous computing [489]. The uncertainty
in the continuous availability of the devices in MCC demands extra efforts in this

regard.

3.4.2.8 Result Verification and Aggregation

To make MCC reliable, it is to be ensured that the tasks are correctly executed; in

other words, the processed outcome is correct and valid. Since the tasks in MCC
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are divided into microtasks executed on different SMDs, the result verification gets
a little intricate. First, the results for each microtask received from the assigned
crowdworkers must be verified. And then, these results are aggregated to get the
final result which needs to be finally validated. However, the complete process of
verifying, aggregating and validating the results received from heterogeneous com-
puting nodes is not trivial. For this, a suitable framework and policy are to be
adopted [83]. There should be unambiguous and well laid out decision policies in
the cases, for example, what to be done with the partial results, what should be the
standard for verification and validation, if the results could not be immediately

verified how to proceed with the aggregation and validation, etc.

3.5 Advantages of MCC

The unique nature of MCC has spawned several pluses. This section identifies and

discusses MCC's potential advantages and benefits.

3.5.1 General advantages of MCC

Following are the advantages of MCC in general, i.e., they apply to all types and
models of MCC.

Cost-effective: Institutions and organisations do not have to invest in buying and
maintaining extremely pricey HPC systems. They can reap the same service by em-
ploying MCC through smart policy adoption. MCC will also substantially reduce
the electricity bill by eliminating the electricity expenditure for operation, ventila-

tion, and air-conditioning of the IT systems that may include clusters and servers.

Least overhead in IT infrastructure management: Since the resources are
yielded by the public and not owned and managed by the organisation, it should
not be worried about maintaining the IT infrastructure support system, and the IT

team can ponder on more productive works.

Free from DDoS attack: Since the computing has been distributed over many

devices, MCC gives little scope to the DDoS attackers.

Offering computation offloading: Due to several reasons such as insufficient
resources, saving energy, and maximising throughput, sometimes it becomes de-

sirable to offload the workloads of the mobile devices [490]. A P2P MCC would
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allow other SMDs to offload their workloads, when needed, to other SMDs without

needing any other external services such as the cloud.

Scalability and agility: Today's computing workloads are generally dynamic and
unpredictable, and since the datasets can often grow unpredictably and, in many
cases, exponentially, the systems are required to be able to scale up or down easily
and quickly, depending on the workload. Depending on the availability of the

SMDs, MCC is dynamically scalable as per workload.

Amply available resources: Because of the massive adoption of SMDs, there is
every possibility that a sufficient number of devices would be available for compu-
tation even at scantily populated sites. It would ensure the availability of MCC-

powered HPC.

3.5.2 Benefits of Local MCC

In addition to the above-mentioned advantages, a local MCC specifically offers the

following benefits.

On-premises: MCC can be set up locally utilising the on-premise devices and local
network. A local MCC does not require to be connected to the internet. This offers

a great advantage for sites where internet bandwidth is scarce or not available.

Lower latency: A local MCC has significantly lower latency than internet-based
services such as the cloud. This makes MCC a suitable computing option for im-
proving user experience, especially for interactive applications requiring mini-

mised response time.

Minimized network cost and congestion: Not requiring the data to be sent to
external servers for processing saves communication cost and minimises intra- and

inter-network congestion.

3.5.3 Ubiquity and Pervasiveness of MCC

Depending on the availability of the SMDs, an ad-hoc MCC can be set up perva-
sively. Following the advantages of MCC make it an ideal platform for ubiquitous

and pervasive computation.
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Anywhere HPC: MCC gives us the flexibility to build up a nomadic HPC facility
anywhere, irrespective of the fixed architecture and internet connection. Since
SMDs are being increasingly used ubiquitously, a collection of such devices con-
nected through pervasively available wireless connectivity will provide a ubiqui-

tous HPC facility.

Location and context awareness: The local nature of MCC allows it to be able to
provide location- and context-aware services, including computing, analytics, local

points of interest, businesses, events, and many more.

Application specificity: Thanks to its agility, it can deal with a range of business-

specific applications which require ubiquitous computations.

Suitable for real-time applications: Since MCC can be set up locally, it is per-
fectly appropriate to cater for the needs of real-time applications that demand
time-constrained responsiveness. Most real-time systems that process real-time
data streams require intensive computing resources [451]. The HPC offered by

MCC can be suitably utilised for this.

Proximity: Closeness to the data source and sink of an ad-hoc MCC is a crucial

enabler for its ubiquity and pervasiveness.

Network flexibility: An ad-hoc MCC offers great networking flexibility since it
can be established using short-range communications such as Bluetooth and de-
vices' hotspots in the absence of infrastructure-based networks such as the internet

and WLAN [55].

3.5.4 Sustainability of MCC

Compared to other dedicated HPCs, MCC offers significant sustainable ad-

vantages, as discussed in the following.

Energy-efficiency: MCC can be a prodigious benefactor in green computing.
Usual HPC systems require enormous electric power to run and cool. For example,
ASCI Red needed 500,000 watts of power to run with additional 500,000 watts just
to cool off the building it was kept in [491], whereas Tegra X1 required less than 15
watts of power [409]. SMD CPUs are more than 20 times more power efficient than

desktop CPUs while delivering nearly equivalent computational power [114].
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Accordingly, MCC is considerably more energy saver compared to cluster and grid
systems. Ubispark (discussed in Section 2.2.2) estimated that when a task is exe-
cuted on a cluster of nine Samsung Galaxy S4 smartphones, it consumes
only 7.2% of the electricity consumed by an HP Proliant server to run the same
task. Running applications on SMDs will indeed consume extra energy, but it also
implies that the hardware is utilized more. A study suggests that total energy con-
sumed by mobile devices, on account of usage, is only around 25% of the total en-
ergy spent on it through its lifetime, while the rest 75% is guzzled during produc-
tion [492]. Therefore, it will be sensible to do all-out utilization of the device on
which already so much energy has been drained. Furthermore, distributing the
workload over a large number of separate SMDs would reduce the power consump-
tion of each device [105]. As associate technologies and mobile platforms are ad-
vancing continually, it is highly expected that the computation per watt that can

be garnered from SMDs, will be even much higher in coming years [93].

Environment-friendly: The production of computers takes a massive toll on the
environment. For instance, to make a computer with a 17-inch CRT monitor, on
average, 1500 litres of water, 240 kg of fuel, 22 kg of chemicals are needed, which
costs approximately a total of 1.8 tons of material [10] [11]. Besides, it generates a
significant amount of hazardous e-wastes contaminating the earth. MCC utilises
already existing resources, i.e., public's SMDs. Users would buy and use SMDs an-
yway. Optimal and multipurpose use of these devices will restrain the production
and use of new computers. This will certainly minimise the environmental hazards
caused by production and e-waste [2]. Moreover, the small size of SMDs also re-
lieves the adverse effects to some extent since they require less material in manu-
facturing and also, the contribution of e-waste of discarded SMDs will be consid-
erably less. Furthermore, using MCC will not incur additional energy consumption
compared to dedicated HPC systems. This will lessen the need for electricity gen-

eration and the use of fossil fuels, positively impacting the environment.
3.6 Issues and Challenges

Successful implementation is challenging. Several crucial as well as trivial issues

need to be addressed. In this section, we discuss them extensively.
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3.6.1 SMD and Communication Issues

Here, we discuss some of the elementary issues associated explicitly with SMDs

and networking.

3.6.1.1 Battery Depletion

While portable computers, SMDs, wearable computers, and other mobile devices
are growing ever more advanced, technologically and architecturally, they're still
limited by power. The battery or energy technology hasn't moved at par in decades,
which pulls back the pervasive and ubiquitous computing revolution. In view of
that, the most concerning facet regarding MCC is its limited battery power and fast
drainage. In a recent survey, nearly 70 percent of respondents stated that battery
life is the biggest limitation of their mobile phone, and most are willing to pay
more for phones that offer extended power [493]. Present SMD batteries are strug-
gling to keep up with users’ active and ever-increasing SMD usage demands. And
it will only get worse as next-generation 4G networks come online, giving phones
access to high-speed, always-on connections and torrents of data. The major fac-

tors that escalate battery drainage in an SMD are shown in Fig. 3.15.

However, the scenario is not that gloomy. Hopefully, we might witness a power
revolution very soon [494]. Research groups in universities and organizations are
coming up with innovative ideas to either extend battery life or minimize the re-
charging time or accomplish both. Some are exploring alternate power sources like
ambient energies, including light and sound, bio-mechanical, etc. or for charging
SMD’s battery. Especially the emergence of wireless charging has augmented the
prospect of powering mobile devices persistently and ubiquitously. Table 3.7 lists
some prospective aspects of SMD battery and charging in which researchers are
presently focussing and realising success. Considering these advancements, we are
very much optimistic that the days are not far when the users will no further be
haunted by the horror of ‘low battery’ and the full potential of SMD’s capabilities

will be realised.
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Fig. 3.15. Major power-consuming factors in SMDs
Table 3.7. Advancements in different aspects of SMD battery and charging
Representative
Focus area
references
Decelerating discharge rate and stretching operational duration | [495] [496] [497]
Increasing battery capacity [498] [499]
Shortening charging time [500] [501] [502]
Increasing energy density [503] [504] [505]
Extending battery lifespan [506] [507]
Wireless charging [508] [509] [510]
Energy harvesting and self-charging [51] [512] [513]
Power sharing and crowd charging [514] [515] [516]

3.6.1.2 Heat

“With great power comes great responsibility” - this saying may well be rephrased,
in the context of SMD processors, as “with great power comes great heat”. For ex-
ample, NVIDIA’s X1, one of the most powerful SoC, can easily overheat the device
unless it is supported by a powerful cooling system [517]. Shoving excessive power
into a tiny space without an adequate cooler or exhauster is the main cause of over-
heating mobile devices. Not only the CPU and GPU but the battery and the screen
are also equally, if not more, responsible for overheating the SMDs. Some of the

key factors responsible for heating the SMDs are listed in Fig. 3.16.

The heat generated by an SMD is largely proportional to the amount of electricity
flowing through it, which directly depends on its workload. This suggests that us-
ers would tend to be impassive in engaging their SMDs for some additional work
as it would make their device more hot. This would certainly hinder the success of

MCC.

Fortunately, like batteries, there is a light of hope here also. Research efforts are

being made to reduce the heating of the different components of the SMDs without
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compromising the performance and quality. Table 3.8 lists some of the worthwhile
research directions for tackling the heating issues of SMD. Developments are also
witnessed in the commercial market. For example, to prevent heating, a new ICE
10.0 cooling system is incorporated in the Red Magic 753" and Red Magic 7S Pro3>
gaming smartphones. The ICE 10.0 has a nine-layer cooling structure with a cooling
material area of up to 43525 mm? and a 4124 mm? large VC cooling plate. The com-

pany claims that a temperature drop of 3°C can be achieved.

» High-intensity gaming apps keeps the CPU and GPU highly active, which
overheats the phone.

e Watchng videos also puts enormous strain on the processors and keeps the
screen on for long duration. This obviously generates heat.

e Impropoer phone settings may cause inefficinet functioning and, in turn,
overheating of the device.

e Exposure to high temperatures (e.g., sunlight, nearby heat source, hot car
dashboard, etc.) also causes the device to be heated.

« Presence of a bug in an app may cause the phone to overheat by overusing the
device’s processor.

» The outdated system software or firmware which require updates, or a faulty/
incomplete update may cause malfunctioning, hence, heating the device.

* Malware often keeps the device hardware engaged and consumes RAM and
CPU power highly, which causes the phone to overheat.

« A faulty charger also causes a phone to be abnormally heated while charging.
Fig. 3.16. Causes of SMD overheating

Table 3.8. Research directions to mitigate heating issues of SMDs

Focus area Representative references

Innovative Body/encapsulating material = [518] [519]
thermal Mobile processors [520]
management = Multicore CPUs [521] [522]

Multicore SoCs [523] [524]

App-oriented [525]

Battery [526] [527]
Efficient heat transferring [528]
Alternative energy encoding [529]
Using effective coolants [530]

3.6.1.3 Network Connectivity and Bandwidth

Crowd computing, or any distributed system, demands stable and uninterrupted

high bandwidth connectivity for smooth communication, low latency, good

31 https://global.redmagic.gg/pages/redmagic-7
32 https://global.redmagic.gg/pages/redmagic-7-pro
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response time and throughput, and fault tolerance. Since, in most cases of MCC,
communication would be through Wi-Fi, the bandwidth, speed, and traffic at a
particular Wi-Fi access point play a crucial role. Unfortunately, Wi-Fi networks are
disreputable for their instability. Many factors, such as multipath disturbances,
degradation of the power signal, inter-cell hand-off, etc., are to blame [117]. A re-
cent study has estimated that 45% of mobile devices experience failures while con-
necting to a corresponding Wi-Fi access point, and 15% of those that connect suc-
cessfully require a substantial amount of time (5 seconds or more) to connect [531].
Even in the absence of connectivity issues, communication speed through Wi-Fi
cannot match the bandwidth provided by typical wired connections. These short-
comings will certainly hamper the realization of MCC. Nevertheless, due to the
sheer pressure of increasing mobile and portable devices, wireless technology is
advancing continuously, which is established by introducing new Wi-Fi technolo-
gies like 802.11ah and 80z.11ad. 802.11ah (also known as low power Wi-Fi) allows
short and bursty data to travel long distances consuming much low power, whereas
8o2.11ad offers a very high data rate but for short-range communications [532].
Both protocols can be tactically used in MCC for different applications with varied
computational data. Few tricks such as using a Wi-Fi booster extender and bigger
antennas or strategically positioning the router may help in a better Wi-Fi experi-

ence.

The biggest hope in wireless communication technology is the Li-Fi, which can
transfer 100 times faster than the present average Wi-Fi [533]. In lab conditions, it
has attained an unbelievable speed of 224 Gbps, while in real-world trials carried
out in offices and industrial environments, it achieved a substantial speed of 1 Gbps
[534]. But it has its limitations, such that it can’t work across walls, and for data
communication, a Li-Fi-enabled device needs to have a direct line of sight to a
functional light sensor. However, these limitations make Li-Fi a more secure me-
dium than Wi-Fi and Bluetooth. Though there is little probability that Li-Fi will
completely replace Wi-Fi in the near future, they could be used mutually to achieve
more efficient and secure local communications. It is expected that future phones

should come with a Li-Fi feature that would boost the MCC vision.
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3.6.2 Major Challenges

MCCis descended from grid computing which in turn from distributed computing.
Naturally, the issues involved in the ancestors have been inherited, perhaps even
amplified, in the MCC system as well. In this section, we analyse the major chal-

lenges that are needed to be appropriately addressed for MCC to be successful.

3.6.2.1 Ensuring Security, Privacy, and Trust

Security, privacy and trust are very crucial issues for any crowdsourced systems
[535] [536] [537]. Specifically, MCC's very dynamic and uncertain nature triggers
real security concerns at both the service seeker’s and provider’s end. Allowing for-
eign programs from unacquainted sources to run on one’s personal device is bound
to be sceptical concerning privacy and security. Similarly, sending sensitive tasks
to be operated at unknown entities involves high risk. Design flaws in the interac-
tion between the MCC coordinator and the crowdworker may allow the attackers
to access the coordinator and other crowdworker if the attacker can breach the
client application on any SMD. Similarly, if the attacker can breach the security at
the coordinator, a faulty design may compromise all the crowdworkers connected
to the coordinator. Different threats potentially involved with MCC are discussed

in the following.

o Threats from MCC: This is the most concerning perception that thwarts
crowdworker participation. The most common and probably the only fear

from the end of MCC coordinator is:

o Access to private data on SMD: An ill-conceived MCC application can be-
come a potential avenue for an intruder to access personal information from
an SMD. A compromised coordinator can access the stored passwords, pri-
vate data inputs, and other personal information in the SMD, which might
be severely risky.

o Threats from crowdworker: Typically, the threats from the crowdworkers
are not acknowledged. However, from an MCC system perspective, they can
be very severe as they are capable of disrupting the whole system. Some of such

threats are:
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o Malicious content injection: An unscrupulous crowdworker or an in-

truder may inject malicious content like corrupt files, media content,
scripts, etc., to contaminate the MCC server and destabilize the whole MCC

system.

o Attack on MCC client application: An infected application caused by ei-

ther malicious script or corrupt content injection to the SMD can poten-
tially paralyze the functioning of the MCC client application, making the
application crash or behave unexpectedly.

Repudiation issues: An impostor may attempt to repudiate a signature it-
self and pose as a legitimate crowdworker to get connected to the MCC sys-
tem. The repudiation threat may also come from a misplaced SMD that has
been seized by a fraudulent user. The issue of unauthorised crowdworker
can be mitigated by using digital certificates, which would assert the au-
thenticity of the crowdworker. However, with mobile devices, it is not un-
common for private keys to get leaked, leading to digital forgery.

System integrity: It may also happen that an unscrupulous SMD user ma-
nipulates the results with ill intention or tries to disrupt the overall system.
The MCC should shield itself from these kinds of threats. One solution is to
adopt suitable trust and reputation-building policies and mechanisms [538].
There are other general approaches to maintaining crowd computing sys-

tems’ integrity, as mentioned in Table 3.9.

e Threats from network or third party: Another aspect of concern is that the

security is not that strong in wireless protocols compared to wired network
protocols. Wireless networks are more vulnerable to attacks like eavesdrop-
ping, tracing, spoofing, camouflaging, tampering with data, and others [539]
[540]. Though it is a tough ask to vanquish people in the network with evil
intents continually, all crowd computing projects should be able to eliminate
the apparent risks. Existing network layer (e.g., [Psec) and transport layer (e.g.,
SSL, TLS, SSH) protocols can provide decent end-to-end security. Many wired
security solutions (e.g., WTLS) are also adapted to support wireless networks.
Several other regular security measures for the wireless network and mobile

devices (e.g., WPA2, 802.1i security, wireless IPS, etc.) can be adapted to
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secure MCC. In the context of MCC, the most severe issues from the network-

ing perspective are:

o Data tampering: Preventing data tampering in networked systems is al-

ways challenging. This can potentially be unsafe if public Wi-Fi or mobile

data networks are used for MCC operations (job distribution and result col-

lection). A man-in-the-middle attack is potentially possible, which can ma-

nipulate the transmitted data while in transit, obliquely affecting MCC's sta-

bility and reliability.

o DoS attack: Like other internetworked systems, a global MCC can be sus-

ceptible to DoS attacks. However, this is not so perilous for the local and

ad-hoc MCCs.

Table 3.9. General approaches to mitigate system integrity in crowd computing [83]

~ Solution Mechanism Remark References
Voting Each microtask is sent to multiple It involves redundant | [541] [542]
crowdworkers, and the best result is se- computing, which
lected through voting. Two approaches leads to resource
can be adopted: wastage.
e Majority: The result returned by the
most crowdworker is selected as final.
o m-first: The particular task is continu-
ously executed by different crowdwork-
ers until a threshold (m) is reached for
the first similar results.
Spot- The MCC coordinator sends a task of All the crowdworkers | [543]
checking which the result is already known to a need to be cross-
crowdworker to randomly crosscheck the | checked for best ef-
result returned by the crowdworker. If fects and probably
the result does not match, the multiple times,
crowdworker is tagged as a saboteur and | which is not very
blacklisted for future task assignments. practical.
Credibility- = The credibility is calculated as the condi- | It inherently guaran- | [544]
based tional probability of the correctness of tees that the overall
voting the result of a task which is evaluated error rate of the MCC
against a threshold value. If the credibil- | system will not ex-
ity is lower than the threshold, the taskis | ceed a certain limit.
reassigned to some other crowdworker.

Encryption and cryptography can solve the problem of privacy and security threat
in public and open network communication. But running cryptography and au-
thentication processes on SMDs would be a bit heavier than on desktop computers.
Volunteer projects based on BOINC prevent hackers from distributing malware

even after breaking into the server by employing code signing.
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Since the apprehension of security is often associated with trust, it is essential to
establish trust between volunteers and the client project to make crowd computing
successful. To check on corrupt crowdworkers, a reputation-based trust [545]
scheme can be adopted. To maintain trust, resource seekers and providers should
know each other. This can be achieved by pre-registering to a common platform
where both parties can check each other. A crowd computing project should be

able to earn the trust of a contributor on different accounts:

e The project should not harm or corrupt the contributing SMD by any means.

e The client application should not invade the host’s privacy. In other words, the
software can’t read, access, or share an SMD’s personal files.

e The project should adhere to reliable security measures so that contributors’
SMDs are not affected caused by any malicious activity by hackers.

e The project should take the contributor into confidence about the reliability
and legality of the activities being executed by its applications.

e The project should unambiguously declare the purpose and scope of the pro-
ject and how the results will be used to attain that.

o The project also should explicitly state the capacity of the resulting intellectual

property and how it will be exercised.

Researchers are coming up with novel and interesting ideas and solution ap-
proaches to mitigate the above-mentioned issues [145] [546]. Recently, Blockchain-
based solutions are popularly being used to mitigate security and privacy issues in
crowdsourced systems [547] [548] [549]. Especially, the inherent decentralised se-
curity of Blockchain technologies has encouraged researchers to successfully apply
it in safeguarding crowdsourcing applications [550] [551]. Researchers have ex-
plored applications of Blockchain to enforce trust and reputation [552] [553] [554]
[555]. Table 3.10 lists some of the representative research works addressing the se-
curity, privacy and trust in crowdsourced systems. Though the mentioned works
intended to focus on different crowdsourcing applications with different solution

approaches, we believe most of them would also be applicable to MCC.

In summary, the MCC system should ensure that neither the MCC job submitted
to an SMD should interfere with local files and data, nor the host system (SMD)
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should be able to maltreat the guest processes. The user’s personal data on the
phone should be transparent to the guest program and its source. The MCC client
application should guarantee that the security and privacy of the crowdworker are

strictly maintained. In fact, the MCC application should not be able to access the

user data by any means.

Table 3.10. Research attempts to mitigate the issues of security, privacy and trust in

crowdsourced systems

Focus area Target problem References
Security | Mitigating repudiation | Counter measuring false-name attacks | [556] [557]
issues
Crowd computing Malware identification [546]
system security Mitigating colluding attacks [558]
Privacy Privacy preservation in = Anonymous crowdworker selection [559]
crowdsourced applica- | Task assignment [560] [561]
tions Task recommendation [562]
Location secrecy [563] [564]
[565]
Handling crowdworker unavailability [566]
Transaction privacy and transparency | [567]
Code and data privacy | Detecting and solving code and user [568]
vulnerabilities in identity privacy issues
crowdsourcing User identity and data privacy protec- | [569] [570]
tion
Trust Crowdworker recruit- Secure task recommendation 571]
and ment and task assign- Trust-based task assignment 572
reliability | ment Trust-based crowdworker recruitment

Crowdsourced data val-
idation

Reliability-driven task assignment
Reliable data analysis in the mobile ad-
hoc cloud

Ensuring crowd task's reliability and [576]
evaluating crowdworker's data quality
Trust management for | Assessing trust value/worthiness of [577] [557]
crowdsourced services | crowdsourced services [578] [548]
Multi-perspective trust management [579]
Trust establishment [580]
Anonymous authentication on the [581]

Trust-based consensus
for crowdsourced
services

trust

Improving trustworthiness

Trusted crowdsourced servicing and
payment system

Automated agreement on crowdwork-
ers' credibility

(584]

As a crowdworker, one should be careful of joining an MCC project. Similar to the
usual precautionary measure while accessing the Web, the authenticity and legiti-
macy of the project source should be validated before downloading the client ap-
plication for the project. Before starting any business, digital signatures, and digital

certificates should be used to authenticate each other.
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3.6.2.2 Motivating People to Participate in MCC

The success of crowd computing is absolutely dependent on people’s willingness
to participate and donate their devices’ resources. Most often, due to various rea-
sons, the users can get reluctant to lend their devices as crowdworker [585] [586].
To attain acceptable QoS, a sufficient number of active crowdworkers with stable
behaviour need to be maintained, which is challenging to attain. For successful
implementation of MCC, as many as competent SMDs need to be attracted, for
which the users need to be adequately motivated. Also, not only attracting new
crowdworker but also retaining the existing crowdworkers is also equally im-

portant.

In volunteer computing, resources are not bought but earned [587]. A volunteered
MCC project banks on its public appeal to get volunteers. A research project that
has excellent public appeal can get enormous computing power through volun-
teering. It is also the responsibility of the people associated with the project to
persuade and convince the public that their computing resources are being used
for a greater cause and are significantly beneficial to society. If MCC needs to be
adopted in a wide range of applications, it needs to be popularised and draw all
kinds of people from every sector of society and motivate them to lend their de-
vices. People may be tempted to volunteering their computing resources for vari-

ous motivations such as:

« Many people enjoy a sense of gratification in being a part of citizen science,
contributing to research in science, humanities and other greater causes.

e Many crowd computing forums encourage users to share ideas and infor-
mation in the forum. People feel proud of connecting to a noble online com-
munity with shared pursuits.

e Some projects allow crowdworkers to be involved in the project in many as-
pects, including programming, testing, support, documentation, and even
software development via different online modes. In that case, crowdworkers
can cultivate skills and gain technical knowledge, which is a great motivation
factor for IT-savvy enthusiasts.

e Sometimes involvement of the crowdworkers in the various projects creates
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chances for discoveries that lead them to fame.
e Some crowdworkers revel in healthy competition in chalking up the highest

processing time for a particular project.

3.6.2.3 Framing Sustainable Economic Model

Crowd computing need not necessarily be driven by free volunteering only. In fact,
if MCC is based on free volunteering, then it will not be easy to realise. Availability
of resources is entirely up to the volunteers’ will. In practicality, the motivational
factors mentioned in the previous section have minimal effect. For a more realistic
MCC implementation, appropriate reward and incentive mechanisms need to be
adopted [588] [589]. Establishments running MCC projects can pull off an individ-
ual’s SMD resources by presenting something in return. For example, a shopping
mall can offer shopping credit values to the visitors for using their SMD’s compu-
ting cycles. People may also be interested in offering their resources where there is
a scope of reciprocal allowances. For example, organizations may allow people to
use their Wi-Fi at no cost in return for the user’s SMD resources. Authorities can
persuasively acquire resources. For example, a firm that hands out free SMDs to its
employees can make it obligatory to make their SMDs accessible for crowd com-

puting projects of the organization.

Some people see it as a lucrative option to lend their resources for commercial
purposes if they get fair reimbursement in return. The recompense amount can be
calculated on every unit of time the resource is utilized [590]. A couple of such
initiatives have already hit the market. Zennet33, a public, distributed, and decen-
tralized supercomputer, offers an open commercial market platform for computa-
tion power trading. Anybody can offer his/her hardware for sale, and anybody who
needs computation power to run arbitrary computational tasks can rent these of-
fers. Neocortix34 has developed a viable shared-economy MCC business model in
which they rent computer time on public phones and sell the aggregated compu-

ting capacity via Neocortix Cloud Services. The smartphone owners get paid for

33 http://www.zennet.sc/about/index.html
34 https://neocortix.com/phone-paycheck
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renting out their phones’ computing capacity. Neocortix claims that in return for
8 hours a day of service a user can earn up to $80 a year, and if the user can offer
her spare phone for 24 hours, the earning can be up to $240 a year. The number of
phones per user is limited to five. Users can redeem their earnings through a PayPal
account. Smartphones are categorised as per their computing abilities. For exam-
ple, devices like Galaxy Sg, S10, or S2o0, are tagged as ‘gold device performance cat-
egory’. Earning rate depends on the phone model. To participate in this business
model, the phones should meet certain requirements3> and obey some restrictions,

such as emulated and rooted devices are not permitted.

To attract mass crowdworker and retain them for the long-term, a sustainable busi-
ness model that would be beneficial for both sides (MCC aggregator and
crowdworker) need to be framed and implemented [82]. Various formulas and
techniques for incentivising and pricing crowdsourced services are proposed in the
literature. The most common techniques and approaches, along with some repre-
sentative references indicating their applications in crowdsourced systems, are
listed in Table 3.11. Furthermore, different criteria such as truthful [591] [592] [593]
[594], reputation [595] [596] [597], quality [598] [599] [600], etc. can also be appli-
cable as incentivising policy. Adopting the right incentivising or pricing technique
and criteria would depend on the application requirement, users’ behaviour or

preferences and organisational strategy.

Table 3.11. Common incentive mechanism techniques for crowdsourcing

Incentivising and pricing

. Reference
technique/approach

Game theory [601] [602] [603]
Stackelberg theory [604] [605] [606]
Contract theory [607] [608]
Tournament model [609] [610]
Auction theory [611] [612] [613]
Reverse auction [614] [615] [616]
Rewarding [617] [618]
Cooperative incentive [619] [620]
Dynamic pricing [621] [622] [623]

35 https://neocortix.com/device-requirements
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3.7 Potential Applications of MCC

Crowd computing is an effective resolution to fulfil the huge computing require-
ments of those who are unable to afford expensive HPC systems. Likewise, MCC
can provide an inexpensive means to carry out compute-intensive tasks. Not lim-
iting to large-scale scientific computing, this pragmatic concept can be utilized in
many other real-life applications. The ability to realise an HPC facility on an ad-
hoc basis as per requirement widens the application horizon of MCC. In the fol-

lowing, we explore some interesting application areas of MCC.

Computing facility for research in universities/research institutions: Uni-
versities and research institutions can frame MCC facilities by combining the
SMDs of students, researchers, faculties, and staff. This setup will be used to meet
the computing requirements of the research problems carried out within the cam-
pus. Enormous computing power can be achieved if MCC is coupled with the cam-
pus-wide grid encompassing in-campus PCs (lab computers, desktops, and laptops
belonging to faculty, staff, and students). This massive computing facility will en-
tice potential faculty and researchers, empowering them to realize computing re-

source-demanding research works [624].

Organizational computing: Organisations spend a large share of expenditure on
IT infrastructure. Lately, cloud computing has emerged as a cost-effective solution
for data storage and processing. But as cloud computing need to be subscribed, it
is not a wise option for those organisations which have extensive and 24/7 require-
ment for high-performance computing. For SMBs, although cloud can provide a
significant cost reduction it still involves a considerable amount of money. In a
large business's case, the savings' margin scale is not that exciting. Organisations
can go for setting up private clouds for cost minimization. But again, this will in-
volve certain upfront infrastructure costs as well as regular operational and
maintenance costs. Older organisations can utilize their existing desktop PCs and
build an organizational grid of computing resources. But as we have discussed ear-
lier, PCs' popularity is declining rapidly, and business organizations can exploit
employees’ SMDs for MCC, not spending on excessive IT infrastructure budget, for

processing and analysing business and financial big data. Many organisations
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adopt the BYOD policy nowadays, which permits and often obliges employees to
use their own SMDs for carrying out company business. This allows the organisa-

tion to have the following benefits:

« Significant cost savings.

 Flexibility of doing the office work regardless of location, device, or time of
day.

o Ease of use that BYOD provides.

Computing resource for remote research lab: MCC can be very handy to carry
out computing-intensive field research at isolated and remote locations where no
wide-area communication is available. SMD’s Wi-Fi hotspot facility will be used to

construct an MCC environment.

Train/transport navigation and collision avoidance: Nowadays, trains (usually
high-speed and premier trains) are getting equipped with a Wi-Fi facility with ad-
equate charging points for the passengers. Passenger’s SMDs can be exploited to
establish an ad-hoc computing facility that will be required for effectively imple-
menting collision avoidance methods like RCAS3°, TCAS37 and others [625] [626].
These systems use multi-sensor navigation, and integrate and calculate the sensed
data with complex algorithms for data fusion and situation analysis, which require
considerable computing resources. The ad-hoc computing system can also be uti-
lized for other complex calculations like forecasting the local weather. The same
idea can be employed on buses and metro trains having the same facilities. That

will yield a very lucrative opportunity for MCC in a crowded country or city.

Aircraft control and navigation: Many airlines offer in-flight Wi-Fi facilities to
the flyers [627] [628]. Out of them, some provide this facility without any extra
charge [629]. In return, these airlines can use passengers’ SMDs to process real-
time flight data. Though connections are often slow and unreliable, we can expect
faster and more reliable connections in the near future, thanks to the ongoing de-

velopment of the core technologies behind in-flight Wi-Fi [630]. Availability of the

36 http://www.collision-avoidance.org/rcas/
37 http://www.hbl.in/product-view-52-engineering-solutions-railways-train-collision-avoidance-system.html
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passenger’s SMDs is guaranteed during the flight (provided the battery is not a
hurdle). Typically, a jet aircraft is fitted with nearly 5000 sensors that produce
nearly 10 GB of data per second [631]. A 12-hour flight would averagely, produce
844 TB of data. Processing this huge amount of data would require a good amount
of on-board computing. Transmitting this data to the cloud for processing and ob-
taining the response back would waste time and is a bandwidth constraint. A local
MCC utilising the passenger’s SMDs would be an effective solution to process the
in-flight data in near real-time while saving time, bandwidth, and the requirement

of installing an HPC in the aircraft.

Field data processing: Collection and processing of open field data, e.g., agricul-
tural land, river basin, forest, desert, barren land, hills and mountain, etc., become
challenging due to non-existing computing infrastructure and network [105]. An
ad-hoc MCC would provide the required computing facility and be a handful in
collecting those data distributedly with a slight improvisation in the MCC client

application.

On-field military data processing: Owing to the technical advancements, sol-
diers are equipped with multi-sensor devices. Sensors are also installed in the sur-
roundings of their base camps and outposts. These sensors generate a great
amount of data, some of them being real-time data, which require secured HPC
systems to be processed and analysed. If the soldiers are furnished with high-end
SMDs, then an insular MCC can be materialized, which will be secured because it
will require only a low-range communication network, not a WAN. Furthermore,
in war situations, it is essential to monitor and assess a soldier's psychological and
physical health. Also, injured soldiers on the battlefield need to be continuously
monitored for their vitals and physical state to take appropriate medical action.
The biomedical non-invasive sensors help in such situations by assessing the heart-
beat, heart condition, blood flow and pressure, oxygen level, and body sugar. These
sensors produce and transmit a huge amount of data, which need to be processed
and analysed as per real-time health monitoring models. However, this involves a
good amount of computation which is difficult to have in a computer and network

infrastructure-less scenario. An ad-hoc MCC would be helpful utilising the SMDs
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that the soldiers carry to attain an aggregated computing service.

Disaster management: In the case of large-scale disasters, communication is gen-
erally severely affected, due to which cloud and remote servers become inaccessi-
ble. In these cases, MCC can be very handy to form an ad-hoc computing grid using
SMD’s NFC options such as hotspots, Bluetooth, etc., which can be used to analyse
the image, audio, and video data to assess and manage the situation by helping in

locating and rescuing the victims.

Video and image analysis: Image and video processing, editing, rendering, and
analysis require hefty computation. Instead of going for high-end computers and
cloud services, MCC can be utilised. Using MCC for video and image applications
will cut costs and can be availed at any time and place. Local MCC can also be used

for collaborative image [632] and video [75] processing and analysis.

Biometric verification: For security measures, personal identification and verifi-
cation through biometrics like fingerprints, palmprints, eye scans, and face detec-
tion has been very effective and popularised recently. Biometric verification needs
a good amount of computing resources. An MCC is a suitable solution to increase
the speed and flexibility of data processing as it has two-fold advantages. Besides
saving energy and resources, distributed processing in MCC would add more secu-
rity [105]. In addition to regular in-campus systems, this will be very much appli-
cable for occasional large gatherings where installing permanent computing is not

viable. Attendees’ own SMDs can be utilised to set up a temporary MCC.

Distributed key generation and agreement: In cryptography, private and pub-
lic keys are used for secure communication. Normally, these keys are generated by
the communicating parties. In a distributed key generation, these keys are gener-
ated by multiple parties. This eliminates the possibility of accidental exposure or
misplacement of the keys by precluding the access of the private key by a single
party. Distributed key generation ensures secrecy in the presence of malicious con-
tributions to the key calculation [633]. MCC can be useful for computing such dis-
tributed keys. MCC can also be useful in distributed key agreement in securing
crucial files in an organisation by distributing the access key over different trusted

SMDs within the organisation [105].
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Cooperative encryption cracking: Encryption cracking (e.g., WPA/WPA2, WEP,
SHA256/512, DES, MDs, Blowfish hash, etc.) involved in brute-force-based intru-
sion is a high-intensity computing task which might take weeks to months and
even years depending on the computer’s capacity [634]. To crack within an agree-
able time, a cluster of high-end computers is usually used where the tasks are exe-
cuted in a distributed fashion [635]. In an ethical hacking scenario, the power of

MCC can be harnessed for this purpose [93].

Business processing: Business processing involves office management, ERP, sta-
tistical data analysis, and decision making. Office management involves employee,
email, and other business data management. The ERP includes optimizing busi-
ness operations and processes, which enhances business output. Likewise, statisti-
cal analysis of business includes finance, market, inventory and other data analysis
for better decision making. The use of Al and computation automatizes business
processing. Due to the huge amount of data and, accordingly, requirement for mas-
sive computing resources, most business houses invest a lot either in in-house
computing infrastructure or getting cloud services. Businesses with large and me-
dium offices having a number of employees can save a lot by exploiting the availa-
ble in-house SMDs to form an in-campus MCC and carry out the business pro-

cessing tasks in real-time.

Enhancing business and sales in shopping malls: Shopping malls encounter a
large number of footfalls every day. Every customer has different shopping behav-
iour and inclination. A smart store can make its servicing smart by analysing and
predicting customer shopping preferences and purchase patterns, organising the
store, and planning its business accordingly. Along with, heat maps on customer
foot traffic, peak period, customer movements, dwell time, etc. can also be very
useful to take various decisions like an advertisement of products, availability of
products, the display positions of the products, arranging product for a controlling
and channelise customer movement and increase sales. All these analyses require
substantial computing resources. It is preferred to have HPC within the mall prem-
ises for real-time analytics rather than going for the cloud. MCC can be an ideal

option, taking advantage of a large number of customers’ SMDs available on the
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premise along with the permanently available SMDs of to the mall staff. Most of
the customers tend to spend a decent amount of time inside. However, their hang-
ing around stint inside the premise for a certain duration is neither guaranteed nor
can be predicted precisely. Hence the customer’s SMDs may be engaged in fully
opportunistic MCC, whereas the mall staffs SMDs can contribute to a quasi-op-
portunistic MCC. Big shopping malls also often feature multiplexes where the
availability of resources for a fixed period is more or less guaranteed. That gives an
excellent opportunity for quasi-opportunistic MCC. The vendors, retailers, or
stores can make use of MCC for the computing requirement in increasing their
business by performing real-time data analytics and taking informed and better

decisions.

MCC-based edge computing for processing [oT data: One of the most notable
practical applications of MCC is to be considered edge computing for processing
IoT data. The majority of the IoT applications are time-bound. Due to transmission
latency, cloud computing is not favourable. Edge computing provides a computing
facility near the data source [74] [636]. A local MCC will be a suitable edge compu-
ting solution for processing organizational and industrial real-time IoT data, saving
a lot on proprietary edge solutions [143]. In practice, there are different forms of
edge computing, such as fog computing, cloudlets and MEC [637]. A detailed dis-

cussion on MCC-edge is presented in Chapter 9.

Smart building and smart city: Smart buildings and smart cities bring various
kinds of automation to make people's life easier. To achieve this, intelligent deci-
sions are made based on the sensed data. Thousands of sensors are employed,
which produces enormous data which need to be processed and analysed to make
impromptu and smart decisions to take effective actions. For processing and ana-
lysing this huge data, a local HPC or cloud services are required. Using localised
HPC systems would increase cost, overhead, and carbon footprint, whereas using
remote cloud services not only requires enough bandwidth for data transmission
but also computing data far from the point of source and sink delays the automated
action, nullifying its smartness. Utilizing MCC would help in overcoming these is-

sues. The SMDs available with people in buildings or open areas (roads, parks,
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grounds) can be utilised to set up a local MCC for processing the data generated

from the nearby data sources.

Public security and policing: Nowadays, in many public places, such as bus
stands, railway stations, etc., criminal face recogniser applications are installed.
Considering the probability of a criminal fleeing by boarding a bus or a train, a
real-time face recognition process runs to search for a probable match of the crim-
inal with the faces captured by the CCTVs installed in that area. Since there will be
abundant SMDs available in these crowded public places, MCC will be a feasible
and better alternative to cloud computing in terms of the latency that is crucial for

real-time applications.
3.8 Limitations and Further Scopes

In this chapter, we concentrated more on the design considerations of MCC. We
did not cover the development, deployment and operational aspects in length. It
would have been complete by including a thorough exploration and assessment on
the required and suitable tools, languages and libraries for developing a general-
ised, platform-independent (including mobile hardware and OS) and lightweight

MCC. In future, we wish to come up with an article on this.

3.9 Summary

In this chapter, we presented an in-depth study on the potential and feasibility of
achieving computing power by utilising the public’s (crowd’s) SMDs. Since in this
computing paradigm, a crowd of SMD’s resources is collectively used to provide
computing resources, it is called mobile crowd computing (MCC). MCC gives us
an economical and sustainable alternative to other HPC systems such as grid,
cloud, clusters and supercomputers to carry out compute-intensive tasks. Thanks
to the ubiquity and dense availability of the SMDs, an ad-hoc HPC facility can be

provided, leading to attaining a truly ubiquitous HPC.

Besides the advancements of SMD hardware and its wide adoption, MCC has been
fuelled by several other factors such as denser Wi-Fi zones, low-cost and highspeed
mobile data, energy-efficient and highspeed short-range communication technol-

ogies, etc.
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MCC is not an out-of-the-blue concept. It stands on several other established com-
puting paradigms such as distributed computing, parallel computing, grid compu-
ting, volunteer and crowd computing, and opportunistic computing, to name a
few. However, there are certain distinctions between MCC and these foundation
computing systems. We also saw how MCC differs from other similar mobile com-
puting systems such as mobile grid, mobile cloud, ad-hoc mobile cloud and mobile

crowdsourcing.

Primarily, a typical MCC can either follow a centralised or a P2P architecture. How-
ever, hybrid architectures can also be adopted for a large and complex MCC. Also,
depending on the infrastructure and the deployed application, MCC can either be
global (connected through the internet), local (connected through WLAN), or ad-
hoc (connected through Bluetooth, hotspots, etc.). Furthermore, an MCC can be

purely opportunistic or quasi-opportunistic in utilising the crowd resources.

For a successful and efficient MCC design, several aspects need to be considered
and tackled properly. The hardware, software and network heterogeneities need to
be abstracted for better interoperability. Ideally, an MCC platform should be gen-
eralised to support any MCC application irrespective of its type and requirements.
It should be adaptable to various internal and external changes without affecting
the system’s normal functionalities. Being a networked distributed system, in MCC
reliability, fault tolerance, and QoS need to be ensured. Also, an MCC system
should be scalable and elastic to dynamically acclimate to the resource require-
ments. Other design goals include user-friendliness and non-intrusiveness, i.e., the
usual operations of the crowdworkers should not be hampered anyway. Bearing
the energy limitations of the SMDs in mind, executing the microtasks should be
energy efficient. For a commercial MCC, a well-defined SLA should cover the lia-
bilities and legalities. A suitable architectural model should be adopted based on
different aspects for effective deployment. Since the spine of MCC is the
crowdworker base, they need to be managed very efficiently. Management of
crowdworkers includes discovery, profiling, selection, ensuring availability, and
monitoring. A large MCC task is divided into multiple microtasks that are sent to

the crowdworker for execution. The task farming process should be efficient
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because they are created in such a way that they can be executed by the available
crowdworker resources and as far as possible independently. Scheduling these mi-
crotasks to the appropriate crowdworker is another crucial aspect because an
MCC's overall performance depends on it greatly. While scheduling, various fac-
tors should be considered, such as best resource utilization, energy efficiency, load
balance and fairness, and dynamicity. If an MCC task involves multiple workflows,
it should be handled appropriately, keeping in mind that the crowdworker are not
static and dedicated resources. Another important consideration should be to ver-
ify and aggregate the results received from the crowdworkers. The correctness and

usefulness of the final outcome would very much depend on this.

MCC has several advantages to offer. Cost-effective, least overhead in IT infrastruc-
ture management, DDoS attack-free, offering computation offloading, scalability
and agility, and amply available resources are a few of them. Additionally, local
MCC offers on-premises computing service, which brings on added advantages of
lower latency and minimized network cost and congestion. Besides these, two ma-

jor advantages of MCC are ubiquity and pervasiveness and sustainability.

However, realising MCC is not challenge-free. Two major concerns from user
points of view are battery constraint of the SMD and getting the SMDs heated due
to executing heavy processing tasks for a long duration. Recent studies console us
that these factors will not be much worrisome in the near future. Additionally,
since MCC is a networked system, its performance very much depends on the data
transfer rate. Since the operation and quality of the network are not always guar-
anteed, it remains a challenge to overcome it. Ensuring security, privacy, and trust
always remains one of the most challenging factors for any networked system.
MCC is no exception. Perhaps in MCC, the privacy issue is far more crucial than in
other systems because here, the SMDs that carry out the foreign tasks are very
much personal to their users. Another hurdle in implementing MCC is to motivate
the public to lend their SMDs. They need to be sufficiently motivated to draw into
participation in MCC. One straight option might be offering them lucrative finan-
cial or other financial incentives. Sustainable economic models need to be framed

for this, which would depend on the MCC application type and the user base.
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Intensive research is going on in all the above-mentioned areas, and many innova-
tive and feasible solutions are coming out. Therefore, we believe these challenges

will not seriously threaten realising MCC.

Appreciating the potential of MCC, it can be leveraged for many real-world appli-
cations. For organisational and scientific computing, MCC can be a suitable HPC
alternative to costly supercomputers and cloud services. The HPC capability of
MCC can also be utilised in the education and healthcare sectors. Even small and
medium businesses can utilise MCC to meet their daily computing demands, in-
cluding for data analysis and predictions. An ad-hoc MCC can be useful for infra-
structure-less use case scenarios such as disaster management, military base and
war fields, and many more. Local MCC can be a feasible alternative to commercial

edge computing.
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Resource Profiling in MCC

“It's important to determine which surroundings work best for you, and then build
that environment to suit your needs.” --- Marilu Henner

4.1 Introduction

The efficacy of MCC largely depends on the capability and reliability of the incor-
porated SMDs. It is apparent that SMDs with superior computing resources would
offer better throughput. Therefore, to achieve better performance (e.g., maximum
throughput and minimum turnaround time) of an MCC, it is important to schedule
the MCC jobs to the most potential SMDs available in the network. The first step
to achieve this is to recognise the presently available resources and assess them

meritoriously.

To evaluate the capability of an SMD, it is imperative to estimate the capacity and
the present usability of its resource parameters such as CPU, GPU, battery, etc.
Here, by the capacity of an SMD’s resource parameters, we mean a) the fixed pa-
rameters such as the clock frequencies and no. of cores in the CPU and GPU, RAM
size, battery capacity, etc. and b) the present usability that denotes the present
status of variable parameters such as present CPU and GPU load, available RAM
and battery, device temperature, signal strength, etc. The fixed parameters never

change their values, but the values of the variable parameters change dynamically.

Considering the heterogeneity and dynamicity of the resource, the selection of the
best resources might be inaccurate in the absence of a proper resource assessment
machinery. And to assess the resources correctly, they need to be profiled effi-
ciently. For instance, a suitable logger program might be helpful, which would as-
sess the resource parameters of the SMDs correctly and return their persistent and
instantaneous values whenever asked by the MCC coordinator for job scheduling.
For accurate resource assessment, precise values of all these parameters are needed
to be profiled, which is not trivial because capturing and storing these parameters’

values require different policies and implementations. For this, it is important to
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have a structured framework and policy for resource profiling to appropriately and
applicably profile the SMDs’ various resources that are significant for an SMD to

be considered as a computing device in MCC.

In this chapter, we aim to achieve the followings:

A methodological approach for profiling various resource parameters that
would be necessary for selecting the most potent SMD as computing resource.
e Ascertain and classify the considered resource parameters with apposite rea-
soning.
o Apply a benchmarking scheme to assess the actual performance of the SMDs,
in addition to other specifications.
e Design a prototype application that incorporates the resource profiling and
selection modules of an MCC.
Fig. 4.1. summarises the resource profiling and selection process, covered in this

chapter.

Resource profiling module Resource selection module
Get fixed &
persistent
MCC
r database

Check for Run Generate
thr(_ash(_)ld selec_tion ranked list

3 Available SMDs

Fig. 4.1. The pictorial summary of resource profiling and selection

4.2 System Model and Hypotheses

Here, we considered a local MCC scenario in which the SMDs are connected to the
MCC coordinator through a Wi-Fi network [36]. Within a particular Wi-Fi net-
work, there is a single coordinator that manages the crowdworkers connected to
that Wi-Fi AP. SMDs that are connected to the MCC coordinator and are willing

to share their device resources are considered as crowdworkers.

An MCC client is installed on each SMD that is supposed to take part in MCC. The
MCC client service estimates the computational capability (e.g., CPU and GPU
power, etc.) and other vital statistics (RAM and battery capacity, etc.) of the SMD

and shares them with the coordinator. It also assesses the present resource usage
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status of the SMD when requested by the coordinator. The client application on
the SMD manages the execution by CPU stealing and, upon completion, sends the
result to the server. The coordinator assembles the results received from different

clients.

There is a middleware for job management. The coordinator hosts the MCC mid-
dleware, which manages the operations of MCC that includes searching and select-
ing SMDs, job scheduling, result collecting, and fault handling. The middleware is
also responsible for a few other tasks such as SMD profiling, execution time esti-

mation, resource presence time prediction, and so on.

We assume that all SMDs, which have the MCC client installed, are crowdworker
and willing to share their resources, either voluntarily or in return for some incen-
tives profit or non-profit basis. We also assume that each crowdworker completes
the assigned subtask within a finite time and sends back the results before leaving
the MCC network. Fig. 4.2 lists the general components of a typical local MCC sys-
tem, while Fig. 4.3 presents an abstract model of a local MCC.

L
T T 1

MCC coordinator SMDs Communication network
[ Searching, profiling and | _(Sending its detailsto | " Communication )
_selecting SMDs )  the coordinator ) between coordinator
) . g N _and the SMDs locally
Exe_cutlgn time ‘ — Recieving the MCC jobs
_estimation L )
'Resource presence ‘ _(Executing the assigned A
_time prediction _job )
/ | (Send th Its back to |
—{ Job scheduling ‘ || >end the results back to
L | the coordinator

J

—{/ Result collecting ‘

—{ Fault handling

Fig. 4.2. General components of a local MCC

4.3 Resource Profiling and Assessment

To assess the goodness of an SMD as a computing resource, the most straightfor-

ward approach is to check its hardware specification. However, this approach
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would be insufficient to assess the overall competency of an SMD, as it may not
reflect the actual usable status of its resources. Furthermore, an SMD may seem
fittest in the present context, but it may happen that this fitness may not be con-
sistent over a longer period. Therefore, we need to consider the consistent behav-

iour of the SMDs to truly assess their suitability for selection.

MCC
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Fig. 4.3. An abstract model of a local MCC
To accurately assess the capabilities of the SMDs as potential crowdworkers in an
MCC, we considered several parameters. Some of these parameters are read on the
fly, while some are retrieved and calculated from the logged data. We characterized
these parameters into three categories, as discussed in the following subsections.

Fig. 4.4 present the taxonomy of the considered parameters for resource profiling.

4.3.1 Fixed Parameters

These information are fixed for any particular SMD and typically never change in
its usable lifetime. That is why these parameters were logged only once, i.e., when
an SMD connects to the MCC for the first time and were permanently stored in a
database. For the subsequent connections of the re-entrant SMDs, profiling of

these parameters is not required. The following parameters fall in this category:

UID: Though this parameter is not considered as a resource parameter, it is used
to identify the SMDs uniquely in the database. In real SMDs, each device can be
recognized uniquely using some identifiers such as Android ID (for Android
phones), MAC, IMEI, etc. Among these, IMEI is simple and easy to implement and

serves our purpose well. Therefore, we considered the IMEI number of the SMDs
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as the UID (unique identity) to identify the SMDs.

Maximum CPU clock frequency: The capability of a CPU largely depends on its
clock frequency. Though in a multicore CPU, the cores might have different clock
frequencies, we followed the general convention, i.e., considering the highest fre-

quency.

Number of CPU cores: Though the CPUs in SMDs are optimised for serial opera-
tions, the efficiency of an SMD CPU is supposed to increase with the number of

cores in it, which can execute multiple ALU operations in parallel.

Resource parameters
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Fig. 4.4. Parameters considered for resource profiling
4.3.2 Dynamic Parameters

The values of these parameters in an SMD vary dynamically depending on the us-
age of the SMD. For example, if the usage is high, i.e., the SMD is running several
apps or some resource-intensive apps, some of the parameters would have much
higher while some would have lower values (depending on the resource type),
which would make the SMD an unsuitable crowdworker at that moment. There-
fore, to assess the SMD truly, it is crucial to measure not only the fixed hardware
resources mentioned in the previous section but also their usability status at the

present instance (i.e., at the time of job submission). In our experiment, we
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considered the following parameters in this category:

Current CPU load: It denotes how much CPU is loaded in terms of running ap-
plications presently. A higher CPU load % denotes that at present, the CPU usage
is high, i.e., the SMD is either running several apps simultaneously or running a
CPU-intensive app. In either case, the SMD is not an ideal crowdworker at that

moment. Hence, always a lower CPU load is preferred.

Current GPU load: A GPU-intensive job (generally a large number of small-scale
but highly parallel tasks) would increase the GPU load. Like CPU, a lower GPU load

is preferred.

Available RAM: Since the MCC client application and the MCC tasks and the re-
lated data need to be in the RAM for efficient execution, there should be enough
free space in the SMD’s RAM. The minimum RAM requirement would, however,
depend on the particular MCC task. In this chapter, we considered an arbitrary
RAM requirement for the experiment. The amount of available RAM is checked at

the time of job submission.

Available battery: SMD battery is a sensitive parameter from the user’s perspec-
tive. Users will generally decline to take part in MCC if they do not have enough
charging left in their devices. Even if they initially agree to lend their device for
MCC, they might suddenly go off if they realise that the task is juicing up the en-
ergy of their device fast. Hence, it is important to weigh up the available charging
in the SMD battery before considering it as a crowdworker. In our experiment, we
used a straightforward policy for this, i.e., to consider a certain cut-off % of the
remaining charge. For example, the SMDs having below 75% charge would not be
considered. It might be noted that this % calculation is relative. For example, the
charge of 75% is of an SMD with 12000 mA of the battery will have much higher
than a phone that has a battery of 6000 mA. However, we did not consider this
factor because to a normal user, the distress of lower battery % is more psycholog-

ical than practical.

Device temperature: Like the case of the battery, users also get concerned when

their devices get heated up. People would not like to allow their SMD for MCC if it
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is already hot. An SMD might get heated up due to several reasons. Though it is
possible to retrieve temperatures of individual components such as processing
unit, signal module, battery, etc., in this chapter, we considered the overall device
temperature. As we did for the available battery, we considered a certain cut-off

(°C) for device temperature also.

Wi-Fi signal strength: For efficient communication, satisfactory signal strength
is absolutely important. It becomes crucial in the case of mobile computing be-
cause weak signal strength creates a hindrance for data transfer which, in turn,
affects the QoS. Though many factors may be responsible for weak signal strength,
in a mobile computing environment, it is mainly due to the mobility of the users.
The signal gets weaker as the user goes away from the AP. We considered the signal

strength on a scale of 1-5.

4.3.3 Persistent Parameters

These parameters are calculated based on an extended assessment, reflecting the
long-term behaviour of the SMD resources. The values of these parameters might
not change significantly in a short duration, but they vary in a longer duration. In
other words, these information of an SMD typically remain persistent for an aver-

age period of time. We considered the following parameters in this category:

Average CPU usage: In Section 4.3.2, we considered the current CPU load as one
of the resource parameters because a higher CPU power does not guarantee
enough free CPU cycles. However, the current CPU load also does not truly portray
the CPU of the considered SMD. For instance, it might happen that the current
CPU load of an SMD is low for the time being, but usually, it remains high. The
reason for this might be, for example, that the user plays online games frequently.
A large CPU-intensive job requires SMDs which have steady free CPU cycles for a
long duration. Hence, an SMD with less CPU power but having unceasingly free
CPU cycles for a long duration would be preferred than an SMD with higher CPU
power but exhibiting frequently and randomly fluctuating CPU load. Moreover,
the CPU usage pattern can reflect the battery consumption pattern also. If the CPU
usage is to be high in the coming period, it is expected that the battery will also

drain faster. To assess the CPU load of an SMD more practically, we took the
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average CPU load of each device. During each connection session of an SMD s;,
defined by Eq. 4.1, the current CPU load of each SMD is recorded periodically.

When s; exits the network, its average CPU load for the immediate previous session

N} is calculated using Eq. 4.2, which gives us the average CPU usage for a single
session. We calculate the overall average CPU across all the sessions (i.e., since

when the SMD was connected to the MCC coordinator for the first time) using Eq.

4.3.
Niprev (n) — Slput_time (n) _ Siin_time (TL) (4.1)

in_time

where, s; (n) and s?““"™€(n) are the timestamps of s; when it entered and

exited the network for the n session, respectively.
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where, t is the instances (count) of the current CPU load record of s; and sf“(¢) is

the t™ record of the current CPU load of s;.
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Average GPU usage: Similar to average CPU load, for a more realistic assessment,

we estimated the average GPU load of the SMDs using Eq. 4.4 and Eq. 4.5.
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Availability: In MCC, users’ mobility is an important criterion for considering the
corresponding SMDs for job scheduling. If an SMD leaves the network without
finishing the assigned job, it needs to be reassigned to another SMD. If it is not
handled properly, the result (unfinished) and the job itself might be lost. Frequent
disconnection would hamper the performance and the QoS of MCC. Therefore,

before submitting a task to an SMD, it is better to be assured that it will not leave
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until the job is finished. Since the MCC model presented in this chapter is campus-
based, most of the users would have a certain mobility/availability pattern. It is
possible to predict the availability of an SMD till the execution completion of the
assigned task before dispatching the task to that SMD [36] [481]. In our selection
policy, we considered the availability of the SMDs as a pre-selection criterion, i.e.,
if the SMD might not be available till the completion of the job, it would not be
considered for selection at all. The predicted out-time ¢, of an SMD s; for the cur-

rent session c is given by Eq. 4.6.

sico :sic’+sl.a” (4.6)

Cy - . . . Ay . . .
where, s;” is the in-time of's; for the current session and s, "is the predicted avail-

ability duration of s; from s;”.
The SMD s; should be considered for job submission only if Eq. 4.7 satisfies.
SiCO thc+k1+k2 (47)

where k;is the runtime of the prediction algorithm, k, is the lagging time between
decision making and job dispatching, and j,_is completion time of the job j as de-

fined by Eq. 4.8.
Jt. =Jts T, (4.8)

where, j;_is the submission instance of job j and j,, is its expected execution time.

An idea of predicting execution time can be found in [35].

CPU Benchmark: Besides the core hardware, we wanted to check the actual per-
formance of the device. Therefore, we benchmarked the CPU performance of each

SMD individually. The details of benchmarking are discussed in the next section.

GPU Benchmark: Similar to CPU, we calculated the performance scores for GPUs

of the SMDs. The details are given in the next section.

4.3.4 Customized Benchmarking
The raw hardware specifications may not reflect the device performance always
correctly. For example, it is observed, on occasions, that an SMD with a higher

clock frequency does not always offer better performance compared to an SMD
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with a lower clock frequency. This is due to the fact that the computational capa-
bility of a device does not vary in direct proportion to the CPU and GPU power,
rather some other factors such as internal data transferring delay, size and speed
of the cache and its caching scheme, etc. also significantly influence the computa-

tion time. However, determining and predicting these irregularities are not trivial.

To mitigate this issue, i.e., to compare SMDs uniformly, benchmarks are popularly
used. For smartphones, there are a number of benchmarking apps available such
as Antutu3®, Geekbench39, 3Dmark#°, etc., which assess the performances of various
components of the device and compare with other similar devices. These apps run
a series of pre-programmed operations (e.g., rendering some game scenes, stress
testing of the processor and memory, and so on) on the device to test the respective

components’ performances.

However, since these apps are built and optimised differently, they are not partic-
ularly helpful for comparing the performance of different SMDs in executing sim-
ilar tasks. Most of these apps focus on individual components of the SMD. Further-
more, they do not provide special features to describe how a device would perform
during particular job execution. Also, the comparative assessment by these bench-
marking apps may not be correct for all types of applications and processes. A gen-
eral benchmarking scheme may not scale all SMDs equally for every type of pro-

cessing task as these tasks might have varied resource demands.

Considering the above-mentioned issues, we preferred to have our customized
benchmarking to assess the competency of the SMDs. In our MCC application, in-
stead of individual components, we needed to assess the overall performance of
the SMDs for a certain task. Customized benchmarking would allow assessing the
device performance for particular job execution. Furthermore, the customized
benchmarking would address the inconsistency in the standards of the SMD com-

ponent specification. For example, let us consider the case of fabrication

38 https://www.antutu.com/en/index.htm
39 https://www.geekbench.com/index.html
40 https://www.3dmark.com/
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technology (nanometer (nm) values) that is used in GPU manufacturing which sig-
nificantly determines its performance. A 7 nm chipset may deliver 20% better per-
formance with a 40% reduction in energy consumption as compared to a 10 nm
chipset. However, there is no universal standard to calculate the nm value. Differ-
ent GPU makers calculate it differently. For instance, the 10 nm from TSMC is not
equivalent to the 10 nm from Samsung, and Intel’s 10 nm is equivalent to TSMC’s 7

nm.

We considered the overall time taken to complete the job as the benchmark. Nev-
ertheless, we calculated the CPU and GPU benchmarks separately. As a template,
we evaluated the CPU and GPU benchmarks by performing a matrix addition and
multiplication, respectively, as shown in Fig. 4.5. However, depending on the char-

acteristics and requirements of the MCC task, different benchmarking schemes can

be adopted.
CPUbenchmarking
Vector CPU
addition ' ber;CClcl)I;leark
NxN
vector e
Vector
multiplication bensif(l)frf(leal‘k
GPU benchmarking

Fig. 4.5. Customized benchmarking scheme

Table 4.1. Specification and benchmark comparison of two sample SMD models

SMD model Oppo As3 Redmi Y3
No. of cores 8 8

CPU | Highest clock frequency | 4x1.8 GHz Kryo 240 | 4x1.8 GHz Kryo 250
Lower clock frequency 4x1.6 GHz Kryo 240 | 4x1.8 GHz Kryo 250 Silver
Model Adreno 610 Adreno 506
No. of ALUs 128 96

GPU | Highest clock frequency | 950 650
Fabrication (nm) 1 14
64-bit GFLOPS 28.8-31.2 28.8 - 68

Average CPU benchmark score | 5689.308 4315.077

Average GPU benchmark score | 17632.31 14817.75

Table 4.1 shows a sample comparison between two SMDs of different models but
with nearly close specifications. It can be observed that though the first device is
more ‘powerful’ compared to the second one, it took more time to execute the

benchmark tasks both for CPU and GPU. This justifies the necessity of customised



172

benchmarking in assessing the SMDs practically.

The benchmark is calculated when an SMD connects the MCC coordinator as a
crowdworker for the first time. The benchmarking tasks were sent to the SMD, and

the execution time was noted.

The performance of a device varies from time to time. Generally, it degrades over
time. Therefore, it is required to assess the SMDs periodically. To comply with, the
benchmarking can be calculated after every k™ entry of each SMD. In our case, we
took k=10; i.e., the benchmark was calculated at the 1, 1", 21%, ... in-time entries
from the connection log of the corresponding SMD. Each benchmark score of a
particular SMD was cumulatively averaged separately for the CPU and GPU. The
average CPU and GPU benchmarks were calculated using Eq. 4.9 and Eq. 4.10, re-

spectively.
sCB(t), k<2
s P9 (k) ={ cp ) (4.9)
i = )s -+ B .
> , k=2
B sPB(t), k<2
s; (k) = sEPavg (114 5GB (1) s 2 (4.10)
2 P

4.3.5 Parameters that are not Profiled

Besides the above-mentioned resource parameters, there are a few more such as
GPU clock frequency, number of GPU shader cores, GPU fabrication/architecture
(nm), total RAM, available storage that we purposefully excluded from profiling.
Though the GPU specifications are very crucial to determine the GPU capability of
an SMD, all these information are not available uniformly for every SMD. In this
experiment, we avoided the complexity in the resource selection process that
might be introduced by this sparsity in the decision matrix. Regarding the other
two parameters (i.e., total RAM and available storage), todays’ SMDs are furnished
with abundant RAM and storage. For example, Vivo Nex Dual Display Edition, Xia-
omi Black Shark Helo, OnePlus 6T McLaren Edition, etc., have 10 GB RAM [638].
In general, most of the standard SMDs have 6 - 8 GB RAM. The same can be said

for SMD storage. Hence, we felt that these two parameters could be excluded from
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the list of selection criteria. However, if an MCC application necessitates assessing

these parameters, they can always be included in the criteria list.

4.4 System Design

Our proposed MCC system, in principle, follows a two-tier client/server architec-
ture, as shown in Fig. 4.6. Here, the MCC coordinator represents the server mod-
ule, and the client module is the SMD. The server module should be able to take
care of retrieving and storing the resource details of the connected SMDs efficiently
such that the required data is available at the moment of SMD selection. Whereas
the client module is supposed to carry out the instruction received from the server

module at the SMDs. In terms of connections, there may be two types of SMDs:

e New: The SMD which a new entrant to the network and has no history in the
system log.
e Returning: The SMD has been to the network before and has information rec-

orded in the system log.

The connection details (e.g., the in- and out-times) are logged for all the SMDs.
Since some data of the devices need to be stored for future usage, a database is

required that would be connected to the server.

The details of each component of the system are discussed in the following sub-

sections.

Client module

Tier (SMDs)
Tier I1 Server module

(MCC coordinator)
Fig. 4.6. Two-tier MCC

4.4.1 Server Module
Some of the key functionalities that a typical MCC server generally has are:
e Data communication: Communicates with the SMDs for data exchange.

e Resource profiling: Keeps record of various resources of the SMDs

e Resource availability prediction: Predicts the availability of an SMD in the
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MCC network for uninterrupted job assignment and execution.

» Resource selection: Selects the most suitable SMD(s) for job distribution.

e Job distribution: Distributes MCC tasks to the selected SMDs

e Result collection and fault mitigation: Collects the processed output from the
SMDs and takes correction measures in case of faults.

o Data storage: Stores information regarding SMDs and MCC tasks.

However, in this chapter, we primarily focus on data communication, resource pro-

filing, and resource selection, as discussed in the following subsections.

4.4.1.1 Data Communication

The data exchange between the coordinator and an SMD is categorized into the

following four types:

a) SMD registration: When an SMD having the MCC client application gets con-
nected with the MCC coordinator for the first time, the coordinator creates a
log entry for the SMD and collects other resource information, as discussed in
Section o.

b) Monitoring device usage: The coordinator periodically collects CPU and GPU
usage details of the presently connected SMDs for calculating the persistent
parameters, as discussed in Section 4.4.1.2.2.

c) Present resource status collection: The coordinator fetches the present status
of the dynamic resource parameters when it has to perform SMD selection, as
discussed in Section o.

d) Task dispatching and result collection: The coordinator sends the MCC tasks

and related data to the SMDs and gets back the result from them.

In this chapter, we considered the first three aspects of data communication, i.e.,
SMD registration and monitoring device usage and present resource status collec-

tion.

The server module connects to clients using sockets, as shown in Fig. 4.7. The re-
quired steps for initiating the communication between client and server are given
in the following, while the process of setting the communication interface at the

server and client ends is shown in Procedure 4.1.
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1. The coordinator opens the server socket at a specified port.

N

It listens for client requests at the opened socket.
. An SMD opens a client socket to communicate with the coordinator.

. The client connects to the server at the static IP: PORT.

gos W

Once connected, the server creates a separate dedicated channel for the client
to communicate.
6. The coordinator and the SMD communicate through this channel until the

channel is terminated (intentionally or unintentionally).

Procedure 4.1: Communication Interface

//Server module interface

ServerSocket = openServerSockect(PORT) //server opens socket at a given port for communication
while(TRUE)

{

NewConnection = ServerSocket.listen()//server listens to incoming connection request through
the socket

String UID = NewConnection.Read() //server module reads the data — UID, received through
socket
}
//Client module interface
ClientSocket = openClientSocket(IP, PORT) //client opens a socket for communication with server
at the specified server port
ClientSocket.Connect() //client connects to server through the socket
ClientSocket.Send(UID) //on successful connection, client sends its UID to server

Server socket

WLAN
Client Client Client Client Client
socket socket socket socket socket

I §§ 0§

Fig. 4.7. The schematic diagram for client-server connection

SMD gets connected eFixed parameters and benchmark
During connection session +CPU & GPU live usage

SMD gets disconnected ePersistent parameters
Fig. 4.8. Resource profiling phases
4.4.1.2 Resource Profiling
Resource profiling is a continuous process involving three phases, as shown in Fig.

4.8. Each phase is discussed in detail in the following. The process flow for resource
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profiling is shown in Fig. 4.9.

Procedure 4.2: Resource Profiling - SMD Connected

ServerSocket = openServerSockect(PORT)//server opens socket at a given port for communication
with the clients SMDs
db = openDatabase(“SMD_profile”) //database is opened
NewConnection = ServerSocket.listen() //server listens to incoming connection request through the
socket
UID = NewConnection.Read() //server module reads the data — UID received through socket
login_time = getCurrentTime() //obtains the current system time as the login time of client SMD
= getCurrentDate() //obtains the current system date as the login date of client SMD
db.executeUpdate(“insert into Connection_log(UID, login_time, login_date) values(‘’+UID+",”+
login_time+”,”+ dt) //UID, login time, and login date of the client SMD are stored in database
find = db.executeQuery(“select UID from SMD_fixed_par”) //the client SMD is searched in
SMD_fixed_par table whether its specification are stored or not
if (find==null) then //if the client SMD is not found in SMD _fixed par table
{
//Reading fixed parameters
NewConnection.send(“max_cpu_clk”) //request made for maximum CPU clock frequency
max_CPU_clk= NewConnection.read()//server reads the max CPU clock sent by the client SMD
NewConnection.send(“cpu_core”) //request made for number of CPU cores
CPU_core= NewConnection.read() //server reads the number of CPU core sent by the client SMD
db.executeUpdate(“insert into SMD_{fixed_par(UID, max_CPU_clk, CPU_core, con_{req) val-
ues(“’+ UID + “’,”+ max_CPU_clk + “,”+ CPU_core + “,” + 1) //fixed parameters of client SMD thus
obtained is saved in database at server site
getBenchmark (db, NewConnection, UID, 1)
}

else

{
frequency = db.executeQuery(“select con_freq from SMD_{fixed_par where UID = “’+UID+"”)

//obtain number of times the client SMD had been connected to server previously
frequency++ //increase the number of times the client SMD gets connected to server by one
db.executeUpdate(“update SMD_fixed_par set con_freq = “+ frequency + “where UID = ‘’+ UID
+"") //update the connection frequency count in the SMD_fixed_par table for the newly connected
SMD

}
Server side Connection
socket session ] Calculate
N Connection ~ Yes_»
Loi terminated? “
No CPU, GPU
New Get live Time for usage
Frequency < device? = —No— resource
< threshold? y —’* selection?
S i '
Yes CPU & GPU v
?5;_ I_ | load Yes
= Ye sj l—‘—l
5
§° Lalculate Get fixed Get dynamic Calculate
[
& “ _ RNy | parameters_availabily
3 CPU & GPU Fixed t
Conne ction benchmarks™ | para meters SMD
frequency MCC availellbility

Fig. 4.9. Process flow for resource profiling
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‘ Procedure 4.3: Benchmark Calculation
getBenchmark(db, NewConnection, UID, frequency) //benchmark calculation for the newly con-
nected SMD
{
fori=0to 5
forj=0to 5
A[i][j] = random() //random numerical value is generated for matrix A
fori=0to 5
forj=0to 5
B[i][j] = random() //random numerical value is generated for matrix B
NewConnection.send(“device benchmark’)
NewConnection.send(A, B) //matrices are sent to SMD
CPU_benchmark_current = NewConnection.read() //CPU benchmark is received from the re-
quested SMD
GPU_benchmark_current = NewConnection.read() //GPU benchmark is received from the re-
quested SMD
if (frequency == 1) then
{
//1f the SMD is connected for first time its UID and CPU and GPU benchmarks are stored in Per-
sist_par table
db.executeUpdate(“insert into Persist_par (UID, CPU_benchmark, GPU_benchmark) values
(“’+ UID + “*,” + CPU_benchmark + “,” + GPU_benchmark)
}

else
{
//1f the SMD is connected for second time or later its previous and present CPU and GPU bench-
marks are averaged individually and stored in Persist_par table
CPU_benchmark_old = db.executeQuery(“select CPU_benchmark from Persist_par where UID

=4 UID + ©7)
GPU_benchmark_old = db.executeQuery(“select GPU_benchmark from Persist_par where UID
=4 UID + ©7)

avg_CPU_benchmark = (CPU_benchmark_old + CPU_benchmark_current)/2
avg_GPU_benchmark = (GPU_benchmark_old + GPU_benchmark_current)/2
db.executeUpdate(“update Persist_par set CPU_benchmark ="+ avg_CPU_benchmark +”,
GPU_benchmark =" + avg_GPU_benchmark + “ where UID = *’+ UID + *“’”)
}
}

4.4.1.2.1 SMD Connected

When an SMD gets connected to the MCC coordinator for the first time ever, the
coordinator acquires the fixed resource parameters and the benchmark of the de-
vice to be stored in the database permanently. The SMD sends its UID to the coor-
dinator as soon as it connects to the coordinator. The coordinator logs the SMD by
its UID and its login time. If the UID is already existing, it suggests that the SMD
has previously joined this MCC system, and hence its information are already
stored in the database. Otherwise, the SMD is newly connected, and it is required
to store the required initial information, including the benchmark scores. The pro-
cess of a new SMD connection is illustrated through the following steps, while Pro-

cedure 4.2 presents the programmatical procedure:

1. The SMD, using the client socket, connects to the server socket at the static IP:
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PORT.

2. The coordinator reads the UID sent by the client and makes a record entry for
the UID, login time and date in the Connection_log table.

3. The coordinator searches the UID in the SMD_fixed_par table.

4. If UID is not found, the coordinator requests the SMD for the fixed parameters
and the CPU and GPU benchmarks.

5. The coordinator reads fixed parameters sent from the client connection and
stores them in the SMD_fixed_par table.

6. The coordinator reads the benchmarks sent from the client connection and
stores them in the Persist_par table, as per Procedure 4.3.

7. If UID is found, the frequency is incremented by one and updated in
SMD_fixed_par table.

4.4.1.2.2 During Connection Session

The connection session denotes the period during which the coordinator and the
SMD communicate to each other uninterruptedly through the established connec-
tion. This continues until either the coordinator or the SMD disconnects either
intentionally or unintentionally. The coordinator periodically gathers CPU and
GPU usage of the SMDs during the entire session and stores them in the Live_us-
age_log table. The interval for this data collection might vary depending on the
design and implementation policy of the MCC system. The benchmarks are calcu-
lated periodically, i.e., after a certain value of frequency. The benchmarks are up-
dated in Persist_par. The process is illustrated through the programmatical proce-

dure in Procedure 4.4.

4.4.1.2.3 SMD Disconnected

The coordinator keeps track of when an SMD leaves the MCC network by logging
out or due to connection loss or any other reasons. In either case, the current ses-
sion is closed. While closing the session, the coordinator takes the CPU and GPU
usage data from Live_usage_log table and calculates the CPU and GPU usage for
all the logged sessions. Accordingly, these data are updated in the Persist_par ta-

ble. The process is illustrated through the programmatical procedure in Procedure

4.5.
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‘ Procedure 4.4: Resource Profiling - During Connection Session
db = openDatabase(“SMD_profile”) //open database
frequency = db.executeQuery(‘“select con_freq from SMD_{fixed par where UID = *’+ UID +"’”)
//obtain number of times the SMD has been connected to LC
if (frequency%10==0) then
{
getBenchmark (db, NewConnection, UID, frequency) //every 10" time the SMD is connected, its
CPU and GPU benchmarks are calculated
}

while (NewConnection)

{

if (timeCounter(3000) == TRUE) //time interval considered as 5 minutes
{
//For a SMD is connected to LC its CPU and GPU usage are obtained
at_time = getCurrentTime()
at_date = getCurrentDate()
NewConnection.send(“CPU usage”)
cpu_usage= NewConnection.read()
NewConnection.send(“GPU usage”)
gpu_usage= NewConnection.read()
db.executeUpdate(“insert into Live_usage_log values(‘’+ UID ‘’,”+ cpu_usage + “,” + gpu_us-
age + “,” + at_time + “,” + at_date) //SMD’s CPU and GPU usage, UID, time, and date are saved in
Live_usage_log table
}
}

Procedure 4.5: Resource Profiling - SMD Disconnected
db = openDatabase(“SMD_profile”) //open database
dt = getDate()
lin = getLogInTime(UID) //obtain the login time of the SMD
lout = getLogOutTime(UID) //obtain the current logout time of the SMD
if (NewConnection==FALSE) then
//When session closes the average of current and old CPU and GPU usage is calculated and are
saved in Persist_par table
{
//ODbtain the average CPU and GPU usage between login and logout time for current session from
Live_usage_log table
Avg_cur_CPU=db.executeQuery(“select AVG(CPU_usage) from Live_usage_log where UID = "+
UID +”’ AND atDate = “+ dt +“ AND atTime between" + lin +” AND "+ lout +”)
Avg_ cur_GPU=db.executeQuery(‘“select AVG(GPU_usage) from Live_usage_log where UID =
'+ UID +”’ AND atDate = “+ dt +“ AND atTime between” + lin +” and” + lout +”)
//ODbtain the average CPU and GPU usage for previous login sessions from Persist_par table
Avg_old_CPU= db.executeQuery(“select avg_CPU from Persist_par where UID = “’+ UID +"’”)
Avg_old_GPU= db.executeQuery(“select avg_GPU from Persist_par where UID = *’+ UID +"”)
//Average CPU and GPU is calculated
Avg _CPU = (Avg_old_CPU + Avg_cur_CPU)/2
Avg_GPU = (Avg_old_GPU + Avg_cur_GPU)/2
db.executeUpdate(“update Persist_par set avg CPU ="+ Avg_CPU + “, avg_GPU =" + Avg_GPU
+ “ where UID = "+ UID +°’”) //average CPU and GPU usage is saved in table Persist_par
db.executeUpdate(“update Connection_log set selected = ‘FALSE’ where UID = “’+ UID +”’ AND
logout_time = lout”) //connection termination is recorded in Connection_log table

}

4.4.1.3 Resource Selection

To achieve the optimal effectivity (e.g., response time, throughput, turnaround
time, etc.) and reliability (e.g., fault tolerance, ensuring resource availability, min-

imized device mobility, minimized hands-off, etc.) from the MCG, it is very crucial
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to select the most suitable SMDs among the currently available ones as per the

requirement of the MCC task and the application type [156].

Table 4.2. Parameters that are not a part of the selection process but set as threshold criteria

~ Parameters = Threshold Remark
Available 50 MB The required RAM size is to be specified by the MCC application.
RAM However, for experimental purposes, we considered the thresh-

old value of 50 MB, which might be sufficient for running general
computing-intensive tasks [639].

Available bat- | >70% We have optimistically assumed that people will not be so con-

tery cerned if the remaining battery charge is greater than equal to
70%.

Device tem- | <45°C 40°-45°C is treated as normal device temperature, running usual

perature apps.

Availability 1 The availability would have a binary evaluation, i.e., whether the

SMD would be available or not, and calculated using Eq. 4.7.

Table 4.3. Considered parameters for crowdworker selection

Parameters Optimized value
CPU frequency Maximum
No. of CPU cores Maximum

Current CPU load Minimum
Current GPU load Minimum
Signal strength Maximum

Average CPU usage | Minimum
Average GPU usage | Minimum
CPU benchmark Minimum
GPU benchmark Minimum

When needed (i.e., resource required for MCC task execution), the coordinator
calls the resource selection module. The selection module gets the instantaneous
values of different parameters, as discussed in Section 4.3 and based on which gen-
erates a list of top-ranked SMDs. The selection module works in two phases. In the
first phase, it filters the SMDs based on the threshold criteria for the parameters
listed in Table 4.2. The SMDs that pass through this filtering are considered for the
next level of the selection process, in which the COPRAS method is used to select
the best SMD based on the parameters listed in Table 4.3. We used a flag to distin-
guish between the already selected SMDs that are executing some MCC tasks and
the other available SMDs. If an SMD is already engaged with an MCC task, it would
not be considered for the selection. The selection process is outlined in Procedure

4.6.

Remark 4.1. In this chapter, we added this resource selection module for the shake

of completeness. The details of MCDM-based resource selection are separately
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discussed in Chapter 5, Adopting COPRAS method in Procedure 4.6 is influenced

by the outcome of Chapter 5.

‘ Procedure 4.6: Resource Selection
db = openDatabase(“SMD_profile”) //open database
SMD_UIDs[] = db.executeQuery(“select UID from Connecttion_log where login_date = "'+ date+”
AND logout_time = null AND selected = ‘FALSE’”)
//SMDs currently logged in to LC but not yet selected for job processing are identified and stored in
array
Decision_matrix[][] //decision matrix is built
i=0
for each UID in SMD_UIDs //considering each identified SMD from the array
{

connection = getSessionConnection(UID)
//Obtain dynamic parameters from the presently selected SMD
connection.send(“Available RAM”)
available_RAM = connection.read()
connection.send(“Available Battery”)
available_battery = connection.read()
connection.send(“Device Temperature’)
device_temp = connection.read()
connection.send(“CPU Load”)
CPU_load = connection.read()
connection.send(“GPU Load”)
GPU_load = connection.read()
connection.send(“Wifi Strength")
wifi_strength = connection.read()
available = calculateAvailability() //calculate the availability of the present SMD for job pro-
cessing
if (available_RAM >= R AND available_Battery > 70 AND device_temp < 45 AND available) then
//check the SMD’s available RAM, battery, device temperature and availability is beyond threshold
value
{
max_CPU_clk, CPU_core, = db.executeQuery(“select max_CPU_clk, CPU_core, from
SMD_fixed_par where UID = *” + UID+ ‘’”) //max CPU clock speed and CPU cores are obtained
from SMD_fixed_par table
avg_CPU, avg_GPU, CPU_benchmark, GPU_benchmarks = db.executeQuery( “select avg_CPU,
avg_GPU, CPU_benchmark, GPU_benchmarks from Persist_par where UID = + UID+ ‘") //the
average CPU, GPU and benchmarks are obtained from Persist_par table
Decision_matrix[i][] = {max_CPU_clk, CPU_core, wifi_strength, CPU_load, GPU_load, avg_CPU,
avg_GPU, CPU_benchmark, GPU_benchmarks} //max CPU clock speed, CPU cores, signal strength,
CPU load, average CPU and GPU usage, and CPU and GPU benchmarks of the SMD are stored in
decision matrix
it++
}

}
SMD_Rank[] = executeCOPRAS(Decision_matrix) //apply COPRAS method to find the most suitable

SMDs for job processing
4.4.2 Client Module
The client module is implemented in SMD. The functionalities of the client module
include communicating with the server module and executing the assigned MCC
tasks. Since in this chapter, we do not consider any job processing scenario but

only resource profiling, we focus only on the data communication aspect. From the
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client’s perspective, the data exchange between the client and the server is catego-

rized as follows:

a) Device information: An SMD sends its UID to the coordinator as soon as it
joins the MCC network. Afterward, it provides other information as asked by
the server module.

b) Job execution: It receives the MCC tasks and related data from the coordinator

and sends back the outputs after execution.

l—Par ameter request:

Requested parameters—— Client module —Response—»

v v v

SMD
Benchmarks specification Current status
request from request from request from
server? server? server?
I I I
Yes Yes Yes

Fig. 4.10. Process flow for the client-server communication

As mentioned earlier, if the SMD connects for the first time, along with its UID,
the fixed parameters and the benchmark values are sent to the coordinator. And if
the SMD is re-entrant, then it sends the dynamic parameters and live resource us-
age data as requested by the coordinator. The entire communication process is
illustrated in the following steps, while the process flow and the corresponding

sequence diagram are shown in Fig. 4.10 and Fig. 4.11, respectively.

1. The SMD opens a client socket and searches for the coordinator (server mod-
ule) by its IP in the MCC network. If the coordinator is found, the SMD con-
nects to it at a specified port.

2. The SMD sends its UID to the coordinator and waits for a response.

3. The SMD, on receiving a request for fixed parameters from the coordinator,
sends back the fixed parameters’ values.

4. The SMD, on receiving a request for benchmark, accompanying the related

assessment data from the coordinator, calculates the benchmark as described
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in Section 4.3.4 and sends it back to the coordinator.

5. The SMD, on receiving a request for CPU & GPU live usage from the coordina-
tor, sends the required data back to the coordinator.

6. The SMD, on receiving a request for dynamic parameters from the coordinator,

sends back the dynamic parameters’ present values.

N
S
|

Server
Request for communication socket
opened at a
Connection establishment with a new channel specified
IP:PORT

Fixed parameters request, benchmark assessment data

Benchmark
calculation
Clinet-server

communication

" Fixed parameters' values, benchmark scores
- = channel

Current CPU & GPU load request

Connection terminate

Fig. 4.11. Sequence diagram for client-server communication

4.5 System Development

As per the system design, as discussed in the previous section, we present the de-
tails of the development in this section. The details of the devices and tools used

for system development are mentioned in Table 4.4.

4.5.1 Server Module

Our goal is to design a low resource demanding MCC coordinator. Hence, we de-
veloped a lightweight server module, comprising only the necessary components.
For this, we preferred Java, considering its versatility. Also, Android has inbuild

compatibility for Java.
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Table 4.4. Developmental environment specifications for the resource profiling and selection sys-

tem
‘ ‘ Device/tool Specification details Purpose
Workstation Processor: AMD Ryzen 3 3250U | Developing the server and client
(laptop) quadra core (64 Bit) dual-core CPU | software modules and testing the
(2.6 GHz, 64 bit) system
RAM: 4 GB
OS: Windows 11, 64 Bit
v Wireless router = D-Link DIR-600M wireless router For connecting MCC coordinator
g and SMDs wirelessly
% Smartphone Model: Vivo Y20A Developing and testing the client
T CPU: 1.95 GHz Snapdragong39 (12 | module
nm) octa-core (4 x 1.95 GHz Cortex-
As3 and 4 x 1.45 GHz Cortex As53)
GPU: Qualcomm Adreno 505
RAM: 3.00 GB
OS: Android n
Notepad++ Version 7.5.7, 32 Bit As code editor
o | Java/JDK Version 8 Developing the server module
§ Android Version 3.3.1 Developing the client module
%  Studio
¥ | Database MySQL 8.0 Community Server Storing information related to
application SMDs and MCC tasks

4.5.2 C(Client Module

Considering the popularity and wide availability of Android devices, we preferred
to develop the client application targeting the Android-based SMDs. We used An-
droid 4.4 KitKat as client API. We deliberately considered this version of Android
to include the prospective users having both newer and older SMDs. The client

socket connects to the server socket at server port 1026.

We developed the client module as a service that would run in the background. A
service is an application component generally used for longer operations running
in the background continuously, even if the user switches to other applications.
Usually, a service runs with a higher priority than other inactive or background
applications and processes, and hence there is little possibility of it getting termi-
nated by the Android. However, if, in any case, it is terminated by the Android, it

can be configured to be restarted once sufficient system resources are regained.

In our client module, the user has control over enabling or disabling the service
explicitly. However, the service would be disabled for that particular session only.
It is automatedly enabled whenever the SMD gets disconnected from the network.

Automated resuming of the service would ensure the continuous availability of the
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SMDs for MCC when they are in the network. The service is deliberately enabled
because it is impractical for a user to remember enabling the service every time

whenever she joins the MCC network.

4.5.3 Database

We used MySQL server for designing the database named SMD_profile to store the
required SMD information. Different aspects of SMDs’ profiles are stored in four

different tables, the details of which are given in Table 4.5.

4.6 Implementation

Before implementation, we tested the system for its proper working. We performed
unit testing for all the functionalities of each module individually. Initially, for sys-

tem testing, we considered a small number of SMDs of different configurations.

After satisfying testing, we implemented the developed resource profiling and se-
lection for an MCC system in a real environment. We deployed the system at the
Data Engineering Lab of the Department of Computer Science & Engineering at
National Institute of Technology, Durgapur. The lab is generally accessed by the
institute's research scholars, the project students, faculty members, and the tech-
nical staff. The coordinator was connected to the Wi-Fi router installed in the lab.
The SMDs that are interested in crowd computing would connect to the coordina-
tor through the same router. The implementational details are discussed in the
following, while Table 4.6 lists the details of hardware and software used for im-

plementing the resource profiling and selection system.

4.6.1 Server

We aim to deploy the MCC in an environment which would not require an exten-
sive infrastructure-based computing system. Hence, we used a small, low-powered
Linux-based SoC as the MCC coordinator that can be set up anywhere without
much burden to IT infrastructure and IT budget. Particularly, we used Raspberry
Pi to deploy the server module that would act as the coordinator. It not only has

sufficient computing capacity, but it supports small user-created databases as well.
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Table 4.5. Database schema for SMD profiling

Table ‘ Purpose Attributes Data type
Connection_log | Log in and out time of all the con- UID Text
nected SMD Login_time Time
logout_time Time
login_date Date
selected Boolean
SMD_fixed_par Fixed parameter and device benchmark | UID Text
of a SMD max_CPU_clk Number
CPU_core Number
con_freq Number
Live_usage_log SMD’s live CPU and GPU usage dataat | UID Text
an instant of time CPU_usage Number
GPU_usage Number
atTime Time
atDate Date
Persist_par SMD’s persistent parameters based on UID Text
its historical behavior avg CPU Number
avg_GPU Number
CPU_benchmark Number
GPU_benchmark Number

Table 4.6. Implementational environment specifications for the resource profiling and selection
system

Category ‘ Entity

Specifications

Purpose

Hardware

B

Raspberry
Pi 3 Model

Processor: 1.2 GHz
(ARM Cortex-A53)
RAM:1 GB

Storage: 8 GB

OS support: Linux
Communication net-
work: Wi-Fi, Ether-
net

USB ports: 4
Ethernet port: 1
HDMI port: 1

MCC coordinator (server)

SMDs

Varies for different
devices

Crowdworker (client)

Server
module

Software

JRE/JDK version 8

Runtime environment for running server
module

Android

4.6.2 Client

Version 4.4. (KitKat)
and above

The SMD OS that hosts the client module
and runs the MCC tasks on the SMD.

The client module was installed on the SMDs of the students, staff, and faculty

members who regularly accessed the lab. All the SMDs were Android devices with

KitKat version and above. We logged the SMD information for nearly eight months

41 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
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of several users (whoever connected to the AP during this period).

4.6.3 Networking

In an organisational MCC setup, there might be several small-scale MCC installed
in different buildings or floors. These MCCs might be isolated silos or intercon-
nected through a backbone network. In our MCC model, we considered an inter-
connected network. However, each MCC functions independently, i.e., they do not
share any MCC-related information. The SMDs would be connected to the coordi-
nator through a Wi-Fi router which is connected to a network switch. The local
coordinator is also connected to the same Wi-Fi router. In a local MCC, the coor-
dinator and the SMDs connected to that coordinator are in the same address space.
The coordinator always has a fixed address in this address space so that when an
SMD connects to a particular Wi-Fi router, it can easily locate the coordinator and
initiate the communication for MCC. We made this address common to every co-
ordinator, wrapped as a subnet mask. This would allow the client module to con-
nect different MCCs seamlessly. In our setup, every Wi-Fi AP would connect max-
imum 26 devices, and the coordinator was configured by assigning the fixed IP
192.168.x.y2, where ‘X’ denotes the third octet and ‘y’ denotes the first two bits of
the fourth octet. The server socket was configured at port number 1026 for listening

to the client connections. A typical layout for an organisation MCC is shown in Fig.

4.12.

¢ >
& Organlsatlonal network >»

. () \ ((« ),
) Wi-FiAP 1 \ Wi-Fi AP 2
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| ! | /

\\ I’ \

’
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Fig. 4.12. Network layout of a local MCC

4.7 Limitations and Further Scopes

The benchmarking scheme proposed in this chapter is generalised. But for differ-
ent types of jobs, different competencies are required. Hence, it would be more

efficient if benchmarking could be done for every particular computing task which
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is expected to be run through MCC. Furthermore, we followed a single predefined
benchmarking calculation approach to assess the SMDs, which suggests that the
MCC tasks are somewhat determined. This makes the benchmarking inflexible,
i.e., it would be impracticable to change the benchmarking scheme dynamically as
per varied requirements of different MCC tasks. The benchmarking mechanism
could be made more accommodating if this was implemented as a lightweight,
portable service that could be invoked by the coordinator at the client module

whenever required.

To avoid inconsistency, we shunned profiling some crucial GPU parameters such
as clock frequency, no. of shader cores, and fabrication. These might be crucial for
a GPU-intensive job. The proposed system can be updated with profiling these in-
formation along with a way out to handle the sparsity in the decision matrix, i.e. if
some of the information are not available from all SMD. We also did not consider
the case if the SMD is in the charging state. Without considering this, we probably
would miss out on some potential SMDs that were superior in all aspects but fil-

tered out due to low battery.

Though we considered a local MCC scenario, the proposed resource profiling
model can certainly be extended to an intra- (multiple local MCCs within a single
network) and inter-MCC system (multiple local MCCs across different networks),
with some added complexity. The distributed resource management solutions

could be quite helpful in this regard.

4.8 Summary

To achieve the best out of MCC, it is highly desirable to consider the most potent
SMDs for MCC task execution. For that, it is necessary to assess the SMDs' re-
sources accurately and justifiably. And for assessing the SMDs, their various re-

source specifications need to be profiled appropriately.

In this chapter, we presented a framework for profiling the SMD resources in a
methodological approach. We considered different categories of resource parame-
ters such as fixed (e.g., clock frequency and cores of the CPU) and variable (e.g.,

present CPU and GPU load, remaining battery, etc.) parameters. Besides these two
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usual types of parameters, we further considered some behavioural parameters
(e.g., average CPU and GPU load, availability) that would suggest the resource sta-
bility pattern of a certain SMD. Not relying on the straightforward assumption that
the SMD, which has the best quantifiable hardware specifications, would be the
most competent computing device to assess an SMD practically, we opted for a
customised benchmarking scheme to estimate its computing capability with re-

spect to the CPU and GPU.

We considered a local MCC scenario where the SMDs are connected to an organi-
sational Wi-Fi AP, and most of them connect to the same network on a regular
basis. The profiling of the resources would be done by the MCC coordinator. We
presented the minute details of designing, developing, and implementing the re-

source profiling and selection for such a local MCC.
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Resource Selection in MCC

“The choice to make good choices is the best choice you can choose. Fail to make
that choice and on most choices you will lose.” --- Ryan Lilly

5.1 Introduction

Resource selection is a primary step for task scheduling, having a high impact on
the overall performance of the MCC. The effectivity (e.g., response time, through-
put, turnaround time, etc.) and reliability (e.g., fault tolerance, ensuring resource
availability, device mobility handling, minimized hands-off, etc.) of MCC largely

depend on selecting the right resources for scheduling the MCC tasks.

At any instance, there might be quite many SMDs available at a certain place (local
MCC, connected through a WLAN or other short-range communication means)
[463] [464] or for a certain application (global MCC, connected through the inter-
net) to be considered as computing resources [462] [145] [461]. All of these SMDs
might have diverse values of each resource parameter, which means each SMD will

have different capability as a computing resource.

Now, among this sizable pool of resources, which of them would be chosen as
crowdworker? In other words, to which SMDs the MCC jobs are preferred to be
scheduled? Obviously, it is expected that for a given MCC task, the best SMDs would be

preferred.

Also, for a given task, to minimise the overhead, it is desirable to use a minimum
number of SMDs. This can be achieved by selecting the most capable SMDs for
scheduling and execution of any MCC task. It would not only maximise the
throughput but also improve the overall performance and QoS of the MCC system.
An inefficient SMD selection method will have a negative impact on the QoS of
MCC. Therefore, it is crucial to have an efficient mechanism to select the most
suitable SMDs from the available pool of SMDs as per the requirement of an MCC
task [156].
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In this chapter, we aim to achieve the followings:

« Establish the problem of resource selection in MCC as an MCDM problem.

« Find out the most suitable MCDM approach that provides consistent and con-
siderably accurate SMD selection decisions, balancing various parameters at a
reasonable time complexity for real-time resource selection in a dynamic en-
vironment like MCC.

o Assess and compare the performance of different MCDM methods belonging
to disparate families in terms of the correctness and robustness of the SMD

rankings given by each method and their precise run-times.
5.2 Resource Selection and MCDM

In this section, we formally define the resource selection problem in MCC and es-

tablish it as an MCDM problem.

5.2.1 Challenge in Resource Selection in MCC

Resource discovery and selection in a distributed system has always been challeng-
ing [640] [641] [642]. In MCC, it has been aggravated by the fact that the MCC
implicates an absolutely dynamic and heterogeneous environment. The heteroge-
neity is not only due to the assorted characteristics of the SMDs (physical diversity)
but also because of users' divergent device usage behaviours (operational diver-
sity).

A number of SMD makers regularly launch plentiful devices with a variety of hard-
ware and software features. People also tend to upgrade (replace) their SMDs reg-
ularly [2]. Hence, in most of the cases, the available SMDs in an MCC would be
vastly heterogeneous in terms of hardware (e.g., CPU & GPU clock frequency, num-
ber of cores, primary memory size, secondary memory size, battery capacity, etc.);

and with different specifications, the SMDs boast varying computing capacities
[138].

The computing capability is one of the most important selection criteria as this
would eventually influence the response time, throughput, and turnaround time
for any given task. Therefore, the straightforward solution would have been to pick

the SMDs that have the best-quantified hardware resources. But this does not
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always hold true, i.e., the SMD with best hardware assets may not be the optimal
computing resource at every instance. Due to users’ SMD usage behaviour and the
applications running on the SMDs the usable resources would vary time to time.
At different instances, the SMDs would have different values of their dynamic re-

source parameters.

Table 5.1 lists three such cases and their respective corollaries, considering two
SMDs S, and S, belonging to the users U, and U.,, respectively. It is obvious that
though S, has better resources than S, S, should not be the most preferred candi-
date for MCC. This indicates that the greater resources on paper should not be the
sole measure for considering an SMD to be the fittest as a crowdworker. To com-
pare the competency of the SMDs, they need to be weighed multidimensionally,
i.e., based on different types of information. The other parameters and external
conditions also should be taken into consideration. Furthermore, at the time of job
submission, the actual statuses (which varies dynamically) of the resources (e.g.,
CPU & GPU load, available memory, available battery, signal strength, etc.) need
to be considered. The values of these variable parameters change depending on the
SMD usage by its user. For a better QoS of MCC, it is crucial to select the most
suitable SMDs with the best usable resources to offer at the moment of job sub-

mission and during its execution.

Furthermore, besides the static and dynamic resource parameters, to assess the
SMDs more accurately, some other persistent parameters such as average CPU and
GPU usage, users’ mobility pattern, etc., should also be considered. As discussed
in Chapter 4, these parameters would suggest the pattern of the SMD’s usability

behaviour.

It is apparent that taking into account the diversity in the considerable parameters,
selecting the most suitable SMD as a candidate for crowdworker is a difficult task.
Moreover, while making the selection decision, these diversified parameters need
to be considered in a unified way. This is really challenging and it makes the selec-
tion process complex. Furthermore, several of these parameters are conflicting in
nature. It poses further challenge to have an optimized selection balancing be-

tween the conflicting assessment criteria.
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Correspondingly, devising an efficient, dynamic, and time-efficient resource selec-

tion method that would perfectly consider all these diverse resource parameters is

non-trivial.

Table 5.1. Examples of resource selection impasses

Case

Respective corollary

Siand S. have CPU power ¢ and ¢z,
respectively; where ¢ > c. but the
user U, continuously plays games
on his/her SMD.

S: has considerably larger battery
capacity than S,, but S, is exten-
sively used compared to S..

S: has far better hardware than S.
in all respects, but it has a consid-
erably weaker wireless signal
strength than S; at the time of job
submission.

The CPU of S, is busy most of the time, which would hamper
the execution of the task assigned to it, whereas S. can pro-
vide slower but steady CPU cycles.

The battery drainage of S, is much faster than S.. Hence, it
may happen that even the job is submitted to S,, after a short
while, u1 withdraws from MCC due to low battery concern.
If the job was submitted to S., the overhead of job offloading,
and reassigning could be avoided.

The weak wireless signal may result in disrupted and unreli-
able communication. Hence, due to this poor communica-
tion channel, the computing strength of S, is not utilized
properly, whereas S. could provide sluggish but reliable ser-
vice.

5.2.2 Defining the Resource Selection Problem in MCC

The resource selection problem can be formally presented as following. Assume
that there is a set of m number of heterogeneous SMDs as S® = {5y, s;, ..., S}
connected with the MCC coordinator at time t. Here, each SMD (s;) is character-
ized by n number of resource parameters as R = {r;"1, 1,2, ..., ,"n}, where w; is
the associated weight of resource ;. R consists of different parameters types, as
discussed in Section 4.3. Typically, Vs;, i = [1,m], except the fixed resource param-
eters (r/), the dynamic resource parameters (r%), persistent resource parameters
(r?) and the benchmarks (r?) vary at times, depending on various factors, where
rf ur?urP urP = R. With this variations, it is challenging to select the best s; in

S at any point of time ¢, based on the current value of 7; ;) and respective wj,

V15, Vwj and Vs;, where j = [1,n], i = [1,m], and x = f]d|p|b.

For some parameters, as mentioned earlier, instead of including them in the selec-
tion process we used them for pre-selection filtering. Some threshold criteria were
set for these parameters. If n' is the total number of such parameters then
(AN Aryh), where 1t 1,8, ..., 7t € R, needs to be true for Vs; to be qual-
ified for the next phase of the selection process. Let us assume, without these pa-

rameters having threshold criteria, the resource set is R’ = R — {r;t, rn5, ..., 7'},
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and after these filtering conditions, the updated set of SMDs, S 0 _ {s1, S, . S, 1}

m

If we observe the considered resource parameters, they are conflicting in nature,
i.e., for some parameters (rjmax), we would prefer the greater values (maximum),
whereas for the rest (rjmm), the smaller values (minimum) would be ideal, where,

rjmax U 7min = R. Our goal is to select an s; such that it comprises an overall bal-

ance of rjmax and Tjmin, considering all 7;. In fact, we need a resource selection
method that would evaluate all s; considering the present values of rjmax and 7min

and their corresponding weights w;, j = [1, n — n'], and rank them accordingly.

Based on the value of Gx(t) (s{) and taking into account the maximization and min-

imization criteria and wj, a utility value (si’u( ) is to be calculated of all s; with

t)

respect to Vrj, j = [1, n — n'] at t. And finally, comparing all si’u( ,i=[L,m—-—m'],a

® ®
"as S ={sy, sy, ..., s}

resource selection method should return an updated S "

pru(®
i

1w

= Sit1 -

where, s

An ideal selection method should comply the above-mentioned considerations

and return a ranked list of the fittest SMDs.

5.2.3 MCDM

In most real applications, decision-making is not based on a simple if-else pattern;
rather, due to the presence of multiple potentially conflicting requirements, bal-
anced decision-making becomes nontrivial. Traditional optimization-based solu-
tions try to mitigate this by considering the most important requirement(s) as the
objective function(s) and the remainder as constraints. But it still might have the
problem of potentially irreconcilable requirements, which can be handled to an
extent by relaxing the thresholds of the constraints until a feasible solution is ob-

tained [643].

MCDM solutions are suitable alternatives for solving these kinds of problems.
MCDM methods, in general, adopt an interactive approach to deal with the selec-
tion problems with multiple criteria by utilising a variety of processes that clarify

the implications of the underlying trade-offs between the considered criteria in
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constituting the alternative solutions [174].

An MCDM problem can be described as weighing a set of alternatives based on
multiple pre-set decision criteria. Let us suppose, A = {a,, as, ..., am} denotes a finite
set of distinct alternatives and C = {c,, ¢, ..., cn} is the set of criteria that evaluates
A. A performance score pj is calculated for each a;j, i =1, 2, ..., m with respect to the

criteria C. Based on pj;, A is ordered such that ax is better than a...

Though the alternatives are homogeneous, the interrelationship between the de-
cision criteria may be complex in nature. They can be expressed in different units
which might not have any apparent interrelationship. However, the decision-mak-
ing gets complicated when some of the criteria conflict with each other; i.e., some
are profit (maximization) criteria, whereas some are loss (minimization) criteria.
Usually, each criterion has some weight as per their significance in the decision-
making in the context of a particular application [644]. The common stages of a

typical MCDM method are shown in Fig. 5.1.

Identifying and selecting

. Determining the Ranking the available

the effective resource iohts of lvi
features as decision weights of resource resources by applying
features. some MCDM method.

criteria.

Fig. 5.1. Typical MCDM stages
MCDM methods have been used for decision-making in numerous applications
and problems [153] [154]. Over the years, several algorithms have been developed
or augmented, targeting the applicability and suitability of the problems, which
significantly contributed to the evolution of the expanding field of MCDM [645]
[153] [646]. These methods differ in terms of their computational logic and assump-
tion, applicability, calculation complexities, and ability to withstand variations in
the given conditions. Table 5.2 lists some of the popular MCDM approaches and
the most noteworthy representatives of each approach. Some MCDM methods
work better for a particular decision-making problem, while others may not per-
form well. That is why it is important to decide the most suitable MCDM method

for a given problem scenario.

5.2.4 Resource Selection as an MCDM Problem

In the stated problem, we wish to find out a rank-based selection method for listing
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the best SMDs uniquely with tolerable runtime, fulfilling the demand for real-time
dynamic resource-provisioning. For this, we present the resource selection prob-
lem as an MCDM problem, which is expected to assess the SMDs in a balanced way

based on their various resource parameters.

Table 5.2. The popular MCDM approaches and their respective popular representatives

| MCDM approach Representative example Reference
Distance-based method TOPSIS [647] [648]
EDAS [649]
Area-based comparison and approximation method = MABAC [650] [651]
ARAS [652] [653]
Ratio-based additive method SAW [654]
COPRAS [655] [656]
VIKOR [657] [658]
Algorithms that work under compromising situa- CoCoSo [659]
tions MARCOS [660]
RAFSI [644]

Witnessing the wide-scale applications of MCDM, especially in decision-making
problems, we believe that it can also offer promising solutions for resource selec-

tion in MCC and other similar computing systems, which is not explored so far
[480].

In our SMD selection problem, the alternatives are the available SMDs at the time
of job submission, and the criteria are different parameters considered for SMD
selection (e.g., CPU frequency, RAM, CPU load, etc.). The MCDM solutions pro-
vide a ranking of the available SMDs based on the selection criteria. From this
ranked list, the resource management module of the MCC selects the top-ranked

SMD(s) for job scheduling. The pictorial representation of the SMD ranking process is

| B

Available SMDs in  Getpresent status of Apply MCDMtoget RankSMDsasper Descending

shown in Fig. 5.2.

MCC the dynamic top SMDs based on MCDM outcome  ranked list
resource parameters their resource of SMDs
of each SMD parameters

Fig. 5.2. SMD ranking using MCDM
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5.2.5 MCDM Methods Considered for the Comparative Study

This section briefly describes five MCDM methods considered for the comparative

analysis along with their computation algorithms. In this chapter, we derived the

preferential order of the alternatives based on the following aspects:

o Separation from average solution (EDAS method).

o The relative positioning of the alternatives with respect to the best one (ARAS

method).

o Utility-based classification and preferential ordering on the proportional scale

(COPRAS method).

» Approximation of the positions of the alternatives to the average solution area

(MABAC method).

o Compromise solution while trading of the effects of the criteria on the alterna-

tives (MARKOS method).

Table 5.3. Merits and demerits of the MCDM methods considered in this study

MCDM . .
Merits Demerits
method
« Useful when there are conflicting criteria and deci- o In many real-life cases, the
sion-making fluctuations average point does not re-
« Provides realistic solutions as it does not consider ex- =~ veal the true picture
EDAS treme ideal points « This method is more suited
« Operates with a difference from average solution in- | for risk-neutral cases
stead of distance
« Free from rank reversal issue
« Simple computational steps with lesser complexity |« ARAS works reasonably well
ARAS |« Can operate under the compromising situation only when the number of al-
« A relative measurement in terms of the ratio ternatives is limited
« Stability in result
« Systematic computation with a precise and rational .
. « Does not consider non-com-
MABAC  solution . o
pensation of criteria
« Free from rank reversal
 Can work with large criteria set
« Evaluates influence of maximizing and minimizing « Provides unstable results in
criteria separately case of data variation, and
COPRAS . .
« Simple calculation the results may not reveal
o Free from rank reversal the true nature of the data
« Consideration of the anti-ideal and ideal solution at « Works on compromising re-
the very beginning of the formation of the decision sults
matrix
MARCOS

 Determination of utility degree for both solutions,
« Can work with a large set of criteria and alternatives
« Stability in solution
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We considered the widely used MCDM methods as a representation of each above-
mentioned class. In Table 5.3, we present a comparative analysis of the merits and
demerits of the considered MCDM methods. Since the calculation time is vital in
our problem (resource selection in MCC) and subjective bias might affect the final
solution, we avoided considering the pairwise comparison methods such as AHP,

ANP, ELECTRE, MACBETH, REMBRANDT (multiplicative AHP), PAPRIKA, etc.

5.2.5.1 EDAS Method

EDAS is a recently developed distance-based algorithm that considers the average
solution as a reference point [649]. The alternative with a higher favourable devi-
ation, i.e., the positive distance from average (PDA), is preferred compared to non-
favourable deviation, i.e., the negative distance from average (NDA). As a result,
EDAS provides a reasonably robust solution, free from outlier effect and rank re-
versal problem, and decision-making fluctuations [661]. However, the EDAS
method does not portray a favourable result. Therefore, this method is more suited
in the case of risk aversion considerations. The procedural steps of EDAS are de-

scribed below.
Step 1: Calculation of the average solution

The average solution is the midpoint for all alternatives in the solution space with

respect to a particular criterion and is calculated using Eq. 5.1.

m
_ Zi=aXij, .

AV =12, ..,0 (51)

j m
Step 2: Calculation of PDA and NDA

PDA and NDA are the dispersion measures for each possible solution with respect
to the average point. An alternative with higher PDA and lower NDA is treated as
better than the average one. The PDA and NDA matrices are defined by Eq. 5.2 and
Eq. 5.3, respectively.

PDA = [PDAj]mxn (5.2)

NDA = [NDA; | mxn (53)

Where, PDA;; and NDA;; are defined by Eq. 5.4 and Eq. 5.5, respectively.
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(max(o,(xij— AV]-))
AV

max(O,(AVj— Xij))
AV

,if jt* criterion is profit type

PDA;; =

i (5.4)

,if jt* criterion is cost type

and

max(O,(AVj - Xij))

X ,if j¢" criterion is profit type
]

NDA;; =

ij (55)

max(O,(xij - AV]' ))

v ,if j¢" criterion is cost type
]

It can be inferred that if PDA > o, then the corresponding NDA = o, and if NDA >
o, then the PDA = o for an alternative with respect to a particular criterion.
Step 3: Determine the weighted sum of PDA and NDA for all alternatives

Calculate the weighted sum of PDA and NDA using Eq. 5.6 and Eq. 5.7, respec-

tively.
SP, = YL, w; PDA;; (5.6)
SN; = L, wj NDA; (5.7)
where, wjis the weight of j criterion.
Step 4: Normalization of the values of SP and SN for all the alternatives

The normalization of linear form for SP and SN values are obtained by using Eq.

5.8 and Eq. 5.9, respectively.

SP;

NSP, = max(sPy) (5.8)
SN;

NSN; = 1— max(SND (5.9)

Step 5: Calculation of the appraisal score (AS) for all alternatives

Here the appraisal score denotes the performance score of the alternatives and is

calculated using Eq. 5.10.
AS; = 2 (NSP; + NSN;) (5.10)

where, o < AS; < 1. The alternative having the highest AS;is ranked first and so on.
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5.2.5.2 ARAS Method

ARAS method uses the concept of utility values for comparing the alternatives. In
this method, a relative scale (i.e., ratio) is used to compare the alternatives with
respect to the optimal solution [652] [662] [663]. This method uses a simple addi-
tive approach while working under compromising situations effectively and with
lesser computational complexities [664] [665]. However, it is observed that ARAS
works reasonably well only when the number of alternatives is limited [666]. The

procedural steps of ARAS are described below.
Step 1: Formation of the decision matrix
The decision matrix is constructed using Eq. 5.11.
X=[xy] (5.11)
Step 2: Determination of the optimal value

The optimal value for j criterion is determined using Eq. 5.12.

{miax xij, for profit type (512)
= 5.12

Xji =13 .
U min x;;, for cost type
1

Step 3: Formation of the normalized decision matrix

The criteria have different dimensions. Normalization is carried out to achieve di-
mensionless weighted performance values for all alternatives under the influences
of the criteria. In this case, we follow a linear ratio approach for normalization.
However, we consider the optimum point as the base level. Therefore, in the nor-
malized decision matrix, we include the optimum value, and the order of the ma-
trix is (m + 1) X n. In the ARAS method, a two-stage normalization is followed for
the cost type of criteria. The normalized decision matrix is given by Eq. 5.13 where

r;j is defined by Eq. 5.14.

R = [rij](m+1)><n (513)
7: U for profit type criteria
i=0 %ij
rij = 1/Xi]' ) ) (514)
ST/ for cost type criteria

If in case of cost type criteria x;; = 0, we consider ry; = 0.
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Step 4: Derive the weighted normalized decision matrix

The weighted normalized decision matrix is calculated using Eq. 5.15.

V = [vy] (e (5.15)
Where vj; is definded by Eq. 5.16 and i = 0, m.

Vij = 1 X W, (5.16)
Step 5: Calculation of the optimality function value for each alternative
The optimality function value is calculated using Eq. 5.17.

0; = Xj=1Vij (5.17)

where, i = 0, m.
Higher is the value of @;, better is the alternative.

Step 6: Find out the priority order of the alternatives based on utility degree with

respect to the ideal solution

The priority order is calculated using Eq. 5.18.

[

6i= %

(5.18)
where, i = 0,m and 0; € [0,1].

Obviously, the bigger value of 0; is preferable. It is pretty certain that the optimality
function @; maintains a direct and proportional relationship with the performance
values of the alternatives and weights of the criteria. Hence, the greater the value
of @;, more is the effectiveness of the corresponding solution. The degree of utility
is essentially the usefulness of the corresponding alternative with respect to the

optimal one.

5.2.5.3 MABAC Method

MABAC uses two areas: an upper approximation area (UAA) for favourable or ideal
solutions and a lower approximation area (LAA) for non-favourable or anti-ideal
solutions for performance-based classifications of the solutions. This method pro-
vides lesser computational complexities compared to the EDAS and ARAS meth-

ods. Further, since this method does not involve distance-based separation
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measures, it generates stable results [650]. MABAC compares the alternatives
based on relative strength and weakness [667]. Because of its simplicity and use-
fulness, MABAC has been a widely popular method in various applications, for ex-
ample, social media efficiency measurement [668], health tourism [669], supply
chain performance assessment [219], portfolio selection [670], railway manage-
ment [671], medical tourism site selection [672], and selection of hotels [673]. The

procedural steps of MABAC are described below.
Step 1: Normalization of the criteria values

Here, a linear max-min type scheme is used, as given in Eq. 5.19.

Xij— %)
& -x7)
(xi5— X;)
xr-x)’

, for beneficial criteria

for nonbeneficial criteria

where, xi” and x;” are the maximum and minimum criteria values, respectively.
Step 2: Formulate the weighted normalization matrix (Y)
Elements of Y are given by Eq. 5.20.

yij = w(r; + 1) (5.20)
where, wj is the criteria weight.
Step 3: Determination of the Border Approximation Area (BAA)

The elements of the BAA (T) are denoted by Eq. 5.21 where t; is given by Eq. 5.22.

T = [ti]xn (5:21)

1/m

tj = (ITi1yy) (5.22)

where, m is the total number of alternatives and t; corresponds to each criterion.

Step 4: Calculation of the matrix Q related to the separation of the alternatives from

BAA
Q is calculated using Eq. 5.23.
Q=Y-T (5.23)

A particular alternative a; is said to be belonging to the UAA (i.e., T*) if q;; > 0 or
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LAA (i.e.,, T7) if gj; < 0 or BAA (i.e., T) if q;; = 0. The alternative a; is considered to
be the best among the others if more numbers of criteria pertaining to it possibly
belong to T*.

Step 5: Ranking of the alternatives

The ranking is done according to the final values of the criterion functions as given
by Eq. 5.24.

Si= XjLiqj forj=12,..,nandi=12,..,m (5.24)
The higher the value is, more is the preference.

5.2.54 COPRAS Method

The COPRAS method calculates the utility values of the alternatives under the di-
rect and proportional dependencies of the influencing criteria for carrying out pref-
erential ranking [655] [674] [675]. The procedural steps for finding out the utility
values of the alternatives using the COPRAS method are discussed in the following.
The alternatives are ordered in descending order based on the obtained utility val-

ues.

Step 1: Construct the normalized decision matrix using the simple proportional ap-

proach

The normalised decision matrix is calculated using Eq. 5.25.

dy = Ty (5.25)

where, d;; is the performance value of the i alternative with respect to j* criterion

(i=1,2,..,m;j=1,2,..,n).

Step 2: Calculation of the sums of the weighted normalized values for optimization

in ideal and anti-ideal effects

The ideal and anti-ideal effects are calculated by Eq. 5.26 and Eq. 5.27, respectively.
gri= X1 dy & (5.26)
g-i = Y1 dy- & (5.27)

where, k is the number of maximizing (i.e., profit type) criteria and &; is the
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significance of the jt criterion.

In case of g, all aT] values are corresponding to the beneficial or profit type crite-
ria, and for g_;, we take the performance values of the alternatives related to cost

type criteria.
Step 3: Calculation of the relative weights of the alternatives

The relative weight for any alternative (it") is given by Eq. 5.28.

ming_; %2, g DRI
0= goit ——mmes = P ﬁ (5.28)
g-iXiZ, 19—1 Foizi={yT

The Q; value corresponding to the it alternative signifies the degree of satisfaction
of that with respect to the given conditions. The greater is the value of (); better is
the relative performance of the concerned alternative, and hence, higher is the po-
sition. Therefore, the most rational and efficient DMU should have Q; .4 i.e., the
optimum value. The relative utility of a particular DMU or alternative is deter-
mined by comparing the ; value of any DMU with respect to the Q;,,x value,

corresponding to the most effective one.

The utility for each alternative is given by Eq. 5.29. Needless to say, the U; value for
the most preferred choice is 100%.

U = —2 % 100% (5.29)

i max

5.2.5.5 MARCOS Method

MARCOS belongs to a strand of MCDM algorithms that derives solutions under
compromise situations. However, unlike the previous versions, MARCOS starts
with including ideal and anti-ideal solutions in the fundamental decision matrix at
the very beginning. Likewise, COPRAS also finds out the utility values. However,
here the decision-maker can make a trade-off among the ideal and anti-ideal solu-
tions to arrive at the utility values of the alternatives. The MARCOS method is also
capable of handling a large set of alternatives and criteria [660] [676] [677]. The
procedural steps of MARCOS are described below.

Step 1: Formation of the extended decision matrix (D*) by including the anti-ideal

solution (S™) values in the first row and the ideal solution (S*)values in the last row



205

S~ and S*are defined by Eq. 5.30 and Eq. 5.31, respectively.

minx;;, when j € profit type
- — 1
5= {m_axxi]- ,when j € cost type (5.30)
1
max xj;, when j € profit type
+ — 1
ST {m_in Xij, when j € cost type (5.31)
1

The anti-ideal solution represents the worst choice, whereas the ideal solution is
the reference point that shows the best possible characteristics given the set of

constraints, i.e., criteria.
Step 2: Normalization of D*

The normalized values are given by Eq. 5.32.

XS—+ when j € cost type

ﬁ,whenj € profit type

Since it is preferred to set apart from the anti-ideal reference point, in MARCOS,
the normalization is carried out using a linear ratio approach with respect to the

anti-ideal solution.
Step 3: Formation of weighted D*

After normalization, the weighted normalized matrix with elements vj; is formu-
lated by multiplying the normalized value of each alternative with the correspond-
ing weight of the criteria, as given in Eq. 5.33.

Vij = WjTj; (5.33)
Step 4: Calculation of utility degrees of the alternatives for S* and S~
The utility degree of a particular alternative with respect to given conditions rep-

resents its relative attractiveness of the same. The utility degrees are calculated

using Eq. 5.34 and Eq. 5.35 where vy; is given as Eq. 5.36.

- Yi
Ki == (534)
K = Yo _

P T (535)

Yi = Xjz1Vij (536)
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Step 5: Calculation of values of utility functions for S* and S~

The utility function resembles the trade-off that the observed or considered alter-

natives make vis-a-vis the ideal and anti-ideal reference points, and are given by

Eq. 5.37 and Eq. 5.38.

- K}

f(K;) = Ki++11<; (537)
+ Ki

fiKi) = o (538)

The decision is made related to the selection of a particular alternative is based on
utility functional values. The utility function exhibits the relative position of the
concerned alternative with respect to the reference points. The best alternative is
closest to the ideal reference and, subsequently, distant from the anti-ideal one

compared to other available choices.
Step 6: Calculation of the utility function values for the alternatives

The utility function value for i" alternative is calculated by Eq. 5.39.

- K+ Ki
f(Ki) - - f(KiJr) 1- £(K) (539)

Y ) TR

The alternative having the highest utility function value is ranked first over the

others.

5.2.6 Entropy Method for Criteria Weight Calculation

Each selection criterion carries some weight. The weights define the importance of
the criteria in the decision-making. To determine the criteria weights, we applied
the most popularly used entropy method. The entropy method works on objective
information following the concept of the probabilistic information theory [678].
The objective weighting approach can mitigate the man-made instabilities in the
subjective weighting approach and gives more realistic results [679]. The Entropy
method shows its efficacy in dealing with imprecise information and dispersions
while offsetting the subjective bias [680] [681]. Extant literature shows a colossal
number of applications of Entropy method for determining criteria weights in var-

ious situations (for example, [670] [682] [683] [684] [685] [686]). The steps of the
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entropy method are given below:

Suppose, X = [xi]—] | Tepresents the decision matrix where m is the number of

mxX

alternatives and n is the number of criteria.
Step 1: Normalization of the decision matrix

Normalization is carried out to bring the performance values of all alternatives
subject to different criteria to a common unitless form having scale values €(o,1).

Here we follow the linear normalization scheme.

Entropy value signifies the level of disorder. In the case of criteria weight determi-
nation, a criterion with a higher Entropy value indicates that that particular crite-

rion contains more information.

The normalization matrix is represented as (R) ,x, where the elements r;; are given

by Eq. 5.40.
M, for profit type criteria
e Gimax " Ximin) ( 0)
Y (X]'max_xl']') f . . >4
m, or cost type criteria
Step 2: Calculation of Entropy values
The Entropy value for it" alternative for jt criterion is given by Eq. 5.41.
Hj = —kX, fi; In(f;) (5.41)

where, k (a constant value) and f;; are defined by Eq. 5.42. and Eq. 5.43, respectively.
If fl] =0 then, fl] ln(fll) = 0.
k = 1/In (m) (542)

fii = =

=5 (543)

Step 3: Calculation of criteria weight

The weight for each criterion is given by Eq. 5.44.

- _H
Wi L, (544)

Here, the higher the value of wj is, more is the information contained in the jth

criterion.
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5.3 Research Methodology

This section discusses the research framework used in this chapter and provides
the computational steps of the MCDM algorithms applied for carrying out the
comparative analysis in a dynamic environment. Fig. 5.3 depicts the steps followed

in this research work.

Goal: Multi-criteria resource selection in a
dynamic mobile crowd computing system
|

EDAS

ta collection eria selection

MABAC < <

_[ MCDM frameworks ] <j Criteria weight calculation
(Entropy method)

MARCOS G

(@)
% =
n

[ Case scenarios }

I !
I I ] |

Case I Case Il Case Il Case IV
Alternative = 50 || Alternative = 10 || Alternative = 50 || Alternative = 10
Criteria=13 Criteria=13 Criteria=06 Criteria=06

.anking order j
1
|

[ Concluding remarks ]

Fig. 5.3. Research framework

5.3.1 Resource Selection Criteria

Here, we considered thirteen criteria for SMD selection, as shown in Table 5.4. Out
of these, eight are profit criteria, i.e., their maximized values would be ideal for
selection, whereas five are cost criteria, i.e., their minimized values should be ideal.
Depending on specific applications and specific job types, the criteria and their
weights (significance) would vary. For example, a CPU-bound job may not use GPU
cores, while some highly computing-intensive jobs (such as image and video anal-
ysis, complex scientific calculations, etc.) would use GPU more than the CPU. Sim-
ilarly, the RAM size would be a decisive factor for a data-intensive job that might
not be so important for a CPU-intensive job. Here, we chose the criteria that would,
in general and overall, be considered for selecting an SMD as a computing re-

source.
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To keep the experiment minimalistic, we ignored several resource parameters such
as persistent parameters and benchmarking that are discussed in Section 4.3. How-

ever, in practical implementation, they can be incorporated as selection criteria.

Table 5.4. List of selection criteria

Profit type Cost type
SEx 225 =
32 22873 - E
O E (G > v == = O S o
Y|l 5 O g 7 = = XXX ¥ = ¥
~ 2 55 ¢ 228 €< < < a3
g 2 g S E T = -9 YW & B T
Criteria ¢ <& 9 g 88 5§ 8 % E g g
3 | 3 § E A > == = 8 - | =
g8 8=z 2 8l 20p35 8%
V2 Y g = i\ — o g v
E|l o & | o ) o~ AR 3 A
o o o] 8 | |ORR) @) % <
2 > =2 %8 5% B D
O & ?5 g 8 = = A
O < M )
Code C1 Cz C3 C4 C5 C6 C7 C8 C9 Cw Cu C12 C13
Effect
direction. ) () () () (3) (1) (1) ) ()5 ) () ()

5.3.2 Data Collection

The data collection for this experiment was done through the resource profiling,
as discussed in Chapter 4. From the logged user data, we picked the users who were
more consistent with high presence frequency and less sparsity. For this study, we
considered such 50 SMDs, selected randomly. Specifically for this experiment, we
considered a total of thirteen resource parameters that are important in the deci-
sion-making process for selecting an SMD as a suitable resource in MCC, as shown
in Table 5.4. It can be seen from the table that some resource parameters are fixed,
i.e., they would not change their values in their lifetime (e.g., C,, C,, C5, C4, Cs, and
Cy;3), while some parameters’ values are changed dynamically (e.g., Cs, C;, Cs, Co,
Cio, Cy, and C.,). We considered some instantaneous values of all the parameters

and used the same for all experimental illustrations for the experimental purpose.

5.3.3 Experiment Cases

Since, in this study, we wanted to assess the effect of the number of criteria and
alternatives in the selection outcome and computational complexity; we consid-
ered different variations of the selection criteria and alternatives for comparison.
Accordingly, we generated four case scenarios, as discussed in the following sub-
sections. Each case has a different number of alternatives (SMDs) and criteria. The

reason behind choosing four datasets of different sizes is to assess the performance
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of the MCDM methods under different MCC scenarios.

Table 5.5. Decision matrix (Case 1)

Profit criteria

Cost criteria

SMD G C C3 C4 C5 Cs C7 Cs Cg Cio Cu Ce ‘ C13
M, 2.2 2 650 8 895 | 2700 | 15 4 92 27 43 45 14
M. 1.5 4 450 4 3831 | 4000 | 39 4 16 76 39 40 10
M; 1.5 2 650 6 2694 | 2700 | 12 3 44 67 38 40 28
M, 1.3 8 650 8 518 | 4000 | 11 5 89 78 42 42 10
M; 1.3 8 650 8 1807 | 3000 | 10 4 13 8 31 38 10
Ms 1.7 8 450 8 1982 | 3000 | 68 5 64 32 32 35 14
M, 2.5 2 400 6 3857 | 3500 | 18 1 60 16 38 36 10
Ms 2.5 4 624 8 558 | 4000 | 56 5 99 87 50 48 10
M, 1.7 2 450 8 1908 | 2700 | 57 4 26 4 30 34 28
Mio 2.5 2 450 6 1767 | 4000 | 24 2 53 93 45 44 10
Mu 25 | 2 | 400 4 |2853 4000 94 | 3 53 | 47 | 40 | 40 | 10
M. 2.2 2 624 6 3535 | 2700 | 24 3 26 67 37 39 28
My 2.2 8 710 4 1734 | 3500 | 50 1 19 63 34 38 28
My | 15 8 | 650 4 | 2954 3000 59 5 15 3 34 | 33 | 10
M5 2.2 8 650 6 1916 | 3000 | 11 1 19 77 32 39 14
Mis 1.3 2 400 6 870 | 2700 | 9o 5 44 89 35 43 10
My, 1.5 4 400 4 2911 | 3500 | 17 2 18 96 36 47 10
Ms 1.7 8 450 6 3876 | 4000 @ 63 4 4 o 45 42 10
My | 13 4 | 650 | 6 | 944 | 2700 @ 75 1 2 72 30 | 43 | 14
Mo 1.7 2 450 6 2855 | 4000 | 22 5 62 9 32 40 10
M. 1.3 4 450 6 2973 | 3500 | 18 1 78 92 40 45 14
Mo, 1.5 8 624 8 3521 | 4000 | 22 1 42 44 38 37 10
Ms | 13 4 | 400 | 6 | 1734 | 3500 84 | 4 95 | 24 43 39 28
My | 25 2 710 4 | 3986 | 3000 | 16 1 8 57 36 40 28
\Y 65 1.5 4 624 6 2851 | 3500 | 31 4 7 2 39 42 10
M6 1.7 4 710 6 2983 | 3000 | 50 1 61 58 38 45 10
M., 2.2 2 710 8 1932 | 4000 | 87 3 57 21 39 43 14
Mg 2.5 2 624 6 972 | 4000 | 87 5 77 8o 43 46 28
Mz 1.3 2 710 6 2579 | 4000 | 16 2 69 o 41 40 14
Ms | 13 4 | 710 6 | 3537 | 3500 37 2 4 16 | 37 | 37 28
Mz, 2.5 2 650 4 809 | 2700 | 89 5 70 3 41 39 14
M. 13 4 | 450 4 | 3769 3500 56 2 5 35 | 33 40 | 28
M3 13 8 400 4 799 | 3000 | 39 1 65 47 35 44 10
M, 2.2 4 710 4 1938 | 4000 | 17 5 48 1 36 40 28
Mss | 13 8 | 710 6 | 2755 3000 92 4 1 48 | 34 | 39 14
M3s6 1.3 2 450 4 2663 | 2700 | 30 1 56 46 37 Phl 10
Ms, 2.5 8 450 4 1789 | 2700 12 2 4 15 32 36 14
Mss | 13 4 | 710 | 6 | 759 | 3500 | 44 2 66 | o 34 | 35 | 28
My | 22 4 | 400 | 4 | 1748 3000 58 5 99 | 22 45 | 44 10

M. 1.3 8 450 8 | 2690 | 4000 | 56 4 22 13 33 34 28
M 1.5 8 624 8 898 | 3500 | 82 4 47 22 34 36 10
M, | 25 2 450 8 3681 3000 | 62 5 26 68 35 37 28
My 1.3 8 624 8 2790 | 4000 | 16 3 84 15 37 39 14
My, 1.3 8 400 4 1582 | 3000 | 26 4 18 o 32 33 14
Mys | 2.5 8 650 4 | 2628 | 3500 | 69 4 94 1 42 40 28
My | 2.5 2 400 6 619 | 3000 | 52 2 40 52 41 39 14
My, 1.3 2 400 6 2760 | 2700 | 69 1 31 38 37 38 10
M,s 2.5 8 624 8 1673 | 2700 | 29 5 26 7 35 36 28
My | 17 4 | 650 | 4 | 1647 3000 48 3 43 o 34 | 37 | 10
Mso | 13 | 8 [ 450 | 6 | 1753 | 4000 | 29 | 3 9 | 64 39 45 | 28
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5.3.3.1 Case 1: Full List of Alternatives and Full Criteria Set

This scenario considers the full list of alternatives under comparison (i.e., 50) sub-
ject to the influence of full criteria set consisting of 13 different criteria, as shown

in Table 5.4. Accordingly, the decision matrix (50 x 13) is given in Table 5.5.

5.3.3.2 Case 2: Lesser Number of Alternatives and Full Criteria Set

In this minimized dataset, we assume that only ten SMDs available for crowd com-
puting (typically in a small-scale MCC). In this case, we shortened the number of
alternatives. Here, the decision-maker would be able to compare the MCDM meth-
ods on a limited number of alternatives for the full list of criteria. For simplicity,
we selected one SMD model out of each group of five starting from the beginning,

i.e., M5, Mio, M5, and so on. The decision matrix (10 x 13) is given in Table 5.6.

Table 5.6. Decision matrix (Case 2)

‘ SMD Profit criteria Cost criteria

‘ C1 Cz C3 ‘ C4 C; ‘ CG C7 CS Cg CIO Cu C12 C13
M; 1.3 8 650 8 1807 | 3000 | 10 4 13 8 31 38 10
Mo | 25 2 450 6 1767 | 4000 | 24 2 53 93 45 44 10
M 22 8 650 6 1916 | 3000 1 1 19 77 32 39 14
Mz | 17 2 450 6 2855 | 4000 | 22 5 62 9 32 40 10
My | 15 4 624 6 2851 | 3500 | 31 4 71 2 39 42 10
Ms 13 4 | 710 6 | 3537 3500 37 2 6 37 | 37 | 28
Mss | 13 8 | 710 6 | 2755 3000 92 4 1 48 34 39 14
My 13 8 450 8 2690 4000 | 56 4 22 13 33 34 28
My | 2.5 8 650 4 2628 3500 | 69 4 94 1 42 40 28
Mso = 13 8 [ 450 6 | 1753 4000 | 29 3 o1 | 64 | 39 | 45 28

5.3.3.3 Case 3: Full List of Alternatives and a Smaller Number of Criteria

In a situation, depending on the MCC application requirement, the full criteria set
may not need to be considered. For these cases, only a small number of crucial
criteria may be defined. To represent such a scenario, in this case, we considered a
minimized dataset by eliminated some criteria from the original dataset. We as-
sumed that some criteria (e.g., CPU and battery temperature and signal strength)
could be kept out of the selection matrix and, if required, could be set as threshold
criteria straightforwardly. For example, suppose the threshold for temperature is
set at 40°C. In that case, all the SMDs having a temperature more than this would
be filtered out and would not be considered for the selection, irrespective of other
resource specifications. We also removed information of GPU, assuming that the

tasks are CPU bound only and they do not require to exploit the power of GPU,
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i.e., the jobs are sequential and not parallel. It can also be vice versa, i.e., we could
consider GPU where the MCC job involves mostly parallel processing. Table 5.7

shows the criteria considered, and in Table 5.8, the decision matrix (50 x 6) is pre-

sented.
Table 5.7. Minimized selection criteria
Profit Cost
> & = —~
I=Ree = — = <
Criteria gIN SE E @ S i % < E
€9 22 £ pE 2T Z
o e 2 S B =
Ay o p} ot
v ~ r:g Cg v
Code C C. Cy Cs C, Cy
Effect direction | (+) (+) (+) (+) (+) (-)
Table 5.8. Decision matrix (Case 3)
Profit Cost Profit Cost
S Cl Cz. C4 C6 C7 Cg SMD Cl Cz C4 C6 C7 Cg
M, | 22 | 2 | 895 |2700| 15 | 92 Mz | 1.7 4 |2983|3000| 50 61
M. | 1.5 | 4 [3831|4000| 39 | 16 M.; | 2.2 2 | 1932 4000 | 87 57
M; | 1.5 | 2 [2694|2700| 12 | 44 M.s | 2.5 2 972 [4000| 87 77
M, | 1.3 | 8 | 518 |4000| 11 89 My | 13 2 | 2579 | 4000 | 16 69
Ms | 1.3 | 8 [1807|3000| 10 13 Ms | 13 4 |3537|3500| 37 4
Ms | 1.7 | 8 [1982|3000| 68 | 64 Mi | 25 2 809 | 2700 | 89 | 70
M; | 2.5 | 2 [3857(3500| 18 | 60 M;. | 13 4 |3769|3500 | 56 5
Ms | 2.5 | 4 | 558 4000 56 | 99 Ms; | 13 | 8 | 799 |3000] 39 | 65
My | 1.7 | 2 |1908|2700| 57 | 26 M, | 2.2 4 | 1938 | 4000 | 17 48
Mo | 2.5 | 2 [1767|4000| 24 | 53 Mss | 1.3 8 | 2755|3000| 92 1
My | 2.5 | 2 [2853/4000| 94 | 53 Mss | 13 2 [ 2663|2700 30 56
M. | 22 | 2 ([3535|2700| 24 | 26 Ms; | 2.5 8 | 1789 | 2700 | 12 4
Mg | 22 | 8 |1734|3500| 50 | 19 Mss | 13 | 4 | 759 [3500 | 44 | 66
My | 1.5 | 8 |2954|3000| 59 | 15 M | 2.2 4 | 1748 | 3000 | 58 99
M | 2.2 | 8 [1916 [3000| 11 19 My | 1.3 8 | 2690 |4000| 56 22
M | 1.3 | 2 | 870 |2700| 90 | 44 My | 15 8 | 898 | 3500 | 82 47
My, | 1.5 | 4 |291 |3500| 17 18 M, | 2.5 2 | 3681|3000 | 62 26
Ms | 1.7 | 8 |3876|4000| 63 4 Mg | 13 8 | 2790 |4000| 16 84
My | 1.3 | 4 | 944 |2700| 75 2 My, | 13 8 | 1582 |3000| 26 18
M | 1.7 | 2 |2855[/4000| 22 | 62 Mys | 2.5 8 |2628|3500| 69 | 94
M. | 13 | 4 [2973|3500| 18 | 78 Mys | 2.5 2 619 |3000| 52 40
M. | 1.5 | 8 [3521/4000| 22 | 42 My, | 13 2 | 2760 | 2700 | 69 31
M | 1.3 | 4 (17343500 84 | 95 Mys | 2.5 8 |1673 |2700| 29 26
M., | 2.5 | 2 (3986|3000 16 8 My | 17 4 | 1647 |3000| 48 43
Mas | 1.5 | 4 |2851/3500| 31 71 Mso | 13 8 | 1753 | 4000 | 29 o1

5.3.3.4 Case 4: Lesser Number of Alternatives and Criteria

In this case, we considered the combination of a minimized set of alternatives and

criteria. This scenario considers a limited number of choices and the influence of
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a limited number of criteria. We considered the alternatives as selected in Case 2
and the criteria as listed in Table 5.7. Hence, in this case, our decision matrix is of

dimension 10 x 6, as shown in Table 5.9.

Table 5.9. Decision matrix (Case 4)

Profit Cost Profit Cost
SMD G |G |G G |G| G SMD G C C, | GCe C; G
M, | 1.3 | 8 |1807(3000| 10 13 My | 13 4 |3537|3500| 37 4
Mo | 2.5 | 2 |1767|4000| 24 | 53 Ms | 13 8 |2755|3000| 92 1
M;s | 22 | 8 [1916 |3000 11 19 My | 13 8 [2690|4000| 56 22
Mz | 1.7 | 2 [2855[/4000| 22 | 62 My | 2.5 8 [2628|3500| 69 94
M | 1.5 | 4 |2851|3500| 31 71 Mso | 13 8 | 1753 | 4000 | 29 o1

5.4 Experiment, Results, and Comparative Analysis

In this section, we present the details of the experiment for the comparative study,
including the results and critical discussion. The experiment focuses on the com-
parative ranking for the SMD selection using five distinct MCDM methods and to
find their time complexities under different scenarios by varying the criteria and/or

alternative sets.

5.4.1 Experiment

We applied the entropy method and the five MCDM methods (i.e., EDAS, ARAS,
MABAC, COPRAS, and MARCOS) on four datasets, as discussed in Section 5.3.3.
The algorithms were implemented using a spreadsheet (MS Excel) as well as
through hand-coded programming (using Java). However, for ranking and sensi-
tivity analysis, we used the spreadsheet calculation, and to estimate the runtime,
we considered the programming outturn. The details of the programmatical im-
plementation are discussed in Section 5.4.4. The aggregate rankings of the SMDs
were derived from each MCDM method for each dataset. We checked the consist-
encies among the results of the individual MCDM methods and the final aggregate
ranks. We also compared the robustness and stability in the performance of the
MCDM methods applied in this work. Finally, the actual runtimes of each method

under different scenarios were calculated.

5.4.2 Results

In this section, we report the details of the experimental results of SMD rankings

using the considered MCDM methods, obtained through the spreadsheet
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calculation.

Table 5.0 shows the criteria weights calculated for Case 1 using the Entropy method
where } w; = 1 and Cj represents the criteria, where j =1, 2, 3, ..., 13. It is seen that
the weights of the criteria are reasonably distributed. However, based on the values
of the decision matrix, the Entropy method calculates higher weights (>10%) for

C, C,, and C, while assigning the least weights to C,, and C..

Table 5.10. Criteria weights (Case 1)

ai- ) W W ® W ® e O 606 6
teia G G G ¢ G GG C € C G Cu Ca Gy
‘ H;j 0.8436‘0.8556 0.8985‘0.8862 0.9456‘0.8998 0.9178 0.9128 ‘0.9498 0.9552‘0.9816 0.9696‘0.8996
‘ Wi 0.1442‘0.1332 0.0936‘0.1050 0.0501‘0.0924 0.0758 0.0804‘0.0463 o.o414‘0.017o 0.0281 ‘0.0926

Table 5.11. Ranking results of EDAS method (Case 1)

\SMD SP SN NSP \ NSN AS \Rank SMD SP SN NSP NSN AS Rank
M: 0137 0227 0423 0256|0340 35 Mas | 0.002 | 0131 | 0283 05609 | 0426 29
M. 0145 0146 0446 0521 0484 25 M.; o0.221 0100 0.680 0.672 0676 10
M; 0.031 | 0269 0.096| o117 | 0106 | 50 M:s 0209 0249 | 0644 | 0184 o414 31
M, 0251 0224 o771 0266 058 21 M.y om | 0218 | 0343 | 0284 o034 | 4
Ms o277 | ony 0852 | 0616 | 0734 | 7 Mso 0131 0164 0.403 | 0464 0433 | 28
Ms | 0246 0.057 | 0758 0.81 | 0785 5 Mi;i 0251 | 0185 | 0772 | 0392 | 0582 | 14
M; | 0165 0217 | 0508 0289 | 0398 32 M;. 0105 0202 0324 | 0339 0331 | 36
Ms | 0230 0174 0.708 0.429 0568 15 M;; | 0131 | 0236 | 0403 0226 | 0315 | 40
My | 0146 0188 | 0450 0383 0416 30 M;; 0156 ox;1 | 0480 | 0440 0.460 | 27
Mo omn5 0241 0354 o021 | 0283 44 | M3 | 0298 0.059 | 0.919 0.806 0862 | 3
Mn | 0210 0157 | 0648 0486 | 0567 16 Mss 0.048 0283 | 0146 0.070 0108 49
M. | 0098 | 0225 0300 0261 0281 45 | M3; 0238 0163 0732 0465 0599 | 13
Myi | 0195 0187 | 0601 0386 0493 | 23 Mss | 0.079 0.204 | 0243 0330 | 0287 43
My, o031 | 0.066 0.957 0.782  0.870 2 M;y 0159 0159 0490 | 0.478 0484 | 24
Mis 0190 0170 | 0583 0444 o514 22 | My 0259 omg | 0.796 | 0.610 0703 | 8
M | 0168 | 0247 0517 0189 0353 | 34 My | 0202 | 0.054 0.897  0.823  0.860
Mi; 0086 | 0246 0265 | 0193 0229 47 | My 0229 | 0197 0705 | 0353 | 0529 19
Mis 0325 | 0.030 1000  0.902 0.951 1 My 0214 0129 0.660 | 0577 0.619 | 12
My | 0132 0199 0408 0346 | 0377 33 M, 0208 0155  0.639 | 0492 0506 17
Mz | 0155 0156 | 0476 | 0489 0482 | 26 | Mys 0273 | 0145 | 0839 0524 0682 9
Mz | 0039 | 0272 0120 om0 om5 48 | My 0.094 | 0194 0289 0365 0327 38
M., | 0233 0123 | 0718 | 0597 0658 | 1 M,; omo | 0215 | 0339 | 0296 | 0317 | 39
Ma; | om2 | 0210 | 0344 0312 | 0328 | 37 M,s 0306 o019 | 0941  o6u 0776 6
M., | 0162 0305 | 0499 0000 0250 | 46 | My 0107 0087 0330 076 | 0523 20
M.s | 0132 | 0.094 | 0406 | 0.692 0549 | 18 Mso o013 | 0236 | 0347 0227 0287 42

We used these criteria weights to rank the alternatives based on the decision ma-
trix of Table 5.5, applying the five MCDM methods considered in this work. Table
5.1 to Table 5.15 present the rankings of the alternatives based on the final score
values as derived by using the five MCDM algorithms. From Table 5.1, we observe

that considering the average solution point as the reference, Mg, My, M55, My, and
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Ms are the top performers while proportional assessment methods such as ARAS
and COPRAS respectively yield M35, My, M1s, Mig, M3 and Mig, My, My, M35, M as
better performers (see Table 5.12 and Table 5.14). It is observed that the top-per-
forming DMUs show reasonable consistency. However, Table 5.13 and Table 5.15
show that the relative ranking results derived by MABAC and MARCOS are weekly

consistent with previous rankings.

To find out the aggregate ranking, we used the final score values of the alternatives
as obtained using different algorithms and applied the SAW method [687] for ob-
jective evaluation as adopted in [219]. Table 5.16 exhibits the relative positioning of
the alternatives by different MCDM methods and their aggregate ranks derived by
using SAW. In this context, Table 5.17 shows the findings of the rank correlation
tests among the results obtained by using different methods and the final rank

obtained by SAW. For this, we derived the following two correlation coefficients:

Table 5.12. Ranking results of ARAS method (Case 1)

SMD (%) Jd Rank SMD (%) d Rank
M, 0.01697 | 0.46824 38 Mas 0.01802 | 0.49730 30
M, 0.01865 | 0.51477 29 M.; | 0.02042 | 056363 15
M; 0.01437 | 0.39669 49 Mg 0.01901 | 0.52454 25
M, 0.02016 | 0.55639 18 M. 0.01512 | 0.41734 47
M 0.02201 | 0.60750 9 Mo 0.01941 | 0.53561 22
Ms 0.02186 | 0.60323 10 M, 0.02316 | 0.63903 5
M; 0.01752 | 0.48363 33 M. 0.01761 | 0.48596 32
Ms o.02m | 0.58266 2 M;; 0.01664 | 0.4501 40
M, 0.01995 | 0.55052 19 M, 0.01865 | 0.51482 28
Moo 0.01689 | 0.46600 39 M;; 0.0344 | 0.86779 1
M 0.01950 | 0.53823 20 M;6 0.01393 | 0.38446 50
M. 0.01632 | 0.45037 42 M;; | 0.02093 | 0.57773 14
My 0.01887 | 0.52081 26 M;s 0.01531 | 0.42259 46
My | 0.02638 | 0.72790 2 Mg 0.01910 | 0.52707 23
M5 0.01877 | 0.51807 27 Mo 0.02123 | 058593
Mis 0.01752 | 0.48362 34 My | 0.02280 | 0.62921 7
My | 001504 | 043998 | 45 Mz | 001942 | 053585 | 21
Mis 0.02423 | 0.66882 4 Mg | 002035 | 056156 17
\% 0.02105 | 0.58100 13 My, 0.01763 | 0.48661 31
M. | 0.01907 | 0.52618 24 M,s 0.02218 | 0.61221 8
M, 0.01491 | 0.4141 48 My6 0.01614 | 0.44552 43
M., | 0.02042 | 0.56351 16 My | 0.01602 | 0.44206 44
Mx; 0.01741 | 0.48050 36 Mg | 002295 | 0.63345 6
M., 0.01636 | 0.45145 4 My 0.01745 | 0.48152 35
M5 0.02523 | 0.69635 3 Mso 0.01735 | 0.47875 37
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Table 5.13. Ranking results of MABAC method (Case 1)

SMD Sum (Si)| Rank SMD Sum (Si)| Rank
M, 0.03195 27 Mas | 0.03081 30
M. 0.03147 28 M.; | 0.22863 5
M; -0.15444 49 M.s | 0.09664 17
M, 016694 13 M.y | 0.00047 33
M; 017633 10 Mso | 0.00290 32
Me 018871 8 M 0.08230 21
M, 0.04362 25 M;. | -on8s0 46
Ms 0.22907 3 M;; | -010883 44
M, -0.03533 36 M, | 0.08986 19
M, | 0.03880 26 M;s 0.19310 7
Mu 0.10172 16 Mss | -0.22082 50
M. | -0.04397 39 M;; | 0.07870 23
M | 0.08626 20 Mss | -0.04703 40
M., 018429 9 Mg 0.00801 31
Ms 01832 15 Mo | 014808 14
M | -0.08972 43 M, | o.25900 1
M., -0.11263 45 M,. | 0.09494 18
Mis | 0.24866 2 My 017503 il
My | -005184 | 4 My | -0.00397 | 34
M., | 0.06734 24 Mys 0.17100 12
M. | -013421 48 M,s | -0.02276 35
M.. | 0.20566 6 My; | -012598 47
M,; | -0.08945| 42 M,s | 0.22869 4
M., | -0.04221 37 M. 0.03112 29
M.s | 0.08176 22 Mso | -0.04263 38

Table 5.14. Ranking results of COPRAS method (Case 1)

SMD Q U Rank SMD Q U Rank
M, 0.01794 | 64.9172 37 M | 0.01886 | 68.24418 30
M. 0.01965 | 71.09344 27 M.; | 0.02207 | 79.85614 10
M; 0.01551 |56.09728 | 48 M:s 0.02011 | 72.76279 23
M, 0.02044 | 73.93551 21 M:g 0.01756 | 63.53210 Pl
Ms | 0.02449 | 88.60817 5 Mso | 0.01899 | 6870255 | 29
Me 0.02342 | 84.72597 6 M | 0.02099 | 75.94223 16
M, 0.01880 | 68.01316 32 Ms. 0.01776 | 64.24743 39
Ms 0.02126 | 76.91708 15 Ms; 0.01755 | 63.47324 42
M, 0.01880 | 68.01529 31 M, 0.01948 | 70.48546 | 28
Mo 0.01728 | 6249777 | 45 M;s | 0.02465 | 8915783 4
M 0.02073 | 74.99014 18 Mss | 0.01493 |54.02504 | 50
M. 0.01752 | 6339446 | 43 M;; | 0.02205 | 79.76002 1
M3 o.0201 | 7276578 22 Mss 0.01728 | 62.52820 44
M., | 0.02647 | 9576985 2 M3, 0.01965 | 71.09748 26
M;s 0.02004 | 72.50354 24 Mo | 0.02245 | 8121784 9
M:s 0.0181 | 655145 36 My | 0.02469 | 89.32687 3
M,; 0.01645 | 59.51517 47 M,. | 0.02070 | 74.87158 19
Mis | 0.02764 100 1 My 0.02136 | 77.25686 14
My 0.01833 | 6630935 | 35 M,, | o.02174 | 78.65256 13
M, | 0.01987 | 71.89452 25 M,s | 0.02273 | 82.22710 8
M., 0.01549 | 56.05236 | 49 M6 0.01765 | 63.84701 40
M.. 0.02194 | 79.37010 12 M,; 0.01779 | 64.37003 38
Ma; 0.01837 | 66.4719 34 M,s | 0.02340 | 84.64196 7
M.; | 001699 | 6145021 46 M,o | 0.02090 | 7559566 17
Mas | 0.02059 | 7447980 | 20 Mso 0.01838 | 66.47730 3
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Table 5.15. Ranking results of MARCOS method (Case 1)

SMD f(Ki) f(Ki*)  f(Ki) Rank SMD f(Ki) f(K) f(Ki) Rank
M, 022525 | 0.77475 | 0.56639 21 Mas | 022525 | 0.77475 | 0.50176 31
M. 022525 | 0.77475 | 0.44928 36 M.; | 022525 | 0.77475 | 0.74105 5
M; 022525 | 0.77475 | 0.46898 34 M.s | 0.22525 | 0.77475 | 0.86193 2
M, 0.22525 | 0.77475 | 0.71421 8 M., 0.22525 | 0.77475 | 0.44699 37
Ms | 022525 | 077475 | 0.52483 27 Mszo | 022525 | 0.77475 | 0.54493 26
Me 0.22525 | 0.77475 | 0.66153 14 M, 0.22525 | 0.77475 | 0.54586 25
M; | 022525 | 0.77475 | 0.43151 40 Ms. | 022525 | 0.77475 | 0.42421 4
Ms | 022525 077475 | 085395 3 Ms; | 022525 | 077475 | 031499 | 48
M, 0.22525 | 0.77475 | 0.48326 33 M, 0.22525 | 0.77475 | 0.70693 10
M | 022525 | 0.77475 | 0.54869 23 Mss 0.22525 | 0.77475 | 0.63373 17
Mu 022525 | 0.77475 | 0.54848 24 Ms6 022525 | 0.77475 | 015851 50
M. | 022525 | 0.77475 | 0.57501 19 M;;, | 022525 | 0.77475 | 0.44642 38
Mi | 022525 | 0.77475 | 0.71049 9 Mss | 022525 | 0.77475 | 052343 28
My | 022525 | 0.77475 | 0.51500 29 Msy | 022525 | 0.77475 | 0.48990 32
Mis 022525 | 077475 | 0.58988 18 Mo 022525 | 0.77475 | 0.71645 7
Mis | 022525 | 0.77475 | 035342 45 My | 022525 | 077475 | 0.67559 13
M;; 022525 | 077475 | 032342 47 M. 022525 | 0.77475 | 0.73176 6
Mis | 022525 | 0.77475 | 0.64073 16 My | 022525 | 0.77475 | 0.67850 12
My | 022525 | 077475 037309 = 44 Mis | 022535 | 077475 | 033304 = 46
Mo | 022525 | 077475 | 0.46101 35 Mys 022525 | 0.77475 | 0.87019 1
M. | 022525 | 0.77475 | 0.41076 42 Mis = 022525 | 077475 | 0.43541 39
M..  0.22525 | 077475 | 0.64097 15 M,; | 022525 | 0.77475 | 0.22286 49
Ma;  0.22525 | 077475 | 0.56692 20 M,s | 022525 | 0.77475 @ 0.82558 4
M.; | 022525 | 0.77475 | 0.54920 22 M,y | 022525 | 077475 @ 037653 43
Mas  0.22525 | 077475 | 0.50493 30 Mso | 022525 | 0.77475 | 0.67977 il

Kendall’s t: Let, {(a,, by), (a, b,), ..., (an, bn)} is a set of observations for two random
variables A and B where all aj and bi (i =1, 2, ..., n) values are unique. Then, Kendall’s

T is calculated by Eq. 5.45.

_ (No. of concordent pairs)—(No. of discordent pairs)

T @) (5.45)

Spearman’s p: Any pair (a;, b;) and (a;, bj) where i < j is said to be concordant if
either both a; > a;and b; > b; or a; < a; and b; < b; hold good. The Spearman’s

p is calculated by Eq. 5.46.

2
p=1- _6Xdi (5.46)

n (n?-1)

here, d; is the difference between two ranks of each observation, and n is the num-

ber of observations.

The aggregated final rank in terms of consistency (of both Kendall’s t and Spear-
man’s p) for Case 1is: MABAC > COPRAS > EDAS > ARAS > MARCOS, as shown
in Table 5.17. Similarly, we derived the ranking of alternatives subject to the influ-

ence of the criteria for the other cases (Case 2 to 4).
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Table 5.16. Comparative analysis of the rankings by different MCDM methods (Case 1)

SMD Ranking results Final rank
EDAS ARAS MABAC COPRAS MARCOS (SAW)
M. 35 38 27 37 21 33
M. 25 29 28 27 36 27
M; 50 49 49 48 34 48
M, 21 18 3 21 8 14
M; 7 9 10 5 27 10
Ms 5 10 8 6 14 7
M; 32 33 25 32 40 32
Ms 15 2 3 15 3 8
M, 30 19 36 3t 33 31
Mo 44 39 26 45 23 35
L\ ™ 16 20 16 18 24 21
M. 45 42 39 43 19 38
Ms 23 26 20 22 9 20
My 2 2 9 2 29 4
M;s 22 27 15 24 18 22
M 34 34 43 36 45 43
My 47 45 45 47 47 47
Ms 1 4 2 1 16 1
My 3 3 41 35 44 36
Mo 26 24 24 25 35 24
M-, 48 48 48 49 42 49
M., il 16 6 12 15 12
Mz 37 36 42 34 20 37
My 46 q 37 46 22 40
M5 18 3 22 20 30 16
M6 29 30 30 30 31 30
M:; 10 15 5 10 5 9
Mg 31 25 17 23 2 18
My 4 47 33 ZAl 37 A
Mzo 28 22 32 29 26 26
M, 14 5 21 16 25 15
M 36 32 46 39 4 44
Ms; 40 40 44 42 48 45
M, 27 28 19 28 10 23
Ms; 3 1 7 4 17 2
M6 49 50 50 50 50 50
M, 3 14 23 u 38 19
Mss 43 46 40 44 28 42
Mo 24 23 3t 26 32 25
Mo 8 n 14 9 7 n
M 4 7 1 3 3 3
M, 19 21 18 19 6 17
M 12 17 n 14 12 13
My, 17 3t 34 3 46 29
M,s 9 8 12 8 1 6
Mis 38 83 35 40 39 39
My 39 44 47 38 49 46
M.s 6 6 4 7 4 5
M.y 20 35 29 17 43 28
Mso 42 37 38 33 n 34




219

Table 5.17. Correlation test I (Case 1)

EDAS ARAS MABAC COPRAS MARCOS
rank rank rank rank rank

Final
rank

Coefficient

 Kendall'stau SAW_Rank .817** .778** .829** .830** 510%%
'Spearman’s tho SAW_Rank = .g47** .Q17%* .960** .951%* 704** |
‘ Aggregated final rank 0.882 0.848 0.8945 0.8905 0.607 |
** Correlation is significant at the 0.01 level (2-tailed).

Table 518 to Table 5.20 show the criteria weights for Case 2-4 as derived from the
performance values of the alternatives subject to influences of the criteria involved.
In Case 2, we used the full set of criteria but a reduced number of alternatives,
while in Case 3, we used the full set of alternatives subject to a reduced set of cri-
teria. In Case 4, we considered a reduced set for both alternatives and criteria. It
may be noted from Table 518 that C,, C;, and Cy;; obtain higher weights (more than
10%) while C4 and Cg are holding the least weight. It suggests that when we reduce
the number of alternatives, there is a change in the derived criteria weights (see
Table 5.0 and Table 5.18). The same phenomenon is observed when we compared
the derived criteria weights for the reduced set of criteria (for Cases 3 and 4, see
Table 5.19 and Table 5.20).

Table 5.18. Criteria weights (Case 2)

ie- (1) () ® W ® ¢ ¢ 66066 66
teia. & G G ¢ GG G G € C GCo Cu Ca Gy
H;j ‘0.6296‘0.8716‘0.7732‘0.9319‘0.8127‘0.8225‘0.8202 0.9197 0.8744/0.9120 0.9181 0.9015 0.7753
Wj ‘ 0.1818 ‘0.0630‘ 0.1113 ‘0.0334‘0.0919‘ 0.0871‘0.0882 0.0394 0.06170.0432 0.0402 0.0484 0.1103

Table 5.19. Criteria weights (Case 3)

IR o T 5 TR C I O B C R !

Criteria =" c ¢, | G | G | G
H;j 0.8436 \ 0.8556 | 0.9456 | 0.8998 | 0.9178 \ 0.9498
Wi 0.2660 \ 0.2457 | 0.0925 | 0.1705 | 0.1398 \ 0.0854

Table 5.20. Criteria weights (Case 4)

P Co T ¢ N - N € T CO N !
Giteria o™ 1" ¢. | & G | 6 | G
H; 0.6296 = 0.8716 \ 0.8127 \ 0.8225 | 0.8202 \ 0.8744
Wi 03169 | 01098 \ 01602 \ 01519 | 01538 \ 0.1075

Table 5.21 to Table 5.23 show the alternatives’ comparative ranking under Case 2-4,
respectively. After obtaining the ranking of the alternatives by various algorithms,
we found the aggregate rank by using the SAW method based on the appraisal

scores.

Now, for comparative analysis of various MCDM methods, it is important to see

the consistency of their results with the final preferential order. Hence, we
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performed a non-parametric rank correlation test. Table 5.17 for Case 1 and Table
5.24 to Table 5.26 for Case 2—4 exhibit the results of correlation tests. From Table
5.24, we find that COPRAS > EDAS > ARAS > MABAC (MARCOS shows non-con-

sistency with the final ranking).

Table 5.21. Comparative analysis of the ranking by different MCDM methods (Case 2)

SMD Comparative ranking Final rank
EDAS ARAS MABAC COPRAS MARCOS (SAW)
M 3 5 6 2 6 4
Mo 9 8 9 9 5 9
Ms 8 9 3 8 7 7
Mo 7 4 4 6 4 5
M5 5 2 5 5 10 6
Mso 6 7 8 7 8 8
M5 1 1 1 1 3 1
Mo 4 6 7 4 1 2
Mis 2 3 2 3 9 3
Mso 10 10 10 10 2 10
Table 5.22. Comparative analysis of the ranking by different MCDM methods (Case 3)
SMD Ranking Results Final rank
EDAS ARAS MABAC COPRAS MARCOS (SAW)
M 50 48 46 48 42 50
M, 16 23 21 23 4 13
M; 48 50 49 50 22 46
M, i 34 29 34 50 44
Ms 20 27 32 26 34 29
Ms 10 9 18 il 25 15
M, 32 3 20 33 3 18
Ms 26 20 9 20 48 31
M, 40 42 44 42 32 3
Mo 38 36 19 36 35 33
Mu 1 2 4 14 3 7
Me 36 40 37 40 8 23
Mz 4 6 3 6 30 4
My 5 7 15 7 10 6
M;s 3 16 il 16 26 16
M B uL 48 43 46 49
My 34 39 3 37 14 28
Mis 1 2 2 2 2 2
My 24 4 ZAl 3 44 30
Mo 44 45 35 45 18 35
M- 46 43 42 44 2 39
M. 12 14 8 15 7 5
Mx 37 30 40 30 37 36
M., 22 24 24 24 1 14
M5 42 38 38 39 17 34
M 30 31 34 31 n 22
M., 17 19 b 18 29 21
Mas 19 18 10 19 40 24
My 49 47 45 47 24 45
M;o 21 15 31 2 9 17
M 28 28 27 28 13 37
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SMD Ranking Results Final rank
EDAS ARAS  MABAC  COPRAS  MARCOS (SAW)
M. 15 13 26 9 6 il
M 27 29 36 29 45 40
M, 29 32 16 32 27 26
M5 2 1 14 1 19 1
Mo 47 49 50 49 23 47
M 8 5 6 4 28 9
Mss 45 46 43 46 47 48
Mso 3t 26 25 27 33 32
Mo 6 8 7 8 20 8
My 9 10 13 10 4 19
M, 14 17 17 17 5 10
M, 23 21 22 21 16 20
M4 18 25 30 25 39 27
Mis 3 3 1 5 15 3
Mas 35 37 28 38 49 42
My, 39 Ll 47 il 21 il
Mis 7 n 5 3 3
Mo 3 35 39 35 38 38
Mso 25 22 23 22 36 25
Table 5.23. Comparative analysis of the ranking by different MCDM methods (Case 4)
SMD Comparative ranking Final rank
EDAS ARAS MABAC COPRAS MARCOS (SAW)
M. 9 10 10 10 8 10
Mo 6 5 2 5 2 3
M5 5 6 5 6 3 6
Mzo 7 8 7 8 10 8
Mss 8 7 8 7 7 7
Mo 4 4 6 3 4 4
M5 1 1 4 1 1 1
Myo 3 3 3 4 9 5
M,s 2 2 1 2 5 2
Mso 10 9 9 9 6 9

Table 5.25 indicates that EDAS > ARAS > MABAC > COPRAS > MARCOS, while
from Table 5.26, we trace that ARAS > EDAS > COPRAS > MABAC > MARCOS in

terms of consistency of their individual results with final ranking order as obtained

by using SAW.
Table 5.24. Correlation test II (Case 2)
Coefficient Final rank EDAS rank ARAS rank MABAC COPRAS | MARCOS
rank rank rank
Kendall’s tau | SAW_Rank = 0.778** 0.556* 0.556* 0.778** 0.067
Spearman’s rho  SAW_Rank = 0.903** 0.758* 0.709* 0.927** 0.139
Aggregated final rank 0.8405 0.657 0.6325 0.8525 0.103

** Correlation is significant at the o.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

5.4.3 Sensitivity Analysis

Some of the essential requirements for MCDM-based analysis are the rationality,
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stability, and reliability of the rankings [688]. There are several variations in the
given conditions, for instance, change in the weights of the criteria, MCDM algo-
rithms and normalization methods, and deletion/inclusion of the alternatives that
often lead to instability of the results [668] [689] [690]. Sensitivity analysis is con-
ducted to experimentally check the robustness of the results obtained using
MCDM based analysis [691] [692]. A particular MCDM method shows stability in
the result if it can withstand variations in the given conditions, such as fluctuations

in the criteria weights.

Table 5.25. Correlation test III (Case 3)

Coefficient Final rank EDAS rank ARAS rank MABAC COPRAS | MARCOS
rank rank rank
Kendall’s tau | SAW_Rank .763** 701%% .659** .700** .407**
Spearman’s rho | SAW_Rank .Q17** .870** .840** .866** .585**
Aggregated final rank 0.84 0.7855 0.7495 0.783 0.496

** Correlation is significant at the o.01 level (2-tailed).
Table 5.26. Correlation test IV (Case 4)

Coefficient | Final rank | EDAS rank  ARAS rank MABAC COPRAS | MARCOS
rank rank rank
Kendall’s tau | SAW_Rank | 0.733** 0.867** 0.733** 0.911** 0.511*
Spearman’s rho | SAW_Rank | 0.891** 0.952** 0.867** 0.964** 0.685*
Aggregated final rank 0.812 0.9095 0.8 0.9375 0.598

** Correlation is significant at the o.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

For the sensitivity analysis, we used the scheme followed in [693], which simulates
different experimental scenarios by interchanging criteria weights. Table 5.277 to Ta-
ble 530 present the experimentations vis-a-vis the four cases used in this study.
Here, the green-highlighted numbers denote that the cell values of that particular
column interchange their weights, in each experiment. In this scheme, we attempt
to interchange weights of optimum and sub-optimum criteria, beneficial and cost
type of criteria to simulate various possible scenarios for examining the stability of
the ranking results obtained by various MCDM methods.

Fig. 5.4 depicts the comparative variations in the rankings of the alternatives as de-
rived by using five MCDM algorithms under different experimental set up for Case
1. We observe that all five considered MCDM methods provide reasonable stability
in the solution while COPRAS and ARAS perform comparatively better.

Table 5.31 highlights the correlation of the actual ranking with those obtained by

changing the criteria weights (see Table 5.27). In the same way, we carried out the
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sensitivity analysis for all MCDM methods for Cases 2 to 4. Table 5.32 to Table 5.34

show the results of the correlation test as we do for Case 1.

Table 5.27. Interchange of criteria weights for sensitivity analysis (Case 1)

Criteria weights under different experimental cases
Original Exp1 Exp2 Exp3 Exp4
G 0.1441964 | 0.0169798 = 0.0501301 0.1441964 = 0.1441964
C 0.1331763 | 0.1331763 | 0.1331763 @ 0.1331763 = 0.1331763
G 0.0936409 | 0.0936409  0.0936409 | 0.0936409 | 0.0936409
(O 0.1049768 | 0.1049768 | 0.1049768 | 0.1049768 @ 0.1049768
Cs 0.0501301 | 0.0501301 | 0.1441964 0.0501301 | 0.0925919
Cs 0.0924398 | 0.0924398 | 0.0924398 | 0.0924398 | 0.0924398

G 0.0757997 | 0.0757997 | 0.0757997 | 0.0757997 | 0.0757997
Cs 0.0803856 | 0.0803856 | 0.0803856 | 0.0803856 0.0803856

Co 0.0462696  0.0462696  0.0462696 | 0.0462696 0.0462696
Cuo 0.0413577 | 0.0413577 | 0.0413577 | 0.0413577 | 0.0413577
Cu 0.0169798 | 0.1441964 0.0169798 | 0.0925019 0.0169798
Ce 0.0280555 | 0.0280555 | 0.0280555 | 0.0280555 @ 0.0280555

Cs 0.0925019 | 0.0925919 | 0.0925919 | 0.0169798 = 0.0501301

Criteria

Table 5.28. Interchange of criteria weights for sensitivity analysis (Case 2)

Criteria weights under different experimental cases
Original Exp1 Exp2 Exp3 Exp4
G 0.1818299 | 01112996 | 0.0334131 0.1102984 @ 0.1818299
C 0.063014 | 0.063014 | 0.063014 | 0.063014 | 0.063014
G 01112996 | 01818299 @ 0.1112996 | 0.1112996 | 0.1112996
C, 0.0334131 | 0.0334131 | 0.1818299 @ 0.0334131 | 0.0334131
Cs 0.0019374 | 0.0919374 @ 0.0919374 | 0.0919374 @ 0.0919374
Cs 0.0871434 | 0.0871434 | 0.0871434 @ 0.0871434 | 0.0871434
C; 0.0882454 | 0.0882454  0.0882454 | 0.0882454 0.0882454
Cs 0.0394249 | 0.0394249 | 0.0394249 | 0.0394249 | 0.0394249
Co 0.061668 | 0.061668 | 0.061668 @ 0.061668 | 0.061668
Cio 0.0431881 | 0.0431881 | 0.0431881 | 0.0431881 @ 0.0431881
Cu 0.0401855 | 0.0401855 | 0.0401855 | 0.0401855 | 0.1102984
Ce 0.0483521 | 0.0483521 | 0.0483521 | 0.0483521 | 0.0483521
Cs 01102984 | 0.1102984 | 0.1102984 | 0.1818299 = 0.0401855

Criteria

Table 5.29. Interchange of criteria weights for sensitivity analysis (Case 3)

~ Criteria weights under different experimental cases

Crlterla‘ Original \ Exp1 \ Exp2 Exp3 Exp4
G 0.2660 ‘ 0.0854 ‘ 0.0925 0.2660 0.2660
G 0.2457 0.2457 0.2457 0.2457 0.1705
Cy 0.0925 0.0925 \ 0.2660 0.0854 0.0925
Cs 0.1705 0.1705 0.1705 0.1705 0.2457
C; 0.1398 0.1398 0.1398 0.1398 0.1398
Co 0.0854 ‘ 0.2660 0.0854 0.0925 0.0854

Fig. 5.4 depicts the comparative variations in the rankings of the alternatives as
derived by using five MCDM algorithms under different experimental set up for
Case 1. We observe that all five considered MCDM methods provide reasonable
stability in the solution while COPRAS and ARAS perform comparatively better.
Table 5.31 highlights the correlation of the actual ranking with those obtained by
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changing the criteria weights (see Table 5.27). In the same way, we carried out the
sensitivity analysis for all MCDM methods for Cases 2 to 4. Table 5.32 to Table 5.34

show the results of the correlation test as we do for Case 1.

Table 5.30. Interchange of criteria weights for sensitivity analysis (Case 4)

Criteria weights under different experimental cases
Original  Exp1 Exp2 Exp3 Exp4
G 0.3168661 \ 0.1074659 = 0.1098115 | 0.3168661 | 0.3168661
C 0.1098115 = 0.1098115 | 0.3168661 0.1074659  0.1098115
Cy 0.1602149 | 0.1602149 | 0.1602149 | 0.1602149 | 0.1518606
Cs 0.1518606 | 0.1518606 | 0.1518606 | 0.1518606 | 0.1602149
G 0.153781 0.153781 0.153781 0.153781 0.153781

Co 0.1074659 | 0.3168661 0.1074659 | 0.1098115 | 0.1074659
5.4.4 Time Complexity Analysis

Criteria

This section reports the time complexity analysis and the runtimes of the five
MCDM methods considered in this study, as summarized in Table 535. All the
methods have a worst-case time complexity of O(mn), where m is the number of
alternatives and n is the number of considered criteria. However, EDAS, MABAC,
and COPRAS exhibit Q(m + n) as the best-case time complexity if the decision
matrix is already prepared. But if the matrix is constructed in runtime, the best-

case time complexity for these methods also would be Q(mn).

Depending on the MCC application and architecture, the MCC coordinator where
the SMD selection program would run might be a computer or an SMD. That is
why, to check the performance of the MCDM methods, we checked the runtime of

each of them by running on a laptop and a smartphone.

To run the MCDM algorithms on the laptop, we used Java (version 16) as the pro-
gramming language and MS Excel (version 2019) as the database. The programs
were executed on a laptop with AMD Ryzen 3 dual-core CPU (2.6 GHz, 64 bit) and
4 GB of RAM, operating on Windows 10 (64-bit). To run the programs on a
smartphone, we designed an app that could accommodate and run Java program
scripts; and in this case, we used a text file to store the decision matrix. The pro-
grams were executed on an SoC with 1.95 GHz Snapdragon 439 (12 nm), octa-core
(4 x 1.95 GHz Cortex-As3 and 4 x 1.45 GHz Cortex A53) CPU, and Adreno 505 GPU,
with 3 GB of RAM, operating on Android 11.
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Fig. 5.4. Pictorial representation of sensitivity analysis (Case 1) (a) EDAS, (b) COPRAS, (c) ARAS,
(d) MARCOS, (e) MABAC

The MCDM module may get the decision matrix either from the secondary storage
or primary memory. We generally might store the database on the secondary stor-

age when we need to maintain the log for future analysis and prediction. But,
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updating the SMD resource values in the decision matrix on the secondary storage
and retrieving them frequently for decision making involves considerable over-
head. Alternatively, the decision matrix could be updated dynamically where the
SMD resource values come directly to the coordinator’'s memory. Compared to sec-

ondary storage, accessing memory takes negligible time.

Table 5.31. Correlation test V (sensitivity analysis—Case 1)

Coefficient Method  Scenario  Exp1 Exp2 Exp3 Exp4
EDAS 0.789 ** | 0.729 ** | 0.799 ** | 0.824 **
ARAS 0.812 ** | 0.781** | 0.868 ** | 0.896 **
Kendall’s tau MABAC Original 0.616 ** | 0.749 ** | 0.780 ** | 0.882 **
COPRAS 0.799 ** | 0.755 ** | 0.827**  0.874 **
MARCOS 0.734** | 0.752** | 0.796 ** | 0.881**
EDAS 0.932 " | 0.892** | 0.938 ** | 0.952 **
ARAS 0.948 ** | 0.936 ** | 0.971 ** | 0.981 **
Spearman’s rho MABAC Original 0.816 ** | 0.914 ** | 0.935 ** | 0.979 **
COPRAS 0.939 ** | 0.910 ** | 0.950 ** | 0.973 **
MARCOS 0.905 ** | 0.914 ** | 0.945 ** | 0.974 **

** Correlation is significant at the 0.01 level (2-tailed).

Table 5.32. Correlation test VI (sensitivity analysis—Case 2)

Coefficient Method  Scenario  Exp1 Exp2 Exp3 Exp4
EDAS 0.911 ** | 0.733** | 0.689 ** | 0.867 **
ARAS 0.778 ** | 0.689 ** | 0.956 ** | 0.733 **
Kendall’s tau MABAC Original 0.556 * 0.200 0.556 * | 0.600 *
COPRAS 0.911 ** | 0.689 ** | 0.867 ** | 0.778 **
MARCOS o.511 * 0.1 0.556 * | 0.867 **
EDAS 0.976 ** | 0.806 ** | 0.806 ** | 0.939 **
ARAS 0.903 ** | 0.806 ** | 0.988 ** | 0.879 **
Spearman’s rho MABAC Original 0.709 * 0.370 0.758 * | 0.745*
COPRAS 0.964 ** | 0.830 ** | 0.939 ** | 0.915 **
MARCOS 0.673 * 0.212 0.661* | 0.964 **

** Correlation is significant at the o.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Table 5.33. Correlation test VII (sensitivity analysis—Case 3)

Coefficient Method Scenario  Exp1  Exp2  Exp3 Exp4
EDAS 0.665 ** | 0.685**  0.980 ** | 0.863 **
ARAS 0.767 ** | 0.706 ** | 0.985 ** | 0.878 **
Kendall’s tau MABAC Original 0.615 ** | 0.628 ** | 0.976 ** | 0.830 **
COPRAS 0.778 ** | 0.719 ** | 0.982 ** | 0.879 **
MARCOS 0.946 ** | 0.956 ** | 1.000 ** | 0.979 **
EDAS 0.844 ** | 0.863**  0.998 ** | 0.964 **
ARAS 0.923 ** | 0.870 ** | 0.999 ** | 0.974 **
Spearman’s rho MABAC Original | 0.799 ** | 0.8u1** | 0.998 ** | 0.956 **
COPRAS 0.926 ** | 0.880 ** | 0.998 ** | 0.974 **
MARCOS 0.992 ** | 0.994 ** | 1.000 ** | 0.998 **

** Correlation is significant at the o.01 level (2-tailed).

Since in MCC, the SMDs are mobile, the available SMDs (alternatives) continu-

ously change. Existing SMDs may leave, and new SMDs may join the network
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randomly. Also, the status of the variable resources (e.g., Cs, C;, Cs, Co, Cio, Cu1) of
each SMD varies time-to-time depending on its usage. In fact, in a typical central-
ized MCC, a data logging program always runs in the background to track the val-
ues of these recourses. This leads to change the decision matrix continuously. And
based on the changed decision matrix, the SMD ranking also changes. It is desira-
ble to store the decision matrix in the memory in such a dynamic scenario as long

as resource selection is required.

Table 5.34. Correlation test VIII (sensitivity analysis—Case 4)

Coefficient Method Scenario  Exp1  Exp2 Exp3 Exp4

EDAS 0.600 * | 0.600* | 1.000 ** | 1.000 **

ARAS 0.600 * | 0.556* | 1.000 ** | 1.000 **

Kendall’s tau MABAC Original 0.556 * 0.289 | 1.000 ** | 1.000 **
COPRAS 0.556* | o.511* | 1000 ** | 1.000**

MARCOS 1.000 ** | 0.867 ** | 1.000 ** | 1.000 **

EDAS 0.709 * | 0.770 ** | 1.000 ** | 1.000 **

ARAS 0.745* | 0.685* | 1.000 ** | 1.000 **

Spearman’s rho MABAC Original 0.709 * 0.345 | 1000 ** | 1.000 **
COPRAS 0.721* | 0.673* | 1.000 ** | 1.000 **

MARCOS 1.000 ** | 0.952 ** | 1.000 ** | 1.000 **

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Therefore, to have a comparative analysis in this aspect, we calculated the runtime
considering both the scenarios: (a) when the dataset was fetched from the second-
ary storage and (b) when it was preloaded on RAM. The execution time was calcu-
lated using a timer (a Java function) in the program. The timer counted the time
from data fetching (either from RAM or storage) to completion of the program
execution. We executed each algorithm twenty times and took the average
runtime. To eliminate the outliers, we discarded the particular execution instances

that were abnormally protracted.

From Table 5.35, it can be observed that the average runtimes of the MCDM pro-
grams, when they are executed on a laptop, are significantly higher when the deci-
sion matrix is in the secondary storage as compared to when it is in memory. How-
ever, when these programs are executed on the smartphone, this difference is not
that high. This is because the typical storage used in smartphones is much faster
than the hard disks of laptops. Another point is worth mentioning that we used

text files as a database to execute the programs on the smartphone in our study. If
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it were other traditional database applications, the time taken to fetch the dataset
from the phone storage would probably be much higher. In that case, the differ-

ence between the dataset in memory and storage would be significantly larger.

Table 5.35. Time complexity and runtimes for each MCDM method under various considerations

Average runtime  Average runtime

Time complexity on laptop on smartphone
Method Case (mllhseconds)' (mllhseconds?
. Data in . Datain
Average Worst Data in Data in
Best case secondary phone
case case memory memory
storage storage
Entropy Case1 | 0.28301 135.1061 | 0.69546 | 1.16032
(c'rlterla Q(m+n) O(mn) O(mn) Case2 | 0.08841 | 125.0397 | 0.17581 ' 0.36809
weight cal- Case 3 0.12017 | 124.2696 | 0.34542 | 0.73407
culation) Case 4 | 0.06234 | 83.45512 | 0.09523 | 0.28998

Case1 | 0.36754 | 124.50158 | 2.02136 | 2.46483
Case2 | 0.08993 | 65.93222 | 0.42106 | 0.63313
Case3 | 016748 | 67.90012 | 0.97938 | 1.36073
Case 4 | 0.06874 | 54.86296 | 0.22848 | 0.39752
Case1 | 0.30266 | 139.12975 | 0.87001 | 1.32013
Case2 | 0.06018 | 65.64650 | 0.22711 | 0.41631
Case3 | 0.08789 | 62.64661 | 0.44734 | 0.80465
Case 4 | 0.04303 | 49.42035 | 0.12672 | 0.30301
Case1 | 0.27496 | 18.52908 | 1.03990 | 1.50524
Case 2 0.0904 64.17373 | 0.26752 | 0.45166
Case 3 011870 | 66.00892 | 0.53094 | 0.90594
Case 4 | 0.07156 | 52.62466 | 0.14914 | 0.34052
Case1 | 0.12264 |122.95953 | 0.61347 | 1.05754
Case2 | 0.04076 | 64.35327 | 0.13521 | 0.34481
Case3  0.05597 | 64.29061 | 0.32844 |0.69645
Case 4 | 0.03058 | 50.04589 | 0.08334 | 0.25656
Case1 0.30410 | 127.74245 @ 0.85634 | 1.29126
Case2 | 0.06955 | 64.84879 | 0.21106 | 0.40832
Case3 | 0.00898 | 64.22248 | 0.44186 | 0.81885
Case 4 | 0.04487 | 53.20281 | 0.12259 | 0.29045

EDAS Q(m+n)| 6(mn) | O(mn)

ARAS Q(mn) | 6(mn) | O(mn)

MABAC | Q(m+n) 6(mn) O(mn)

COPRAS  Q(m+n)| 6(mn) | O(mn)

MARCOS | Q(mn) @ 6(mn) | O(mn)

In our comparative analysis, we executed each algorithm ten times for each case.
The average runtimes of ten executions were noted. The runtime of any program
varies depending on several internal and external factors. That is why we took the
average of ten execution instances. However, it is observed that the runtime vari-
ations are much higher on a laptop than on a smartphone. This is because the
number of background processes typically run on laptops is significantly higher
than on smartphones. Also, the resource scheduling in a laptop is more complex
than in a smartphone. Nevertheless, the variations in each execution could be more

neutralized if the number of considered execution instances is increased.
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5.5 Discussion

In this section, we discuss the experimental findings and our observations. We also
present a critical discussion on the judiciousness and practicability of this work

and the findings.

5.5.1 Findings and Observations

In this section, we discuss the observations on the findings obtained through data
analysis. As mentioned throughout the chapter, we had the following four condi-

tions:

o Condition 1: Full set (Case 1: complete set of 13 criteria and 50 alternatives)

o Condition 2: Reduction in the number of alternatives keeping the criteria set
unaltered (Case 2: reduced set of 10 alternatives and complete set of 13 criteria)

o Condition 3: Variation in the criteria set (Case 3: reduced set of 6 criteria) keep-
ing the alternative set the same (i.e., 50)

o Condition 4: Variations in both alternative and criteria sets (Case 4: reduced

set of 10 alternatives and 6 criteria).

For all conditions, we noticed some variations in the relative ranking orders. By
further introspecting the results obtained from different methods and their asso-
ciation with the final ranking (obtained by using SAW), we found that for Case 1,
MABAC and COPRAS are more consistent. For Case 2, COPRAS and EDAS outper-
formed others in terms of consistency with the final ranking. For Case 3, we ob-
served that EDAS and ARAS showed better consistency while COPRAS performed
reasonably well. For Case 4, we found that COPRAS and ARAS showed relatively
better consistency with the final ranking. Therefore, the first level inference advo-

cates in favour of COPRAS for all conditions under consideration.

Moving further, we checked for stability in the results. We performed a sensitivity
analysis for all methods under all conditions, as demonstrated in Section 5.4.3.
Here also, we noticed mixed performance. However, COPRAS shows reasonably
stable results under all conditions given the variations in the criteria weights ex-

cept Case 4.

Therefore, it may be concluded that given our problem statement and
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experimental setup, COPRAS has performed comparatively well under all case sce-
narios, while ARAS being its nearest competitor in this aspect. For both methods,
the procedural steps are less in number, simple ratio-based or proportional ap-
proach is followed, i.e., no need to identify anti-ideal and ideal solutions or calcu-
late distance. Therefore, the result does not show any aberrations. It may, however,
be interesting to examining the performance of the algorithms when criteria

weights are predefined, i.e., not depending on the decision matrix.

We further investigated the time complexities of the MCDM algorithms used in
this work to find out the most time-efficient one. All the considered MCDM meth-
ods perform equally in this aspect, though the best-case time complexity for EDAS,
MABAC, and COPRAS is better than others. Fig. 5.5 to Fig. 5.8 graphically present
the case-wise comparisons of the runtimes of each MCDM method for all the sce-
narios. Our experiment observed that the COPRAS method exhibits the most pe-
tite runtime for each dataset (cases) for all the considered scenarios, i.e., whether
the dataset is in the secondary storage or memory or the program is run on a laptop
or smartphone. Specifically, considering the average runtime for all the cases and
scenarios, the ranking of the MCDM methods as per their runtime (RT) is:
RT_COPRAS < RT_MARCOS < RT_ARAS < RT_MABAC < RT_EDAS.
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Fig. 5.5. Runtime comparison of MCDM methods on the laptop for each case when the dataset is
in the memory
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Fig. 5.6. Runtime comparison of MCDM methods on the laptop for each case when the dataset is
in the secondary storage
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Fig. 5.7. Runtime comparison of MCDM methods on the smartphone for each case when the da-
taset is in the phone storage
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Fig. 5.8. Runtime comparison of MCDM methods on the smartphone for each case when the da-
taset is in the memory

However, this rank does not hold true for all the executions in each case. For ex-
ample, from Fig. 5.6, it can be noted that ARAS and MABAC took less time to exe-
cute in Case 1. In practice, Case 3 probably would be more common than other

cases for a typical MCC application, i.e., there would be few numbers of SMDs
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available as computing resources and the application demanding a certain number
of selection criteria. For this case, COPRAS took 0.05597 milliseconds on average
if it runs on a laptop while the dataset resides in the memory and 0.32844 millisec-
onds for a smartphone. For a dynamic resource selection in MCC, this time re-
quirement is tolerable. However, when the dataset is on the secondary storage, the

runtime increases exponentially in the case of the laptop but not a smartphone.

The runtime for both the MCDM method and Entropy calculation should be con-
sidered to get the effective runtime for the ranking process. Like the MCDM meth-
ods, for Entropy calculation also, when the dataset is on the secondary storage, the
runtime increases exponentially in the case of the laptop but not a smartphone, as
shown in Fig. 5.9. Therefore, we can postulate that if the MCC coordinator is a lap-
top or desktop computer, the dataset needs to be stored in the memory before

resource selection.
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Fig. 5.9. Runtime comparison for Entropy method
Considering the above discussions, it can be deduced that the COPRAS method is
the most suitable for resource selection in MCC in terms of correctness, robust-

ness, and computational (time) complexity.

5.5.2 Rationality and Practicability

In this section, we present a critical discussion on the rationality and practicability
of this study.

5.5.2.1 Assertion

In the previous section, we conclusively observed that for resource selection in

MCC, the COPRAS method is the most favourable in all respect. However, it should
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not be misinterpreted that the COPRAS method is the ideal solution for resource
selection in MCC. In fact, optimized resource selection in a dynamic environment
like MCC is an NP-hard problem. Hence, practically no solution can be claimed as
optimal. We only assert that we found that COPRAS scales favourably in all aspects
compared to other methods. But this does not mean that COPRAS is the ideal so-
lution. There is always scope to explore further for a more suitable multi-criteria

resource selection algorithm that would be more computing and time-efficient.

It is to be noted that the effectiveness of an MCDM solution depends on the par-
ticular problem and the data. In real implementations of MCC, the actual SMD
data would certainly change, be it for different instances of the same MCC system
or in different MCC systems. Due to the dynamic nature of a typical MCC, the
SMDs are not fixed. Even if the SMDs are fixed in an MCC for a certain period, their
resource values will vary depending on the applications running on them and their
users’ device usage behaviour. Moreover, since the need for computing resources
varies according to application requirements, the selection criteria and weights
also differ accordingly. In these cases, the datasets would vary from those we used
in our experiment. But the problem behaviour and data types would be the same
for all MCC applications and throughout their different execution instances.
Hence, a solution found suitable for the given dataset would be applicable to any
similar dataset for MCC. Even if the size of the datasets varies in different MCC,
the finding of this study will hold true because we found that COPRAS performed

comparatively better in all four considered datasets of different sizes.

5.5.2.2 Application

The resource selection module is generally incorporated in the resource manager
module of a typical distributed system. And the resource manager module gener-
ally is part of the middleware of a 3-tier system. Therefore, in the actual designing
and implementation of an MCC system, the MCDM-based resource selection algo-
rithm would be integrated into the middleware of MCC. This resource selection
algorithm should generate a ranked list of the available SMDs based on their re-
sources. The MCC job scheduler would dispatch the MCC jobs to the top-ranked

SMDs from the list. This would ensure a better turnaround time and throughput
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and, in turn, better QoS of the MCC.

5.5.2.3 Implications

The findings of this work would allow the MCC system designers and developers
to adopt the right resource selection method for their MCC based on its scale and
also on the preference and priority of the resource types. This would also contrib-
ute to managerial decision-making for implementing organizational MCC. As the
study simulates different scenarios and compares the available options, it would
be a likely reference for the decision-makers to choose the right MCDM method
for resource selection and consider the appropriate size of the employed MCC and

decide on the right number of selection criteria.

Furthermore, the pronouncements of this work shall allow the researchers to
choose a suitable MCDM method with reasonably higher accuracy and lesser run
time complexity to solve real-life problems similar to the one discussed in this
chapter. Not only the researchers in the area of MCC and other allied fields (e.g.,
mobile grid computing, mobile cloud computing, and other related forms of dis-
tributed computing), this study would be of interest also to the people from the
MCDM field who might find it motivating to nurture this problem domain and
come up with some novel or improved methods that would be more suitable to

address the associated resource dynamicity.
5.6 Limitations and Further Scopes

The MCC environment is really dynamic in nature, i.e., not only the SMDs but also
the status of the resource parameters of each existing SMDs change frequently.
Therefore, the resource selection not only needs to be optimal but also to be adap-
tive in an unpredictable MCC environment. That is to say, the MCDM method
should be capable of acclimating to the continual alteration in the data matrix due
to the frequent variation of the available SMDs and their resource values. Ideally,
whenever there is a change in the alternative list or in the performance score, the
MCDM method should be able to reflect this change in the overall ranking without
reranking the whole list in the next iteration of resource selection. This should not

only minimize the SMD selection and decision-making time but also truly reflect
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the dynamic and scalable nature of MCC, which is not in the case of the traditional

MCDM methods.

We used the entropy method to calculate the criteria weights. It is an objective
approach in which the criteria weights depend on the decision matrix values. In a
dynamic environment like MCC, the SMDs may join and leave the network fre-
quently, and the status of their variable resources also changes as per device usage.
This results in frequent alteration in the decision matrix. This implies that the en-
tropy calculation should be done every time for criteria weight determination,

which is a real overhead.

Here, the criteria weights were calculated dynamically based on the present re-
source status of the SMDs, expressed in metric terms. We did not take into account
the criteria preferences in line with the resource specification preference of the
MCC applications. As the dataset gets changed based on varying criteria and alter-
native sets, the criteria weights also get changed according to the performance val-
ues of the alternatives. Hence, this approach might not provide the optimal re-
source ranking as per the real applicational requirements. So, our future study can
explore the possibility of defining the criteria weights based on the required re-

source specifications of a typical MCC user or application.

We opted for the most straightforward normalization technique, i.e., linear nor-
malization. But there are various normalization techniques in practice that could
be used. Therefore, there is a scope to study the effect of different normalization

techniques in the ranking and execution performance of the MCDM methods.
5.7 Summary

For better QoS of MCC, selecting the most capable SMDs is essential. Since the
selection is made based on several diverse SMD resources, the SMD selection prob-

lem can be described as multicriteria decision-making (MCDM) problem.

In this chapter, we performed a comparative assessment of different MCDM meth-
ods (EDAS, ARAS, MABAC, MARCOS, and COPRAS) to rank the SMDs based on
their resource parameters, among a number of available SMDs, for being consid-

ered as computing resources in MCC. The assessment was done in terms of ranking
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robustness and the execution time of the MCDM methods. Considering the dy-
namic nature of MCC, where the resource selection is supposed to be on-the-fly,
the selection process needs to be as less time-consuming as possible. For selection
criteria, we considered the fixed (e.g., CPU and GPU power, RAM and battery ca-
pacity, etc.) and the variable (e.g., current CPU and GPU load, available RAM, bat-

tery remaining, etc.) resource parameters.

We used the final score values of the alternatives as obtained by using different
algorithms and applied the SAW method for arriving at the aggregate ranking of
the alternatives. We also carried out a comparison of the ranking performance of
the MCDM methods used in this study. We investigated their consistency with

respect to the aggregate ranking and their stability through sensitivity analysis.

We calculated the time complexities of all the methods. We also assessed the ac-
tual runtime of all the methods by executing them on a Windows-based laptop and
an Android-based smartphone. To assess the effect of the size of the dataset, we
executed the MCDM methods with four datasets of different sizes. To have datasets
of varied sizes, we changed the number of selection criteria and alternatives
(SMDs) separately. For each dataset, we executed the programs considering two
scenarios, when the dataset resides in the primary memory and when it is fetched

from secondary memory.

It is observed that in terms of correctness, consistency, and robustness, the COP-
RAS method exhibits better performance under all case scenarios. As per time
complexity, all the five MCDM methods are equal, i.e., O(mn), where m X n is the
decision matrix (m is the number of SMDs and n is the number of selection crite-
ria). However, EDAS, MABAC, and COPRAS have a better best-case (Q2(m + n))
complexity. Overall, COPRAS has been shown to have the least runtime for each

execution case, i.e., for all four matrix sizes, on the laptop and on the smartphone.

The COPRAS method is found to be better than other MCDM methods (EDAS,
ARAS, MABAC, and MARCOS) for all test parameters and in all test scenarios.
Hence, it can be concluded that among the existing MCDM methods, COPRAS
would be the most suitable choice for resource ranking to select best resources in

MCC and other similar systems.
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Task Scheduling in MCC

"We can't change the wind, but we can set the sails differently." --- Aristotle

6.1 Introduction

To attain the best performance of an MCC system, it is crucial to schedule the tasks
to the SMDs optimally. The hardware organisations of the SMDs are vastly heter-
ogeneous. The overall computing capacity depends on various SMD resources such
as CPU and GPU power, available RAM, etc. For example, SMDs might have differ-
ent CPU and GPU models with different clock frequencies. Accordingly, the exe-
cution time for a certain task on different SMDs would not be the same. It is un-
derstood that an SMD would be more efficient in executing the assigned task if it
is equipped with more computing power. Besides, factors such as the remaining
battery, device temperature, etc., also play crucial roles for an SMD being consid-
ered a suitable computing entity. An efficient scheduling policy should consider all
these parameters to maximise the overall performance of MCC. Additionally, con-
sidering the limited battery power of the SMDs an ideal schedular should be en-
ergy-efficient, i.e., to achieve the successful and sustainable attainment of MCC as
HPC, it is vital to manage the SMD load efficiently so that the MCC tasks are exe-

cuted with minimum energy consumption.

However, there is an issue in fulfilling the above goals unilaterally. It might happen
that to maximise the system's overall throughput and/or energy efficiency, the
same SMDs are assigned tasks repetitively. While, the low-profile and/or and high
energy consuming SMDs might receive the tasks dispersedly. This leads to im-
proper utilisation of resources and a huge load imbalance among the SMDs. This
is not appreciable for any distributed systems. It becomes more vital in MCC since
it is a crowdsourced system. Obliging the typical human nature, people would be

apprehensive about being part of MCC if their SMDs are continuously overloaded.

Hence, it is necessary to have an efficient scheduling algorithm that not only
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maximises the MCC performance with minimum energy consumption but also ne-
gotiates the issue of underutilisation of resources with even load balancing among
all the available SMDs. The task scheduling problem in distributed systems is typ-
ically an NP-complete, that is why its solution approaches are generally heuristic
or metaheuristic, by which we attempt to reach an approximately optimal solution
instead of an absolute optimal one. To attain the above objectives, we also use heu-
ristic and metaheuristic approaches to propose two scheduling solutions in this

chapter, divided into the following two sections:

a) In Section 6.2, we present an efficient resource-aware task scheduling algo-
rithm for MCC, conforming to multiple optimisation criteria such as maxim-
ised makespan, and resource utilisation and minimised dispersity in load bal-
ance. For this we, followed a heuristic approach.

b) In Section 6.3, we present a load balance aware energy-efficient task schedul-
ing algorithm for MCC, aiming to schedule the MCC tasks to the designated
SMDs so that the overall energy consumption of the SMDs remains minimum
as well the load distribution among the SMDs remain fairly even. For this so-

lution, we use a PSO-based metaheuristic approach.
Overall, in this chapter, we aim to achieve the followings:

o Design a heuristic-based resource-aware task scheduling algorithm for MCC
by considering multiple real-time dynamic resource parameters of SMDs.

o The algorithm should attain the objectives like minimised makespan and load
dispersity, and maximised resource utilisation that are important aspect of the
performance of MCC.

e Design a metaheuristic-based energy-efficient task scheduling algorithm for
MCC by considering the real-time CPU information of SMDs.

o This algorithm should attain the objectives like minimum energy consumption
and also fair load balancing, which is a crucial aspect for energy-constraint re-
sources.

o Conduct extensive simulation for both the algorithms on synthetic and real
datasets to analyse and validate their efficacy.

e Frame multiple simulation scenarios with different sets of task-SMD mappings
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to check the algorithms’ reliability and consistency.
o Compare the performance of the proposed algorithms with similar heuristic

and metaheuristic algorithms.

6.2 Resource-Aware Scheduling

In this section, we present a heuristic scheduling algorithm that considers different
resource parameters of the SMDs to schedule the MCC tasks considering

makespan, resource utilization and load balance.

6.2.1 System Model and Problem Formulation

The system and execution models of the proposed scheduler for MCC are discussed

below. Here we also formally establish the addressed problem.

6.2.1.1 System Model

Here, we have considered a local MCC [465]. The coordinator divides a large com-
putationally intensive job into a few smaller noninterfering and parallelly executa-
ble tasks, as shown in Fig. 6.1. Here, we considered the MCC model for the appli-
cations with loosely-coupled parallel tasks, such as the bag-of-tasks (BoT) applica-
tions whose tasks are completely independent. These tasks are assumed of homo-
geneous characteristics and have a uniform format but they might have nonuni-
form computation length (execution time) and input and output data size. The
execution time also varies due to the diverse computing capacities of SMD proces-
sors. The middleware selects and schedules the tasks to the SMDs based on differ-

ent optimising criteria.

Available SMDs Get resource status
in MCC of each SMD
>
a

’- 8 Apply proposed l\éljxs)l\t/[aslgs

(—B e resource-aware obliging’

Receive a Divide the task heuristic algorithm the

computing into independent optimising

intensive task subtasks criteria

Fig. 6.1. Task scheduling in MCC
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We considered the following resource parameters of the SMDs for task scheduling:

a. CPU: CPU power denotes the computation capability of the CPU of an SMD. It
depends on two factors: the clock frequency of the CPU and the number of cores
within it. The effective CPU power of an SMD (m,) is calculated using Eq. 6.1,
where CPU_frequency, denotes the highest clock frequency of the CPU cores
of my, CPU_corey, indicates the number of CPU cores in my and CPU_load), rep-

resents the current CPU load of my.

CPU_frequencyyXCPU_corey

P(my) = CPU_load,,

(6.1)

b. Available RAM: Since the MCC tasks need to be loaded into the RAM for exe-
cution, there should be enough free space in the RAM for efficient execution.

We denote available RAM of an SMD as R(my,).

c. Battery: It indicates how much battery charge is left. Higher is better. The bat-
tery is generally represented by %, which is typically relative to the total capacity
of the SMDs’ battery. For example, for a 60% availability, the SMD with 12000
mA of the battery will have a much higher charge remaining than the one having
a battery of 6000 mA. The effective available battery of SMD (m;,) is calculated
using Eq. 6.2, where total_battery_capacity, indicates the total capacity of m;’s

battery and presentbatteryavlk(%) suggests the current charge % of m,’s battery.

total_battery_capacityy X presentpariery avl k(%)
100

B(mk) = (62)

d. Device temperature: SMD's temperature depends on the heat generated by in-
dividual components such as the processing unit, signal module, battery, etc.
However, for simplicity, we considered only the overall device temperature (°C).

We denote the temperature of an SMD as T (my,).

6.2.1.2 Execution model

Let us assume, at a time instant (7), the coordinator divides a job T into a set of
independent tasks such that T = {t,t,,t3, ..., t,}. The tasks vary in terms of in-
struction lengths in million instructions per second (MIPS), resource require-
ments, processing time, etc. At z, a set of SMDs M (M = {mq,m,, ms,...,my,}) is
available in the MCC system. These n tasks need to be executed on m SMDs. The

processors of M are heterogeneous, i.e., they have different computing capacities,
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and hence, they take dissimilar durations to execute a certain task. In the follow-

ing, we define the terms used in this work.

Execution time: The estimated time to execute t; on m is calculated by Eq. 6.3.

Zt .

Y (6.3)

Xr (6 m) = g

where, zy, denotes the instruction length of ¢; in MIPS and P(my,) is the effective

CPU of mk.

Start time: The timestamp at which mystarts executing ¢; is formulated by Eq. 6.4.
ST(tj:mk) = min {Ry(my)} (6.4)

Release time: R;(m;) denotes the timestamp when my completes executing all
the assigned tasks to it. Initially, Ry (m;) = 0|Vm, € M. After execution of tj on my,

R (my,) is updated using Eq. 6.5.

Rr(my) = Rp(my) + EFT(tj) (6.5)

Earliest finish time: The earliest finish time denotes the shortest time to com-

plete the execution of tjon my, and is calculated using Eq. 6.6.
EFr(t;) = min {Fr(t;, my)|Vmy, € M} (6.6)

Finish time: The finish time denotes the timestamp when ¢ starts its execution

on my plus its own execution time on my. It is calculated using Eq. 6.7.

Fr(t, m) = Sr(t,mye) + Xr(t;,my) (6.7)

Makespan: It denotes the total scheduled length by timestamping when all the
tasks are completed by all the allocated SMDs. The makespan is calculated using

Eq. 6.8.
MS = max {Rr(my)} (6.8)

Load balancing: The scheduling algorithm should assign the tasks to the SMDs
so that they are evenly loaded. The load balancing is defined by Eq. 6.9. The value
of LB lies between (0,1], and a lower value of LB indicates better balancing of task

loads where R7" is the average release time and is defined by Eq. 6.10.
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r avg_ 2
1B = \/zkﬂ{RT MRT(mk)} (6.9)
1
R7" = - %k=1 Ry (my) (6.10)

Resource utilisation: The ratio between the average release time and the sched-

uled length is calculated using Eq. 6.11.

RAvY

RU = % (6.11)

6.2.1.3 Problem Formulation

We present the proposed multicriteria-based resource-aware task scheduling
problem as a linear programming problem (LPP). The goal is to schedule a set of n
number of independent tasks, i.e., T = {t;,t;,t3,...,t,} to a set of m number of
SMDs, i.e., M = {m,,m,, m3, ..., m;,} based on combined resources. The objective
is to minimise makespan (MS) and load balance (LB) and maximise resource utili-

sation (RU) simultaneously.

Here, we adopted a weighted sum approach. A weight value (w;), defined by Eq.
6.12, is multiplied with each objective parameter and subsequently are summed up

to form a combined final scheduling objective (S, ;).
P lw=10<w <1Vi1<i<3 (6.12)
The goal is to minimise S, ;, satisfying the set objectives, and the problem is for-
mally expressed by Eq. 6.13, subject to Eq. 6.14 and Eq. 6.12.
Sobj = Wy X MS + w,; X LB + w3 X (1 — RU) (6.13)

mia,=1|vj,1<j<n (6.14)

where, “1]; is a be a Boolean variable and is defined by Eq. 6.15.

(6.15)

o = {1, if t; is assigned to my,
P=

0, otherwise

Considering Eq. 6.15, Eq. 6.14 represents a non-preemptive scheduling property.

6.2.2 Proposed Heuristic-based Resource-aware Scheduling for MCC

In this section, to discuss the proposed scheduling method, we first calculate the
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resource strength of each SMD and then accordingly prioritise the tasks for sched-

uling.

6.2.2.1 Resource Strength Assessment

Each SMD or my, consists of p number of resource parameters as R = {ry, 13, ..., 1;,}.
The resource strength, RS(m;), of an SMD suggests the overall status of its re-
sources. It signifies an SMD's competence as a computing node at any instant. Con-
sidering the real-time resources, as described in Section 6.2.1.1, RS(my,) is calcu-

lated by equation Eq. 6.16.

RS(my) = YI_, 0; x —X& (6.16)

max (7jk)

where 6; is the weight value of i resource, subject to 0 < §; < 1 and Y|, 0; = 1,
Tix is the current measure of the it" resource of SMD m,, r is the number of resource
parameters considered (in our case, it is 4), and max (r;;,) indicates the maximum
current measure of the i resource among all the SMD available in MCC at the

current time.

6.2.2.2 Scheduling Cost Estimation

For mapping the tasks with respect to suitable SMDs, we calculate the scheduling
score (SC) for each combination of (t;, m;) using Eq. 6.17. Subsequently, the aver-
age SC of a particular task is calculated for all the SMDs using Eq. 6.18.

z 1

t.
sc(t,my) = {Rs(ék) o [V € M, Ve € T} (6.17)
SC(tjm
SCang (£, M) = T, 2 (6.18)

The overall stepwise mapping procedure of t; to m, based on calculated
SCavg(tj, M) is demonstrated in Fig. 6.2. The pseudocode of the proposed sched-

uling algorithm is presented in Algorithm 6.1.

6.2.2.3 lllustration

In the following, we illustrate the working of the proposed methodology. Subse-

quently, we compare it with three other methods.

Let us consider, at a time instance (r), an MCC task arrives at the MCC coordinator
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and is divided into ten independent subtasks (t;, t, ts, ..., t10). Each task has a dif-
ferent instruction length. Let us assume at t four SMDs (my, m,, m3,m,) are avail-
able, and the tasks are to be scheduled to these SMDs. A task would take different

times for execution on different SMDs.

-
Yes_‘/b

Fig. 6.2. Procedure of mapping tasks to SMDs

End

Algorithm 6.1: Multicriteria-based Resource-Aware Scheduling for MCC
Input: (1) Set of tasks, T = {ty, t,, t3, ..., t,,} with 2, instruction length of t;
(2) Set of SMDs, M = {m,,m,, mz, ..., My, }
(3) Set of resources, R = {ry, 1y, ..., 1} for each my,
Output: T - M mapping
for (vm, € M)
{
Calculate P(my,) using Eq. 6.1
Calculate B(my) using Eq. 6.2
}
for (vm, € M)
Calculate RS(my,) using Eq. 6.16
}
for (vt; €T)
{
Calculate SC(t;, m;) using Eq. 6.17
Calculate SCyy4(t;, M) using Eq. 6.18
}
Sort T'in descending order based on SCqy, (t;, M)
Initialise
max=1
min=j
for (i=1toj) // runfor all the tasksin T
{
if (1%2 == 1) then
{
Select the max task from T and assign it to the SMD with min(Exr (tj)) as per Eq.
6.6
max ++
}
else
{
Select the min task from T and assign it to the SMD with min(Ezy (tj)) as per Eq.
6.6
min --
}
}
Calculate S,;,; using Eq. 6.13

As mentioned in Section 6.2.2.1, each SMD consists of several resources. The
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normalised values of the resources of each SMDs are shown in Table 6.1. The re-
source strength (RS) of each SMD is calculated by Eq. 6.16, as shown in the table.
With respect to each task, the scheduling score (SC) is calculated for each SMD, as

shown in Table 6.2.

Now, as per Algorithm 6.1, we first select the task with maximum SCa4 and sched-
ule it to the SMD with minimum execution time. From Table 6.2, we can see that
t; has a maximum SCayq value and is mapped to m.. Next, the task with minimum
SCavg should ideally be mapped to the SMD with minimum execution time. Here,
ts has the minimum SCayg, which should be mapped to m, because m, provides the
minimum execution time for ts. However, m, is still busy executing t,. Hence, ts is

mapped to m; with the next minimum completion (as per Eq. 6.6) time after m..

The complete scheduling sequence for all the tasks is shown in Table 6.3. It can be
observed (highlighted in bold) that the final schedule length is 331.754, accounting

for ty— m;, i.e., task t,is scheduled to SMD m;.

To check the stand of our proposed algorithm, we compared it with PSO, GA, and
MCT. The makespan and execution sequences for PSO, GA, and MTC are shown
in Table 6.4, Table 6.5, and Table 6.6, respectively. The release times for each SMD
after executing all the scheduled tasks are given in Table 6.7. The maximum release
time is the makespan for the respective method, as per Eq. 6.5 and Eq. 6.8. The
overall performance comparison of all the evaluated methods with respect to the
considered objectives is given in Table 6.8. It can be seen that the proposed algo-

rithm outperforms all other three methods in all respects.

Remark 6.1. It can be observed in Table 6.3 that t, is scheduled to m,; however,
from Table 6.2, it can be seen that the minimum execution for t; is achieved if it
was mapped to m.. The same can be stated for other tasks also. However, our algo-
rithm does not blindly schedule a task to the SMD that has the minimum execution
time; rather, it calculates the earliest completion time (calculated using Eq. 6.6) of

the given task on any SMDs.

Remark 6.2. The proposed algorithm schedules the tasks not only based on the

earliest finish time but also considers the other two optimising objectives, i.e., load
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balance and resource utilisation. Thus, our algorithm provides balanced schedul-

ing to achieve the best possible combinations of all three objectives.

Table 6.1. Resource strength calculation

SMD P(m;) R(my) B(my) T(my) RS(my)
m, 0.195 | 0.074 | 0.022 | 0.001 | 0.653019
m- 0.226 | 0.078 | 0.025 | 0.093 | 0.724554
m; 0.115 0.144 | 0.096 | 0.097 | 0.967786
my 0.211 0.112 0.206 | 0.096 | 0.698103

Table 6.2. Computation of execution time and scheduling score

Task Tflsk Xz (t;, my) sc(t;,my)
size m, m- ms my m, m; m; m, SCavg
t 20 | 102.564 | 88.889 | 94.787 | 173.013 | 157.061 | 122.681 | 97.942 | 249.122 | 156.702
t2 44 | 225.641 | 195.556 | 208.531 | 382.609 |345.535 | 269.898 | 215.472 |548.069 344.744
t3 31 158.974 | 137.778 | 146.919 | 269.565 |243.445 | 190.155 | 151.810 | 386.140 242.888
ty n 56.410 @ 48.889 | 52.133 | 95.652 | 86.384 | 67.474 | 53.868 | 137.017 | 86.186
ts 20 |102.564 | 88.889 | 94.787 | 173.913 | 157.061 | 122.681 | 97.942 | 249.122 | 156.702
te 8 41.026 | 35.556 | 37.0915 | 69.565 | 62.825 | 49.072 | 39.177 | 99.649 | 62.681
t; 38 | 194.872 | 168.889 | 180.095 | 330.435 | 298.417 | 233.094 | 186.089 | 473.332 | 297.733
ts 23 117.949 | 102.222 | 109.005 | 200.000 | 180.621 | 141.083 | 112.633 | 286.491 | 180.207
to 20 |102.564 | 88.889 | 94.787 | 173.913 | 157.061 | 122.681 | 97.942 | 249.122 | 156.702
to 14 71.795 | 62.222 | 66.351 | 121.739 |109.943 | 85.877 | 68.559 | 174.386 | 109.691
Table 6.3. Makespan using the proposed algorithm
Schedule
Task m, m, m; my
sequence
t - - - 121.739-295.652 | 1.t — m»
t2 - 0-195.556 - - 2. te — m3
t3 - - 90.048-236.967 - 3. t;—>m
ty - - 37-915-90.048 - 4.t,— ms
ts | 194.872-207.436 - - - 5.t — ms
te - - 0-37.915 - 6. tio— M,
t; 0-194.872 - - - 7. ts— m.
ts - 195.556-297.778 - 8. ti— my
to - - 236.967-331.754 - 9.ts > m
to - - - 0-121.739 10. tg — My
Table 6.4. Makespan using PSO
Task | m m; m; my Schedule sequence
t - 0-88.889 - - 1.t — my
t - 88.889-284.445 - - 2. t— m,
t; - - - 0-269.565 3.t — m,
ty - 284.445-333.334 - - 4. ts— my
ts - - 0-94.787 - 5.ty — m.
te 0-41.026 - - - 6. te — M
t; - - 94.787-274.882 - 7. t;— ms
ts - - 274.882-383.887 - 8. tio > m:
ty 41.026-143.59 - - - 9. ts— my
to - 333-334-395.550 - - 10. tg— mu
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Task m, m. ms m, S
sequence
t - - 0-94.787 - 1. tb— m.
t2 - 0-195.556 - - 2.ti—my
t - 195.556-333.333 - - 3. ty—>m
ty 0-56.410 - - - 4. t3—> m,
ts - - - 0-173.913 5. ts — My
te - - 94.787-132.701 - 6. te — m3
t; 56.41-251.282 - - - 7. tg— my
ts - - 132.701-241.706 - 8.t;— m
ty - - - 173.913-347.826 | 9.ts— m;
to 251.282-323.077 - - - 10. to — M
Table 6.6. Makespan using MCT
Task my m: m; my St
sequence
t - 0-94.787 1. t; — me
tz - 94.787-303.318 - 2. 6—my
t3 0-158.974 - - 3. —m
ty - 303.318-352.207 - 4. tg— m,
ts 168.889-257.778 - - 5.t — m3
to - - 173.913-243.478 | 6. ts— ms
t; 0-168.889 - - 7. tio— M
ts 230.769-348.718 - 8. te— my
to - - 0-173.913 9.ts — mu
to 158.974-230.769 - - 10. ty — mo

Table 6.7. Comparing the release time of each SMD for each method

SMD Proposed | PSO GA MCT
m, 207.436 | 143.59 | 323.077 348.718
m; 297.778 | 395.556 | 333.333 | 300.667
m; 331.754 | 383.886 | 241.706 | 303.318
my 295.652 269.565 | 347.826 | 243.478
Table 6.8. Objective comparison
Objective = Criteria  Proposed PSO GA MCT
Makespan | Minimise 331.754 395.556 | 347.826 | 348.718
RU Maximise 0.921 0.754 0.896 0.862
LB Minimise 15.09 101.912 | 41236 | 37.491

individual segments are as follows:

6.2.2.4 Computation Complexity Analysis

The complexity analysis of the proposed algorithm consists of two phases i) com-
plexity during prioritisation of the tasks based on available resource measures, and
ii) efficient assignment of tasks to its appropriate SMDs by incorporating the con-
sidered objectives. There exist n number of tasks, m number of SMDs and r number

of resources in an MCC. According to Algorithm 6.1, the complexity calculations of

a) The effective CPU and usable battery calculations using Eq. 6.1 and Eq. 6.2 re-

quire a total O(m).
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b) Resource strength calculation using Eq. 6.16 needs O(r X m).
c) Resource cost estimation requires O(n X m).
d) Prioritizing the task execution order needs 0(n).
e) Finally, mapping a task to SMDs requires 0(n? x m).
Hence, the overall time complexity is 0(m) + O(r xm) + O(n xm) + 0(n? X

m) = 0(n? xm).

6.2.3 Experiment, Results and Analysis

This section presents an extensive simulation of the proposed algorithm on a real
dataset. The performance is compared with three other algorithms simulated on

the same data set.

6.2.3.1 Data Curation

We used the collected data as described in Chapter 4. In this experiment, we con-
sidered CPU, RAM, battery, and temperature of the SMDs. We considered a total
of ten SMDs' (M,= {m,, m,, ms, ..., m;,}) data, chosen randomly from the original
dataset. The complete details of M, are shown in Table 6.9. We also wanted to check
the performance of the proposed scheduling algorithm on a smaller and larger set
of tasks on a smaller and larger number of SMDs. Therefore, from M., we randomly

took out another smaller set (M;= {m,, ..., my, ..., ms}) consisting of five SMDs.

The raw collected data needed to be further prepared for the experiment. The first
thing we did to calculate P(m;) and B(my) using Eq. 6.1 and Eq. 6.2, respectively.

The values of R(m;,) and T (m, ) are considered as they are.

Since each parameter has different units, it is difficult to introduce equal im-
portance to all the parameters. Therefore, we normalised the considered parame-

ters. The normalised value of the j*" resource of the i" SMD is calculated by Eq. 19.

Nj; = Vji (6.19)

Yitvji

where, vj; is the considered value (shown in Table 6.9) of the jt" resource of i SMD,

and m is the total number of available SMDs.

To eliminate any undefined or zero normalised value, we replaced the zero values
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vji = 1, 1fv]l ==0 (6.20)
Table 6.9. Details of the dataset used in the experiment
S » —~ 1 ~

| C w =} (] Y m I Y c\c N

[} —~ (-] > = o ~ = & — v
= J:EEI _°:’§ S~ |Bp | g2 Z“?': %E‘ 35 o<
= pgd 5 g5 ©s 8% §§ 58 seg
b B g E = = Y | ¢ EaE B2 | <8 | A £
m, 1.3 8 13 0.80 1807 3000 10 300 69
m; 2.5 2 53 0.09 1767 4000 24 960 89
m; 2.2 8 19 0.93 1916 3000 1n 330 71
my 1.7 2 62 0.05 2855 4000 22 880 72
ms 1.5 4 7 0.08 2851 3500 31 1085 81
Mo 13 4 u 0.47 | 3537 3500 37 1295 74
my; 1.3 8 12 0.87 2755 3000 92 2760 73
ms 1.3 8 22 0.47 | 2690 4000 56 2240 67
my 2.5 8 94 0.21 2628 3500 69 2415 82
Mo 1.3 8 91 0.11 1753 4000 29 1160 84

Each parameter has associated weight values depending on its importance, as

shown in Table 6.10. However, depending on the MCC application type and re-

quirement, these weights might need to be adjusted.

Table 6.10. Details of the effective parameters used in the algorithm

Considered parame- Considered value calcula- Parameter Ideal
ters tion weight value
Effective CPU Calculated using Eq. 6.1 0.30 Maximized
RAM Present available RAM (MB) 0.30
Effective battery Calculated using Eq. 6.2 0.30
Device temp On a scale of 0-100°C 0.10 Minimised

6.2.3.2 Simulation Provisioning

In this section, we discuss the requirements and considerations to set up the sim-

ulation environment for the experiment.

6.2.3.2.1 Experimental Setup

We performed the simulations to demonstrate our proposed work on a system

running on Intel® Core™ i7-5500U CPU with 2.40 GHz and 4 GB of RAM. It was

implemented on Ubuntu 16.04 using 'C' programming language.

6.2.3.2.2 Task Initiation

For the experiment, we created two task groups - T" and T%. T" was further divided

into two subgroups - T{ = {ti,ti,,t1,, ..., t1, Jand T3 = {t; ,t;,,t5., .., t3, .}
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where T{ # T . For each of T{ and T}, we generated four different sets of tasks (i.e.,
a total of eight) such that T, * # Tlrj and T, Tzr /. The tasks were randomly gener-

ated with the instruction length ranging from 5 to 250.

T was divided into two task sets - Tlf = {t{l, t{z, t{g, ...,t{loo} and Tzf =
{tgl, tgz, t£3, e tgzoo }, where T/ # T The instruction lengths of the tasks of both
Tlf and Tzf were between 1 to 150.

The details of task generation and bifurcation are shown in Fig. 6.3. The rationale
behind considering these varieties of task sets is to establish the efficiency of the

proposed algorithm in diverse scenarios, as discussed in Section 6.2.3.3.

T )
T )

n hoth th n
. L (S SR N

) h th N I
I T2 =S4ttt}

2
T =A{ 5,0t}

T T2 T ¢4 I
T =gt Y
LI (AR A A A

f 1 2 B 100
! :><Tf =4ttt 3
2 27727257 200

Fig. 6.3. Different task sets used in the experiment

6.2.3.2.3 Control Parameters

The details of the control parameters of PSO and GA are listed in Table 6.11. Since
MCT is a heuristic algorithm, no such specific control parameters are there, and
hence not included in the list. We set the weight values for each considered objec-

tives w, = 0.4 and w, = w3 = 0.3.

6.2.3.3 Performance Analysis

To assess and analyse the performance of the proposed scheduling algorithm, we
performed an extensive simulation on the real dataset as described above. For a
comparative assessment, we performed the same experiment with the same as-

sumed scenarios using three other popular algorithms. Since our algorithm is a
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heuristic one, we deliberately chose one heuristic (MTC) and two metaheuristic

(PSO and GA) algorithms that are popularly used in similar problem scenarios.

Table 6.11. Control parameters for PSO and GA

_ Algorithm Parameter Values
PSO Population size 10
Iterations 100
Initial C, C 1.0962
parameters T Rand(o,1)
w 0.0968
Initial social influence Rand(o,1)
Initial personal influence | Rand(o,1)
Vmax 0.5
VUmin 0.5
Winax 1.0
Win 0.0
GA Population size 10
Iterations 100
Crossover point 40
Mutation rate 0.1

As discussed in Section 6.2.3.2.2, we initiated task sets of different sizes — one con-
sisting of 100 (T;) and another consisting of 200 (T-) subtasks. These tasks were
scheduled to two SMD sets (M;and M,, M;SM,). Considering this setup, to evalu-
ate the efficiency of the proposed algorithm in diverse MCC scenarios, we divided
our experiment into two approaches. In the first, the sets of the same task size were
scheduled to particular sets of SMDs, i.e., T;and T, were scheduled to M;and M.,
respectively. In the second case, T;and T. were scheduled to both M;and M., alter-

natively, as shown in Fig. 6.4.

Tlrl Tl"z\‘ ‘/Tl 3 T1r4
\ M : /

T1 f -|-2f

h ) f3 Iy
T2 TZ TZ T2

M,

Fig. 6.4. Two experimental scenarios of task-SMD mapping

6.2.3.3.1 Experiment Case I

In the first provision of the experiment, we aimed to assess the overall effectivity
of the algorithm for task heterogeneity. For this, we used eight task sets from the
task group T, as shown in Fig. 6.3, in which each task had different instruction

lengths. The tasks were scheduled in the pair of (T] = M;)and (T} — M,).
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Fig. 6.5, Fig. 6.6, and Fig. 6.7 show the performance of the proposed algorithm
along with PSO, GA, and MCT in terms of makespan, resource utilisation, and load
balancing, respectively. It can be observed that for all the task sets, our proposed
algorithm performs better. To make this inference more intuitive, in Fig. 6.8, Fig.
6.9, and Fig. 6.10, we show the average performance of the algorithms for two dif-

ferent task sizes for all three objective criteria.

160000
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80000
60000
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20000
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Taskset1 | Taskset2 | Taskset3 | Taskset4 | Tasksetl | Taskset2 | Taskset3 | Taskset4

T:100 > M:5 T:200 - M:10

M Proposed ®WPSO mGA = MCT

Fig. 6.5. Makespan comparison with different task sizes with eight task sets
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Fig. 6.6. Resource utilisation comparison with different task sizes with eight task sets



50000
45000
40000
35000
30000
25000
20000
15000
10000

5000

Taskset1 | Taskset2 | Taskset3 | Taskset4 | Tasksetl | Taskset2 | Taskset3 | Taskset4

T:100 - M:5 T:200 > M:10

H Proposed mPSO HGA © MCT

Fig. 6.7. Load balance comparison with different task sizes with eight task sets
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Fig. 6.8. Average makespan comparison with different task sizes
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Fig. 6.9. Average resource utilisation comparison with different task sizes

6.2.3.3.2 Experiment Case II
To infer more from the experiment, we wanted to assess the consistency in the
performance of the proposed algorithm with SMD variation with the same task

sizes. For this, we used the task group T. As shown in Fig. 6.4, the algorithm was
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tested in four different task-SMD pairs - (Tlf - M,), (Tzf - M,), (Tlf - M,), and

(Tzf — M,;). For this case, the makespan, resource utilisation and load balance per-
formances of the proposed algorithm and other compared algorithms are shown
in Fig. 6.11, Fig. 6.12, and Fig. 6.13, respectively. In this case, also, we observe that

the proposed algorithm performs better than PSO, GA and MCT in all aspects.

45000
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30000 H Proposed
25000 = PSO
20000
uGA
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o0 0 ~
5000 a g ©
~ — —
0
T:100 > M:5 T:200 > M:10
Fig. 6.10. Average load balance comparison with different task sizes
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0 r . T . T . T . {
T:100 > M:5 T:200 > M:5 T:100 > M:10 T:200 -> M:10

Fig. 6.11. Makespan comparison with same task size

6.2.3.4 Statistical Analysis

In this section, we present two statistical analyses to assess the dominance of the

proposed algorithm compared with the other three considered algorithms.

6.2.3.4.1 ANOVA

ANOVA [694] is a well-known statistical method for hypothesis testing. It allows
checking the significance of the results by determining the equality of the means

of the considered groups. We conducted the one-way ANOVA test to ensure that
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our proposed algorithm is significantly varied from other algorithms.

The null hypothesis (H,) assumes that the mean of all the groups is equal, and
based on that, one group can be rejected. Whereas the alternative hypothesis (H,)

assumes means are not equal.
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0.9 —_—
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T:100 > M:5 T:200 > M:5 T:100 - M:10 T:200 > M:10

Fig. 6.12. Resource utilisation comparison with same task size
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Fig. 6.13. Load balance comparison with same task size

We considered eight sets of sample task groups. The groups consist of 100 or 200
tasks, as shown in Fig. 6.3. The task size of each set is different. The ANOVA test
was conducted using makespan and load balance. We did not consider resource
utilisation values because it ranges from o to 1, which would produce a non-signif-
icant result. The H, was rejected if the P-value < «, o =0.05, i.e., F-statistic >> F-

critical.

The descriptive statistics of the input set for the ANOVA test using makespan and

load balance are given in Table 6.12. It can be observed that the proposed algorithm
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has the lowest mean, whereas GA has the lowest variance. The results of the
ANOVA test using makespan and load balance are shown in Table 6.13 and Table
6.14, respectively. It can be observed from both the tables that the proposed algo-
rithm exhibits dissimilar mean and variance compared to other algorithms. There-

fore, we rejected the null hypothesis at the one percent level.

Table 6.12. Input sets of ANOVA test using makespan and load balance

Makespan Load balance
Groups  Count . .
Sum Mean Variance Sum Mean Variance
Proposed 8 172144.975 | 2151812 | 27096272.62  8835.08 1104.385 149600.198
PSO 8 673436.521 | 84179.57 | 446158010.5 |239543.202 | 29942.900 | 48622828.09
GA 8 797581367 | 99697.67 | 1314262960 | 273183.521 | 34147.940 | 85744322.78
MCT 8 174245.495 | 21780.69 | 27808493.14 | 12314.902 1539.363 453088.919
Table 6.13. ANOVA test results using makespan
Source of variation SS DF MS F-statistic = P-value | F-critical

Between groups 40488110602 | 3 |13496036867  29.73799489 | 7.53E-09 | 2.946685266

Within groups 12707280153 | 28 | 453831434 - - -

Total - 31 - - - -
Table 6.14. ANOVA test results using load balance
Sou.rcte of SS DF MS F-statistic | P-value | F-critical
variation

Between groups | 7622976648 | 3 | 2540992216 | 75.30548206 @ 1.61E-13 | 2.946685266

Within groups | 944788879.9 | 28 | 33742460 - - -
Total - 31 - - - -

6.2.3.4.2 Post Hoc

After confirming the superiority of the proposed algorithm in terms of mean dif-
ference, we performed a post hoc analysis [695] to further assess the algorithm's
success. The ANOVA test merely indicates a difference between the groups, but it
does not specify which groups. The post hoc test exposes the specific differences

between the group means when the ANOVA test is significant.

It can be observed from Table 6.14 that the means are different. A 2-sample T-test
was conducted for post hoc analysis. The alpha level was adjusted via the Bonfer-
roni method (adjusted alpha=0.016666). Table 6.15 shows that the pairs of (pro-
posed and PSO) and (proposed and GA) significantly differ. The mean difference
between proposed and PSO is very low compared to the other two groups. Hence,
it can be concluded that this group (proposed and PSO) is significantly different

from others.
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Table 6.15. Post hoc test results

| Groups " P-value (T-test) Significant? |
Proposed - PSO | 110717E-06 | Yes \
Proposed - GA \ 3.05123E-05 \ Yes \
Proposed - MCT | 0.921586675 | No ‘

6.2.4 Discussion

We represented the experiment scenario and result analysis in two phases. First,
the algorithm aims to prove its efficacy with task heterogeneity (different task sets)
over fixed SMDs. Second, its efficacy is further analysed and validated with SMD
variability (tasks of fixed size operated on different SMD sets). The results of both
the cases suggest that irrespective of the variations in the size of the task sets, in-
struction lengths of the tasks, the number of SMDs, and their resource parameters,

the performance of the proposed algorithm consistently remains better.

In Fig. 6.5 to Fig. 6.13, we witness that the proposed algorithm outperforms PSO
and GA while performing moderately better than MCT over all the considered ob-
jectives inflicted simultaneously. Further from Fig. 6.5 to Fig. 6.13 and Table 6.12 to
Table 6.15, we realise that among the other three compared algorithms, MCT is
nearest to our algorithm for all the objectives and in all the scenarios, while PSO

digresses most.

The observed performance of our algorithm was achieved due to the appropriate
sequence of task executions based on the overall resource status of the SMDs. Be-
fore the actual scheduling, the algorithm always ensures the earliest start time of a
task along with the load distribution and the proper utilisation of all the SMDs.
Thus, the algorithm returns a better makespan along with load balance and re-

source utilisation simultaneously.

The consistency and scalability of the proposed algorithm would allow the MCC
system developers to adopt the right task scheduling method without worrying
about the size of the MCC both in terms of problem size (that is to be executed in
MCC) and the availability of the resources (number of SMDs in the MCC). Based
on the MCC application type, the weight values of resources (6;) and objectives
(w;) can be tuned based on the preference and priority of the resource require-

ments and system goals.
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6.3 Energy-efficient Scheduling

In this section, we present a metaheuristic scheduling algorithm based on PSO that
considers the overall energy consumption to carry out certain MCC task along with

load balance among the SMDs.

6.3.1 Overview of PSO

PSO is a nature-inspired population-based optimisation method developed by Ken-
nedy and Eberhart [696] and Eberhart and Shi [697]. It is inspired by the social be-
haviour of animals like bird flocking and fish schooling. This swarm intelligence-
based metaheuristic technique has been popularly used to solve different optimisa-
tion problems in various domains. Initially, a swarm of particles is randomly gener-
ated within the multidimensional problem search space. Each particle attempts to
move towards the optimum solution. After each movement, the particle assesses its
personal best position (Pp,,;) and the global best position (Gp,s;) within the swarm.
The next movement of an individual particle depends on these two pieces of
knowledge acquired in the previous movements. A particle should always provide a
complete solution to the problem. The it particle of gt generation can be repre-

sented in Eq. 6.21.
PR} = {p0s{] 11, POS{, 5y, - POS(, py} (6.21)

where, D be the dimension of the solution space. All the particles have positions

value, posg, 71 <Jj <D and corresponding velocity, velzqi’ - The personal best of

particle PR! is defined by Eq. 6.22.
Pbesti = {Pb(i,l)' Pb(i,Z)' ey Pb(i,D)} (6.22)
At every iteration, the velocities of the particles are updated by Eq. 6.23.
vel(gill) =« X velgfl_)l) +cy X1y X [Pb(l-,j) — pos((fgl)] + ¢y X1y X [Gpest ; — pos((fjsl)]

j
(6.23)

where, < denotes inertia weight which restricts the uncontrolled velocity of the par-
ticles. ¢; and c, are the acceleration coefficients. r; and r;, are two different random

generated numbers in the range (o, 1]. After updating velocity, the latest positions
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(posg.‘ j») are updated using Eq. 6.24.

posg.’j) = pos((fjsl) + velf’i’j) (6.24)

After updating the positions of a particle, the new fitness value is measured. Based
on the updated fitness value, Pbest; and Gy,g are also updated. The position and
velocity of all the particles are updated iteratively to achieve a rational and better
solution. The better solution of the particles is measured using the designed fitness
function. The iterative updation process is terminated when an iteration constraint

is obtained.

6.3.2 System Model and Problem Formulation

The system and execution models of the proposed energy efficient scheduler for
MCC are discussed below. We also formally establish the addressed problem. The

system model described in Section 6.2.1.1 is considered here also.

6.3.2.1 Execution Model

Let us assume, at a time instant (r), the coordinator divides a task (T =
{t1,t3,t3, ..., t,}) into a set of independent microtasks. These microtasks need to
be scheduled to the available set of SMDs (M = {m,,m,, ms, ..., m;,}). We con-
sider a real MCC scenario where the SMDs have a different number of CPU cores
with different clock frequencies depending on which the computing capability of
each SMD varies. The available computing power of an SMD also depends on its
present load. A highly loaded SMD would be able to execute a smaller number of
microtasks compared to a lightly loaded SMD, given the same turnaround time.

Therefore, the effective CPU of an SMD at t is calculated using Eq. 6.25.

CPU_frequencyXxCPU_cores

PQme) = CPU_load® (6.25)
The execution time of a task tj on an SMD my is calculated by Eq. 6.26.
Zt .
X(t,myg) = =2 (6.26)

P(my)
where, zy denotes the instruction size (MIPS) of t;.

An ideal MCC should utilise all the available SMDs judiciously so that the
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computing loads of all the SMDs are evenly balanced as far as possible. The overall

load balance of an MCC with respect to a set of MCC tasks is calculated by Eq. 6.27.

LB — \/Z£=1{R’?vgﬂ;RT(mk)}2 (6.27)

where Ry (m;) denotes the k» SMD's release time and Ry Y denotes average release

time and is defined by Eq. 6.28.
R = =¥y Rp(mye) (6.28)

6.3.2.2 Computational Energy Calculation

Different SMD processors operate at different speeds, with different voltage and
frequency with respect to t;. The cumulative voltage (V) and frequency (F,) are

given by Eq. 6.29 and Eq. 6.30.
Fy = {fmlrfmz'fmz: ---:fmm} (6.29)
VM = {le' vmy Umy T Umm} (6-30)

Here, fim,) and vy, denote the operating frequency and supply voltage of k"

SMD's CPU, assuming each core has the same operating frequency and voltage.

In heterogeneous multiprocessing, the multi-core SMD CPUs are comprised of two
different sets of cores paired together into a single unit. It is done so to make a
balance between performance and energy efficiency. One set of cores is less pow-
erful and more energy-efficient than the other. The decision to submit jobs to the
appropriate core is taken dynamically by mapping to the varying computational
demand of the application. Normally, the first set of cores deals with the regular
background tasks that require nominal energy, whereas the user-interactive and
performance-demanding tasks are run on the second set of cores. In the second

case, energy consumption is a big concern, so minimising it is highly desired.

The total energy consumption of an SMD CPU is the combined energy consump-
tion of both the high- (Ex) and low-performance (E1) core sets, as shown in Eq.
6.31. We assume the energy consumption due to network communication for all

SMDs is constant.
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Ecomp(mk) = Ey(my) + E (my) (6.31)
The energy consumption is directly related to the total power dissipation caused
by high (Pn) and low (Pr) power dissipation. Py is calculated using Eq. 6.32,
whereas Pp arises due to running, bias and leakage of currents and is calculated
using Eq. 6.33.

Py(my) = K X (Wanp)? X famp (6.32)

PL(mk) =K X (Vlowestf(mk))2 + flowest(mk) (6-33)
where K is the capacitance load.
As already mentioned, the Ey; consumption is done when the SMD's CPU performs

extensive computation, operating in high voltage and frequency. Therefore, E; can

be calculated using Eq. 34.
Ey(my) = Xy Pu(mu) X X (tj,my) (6.34)

On the contrary, EL consumption is done when the CPU is either idle or performing
very low-profile background jobs. In this case, we can consider that the CPU (my)

operates on Vygyest and fiowese- Therefore, Er can be calculated using Eq. 35.
E (my) = Xizq PL Xt (my) (6.35)
where ¢, (, ) denotes idleness or lower activity of mx.

Remark 6.3. Typically, E; < Ey, and the effect of E; on the scheduling decision
would be insignificant. Therefore, in this work, we overlooked E; and considered

only Ep.

6.3.2.3 Data Transfer Energy Calculation

Receiving the tasks from the MCC coordinator, i.e., downloading them through
Wi-Fi and uploading or sending the results back to the coordinator, also involves
some energy consumption. The energy consumption (E;) of m,, for data transfer

can be calculated by Eq. 36.
Ec(my) = B% (Z?=1th:mk X Ep(my) + Z?=1er My X Ey(my)) (6.36)
my

where, By, is the bandwidth of m;, which is dependent on its signal strength at z,



262

Yi=1 2, my denotes the total instruction length of all the tasks executed by a par-
ticular SMD m, Zy; 18 the size of the result of t; and Ep(my) and E;(m;) denote

the energy consumption rate for downloading and uploading data blocks (tasks

and results), respectively.

Remark 6.4. In Eq. 36, we considered the power consumption accounted for only
downloading the MCC tasks and uploading the corresponding results. We assumed
that Wi-Fi is by default on and hence ignored the actual power consumption due

to Wi-Fi operation.

Remark 6.5. Here, we considered our MCC comprised of a single WLAN with a
consistent bandwidth and signal strength for all the SMDs. So, it can be assumed
that the power consumed to download the same set of tasks (sent by the MCC
coordinator) and upload corresponding results (to be sent to the MCC coordina-
tor) are uniform for all SMDs. Though the power consumption for data transmis-
sion slightly varies depending on signal strength (which diverges as per the dis-
tance of the SMD from the AP), it can be considered negligible [698]. Also, the data

transfer rate variations for different SMDs are minimal.

Remark 6.6. We further assumed that our MCC application has mostly computa-
tion-bound tasks. Computation-bound tasks typically have high CPU utilisation
with a smaller extent of data transfer [253]. This suggests higher energy consump-

tion for processing compared to data transferring.

From the above remarks, it can be concluded that the energy consumption due to
data transfer became almost inconsequential in the scheduling decision. Hence,
we ignored the communication power consumption for the further experiment in
this work. We set our focus on the energy consumed by the SMDs accounting only

to execute the MCC tasks.

6.3.2.4 Final Objective

Therefore, the final problem can be stated as designing a scheduling algorithm

conforming to two objectives, as follows:

i) Objective I: Minimise the overall energy consumption considering
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computational energy along with communication energy, i.e., min(Ey(my) +

E;(my) + Ec(my)) = min((Ey(my)), neglecting E; (m;,) and E-(my).

ii) Objective II: Minimise the overall energy consumption with load balance, i.e.,

min(Ey(my) + LB).

6.3.3 Proposed PSO-based Energy-aware Scheduling for MCC

In this section, we present the proposed PSO-based scheduling algorithm along

with demonstrative illustrations for both objectives.

6.3.3.1 Particle Representation

A particle (PR{) must be represented in such a way that it should always provide
a complete solution to the problem. A particle is always associated with its position

) @)
13

(pos(l., ])) and velocity (vel(.’ J)), where 1 < j < D. Here dimension of a particle is

equal to the number of tasks, i.e., D = n. A particle representation is shown in Table
6.16. The first row denotes the task scheduling sequence, while the second row

denotes the position values as SMD index (mx).

From Table 6.16, we understand that five tasks are initiated by the MCC coordina-
tor, which need to be executed by three SMDs. It can also be observed that the first
task (i.e., t,) is assigned to the second SMD (i.e., m,). Likewise, t,, t5, t4, and t5 are
assigned to ms, m,, m,, and m;, respectively. This is how our particle representation

produces a complete solution.

Table 6.16. Particle representation

Tasks it t3 |ty ts
Position 2 | 3 1 | 2 | 3

Algorithm 6.2: Generate_Population()

Input: Size of the population NV and dimension of the particle D

Output: Generation of population Pyop = {G1, Gz, ..., Gn} //Gi denotes the it iteration
1. Ppop = {} //initial population is null

2. for(i=1toN)

3 for (d=1to D)

4 pos((fc)i) =Rand(l, M) //M is total number of available SMDs
5 end for
6

7

8

Gi={pos{{)w¥i, 1 Si<N,vd, 1 <d <D}

Ppop = Ppop U Gi
end for

The initial population (Ppop) is generated as per Algorithm 6.2, which is depicted

in Table 6.17. It can be observed from the table that the initial population consists
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of three particles (N = {PRY, PRY, PR3}) with dimension five where each PR pro-

vides a complete solution.

Table 6.17. Initial population of three particles with dimension five (same as number of tasks)

PR} POS(y) POS(y POS(s) POSGy POS(s
PR 1 3 | 2 1 2
PRO 2 1 3 2 1
PR | 2 | 3 1 2 3

6.3.3.2 Fitness Calculation

The fitness function evaluates the excellence of particles. Here, the fitness function
is calculated in two phases, corresponding to two objectives mentioned in Section

6.3.2.4. Our final objective is to minimise fitness, as given in Eq. 6.37.
min(fitness) = Y, w; x Objective; (6.37)

where, k and w; denote the number of objectives and their weight values, respec-

tively.

Here, we followed the weight sum approach for fitness calculation. For Objective
I, since there is only a single parameter (energy efficiency), the value of w is 1. For
Objective II, the value of w for both parameters (energy efficiency and load bal-

ance) are equally assigned, i.e., 0.5 for each.

6.3.3.3 Velocity and Position Updation

Along with position and velocity, after each iteration, the particle PRY has a per-
sonal best value (Pps;;), as shown in Eq. 6.22. and a global best (Gj,:) among all
the particles within the swarm. At every iteration, the velocities and the positions

of the particles are updated by Eq. 6.23 and Eq. 6.24.

During the position's updation, new positions may violate the restricted position
range, i.e., [1,m]. If the updated position becomes negative, less than one, or greater
than m, it maps to a random position [1,m]. This is how n number of particles are

updated iteratively.

After the updation of the positions of a particle, the new fitness value is measured.
Based on the new fitness value, Pp.s; and Gy, are also updated as discussed in
Section 6.3.1. The position and velocity of all the particles are updated iteratively

till the termination condition is satisfied (MAX;). After reaching MAX;;,, the
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particle with minimum fitness, i.e., G0 (MAX;,) is chosen as the final solution.
The pseudocode of the proposed PSO-based scheduling algorithm is shown in Al-
gorithm 6.3. The overall pictorial representation of the algorithm is depicted in Fig.

6.14.

Algorithm 6.3: PSO-based Energy-Efficient Scheduling for MCC
Input: (1) N number of particles, i.e., N = {PR{ ), PR} ,, .., PR} ;}
(2) Termination criterion is MAXx
Output: Best solution as the minimised fitness value
1. Generate initial population Ppop = {} //as per Algorithm 6.2
2. Compute fitness() using Eq. 6.37 //considering energy as well as load balance
3. Initialise Ppest V i € N and Gpest from the swarm
4. while (i < MAX;;,) do //termination condition (MAX;;,) as number of iterations
5
6

for (i=1toN)
Update velocity () and position () using Eq. 6.23 and Eq. 6.24
if (fitness (pos((f})) > fitness(Ppest)) then
(@

~

8. Ppest = pPosg i

9. end if

10 if (fitness (pos((f})) > fitness(Gpest)) then
11 Gpest = Ppest

12 end if

13 I++;

14 end for
15. end while
16. Select Gppsr (MAX;,) as the final solution

Remark 6.7. It can be observed from the particle representation that the particle
always guarantees to produce a complete solution to the problem. Moreover, while
updating the velocity and position of a particle, it always preserves its predefined
range of position values, i.e., [1m]. Therefore, our particle representation always

provides a valid solution even after the updating phase.

Remark 6.8. The computation of a particle's fitness function (as per Eq. 6.37) is
evaluated locally in an iterative manner without having any advance or global
knowledge of the particles or swarm along with their respective fitness values.
Therefore, the fitness calculation is done independently, irrespective of other so-

lutions.

6.3.3.4 Illustration

In this section, we demonstrate the working of the proposed algorithm with a set
of synthetic data. Let us consider, at a time instance (r), four SMDs
(m4, m,, m3, m,) are available with an MCC system, and the MCC coordinator has

eleven independent subtasks (ty, t,, t3, ..., t11) to execute on these SMDs. Each task
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has a different instruction length (task size). The MCC needs to schedule the tasks
for the SMDs conforming to the minimum energy efficiency criteria with load bal-
ance. We present the illustration in two segments: scheduling considering only

energy efficiency and scheduling considering energy efficiency with load balance.

Generate a population Initialize Pbest;
Start of n particles (PRW), - and Gbest for g9=0 =1 = 9=9+1
0<g<MAX and 1<isn 1<i<n y
(0]
. Update velocity
Eval;le}gle? g)tness b ves d>D vel®; and = d=1 i=i+1 9>MAXiy
of (PRWp) position pos®)
No No |
Yes Yes
d=d+1 Gbest = Pbest; i>n
. Gbest is
. s taken as
ﬁ‘tness(PR@)(i))> Yes Pbest(i] = PR(g)m the final
fitness(Pbest ;) solution
No fitness(Pbest))> No
fitness(Gbest)
End

Fig. 6.14. Flowchart of the proposed algorithm

6.3.3.4.1 Energy-efficient Scheduling

Table 6.18 shows the details of scheduling using the proposed algorithm. The 24
column shows the instruction length of each task. Columns 3™ to 6" show the start
and finish times of the tasks assigned to the corresponding SMDs based on the
execution time of that task on that SMD, given in the 8" column. For instance, the
task t, has an instruction length of 61, and to execute it on m;, its required time is
630.165. It can further be seen (in the 5™ column) that ¢, starts its execution on m;
at 165.289 and completes at 795.455. Column seven shows the complete scheduling

sequence of the eleven tasks on four SMDs.

Energy consumed by each SMD to execute the assigned tasks and the total energy
consumption to complete the eleven tasks, are given in Table 6.19. It can be ob-
served that by the scheduling policy, no task was scheduled to m, and my; hence,
their energy consumption is zero. Whereas most tasks (74.048% of total tasks)
were assigned to m;, and to execute the assigned tasks, m;, was mostly busy

(90.166%).

6.3.3.4.2 Energy-efficient Scheduling with Load balance

In the above, we saw that by using the proposed scheduling algorithm though we
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achieved a very low overall energy consumption, the scheduling is highly biased to
one or two SMDs to minimise the overall energy consumption. However, as men-
tioned earlier, in MCQC, it is vital to ensure that no SMDs are get overloaded, i.e.,
the tasks should be equally distributed as far as possible so that the load of all SMDs
are evenly balanced. We incorporated the load balance factor in the proposed
scheduling algorithm to address this. The scheduling details for this case are shown

in Table 6.20.

Table 6.18. Scheduling sequences without load balancing

\ \ Execution duration Execu-
Task m, m, m3 my Schedule .
Task . tion
size (v: 0.250, (v: 0.527, (v: 0.107, (v:0.882, sequence time
f: 0.004) f: 0.021) f: 0.097) f: 0.017)
t 16 - - 0 - 165.289 - 1. t— ms 165.289
ta 61 - - 165289 - 2. t— ms 630.165
795-455
5} 15 0 - 4054.054 . - - 3. > m | 4054.054
ty | 46 - - 712;3221_ - 4.4,—>m5 | 475.207
¢ ) ) 1270.661 - t—m 5
) ) 1363.636 -
te 31 1683.884 6.te— m3 | 320.248
4054.054 - ) i )
t; 30 15162162 7. t;— m 8108.108
683.884 -
ts 23 - - 119 231 48‘; 8.ts— my 237.603
¢ u 12162.162 - ) . ) e om 2972.97
’ 15135.135 9-b 1 972.973
to 28 - - 1921.488 - - 10. tio— m3 | 289.256
2210.744
15135.135 - } _ }
tu 19 20270.270 1. tu — T 5135.135

Table 6.19. Task lengths for each SMD and energy consumption without load balancing

- |0
Task(s) Total % of total Total' exe- % oftotal Energy Load
SMD task . cution engaged consump-
scheduled . task size . : . balance
size time time tion
m, 3, ty, to, tu 75 25.952 20270.27 90.166 5.031
m. - 0 ) o ) 0.000
m; b tz’tt4’tt5’ t6, 214 74.048 2210.744 9.832 2.450 -
8, Lio
my - 0 ) o ) 0.000
‘ Total 1 289 100 22481.014 100 7.481

Now let us check how the issue of biased loading has been mitigated. Table 6.21
shows that in this case, there is no such SMD that has not been assigned any task.
From the 4 column, we see that the task distribution (according to task size) has

been significantly improved than earlier (Table 6.19). A comparison of the variance
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and standard deviation (STD) of the load distribution for both the cases (with and

without load balance) in terms of the total size of tasks executed and total execu-

tion time is shown in Fig. 6.15. It can be expectedly observed that the variance and

STD are much higher when the focus is on only energy efficiency. But introducing

the load factor in the scheduling has reduced both the parameters' values. How-

ever, to achieve this, we had to sacrifice energy efficiency to some extent. It can be

seen from Table 6.21 that the energy consumption is increased a little bit while the

total load balance factor of 402.614 is achieved.

Task

Task
size

Table 6.20. Scheduling sequences with load balancing

m,

11 -

12 -

6 -

39 | 0-2432.432

41 -
36 -

23 -
25 -
28 -

19 -

(v: 0.259,
f: 0.004)

(v: 0.527,
f: 0.021)

0 - 704.225
704.225 -
2863.850

Execution duration
ms.

m3
(v: 0107,
fi0.097)

0 -165.289

165.289 -
795-455

795-455 -
1105.372
1105.372 -
1342.975
1342.975 -
1456.612
1456.612 -
1745.868
1745.868 -

1942.149

my

(v: 0.882,

f: 0.017)

Schedule
sequence

1. ti— ms3
2. tb—>m3
Lo me

Lty — me

3
4
5. ts — my
6. te— my
7

Lty—>mg
8. ts— my
9. ty—my3

10. tio — M3

1. ty — ms

Execu-
tion
time

165.289
630.165
704.225
2159.625

2432.432
1867.470

309.917
237.603
13.636
289.256

196.281

Table 6.21. Task lengths for each SMD and energy consumption with load balancing

Load

consump- - lance

Total % of Total % of total  Energy
Task(s) .
SMD task total execution engaged
scheduled . . . : .
size  task size time time tion
m ts 39 13.495 2432.432 26.713 0.604
m. t;, ty 1 3.806 2863.85 31.450 16.941
tl, tz, t7, t8y tg,
ms ot 154 53.287 1942.149 21.328 2.152
my te 41 14.187 1867.47 20.508 24.116
Total 1 289 100 0105.901 100 43.813

402.614
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Fig. 6.15. Variance and standard deviation of the load distribution for scheduling with and with-
out load balance in terms of the total size of tasks executed and total execution time

6.3.3.5 Time Complexity Analysis

The complexity analysis of the proposed algorithm is discussed as follows.

 Particle representation and generation of the swarm: The dimension of a par-
ticle is the same as the number of tasks (i.e., n). So, the initial population Ppop of
N particles is generated in O(N X n).

o Calculation of fitness value: The particle with length n is evaluated in O(n)
time along with O(N) for initialising G-

e Velocity and position updating: Iteratively, the velocity and positions of a sin-
gle particle are updated in O(n) times. Here, the overall iteration to update the

swarm needs O(MAX;; X N X n).

Hence, the time complexity of the overall process is O(N xn)+ O(N) +
O(MAX;; X N X n) time or O(N X n) time as an upper bound. Therefore, the over-

all complexity of our PSO-based scheduling algorithm for MCC is O(N X n).

6.3.4 Experiment, Results and Analysis

In this section, we present the details of the simulated experiment for the energy-
efficient scheduling. We also discuss the observed results and analyse them in the

context of the set objectives.

6.3.4.1 Dataset Curation

We used the same dataset as mentioned in Section 6.2.3.1. However, we considered
only CPU clock frequency, no. of cores, and current CPU load for this experiment.
We considered the CPU information of a total of fifteen SMDs'
(M = {my,m,, ms, ..., mys}), chosen randomly. We wanted to check the perfor-

mance of the proposed scheduling algorithm on a smaller and larger set of tasks
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on a smaller and larger number of SMDs. Therefore, we further divided M into two
sets of SMDs (M; = {my,m,, mg, ..., myo} and M, = {my;, M43, My3, ..., Mys}). The

complete details of M, and M, are shown in Table 6.22 and Table 6.23, respectively.

Table 6.22. Dataset used in the experiment: resource parameters details of SMDs of set 1 (M;)

Parameter \ my m. m;3 my ms mse m; ms my Mo
CPU frequency
(GHz) 2.2 1.5 1.5 13 13 17 2.5 2.5 1.7 2.5
ICIEI[IJII::::)S (in 2 4 2 8 8 8 2 4 2 2
CPU load (%) 92 16 44 89 13 64 60 99 26 53
Effective CPU | 0.0478 | 0.3750 | 0.0682 | 0.1169 | 0.8000 | 0.2125 | 0.0833 | 0.1010 | 0.1308 | 0.0943

Table 6.23. Dataset used in the experiment: resource parameters details of SMDs of set 2 (M)

\ Parameter \ Mu \ M2 My My \ Mg \
CPU frequency (GHz) | 2.5 2.2 2.2 15 22
CPU cores (in numbers) = 2 2 8 8 8
CPU load (%) 53 26 19 5 | 19
Effective CPU | 0.0943 01692  0.9263  0.8000 | 0.9263 ‘

6.3.4.2 Simulation Provisioning
The details of the simulation environment and settings are given in the following.
The experimental setup for this experiment also was same as mentioned in Section

6.2.3.2.1.

6.3.4.2.1 Task Initiation

For experimental purposes, we generated tasks of two different sizes. One set
(Ty = {t1y,t1, t1g - t1,00)) comprised of 100 subtasks while the other (T, =
{t2,t2, ta5, s ta,0,}) having 200 subtasks, as shown in Fig. 6.16. Here, Ty # T5,
i.e., the instruction lengths of the tasks in the two task sets are dissimilar. The tasks
were randomly generated with the instruction length ranging from 5 to 250. The
purpose and rationale behind considering these varieties of task sets are discussed

in Section 6.3.4.3.

=ttt ety |
T, = {tzl,tzz oy entoy |

Fig. 6.16. Different task sets used in the experiment

T =T,

6.3.4.2.2 Control Parameters

The details of the control parameters used in the proposed PSO-based algorithm
and the GA are listed in Table 6.24. Since MCT, MinMin, MaxMin, and PPIA are
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heuristic algorithms, no such specific control parameters are required.

Table 6.24. Control parameters for PSO and GA

Algorithm Parameter Values
Proposed- |Population size 10
PSO [terations 100
Initial C, G 2.0962
parameters I, T Rand(o,1)
w 0.0967
Initial social influence Rand(o,1)
Initial personal influence | Rand(o,1)
Vmax 0.5
Vmin 0.5
Winax 1.0
Woin 0.0
GA Population size 10
[terations 100
Crossover point 40
Mutation rate 0.1

6.3.4.3 Performance Analysis

We performed an extensive simulation of the proposed PSO-based energy effi-
ciency scheduling algorithm for performance assessment and analysis on the real
dataset described in Section 6.3.4.1. We performed the same experiment with the
same assumed scenarios for a comparative assessment using three other popular
algorithms. Since our proposed algorithm is a metaheuristic, to have a justified
comparative assessment, we deliberately selected a combination of heuristics
(MTC, MinMin, MaxMin, and PPIA) and metaheuristic (GA) algorithms that are

popularly used in similar problem scenarios.

As we did in Section 6.3.3.4 to demonstrate the illustration, we also frame the per-
formance analysis into two segments. We wanted to compare the performance of
the proposed PSO-based algorithm with others in terms of i) scheduling consider-
ing only energy efficiency and ii) scheduling considering energy efficiency with

load balance.

Further, to assess the performance of the proposed algorithm, we designed diverse
task-SMD mapping scenarios. As discussed in Section 6.3.4.2.1, we generated task
sets with two different sizes of 100 (T;) and 200 (T,) subtasks, T; # T,. These tasks
were scheduled to two SMD sets of 5 (M;) and 10 (M,), M; # M,. To achieve task
heterogeneity, we assigned two different task sets to the same SMDs alternatively,

i.e., T; and T, both were mapped first to M; and then to M,. Similarly, for SMD
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variability, we assigned a single set of tasks to both sets of SMD, i.e., T; was first
mapped to both M; and M, and then T, was mapped to both M; and M,. All the

four mapping scenarios are shown in Fig. 6.17.

M, M, T, T,
T, T, | M, M,

(a) (b)
Fig. 6.17. Task sets to SMD mapping scenarios: (a) task heterogeneity and (b) SMD variability

6.3.4.3.1 Energy Efficiency

First, we ran all the algorithms without considering load balance but with four dif-

ferent sets of task-SMD combinations.

Task heterogeneity: Fig. 6.18 shows the energy efficiency achieved by all six algo-
rithms when a) T; and T, are scheduled to M; and b) T; and T, are scheduled to
M,. In all the combinations, our algorithm performs significantly well compared to
the other five algorithms. It is no-brainer to assume that the larger task set would
consume more energy. From the figure, it can be seen that our algorithm reflects
this variability better than others. It exhibits almost linear variations for both sets,

very close to the exact variation.
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(a) Task heterogeneity with a smaller set of SMDs (b) Task heterogeneity with a bigger set of SMDs

Fig. 6.18. Task heterogeneity for energy efficiency without load balance

SMD variability: Fig. 6.19 shows the energy efficiency achieved by all six algo-
rithms when a) T; is scheduled to M; and M, and b) T, is scheduled to M; and M,.
In both the cases, our algorithm performs far better than others. However, here we

witness a contrasting pattern for SMD-task variability. When the number of SMDs
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is increased, the energy consumption decreases for T; but it increases for T,. This
is true for all other algorithms except MCT, MaxMin and PPIA. For these, the en-

ergy consumption decreases marginally when the number of SMDs increases.
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Fig. 6.19. SMD variability for energy efficiency without load balance

6.3.4.3.2 Energy Efficiency with Load Balance

In the second case, we ran all the algorithms considering load balance for schedul-

ing along with energy efficiency with four different sets of task-SMD combinations.

Task heterogeneity: Fig. 6.18 shows the energy efficiency achieved by all six algo-
rithms while considering load balance when a) T; and T, are scheduled to M; and
b) T, and T, are scheduled to M,. In this case also for all the combinations, our
algorithm performs appreciably better than other algorithms. As usual, the energy
consumptions upsurge with a larger task size for the same set of SMDs. From the
figure, it can be seen that the energy consumption increased almost more than
threefold when the task size gets doubled for five SMDs. For ten SMDs also, this

trend continues.

SMD variability: Fig. 6.21 shows the energy efficiency achieved by all six algo-
rithms while considering load balance when a) T; is scheduled to M; and M, and
b) T, is scheduled to M; and M,. As expected, in this case also our algorithm beats
others handsomely. Similar to the case of SMD variability (Fig. 6.19) in Section
6.3.4.3.1, here also we can see a mix of contrasting patterns for SMD-task variability.
For GA and our algorithm, when the number of SMDs is increased, the energy con-

sumption increases for T; but it decreases for T,. For MCT, MaxMin and PPIA it
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increases for both T; and T,. For MinMin, it is just opposite, i.e., the energy con-

sumption decreases for T; and increases for T,.
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Fig. 6.20. Task heterogeneity for energy efficiency with load balance
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Fig. 6.21. SMD variability for energy efficiency with load balance

6.3.4.4 Statistical Analysis

To check the significance of our algorithm in comparison to other considered al-
gorithms, we conducted a one-way ANOVA [694] test on energy efficiency with
load balance. As usual, the null hypothesis (H,) assumes that the mean of all the
groups is equal, and based on that, one group can be rejected. Whereas the alter-

native hypothesis (H,) assumes means are not equal.

We used ten random task sets where each set consisted of 100 tasks executed on
five SMDs. The summary of the input sets of the ANOVA test is presented in Table
6.25. It is observed from the table that the means and variances of the considered
algorithms are different. It can be observed that the proposed algorithm has the

lowest mean, whereas MinMin has the highest.
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The overall statistics of the input set using energy efficiency with load balance are
given in Table 6.26. Similar to Section 6.2.3.4.1, here also, the H, was rejected if the
P-value < o, o =0.05, i.e., F-statistic >> F-critical. Therefore, we rejected the null
hypothesis at the one percent level.

Table 6.25. Input sets of ANOVA test

' Groups Count Sum Mean Variance
MCT 10 76807.342 | 7680.734 | 1476793.675
MinMin 10 90568.831 | 9056.883 | 11639390.706
MaxMin 10 76111.989 | 7611199 | 1604243.861

PPIA 10 76723.792 | 7072.379 | 1457034.273
GA 10 46001.658 | 4600.166 | 5911437.533
PSO 10 39210.122 | 3921.012 | 3493183.924
Table 6.26. ANOVA test results
Source of variation SS DF MS F-statistic P-value |F-critical

Between groups 204050825.470 5 40810165.094 9.571 0.000 2.386
Within groups 230244155.748 | 54 | 4263780.662 - - -
Total 434294981.218 | 59 - - - -

6.3.5 Discussion

In Section 6.3.4.3, we witnessed that our algorithm is well capable of coping with
the task heterogeneity. It performs almost linearly compared to other algorithms,
reflecting the dynamics of task heterogeneity. However, for SMD variability, it ex-
hibits inconsistent behaviour. In fact, it is true for all the algorithms. None shows
a definitive pattern of energy consumption variations with varying numbers of
SMDs. One possible explanation for this could be the heterogeneity in the CPU
properties of the SMDs.

Nevertheless, our primary goal was to minimise the overall energy consumption
for scheduling a set of MCC tasks to a set of SMDs. In this regard, we can claim
that our algorithm is successful in both the cases - only energy efficiency and en-
ergy efficiency with load balance. Fig. 6.22 shows the average energy consumption
of all the algorithms for four experimental alternatives. Our algorithm outperforms
all other five algorithms. Our algorithm performs significantly better than others
in the first case (only energy efficiency). In the second case (energy efficiency with

load balance), the performance difference is smaller than in the first case.

Based on Table 6.25, the mean differences between the proposed algorithm and

the other compared algorithms are shown in Fig. 6.23. It can be observed that the
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closest performer to our algorithm was the GA. It is probably due to the similarity
in the optimisation approach. Both GA and the proposed PSO-based algorithm are
metaheuristics, while others are heuristic. Whereas the performance of the
MinMin is the farthest from the proposed one i.e., MinMin has the worst energy
efficiency. This is because MinMin always tries to minimise the execution time by
repeatedly scheduling the tasks to the most potent SMDs. And the energy con-

sumption increases with the power of the SMD CPU.

The energy efficiency achieved by our proposed algorithm not only allows sustain-
able computing but also significantly impacts the monetary expenses like energy
bills to the organisations which adopted MCC as computing infrastructure. Fur-
thermore, the reduction in energy consumption of individual SMDs would ensure
lesser battery drainage due to MCC tasks. This would be a great relief for SMD
users, stopping them from worrying about charging their SMDs frequently. This
will not only lead to minimised users' inhibition in joining MCC but also increase

the retention of the SMD providers in MCC, which would, in turn, steer the success

of MCC.

6.4 Limitations and Further Scope

Although we fulfilled the desired objectives with the solutions presented in Section
6.2 and Section 6.3, and achieved satisfactory performances for scheduling tasks in
an MCC scenario considering various resource parameters, there are a few inade-
quacies which might be addressed to augment its effectiveness and usability. Be-

low, we mention a few such arguments.

n ~
11000 g < o
o S wn g o wn
10000 I 8 § 3 Ty s 8
9000 ] 2 3 3 8 % 8
8000 R eoR ~ R R g 2 =Mt
™ @ 3
7000 L - © 3 = MinMin
N9 3
6000 E § MaxMin
5000 Q
4000 PPIA
3000 mGA
2000 M Proposed
1000
0
Energy consumption Energy consumption with load balance

Fig. 6.22. Average energy consumption of all the four case scenarios
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Fig. 6.23. Mean differences between the proposed and other algorithms

Here, we considered a simulated task assignment scenario where the size of each
task is exactly known. But for real implementation, pre-calculating the task size
accurately is not trivial, and this would affect the estimation of the resource re-
quirement of the assigned tasks. Though this is true for all scheduling problems, it
would be interesting to observe the performance of the proposed algorithm in a

real MCC implementation.

We assumed that the CPU of the SMDs would be instantaneously available when-
ever an MCC task was scheduled. But in a practical MCC, the tasks are executed in
a cycle stealing fashion, i.e., when the CPU of the allocated SMD is found free, the
task is executed. This might affect the overall execution time. Although this should
not impact the correctness of the proposed scheduling algorithm, its effectiveness
might be affected. However, it would not be generally possible to include CPU cy-
cle availability in the scheduling criteria because it is almost impossible to assess
it beforehand. In a local MCC where the SMD users remain more or less the same
continuously, and if the usage patterns of the devices can be tracked and analysed,

the probable availability of the CPU cycles can be predicted to some extent.

To calculate the resource strength of an SMD, we overlooked the GPU power,
though it plays a crucial role in maximising the throughput for highly parallel tasks.
However, including the GPU would not change the fundamental behaviour of the
algorithm. Hence, it can be said that the proposed algorithm would also work effi-

ciently for GPU-centric tasks.

We assumed that all the tasks were independent and could be executed absolutely
in parallel. But generally, when a large task is divided into multiple smaller tasks,

dependency constraints are associated among the tasks, meaning not all tasks are
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parallelly executable. This makes the scheduling more complex. In future work, we
aim to propose a DAG-based task model that would ensure the maximum parallel-

isation with maintaining the serializability.

In the second case, we ignored the energy consumption accounting for data trans-
fer because we assumed our MCC setup of a single WLAN and the MCC tasks as
CPU-intensive. However, for an internetworked MCC and/or an MCC application
with mostly I/O bound jobs, the communication energy consumption would be a
significant factor. Therefore, for an ideal and universal energy-efficient scheduler

for MCC, the data transfer energy should be incorporated.

We did not consider makespan and energy efficiency together as scheduling crite-
ria. It will be challenging to have a balance between these two conflicting objec-

tives. Parity optimality can be used to address this.

6.5 Summary

In this chapter we addressed the scheduling problem in MCC. In the first part of
the chapter, we proposed a multicriteria-based resource-aware task scheduling al-
gorithm for MCC. We aimed to develop a scheduling algorithm that would mini-
mise the makespan and maximise the load balance and resource utilisation of an
MCC system on the whole. We adopted a heuristic approach to attain the consid-
ered optimising criteria to attain the optimisation goal. The SMDs were assessed
by their resource strength based on different static (CPU clock frequency and the
number of cores, battery capacity) and dynamic (present CPU load, available RAM,
available battery, and device temperature) resource parameters. Based on the re-
source strength and the task length, the tasks were mapped to the suitable SMDs
so that the considered objectives were accomplished. We compared our algorithm
with three other popular metaheuristics and heuristic algorithms - PSO, GA, and
MCT. It was observed that for the considered objectives, our algorithm showed
better results in various simulation scenarios. The efficacy of the proposed algo-
rithm was further validated through two statistical measures - ANOVA and post

hoc.

In the second part of the chapter, we proposed a PSO-based scheduling algorithm
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to minimise the overall energy consumption of the SMDs in executing an MCC task
while maintaining a reasonable load balance among the SMDs. We considered two
different experimental scenarios - first, targeting only energy efficiency and sec-
ond, targeting energy efficiency with load balance. Further, we diversified the anal-
ysis by bringing variability in the number of tasks and SMDs. For each category,
we checked each SMD's energy consumption and the overall energy efficiency
achieved to execute all the scheduled tasks. We compared the performance of the
proposed algorithm with several well-known heuristic and metaheuristic algo-
rithms on various parameters. With respect to task heterogeneity, our algorithm
exhibited almost linear variations of increased energy consumption with increased
task size. But the experiment on SMD variability was inconclusive. Nevertheless,
our algorithm achieved the most energy efficiency for scheduling in MCC with or

without load balance consideration.
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Resource Availability Prediction in Local MCC

“Your ability will not help if you do not give your availability.” --- Saji Ijiyemi

7.1 Introduction

Due to the user's mobility, the SMDs in a particular network may not be available
continuously over time. However, they might be available for several discrete pe-
riods. Due to this instability, there is always a high probability that a crowdworker
leaves the network without finishing the assigned job. There are two possible so-

lutions when a crowdworker departs before completing the assigned task:

i. The job is restarted from the beginning by another crowdworker. This delays
the task execution as the whole process is to be started again, including re-
source (crowdworker) selection and job assignment.

ii. Savepoints are maintained periodically. When a crowdworker departs, the task
is rollbacked to the last savepoint and resumed from there by another
crowdworker. This approach might be better than starting the job from the
beginning, but keeping savepoints is overhead, and also determining the pe-

riod length after which the savepoints are noted is a decision challenge.

In both cases, the QoS of MCC is compromised, which ultimately affects the suc-
cessful realization of MCC. That is why assessing the availability of the assignee

crowdworker before assigning a task to it is so crucial in MCC.

To address this issue, we suggest, before submitting a task to a crowdworker, it is
to be assured that it would not leave until the job is finished. But, for mobile de-
vices, guaranteeing availability is not straightforward. One approach, as assumed
in [156], is that every crowdworker should announce their departure time immedi-
ately after entering the MCC network. Based on the declared departure time, suit-
able jobs would be assigned so that they could be finished timely. But it has two
issues - i) it is not very practical and ii) there is no guarantee that the crowdworker

will keep its word that it would not leave before the declared time. Due to several
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reasons, a crowdworker may leave the network unscheduled even if it is priorly

agreed to be there for a specified period.

Another possible option, as suggested in [140], is that if a crowdworker wants to
leave the network, it will notify the coordinator. This would solve the first issue
mentioned above, but not the second completely. The overhead of job handover
remains. Also, some dishonest devices may not follow the rule and leave abruptly

without notifying.

Owing to these drawbacks, we propose an availability-aware SMD selection
scheme for a local MCC. We predict the availability of an SMD for a minimum
duration of the task length (execution period), based on which the resource selec-
tion decision can be made. For this, we tracked the in-time and out-time of the
SMDs on the previous occasions when they were connected to the considered Wi-
Fi AP. Based on this historical mobility/availability information, the probable avail-
ability till a particular duration of an SMD at any given point of time is assessed.

This problem can be represented as time-series analysis.

Considering this, we propose a specialized convolutional feature extraction
method to enhance the performance of the LSTM and GRU models. The presented
approach is most useful for a local MCC environment where the SMD owners visit
and join the MCC network on a regular basis. In such a scenario, the main objective
of this chapter is to improve the QoS and reliability of the MCC by minimizing the
handoff or job offloading and reassignment. The success of this approach will de-

pend on the accuracy of the availability prediction of the considered SMDs.
In particular, in this chapter, we aim to achieve the followings:

e Design a logging model for recording the in-time and out-time of SMDs in
consideration with respect to a Wi-Fi AP.

e Propose a novel dynamic feature extraction process suitable for the datasets
where the features are unknown.

e Designed a novel method for representing time-series data into a vector to
perform the convolutional feature extraction.

o Combine the proposed convolutional feature extraction with both LSTM and
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GRU for prediction.
o Compare the prediction performances with each other as well as with the basic

LSTM and GRU, and also with ARIMA.

7.2 Solution Approaches and the Proposed Solution

Time-series analysis is exercised on the set of observations where each record is
observed at a specific time. Analysis of these types of data is not like other statisti-
cal modelling and inference due to its apparent correlation in adjoining records
introduced by the sampling time. These features limit the applicability of many
statistical models that assume the observations are independent and identically
distributed. The ARIMA model has been a widely used linear model for forecasting
time-series data, and it has been a standard for a long time. ARIMA considers lag
value determined by the correlation among the continuous values, the dependency
between an observation and the residual, and seasonality (if it exists) for building
the model and result in close prediction of the future [699]. ARIMA models have
the advantages of being more flexible compared to other statistical models and
have a better performance for a longer sequence of data with a stable correlation
between past observations. But ARIMA model can only capture the linear pattern
of the data, but not the hidden patterns that are stochastic and non-linear in nature
[700] [701]. Furthermore, an ARIMA model assumes a constant standard deviation
in errors, which may not be true in practice. Like most of the real data, the dataset

considered in this work is also non-linear in nature.

Another statistical model, the Markov chain process, has been popularly used for
time-series prediction, especially where clarifying the interrelationships of the
model is important [702] [703]. Though they provide significant accuracy for short-
term prediction, they have a probability of presenting miss prediction for long-
term sequences, which is necessary for crowdworker selection. For instance, it may
happen that a particular user was not available for certain days in the previous
months. Due to the lack of memory in the Markov model (and also ARIMA), it will
not be able to hold the long-term historical information; hence it cannot incorpo-

rate such irregularities in the model. This leads to inaccurate predictions.
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In summary, the classical time-series analysis models suffer from the following lim-

itations:

They are sensitive towards missing values.

They require special transformations to convert the data into a linear form.

Most of them support only univariate data; they do not support multiple inde-

pendent variables to be taken as inputs.

Though they have satisfactory prediction performance in short-term predic-

tions they miserably fail in long-term predictions.

Furthermore, the traditional prediction models work better when the data follow
a statistical distribution. In our problem, we wanted to capture the real and con-
sistent behavior of the user, which required considering a long-term data relation-
ship. In the user mobility data, there is very little chance of finding a perfect fit of
a distribution, which is a basic requirement for the traditional prediction tools. To
tackle this, a time-series analysis model is needed that can make a prediction on

the dataset without fitting a known distribution.

Considering the above-mentioned issues, machine learning techniques are in-
tensely studied for being used in time-series forecasting. Machine learning models
are good to exercise the non-linear patterns. K-nearest neighbor, decision tree,
support vector machine, etc., can be used to model time-series data when the ob-

servation consists of a non-linear pattern.

Capturing the changes of the contexts in time-series data is an important criterion
for a prediction model. However, traditional machine learning based prediction
models cannot capture these changes appropriately. Hence, they are unable to pro-
vide satisfactory prediction accuracy in cases where the contexts of the considered
data change frequently. In the user mobility data considered in this work, we
needed to identify the users' behavior for a longer period. To provide expected pre-

diction results, the prediction models need to capture these changes appropriately.

Deep learning based model like RNN (recurrent neural network) is capable of re-
taining long-term contextual information due to the presence of specialized

memory. It uses a looping constraint that helps to capture the sequential
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information in the data. Deep learning models also have the inherent capability of

searching relations in the dataset without prior knowledge of any distribution.

Generally, RNNs are used for time-series data prediction. But traditional RNNs suf-
fer from vanishing gradient problems when the input length is too high [704]. So,
to overcome the issue, upgradations of RNNs like LSTM (long-short term memory)
[705] [706] and GRU [707] [708] were developed. Both methods have been popu-

larly used for sequence modeling and time-series predictions [709].

However, a prediction model is not sufficient to attain a handsome or the expected
prediction accuracy since these models work on the available input features with-
out any feature extraction. For that, it is required to apply a proper feature extrac-
tion mechanism to the dataset. The feature extraction is a crucial aspect of design-
ing a prediction model because it captures the most relevant features from the

data, which generally improves the model performance.

The existing and known feature extraction methods, in most cases, can extract the
exact features required for a particular prediction problem. But they may be in-
competent when we do not have a clear idea of the most dominant features. There-
fore, we needed to frame a feature extraction methodology that would be able to
dynamically extract the features for solving the proposed resource availability pre-

diction problem.

Recently, CNNs (convolutional neural networks), the idea of which was first pre-
sented by Fukushima in 1980 [710] and later improved by LeCun et al. [711] [712],
have become popular for extracting dynamic features for prediction-based models.
A CNN is a special kind of neural network for processing 2-D image data [713] [714]
[715]. CNNs are very effective in extracting and learning features not only from one-
dimensional sequential data, such as univariate time-series data, but also from

multivariate time-series data [716] [300].

Owing to their distinct architecture, the LSTM layers in an LSTM model can cap-
ture the sequence pattern information quite efficiently. As the LSTM networks are
designed to deal with temporal correlations, they utilize only the features provided

with the training set [295]. The convolutional layers of CNNs can extract more
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valuable features by filtering out the noise prevailing in the raw input data [306].
They are also capable of scooping the hidden features that otherwise could not be
pulled out by using only LSTM. This is the core motivation to exercise a convolu-
tional feature extraction layer in addition to the basic LSTM for our presented
availability prediction problem, so that we could exploit the benefits of both tech-
niques to achieve a better prediction performance. The combination of CNN and
LSTM is useful for learning features of not only short-term time variation but also

long-term dependency periodicity [290].

7.3 System Model and Hypothesis

We considered a local environment (campus) where the SMDs get connected to a
WLAN through a Wi-Fi AP. The owners of the SMDs may come within the range
of the network and get connected more than once a day. Most users (with their
SMDs) are often available for a certain duration. For example, in a classroom and
a workplace, the students and the workers are regularly available for a specific du-
ration in consistent intervals. If they take public transport for commuting to reach
their institute and workplaces, in most probability, they would be available for the
duration from boarding point to the destination. Similarly, some people spend a
certain amount of time in the library regularly while some go to the same coffee
shop or canteen regularly. In all these cases, the availability of the users can be

predicted by analysing their presence history.

The accuracy of the availability prediction depends on the campus type. For exam-
ple, in a classroom or a typical office, the availability is somewhat predetermined.
In comparison, the predictability in a coffee shop (where certain customers come
regularly) varies according to its location and its services. Likewise, in public
transport (regularly used by a group of commuters), the availability is very much
fixed (usually one drops at his stop regularly). The crowdworker predictability gra-

dient based on the availability is shown in Fig. 7.1.
To model the working of a local MCC, we have assumed the following:

e We considered a general task execution model where the SMDs receive some

compute-intensive tasks either individually or in batches.



286

e Each task has its own computation requirements, input and output data size,

and finite execution time. We assume that these parameters are known.
e Each crowdworker avails a fixed and equal bandwidth.

e Each crowdworker completes the assigned subtask within a finite time and

sends back the results before leaving the MCC network.
e A crowdworker would share its resources until it is present in the network.

e All SMDs, which have the MCC client installed, are considered as crowdworker

and willing to share their resources, either on a profit or non-profit basis.

e The SMDs in MCC are uniquely identified by the UlDs.

s g ® ﬁ am ) .
A 4 3 g.‘r o1
e o s £ .0 Rl |
Coffee shop (for Library (for regular Office Public transport (for Classroom
regular customers) readers) regular passengers)
||]| Increasing possible availability of a set of SMDs for a

Fig. 7.1. Predictability gradient of crowdworkers’ availability in a local MCC
To model our proposed availability prediction, we further assume the following

considerations:

e In need of job submission, the coordinator looks for the most appropriate

crowdworker(s).

e The MCC coordinator already has a list of suitable crowdworkers (based on

some pre-set criteria).

e The coordinator decides to pick the top-ranked crowdworker(s) from the list

(as discussed in Chapter 4 and 5).

e Just before submitting the job to the selected crowdworker, the coordinator
wants to be sure of the probability of the crowdworker being available until

the job is finished.

o If) as per prediction, the SMD is not supposed to be available, the next SMD in
the list is considered, and again the availability of this SMD is checked. This
continues until the suitable SMD of which the availability period is greater

than the task execution time is found.
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In this chapter, we address the last point, i.e., before the job is actually be submit-
ted, the stability of the selected crowdworker is to be assessed for the duration of
execution of the assigned job. If the crowdworker's presence time is greater than
the task size (estimated execution time), then only it is finally considered for the

job assignment. The workflow diagram of the whole process is depicted in Fig. 7.2.
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Fig. 7.2. Workflow diagram of crowdworker selection based on availability

7.4 Resource Availability Prediction in MCC

In this section, we present the comprehensive details of the proposed resource

availability prediction method along with the experimental results and discussion.

7.4.1 Problem Definition

Let T; be the job size (execution time) of a job Jand M be the preferred crowdworker
for J. At the time of job submission (t;), we need to know how long M might be
available after t; let this be Mq. J should be submitted to M if and only if Eq. 7.1 is

satisfied, where k is some constant.
Mg 2T +k (7.1)

The details of the M, calculation and crowdworker selection criteria are discussed

in the next subsection.

7.4.2 Problem Designing

We considered the resource selection process as the combination of two processes:

a) resource availability prediction and b) resource selection. The resource selection
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depends on the outcome of resource availability prediction. However, our primary
focus is on resource availability prediction. Major components/modules of the

crowdworker selection procedure are as follows:

Calculate completion time: The job completion time is an approximate higher
bound value of the time required for the particular job to complete. This function
needs two parameters, namely, job size (Tj) and time of job submission (¢;). The
completion time (7;°) of the job J is defined by Eq. 7.2. We assumed that for each J,

Tj is the same for all crowdworkers.
T-C = 7:'] + tj (72)

Get selected device: As depicted in Fig. 7.2, the top-ranked SMD in the

crowdworker's list for the reckoned job would be considered.

Get session history: According to the UID from the 'get selected device' module,
the history of the SMD is extracted from the log. The details of data collection are

discussed in Section 7.7.1.

Predict out-time: This module takes the session history of the device's previous
session durations to predict the expected session duration in the current time us-
ing CLSTM (convolutional LSTM). The current session in-time (S;) is added with
the forecasted duration (Py,) to get the predicted out-time (S,) of the device in the
current session, as shown in Eq. 7.3. The predicted availability duration (M,) is

calculated by Eq. 7.4.
So =Sit Py (7.3)

So, Eq. 7.1 can be rewritten as Eq. 7.5, where k;is the runtime of the prediction
algorithm and k, is the padding time between decision making and job dispatch-

ing.
Ma = ’Z}C + kl + kz (75)

Crowdworker selection: This function checks for the availability of the SMD for

the specified duration and returns a Boolean for selection. The SMD would be
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selected if Eq. 7.5 is satisfied.

Fig 7.3 depicts the combined workflow of the above-mentioned modules, whereas

Fig. 7.4 shows the important steps followed towards SMD selection.
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Fig 7.3. Availability prediction process of an SMD in MCC

Fig. 7.4. Important steps for SMD selection

As the experiment, we followed the below-mentioned steps:

a. Based on the historical data, a deep learning based prediction model is pre-
sented to predict each SMD’s stability within a particular network, i.e., Wi-Fi
AP, at any given point of time.

b. The session out-time of an SMD is predicted for a given session in-time.

c. A random job submission system is simulated to evaluate the performance of

the prediction model using various metrics.

7.5 LSTM and GRU Architectures

In this section, we discuss the basic architectures of LSTM and GRU.
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7.5.1 LSTM

An LSTM cell is a special variant of an RNN cell that can handle information of a
more extended sequence of information, which can help make the prediction more
accurate for longer sequences. Each cell is capable of barring information from
flowing through or allowing it to flow through without any change. Allowing the
information without change enables LSTM to remember the information from the
previous timesteps. Through the LSTM cell sequence chain, there are several in-
puts and outputs which allow adding or removing information to the cell
state. Adding or eliminating information to a cell is done through gates. The gates
are the neural networks used to regulate the information flow through the sequence
chain of LSTM cells. These gates or the sigmoid layers turn all output values in a
value between o and 1, where o indicates nothing of the component should pass
through, and 1 s for the opposite, i.e., everything would be through. The three gates
that control the cell states of an LSTM are briefed below, and a typical LSTM block

is shown in Fig. 7.5.

Forget gate: This gate gets rid of the information we want to remove from the cell

state. The forget gate (f;) is defined by Eq. 7.6.
ft = o(Wrxy + Ughe_q + by) (7.6)

where, o is the sigmoid gate activation function, W and Uy are the weight matrices
for mapping the current input layer and previous output layer into the forget gate,
h¢_, is the output from the previous cell, x; is the input layer, and by is the bias

vector for the forget gate calculation.

Input gate: The input gate (i;) controls how much information from the current
input layer (x;) pass to the current input cell state (¢;). This gate, defined by Eq.
7.7, gives the outputs between o and 1 and decides which values to update. The
candidate values which are to be used to update the cell state are calculated by a
tanh layer, as shown in Eq. 7.8. The input gate combined with the current cell state

updates the current output cell state (c;), as defined by Eq. 7.9.
ir = o(Wixy + Uihy—1 + by) (7.7)

¢ = tanh(Wox, + Ughe_q + by) (7.8)
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Ce = fe X g Hip X & (7.9)

where, W; and U; are the weight matrices for mapping the current input layer and
previous output layer into the input gate, W, and U, are the weight matrices for
mapping the current input layer and previous output layer into the current input
cell state, b; and b, are the bias vectors for the input gate and input cell state cal-
culation, and tanh, a hyperbolic tangent function, is the activation function for

current input cell state.

Output gate: The output gate (0,) controls the amount of information passed from
the current cell state to the current output cell state. To get the filtered output, the
current cell state is passed through a sigmoid layer, as shown in Eqg. 7.10, which
decides what parts of the cell state would be considered as output. The final output
(h¢) is derived, as shown in Eq. 7.11, by multiplying the output of the sigmoid gate,
with the output cell state that is passed through a tanh layer (to squeeze the values

between -1and 1).
o = o(Wox¢ + Ughi—q + by) (7.10)
h: = o; X tanh (c;) (7.11)

where, I, is the weight matrix for mapping the current input layer into the output
gate, b, is the bias vector for the output gate calculation, and c;_, is the previous

output cell state.

7.5.2 GRU

Unlike LSTM, a GRU unit does not have any output gate; rather, it has only two
gates — a) update gate and b) forget gate. These two gates are trained to retain
information from the past without losing it through time and eradicate the irrele-
vant information that are not needed for prediction. A typical GRU architecture is

shown in Fig. 7.6, while its components are briefed below.

o Update gate: The update gate helps a GRU model determine how much of the
past information from the previous blocks need to be forwarded to the next
block. This allows the model to decide to copy all the past information and

eliminate the vanishing gradient problem. The update gate z; for timestep t is
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calculated using Eq. 7.12. Here, x; is the input at step t, and h¢, is the hidden
state that holds the information for the previous t-1 units. W, and U, are the
respective weights of x; and h:.. The sigmoid activation function (o) helps to

keep the value of z; between o and 1.

L

ze = o(Wyxy + Uzhe—q) (7.12)
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Fig. 7.5. A typical LSTM block

o Reset gate: The reset gate r; is used to decide how much of the past infor-

mation to forget. r is calculated using Eq. 7.13.

e =o(Wpxy + Uphe_q)

(7.13)

Current memory content: The current memory content h': uses the reset
gate to store the relevant information from the past and is calculated using Eq.

7.14, where O denotes Hadamard (elementwise) product.

hi = tanh (Wx; + r:OUh;_,) (7.14)

Final memory: The final memory h: at current timestep t is a vector that holds
information for the current block and is passed to the next. h; is calculated
using Eq. 7.15. The update gate determines how much information to be re-

tained from current (h's) and previous (h:,) memory contents.

hy = z.Oh,_; + (1 — z,)Ohy (7-15)
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