

Sustainable Computing with
Mobile Crowd Computing

THESIS

Submitted in Partial Fulfilment of the Requirements
for the Degree of

Doctor of Philosophy (PhD)

PIJUSH KANTI DUTTA PRAMANIK

Reg. No.: NITD/PhD/CS/2017/00969

Under the Supervision

of

DR. PRASENJIT CHOUDHURY

Associate Professor, Department of Computer Science & Engineering

National Institute of Technology, Durgapur, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

National Institute of Technology Durgapur

West Bengal – 713209

India

January 2023

©Pijush Kanti Dutta Pramanik
January 2023

All rights reserved

“So many of our dreams at first seems impossible, then they seem im-

probable, and then, when we summon the will, they become inevitable”

--- Christopher Reeve

To my parents

Smt. Jharna Dash

Sri Pranab Kumar Dutta Pramanik

ACKNOWLEDGEMENTS

This thesis is the outcome of more than seven years of relentless effort. I’d like to

commend myself for being able to uphold the zeal, perseverance, tenacity and pa-

tience through this long period despite the odds and hurdles.

I thank my supervisor Dr. Prasenjit Choudhury for leading me to this exciting field

of research and encouraging to move forward. I appreciate his kindness of patron-

aging and endorsing my capability and giving me the freedom to carry out the re-

search unreservedly.

I gratefully acknowledge the help and support obtained from my friend and col-

league Saurabh Pal who was always there with me be it with personal and moral

support or assisting in the research works.

I also thankfully acknowledge the aids received from Dr. Tarun Biswas, Dept. of CSE,

IIIT Ranchi, Dr. Bijoy Kumar Upadhyay, Dept. of ECE, TIT, Agartala, Sanjib Biswas,

CBS, Kolkata, and Nilanjan Sinhababu, IIT Kharagpur in some of my research works.

I sincerely thank Dr. Gautam Bandyopadhyay, Associate Professor, Dept. of Manage-

ment Studies, NIT Durgapur, for his valuable comments and suggestions each time I

asked for.

I thank my labmates Avick, Dhananjay, and Pradeep for lending their helping hands

whenever needed.

I’d be at fault not admitting the continuous backing and encouragement received

from my family members. I gratefully thank them for believing and having confi-

dence on me.

I’m fortunate to have unconditional support and espousal from my wife Anindita,

allowing me to focus on my research exclusively. Finally, I must say sorry to my

adorable daughter Pajaswati for failing spending time with her even though see

craved for. I missed her childhood.

Date: 30th January 2023 Pijush Kanti Dutta Pramanik

Registration No.: NITD/PhD/CS/2017/00969

Department of Computer Science & Engineering

National Institute of Technology Durgapur

West Bengal – 713209, India

NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR

CERTIFICATE

It is certified that the work contained in the thesis entitled "Sustainable Computing with

Mobile Crowd Computing" has been carried out by me, Pijush Kanti Dutta Pramanik (Roll

No.: 15/CA/1503, PT, PhD), under the guidance of Dr. Prasenjit Choudhury. The data re-

ported herein is original and that this work has not been submitted elsewhere for any other

Degree or Diploma.

(Signature of Candidate)

Pijush Kanti Dutta Pramanik

Place: Durgapur

Date: 30th January 2023

This is to certify that the above declaration is true.

(Signature of Supervisor)

Dr. Prasenjit Choudhury

Place: Durgapur

Date: 30th January 2023

DECLARATION/STATEMENT OF THESIS PREPARATION

Thesis title: Sustainable Computing with Mobile Crowd Computing

Degree for which the thesis is submitted: PhD

1. Thesis preparation guideline has been followed while preparing the thesis.

2. All specifications regarding thesis format etc. have been followed.

3. The contents of the thesis have been organized based on the guidelines.

4. The thesis has been prepared without resorting to plagiarism.

5. All sources used have been cited appropriately.

6. The thesis has not been submitted elsewhere for a degree.

(Signature of the student with date)

Name: Pijush Kanti Dutta Pramanik

Registration No.: NITD/PhD/CS/2017/00969

Department: Computer Science & Engineering

ABSTRACT

The embracement of information and computation technologies to an enormous

extent has resulted in environment contamination drastically. Moreover, the in-

troduction of the IoT and big data applications have garnered a massive amount of

digital data. Processing and analysing these data demand vast computing re-

sources, proportionately. The major downside of producing and using computing

resources in such volumes is the deterioration of the Earth’s environment. The pro-

duction process of the electronic devices involves hazardous and toxic substances

which not only harms human and other living being’s health but also contaminate

the water and soil. The production and operations of these computers in largescale

also results in massive energy consumption and greenhouse gas generation. More-

over, the low use cycle of these devices churns out a huge amount of not-easy-to-

decompose e-waste. In this outlook, instead of buying new devices, it is advisable

to use the existing resources to their fullest, which will minimize the environmen-

tal penalties of production and e-waste.

On the other hand, the advancement of computing technology has miniaturized

computers into the scale of few millimetres or centimetres. The new-age proces-

sors of the smart mobile devices (SMDs) such as smartphones and tablets require

less power and dissipate less heat while offering significant computation capability.

This brings to a new breed of revolutionary computing technology – the SMD com-

puting. Evolution of SMDs has actually realized the miniaturization of computing

devices with processing capability as par to a microcomputer.

Furthermore, a grid of such SMDs cumulatively can garner enough processing

power to resolve complex computational jobs. The philosophy of combining com-

putation power of numerous public-owned SMDs to escalate the computation

power leads to the idea of mobile crowd computing (MCC). MCC utilizes the idle

computing resources of public's SMDs, available voluntarily or in return of incen-

tives, providing a feasible and cost-effective, flexible, and scalable high-perfor-

mance computing solution.

In this thesis we advocate for adopting MCC to abate the use of traditional HPCs

such as data centres and supercomputers. We aim to establish MCC as the most

viii

feasible computing system solution to achieve sustainable computing. Towards

this, we present a detailed comparison, between MCC and other HPC systems such

as supercomputers and Grid and Cloud Computing, in terms of environmental ef-

fects (e.g., energy consumption, greenhouse gas generation, etc.), which confirms

the advantages of MCC as a sustainable HPC system.

Though several empirical works have established the feasibility of mobile-based

computing for various applications, there is a lack of comprehensive coverage on

MCC. In this regard, we aim to explore the fundamentals and other nitty-gritty of

the idea of MCC in a comprehensive manner. Starting with an explicit definition

of MCC, we present the enabling backdrops and the detailed architectural layouts

of different models of MCC, along with categorising different types of MCC based

on infrastructure and application demands. MCC is extensively compared with

other HPC systems (e.g., desktop grid, cloud, clusters and supercomputers) and

other similar mobile computing systems (e.g., mobile grid, mobile cloud, ad-hoc

mobile cloud, and mobile crowdsourcing). MCC being a complex system, various

design requirements and considerations are extensively analysed. We meticulously

mention the potential benefits of MCC, with special discussions on the ubiquity

and sustainability of MCC. The issues and challenges of MCC are critically pre-

sented in the light of further research scopes. Importantly, several real-world ap-

plications of MCC are identified and propositioned.

To achieve satisfactory performance and QoS of an MCC system, selecting the most

suitable resources (SMDs) is crucial. For this, the essential prerequisite is to profile

and assess the resource parameters and their present status precisely. However,

considering the heterogeneity and dynamicity of these resource parameters, pro-

filing them, and assessing their fitment for different requirements is not trivial. As

a result, selecting the most suitable SMDs as resource provider also becomes con-

founding. In this chapter, we present a methodological approach to profile the can-

didate SMDs for assessing their resources to be considered for job scheduling. For

profiling, we considered various resource parameters, some of which are collected

instantaneously, some are accumulated from logged data, and some parameters

are derived by analysing the log data.

The selection of appropriate SMDs is generally made based on the computing

ix

capability of an SMD, which is defined by its various fixed (e.g., CPU and GPU

power, no. of cores, RAM, etc.) and variable (e.g., current CPU and GPU load, bat-

tery remaining, etc.) resource parameters. As the selection is made on different

criteria of varying significance, the resource selection problem can be duly repre-

sented as an MCDM problem. However, for the real-time implementation of MCC

and considering its dynamicity, the resource selection algorithm should be time-

efficient. Considering that we aim to find out an MCDM method that would be

most suitable to be used for resource selection in such a dynamic and time-con-

straint environment. For this, we present a comparative analysis of various MCDM

methods under asymmetric conditions with varying selection criteria and alterna-

tive sets. In this comparative study, we considered the Entropy method to decide

criteria weights and EDAS, ARAS, MABAC, MARCOS, and COPRAS methods for

resource ranking. We considered four different sizes of decision matrices for eval-

uation. We executed each program with four datasets on a Windows-based laptop

and also on an Android-based smartphone to evaluate the average runtime. Be-

sides time complexity analysis, we perform sensitivity analysis and ranking order

comparison to check the correctness, stability, and reliability of the rankings gen-

erated by each method.

Scheduling is an important aspect for MCC like any other distributed systems. The

overall performance and the integrity of the MCC can be assessed by factors such

as execution time, resource utilisation, load balancing, etc. An efficient task sched-

uler should conform to these requirements. Conversely, an inefficient scheduling

method will have a negative impact on the QoS of MCC. Furthermore, considering

the battery-powered constrained energy of the MCC resources, i.e., the SMDs, it is

crucial to minimise the energy consumption to complete the scheduled task. This

can be achieved to some extent by optimising the task scheduling to the appropri-

ate SMDs. However, considering only energy efficiency might lead to a huge load

imbalance among SMDs, i.e., the most energy-efficient SMDs would be overloaded

most of the time. In a dynamic and heterogeneous system like MCC, it is nontrivial

to realise an optimised scheduler, in view of the fact that scheduling in a heteroge-

neous distributed system is an NP-complete problem. To address this, we present

two scheduling solutions. In the first one, we propose a heuristic algorithm for

x

resource-aware scheduling in MCC with the objectives of minimising makespan

and maximising resource utilisation and load balancing. Before scheduling, the re-

source strength of each SMD is calculated by considering several static and dy-

namic resource parameters such as CPU clock speed, number of cores, its present

load, available RAM and battery, and device temperature. The work is analysed and

validated by extensive simulations with synthetic as well as collected datasets. Ex-

perimenting with diverse simulation scenarios confirms the consistency and relia-

bility of the proposed algorithm. Our algorithm exhibits significant improvements

compared to other popular metaheuristic algorithms such as PSO, GA, and a heu-

ristic algorithm MCT in terms of the considered objectives. The statistical hypoth-

esis tests viz. ANOVA and post hoc tests are carried out to demonstrate the effec-

tiveness of the proposed work. In the second solution, we propose a PSO-based

scheduling algorithm to minimise the overall energy consumption among a set of

SMDs designated to execute a set of MCC tasks while maintaining a satisfactory

load balance level. The proposed method is analysed and validated by extensive

simulations with synthetic as well as collected datasets. The work is compared with

popular heuristic (MCT, MinMin, MaxMin, and PPIA) and metaheuristic (GA) op-

timisation algorithms, displaying significant improvements over others in terms of

the considered objectives. Here also, ANOVA is carried out to demonstrate the

distinctiveness of the proposed PSO-based algorithm.

In a local MCC, where the SMDs are connected to the MCC coordinator through a

local network such as WLAN, the availability of the SMDs become crucial for the

attainment of MCC and maintaining its QoS. Schedule jobs to the fleeting SMDs

would result in frequent job offloading and, in the worst case, job loss, which would

affect the overall performance and the QoS of MCC. In a Local MCC, generally, a

set of users are available for a certain period regularly. Based on this information,

the chances of a user being available for a certain duration from a given point of

time can be predicted. In this chapter, we provide an effective model to predict the

availability of the users (i.e., their SMDs) in such an MCC environment. We argue

that before submitting a job to an SMD, the stability of it is to be assessed for the

duration of execution of the job to be assigned. If the predicted availability period

is greater than the job size, then only the job should be assigned to the SMD. An

xi

accurate prediction will minimize the unnecessary job offloading or job loss due to

the early departure of the designated SMD. Along with experimenting with a read-

ymade API available in Keras named ConvLSTM, we propose an advanced convo-

lutional feature extraction mechanism that is applied to LSTM and GRU-based

time-series prediction models for predicting SMD availability. To collect user mo-

bility data, we considered a research lab scenario, where real mobility traces were

recorded with respect to a Wi-Fi AP. We compared the prediction performances

of convolutional LSTM and GRU with the basic LSTM and GRU and ARIMA in

terms of MAE, RMSE, R2, accuracy, and perplexity. In all the measurements, the

proposed convolutional LSTM exhibited considerably better prediction perfor-

mance.

Besides a centralised system, MCC can also be implemented as a P2P system where

the participating SMDs may borrow resources from each other, when needed. Here,

a resource-deficient SMD user would be able to seeks it neighbouring resource-rich

SMDs' help to carry out a resource-wanting job. It would relieve users from going

to the cloud. However, user mobility imposes a serious challenge in P2P MCC

(PMCC). User's unpredicted mobility makes the PMCC unstable. To address this,

we aim to find a stable cluster of SMD users who would likely to be ideal candidates

to form an ad-hoc PMCC. We propose a novel mobility prediction method to assess

the probability of a group of SMD users to be relatively static with respect to each

other. We submit an algorithm to estimate the relative stability of an SMD with

respect to its neighbourhood over a period of time, irrespective of its geographical

location. We assess the short-term relative stability between a group of SMD users

as well as the long-term mobility pattern between them. For both the experiments,

we have used the UCSD dataset that comprises real-traces of 235 mobile device

users for 78 days across 402 APs. Furthermore, sometimes it may happen that the

required service is not available within the immediate network of the service re-

quester. In this case, we suggest to have a carrier that would carry the request to a

service provider in another network, get the service from it and handover to the

requester. Here also, considering the mobility of the service consumer, provider,

and the carrier should be crucial for proper and timely service exchange. Consider-

ing this, we further present a service provisioning model in PMCC based on the

xii

mobility patterns of the above-mentioned three entities. In the second experiment,

we specifically focussed to get the information - a) average time gap after a user

connects to an AP, b) average duration he/she remains connected to an AP, and c)

a set of four users who remains connected to a particular AP simultaneously. Know-

ing the mobility patterns of the service consumer, provider, and the carrier, in

terms of the above-mentioned information, is helpful to bind them in particular

time frames. This allows avoiding the liveness problem (consumer waits for the

service indefinitely) and availability problem (carrier returns with the service but

cannot find the consumer). The estimated results of both experiments are analysed

and validated using different metrics.

We aspire to establish a proof-of-concept for the feasibility and use of MCC as a

sustainable edge computing solution (MCC-edge). The widespread adoption of

utility-based real-time applications has placed the necessity of widescale deploy-

ment of edge computing infrastructure. Crowdsourced edge computing is deemed

a suitable way out. For the experiment case, we consider a typical smart HVAC

system of an office building. We aim to process the HVAC data in real-time using

the MCC-edge setup within the building for auto adjustment of the AC controller

and error notifications. To maintain the ideal comfort level of the occupants, we

present an extensive calculation using the dew point and heat index of the room.

Along with a general framework of MCC-edge, a high-level layered architecture of

the MCC-edge for HVAC is presented. We report the module-wise design and im-

plementation procedures with exhaustive details. The performance of MCC-edge

is statistically compared with the commercial edge and cloud computing solutions

in terms of cost, energy consumption, and latency, showing a significant advantage

over the two.

Finally, to carry forward the accomplishment of the MCC vision, the future pro-

spects are briefly elucidated. In this thesis, we tried to cover every aspect, in gen-

eral, that is required to know to understand MCC. We position this work as a pre-

liminary reference for the interested researchers, both novice and experienced,

who are keen to work on MCC, as well as other stakeholders willing to explore the

benefits of MCC.

KEYWORDS

Sustainable computing

High-performance com-

puting

Smartphone computing

Mobile computing

Mobile grid computing

Volunteer computing

Opportunistic compu-

ting

Crowdsourced system

Crowd computing

Mobile crowd compu-

ting

Service-oriented com-

puting

Mobile cloud

P2P cloud

Ad-hoc mobile cloud

Edge computing

IoT

HVAC

Resource profiling

Resource selection

Task scheduling

Resource-aware sched-

uling

Load balance

Availability prediction

Mobility tracing

Mobility prediction

Relative mobility

Benchmarking

MCDM

Entropy

EDAS

ARAS

MABAC

MARCOS

COPRAS

Multicriteria optimisa-

tion

Metaheuristic

Particle swarm optimi-

sation

Deep learning

Convolutional feature

extraction

CNN

RNN

LSTM

GRU

Dew point

Heat index

Energy consumption

Energy-efficiency

Environmental hazards

TABLE OF CONTENTS

Abstract ………...… vii

Keywords ……….. xiii

List of Figures …………………………………………………………………………….…………….………… xxiii

List of Tables …………………………………………………………………………………………………....... xxvii

Acronyms ………..……………………………………………………………………………………………….….. xxx

Publications ………………………………………………………………………………………………………. xxxvi

1 Introduction .. 1

1.1 Escalating Environmental Perils .. 1

1.2 Environmental Impact of ICT .. 3

1.3 Sustainable Computing .. 8

1.3.1 Defining Sustainable Computing ... 8

1.3.2 Elements of Sustainable Computing .. 9

1.4 Computational Measures Adopted for Sustainable Computing 11

1.5 Sustainable Computing Paradigms ... 16

1.6 MCC as Sustainable Computing .. 22

1.6.1 Mobile Crowd Computing ... 22

1.6.2 Sustainability of MCC.. 23

1.6.3 Environment-friendliness of MCC in Comparison to Other HPC Systems 25

1.7 Motivation of this Study .. 29

1.7.1 Powerful SMD Hardware .. 29

1.7.2 Mass Adoption of SMDs ... 30

1.7.3 Abundant Idle Resources .. 31

1.7.4 Popularity of Crowdsourcing .. 31

1.7.5 Implementational Opportunities for MCC ... 31

1.7.6 Aim and Scope of the Work .. 33

1.8 Research Objectives .. 34

1.9 Thesis Structure .. 37

2 Related Work .. 40

2.1 Introduction ... 40

2.2 MCC as Computing Paradigm .. 43

2.2.1 Related Research .. 43

2.2.2 Global Projects .. 49

2.2.3 Research Scope ... 52

2.3 Resource Profiling in MCC .. 53

2.3.1 Profiling Mobile Devices’ Information for Smartphone-based Computing 53

2.3.2 Research Scope ... 53

2.4 Resource Selection in MCC Using MCDM Method ... 53

2.4.1 Optimization-based Resource Selection in Mobile Grid/Cloud 54

2.4.2 MCDM for Resource Selection in Distributed Computing ... 54

2.4.3 MCDM for Smartphone Selection .. 56

2.4.4 Comparing Different MCDM Methods ... 56

2.4.5 Research Scope ... 56

2.5 Task Scheduling in MCC... 59

2.5.1 Resource-Aware and Multicriteria-based Scheduling in Mobile and Distributed

xv

Computing ... 60

2.5.2 Energy-Efficient Scheduling in Mobile and Distributed Computing 61

2.5.3 Research Scope ... 62

2.6 Resource Availability Prediction in MCC .. 67

2.6.1 Resource Availability Prediction in Mobile Grid/Cloud Computing 68

2.6.2 Deep Learning for Resource Management and Prediction 69

2.6.3 Research Scope ... 70

2.7 Mobility-Aware Service Provisioning for P2P MCC ... 70

2.7.1 P2P Mobile Computing .. 71

2.7.2 Mobility Prediction Approaches .. 71

2.7.2.1 Movement History Based Mobility Prediction ... 72

2.7.2.1.1 The Synthetic Based Mobility Model .. 72

2.7.2.1.2 Trace Based Mobility Prediction... 73

2.7.2.2 Received Signal Strength Based Mobility Prediction .. 75

2.7.2.3 GPS Based Mobility Prediction ... 76

2.7.3 Mobility Tracking ... 77

2.7.4 Mobility and Stability Prediction in Mobile Computing Systems 77

2.7.5 Mobility-aware Service Discovery and Delivery ... 78

2.7.6 Research Scope ... 78

2.8 MCC as Edge Computing .. 78

2.8.1 Mobile Devices Edge Computing ... 79

2.8.2 Edge Computing for Smart Buildings .. 79

2.8.3 Research Scope ... 80

2.9 Summary .. 80

3 MCC: Concept, Architecture and Research Challenges .. 81

3.1 Introduction ... 81

3.2 Enabling Backdrops for Realising MCC ... 84

3.2.1 Competence of Contemporary SMDs as Computing Resources 84

3.2.1.1 Advancements in Mobile CPU ... 85

3.2.1.1.1 Symmetrical Multi-Processing .. 85

3.2.1.1.2 Heterogeneous Multiprocessing ... 85

3.2.1.1.3 Powerful and energy-efficient CPUs ... 86

3.2.1.2 GPU-Accelerated Computing ... 86

3.2.1.3 SoC Technology ... 87

3.2.1.4 Sufficient Memory ... 88

3.2.2 SMD Market and User Development .. 89

3.2.3 Increasing Wi-Fi Zones .. 91

3.2.4 Low-cost and Highspeed Mobile Data ... 91

3.2.5 Highspeed and Energy-efficient Short-range Communication 92

3.2.6 HPC Through MCC ... 93

3.3 Rudiments of MCC .. 93

3.3.1 Definition and General Properties of MCC ... 94

3.3.2 Comparing MCC with Other HPC Systems ... 95

3.3.2.1 MCC vs Grid Computing .. 99

3.3.2.2 MCC vs Cloud Computing .. 100

3.3.2.3 MCC vs Cluster Computing .. 102

3.3.2.4 MCC vs Supercomputers .. 102

xvi

3.3.3 Comparing MCC with Other Mobile Computing Systems 103

3.3.3.1 MCC vs Mobile Grid Computing .. 103

3.3.3.2 MCC vs Mobile Cloud Computing ... 103

3.3.3.3 MCC vs Ad-hoc Mobile Cloud ... 103

3.3.3.4 MCC vs Mobile Crowdsourcing .. 104

3.3.4 MCC Architectures .. 105

3.3.4.1 Centralized... 105

3.3.4.1.1 Architecture and Working .. 105

3.3.4.1.2 Major Components .. 107

3.3.4.2 P2P .. 109

3.3.4.2.1 Architecture and Working .. 109

3.3.4.2.2 Major Components .. 110

3.3.4.3 Extended Centralized .. 111

3.3.4.4 Extended P2P ... 112

3.3.5 MCC Types.. 113

3.3.5.1 Global MCC... 113

3.3.5.2 Local MCC ... 114

3.3.5.2.1 Infrastructure-based Local MCC .. 114

3.3.5.2.2 Ad-hoc Local MCC .. 115

3.4 MCC System Design Criteria and Considerations .. 116

3.4.1 System Design Criteria .. 117

3.4.1.1 Abstraction .. 117

3.4.1.2 Generalisation .. 118

3.4.1.3 Adaptability ... 119

3.4.1.4 Reliability ... 119

3.4.1.5 Fault-tolerance and QoS ... 119

3.4.1.6 Scalability and Elasticity .. 122

3.4.1.7 User Friendliness .. 123

3.4.1.8 Non-intrusiveness .. 123

3.4.1.9 Energy Efficiency .. 123

3.4.1.10 SLA, Liabilities and Legalities .. 123

3.4.2 System Design Considerations .. 125

3.4.2.1 Determining Architectural Model .. 125

3.4.2.2 Crowdworker Management .. 126

3.4.2.2.1 Crowdworker Discovery ... 126

3.4.2.2.2 Crowdworker Profiling .. 126

3.4.2.2.3 Crowdworker Selection ... 127

3.4.2.2.4 Crowdworker Availability .. 128

3.4.2.2.4.1 Availability of Sufficient Crowdworkers ... 128

3.4.2.2.4.2 Availability of a Particular Crowdworker ... 128

3.4.2.2.5 Crowdworker Monitoring... 130

3.4.2.3 Task Farming .. 130

3.4.2.4 Task Scheduling ... 131

3.4.2.4.1 Optimized Scheduling .. 131

3.4.2.4.2 Energy-aware Scheduling ... 131

3.4.2.4.3 Balanced and Fair Scheduling ... 132

3.4.2.4.4 Dynamic Scheduling ... 132

xvii

3.4.2.5 Resource Scavenging ... 132

3.4.2.6 Opportunistic Computing .. 133

3.4.2.7 Workflow Management .. 134

3.4.2.8 Result Verification and Aggregation ... 134

3.5 Advantages of MCC ... 135

3.5.1 General advantages of MCC ... 135

3.5.2 Benefits of Local MCC .. 136

3.5.3 Ubiquity and Pervasiveness of MCC .. 136

3.5.4 Sustainability of MCC... 137

3.6 Issues and Challenges .. 138

3.6.1 SMD and Communication Issues .. 139

3.6.1.1 Battery Depletion .. 139

3.6.1.2 Heat .. 140

3.6.1.3 Network Connectivity and Bandwidth ... 141

3.6.2 Major Challenges ... 143

3.6.2.1 Ensuring Security, Privacy and Trust .. 143

3.6.2.2 Motivating People to Participate in MCC ... 148

3.6.2.3 Framing Sustainable Economic Model ... 149

3.7 Potential Applications of MCC.. 151

3.8 Limitations and Further Scopes .. 157

3.9 Summary ... 157

4 Resource Profiling in MCC .. 161

4.1 Introduction .. 161

4.2 System Model and Hypotheses .. 162

4.3 Resource Profiling and Assessment .. 163

4.3.1 Fixed Parameters .. 164

4.3.2 Dynamic Parameters ... 165

4.3.3 Persistent Parameters ... 167

4.3.4 Customized Benchmarking ... 169

4.3.5 Parameters that are not Profiled .. 172

4.4 System Design... 173

4.4.1 Server Module .. 173

4.4.1.1 Data Communication ... 174

4.4.1.2 Resource Profiling .. 175

4.4.1.2.1 SMD Connected ... 177

4.4.1.2.2 During Connection Session .. 178

4.4.1.2.3 SMD Disconnected ... 178

4.4.1.3 Resource Selection ... 179

4.4.2 Client Module .. 181

4.5 System Development ... 183

4.5.1 Server Module .. 183

4.5.2 Client Module .. 184

4.5.3 Database ... 185

4.6 Implementation ... 185

4.6.1 Server ... 185

4.6.2 Client .. 186

4.6.3 Networking .. 187

xviii

4.7 Limitations and Further Scopes .. 187

4.8 Summary ... 188

5 Resource Selection in MCC .. 190

5.1 Introduction .. 190

5.2 Resource Selection and MCDM .. 191

5.2.1 Challenge in Resource Selection in MCC .. 191

5.2.2 Defining the Resource Selection Problem in MCC ... 193

5.2.3 MCDM .. 194

5.2.4 Resource Selection as an MCDM Problem .. 195

5.2.5 MCDM Methods Considered for the Comparative Study .. 197

5.2.5.1 EDAS Method .. 198

5.2.5.2 ARAS Method .. 200

5.2.5.3 MABAC Method .. 201

5.2.5.4 COPRAS Method .. 203

5.2.5.5 MARCOS Method ... 204

5.2.6 Entropy Method for Criteria Weight Calculation ... 206

5.3 Research Methodology ... 208

5.3.1 Resource Selection Criteria ... 208

5.3.2 Data Collection ... 209

5.3.3 Experiment Cases ... 209

5.3.3.1 Case 1: Full List of Alternatives and Full Criteria Set ... 211

5.3.3.2 Case 2: Lesser Number of Alternatives and Full Criteria Set 211

5.3.3.3 Case 3: Full List of Alternatives and a Smaller Number of Criteria 211

5.3.3.4 Case 4: Lesser Number of Alternatives and Criteria .. 212

5.4 Experiment, Results, and Comparative Analysis .. 213

5.4.1 Experiment .. 213

5.4.2 Results ... 213

5.4.3 Sensitivity Analysis .. 221

5.4.4 Time Complexity Analysis ... 224

5.5 Discussion .. 229

5.5.1 Findings and Observations ... 229

5.5.2 Rationality and Practicability .. 232

5.5.2.1 Assertion .. 232

5.5.2.2 Application .. 233

5.5.2.3 Implications .. 234

5.6 Limitations and Further Scopes .. 234

5.7 Summary ... 235

6 Task Scheduling in MCC ... 237

6.1 Introduction .. 237

6.2 Resource-Aware Scheduling ... 239

6.2.1 System Model and Problem Formulation .. 239

6.2.1.1 System Model ... 239

6.2.1.2 Execution model .. 240

6.2.1.3 Problem Formulation .. 242

6.2.2 Proposed Heuristic-based Resource-aware Scheduling for MCC 242

6.2.2.1 Resource Strength Assessment ... 243

6.2.2.2 Scheduling Cost Estimation .. 243

xix

6.2.2.3 Illustration ... 243

6.2.2.4 Computation Complexity Analysis ... 247

6.2.3 Experiment, Results and Analysis .. 248

6.2.3.1 Data Curation .. 248

6.2.3.2 Simulation Provisioning ... 249

6.2.3.2.1 Experimental Setup... 249

6.2.3.2.2 Task Initiation ... 249

6.2.3.2.3 Control Parameters ... 250

6.2.3.3 Performance Analysis ... 250

6.2.3.3.1 Experiment Case I .. 251

6.2.3.3.2 Experiment Case II .. 253

6.2.3.4 Statistical Analysis .. 254

6.2.3.4.1 ANOVA .. 254

6.2.3.4.2 Post Hoc ... 256

6.2.4 Discussion .. 257

6.3 Energy-efficient Scheduling .. 258

6.3.1 Overview of PSO .. 258

6.3.2 System Model and Problem Formulation .. 259

6.3.2.1 Execution Model .. 259

6.3.2.2 Computational Energy Calculation .. 260

6.3.2.3 Data Transfer Energy Calculation .. 261

6.3.2.4 Final Objective .. 262

6.3.3 Proposed PSO-based Energy-aware Scheduling for MCC 263

6.3.3.1 Particle Representation .. 263

6.3.3.2 Fitness Calculation ... 264

6.3.3.3 Velocity and Position Updation ... 264

6.3.3.4 Illustration ... 265

6.3.3.4.1 Energy-efficient Scheduling ... 266

6.3.3.4.2 Energy-efficient Scheduling with Load balance .. 266

6.3.3.5 Time Complexity Analysis ... 269

6.3.4 Experiment, Results and Analysis .. 269

6.3.4.1 Dataset Curation .. 269

6.3.4.2 Simulation Provisioning ... 270

6.3.4.2.1 Task Initiation ... 270

6.3.4.2.2 Control Parameters ... 270

6.3.4.3 Performance Analysis ... 271

6.3.4.3.1 Energy Efficiency ... 272

6.3.4.3.2 Energy Efficiency with Load Balance .. 273

6.3.4.4 Statistical Analysis .. 274

6.3.5 Discussion .. 275

6.4 Limitations and Further Scope .. 276

6.5 Summary ... 278

7 Resource Availibility Prediction in Local MCC .. 280

7.1 Introduction .. 280

7.2 Solution Approaches and the Proposed Solution .. 282

7.3 System Model and Hypothesis ... 285

7.4 Resource Availability Prediction in MCC ... 287

xx

7.4.1 Problem Definition ... 287

7.4.2 Problem Designing ... 287

7.5 LSTM and GRU Architectures ... 289

7.5.1 LSTM... 290

7.5.2 GRU ... 291

7.6 Performance Measurement Metrics .. 293

7.7 Data Collection and Selection ... 295

7.7.1 Data Collection ... 295

7.7.2 Data Selection ... 296

7.8 Prediction Using ConvLSTM2D ... 296

7.8.1 Data Preprocessing .. 296

7.8.2 Feature Extraction .. 297

7.8.3 Prediction Model ... 297

7.8.4 Test Result and Analysis ... 298

7.8.4.1 Training and Testing Performance .. 298

7.8.4.2 Model Evaluation .. 299

7.8.5 SMD Selection ... 300

7.9 Prediction Using Convolutional LSTM and GRU ... 300

7.9.1 Data Preparation ... 300

7.9.1.1 Data Frame Creation .. 301

7.9.1.2 Data Normalization .. 302

7.9.2 Feature Optimization... 303

7.9.2.1 Feature Extraction .. 303

7.9.2.1.1 Issues with Popular Feature Extraction Methods .. 304

7.9.2.1.2 Need for Convolutional Feature Extraction ... 304

7.9.2.1.3 The Convolutional Feature Extraction Process.. 306

7.9.2.2 Feature Selection... 308

7.9.3 Prediction Method .. 310

7.9.3.1 Convolutional LSTM and GRU Modelling .. 310

7.9.3.2 Training ... 311

7.9.4 Experiment, Results, and Analysis ... 311

7.9.4.1 Experimental Setup ... 311

7.9.4.2 Training and Testing Split ... 312

7.9.4.3 Experiment and Result Analysis Consideration ... 312

7.9.4.4 Prediction Results Using Conventional GRU .. 313

7.9.4.5 Prediction Results Using Convolutional GRU .. 313

7.9.4.6 Comparing CGRU with Traditional GRU .. 314

7.9.4.7 Prediction Results Using Conventional LSTM ... 315

7.9.4.8 Prediction Results Using Convolutional LSTM ... 315

7.9.4.9 Comparing CLSTM with Other Methods .. 315

7.9.5 SMD Selection ... 318

7.10 Discussion .. 318

7.10.1 GRU vs LSTM ... 318

7.10.2 Concern Over Space and Time Cost of LSTM ... 319

7.10.3 CNN for Temporal Data ... 320

7.11 Limitations and Further Scopes .. 320

7.12 Summary .. 321

xxi

8 Mobility-Aware Service Provisioning in P2P MCC ... 323

8.1 Introduction .. 323

8.2 Single- and Multi-cluster PMCC ... 326

8.3 Service Lending Scenarios ... 327

8.4 UCSD Dataset .. 329

8.5 Predicting Continuous Relative Stability in a Single-cluster PMCC 333

8.5.1 Resource Availability Problem in PMCC .. 333

8.5.2 Relative Topological Stability ... 333

8.5.3 Experiment and Validation ... 334

8.5.3.1 Calculating Relative Stability ... 334

8.5.3.2 Short-term Relative Stability Assessment .. 335

8.5.3.3 Long-term Mobility Prediction Using Logistic Regression Analysis 339

8.5.3.4 Results and Analysis .. 340

8.5.3.4.1 Logistic Regression Analysis ... 341

8.5.3.4.2 Empirical Testing ... 343

8.5.3.4.3 Classification Accuracy .. 343

8.5.3.4.3.1 Classification of Training Dataset .. 344

8.5.3.4.3.2 Classification of Evaluation Dataset .. 344

8.5.3.4.4 Validation .. 344

8.5.3.4.5 Comparison of Short- and Long-term Relative Stability 347

8.6 Predicting Discrete Relative Stability in a Multi-cluster P2P MCC 348

8.6.1 System Model .. 348

8.6.1.1 Key Components ... 349

8.6.1.2 Proposed Service Provisioning Scheme .. 349

8.6.1.3 Issues and Challenges in the Proposed System .. 351

8.6.1.4 Essential Criteria of the Key Components .. 353

8.6.2 Experiment and Validation ... 354

8.6.2.1 Data Preprocessing .. 355

8.6.2.2 Calculate the Time Gap After a User Returns to the Network Again 356

8.6.2.3 Identifying a Group of SMDs Connected to an AP Simultaneously 357

8.6.2.4 Selecting the Reference Node .. 357

8.6.2.5 Calculating Relative Stability ... 359

8.6.2.6 Calculate the Latency of the Users in Returning to the AP 360

8.6.2.7 Validation ... 362

8.7 Limitations and Further Scopes .. 363

8.8 Summary ... 363

9 MCC as Edge Computing: A Proof-of-Concept... 366

9.1 Introduction .. 366

9.1.1 Edge Computing .. 366

9.1.2 Crowdsourced Edge Computing ... 367

9.1.3 Edge Computing through MCC .. 367

9.1.4 Smart HVAC and MCC-Edge .. 368

9.1.4.1 HVAC: A Major Energy Consumer .. 368

9.1.4.2 Smart HVAC: Reducing the Energy Consumption .. 368

9.1.4.3 Edge Computing for Smart HVAC ... 369

9.1.4.4 MCC-Edge for Smart HVAC .. 371

9.1.5 Chapter Objective .. 371

xxii

9.2 Considerations for the Proof-of-Concept .. 371

9.2.1 Use Case Scenario ... 371

9.2.2 Overview of the MCC-Edge Enabled HVAC System ... 372

9.2.3 General Considerations .. 373

9.3 HVAC Control Data Calculation ... 374

9.3.1 Dew Point Calculation and Consideration .. 377

9.3.2 Heat Index Calculation and Consideration ... 380

9.4 System Architecture and Implementation .. 382

9.4.1 The MCC-Edge System Model... 383

9.4.1.1 Major Components ... 383

9.4.1.2 System Architecture ... 385

9.4.1.2.1 Layered Architecture .. 385

9.4.1.2.2 Hierarchical Architecture ... 387

9.4.1.3 System Process .. 388

9.4.2 System Set Up ... 388

9.4.2.1 Hardware and Software ... 388

9.4.2.2 Circuit Design ... 391

9.4.2.3 Networking and Communication ... 391

9.4.2.4 System Layout .. 395

9.4.3 System Design and Implementation ... 395

9.4.3.1 Sensor Module ... 396

9.4.3.2 SMD Module .. 396

9.4.3.3 LC Module .. 397

9.4.3.3.1 Sensor Data Collection and Job Creation .. 399

9.4.3.3.2 SMD Resource Acquiring .. 399

9.4.3.3.3 SMD Selection .. 400

9.4.3.3.4 SMD Allocation .. 401

9.4.3.3.5 Job Schedule and Dispatch ... 402

9.4.3.3.6 Result Collection... 402

9.4.3.3.7 Result Analysis and Action Steps ... 404

9.4.3.4 Controller Module .. 408

9.4.3.5 MC Module ... 409

9.5 Comparing MCC-Edge with Commercial Edge and Cloud Computing....................... 410

9.5.1 Cost ... 411

9.5.2 Latency .. 413

9.5.3 Energy Consumption ... 414

9.5.4 Environmental Hazards .. 415

9.5.5 Evaluation .. 417

9.6 Discussion .. 418

9.7 Limitations and Further Scopes .. 419

9.7.1 MCC-Edge ... 419

9.7.2 MCC-Edge Enabled HVAC ... 421

9.8 Summary ... 424

10 Conclusions and Future Vision ... 427

References .. 436

LIST OF FIGURES

Fig. 1.1. Elements of sustainable computing ... 9

Fig. 1.2. Government's responsibilities in e-waste management.. 11

Fig. 1.3. Role of industries and corporates in e-waste management ... 12

Fig. 1.4. Goals for sustainable development .. 13

Fig. 1.5. Environmental advantages of MCC ... 25

Fig. 1.6. Procedures to be followed for SMD e-waste management ... 29

Fig. 1.7. Factors that affect the environment indirectly in an organisational computing

setup ... 34

Fig. 1.8. Hamburger model of the thesis organisation ... 37

Fig. 2.1. Mobility prediction approaches ... 72

Fig. 3.1. Estimated number of worldwide smartphone subscriptions (in millions) from

2022 to 2027 ... 90

Fig. 3.2. Estimated number of smartphone connections (in millions) of top ten countries by

202590

Fig. 3.3. Different mobility states of the resource provider and consumer 95

Fig. 3.4. Common terms used in discussing MCC ... 96

Fig. 3.5. A taxonomy of grid computing .. 101

Fig. 3.6. Architectural models for MCC .. 105

Fig. 3.7. Major steps for executing MCC tasks in a centralised MCC ... 107

Fig. 3.8. Key components of a centralised MCC ... 109

Fig. 3.9. Responsibilities of the entities in P2P MCC .. 111

Fig. 3.10. General components of a typical P2P MCC .. 111

Fig. 3.11. MCC types classification .. 113

Fig. 3.12. Topological representations of different MCC types ... 113

Fig. 3.13. MCC taxonomy based on the mobility of the resource provider and consumer 117

Fig. 3.14. A crowdworker availability-based task assignment scenario 129

Fig. 3.15. Major power-consuming factors in SMDs .. 140

Fig. 3.16. Causes of SMD overheating .. 141

Fig. 4.1. The pictorial summary of resource profiling and selection .. 162

Fig. 4.2. General components of a local MCC .. 163

Fig. 4.3. An abstract model of a local MCC ... 164

Fig. 4.4. Parameters considered for resource profiling .. 165

Fig. 4.5. Customized benchmarking scheme ... 171

Fig. 4.6. Two-tier MCC .. 173

Fig. 4.7. The schematic diagram for client-server connection .. 175

Fig. 4.8. Resource profiling phases ... 175

Fig. 4.9. Process flow for resource profiling ... 176

Fig. 4.10. Process flow for the client-server communication .. 182

Fig. 4.11. Sequence diagram for client-server communication .. 183

Fig. 4.12. Network layout of a local MCC .. 187

Fig. 5.1. Typical MCDM stages ... 195

Fig. 5.2. SMD ranking using MCDM ... 196

Fig. 5.3. Research framework ... 208

xxiv

Fig. 5.4. Pictorial representation of sensitivity analysis (Case 1) (a) EDAS, (b) COPRAS, (c)

ARAS, (d) MARCOS, (e) MABAC .. 225

Fig. 5.5. Runtime comparison of MCDM methods on the laptop for each case when the

dataset is in the memory ... 230

Fig. 5.6. Runtime comparison of MCDM methods on the laptop for each case when the

dataset is in the secondary storage .. 231

Fig. 5.7. Runtime comparison of MCDM methods on the smartphone for each case when

the dataset is in the phone storage ... 231

Fig. 5.8. Runtime comparison of MCDM methods on the smartphone for each case when

the dataset is in the memory ... 231

Fig. 5.9. Runtime comparison for Entropy method ... 232

Fig. 6.1. Task scheduling in MCC .. 239

Fig. 6.2. Procedure of mapping tasks to SMDs ... 244

Fig. 6.3. Different task sets used in the experiment ... 250

Fig. 6.4. Two experimental scenarios of task-SMD mapping ... 251

Fig. 6.5. Makespan comparison with different task sizes with eight task sets 252

Fig. 6.6. Resource utilisation comparison with different task sizes with eight task sets ... 252

Fig. 6.7. Load balance comparison with different task sizes with eight task sets 253

Fig. 6.8. Average makespan comparison with different task sizes .. 253

Fig. 6.9. Average resource utilisation comparison with different task sizes 253

Fig. 6.10. Average load balance comparison with different task sizes 254

Fig. 6.11. Makespan comparison with same task size .. 254

Fig. 6.12. Resource utilisation comparison with same task size .. 255

Fig. 6.13. Load balance comparison with same task size .. 255

Fig. 6.14. Flowchart of the proposed algorithm .. 266

Fig. 6.15. Variance and standard deviation of the load distribution for scheduling with and

without load balance in terms of the total size of tasks executed and total execution

time .. 269

Fig. 6.16. Different task sets used in the experiment .. 270

Fig. 6.17. Task sets to SMD mapping scenarios: (a) task heterogeneity and (b) SMD

variability .. 272

Fig. 6.18. Task heterogeneity for energy efficiency without load balance 272

Fig. 6.19. SMD variability for energy efficiency without load balance 273

Fig. 6.20. Task heterogeneity for energy efficiency with load balance 274

Fig. 6.21. SMD variability for energy efficiency with load balance .. 274

Fig. 6.22. Average energy consumption of all the four case scenarios 276

Fig. 6.23. Mean differences between the proposed and other algorithms 277

Fig. 7.1. Predictability gradient of crowdworkers’ availability in a local MCC 286

Fig. 7.2. Workflow diagram of crowdworker selection based on availability 287

Fig 7.3. Availability prediction process of an SMD in MCC ... 289

Fig. 7.4. Important steps for SMD selection .. 289

Fig. 7.5. A typical LSTM block ... 292

Fig. 7.6. A typical GRU block .. 293

Fig. 7.7. The database schema for SMD availability logging ... 296

Fig. 7.8. Process flow of the SMD availability prediction model using ConvLSTM2D 297

Fig. 7.9. Accuracy vs. Loss for a) training and b) testing ... 299

Fig. 7.10. Forecasting error estimates ... 300

xxv

Fig. 7.11. A sample frame for in-time and out-time ... 302

Fig. 7.12. Mutual linear normalization of time and pixel intensity ... 303

Fig. 7.13. A sample of data normalization based on input data .. 304

Fig. 7.14. The in-times and out-times of three sample users over a period of 30 days 305

Fig. 7.15. Input parameters for the considered CNN model ... 306

Fig. 7.16. Distribution of the frames for training the feature extractor model 306

Fig. 7.17. Convolutional feature extraction architecture ... 307

Fig. 7.18. Feature extraction for in-time and out-time using CNN .. 308

Fig. 7.19. Purpose of feature selection and the popular regression methods......................... 309

Fig. 7.20. Layered representation of the CLSTM prediction model .. 312

Fig. 7.21. Statistics of GRU for two datasets of (a) training and (b) testing 313

Fig. 7.22. Statistics of CGRU for two datasets of (a) training and (b) testing 314

Fig. 7.23. Improvement percentage of testing accuracy with respect to (a) number of days

of data used and (b) prediction model used ... 314

Fig. 7.24. Statistics of LSTM for two datasets of (a) training and (b) testing 315

Fig. 7.25. Statistics of CLSTM for two datasets of (a) training and (b) testing 316

Fig. 7.26. Accuracy comparison between (a) GRU and CLSTM (b) LSTM and CLSTM and (c)

CGRU and CLSTM ... 316

Fig. 7.27. Improvement percentage of testing accuracy of each model with respect to the

number of days of data used.. 317

Fig. 7.28. Error comparison of CLSTM with ARIMA, GRU, LSTM, and CGRU based

predictions: (a) MAE (b) RMSE, and (c) R2 ... 318

Fig. 8.1. A typical single-cluster P2P MCC model .. 326

Fig. 8.2. Clustering in (a) dense network and (b) sparse network .. 327

Fig. 8.3. Fields of ap_locations.csv and their descriptions .. 331

Fig. 8.4. Fields of wtd.csv and their descriptions .. 331

Fig. 8.5. Snapshot of the 3D view of APs ... 331

Fig. 8.6. Snapshot of the file ap_locations.csv ... 332

Fig. 8.7. Snapshot of the file wtd.csv .. 333

Fig. 8.8. Relative stability is maintained between a group of mobile users, although their

topological positions are changed ... 334

Fig. 8.9. Relative stability of 20 sample users .. 338

Fig. 8.10. Relative stability/mobility analysis for two users (USER_ID’s 39 and 156) on

weekday and weekend ... 338

Fig. 8.11. Different possible scenarios based on Fig. 8.10 ... 339

Fig. 8.12. Basic characteristics of logistic regression .. 341

Fig. 8.13. Link function pi .. 342

Fig. 8.14. Performance measures for training and evaluation datasets 346

Fig. 8.15. Service is available within the network .. 350

Fig. 8.16. Service is not available within the network .. 351

Fig. 8.17. The workflow of the proposed service provisioning system 351

Fig. 8.18. Availability and Liveness problems .. 352

Fig. 8.19. Snapshot of the dataset after eliminating not connected entities 356

Fig. 8.20. Snapshot of ACT of a particular users for a number of APs .. 357

Fig. 8.21. Average connection time graph of (a) User 41 and (b) User 208 358

Fig. 8.22. Relative stability graph of (a) User 41 (b) User 208 (c) User 232 (d) User 242 360

Fig. 8.23. Predicted arrival time of (a) User 41 (b) User 208 (c) User 232 (d) User 242 ... 361

xxvi

Fig. 8.24. Nodes did not arrive on the predicted time .. 362

Fig. 9.1. Energy consumption in commercial buildings ... 369

Fig. 9.2. Major advantages of a smart HVAC system in the context of an office building ... 369

Fig. 9.3. Types of (a) HVAC systems and (b) air conditioning systems 372

Fig. 9.4. Overview of the MCC-edge enable HVAC .. 373

Fig. 9.5. Major components of the automated AC controlling in a typical smart HVAC

system ... 373

Fig. 9.6. Key inputs and the purpose of the MCC-driven smart HVAC system 373

Fig. 9.7. Temperature, relative humidity, and dew point chart .. 375

Fig. 9.8. Corresponding swing in dew point with continuous varying temperature and

relative humidity .. 376

Fig. 9.9. Temperature, relative humidity, and heat index chart ... 377

Fig. 9.10. Relative humidity (%) of Kolkata from 1.2.2019 to 31.1.2020 (retrieved from

weatheronline.in) ... 378

Fig. 9.11. Typical and necessary steps for reducing humidity from room air 380

Fig. 9.12. Flowchart for calculating heat index .. 382

Fig. 9.13. Responsibilities of the local coordinator .. 385

Fig. 9.14. High-level communication architecture of MCC .. 385

Fig. 9.15. The layered architecture of the proposed MCC-edge system 387

Fig. 9.16. Hierarchical architecture of MCC-edge ... 388

Fig. 9.17. The system process sequence of a typical MCC ... 388

Fig. 9.18. System process flow .. 389

Fig. 9.19. Circuit connection between NodeMCU and DHT22, PIR sensor, and IR LED 393

Fig. 9.20. Connection between NodeMCU and Raspberry Pi ... 394

Fig. 9.21. Network layout of a local MCC .. 394

Fig. 9.22. System model layout for a four-storey office building.. 395

Fig. 9.23. Various modules of the proposed HVAC-MCC system .. 397

Fig. 9.24. Job scheduling and dispatching .. 403

Fig. 9.25. Database schema for LC ... 406

Fig. 9.26. A sample error report generated by LC/MC ... 410

LIST OF TABLES

Table 1.1. Environmental advantages and issues of the sustainable computing approaches

 ... 20

Table 1.2. Comparing environmental impacts of SMDs with data centres, supercomputers,

and Grid computing (desktops and laptops) ... 27

Table 2.1. Differences between grid computing and volunteer computing 42

Table 2.2. Survey of comparative analysis of different MCDM methods 57

Table 2.3. Summary of the works related to resource scheduling ... 63

Table 3.1. Comparing different short-range communication technologies for MCC 93

Table 3.2. Comparing MCC with HPC systems .. 96

Table 3.3. Comparing MCC with other mobile computing systems .. 104

Table 3.4. Comparing four MCC architectures ... 106

Table 3.5. Comparing three MCC types ... 114

Table 3.6. Failures in MCC .. 120

Table 3.7. Advancements in different aspects of SMD battery and charging 140

Table 3.8. Research directions to mitigate heating issues of SMDs .. 141

Table 3.9. General approaches to mitigate system integrity in crowd computing 145

Table 3.10. Research attempts to mitigate the issues of security, privacy and trust in

crowdsourced systems .. 147

Table 3.11. Common incentive mechanism techniques for crowdsourcing 150

Table 4.1. Specification and benchmark comparison of two sample SMD models 171

Table 4.2. Parameters that are not a part of the selection process but set as threshold

criteria .. 180

Table 4.3. Considered parameters for crowdworker selection .. 180

Table 4.4. Developmental environment specifications for the resource profiling and

selection system ... 184

Table 4.5. Database schema for SMD profiling .. 186

Table 4.6. Implementational environment specifications for the resource profiling and

selection system ... 186

Table 5.1. Examples of resource selection impasses... 193

Table 5.2. The popular MCDM approaches and their respective popular representatives

 .. 196

Table 5.3. Merits and demerits of the MCDM methods considered in this study 197

Table 5.4. List of selection criteria .. 209

Table 5.5. Decision matrix (Case 1) .. 210

Table 5.6. Decision matrix (Case 2) .. 211

Table 5.7. Minimized selection criteria ... 212

Table 5.8. Decision matrix (Case 3) .. 212

Table 5.9. Decision matrix (Case 4) .. 213

Table 5.10. Criteria weights (Case 1) ... 214

Table 5.11. Ranking results of EDAS method (Case 1) ... 214

Table 5.12. Ranking results of ARAS method (Case 1) ... 215

Table 5.13. Ranking results of MABAC method (Case 1) ... 216

Table 5.14. Ranking results of COPRAS method (Case 1) ... 216

Table 5.15. Ranking results of MARCOS method (Case 1) .. 217

xxviii

Table 5.16. Comparative analysis of the rankings by different MCDM methods (Case 1). 218

Table 5.17. Correlation test I (Case 1) ... 219

Table 5.18. Criteria weights (Case 2) ... 219

Table 5.19. Criteria weights (Case 3) ... 219

Table 5.20. Criteria weights (Case 4) ... 219

Table 5.21. Comparative analysis of the ranking by different MCDM methods (Case 2) ... 220

Table 5.22. Comparative analysis of the ranking by different MCDM methods (Case 3) ... 220

Table 5.23. Comparative analysis of the ranking by different MCDM methods (Case 4) ... 221

Table 5.24. Correlation test II (Case 2) ... 221

Table 5.25. Correlation test III (Case 3) .. 222

Table 5.26. Correlation test IV (Case 4) .. 222

Table 5.27. Interchange of criteria weights for sensitivity analysis (Case 1) 223

Table 5.28. Interchange of criteria weights for sensitivity analysis (Case 2) 223

Table 5.29. Interchange of criteria weights for sensitivity analysis (Case 3) 223

Table 5.30. Interchange of criteria weights for sensitivity analysis (Case 4) 224

Table 5.31. Correlation test V (sensitivity analysis—Case 1) ... 226

Table 5.32. Correlation test VI (sensitivity analysis—Case 2) .. 226

Table 5.33. Correlation test VII (sensitivity analysis—Case 3) .. 226

Table 5.34. Correlation test VIII (sensitivity analysis—Case 4) ... 227

Table 5.35. Time complexity and runtimes for each MCDM method under various

considerations ... 228

Table 6.1. Resource strength calculation ... 246

Table 6.2. Computation of execution time and scheduling score .. 246

Table 6.3. Makespan using the proposed algorithm ... 246

Table 6.4. Makespan using PSO .. 246

Table 6.5. Makespan using GA .. 247

Table 6.6. Makespan using MCT .. 247

Table 6.7. Comparing the release time of each SMD for each method 247

Table 6.8. Objective comparison ... 247

Table 6.9. Details of the dataset used in the experiment ... 249

Table 6.10. Details of the effective parameters used in the algorithm 249

Table 6.11. Control parameters for PSO and GA ... 251

Table 6.12. Input sets of ANOVA test using makespan and load balance 256

Table 6.13. ANOVA test results using makespan .. 256

Table 6.14. ANOVA test results using load balance ... 256

Table 6.15. Post hoc test results .. 257

Table 6.16. Particle representation .. 263

Table 6.17. Initial population of three particles with dimension five (same as number of

tasks) ... 264

Table 6.18. Scheduling sequences without load balancing .. 267

Table 6.19. Task lengths for each SMD and energy consumption without load balancing267

Table 6.20. Scheduling sequences with load balancing ... 268

Table 6.21. Task lengths for each SMD and energy consumption with load balancing 268

Table 6.22. Dataset used in the experiment: resource parameters details of SMDs of set 1

(𝑀1) ... 270

Table 6.23. Dataset used in the experiment: resource parameters details of SMDs of set 2

(𝑀2) ... 270

xxix

Table 6.24. Control parameters for PSO and GA ... 271

Table 6.25. Input sets of ANOVA test ... 275

Table 6.26. ANOVA test results .. 275

Table 7.1. Parameters used for ConvLSTM2D ... 298

Table 7.2. Evaluation metrics for ten sampled datasets .. 299

Table 8.1. Notations used in the relative stability analysis .. 336

Table 8.2. Sample user's information .. 337

Table 8.3. Selected session and relative stability information of a set of representative

sample users ... 337

Table 8.4. Dependent variable based on the coefficient of variation ... 341

Table 8.5. Independent variable .. 341

Table 8.6. Estimated results of the logistic regression model of the ASR of the mobile users

 .. 343

Table 8.7. Classification table of the proposed model .. 344

Table 8.8. Classification table for training dataset ... 344

Table 8.9. Classification table for evaluation dataset.. 344

Table 8.10. Performance measure details for prediction model evaluation 345

Table 8.11. Hosmer and Lemeshow test results ... 347

Table 8.12. Analysis of two sample users .. 348

Table 8.13. Sample group of four users .. 357

Table 8.14. ACT of four users for a particular AP ... 358

Table 8.15. The relative stability of four users .. 359

Table 8.16. Date and time of future connection at AP 354 ... 361

Table 8.17. Future date and time of connection ... 362

Table 9.1. Advantages of MCC-edge over other edge computing approaches 368

Table 9.2. Relative humidity and respective comfort levels .. 374

Table 9.3. Dewpoints and respective comfort levels as per Kolkata’s weather 376

Table 9.4. A representative calculation for desirable AC temperature 379

Table 9.5. Relative humidity, dew point, and respective comfort level at a temperature of

24oC .. 380

Table 9.6. Heat indices and respective comfort levels ... 383

Table 9.7. Key data management components in a typical MCC-enabled HVAC system ... 389

Table 9.8. Hardware and software requirements for a typical MCC setup for an HVAC

system ... 392

Table 9.9. Implementational environment specifications for the proposed system 393

Table 9.10. Specifications of DHT22 .. 393

Table 9.11. DHT22 measurement details .. 393

Table 9.12. Socket connections used in the experiment .. 394

Table 9.13. Threshold criteria for dynamic parameters for SMD selection 401

Table 9.14. Fields used in the result database ... 406

Table 9.15. Comparing MCC with cloud and edge computing in terms of cost 412

Table 9.16. Comparing MCC with cloud and edge computing in terms of latency 414

Table 9.17. Comparing MCC with cloud and edge computing in terms of energy

consumption... 415

Table 9.18. Environmental hazards comparison of MCC-edge with cloud data centres and

edge infrastructure .. 416

ACRONYMS

AC Air Conditioner

AC Alternative Current

ACO Ant Colony Optimization

ACPI Advanced Configuration

and Power Interface

ACT Average Connection Time

Ag Silver

AHP Analytic Hierarchy Process

AI Artificial Intelligence

Al Aluminium

ALICE A Large Ion Collider Experi-

ment

AMOLED Active-Matrix Organic

Light-Emitting Diode

ANP Analytic Network Process

AP Access Point

API Application Programming

Interface

AR Augmented Reality

ARAS Additive Ratio Assessment

ARIMA Autoregressive Integrated

Moving Average

ARM Advanced RISC Machines

ASCI Accelerated Strategic Com-

puting Initiative

ASR Average Stability Ratio

AST Abstract Syntax Tree

ASTM American Society for Test-

ing and Material

Au Gold

AWS Amazon Web Services

BAA Border Approximation

Area

Be Beryllium

BFR Brominated Flame Retard-

ant

BLE Bluetooth Low Energy

BMU Battery Monitoring Unit

BOINC Berkeley Open Infrastruc-

ture for Network Compu-

ting

BWM Best Worst Method

BYOD Bring Your Own Device

CCTV Closed Circuit Television

Cd Cadmium

CFC Chlorofluorocarbon

Cl Chlorine

CO2 Carbon di-oxide

CoCoSo Combined Compromise So-

lution

COMET Characteristic Objects

METhod

COPD Chronic Obstructive Pulmo-

nary Disease

COPRAS COmplex PRoportional AS-

sessment

CPU Central Processing Unit

Cr(VI) Hexavalent Chromium

CRT Cathode-Ray Tube

CSA Cuckoo Search Algorithm

Cu Copper

CV Coefficient of Variation

D2D Device-to-Device

DDoS Distributed DoS

DEA Data Envelopment Analysis

DES Data Encryption Standard

xxxi

DF Degree of Freedom

DHT Digital temperature and hu-

midity

DIY Do it yourself

DMU Decision Making Unit

DNN Deep Neural Network

DoS Denial-of-Service

DP Dew point

DRX Discontinuous Reception

DSL Deep Supervised Learning

DSP Digital Signal Processor

DTM Dynamic Tone Mapping

DuT Device under Test

DVFS Dynamic Voltage and Fre-

quency Scaling

DVS Dynamic Voltage Scaling

E3 Energy Efficient Engine

EC2 Elastic compute cloud

EDAS Evaluation based on Dis-

tance from Average Solu-

tion

ELECTRE ELimination Et Choix

Traduisant la REalité

EMBB Enhanced Mobile Broad-

band

eMMC embedded Multi-Media

Controller

ERP Enterprise Resource Plan-

ning

ESM Even Swaps Method

FIFO First-In-First-Out

FLOPS Floating-Point Operations

Per Second

FSM Finite State Machine

FTP File Transfer Protocol

GDSS Group Decision Support

System

GFLOPS Giga-FLOPS

GHz GigaHertz

GLCM Grey Level Cooccurrence

Matrix

GPGPU General-Purpose GPU

GPRS General Packet Radio Ser-

vice

GPS Global Positioning System

GPU Graphics Processing Unit

GRA Grey Relational Analysis

GSMA Global System for Mobile

communications Associa-

tion

GUI Graphical User Interface

HDFS Hadoop Distributed File

System

HDMI High-Definition Multimedia

Interface

Hg Mercury

HI Heat Index

HL Hosmer and Lemeshow

HMD Head-Mounted Display

HMM Hidden Markov Model

HMP Heterogeneous Multipro-

cessing

HPC High-Performance Compu-

ting

HTTP Hypertext Transfer Proto-

col

HVAC Heating, Ventilation and Air

Conditioning

I/O Input/Output

I2C Inter-Integrated Circuit

IaaS Infrastructure as a Service

IaaS Infrastructure as a Service

xxxii

IC Integrated Circuit

ICE Internal Combustion En-

gine

ICT Information and Communi-

cation Technology

IEEE Institute of Electrical and

Electronics Engineers

IHV Independent Hardware

Vendor

IIT Indian Institute of Technol-

ogy

ILP Integer Linear Program-

ming

IMEI International Mobile Equip-

ment Identity

IoE Internet of Everything

IoT Internet of Things

IPsec IP Security

ISP Image Signal Processor

ISV Independent Software Ven-

dor

IT Information Technology

ITU-R International Telecommu-

nication Union Radiocom-

munication Sector

JSON JavaScript Object Notation

kWh Kilowatt hours

LAA Lower Approximation Area

LAN Local Area Network

LASSO Least Absolute Shrinkage

and Selection Operator

LC Local Coordinator

LCD Liquid Crystal Display

LED Light Emitting Diode

LHC Large Hadron Collider

Li Lithium

Li+ Lithium ions

LiAB Lithium-air Battery

LiB Lithium-ion Battery

LiBOB Lithium Bis(Oxalato)Borate

Li-Poly Lithium Polymer

LiSB Lithium-Sulphur Battery

LMB Lithium Metal Battery

LPDDR Low-Power Double Data

Rate

LPDDR

SDRAM

Low-Power Double Data

Rate Synchronous Dynamic

RAM

LTE Long Term Evolution

M2M Machine-to-Machine

MaaS MCC-as-a-Service

MABAC Multi-Attributive Border

Approximation Area Com-

parison

MAC Media Access Control

MAC-

BETH

Measuring Attractiveness

by a Categorical Based

Evaluation Technique

MAE Mean Absolute Error

mAH Milliampere Hour

MARCOS Measurement of Alterna-

tives and Ranking accord-

ing to COmpromise Solu-

tion

MARE Multi-Attribute Range Eval-

uations

MAUT Multi-Attribute Utility The-

ory

MC MCC Coordinator

MCC Mobile Crowd Computing

MCDM Multi Criteria Decision

Making

MCU Micro Controller Unit

xxxiii

MD Message Digest

MEC Mobile Edge Computing

MEW Multiplicative Exponential

Weighting

MEXP Mobile Exchange eXperi-

ment Protocol

MIT Massachusetts Institute of

Technology

ML Machine Learning

MLP Multi-Layer Perceptron

MMTC Machine Machine-type

Communication

MMTC Machine-Machine Type

Communication

MOORA Multi-Objective Optimiza-

tion on the basis of Ratio

Analysis

MoS2 Molybdenum Disulfide

MOSFET Metal Oxide Semiconductor

Field Effect Transistor

MPI Message Passing Interface

MSE Mean Square Error

Mt Metric Ton

MULTI-

MOORA

Multiplicative MOORA

mW MegaWatt

NA Not Applicable

NFC Near Field Communication

NiB Sodium-ion Battery

Ni-Cd Nickel-Cadmium

Ni-MH Nickel-Metal Hydride

N2O Nitrous Oxide

OCR Optical Character Recogni-

tion

OEM Original Equipment Manu-

facturer

OLED Organic Light-Emitting Di-

odes

OLS Ordinary Least Squares

OS Operating Systems

OSPM OS Power Management

P2P Peer-to-Peer

PaaS Platform as a Service

PAPRIKA Potentially All Pairwise

RanKings of all possible Al-

ternatives

Pb Lead

PC Personal Computer

PCA Principal Component Anal-

ysis

PCB PolyChlorinated Biphenyl

Pd Palladium

PDA Personal Digital Assistant

PIPRECIA PIvot Pairwise RElative Cri-

teria Importance Assess-

ment

PIR Passive Infra-Red

PLS Partial Least Squares

PMIC Power Management ICs

POEM Portable Open-source En-

ergy Monitor

PPI Pixels Per Inch

PROME-

THEE

Preference Ranking Organi-

zation METHod for Enrich-

ment Evaluation

PSO Particle Swarm Optimiza-

tion

PTC Positive Temperature Coef-

ficient

PUE Power Usage Effectiveness

PVC PolyVinyl Chloride

QoE Quality of Experience

xxxiv

QoS Quality of Service

RAFSI Ranking of Alternatives

through Functional map-

ping of criterion sub-inter-

vals into a Single Interval

RAM Random Access Memory

RCAS Railway Collision Avoid-

ance System

RDD Resilient Distributed Da-

taset

REM-

BRANDT

Ratio Estimations in Magni-

tudes or deci-Bells to Rate

Alternatives which are

Non-DominaTed

REST REpresentational State

Transfer

RFID Radio frequency identifica-

tion

RGB Red, Green, and Blue

RH Relative Humidity

RMSE Root Mean Square Error

RN Reference Node

RNL Receptaculum Nelumbinis-

Like

ROM Read Only Memory

ROM Read Only Memory

RS Relative Stability

SaaS Software as a Service

SAW Simple Additive Weighting

Sb Antimony

SBC Single-Board Computer

SC Service Carrier

SD Secure Digital

SD-UDN Software-Defined Ultra-

Dense Network

SEI Solid Electrolytic Interface

SEMO Smart Energy Monitoring

System

SETI Search For Extraterrestrial

Intelligence

SHA Secure Hash Algorithm

SLA Service Level Agreement

SMART Simple Multi-Attribute Rat-

ing Technique

SMB Sodium Metal Battery

SMD Smart Mobile Device

SMP Symmetrical Multi-Pro-

cessing

SoC System-on-Chip

SP Service Provider

SPI Serial peripheral interface

SQL Structured query language

SS Service Seeker

SSD Solid state drives

SSH Secure Shell

SSIM Structural-Similarity-index

SSL Secure Sockets Layer

SVM Support-Vector Machine

SWARA Stepwise Weight Assess-

ment Ratio Analysis

Ta Tantalum

TCAS Train Collision Avoidance

System

TCO Task Caching and Offload-

ing

TCP Transmission Control Pro-

tocol

TLS Transport Layer Security

TOPSIS Technique for Order Pref-

erence by Similarity to

Ideal Solution

TWh Terawatt-hour

UAA Upper Approximation Area

xxxv

UART Universal asynchronous re-

ceiver-transmitter

UAV Unmanned Aerial Vehicle

UDFS User-Driven Frequency

Scaling

UDP User Datagram Protocol

UE2 User Equipment 2

UI User Interface

UPS Uninterruptible Power Sup-

ply

URLLC Ultra-Reliable Low Latency

Communication

URLLC Ultra-Reliable Low Latency

Communication

USB Universal Serial Bus

USB OTG USB On-The-Go

VC Vapour Compression

VIKOR Više Kriterijumska optimi-

zacija i Kompromisno

Rešenje

VoIP Voice over Internet Proto-

col

VoLTE Voice over Long-Term Evo-

lution

VPN Virtual Private Network

VR Virtual Reality

WAN Wide Area Network

WASPAS Weighted Aggregated Sum

Product Assessment

WCG World Community Grid

WebRTC Web Real-Time Communi-

cation

WEP Wired Equivalent Privacy

Wh Watt-hour

Wi-Fi Wireless Fidelity

WiMAX Worldwide Interoperability

for Microwave Access

WLAN Wireless Local Area Net-

work

WPA Wi-Fi Protected Access

WPM Weighted Product Method

WSM Weighted Sum Model

WTD Wireless Topology Discov-

ery

WTLS Wireless Transport Layer

Security

XML eXtensible Markup Lan-

guage

YoY Year-Over-Year

ZAB Zinc-Air Battery

 PUBLICATIONS

The following publications are the outcomes of the parts and extended works of this thesis.

The chapter number indicates that the corresponding paper partially or fully constituted

that chapter. The journal metrics are as of the date of acceptance/initial communication (as

applicable) of the paper.

Scopus/WoS Indexed Journals

1. PKD Pramanik, S Pal, P Choudhury, Mobile Crowd Computing: Potential, Architec-

ture, Requirements, Challenges, and Applications, The Journal of Supercomputing,

Springer. [Indexed in SCIE] [IF 2.557, SJR .73, Q2] [Under review] [Chapter 3]

2. PKD Pramanik, S Pal, M Mukhopadhyay, P Choudhury, Sustainable Edge Computing

with Mobile Crowd Computing for Smart HVAC System: A Proof of Concept, Sustain-

able Computing: Informatics and Systems, Elsevier. [Indexed in SCIE, Scopus] [IF

4.923, SJR 1.07, Q1] [Under review] [Chapter 9]

3. PKD Pramanik, T Biswas, P Choudhury, Load Balance-Aware Energy-Efficient

Scheduling for Mobile Crowd Computing: A PSO-based Solution, Sustainable Com-

puting: Informatics and Systems, Elsevier. [Indexed in SCIE, Scopus] [IF 4.923, SJR

1.07, Q1] [Under review] [Chapter 6]

4. PKD Pramanik, T Biswas, P Choudhury, Multicriteria-based Resource-aware Sched-

uling in Mobile Crowd Computing: A Heuristic Approach, Journal of Grid Compu-

ting, Springer, 2023. [Indexed in SCIE] [IF 4.674, SJR 1.18, Q1] [Chapter 6]

5. PKD Pramanik, S Pal, P Choudhury, Resource Profiling and Selection for Local Mobile

Crowd Computing, Wireless Networks, Springer. [Indexed in SCIE, Scopus] [IF

2.701, SJR 0.42, Q2] [Under review] [Chapter 4]

6. PKD Pramanik, S Biswas, S Pal, D Marinković, P Choudhury, A Comparative Analysis

of Multi-Criteria Decision-Making Methods for Resource Selection in Mobile Crowd

Computing, Symmetry, 2021. [Indexed in SCIE, Scopus] [IF 2.713, SJR 0.39, Q2]

[Chapter 5]

7. PKD Pramanik, N Sinhababu, KS Kwak, P Choudhury, Deep Learning-based Resource

Availability Prediction for Local Mobile Crowd Computing, IEEE Access, 2021. [In-

dexed in SCIE, Scopus] [IF 3. 367, SJR 0.59, Q1] [Chapter 7]

8. PKD Pramanik, N Sinhababu, A Nayyar, M Mashud, P Choudhury, Predicting Re-

source Availability in Local Mobile Crowd Computing Using Convolutional GRU,

Computers, Materials and Continua, vol. 70(3), pp. 5199-5212, 2021. [Indexed in

SCI, Scopus] [IF 4.89, SJR 1.53, Q1] [Chapter 7]

9. PKD Pramanik, P Choudhury, Mobility-Aware Service Provisioning for Delay

xxxvii

Tolerant Applications in a Mobile Crowd Computing Environment, SN Applied Sci-

ences, vol. 2(3), article no. 403, 2020. [Indexed in ESCI, Scopus] [Chapter 8]

10. PKD Pramanik, G Bandyopadhyay, P Choudhury, Predicting Relative Topological

Stability of Mobile Users in a P2P Mobile Cloud, SN Applied Sciences, vol. 2(11), ar-

ticle no. 1827, 2020. [Indexed in ESCI, Scopus] [Chapter 8]

11. PKD Pramanik, S Pal, P Choudhury, Green and Sustainable High-Performance Com-

puting with Smartphone Crowd Computing: Benefits, Enablers, and Challenges,

Scalable Computing: Practice and Experience, vol. 20(2), pp. 259-283, 2019. [In-

dexed in ESCI, Scopus] [SJR 0.18, Q3] [Chapter 1]

12. PKD Pramanik, N Sinhababu, B Mukherjee, S Padmanaban, A Maity, BK Upadhyaya,

JB Holm-Nielsen, P Choudhury, Power Consumption Analysis, Measurement, Man-

agement, and Issues: A State-of-the-art Review on Smartphone Battery and Energy

Usage, IEEE Access, vol 7(1), pp. 182113-182172, 2019. [Indexed in SCIE, Scopus]

[IF 4.098, SJR 0.61, Q1] [Chapter 3]

International Conferences

13. PKD Pramanik, N Sinhababu, A Nayyar, P Choudhury, Predicting Device Availability

in Mobile Crowd Computing using ConvLSTM, 7thInternational Conference on Opti-

mization and Applications (ICOA 2021), May 2021, Wolfenbüttel, Germany, IEEE. [In-

dexed in Scopus] [Chapter 7]

14. PKD Pramanik, P Choudhury, A Saha, Economical Supercomputing thru Smartphone

Crowd Computing: An Assessment of Opportunities, Benefits, Deterrents, and Ap-

plications from India’s Perspective, 4th International Conference on Advanced Com-

puting and Communication Systems (ICACCS-2017), January 2017, pp. 1-7, Coimba-

tore, India, IEEE. [Indexed in Scopus] [Best paper awarded] [Chapter 3]

Book Chapters

15. PKD Pramanik, S Pal, P Choudhury, Smartphone Crowd Computing: A Rational Ap-

proach for Sustainable Computing by Curbing the Environmental Externalities of

the Growing Computing Demands, in Emerging Trends in Disruptive Technology

Management for Sustainable Development, [eds.] R Das, M Banerjee, S De, pp. 45-80,

Chapman and Hall/CRC, New York, 2019. [Chapter 1]

16. PKD Pramanik, S Pal, G Pareek, S Dutta, P Choudhury, Crowd Computing: The Com-

puting Revolution, in Crowdsourcing and Knowledge Management in Contemporary

Business Environments, [ed.] R Lenart-Gansiniec, pp. 166-198, IGI Global, 2018.

[Chapter 3]

xxxviii

17. PKD Pramanik, P Choudhury, IoT Data Processing: The Different Archetypes and

their Security & Privacy Assessments, in Internet of Things (IoT) Security: Fundamen-

tals, Techniques and Applications, [eds.] SK Shandilya, SA Chun, S Shandilya, E

Weippl, pp. 37-54, River Publishers, Gistrup, Denmark, 2018. [Indexed in WoS

BkCI, Scopus] [Chapter 9]

18. PKD Pramanik, S Pal, A Brahmachari, P Choudhury, Processing IoT Data: From Cloud

to Fog. It’s Time to be Down-to-Earth, in Research Anthology on Architectures,

Frameworks, and Integration Strategies for Distributed and Cloud Computing, [ed.]

Information Resources Management Association, pp. 920-943, IGI Global, 2021.

[Chapter 9]

19. PKD Pramanik, S Pal, P Choudhury, Beyond Automation: The Cognitive IoT. Artificial

Intelligence Brings Sense to the Internet of Things, in Cognitive Computing for Big

Data Systems Over IoT: Frameworks, Tools and Applications, [eds.] AK Sangaiah, A

Thangavelu, VM Sundaram, Lecture Notes on Data Engineering and Communica-

tions Technologies, vol. 14, pp. 1-37, Springer, 2018. [Indexed in WoS, dblp] [Chap-

ter 9]

1

Introduction

“There must be a better way to make the things we want, a way that doesn’t spoil

the sky, or the rain or the land.” --- Paul McCartney

1.1 Escalating Environmental Perils

In recent years, the impact of the changing environment and climate has been ex-

perienced worldwide and, on many occasions, severely. The effect ranges from

Antarctic glacier melting to the expansion of the Sahara Desert. For instance, in

the year 2017, the U.S. was hit by several devastating natural disasters that range

from floods and hurricanes to droughts and wildfires. Let us take a look at some of

them, which caused major damage and indicate the operation of the environment

[1]:

• Hurricanes Irma, Harvey, and Maria: The U.S. was hit by three category-4 hur-

ricanes during 2017. The storm and the accompanying rainfall led to an un-

precedented rise in sea level, resulting in a devastating flood. Hurricane Har-

vey was fuelled by record-breaking rainfall (reportedly, 1-in-25,000-year rain).

• Atmospheric river storms in California: Throughout the winter season of 2017,

different parts of California were hit by several back-to-back extreme atmos-

pheric river storms that produced record rainfall and flooding in the state.

• Spring snow/rainfall and floods: In the mid-March, the Northeast U.S. received

snowfall at an astonishing rate of 7 inches per hour totalling to 42 inches,

thanks to the winter storm Stella. In the late-April, the Midwest U.S. was dev-

astatingly flooded due to heavy rainfall of up to 15 inches. The percentage of

heaviest 1% of rainy and snowy days has been increased from by 53 and 92 in

the Midwest and the Northeast U.S. respectively during the years 1958 through

2016.

• High plains flash drought: In the July, flash drought gripped the Dakotas and

Montana that led to one of Montana’s worst wildfires causing agricultural

losses of $2.5 billion.

2

• California experienced a record heat: On September 1, the temperature in San

Francisco reached 106°F breaking its all-time heat record. Actually, from late

August through early September, the whole California experienced the worst

state-wide heat wave ever recorded, and many parts of it broke daily, monthly,

and all-time temperature records. In fact, heat waves have become more fre-

quent across the U.S.

• Plains on fire: A few weeks after the record heat wave in September, California

was hit by the deadliest and most destructive fires in state history, killing 40

people and destroying a total of 8,323 structures. Earlier, around in March,

places like Kansas, Oklahoma, Colorado, and Texas were blazed by major fires.

The fire of Oklahoma was the largest wildfire on record in the state breaking

the previous record just set one year prior. These fires are not one-off incidents.

The wildfire incidents are consistently increasing over the years in the western

U.S. grasslands or the Great Plains region. Since the 1970s, in every decade,

more than 100,000 acres of extra grass and shrubland caught fire than the pre-

vious decade. In a study covering over a three-decade period (1984-2014), it is

observed that the total area burned by large wildfires in the Great Plains rose

by 400%.

• Summer in winter: Generally, if the ratio of days that record the highest tem-

perature and the days that of lowest temperature is evenly balanced, the cli-

mate is supposed to be stable. But for the past three decades, the balance has

been disrupted. Due to the consistently warm climate, the number of record

high-temperature days have begun to outpace the number of record low-tem-

perature days. In the month of February, there were 34 instances of heat-rec-

ord breaking for every cold-record breaking in different parts of the U.S. As a

result of this growing imbalance, the February was one of Chicago’s warmest

on record.

• Reduced snowing in winter: Since 1884, Chicago had the least snow cover dur-

ing the months of January and February. This is attributed mainly to the un-

seasonably and atypical warm and rainy weather. The climate change caused a

significant reduction in snow cover extent over high northern latitudes during

the last 100 years.

3

The worldwide impact of environmental idiosyncrasies has forced us to deliberate

on to figure out the reasons for these abnormal behaviours of nature. Is there any

common and explainable reason behind this? Yes, the main and explainable reason

behind this is suspected to be pollution and global warming.

The phenomenon of global warming and climate change is largely man-made and

has been accelerating at a rapid and unprecedented way since the Industrial Revo-

lution began in the late 1700s [2]. According to NASA, since 1880, the average tem-

perature of the Earth has risen 0.8 °C which is projected to increase further, ac-

cording to the U.S. Environmental Protection Agency (EPA), between 1.13 and 6.42

°C over the next 100 years.

The main reason for the warming of the Earth is the greenhouse gas effect that

obstructs the infrared and heat radiation to escape from Earth toward space. Gases

that contribute most to the greenhouse effect include water vapour, CO2, Methane,

N2O, CFCs, etc. Most of these gases are human-produced and are responsible for

increasing the Earth's temperature over the past 50 years. Among these, CO2 is the

most common greenhouse gas in the atmosphere. For instance, in 2012, CO2 re-

portedly accounted for nearly 82% of all greenhouse gas emissions in the U.S. In

the last 150 years, mainly due to the industrial activities, the atmospheric CO2 levels

are raised from 280 ppm (parts per million) to 410 ppm which is further expected

to be degraded to 450 ppm by 2035 unless greenhouse gas emissions are controlled

strictly [3].

Electricity generation is one of the major sources of carbon pollution, because in

most of the countries, still today, the majority of the electricity is generated by

burning fossil fuels. For example, even a developed nation like Australia gets 73%

and 13% of its electricity by burning coal and gas, respectively [4].

1.2 Environmental Impact of ICT

Besides other industries, the rapid advancement of the ICT industry (that includes

computers and peripherals, computer and telecommunication networks and asso-

ciated equipment, and the data centres) has soared the energy consumption like

never before. At present, globally, nearly 10% of the total energy is consumed by

4

the ICT industry. Factually, the total global energy demand is estimated at 20,000

TWh, whereas ICT is accountable for using 2,000 TWh [5]. This huge energy con-

sumption produces roughly 1.7% (530 Mt) of the total CO2 emissions [6] ICT’s car-

bon footprint is roughly equal to the carbon emission from the aviation industry’s

fuel burning. Experiencing the ultra-penetration of ICT into every sphere of human

life that results in increased energy consumption rate by 20% per year, it is ex-

pected that the world's energy consumption of ICT will be double by 2030. Out of

total energy consumption by ICT, two-thirds are attributed to the devices, data

centres while the rest goes for the telecommunication networks.

The production and use of the ICT commodities have triggered several negative

impacts on the environment. The major concerns are discussed in the following.

Use of natural resources: Use of natural resources in the production of the ICT

products has a reason for natural resource depletion from the Earth; thus, unbal-

ancing the natural diversity. To back this argument, let us check out the following

statistics [7]:

• The amount (in terms of weight) of fossil fuel and chemicals required in man-

ufacturing an average desktop computer is at least 10 times of its own weight.

This ratio is much more than in the case of an automobile or refrigerator,

which require fossil fuels by 1-2 times their weight.

• To make a microchip, on average, 16000 litres of water, 1.6 kg of fossil fuel, 0.7

kg of chemicals are used [8] [9] while making a computer with a 17-inch CRT

monitor it accounts for 1500 litres of water, 240 kg of fuel, 22 kg of chemicals

which costs a total material of 1.8 tons [10] [11].

Energy consumption: Device production and operations consume huge energy.

For example, nearly 30,000 megajoules of energy is used in the manufacturing of

an average computer. The energy consumption demands more energy production,

which increases the carbon footprint [12].

Effects of the manufacturing process: The production of computer hardware

causes havoc pollution. The different parts of a computer and its peripherals con-

tain several harmful heavy metals. Along with the environment, these toxic heavy

5

metals are really dangerous to human and animal health. Long-term exposure to

these elements may be fatal to the workers and their families and also the neigh-

bouring communities. Some of the most hazardous metals that damagingly effect

hominoid health are:

• Antimony (Sb): Immediate contact to antimony may cause aggravated irrita-

tion of the eyes, skin, and lungs. Long-term exposure to this toxic metal can

impend stomach pain, diarrhoea, vomiting, stomach ulcers, pulmonary edema

(swelling due to the accumulation of interstitial fluid in an organ or any area

of the body), chronic bronchitis, chronic obstructive pulmonary disease

(COPD, includes both chronic bronchitis and emphysema), pneumoconiosis,

altered electrocardiograms, spontaneous abortion, and menstrual irregulari-

ties.

• Arsenic (As): Arsenic is one of the most toxic metals found in the Earth ground.

It has severe impacts on human health. Long-term exposure to high levels

of arsenic is highly cancerous and is one of the main reasons for skin, bladder,

and lung cancer. Arsenic is also associated with heart disease. Small amounts

(<5 mg) of arsenic ingestion (through water or pesticides/ insecticides) cause

nausea, vomiting, abdominal pain, and diarrhoea. Acute poisoning due to a

lethal dose of arsenic (100 mg to 300 mg) may lead to death.

• Beryllium (Be): Exposure to beryllium fumes and particles causes chronic be-

ryllium disease (a fatal respiratory disease). Beryllium also has the potential to

harm different organs like the liver, kidneys, heart, and nervous system. This

carcinogen metal may cause lung cancer also.

• Cadmium (Cd): Cadmium is a highly toxic element, and if inhaled in excessive

level can cause death. Long-time exposer cadmium can damage kidneys and

bones. Excessive exposure may harm lung functions and increase the risk of

lung cancer.

• Chromium (Cr): Chromium compounds affect the respiratory tract badly re-

sulting in diseases like asthma, chronic bronchitis, chronic irritation, chronic

pharyngitis, chronic rhinitis, congestion and hyperaemia, polyps of the upper

respiratory tract, tracheobronchitis, etc. High dose of chromium exposure may

6

even lead to lung, nasal, or sinus cancers. Cases of sperm damage and the male

reproductive system also been observed as a result of chromium exposure.

• Cobalt (Co): Though cobalt is beneficial for humans because it is a metal con-

stituent of vitamin B12, high concentrations of cobalt may promote various ad-

verse health effects. High concentrations of cobalt may affect human health,

causing vomiting and nausea, vision problems, heart problems, and thyroid

damage. As per clinical experiments, cobalt has also been classified to be car-

cinogenic.

• Lead (Pb): Lead affects the kidneys and reproductive systems. Even low levels

of lead can be harmful to a child’s nervous system and mental development.

• Mercury (Hg): Mercury is linked to brain and kidney damage. It also affects

the nervous, digestive, and immune systems. Mercury is seriously harmful to

the developing foetus and young children, affecting the nervous and cognitive

system.

• Selenium (Se): Selenium is known to have many benefits (mainly due to its

antioxidant properties) to human health if it is consumed in moderate level.

But a high dose of it has several adverse health effects. Overexposure of sele-

nium may cause an accumulation of fluid in the lungs. Selenium is also at-

tributed to health menaces like bad breath, bronchitis, bronchial asthma,

shortness of breath, nausea, vomiting, abdominal pain, diarrhoea, enlarged

liver, conjunctivitis, and pneumonitis. High concentrations of selenium are as-

sociated with skin cancer, prostate cancer, and diabetes. High enough levels of

selenium can be the cause of death.

In addition to the above-mentioned, other metals such as aluminium (Al), barium

(Ba), copper (Cu), gallium (Ga), gold (Au), iron (Fe), manganese (Mn), palladium

(Pd), platinum (Pt), silver (Ag), and zinc (Zn) are also used in manufacturing a PC.

Exposure to these metals in considerable amount is harmful to organisms.

The chemicals involved in the production of computers also damage the environ-

ment and the health of living beings. For example, nitrogen trifluoride (NF3), used

in LCD, thin-film photovoltaic cells and microcircuit manufacturing, has 17,000

times greater potential to cause global warming as compared to CO2 [13]. BFR,

7

another important substance used in computer production, may lead to thyroid

damage and undeveloped foetus. The oil-based paints that are used for the finished

products are also extremely toxic in nature. All of these metals and chemicals and

toxic materials causes water contamination and air pollution damaging the global

environment.

Burden of hazardous e-waste: We are experiencing an e-waste tsunami. E-waste,

one of the fastest-growing types of waste worldwide, has become a serious threat

to the Earth. Globally, in 2014, the per inhabitant e-waste generation was recorded

as 5.8 kg, which had been increased to 6.3 kg in 2017 and is expected to reach 7.0

kg by 2022 [14] [15]. Worldwide, 20 to 50 million tons of e-waste are generated every

year [16]. The increase in production and buying of computing devices, along the

changing technology has seriously contributed to increasing electronic waste. As a

matter of fact, approximately 90% of the discarded computer accessories are not

recycled but dumped openly.

Among the total solid waste deposited in landfills, 70% of the hazardous waste is

accounted to e-waste [16]. This huge amount of e-waste releases a substantial

amount of toxic materials, volatile organic chemicals, and heavy metals which not

only exhaust resources but causes environmental pollution and global climate

change. The toxic elements due to improper waste disposal pollute the soil, making

them infertile which become impotent to support crops and other plant life [17].

This deters the production of foods, which eventually leads to malnourishment of

the natives and the nationals. Furthermore, the contaminated food farmed on the

polluted soil may be the source of serious illness.

Many often, the e-wastes are sent to the developing countries to be dumped in the

landfills. People extract valuable materials such as gold, silver, and copper from the

discarded electronics by burning the substances. This produces hazardous gas and

smoke (due to the presence of other toxic materials) by which not only the air but

water also gets polluted.

Industrial discharge: Untreated industrial discharges like oil, toxic chemicals,

and sewage contaminate the water bodies like rivers and lakes. The polluted water

8

is dangerous for the aquatic creatures. For instance, over 8,000 marine lives were

reported dead six months after the disastrous Deepwater Horizon oil spill in 2010

that affected 16,000 miles of U.S. coastline [17]. Also, consuming the fish and sea-

food from the contaminated water can have serious health effects, especially to

children and pregnant women. Besides, chemical fumes, smoke, and other indus-

trial emission pollute the air. Moreover, the solid discharge from industry is huge,

and most are nondegradable.

The environmental impact of the production of computers and mobile devices

(e.g., tablets and smartphones) is so immense that, to equalise it, we would have

to use each device for between 33 and 89 years [18] [19].

In line with the obligations for complex problems and applications, along with the

massive increase in big data generated from innumerable sources, the need for

high-performance computing (HPC) has increased enormously. And more require-

ment for computers leads to more productions and more uses of computers which

means more environmental hazards and pollution.

If we do not reconsider our device consumption model and carry on at the current

pace, it is supposed that by 2050 we might need 8.5 planets to absorb the carbon

monoxide and 6, 3.5, and 3.5 planets to meet demands for steel, cement, and wood,

respectively [20].

1.3 Sustainable Computing

Whatsoever the negative impacts of computers have on the environment; we can-

not head them off from our livings. We need them in every step of our daily life.

Actually, we need more and more powerful computers day by day for various pur-

poses. In view of that, we need to consider seriously to minimize the environmental

impacts of producing and using computers. Altogether, to mitigate the environ-

mental hazards due to computing devices, we need to concentrate on green and

sustainable computing.

1.3.1 Defining Sustainable Computing

Sustainable computing is a methodology that embraces a range of policies,

9

procedures, programs, and attitude for using information technology (IT). It is a

holistic approach that includes power control and management, wastage manage-

ment and education concerning the deployment of IT. The concept of sustainable

computing considers the total ownership cost, environmental impact and the ben-

efit of the technology. It should consider minimizing the use of hazardous materi-

als, maximizes energy efficiency during the product’s lifetime, and recyclability of

the product and the factory waste. Sustainable computing is important for all clas-

ses of systems, ranging from handheld systems to largescale data centres.

1.3.2 Elements of Sustainable Computing

The four aspects, as shown in Fig. 1.1, are considered as the core elements of sus-

tainable computing. In the following, we discuss them in brief.

Fig. 1.1. Elements of sustainable computing

Society: The society is one of the important key elements of sustainable compu-

ting. The ever-increasing demand for computer leads to manufacturing and pur-

chase puts a lot of negative effects on the environment. But it is the people of so-

ciety whose careful selection of computing devices and judicious use and manage-

ment may minimize the negative impact on the environment. People wisdom and

awareness could possibly reduce the carbon footprint and conserve energy.

Economy: The environment pays the price of a rising economy. Today’s world

economy is changing rapidly. These changing economies force the use of ICT

hugely at all levels of business processing. Meeting the big market demand, indus-

tries are also bringing new technologies every other day. This fast-changing

10

economy, thus, puts a negative impact on the environment. Stringent business pol-

icy, supporting green computing model would enable to reduce the negative im-

pact. Perhaps, well-calculated and measured policies would able to restrain the

negative effect of the economy on the environment.

Ecology: As already discussed in Section 1.2, excessive use of computers over the

last two decades has resulted in millions of tons of e-waste. This e-waste is contin-

ually damaging the environment by contaminating the soil and water. Besides,

computer manufacturing has increased air and water pollution. Further, extensive

usages of computers ensue enormous power consumption resulting in more green-

house gas emission. The overall negative impact on the environment is disrupting

the ecological balance, thereby changing the marine and land life, vegetation and

climate. The water and air pollution profoundly impacted the land and water spe-

cies, including the endangered species. The toxic in water or soil may pass through

food may cause genetic and neurological changes which may pass on to genera-

tions in larger animals, including human beings. Governments, civic bodies, and

industries have important roles to play in tackling the endangering e-waste man-

agement problem. Strict government and administration guidelines needed to

check the abundant use of toxic materials and dumping and releasing e-wastes in

the open lands. Some general responsibilities of governments and industries are

listed in Fig. 1.2 and Fig. 1.3, respectively.

Technology: As we progress, the environmental condition continues to deterio-

rate due to the adverse consequences of the industrial development on the envi-

ronment. The technological advancement in every sector has made it worse due to

more demands from people. In other words, technology is one of the culprits be-

hind the ill environmental health. But considering the stage at which we are now,

the only hope is also the advanced technologies towards sustainable developments.

Sustainable technology and sustainable computing are important components of

that. Fig. 1.4 shows the goals for sustainable technologies and sustainable develop-

ment.

11

Fig. 1.2. Government's responsibilities in e-waste management [21]

1.4 Computational Measures Adopted for Sustainable Computing

To attain sustainable computing, the computing fraternity mainly focussed on en-

ergy efficiency. The improvement of energy efficiency of any given computer sys-

tem without affecting the reliability factor is a major challenge to overcome in al-

most all the computing domains, be it a low power embedded device or a large-

scale server. Here, the key concern is the measures regarding how to reduce the

power consumption where the fault tolerance technique needs computation and

state redundancy, increasing the power consumption and a balanced trade-off be-

tween them. The trade-off can be managed by combining the techniques that com-

prise of both hardware as well as the software where it is literary impractical to

concentrate over a single component or a level of the system on attaining adequate

power consumption and as well as reliability. In the following, we discuss a few

Frame unambiguous and feasible e-waste management policies.

Define concrete regulations for implementing the policies.

Make stringent laws to enforce the regulations.

Revamp and review the existing laws and policies periodically.

Set up state/country wise regulatory agencies.

Make provision for harsh punishment for the individual and companies in case of
non-compliance of e-waste regulations.

Also, make provision for incentives for proper compliance of the rules.

Set up sufficient numbers of government operated and technically equipped
dismantling and recycling sites.

Designate or create sufficient number of dumping grounds in every localities.

Design and implement an efficient e-waste collection channel.

Create trained and registered workforce for dismantling and recycling.

Take initiatives to build tie-ups with industries and other stakeholders in order to
explore the opportunities and solutions for providing recycling services.

Conduct public awareness programs on e-waste managementat in regular intervals
through different channels.

Encourage and provide sufficient financial and other supports for R & D activities
related to e-waste management to private and public research institutions.

12

such computational measures, aiming to minimise the energy consumption of the

computers and data communication.

Fig. 1.3. Role of industries and corporates in e-waste management

Low-power processors: For sustainable computing, it is essential that processors

consume low power. Processors in computing devices consume a considerable

amount of energy. This energy consumption varies linearly with the processor

clock speed. To process, the increasing jobs demand clock speed is increased, re-

sulting in high energy consumption. But not all the jobs require a powerful proces-

sor. Submitting the low-end jobs to the low-end processor will save significant en-

ergy. Even when the processor is idle, it consumes energy. In that case, also, a low

power processor will waste less power. The development of low-power processors

allows them to use very less battery power. Due to their low power consumption

characteristics, they are suitable for mobile-based computing for a longer duration.

It is an ongoing challenge to best fit the performance with power consumption.

The chip designers are struggling to attain the most appropriate power-perfor-

mance balance. The processor circuit is reduced, and the distance between the

Realise the importance of e-waste management and take responsibility.

Abide by the government's e-waste policies and regulations.

Establish a functional and efficient e-waste management department.

Frame organisational policies to accomplish successfull e-waste management.

Redisgn the production and operation plans to minimise e-waste.

Hire qualified and trained workers for dismantling and recycling e-waste.

Consult with experts, regularly, to know about the latest developments towards
e-waste management and incorporate state-of-the-art practices.

Try to use bio-degradable materials wherever possible.

Establish proper disposal systems for the employees for disposing e-waste.

Periodical auditing should be done in order to make sure of that the required
and suitable practices are followed.

Educate consumers about the environment threats of their products and how to
follow proper disposal procedures.

13

interfacing circuits are minimized to reduce energy consumption. Often the

memory and the input and output port are onboard fabricated to reduce the power

consumption. Manufacturers like Intel and AMD are putting forward new proces-

sor technologies where a single processor can do the job of multiple processors

consuming an equal amount of energy. The multi-core processor technology (dual,

quad, or octa-core processors) enhances the computing performance significantly

by enabling parallel computing capability in a single processor package. The multi-

core processor reflects as multiple processors working together with performance

very higher than a single processor at lower clock speeds. The voltage consumption

per core is less and thus, typically consuming less power [22].

Fig. 1.4. Goals for sustainable development [23]

Energy-efficient storage: Secondary storage devices (e.g., hard drive) are electro-

mechanical devices which consume huge energy while accessing data from the

magnetic disc. The magnetic plate sizes, the speed of data accession, read-write

head movement, and data transfer is some of the factors which affect energy con-

sumption. The development of a new storage device like SAS (Serial Attached SCSI)

with the advantage of a 2.5-inch plate size model provides high performance with

14

less energy consumption in comparison to a traditional 3.5-inch model. Similarly,

for less I/O-intensive applications, SATA (Serial ATA) provide high yield with less

power consumption [22].

Algorithmic efficiency: The efficiency of an algorithm counts on the computa-

tional resources used by the algorithm. The increasingly complex algorithms need

more space and time, which increases processor cycles consumption and thus the

power. To attain maximum energy efficiency of an algorithm, its resource utiliza-

tion needs to be minimized. For attaining sustainable computing, it is necessary

that the algorithms used in computation job are energy efficient or could be said

to have the requirement of less hardware. For example, the time complexity of a

hashing-based search is very less as compared to a linear search. This ensures hash-

ing based search uses less processor cycle and hence consumes less energy. In a

study at Harvard, it is found that 7 grams of CO2 are produced for an average

Google search, which Google doubts and claim it to be 0.2 grams. Irrespective of

the claims, it is clear that an inefficient algorithm in terms of resource complexity

could lead to the consumption of huge energy. Thus, for having sustainable com-

puting, the energy efficiency of the algorithm should be considered as one critical

parameter. Switching to an efficient algorithm would be a sustainable solution for

energy-efficient computing.

Efficient resource allocation: Processing job requires various computational re-

sources like processor, memory (internal and external), I/O devices, and other de-

vices. For maximizing computational productivity, it demands an efficient strategy

of resource allocation. The processes executing in parallel often may require re-

sources which may be shared and held by other processes. A process holding a

resource while not using it consumes a lot of resource energy. Efficient and intel-

ligent resource allocation may help to solve problems like starvation and deadlock

situation. The optimal resource allocation strategy ensures resources are properly

allocated on time and requirement basis to processes and are properly released,

thus saving extra power consumptions.

Energy-efficient routing: Routing is an optimization task of selecting an efficient

and reliable network path for routing data packets. The various criteria for optimal

15

path selection depend upon the distance between source and target, network

bandwidth, shortest delay, and constraints like limited node power, restricted

wireless link capacity, etc. It is seen as the number of hops increases, the network

path selection and transmission of data packets through different hops makes rout-

ing energy consuming. In sustainable computing, it is crucial that energy efficient

routing protocols are used which uses fewer hops for delivering the packets.

Energy-efficient display: In a computer system, in comparison to the other com-

ponents and peripherals, the display device (monitor) consumes the most energy.

Even when the computer is idle, the display device continually keeps consuming

energy. For sustainable computing, display devices should be energy efficient.

There are two ways seen for reducing energy consumption by display devices. One

is integrating low power consumption technology for display, and other is efficient

power management, which makes sure the display device hibernates when it is in

an idle state. Earlier, the use of CRT technology consumed a lot of energy, but their

replacements by LCD and subsequently, LED technologies have reduced the power

consumption considerably. Further, in comparison to LCD monitors which typi-

cally use a cold-cathode fluorescent bulb to provide light for the display, the LED

monitors use an array of LEDs. Thus, LED reduces the amount of electricity used

for display; moreover, LEDs are mercury-free and nontoxic as compared to LCDs.

Operating system support: The importance of designing an energy efficient sys-

tem has gained attention with the proliferation of portable and battery-operated

devices, e.g., laptops, PDAs, mobile phones, etc. Various hardware solutions have

been proposed as a method to minimize energy consumption where the energy-

efficiency in terms of software solution is comparatively unexplored yet. As soft-

ware is the driving force behind given hardware, the decisions undertaken during

software designs generally have a major impact on the overall system energy con-

sumption. OS as system software manages the different components and resources

of a computing device. From the research perspective, apart from the memory

management in the OS, the remaining areas were never given focus in respect to

energy efficiency. One of the functionalities of the OS is resource accession and

scheduling them for use. Most of the time, when the computing system is idle or

16

not in use, the OS continually keeps accessing the different resources, and this

makes the computer to consume energy continually. In sustainable computing, the

OS must be energy efficient where the computing resources must be cleverly and

efficiently used to avoid unnecessary energy consumption.

Efficient power management: Hardware stuffs in a computer, consume huge en-

ergy even when they are not in use (but kept on). For sustainable computing, it is

absolutely necessary that the computer conserves energy. The criteria of power

management for devices like CPU, GPU, and computer peripherals, e.g., monitor,

printer, etc. that they are able to manage the power efficiently by turning off or

switching to a low-power state when non-active. Several efficient power manage-

ment techniques available that make computers [24], HPC systems [25], data cen-

tres [26], and mobile devices [27] [28] [29] energy-efficient. For efficient power

management, the computer hardware devices abide the ACPI, an open standard,

which allows the operating system to control and manage the device power di-

rectly, and hence when not required are set to off. CPU generally consumes high

power with an increase in job processing and also cause heating and thus extra

power is required for cooling. New power management programs called ‘un-

dervolting’ allows setting the CPU power manually. There are automatic undervolt

programs available which automatically increases the CPU power on demand like

"SpeedStep" on Intel processors, "PowerNow!" or "Cool'n'Quiet" on AMD chips,

LongHaul on VIA CPUs, and LongRun with Transmeta processors. Currently, most

servers consume approximately 70% of the maximum power even when they are

idle and consumes 80% of their maximum when they are working at 20% of their

peak utilization. In the server, power management is disabled to keep up the re-

sponse time and performance. But, enabling the processor power management

may allow the server to save energy consumption up to 50% in the idle state [22].

Highly efficient and properly designed power supplies reduce the power loss within

a server, which results in significantly less energy consumption and heat genera-

tion while in operation.

1.5 Sustainable Computing Paradigms

In the previous section, we checked out some computing measures that are

17

discretely applied to attain energy efficiency. In this section, we discuss the com-

puting system paradigms or approaches that as a whole would facilitate to attain

sustainable computing. One of the strategies to attain sustainable computing is to

utilise the existing resources optimally and fully, minimising the requirement of

new devices, which ultimately would reduce the environmental impact caused by

the production process and the e-waste. In the following, we briefly discuss these

approaches while their environmental advantages and the associated issues are

summarised in Table 1.1.

Grid computing: Grid computing is a distributed system that allows seamless ac-

cess to a computing grid made of a collection of computing resources connected

through a network. Grid computing offers supercomputing like computing power

utilizing intra- and/or inter-organizational computing resources such as desktops,

clusters, RAIDs, etc. It can impressively save organizations’ IT budget. Instead of

spending on third-party computing resources (e.g., the cloud) organizations can

make use of their existing IT infrastructure. In-house computing resources can be

utilized to form a grid or pool of resources. For sustainable computing, grid com-

puting is a suitable approach. The flexibility to adopt different computational de-

vices supports in reusing the idle heterogeneous devices for computing by the pro-

cess called CPU cycle stealing. This is an excellent feature which makes use of ex-

isting unused active computing devices (desktop computers, clusters and super-

computers) which otherwise in their idle state wastes enormous processing cycles

as well as energy. The Grid, on the basis of the job requirement, scales up its com-

putational power from the available connected devices. This makes sure that only

the required number of computational devices are used without keeping the entire

resources on hold. This, in comparison to other HPC facility (supercomputers),

makes sure that the cost and energy are saved and would allow reusing the existing

computing infrastructure at their best.

Cloud computing: The concept of cloud computing may be stated as a shared

pool of configurable computing resources along with quality services which can be

rapidly provided on-demand basis with limited effort [30]. The cloud computing

services (hardware and software) can be scaled to any number of computer

18

requests and thus eliminate the need for private data centres. For a business or-

ganization, the cost incurred for subscribing cloud service is comparatively very

less than maintaining private data centres. The cloud technology, by its resource

sharing approach, has actually discouraged business enterprises for opting private

data centres. Thus, reducing the number of data centres has significantly contrib-

uted to energy saving. In this view, recently, Google has claimed that the use of

cloud technology has reduced existing data centres power consumption by 50%.

Serverless computing: The concept of cloud computing has brought the server-

less model, which allows dynamic handling and allocation of machine resources

(hardware and services) on-demand basis. This eliminates the cost for purchasing

and maintenance of privately-owned servers. The cloud technology allows re-

source sharing, which makes optimum use of cloud resources in parallel for multi-

ple purposes on a large scale. Serverless computing adds another layer of abstrac-

tion atop cloud infrastructure. It can be assumed as the more exclusive version of

PaaS in cloud. In PaaS, a minimum set of resources must be maintained at the

client's end, whereas in serverless computing everything is deported to the remote

server. The developers are freed from worrying about anything but their runnable

code and functions which should be run and tested in the cloud server [31]. As per

the on-demand service provisioning principle of cloud, serverless computing is also

able to scale up quickly by spawning new instances of resources as they are re-

quested. Moreover, it also scales down quickly by shutting resources down when

they are not required or if their use period is exhausted. This saves a lot of energy

consumption. Serverless codes need not be run in any specific server; rather, they

can run anywhere through the Internet. This means the serverless applications can

be deployed in the edge of the network that is close to the end users [32]. This will

not only reduce the latency but also saves a significant amount of energy by elim-

inating the need for unnecessary data transmission [30]. Individual private servers

consume huge energy. The ratio of job processing to energy consumption is dis-

proportionate, with immense energy is consumed while the server remains un-

derused. Serverless computing saves energy consumption in running those servers.

Therefore, this model is considered a key approach to sustainable computing.

19

Using terminal servers: The concept of terminal servers contributes to green

computing. The use of terminal server along with the thin clients gives users the

impression that the computation is carried in the very same terminal, while the

actual computation takes place in the terminal server. The thin client uses up to

the 1/8th amount of energy in comparison to workstations and thus considerably

reduces energy consumption. There has been an increase in the use of terminal

servers and thin clients to create virtual labs. The terminal server software include

Terminal Services (now Remote Desktop Services) for Windows platform and

Linux Terminal Server Project (LTSP) for the Linux platform while Windows Re-

mote Desktop and RealVNC can provide a thin client.

Virtualization: Provision of assigning workloads to the servers on one-to-one ba-

sis may cause resource underutilization. This can be avoided by virtualization. Vir-

tualization is the process of logically parting a server into multiple virtual servers

or server instances sharing the same hardware resources and allows processing

multiple applications or jobs on different virtual servers. Furthermore, virtualiza-

tion supports the distribution of works among virtual server instance, ensuring the

server resources are used effectively. Dedicated application server consumes more

resources than is justified by their workload. By virtualization, a physical server

acts as multiple server instances, consuming less energy in comparison to separate

dedicated servers. It is seen with this process of server consolidation up to 25% of

power can be saved [22]. For performing virtualization requires better hardware

resources as a high-end processor, good memory and storage, ensuring perfor-

mance effectiveness of virtual servers. The concept of virtualization was first con-

ceived by IBM in the 1960s for mainframe computers, and later on, the concept was

implemented for x86 computers in 1990s. Many software companies have come up

with software solutions for virtualization; this includes Linux container which ef-

fectively uses resources to reduce energy consumptions. Microprocessor manufac-

turers like Intel and AMD have incorporated virtualization enhancements to the

x86 processor for supporting virtual computing.

Among these five approaches discussed above, grid and cloud computing are the

most prominent initiatives which have minimised the requirement of owning

20

personal computer systems considerably. They have also replaced the need for cen-

tralised HPC systems such as supercomputers and mainframes to some extent.

Though grid computing intends to fully utilise the existing resources, cloud com-

puting does not intend to do so. Cloud computing needs additional resources to

provide cloud services. The centralised resources such as data centres, at the cloud

service provider’s end, consumes massive energy leading to greenhouse gas emis-

sion substantially. In fact, data centres capture one-third share of the total energy

consumption of ICT. A well-known report [33] of the year 2010 stated that the elec-

tricity consumption by data centres had risen by 56% in five years; whereas, during

the same period, the overall increase in U.S. electricity usage was only 36%. This

statistic reflects the seriousness of the energy requirements of the data centres,

which has become more severe in recent years. If the right measures are not taken

in due course, data centres are sure to become a grave threat to the environment.

Table 1.1. Environmental advantages and issues of the sustainable computing approaches

Computing

approaches
Environmental advantages Issues

Grid compu-

ting

Utilising existing idle resources fa-

cilitates less energy consumption

and minimise environmental haz-

ards due to the manufacturing and

operation of the computing sys-

tems required otherwise.

Needs fast and reliable LAN and WAN

connections.

In the volunteered grid, it is difficult to

motivate the resource owner to lend their

resources.

In the case of the non-volunteered grid

(e.g., commercial grids), the services

might be costly.

Not only setting up and managing the grid

resources but also accessing them often

require expertise.

Cloud com-

puting

It eliminates the need for private

computers, servers, and data cen-

tres which has significantly con-

tributed to energy saving.

The data centres, comprising the large

servers and computers, and associated

cooling systems consume massive power.

Accessing the cloud service depends on

the internet connection. The instability/

unreliability and unavailability of connec-

tion hold back accessing the cloud.

Involves security and privacy issues.

It is true that cloud computing eradicates

the big upfront investment on computing

resources but accessing the right service is

not that cheap either.

Involves data transfer cost.

Since cloud services are typically generic,

they lack flexibility.

The user/client has minimal control of

21

Computing

approaches
Environmental advantages Issues

their own applications as the cloud service

infrastructure is entirely owned, man-

aged, and monitored by the service pro-

vider.

Switching or migrating to a different

cloud service provider is often complex or

infeasible.

Serverless

computing

It saves the energy requirement for

running privately-owned servers.

It also scales down quickly by shut-

ting resources down when they are

not in use. This saves a lot of en-

ergy consumption.

Serverless codes not necessarily be

run on any specific server. Hence,

the serverless applications can be

deployed at the edge of the net-

work, i.e., close to the end-users

[32]. This will not only reduce the

latency but also saves a significant

amount of energy by eliminating

the need for unnecessary data

transmission [30].

Not suitable for real-time applications

which require low latencies.

Also, not suitable for applications which

need long execution times.

Everything operates in stateless fashion;

hence, handling state using stateless func-

tions is a real issue.

After some time of being idle, the function

will require to go through a cold start

which not only takes up to a few seconds

but also consumes energy.

Using termi-

nal servers

The processing and storage re-

quirements for client machines are

minimal because a terminal server

hosts all the application logic

which also runs on the server.

The thin client uses up to 1/8th

amount of energy in comparison to

workstations and thus considera-

bly reduces energy consumption.

Running applications on a remote server

always involve performance issues.

There are chances of terminal servers get-

ting bottlenecked with overloaded re-

quests. Hence, the terminal server needs

to be powerful enough to be able to han-

dle all connections.

If the terminal server is not backed up,

there is a high risk of downtime due to a

single point of failure.

If the communication network is not reli-

able, the system will be affected harshly.

Virtualization Effective resource utilisation leads

to fewer production and less e-

wastage.

A single physical server acting as

multiple server instances con-

sumes considerably less energy in

comparison to separate dedicated

servers.

It requires quantitively less hard-

ware to run similar applications

than dedicated systems, which

leads to fewer device production

and less e-wastage.

The absence of the usage of the lo-

cal hardware or software cuts the

overall energy consumption.

The required hardware specification (e.g.,

memory, processor, etc.) is much higher

for the same task executed in a native

computer.

Involves complex troubleshooting, in case

of failure.

Degraded performance than a physical

server.

Suffers from availability issue which dis-

courages using virtual servers for mission-

critical applications.

Has major security issues.

22

1.6 MCC as Sustainable Computing

The computational measures and approaches for sustainable computing discussed

in Section 1.4 and 1.5 are not sufficient for realising sustainable computing abso-

lutely. In this section we introduce the concept of MCC and its sustainable benefits.

1.6.1 Mobile Crowd Computing

Object-oriented programming brought the revolution in software development by

introducing the concepts of reusability and polymorphism, which allow software

modules to be used multiple times for multiple purposes. This saves a significant

amount of manhours and cost. We envisage the same role of MCC in sustainable

computing.

In the previous section, we understood that grid computing has been successful in

utilising the existing devices. But the problem with grid computing is that desktops

are losing popularity; in fact, the same for laptops. On the other side, SMDs such

as smartphones, phablets, and tablets are gaining huge acceptance as the new com-

puter with the computing power they offer thanks to the power-packed hardware.

The technological progress of SMDs, such as powerful SoCs with multicore CPUs

and GPUs, has made them favourable as the primary computing device to many

people. Industries are also showing interest in this direction. Initiatives such as

Microsoft’s Continuum1 and Samsung’s DeX2 are striving to bring the desktop ex-

perience on the SMDs. Microsoft has endeavoured to run its full version of Win-

dows 10 on the ARM chipsets, the most popular chipset for SMDs. And the great

thing about SMDs is that they have become indispensable to our lifestyle. It is not

feasible to restrain ourselves from using them. So, why don’t we use these devices

of their optimal potential, i.e., for computing purposes as well?

Furthermore, A number of such powerful SMDs, collectively, can offer huge com-

puting capability. A satisfactory HPC may be achieved by making a grid of SMDs

[34]. A typical MCC system can be perceived as a distributive computing

1 https://www.microsoft.com/en-in/windows/continuum
2 https://www.samsung.com/global/galaxy/apps/samsung-dex/

23

framework where a large job is divided and distributed to the people’s SMDs to be

executed. The philosophy of MCC is to combine computation power of numerous

dispersed SMDs to escalate the overall computation power. The cumulative com-

puting power achieved by such grids of SMDs can tail off the dependency on the

data centres and low-end supercomputers as well.

Since in this proposed computing environment, the public-owned mobile devices

are targeted to be utilised, this particular computing system is named as MCC. The

users can share their SMD resources in a voluntary or incentive basis. The details

discussion on MCC is presented in Chapter 3.

1.6.2 Sustainability of MCC

The concept of sustainable computing considers the total ownership cost, energy

efficiency, environmental impact, and the benefit of the technology. Let us assess

if MCC meets these requirements as a feasible sustainable computing option.

Economic sustainability: Setting up in-house computing infrastructure requires

an upfront investment. It also involves regular expenditure for operational and

maintenance costs. On the other hand, in a dynamic pricing model, using cloud

services in peak hours will be considerably high-priced. Whereas setting up an

MCC would require almost no cost. In an organisational MCC, the available SMDs

on the premises can be effectively utilized for this. Organisations can cut costs sig-

nificantly by adopting the bring your own device (BYOD) policy, obliging the em-

ployees to contribute their devices to MCC.

Energy efficiency: Running an SMD requires less power as compared to comput-

ers. Moreover, the CPUs of the contemporary SMDs are substantially more power-

efficient, with merely 1 to 2 Watts of power consumed at their highest utilization

with the peak load [35]. Therefore, they consume much less energy than other com-

puting systems to perform the same operation. Statistically, the energy consump-

tion of a standard SMD ranges from a few to 10 kWh per year. Therefore, total

energy consumption is 10 TWh per year considering one billion SMDs are in oper-

ation worldwide. This is only 1% of the total energy consumed by ICT which is

typically on the order of 1,000 TWh per year [6]. Furthermore, using MCC will not

24

incur any additional energy consumption as compared to dedicated computing in-

frastructure. Also, the availability of battery power eliminates the need for genera-

tor power sources. In effect, the need for electricity generation would be curtailed

to a great extent. This leads to less consumption of fossil fuels, having a positive

impact on the environment. Also, the heat dissipation of the SMDs is marginal

compared to other computing devices; therefore, MCC would allow shunning the

use of a cooling systems as required in traditional and dedicated computing re-

sources, which thus would cut off the energy wastage in cooling. Considering the

above-mentioned aspects, it can be reckoned that MCC would reduce the carbon

footprint considerably.

Environment friendly: MCC supports the reusability approach, i.e., optimal and

multipurpose use of existing devices without going for exclusive and specific pur-

pose ones. This will curtail the production and use of new devices, minimising the

environmental hazards of device production and e-waste significantly [36]. Fur-

thermore, the small size of SMDs also aids in reducing the negative effects since

they require less material in manufacturing and thus produce less manufacturing

waste materials. Further, the contribution of e-waste of discarded phones also is

considerably lesser in amount. A proper policy and implementation along with dis-

ciplined and responsible users can help in controlling and managing e-waste effec-

tively. The environmental benefits of MCC are summarised in Fig. 1.5.

Utility: Besides the economic and environmental benefits, the MCC offers several

other benefits, such as flexibility and scalability. An MCC can be set up anywhere

in an ad-hoc manner. In an organisational MCC, considering the abundance of

available SMDs, a practically zero-cost HPC can be achieved. Due to close proxim-

ity, MCC provides not only low and predictable latency but also configurable la-

tency, making it suitable for time-constrained applications.

25

Fig. 1.5. Environmental advantages of MCC

1.6.3 Environment-friendliness of MCC in Comparison to Other HPC Systems

To establish our argument that MCC is a sustainable alternative to the HPC sys-

tems, in this section, we statistically compare MCC with other computing systems

viz. desktop grid computing, supercomputers, and data centres, in terms of envi-

ronmental impacts.

In recent years, the computing services offered through cloud computing have got

tremendous popularity. People can rent computing resources on usage and re-

quirement basis. The cloud service providers maintain big data centres to cater to

the computing resource needs of the clients. A data centre, abstractly, can be de-

scribed as an abundant number of computers stacked together. To make the cloud

service available 24x7, these computers are always kept on which makes them very

hot. As a result, a huge amount of power is consumed not only to run these com-

puters but also to keep them cool. About 30 billion watts of electricity is needed to

run the data centres (comparable to the electricity generated from 30 nuclear

power plants) which cause nearly 17% of the total carbon footprint caused by tech-

nology [37]. Data centres consumed 416.2 TWh of electricity in the year 2015 only

which is roughly 3% of the global electricity supply [38]. A single data centre can

consume more power than an average town. To provide uninterrupted power sup-

ply in case of power failure, the data centres run generators that emit diesel ex-

haust. Today’s data centres cause roughly 0.3% of overall carbon emissions [5],

which is equivalent to the carbon footprint generated by the airline industry [38].

•No need for explicit computing device production as people would anyway
use SMDs.

No additional
manufacturing

•Production of smartphones is much environment-friendly compared to
large computers.

Less manu-
facturing hazards

•Due to the small size, the e-waste will be lesser and can be managed more
efficiently.

Less e-waste

•No dedicated cooling systems are required which saves electricity
significantly, hence reduces carbon footprint.

Do not require
cooling

•No power backups, such as large batteries and generators are required.
Pollution due to the battery elements and diesel fuel are avoided.

Do not require
power backup

•SMD processors are typically energy-efficient. They consume much less
energy than other computing systems to perform the same operation.

Energy-efficient
computing

26

Of the total global greenhouse gas emissions, the power-hungry data centres ac-

count for nearly 2%. This is putting an immense impact on the environment, lead-

ing to global warming. The bad news is, every four years, this energy requirement

is getting doubled and the total energy requirement of the data centres, globally,

will increase threefold in the next decade. By 2025, data centres are expected to use

20% of the world’s energy [39]. The efficiency of the data centre is measured in

terms of PUE. PUE compares the non-computing energy to the amount of energy

to power actual machines. Data centres operate at 70% of overhead energy. It

means another 0.7 units are used behind the infrastructure of the data centres. So,

the total PUE goes up to 1.7 [37]. Typically, the PUE of the common data centres is

about 2.0 [5].

Due to their computing capacity and power, the energy requirements of supercom-

puters are gigantic and might well be equivalent to that of a small city. The correct

response relates to electricity; specifically, 17.8 megawatts of power is required to

run Tianhe-2, one of the Top500 ranking supercomputer boasting 33.9-petaflop

through 3.12-million processors. An exaflop (1,000 petaflops) computer needs ap-

proximately 500 megawatts, which is equivalent of the total output of an average-

size coal plant, and enough electricity to cater the needs of all the households in a

city like San Francisco [40].

Though desktop grid computing involves lesser power consumption than the

above-mentioned two systems, the average desktops and laptops still consume

more power than SMDs. As mentioned earlier, the desktop grid is an affordable

option for sustainable computing and can lower the environmental impacts of su-

percomputers and data centres considerably. However, MCC promises to minimize

it further. Table 1.2 summarises the comparative environmental impacts of SMDs,

desktops and laptops, data centres, and supercomputers.

Though MCC can reduce the amount of e-waste to a great extent the extensive

adoption of SMDs becomes worrisome for likely e-waste generation. Therefore, it

is extremely crucial to opt for the proper disposal of discarded devices and try to

recycle as much as possible. The role of governments and industries towards this

direction is already discussed in Section 1.3.2. Fig. 1.6 lists the responsibilities of the

27

users and the responsible authorities suggesting what to be done when the SMDs

are discarded.

Table 1.2. Comparing environmental impacts of SMDs with data centres, supercomputers, and
Grid computing (desktops and laptops)

Environ
mental
impacts

Data centre
Supercom-

puter

Grid Computing
Smartphone

Desktop Laptop

Energy con-
sumption

200 TWh/year
[5].

17.8 mW
for Tianhe-
2, the 33.9-
petaflop su-
percom-
puter with
3.12-million
proces-
sors [40].

100-150 Wh,
600
kWh/year
[41].

60 Wh,
300-150
kWh/year
[41].

1.5-3 Wh.
An average
phone needs 2
kWh/year.

CO2 emission
in the manu-
facturing pro-
cess

171,630 kg CO2
[42].
Around 0.3% of
overall carbon
emissions [5].

0.175 mil-
lion kg/
year per (a
supercom-
puter,
equivalent
capacity of
1000 PCs).

380 kg/
desktop
[43].

227 to 270
kg/laptop
[44].

16 kg/year [45].
An average
mobile emits
35 kgs of car-
bon while
manufacturing
[46].

Other envi-
ronmental
hazards

Along with the
common haz-
ardous materials
such as Fe, Cu,
Al, Ag, Au, Pt,
Pd, Pb, Hg, As,
Cd, Se and hexa-
valent Cr and
BFRs, other
harmful ele-
ments such as
ethylene/ pro-
pylene glycol for
cooling systems,
diesel fuel for
backup genera-
tors, lead-acid
batteries for
UPSs, and com-
pressed gases for
fire suppression
makes data cen-
tre real peril to
the environment
[47] [48].

Same as
data cen-
tres.

The metals
contained
in PC’s
commonly
include Al,
Ag, As, Au,
Ba, Be, BFR,
Cd, Co, Cr,
Cu, Fe, Ga,
Hg, Mn, Pb,
Pd, Pt, PVC,
Sb, Se, and
Zn. Most of
them are
really haz-
ardous and
contami-
nate soil,
water, and
air, if
not properl
y disposed
off [49].

Almost all
the hazard-
ous ele-
ments of
desktops
are also
found in a
laptop, but
the quan-
tity is less
as laptops
are typi-
cally
smaller
than desk-
tops.

The hazardous
metals such as
Al, Ag, Au, Cu,
Fe, Pb, Hg, Cd,
etc. are needed
in smartphone
manufacturing
also, but in
much less
quantity than
desktops and
laptops.

E-waste gen-
erated

32360 metric
tons of e-waste
in 2018.

9.3 million
tons/year
[50]

41698.8
metric tons
[51].

3230 metric
tons [51].

In India, out of
650 million
mobile users,
40% have
changed their

28

Environ
mental
impacts

Data centre
Supercom-

puter

Grid Computing
Smartphone

Desktop Laptop

phones in 2017,
generating
huge e-waste.
[52]
In the USA,
yearly, nearly
150 million mo-
bile phones are
discarded.

Weight frac-
tion of mate-
rials (%)

N.A.* N.A.* 47.2 Fe, 0.9
Cu, 2.8
plastic, 9.4
PCB [53].

19.5 Fe, 2.4
Al, 1.0 Cu,
25.8 plas-
tic, 13.7
PCB, 14.4
battery
[53].

0.8 Fe, 0.3 Cu,
37.6 plastic,
30.3 PCB, 20.4
battery [53].

E-waste de-
composition

Decomposing is
challenging as a
huge volume of
e-waste gener-
ated due to a
large scale of
components. Re-
quire large
dumping round;
risk of toxic met-
als and chemi-
cals; and con-
tamination risk.
But, since the
data centres are
generally owned
by big compa-
nies/ institutes,
they are ex-
pected to follow
the systematic
decomposing
and recycling
process.

Same as
data cen-
tres.

As the
number of
users is very
large scale,
the proper
and system-
atic decom-
position of
e-waste is
really diffi-
cult. Most
of the com-
puters are
public-
owned or
owned by
small or-
ganizations.
Most of
them do
not follow
the proper
decomposi-
tion and re-
cycling pro-
cesses.

The same
problem,
but moder-
ate due to
less equip-
ment as
compared
to desktop.

The continuous
growth in
smartphone
users with very
brief use-cycles
is a great chal-
lenge in terms
of decompos-
ing and recy-
cling as the
lack of aware-
ness and eager-
ness among the
public. But if
the civic au-
thorities take
active roles and
are able to con-
vince people
the necessity of
proper disposal
of discarded
devices, the
problem can be
tackled.

* Despite of our best effort, we couldn’t find reliable data.

29

Fig. 1.6. Procedures to be followed for SMD e-waste management [54]

1.7 Motivation of this Study

Our main motivation for exploring MCC is its sustainable benefits, as discussed in

Section 1.6. We understood that using the devices that are already in use for com-

putational and other purposes would reduce the requirement of buying IT infra-

structure separately because the public would buy SMDs for their own purposes,

anyway. Moreover, the utilization of these public-owned SMDs to achieve MCC

instead of traditional HPC will reduce the requirement for dedicated large com-

puters.

In this section, we discuss the rationales which we believe favours and comple-

ments the idea of MCC, making our motivation stronger. Thereafter, we shall es-

tablish the potential opportunities through which the benefits of MCC can be

reaped.

Specifically, the inducement factors (benefits, opportunity, and potential) of MCC

discussed in this section in addition to the discussions in Section 1.6 and Section

3.5 motivated us in fostering the proposed system.

1.7.1 Powerful SMD Hardware

Over the last few years, the SMD industry has seen an unprecedented focus on the

hardware. Be it CPUs or GPUs or even DSPs, the processing capability of SMDs, to

meet various purposes, has been increased exceptionally. The CPU and memory

architectures are designed and tuned to boost heterogeneous computing. The

Recycle

Recovered materials are recycled and used to produce new products.

Dispose

Proper disposal and urban mining take place at the facility.

Dump

The recyclers collect and transport devices to the disposal and recycling facility.

Collect

The user drops e-wastes into the collection boxes at selected outlets.

Discard

User identifies and collect old smartphones and accessories.

30

development of ARM processors, the most popular processor architecture used in

SMDs and supported by most of the major SMD operating systems, has made them

a serious contender in consideration for a range of scientific applications due to

their high competence in floating point performance. The GPUs are also engi-

neered to enhance GPGPU computing performance. The modern SMD GPUs are

capable of delivering more than 800 GFLOPS. Advancement of CPU, GPU and

DSPs has led to massively powerful SoCs. SoC like Tegra X1 from NVIDIA can de-

liver 1 TFLOPS while the computing cores with clock frequencies 2.5 to 3 GHz have

become common [55]. Advancement on each module, though separately, makes

the SMD, as a whole unit, a great possibility to become a powerful computing plat-

form.

In the foreseeable future, more powerful processors with more cores are antici-

pated. With dense fabrication technologies like 7 nm and less, more muscle can be

put up in a single core which will enable shoving more computing capacity without

compromising the chip size. The future SMDs loaded with these powerful SoCs

will be, in the true sense, the little computing giants.

1.7.2 Mass Adoption of SMDs

The SMD market has witnessed astonishing growth in the recent years. According

to the recent research market statistics, globally smartphone shipments had

reached 1.55 billion [56]. As per a study made by IDC, a USA-based major data an-

alytics company, a 5.7% growth has been noted in the YoY change in global

smartphone shipment in the year 2021 with 1,354.8 million of smartphone units

have been shipped globally compared to 1,281.2 million in 2020; and it is expected

to reach 1.52 billion units in 2025 [57]. An estimation by Statista, a leading market

and consumer data provider, suggests that the number of global smartphone sub-

scriptions will reach about 7.7 billion by 2027 [58] [59], while in India, the

smartphone userbase is predicted to reach 0.97 billion by 2025 [60]. In May 2019,

at the annual developers conference, Google proclaimed that it had more than 2.5

billion active Android devices [61].

31

As per a report from BankMyCell3, presently 48.37% of the world’s population own

a smartphone. Adding the number of tablet users with these statistics, therefore,

there is a great probability of finding a sufficient number of SMDs at a populous

place. Thus, it can be confirmed that the huge adoption of SMDs across the world

has put a big platform for MCC.

1.7.3 Abundant Idle Resources

It has been observed that the majority of SMDs are not being used to their capacity.

Studies suggest that normal users interact with their SMDs only for a few hours

(on average two to four) in a day [62] [63]. So, a huge amount of processing capa-

bility remains unused and wasted. Even when SMDs are in use, it is highly probable

that some of the CPU cores and the GPUs, alongside DSPs, ISPs, etc., remain free.

An enormous processing capability can be generated if these unused processing

powers are tapped and exploited properly (opportunistically).

1.7.4 Popularity of Crowdsourcing

Recently, the crowdsourced systems are gaining increasing popularity involving

various applications [64] [65] [66] [67] [68]. In these systems, depending on the

application’s demand, different resources and information of the users and their

devices are shared [69] [70]. We perceive MCC also as a crowdsourced system

where the users share their SMDs’ computing resources. Witnessing public’s non-

inhibition in sharing, we strongly believe that MCC would also be well acknowl-

edged by the users as in case of other crowdsourced systems.

1.7.5 Implementational Opportunities for MCC

Considering the benefits and potential of MCC we envisage its wide-range utiliza-

tion. Not only as HPC or organisation computing infrastructure, it can be imple-

mented for ad-hoc mobile cloud computing as well as edge computing, as dis-

cussed below.

Organisational HPC: Due to the holistic adaptation of IT-enabled services, the

organisational computing requirements have been increased staggeringly. In an

3 https://www.bankmycell.com/blog/how-many-phones-are-in-the-world

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world

32

organisational computing setup, besides the financial burden, the traditional in-

house computing facility has several factors which put more load on the environ-

ment and human health. Some of these factors are listed in Fig. 1.7. These are con-

sidered significant hindrance for sustainable computing. On the other hand, along

with economic and utility benefits, in Section 1.6, we have realised the environ-

mental advantages offered by MCC. The MCC can reduce the two-thirds share of

ICT energy consumption on the count of the use of computers and data centres.

Ad-hoc mobile cloud: In traditional mobile cloud computing, the computation-

ally intensive tasks are offloaded from the mobile devices to the cloud for execution

[71]. However, due to latency or unavailability of internet connection, accessing

cloud services are not always desirable. This can be mitigated through MCC. A vir-

tual cloud can be set up in ad-hoc manner by using the collective computing power

of a group of spatially adjacent SMDs [72]. Due to widescale SMD user base, there

is a great probability of finding a sufficient number of SMDs not only at a populous

place but also at scantily crowded locations. This infrastructural flexibility of MCC

and the omnipresence of SMDs, would make it possible to form an ad-hoc cloud

anywhere, allowing to achieve on-demand pervasive and ubiquitous computing

[73]. In this ad-hoc mobile cloud, a mobile device can offload the computing-in-

tensive jobs to the cloud which would be executed by the mobile devices in the

cloud [40].

Edge computing: The wide adoption of IoT and sensor-based applications has led

to the continuous generation of a huge amount of data. For actionable analysis,

these data need to be processed in real-time. Cloud computing has been a popular

option for this. However, the significant latency makes cloud services unsuitable

for real-time applications [30]. For this, edge computing solutions are being pro-

posed where data are being processed at the edge of the network [74]. But setting

up these local data processing architectures will incur a considerable additional

cost, besides the usual environmental liability. Also, as these solutions are offered

by specific vendors, they naturally tend to involve high costs. Another problem

with vendor-offered solutions is that there is a minimum scope of interoperability

with legacy systems and solutions from other vendors as they tend to be closed and

33

tightly coupled. This increases the IT infrastructure cost further. In view of these

issues of the proprietary edge systems, we believe that MCC can be considered as

a feasible edge computing system [75]. Especially, the SMDs available in the vicin-

ity can be leveraged to process the in-campus IoT data [76].

1.7.6 Aim and Scope of the Work

The primary aim of this study is to establish MCC as a flexible computing system

that can provide centralised HPC as well as ad-hoc computing. Though the MCC

approach sounds simplistic, successful implementation is not straightforward. It

involves several research issues such as designing a suitable architectural frame-

work, finding best suitable SMDs, fair and optimised scheduling, mitigating user

mobility, minimizing unnecessary job offloading, ensuring fault tolerance, moti-

vating people for volunteer participation, devising appropriate incentive models,

among others.

Besides, theoretically establishing MCC as a sustainable computing solution, in

this work, we limit our focus of study to only a few selective aspects. The perfor-

mance of MCC largely depends on appropriately scheduling the tasks to the most

suitable SMDs. For this an efficient scheduling algorithm is needed. Additionally,

the primary criterion for correct scheduling is to find and determine the most suit-

able SMDs as computing resources for a given task. Similarly, assessing the availa-

bility of SMDs is important to maintain the QoS. Only proposing a concept meta-

physically is not enough to establish it. In view of that, we envision presenting a

proof-of-concept prototype of MCC as an organisational edge computing infra-

structure.

Though MCC can be set up ubiquitously on an ad-hoc basis, we limited the scope

of our proposed system primarily within the periphery of a campus or within a

building such as an office and residential buildings, educational institutes, hospi-

tals and clinics, shopping malls and retail marts, etc.

34

Fig. 1.7. Factors that affect the environment indirectly in an organisational computing setup [77]

1.8 Research Objectives

In line with the above-mentioned aim and scope of this study, we designed our

Coolant Heavy cooling is required to mitigate the heat generated from the computing
systems.

This consumes massive electricity.

The coolant used in the air conditioners causes global warming and ozone
layer depletion.

Batteries Huge batteries are required for continuous power backup.

Commonly used lead-acid batteries have adverse effects on human health
and the environment.

If not properly disposed of they may contaminate the soil and water.

Cleaning
materials

Dusting and cleaning are important in organisational computing systems for
efficient operation.

Varieties of cleaning solution are available, and most of them are toxic as
they contain bleach, ammonia, or chlorine.

These toxic cleaning solutions have an adverse effect on human health.

Diesel fuel Diesel fuel-based power generators are often used in case of power failure.

These generators are used especially at the sites which experience recurring
power failure, and batteries can not support for longer durations.

Diesel fuel produces an enormous amount of CO2 and other chemicals which
causes global warming as well as affect human health.

Electronic
waste

Electronic equipment have a finite lifespan.

Most of the computer peripherals need to be replaced by 3-5 years which is
increasing the amount of e-waste enormously.

The e-wastes are not easily degradabel and are harmful to the environment
if dumped on the open landfills.

Fire
suppression

With electronic equipment there is always chances of fire due to short
circuits, etc. Therfore fire suppression sytems are commonly employed.

Various chemicals used in the fire system may be harmful to the
environment such as ozone layer depletion and global warming.

These chemicals are toxic and may find its way to underground water or to
rivers, thus, contaminating the water resources.

Packaging The packaging materials of the computing equipment purchased by the
organisations add huge waste every year.

Some materials like foams, thermocols, plastic bag, and plastic support
accessories are nonbiodegradable and need proper recycling.

Dumping these on the open area may harm the environment.

Office
premises

Running cooling and heating equipments and lights in the office for the
entire day/night causes considerable electricity consumption and wastage.

Daily office chores produce lots of paper, plastics, and packaging wastes.

Floor cleaning, glass pane, computers, and carpets also produce chemical
wastes.

35

research objectives as listed below:

• Understand the gravity of sustainable computing

To convince ourselves of the requirement of sustainable computing, we genu-

inely need to realize the serious concern of the deteriorating environment of

the Earth. Moreover, we need to recognize the role of the traditional and ex-

isting computing system in this. Based on this understanding, we would be

able to identify the more threatening and addressable aspects.

• Establish MCC as a feasible sustainable computing option

As we claim that MCC can be perceived and implemented as a sustainable

computing solution, we need to establish the rationality behind this. Specifi-

cally, we aspire to:

o Ascertain the sustainable benefits of MCC

o Frame the layout of a generalised architecture of MCC

o Identify the major challenges of MCC and suggest the probable way outs

and research progress

• Develop a systematic approach to profile the static and dynamic re-

source information of the SMDs for MCC

In MCC, the essential prerequisite is to profile and assess the resource param-

eters and their present status precisely. However, considering the heterogene-

ity and dynamicity of these resource parameters, profiling them and assessing

their fitment for different requirements is not trivial. We aim to develop a

model and systematic methodology to profile the static and dynamic resource

parameters of the SMDs in real-time.

• Select the suitable SMDs as per their static and dynamic resources

To achieve satisfactory performance and QoS, selecting the best resources

(SMDs) is crucial. Scheduling the MCC tasks to the most suitable SMD as pr

the task requirements would impact the efficiency of MCC significantly. Suit-

ability of an SMD can be determined based on multiple criteria (e.g., CPU and

GPU power including clock frequency and the number of cores, battery re-

maining, probable availability period, past history of reliability, cost of service,

pre-load (whether overloaded or not), mobility behaviour, etc.). Considering

36

the heterogeneity of the assessment parameters selecting the most suitable

SMD poses an interesting research problem.

• Design resource-aware and energy-aware scheduler for MCC

Scheduling is an important aspect for MCC like any other distributed systems.

The overall performance and the integrity of the MCC can be assessed by fac-

tors such as execution time, resource utilisation, load balancing, etc. An effi-

cient task scheduler should conform to these requirements. Conversely, an in-

efficient scheduling method will have a negative impact on the QoS of MCC.

Furthermore, considering the battery-powered constrained energy of the MCC

resources, i.e., the SMDs, it is crucial to minimise the energy consumption to

complete the scheduled task. This can be achieved to some extent by optimis-

ing the task scheduling to the appropriate SMDs. However, considering only

energy efficiency might lead to a huge load imbalance among SMDs, i.e., the

most energy-efficient SMDs would be overloaded most of the time. In a dy-

namic and heterogeneous system like MCC, it is nontrivial to realise an opti-

mised scheduler, in view of the fact that scheduling in a heterogeneous distrib-

uted system is an NP-complete problem.

• Determine the availability of an SMD to improve QoS of MCC

To maintain the QoS of MCC, determining the SMD availability is important.

Ideally, an MCC task should be assigned to the SMD that has the maximum

probability of being connected to the MCC network until the completion of

the assigned task. Leaving an SMD without sending the result back would in-

crease the overload for task offloading. Frequent task offloading would hamper

the MCC performance significantly. Hence, it is required to assess the proba-

bility and the confidence of a particular or a set of SMDs being staying for a

certain period of time (till completion of the job that is to be assigned).

• Explore the suitable approaches for mobility-aware service provisioning

in MCC

Mobility is a crucial issue in mobile computing, especially for a local MCC

where the SMDs are connected through WLAN or other short-range commu-

nications. For a successful implementation of MCC, this has to be addressed.

There is a requirement for finding the best possible ways to ensure the MCC

37

service provisioning mitigating the user mobility.

• Present a proof-of-concept of MCC for practical application and imple-

mentation

To assess and convince the feasibility of MCC, it is important to present a

working model of it. In this work, we would aim to present a proof-of-concept

of MCC with the minimalistic features, which can be considered as a prototype

for further development.

1.9 Thesis Structure

The thesis is structured as following. Fig. 1.8 illustrates a hamburger organisation

of the thesis.

Fig. 1.8. Hamburger model of the thesis organisation

Chapter 1: We try to establish the need and importance of sustainable computing

and how MCC would help achieving it. The primary aim of this chapter is to inves-

tigate and unveil the environmental impacts of the existing computing systems and

set the background of presenting the need for an alternate sustainable solution in

order to minimise the environmental hazards. Here, we aim to establish MCC as

38

the sensible and feasible solution to sustainable computing while highlighting the

environmental benefits and the enablers of MCC in achieving the goal of sustaina-

ble computing.

Chapter 2: We look into the similar work found in literature. We report the re-

search works and projects that are close to the overall concept of MCC. We also

explore the related work of the individual research presented in chapters 3 to 8.

Chapter 3: We present the technicalities and the working of MCC in details, which

include the probable models and architectures suitable for different implementa-

tions of MCC. Besides the sustainable benefits discussed in Chapter 1, other ad-

vantages of MCC are also mentioned. Furthermore, the issues and challenges asso-

ciated with MCC implementation along with the open research problems are me-

ticulously analysed.

Chapter 4: We present a methodological approach to profile the candidate SMDs

to assess their resources for job scheduling. The intricacies of the designing, devel-

opment, and implementation of the SMD profiling and selection, the two neces-

sary components in realizing an organisational MCC, are presented in detail.

Chapter 5: We aim to find out a suitable MCDM method for resource selection in

a dynamic and time-constraint environment like MCC. For this, we present a com-

parative analysis of various MCDM methods under asymmetric conditions with

varying selection criteria and alternative sets.

Chapter 6: We present two scheduling algorithms for MCC. In the first part, we

use a heuristic approach to propose a resource-aware multicriteria-based schedul-

ing algorithm for MCC. In the second part, we use a PSO-based metaheuristic ap-

proach to propose a load balance aware energy-efficient scheduling algorithm for

MCC.

Chapter 7: We provide an effective model to predict the availability of the users

(i.e., their SMDs) in a local MCC environment to prevent frequent job offloading

and job loss. We propose an advanced convolutional feature extraction mechanism

that is applied to LSTM and GRU-based time-series prediction models for predict-

ing SMD availability.

39

Chapter 8: We address the mobility issues of the users in a P2P MCC scenario. In

the first part of this chapter, we aimed to predict a stable group of SMDs so that

resource servicing takes place within the group only. And in the second part, we

propose a service provisioning scheme considering the mobility of the resource

providers and the consumers.

Chapter 9: We aspire to establish a proof-of-concept for the feasibility and use of

MCC as a sustainable edge computing solution (MCC-edge). A typical smart HVAC

system of an office building has been considered for the experiment case. We aim

to process the HVAC data in real-time using the MCC-edge set up within the build-

ing for auto adjustment of the AC controller and error notifications.

Chapter 10: We summarize the thesis while discerning the probable future direc-

tions of MCC and related aspects.

2

Related Work

“Research is to see what everybody else has seen, and to think what nobody else has

thought.” --- Albert Szent-Gyorgyi

2.1 Introduction

The concept of MCC is certainly not absolutely new. It is based on several estab-

lished computing paradigms and approaches, as briefly mentioned below.

Distributed computing: In a distributed system, the computing nodes are phys-

ically separated and connected through local or global networks [78]. The compu-

ting units work collaboratively to achieve a common goal.

Parallel computing: Parallel computing refers to the concurrent execution of

multiple subtasks, descendent from a large task, on multiple processing units [79].

Generally, distributed computing adheres parallel computing though it is not man-

datory for every case.

Cluster computing: To attain HPC, researchers suggested forming a parallel and

distributed computing system by connecting multiple standalone computers

through high-speed LANs [80]. By this, a single, integrated HPC can be garnered

by aggregating the computing capacities of the connected computers [81].

Grid computing: Diverse types of computing resources are connected through a

local or global network forming a grid of resources. In a typical computing grid,

any grid member can consume resources from or provide its resource to other grid

members.

Volunteer computing: Computing resources are voluntarily shared by owners

from across the globe [82] [83]. Though grid and volunteer computing seem simi-

lar, there are a few differences, as listed in Table 2.1. However, many extended grid

computing systems support volunteer computing [84].

P2P computing: It is a decentralised distributed computing system where com-

puting loads are shared among peer computers connected through local or global

41

networks [85]. Each participating computer, i.e., a peer node, can work both as a

client and a server, depending on the context of the computation [86].

Opportunistic computing: When two or more devices come into contact, it can

be perceived as an opportunity to share resources, services, and information with

each other. Opportunistic computing, essentially a kind of distributed computing,

exploits the advantages of neighbourhood and proximity among computing de-

vices. The continuous advancement of communication technologies, especially

wireless communication technologies such as cellular, Wi-Fi, WiMAX, Wi-Fi

hotspot, Bluetooth, etc., has broadened the avenue for opportunistic computing

on a large scale. Opportunistic computing does not mean only locating the devices

and accessing their resources opportunistically but also the opportunistic way to

reach those devices [87]. That is termed an opportunistic network, which suggests

finding the best path whenever possible to reach the device involved in opportun-

istic computing, probably in a pervasive manner [88].

CPU scavenging: Resource scavenging refers to tapping the potentially accessible

computing resources whenever they are available and possible [89]. In volunteer

computing, though resources can be availed from holy souls (contributing enti-

ties), they cannot be taken for granted, i.e., it is to be ensured that the normal

functioning of the volunteering node should not be hampered. So, the external

computing task should be executed when the CPU is free or very lightly loaded.

This is known as CPU scavenging and can be perceived as another form of oppor-

tunistic computing [90] [91]. Grid computing follows this approach [92].

Crowdsourced systems: A crowdsourced system is a distributed system whose

constituent components or the whole system are materialised by scrounging the

hardware or software resources owned or generated by the crowd [34].

Crowd computing: Crowd computing is a form of volunteered crowdsourced sys-

tem where computing resources belonging to the general public are utilised to

meet HPC requirements. Some real-life social and scientific problems (e.g., drug

discovery, gene mapping, cancer and AIDS research, mathematical modelling and

simulation etc.) are so complex and computation intensive that they cannot be

solved by means of conventional processing speeds and capabilities within a

42

feasible time boundary without employing heavily expensive supercomputers

which most of the research institutes and organisations cannot afford. Crowd com-

puting is a practical alternative to purchasing big compute clusters for carrying out

computations required to solve these problems [93]. Many individuals and organ-

izations come forward to allow these problems to be processed on their computers

when they are not in use. The collective processing power can be compared to

powerful supercomputers, minus the huge cost [55]. Having an internet connec-

tion and willing to participate in crowd computing, a user should download and

install a client application through which he interacts with the project application

running on a server. A middleware helps the client application to communicate to

the server where the crowd computing project is hoisted. The highly jobs are dis-

tributed to the participating computers. The client applications on those comput-

ers opportunistically hunt for the unused computing cycles. On availability, as-

signed computing jobs are executed, and after completion, the results are sent back

to the project’s server. The client application ensures that lending the computing

resources does not affect the user’s own jobs.

Table 2.1. Differences between grid computing and volunteer computing [94]

 Grid computing Volunteer computing

Resource
owner

Grid resources are generally owned by or-
ganisations such as universities, research
labs, public organisations, etc.

Resources are usually owned
by the general public.

Resource avail-
ing approach

The jobs are pushed to the grid resources. The volunteers pull the com-
puting jobs.

Resource
sharing

Both ways. A grid resource provider may
also be a resource consumer.

One way. Volunteers are
always the resource providers.

Resource class Organisational Personal

Reliability High Low
Security threat Low High

Public outreach Low High

A typical MCC system either follows all of the above-discussed computing para-

digms or most of them. Nearly all of these technologies are decade old and a co-

lossal number of research work can be found on these, addressing various areas. In

this chapter, we focus on only those works which very closely related to the prob-

lems addressed in this thesis. In the following, we examine the related literature

on that basis, as each subsequent chapter is organised as individual section. For

each section, exploring the existing research, we try to find out the research scope.

43

2.2 MCC as Computing Paradigm

As mentioned above that several existing computing paradigms have incited the

notion of MCC. In this section, we try to find out the works that incorporate these

computing approaches with mobile computing. We also mention a few prominent

global projects that fostered the idea of MCC in its basic form.

2.2.1 Related Research

In the following, we categorically report the pioneer and recent research works that

specifically relate to computing on mobile devices. The categories are in no way

exclusive because all the concepts discussed below are either overlapping or rep-

resented similarly in the literature. However, we considered only those papers

which deliberated mobile devices as computing resource providers in some way.

Distributed computing: Networked mobile devices are extensively explored for

performing distributed computing [95] [96]. In his Master’s thesis [75], Marinelli

used Android-based smartphones as computing resources by porting Hadoop

Apache to the smartphones. He developed a mobile cloud computing system

named Hyrax that offered a networked computing environment for smartphones.

However, the performance of Hyrax was not up to the mark mainly because of the

inferior smartphones of that period, and also, Hadoop was not optimized for mo-

bile devices. Authors of [97] and [98] proposed a MapReduce-based distributed

computing framework for mobile devices, named Misco, that supports the devel-

opment of distributed data clustering applications on networks of smartphones.

Lee et al. [99] discussed the advantages of using mobile devices for distributed an-

alytics. They carried out distributed analytics with a CPU, memory and/or I/O in-

tensive workload on a Hadoop-based cluster of Android mobile devices and as-

sessed the performance using typical Hadoop benchmarks. The latest Hadoop soft-

ware framework was entirely ported to a high-end device (e.g., Google NEXUS 7

tablet) without degradation of the overall performance. Arnold [100] presented a

framework for distributed computing over smartphones. In [93], the authors did a

feasibility experiment by implementing a small cluster of Android smartphones to

show that a local and mobile ad-hoc cluster can be built using powerful

smartphones. Datla et al. [96] suggested local cooperation of mobile devices to

44

execute computing-intensive tasks. Dong et al. [101] proposed a generic random-

ized task assignment framework for participatory computing named REPC, in

which the mobile devices were used as computing devices to process the compu-

ting-intensive tasks. They used pedestrians’ mobile devices to identify wanted

criminals. They implemented it on a testbed of twenty Android smartphones con-

nected through a wireless network in an open area. Dumont [102] designed and

constructed a REST web service based distributed mobile computing system. They

proposed a communication protocol, MEXP, for data exchange between devices.

They tested the system in a biology laboratory scenario. Salem [103] proposed a 4-

tier architecture for a web-based distributed computing system comprising a net-

work of smartphones to execute machine learning models and provide predictions.

Sanches et al. [104] presented a data-centric distributed computing framework.

The proposed infrastructure-less distributed system consists of co-located mobile

devices and can process batches or streams of data generated by the devices. Here,

instead of sending the tasks to specific resource-providing devices, to minimise the

data exchange, the authors proposed to process them at the data generating node

only.

Cluster computing: Büsching et al. [93] presented a proof-of-concept demon-

strating the feasibility of building a mobile cluster. They built a cluster with six

Android mobile phones connected through a USB hub with a controlling node and

evaluated the cluster's performance by running LINPACK, a standard benchmark

for HPC systems. The cluster attained a 75% performance level of the ideal linear

scaling of six times. The 25% deficit was mainly due to network latency and inabil-

ity to exploit the devices’ resources 100% (following the non-intrusive and oppor-

tunistic execution policy). In a similar work, Attia et al. [105] built a mobile cluster

of two Android devices with six cores. They used standard C programming with

MPI for task assignment and communication between two mobiles. As task size

grew, the authors observed significant performance improvement using the cluster

compared to individual processing.

Opportunistic computing: Conti and Kumar [88] observed the prospects in op-

portunistic computing along with opportunistic networks in the context of social

45

and pervasive computing. An encouraging discussion on opportunistic computing

can be found in [106]. Murray et al. [107] suggested a crowd computing system

formed by utilising an opportunistic network of cooperative mobile devices in-

spired by human social interaction to achieve large-scale distributed computation.

Shi et al. [108] presented opportunistic mobile computing, where an in-motion de-

vice that needs external resources to run a computational task avails the same from

a resource-providing mobile device that it encounters on its trajectory and gets

connected intermittently. They designed a job distribution and task allocation

scheme for this uncertain and unreliable computing environment. Mtibaa et al.

[109] presented a proof-of-concept of dynamic and adaptive opportunistic mobile

computing. They proposed a generic peer-to-peer computation offloading archi-

tecture to offload the task to various resource-providing entities such as mobile

device clouds, cloudlets, and clouds. For this work, the authors considered both

computation opportunities and network opportunities while counting minimized

response time, reduced energy consumption, and increased network lifetime as of-

floading criteria.

Volunteer computing: Tapparello et al. [110] presented the state-of-the-art of vol-

unteer computing on mobile devices and a literature review of how the different

parallel and distributed computing architectures have been adapted to use mobile

devices for opportunistic computing. Erick Lavoie et al. [111] presented a first-of-

its-kind web browser based distributed computing tool, Pando, for volunteer com-

puting on personal mobile devices. The devices can be connected via either LAN

or VPN, or WAN. The researchers used a declarative concurrent programming

model and implemented it using JavaScript, WebRTC, and WebSockets. Due to its

independence of specific communication protocols or input-output libraries, the

authors claimed Pando is also re-implementable in other programming environ-

ments. To support the HPC requirements in ALICE, one of the four main experi-

ments of CERN’s LHC project, Jenviriyakul et al. [112] developed a prototype of a

volunteer computing platform on mobile devices based on BOINC [113]. The pro-

totype named ALICE Connex exploits and aggregates the unused computing power

46

of the volunteer smartphones to calibrate the ALICE’s time-of-flight (TOF) particle

detector.

Enterprise computing: Acknowledging the opportunities and potential, mobile

devices are being proposed to be utilised as organisation-level computing re-

sources. Arslan et al. [114] [35] proposed an enterprise-level distributed computing

framework using SMDs where organisations could leverage the idle SMD resources

of their employees when the devices are left for overnight charging. They imple-

mented a prototype to demonstrate the viability and efficacy of the system called

‘computing while charging’. For executing enterprise applications, Schildt et al.

[115] aimed to utilise the idle CPU cycles of the smartphones given to employees by

the organizations. The goal is to offload a major portion of the enterprise compu-

tation to employees’ mobile phones while charging during working hours. They

designed a Java-based software framework that can distribute computing tasks to

a network of Android devices and personal computers and gather the results. Using

Java gave the researchers twofold advantages: i) they could reuse the existing busi-

ness logic written in Java, and ii) the framework not only supported Android mo-

bile devices but also could run regular desktop or server hardware, allowing seam-

less job distribution.

Mobile grid computing: In early 2000, with the prolificity of mobile phones, re-

searchers endeavoured to incorporate mobile devices to grid computing in differ-

ent ways [116] [117] [118] [119] [120]. Most aimed at extending the desktop grid to

mobile devices, i.e., the accessibility of grid resources from mobile devices. But

gradually, as the mobile devices became more powerful, they were treated as com-

puting units altogether. As a result, they became part of grid computing not only

as resource consumers but also as resource providers [121]. Kurkovsky and Bha-

gyavati [122] [123] proposed a wireless mobile grid to carry out resource-intensive

tasks. Any device in the grid can initiate a task that it cannot execute on its own

due to resource limitations. The task is distributed to one or more devices in the

grid, and after execution, results are collected. Katsaros and Polyzos [124] proposed

a campus-wide hierarchical mobile grid architecture where the resource-providing

mobile nodes are connected through WLANs. Black and Edgar [125] demonstrated

47

the feasibility of using mobile devices as grid resources by implementing the

BOINC client on an Apple iPhone via an emulated x86 virtual machine. The com-

puting tasks were downloaded from a BOINC server, executed on the virtual ma-

chine (mimicking iPhone), and results were sent to the server. Viswanathan et al.

[126] presented a resource-provisioning framework for a hybrid grid comprising

both static and mobile computing grids. The proposed system boasts autonomic

capabilities, such as self-organization, self-optimization, and self-healing, while

considering energy- and uncertainty-aware resource allocation. Sriraman [127] re-

visited the possibilities of using smartphones and tablets in grid computing while

briefly mentioning some challenges and solution approaches.

Ad-hoc mobile cloud computing: The concept of the mobile grid was extended

as an ad-hoc mobile cloud where a minuscule local cloud is formed in an ad-hoc

manner by connecting several mobile devices available nearby [128]. Canepa and

Lee [129] presented a framework for creating an ad-hoc mobile cloud with stable

devices in the vicinity of the resource consumer. They implemented the prototype

in Java and using Hadoop and tested its performance a Korean character recogni-

tion on an OCR and then translating it to Romanize. The authors observed a neg-

ligible (1% on average) performance degradation in carrying out the task in the

mobile cloud than executing it on a single device. Khalifa et al. addressed various

aspects of ad-hoc mobile cloud in their series of works [130] [131] [132] [133]. Miluzzo

[72] presented a theoretical perspective on the feasibility and potential of local

cloud computing made up of a collection of cooperating mobile devices available

nearby for running resource-intensive applications. In [134], while deploying ad-

hoc mobile cloud in a small hospital scenario besides mobile devices, they also

included semi-stationary on-board computing resources of vehicles. Nishio et al.

[135] proposed architecture and mathematical framework for heterogeneous re-

source sharing in a mobile cloud. Based on the idea of service-oriented utility func-

tions, they aimed to develop a unifying utility function which could map all the

heterogeneous resources into a single parameter. Funai et al. [136] proposed and

implemented a mobile computing system connected through an ad-hoc network.

Here, a volunteer mobile device elects itself as a local task distributer and invites

48

others to join the ad-hoc cloud for computation via D2D communication such as

Wi-Fi Direct. Remédios [137] presented an early prototype of an infrastructure-less

local mobile cloud for processing locally generated big data. To minimize execu-

tion time and energy consumption, Yaqoob et al. [138] proposed a heterogeneity-

aware task allocation scheme for ad-hoc mobile cloud computing. Shila et al. [40]

proposed an automatic, scalable, and efficient service/resource management

framework for an ad-hoc cloud. The proposed framework is a generic one, i.e., it

considers both static and mobile resources in the vicinity. Balasubramanian and

Karmouch [139] presented a framework of an ad-hoc mobile cloud for P2P IaaS

provisioning. In their proposed system, a needy mobile device can search and se-

lect peers and form an ad-hoc network with them. After forming the virtual cloud,

the jobs are obtained from the resource-seeking device, executed, and the results

are sent back. On completion of the tasks, the resources are released. Lately, ad-

hoc mobile clouds are proposed to attain edge computing aiming to meet the need

for time-constraint applications [140] [76].

Mobile crowd computing: Loke et al. [141] argued the feasibility of MCC. They

presented a job distribution approach among the mobile devices in such a network

connected via Bluetooth. In this framework, a mobile device designated as a del-

egator distributes the jobs to other mobile devices designated as workers, which

execute the assigned jobs in a work-stealing fashion. Fernando et al. [142] [143] in-

troduced a crowd computing framework for mobile devices, named Honeybee,

through which mobile devices can share work and utilize local resources, em-

ploying the work-stealing strategy and load balancing among different de-

vices. They proposed a work-stealing method for MCC, which utilises locally avail-

able smartphones, combinedly and collaboratively, to form a local mobile resource

cloud. In his book “Crowd-powered mobile computing and smart things” [144],

Loke discussed various potential aspects of MCC in applications like ubiquitous

computing, context-aware servicing, drone services, and smart things. Prem Ku-

mar et al. [145] developed a client/server-based distributed computing platform by

harnessing the computing power of public mobile devices. To carry out some tasks

through this system, a user must upload a dataset, the executable Java code, and

another that would combine the results. The authors offered a task distribution

https://ieeexplore.ieee.org/author/37085876814

49

and scheduling algorithm that abstracts the computational heterogeneity of the

devices, task execution complexities, and the uploaded dataset size. The proposed

system also offers storage services utilising the space available on public devices.

For security, they used threshold cryptography on the uploaded files to create en-

crypted shares. Going beyond the mobile phones, Kündig et al. [146] utilised other

portable smart personal devices, in addition to smartphones, to realise

crowdsourced edge computing. An ad-hoc edge network is formed by connecting

the crowd peers within a nearby neighbourhood. The peers connected in a dynamic

mesh architecture can be task handlers, workers or message brokers. They demon-

strated the applicability of such crowdsourced edge by implementing a video-en-

hanced object search in a campus-based wide local area to generate informative

heat maps or identify a specific object using deep learning techniques.

2.2.2 Global Projects

SETI@home, the first truly crowd computing project, was initiated by the Univer-

sity of California, Berkeley and made public in 1999 to search for evidence of extra-

terrestrial life. For this, they designed BOINC4 (Berkeley Open Infrastructure for

Network Computing), an open-source middleware that provides support for vol-

unteer grid computing projects. Since then, many volunteer and crowd computing

projects have been instigated. Some of them have successfully been completed.

Some are still going on. Later, in late 2004, IBM joined hands in the mission to

solve various problems, including medical, environmental and other humanitarian

posers, by launching a grid computing framework named World Community Grid5

(WCG). BOINC and WCG jointly or individually initiated several large-scale pro-

jects focusing on different scientific problems. Some notable projects among them

are Einstein@home6 (pulsars and gravitational waves detection),

FightAIDS@Home7 (HIV/AIDS research), Folding@home8 (disease research),

4 https://boinc.berkeley.edu
5 https://www.worldcommunitygrid.org/
6 https://einsteinathome.org/
7 https://www.worldcommunitygrid.org/research/fahb/overview.s
8 https://foldingathome.org

http://gridcafe.web.cern.ch/gridcafe/gridprojects/athome.html#aids

50

LHC@home9 (high energy physics), etc. GPUgrid.net10 (focuses on problems re-

lated to biomedical research), Citizen Science Grid11, and distributed.net12 are some

other popular examples of crowd/volunteer computing platforms and applications.

All the projects have a common motivation for reducing costs compared to tradi-

tional HPC systems.

Another online computing community service named grid.org13 was launched in

2001 which ran several different volunteer computing projects. It started with a

cancer research project aiming to screen the target molecules against known can-

cer target proteins. Successively, varieties of other projects such as finding cures

for small pox and anthrax, analysing human protein folding, hidden Markov mod-

elling and web load testing were introduced.

Though almost all these projects are desktop-based, it won’t be off beam to be op-

timistic, inspired by the attainment of desktop crowd computing, about the suc-

cess of MCC as well. That is why many crowd computing projects are also fitting

themselves to run on smartphones. BOINC published an Android version, which

allows Android devices to join and contribute voluntarily to crowd computing pro-

jects [147] [148]. Users can choose one or more projects among several Android-

supported projects (e.g., Asteroids@home, Rosetta@home and many others) avail-

able. If a user has an Android-based smartphone wish to volunteer his phone’s pro-

cessing cycles, he downloads BOINC client software which receives jobs from a

designated server [149]. Whenever the client application senses an opportunity, it

utilizes a user’s phone’s processor to execute assigned tasks. On completion of the

particular task, the result is sent to the server. But since battery life is a severe

concern to users, the middleware checks for the battery status of the smartphone

before initiating processes. By default, the application runs if the battery level is

over 90 percent or if the phone is being charged. Moreover, BOINC works only

9 https://lhcathome.web.cern.ch/
10 http://gpugrid.net/
11 csgrid.org/csg/
12 http://www.distributed.net/Main_Page
13 www.grid.org

http://csgrid.org/csg/
http://asteroidsathome.net/boinc/

51

when the Wi-Fi connection is enabled and available so that the user’s mobile data

is not burned up.

Vodafone Foundation, along with The Garvan Institute of Medical Research in

Australia, came up with a similar project called DreamLab14, intending to find a

cure for cancer by pooling the public’s smartphone computing power [150]. Like

BOINC, volunteers simply have to install the DreamLab app and allow it to utilize

their smartphone’s ideal CPU cycles. The app automatically downloads the pro-

cessing task, process it and sends the result back to the Institute. This helps accel-

erate research work to counter different cancers like breast, ovarian, prostate, and

pancreatic cancer. The institute expected to speed up the data crunching processes

up to 3000 times if 100,000 users lend their smartphones to this project.

Ubispark15, a research project nurtured by the Department of Computer Science,

University of Helsinki, aimed to utilise smartphones and other smart devices (e.g.,

smart TVs) for large-scale data processing related to science problems. Like BOINC

for Android and DreamLab, Ubispark also can be downloaded as a regular Android

app by users who are willing to contribute their device's idle computing power. As

per the user’s preference, the app can be set to contribute only when the device is

connected to Wi-Fi and while it is being charged.

Neocortix16, a USA-based company, is running a commercial MCC project where

users lend their smartphone’s idle processors and earn money. The users need to

download the PhonePaycheck app. The app executes the tasks when the

smartphone is on charge and connected to Wi-Fi. Neocortix has a range of services,

all of which run on the public’s Android SMDs. The Neocortix Cloud Services,

launched in February 2020, provides a scalable compute service for which a full

Debian Linux is run in a secure container on the SMDs, and is accessible via a

standard SSH interface. The BatchRunner, launched in September 2020, allows us-

ers to launch their own customized batch jobs with minimalistic changes. They

only need to edit a few lines of Python code and run a plain script. It offers many

14 https://www.vodafone.co.uk/mobile/dreamlab
15 https://ubispark.cs.helsinki.fi/
16 https://neocortix.com/

52

benefits, such as supporting multiple programming languages, load testing tools,

image renderers, machine learning environments, etc. The company provides user-

friendly tutorials and a certification program for user learning and training. Pock-

etScience, launched in February 2021, is a crowdsourced academic research app

that allows Android/Arm device users to contribute to COVID-19 and other medi-

cal research.

2.2.3 Research Scope

From the above discussions, we observe that much work has been done toward

MCC and other related areas. However, none of them covers MCC wholesomely.

All of them either discussed different aspects of mobile-based computing dis-

cretely or presented some specific empirical works mainly to show the feasibility

of such systems. The only paper we found with a similar presentation theme that

of ours is by Lavoie and Hendren [151]. But they concentrated only on volunteer

computing. Also, this paper does not discuss architectures, design criteria and con-

siderations, advantages, or issues and challenges.

Moreover, most papers were published just after SMD was launched in the market.

Only a few works have been published intermittently since then and also in recent

years. Since the initial launching of the SMDs, they have evolved a long way. To-

day’s SMDs are not only for making phone calls, browsing the internet or keeping

personal notes; rather, they have become full-fledged computers. Many people use

SMDs as computers by hooking them up to external keyboards and mice. In view

of this development, MCC needs to be given a fresh look and perspective with the

potential to achieve more.

Crowd computing has been exercised in sophisticated science and research pro-

jects in the form of volunteer computing (discussed in Section 2.2.2). But despite

the apparent benefits and success of these projects, the idea of MCC is yet to find

its feet in general user applications [152]. Even though MCC has an unbound po-

tential for providing on-demand and ubiquitous computing services, it has not yet

garnered sufficient attention from the research community and other related

stakeholders, including general users. People need to be made aware of the MCC

more convincingly. For this an exclusive documentation is needed that covers

53

every aspect, in general, required to know to understand MCC, which can fill the

purpose of a preliminary reference for the interested researchers, both novice and

experienced, who are keen to work on MCC, as well as other stakeholders willing

to explore the benefits of MCC.

2.3 Resource Profiling in MCC

Profiling the potential resources is an important aspect of any distributed compu-

ting where the efficiency of the system mostly depends on the quality and capabil-

ity of the computing resources. It becomes more crucial when we deal with mobile

distributed computing systems such as mobile grid computing or mobile cloud

computing, where the resource providing devices are mobile.

2.3.1 Profiling Mobile Devices’ Information for Smartphone-based Computing

To realise enterprise-level volunteer computing using smartphones, Arslan et al.

[35] profiled the mobile device charging behaviours of users for identifying suitable

scheduling times. Using an Android application, they tracked three states - the

phone being charged, not charging, and switched off. The application logged the

event to a server with a timestamp (recorded at the user’s end) whenever there was

a change in state. Also, to assess the networking activity, they logged the number

of bytes transferred over the wireless interfaces when they were in a charging state.

They also measured the variations in the bandwidth of the mobile devices to pre-

cisely assess the data transmission performance for efficient task scheduling across

different devices.

2.3.2 Research Scope

Though profiling is crucial for understanding the potential resources, surprisingly,

a thorough search of the relevant literature yielded no related article, except the

one discussed above, that deals with extensive resource profiling for mobile com-

puting systems. This opens up a great opportunity to design and implement a suit-

able resource profiling framework for MCC.

2.4 Resource Selection in MCC Using MCDM Method

Choosing the best or the most suitable resources optimally among the available

ones can significantly improve the effectiveness of any distributed system. Various

54

approaches are being tried for selecting the resources in mobile distributed com-

puting environments such as mobile grids and mobile clouds. However, depending

on the application requirements, the parameters are considered for selection may

vary. On the other hand, MCDM techniques have been used for decision-making

in several application domains for a long time [153] [154]. They have been exten-

sively used in engineering [155]. Here, we highlight the use of MCDM in the related

areas of distributed computing comparable to MCC. Before that, we point out some

research work addressing optimized resource selection in a mobile computing en-

vironment.

2.4.1 Optimization-based Resource Selection in Mobile Grid/Cloud

Different optimization techniques are used by many researchers for resource se-

lection and task allocation and scheduling. Zhou et al. [156] proposed an optimal

mobile device selection approach for a mobile cloud computing environment con-

sidering the stability of the devices. To find out the mobile devices with maximized

usable computation capabilities in a mobile cloud system, Habak et al. [140]

adopted a greedy heuristic based optimization method that would select the most

suitable mobile device among the available ones. They considered the computation

and bandwidth capacity of the device and its departure time as the selection pa-

rameters. Venkatraman et al. [157] proposed a linear programming based model to

select the best mobile devices in a mobile ad-hoc cloud, considering the devices’

resources such as CPU, RAM, storage, etc., aimed to use. Viswanathan et al. [158]

used an optimization approach to select a mobile node as a computing service pro-

vider in a mobile grid computing for ubiquitous healthcare. Among the considered

selection parameters such as CPU, RAM, available battery, network resources, the

present location of the node and its availability period, some were intended to be

maximized (e.g., response time and resource availability duration) while some

were minimized (e.g., battery consumption).

2.4.2 MCDM for Resource Selection in Distributed Computing

Besides web service selection [159] [160], MCDM methods are also popularly used

for cloud service selection [161] [162] [163]. Youssef [164] used a combination of

TOPSIS and BWM to rank cloud service providers based on nine service evaluation

55

criteria, including sustainability, response time, usability, interoperability, cost,

maintainability, reliability, scalability, and security. Singla et al. [165] used Fuzzy

AHP and Fuzzy TOPSIS to select optimal cloud services in a dynamic mobile cloud

computing environment. They considered resource availability, privacy, capacity,

speed, and cost as selection criteria.

MCDM methods are being used to improve the efficiency and effectiveness of job

offloading in mobile cloud computing [166] [167]. To choose the suitable hosts (e.g.,

cloud, cloudlet, and peer mobile devices) for offloading the computing tasks from

a mobile device, Ravi and Peddoju [168] used the TOPSIS method. They considered

the waiting time, the energy required for communication, the energy required for

processing in mobile devices, and connection time with the resource as the selec-

tion criteria.

Mishra et al. [169] proposed an adaptive MCDM model for resource selection in fog

computing, which could accommodate the new-entrant fog nodes without rerank-

ing all the alternatives. The proposed method is claimed to have less response time

and is suitable for a dynamic and distributed environment.

To ensure the quality of the collected data in mobile crowd sensing applications,

Gad-ElRab and Alsharkawy [170] used the SAW method for selecting the most ef-

ficient devices based on computation capabilities, available energy, sensors at-

tached to the device, etc.

MCDM methods have been used for resource selection in grid computing as well.

For instance, Mohammadi et al. [171] used AHP and TOPSIS combinedly for grid

resource selection. They considered cost, security, location, processing speed, and

round-trip time as selection criteria. Abdullah et al. [172] used the TOPSIS method

to select resources for fair load balancing in a multi-level computing grid. For re-

source selection, they considered three criteria expected completion time, resource

reliability, and the resource’s load. Kaur and Kadam [173] used MCDM methods for

a two-phased resource selection in grid computing. They applied the SAW method

to rank the best resources in the local or lower level and then used enriched PRO-

METHEE-II combined with AHP for a global resource selection or to select the best

resources across all the top-ranked resources at each local level. Nik et al. [174]

56

used the TOPSIS method to select the resource with the best response time for

asynchronous replicated systems in a utility-based computing environment. To

achieve a shorter response time, they considered four QoS parameters (efficiency,

freshness of data, reliability, and cost) as selection criteria.

2.4.3 MCDM for Smartphone Selection

Several works are proposed for evaluation and selection of smartphones [175] [176]

[177] [178] [179] [180] [181]. Various aspects were considered for selection by match-

ing the consumers’ choices and interests. However, in all these works, smartphones

were considered consumer devices than computing devices.

2.4.4 Comparing Different MCDM Methods

Triantaphyllou, in his book [182], extensively compared the popular MCDM meth-

ods such as WSM, WPS, TOPSIS, ELECTRE, and AHP (along with its variants). The

methods were discussed based on real-life issues, both theoretically and empiri-

cally. A sensitivity analysis was performed on the considered methods, and the ab-

normalities with some of these methods were rigorously analysed. Velasquez and

Hester [183] performed a literature review of several MCDM methods, viz., MAUT,

AHP, fuzzy set theory, case-based reasoning, DEA, SMART, goal programming,

ELECTRE, PROMETHEE, SAW, and TOPSIS. This study aimed to analyse the ad-

vantages and disadvantages of the considered methods and examine their suitabil-

ity in specific application scenarios. Besides these, several other authors attempted

to present comparative studies of different MCDM methods with respect to differ-

ent application areas. Table 2.2 presents a comprehensive list of such works.

2.4.5 Research Scope

As mentioned in Section 2.4.3, the existing works that have used MCDM for

smartphone selection are consumer-centric. Here the main purpose of smartphone

selection is to determine the best device according to the consumer's choice and

preference. These selection criteria focus more on the cosmetic aspects of the

SMDs, such as screen size, camera, design, etc., than their computing. In fact, we

could not find any work that applied MCDM for selecting SMDs as computing re-

sources. Moreover, these selection factors are very much fixed, whereas, in MCC,

the selection parameters are dynamic in nature. Considering this, we need to

57

search for an MCDM method that would be suitable for the resource selection

problem in MCC.

As mentioned in Section 2.4.4, several works exist which tried to find out the most

suitable MCDM method appropriate for a particular application or problem do-

main. However, despite our best effort, we could not find any comparative analysis

of MCDM methods for resource selection in a dynamic environment like MCC or

any other related applications. From Table 2.2, it can be observed that barring only

a few works, none has conducted a time complexity analysis. Furthermore, we

found not a single paper that calculated the actual runtime of the MCDM algo-

rithms. For swift job scheduling, which in turn would lead to improved through-

put, the resource selection algorithm should be time-efficient. This prompted us

to search for such an MCDM method.

Table 2.2. Survey of comparative analysis of different MCDM methods

Ref.
MCDM methods

compared
Application focus

Analysis performed

S
e

n
si

ti
v

it
y

 a
n

a
ly

si
s

R
e

su
lt

 c
o

m
p

a
ri

so
n

S
ta

ti
st

ic
a

l
te

st
/a

n
a

ly
si

s

R
a

n
k

 r
e

v
e

rs
a

l

C
o

m
p

u
ta

ti
o

n
/t

im
e

co
m

p
le

x
it

y

[184] ELECTRE, TOPSIS, MEW,
SAW, and four versions of
AHP

General MCDM problem of
ranking √ √ √ √

[185] AHP and SAW Ranking cloud render farm
services

√ √ √

[186] TOPSIS, AHP, and
COMET

Assessing the severity of
chronic liver disease

 √ √

[187] CODAS, EDAS, WASPAS,
and MOORA

Selecting material handling
equipment

 √ √

[188] TOPSIS, DEMATEL, and
MACBETH

ERP package selection
√ √ √

[189] AHP, ELECTRE, TOPSIS,
and VIKOR

Enhancement of historical
buildings

 √ √

[190] MOORA, TOPSIS, and
VIKOR

Material selection of brake
booster valve body

 √ √

[191] AHP, TOPSIS, and VI-
KOR

Manufacturing process se-
lection

 √ √ √

[192] Multi-MOORA, TOPSIS,
and three variants of VI-
KOR

Randomly generated MCDM
problems (i.e., decision ma-
trices) as per [184].

√ √ √

[193] WPM, WSM, revised
AHP, TOPSIS, and

Sustainable housing afforda-
bility

√ √ √

58

Ref.
MCDM methods

compared
Application focus

Analysis performed

S
e

n
si

ti
v

it
y

 a
n

a
ly

si
s

R
e

su
lt

 c
o

m
p

a
ri

so
n

S
ta

ti
st

ic
a

l
te

st
/a

n
a

ly
si

s

R
a

n
k

 r
e

v
e

rs
a

l

C
o

m
p

u
ta

ti
o

n
/t

im
e

co
m

p
le

x
it

y

COPRAS

[194] SAW, TOPSIS, PROME-
THEE, and COPRAS

Stock selection using mod-
ern portfolio theory

 √ √

[195] COMET, TOPSIS, and
AHP

Assessment of mortality in
patients with acute coronary
syndrome

 √ √

[196] SWARA, COPRAS, fuzzy
ANP, fuzzy AHP, fuzzy
TOPSIS, SAW, and EDAS

Risk assessment in public-
private partnership projects √ √ √

[197] WSM, VIKOR, TOPSIS,
and ELECTRE

Ranking renewable energy
sources

√ √ √

[198] WSM, WPM, WASPAS,
MOORA, and MULTI-
MOORA

Industrial robot selection
√ √ √

[199] WSM, WPM, AHP, and
TOPSIS

Seismic vulnerability assess-
ment of RC structures

√ √ √

[200] AHP, TOPSIS, and PRO-
METHEE

Determining trustworthi-
ness of cloud service provid-
ers

√ √ √

[201] TOPSIS and VIKOR Finding the most important
product aspects in customer
reviews

 √ √

[202] MABAC and WASPAS Evaluating the effect of
COVID-19 on countries’ sus-
tainable development

√ √ √

[203] WSM, TOPSIS, PROME-
THEE, ELECTRE, and VI-
KOR

Utilization of renewable en-
ergy industry √ √ √

[204] WSM, TOPSIS, and
ELECTRE

Flood disaster risk analysis
√ √ √

[205] MAUT, TOPSIS, PROME-
THEE, and PROMETHEE
GDSS

Choosing contract type for
highway construction in
Greece

 √ √

[206] TOPSIS, VIKOR, EDAS,
and PROMETHEE-II

Suitable biomass material
selection for maximum bio-
oil yield

 √ √

[207] TOPSIS, VIKOR, and
COPRAS

COVID-19 regional safety as-
sessment

√ √ √

[208] EDAS and TOPSIS General MCDM problem √ √ √ √

[209] AHP, TOPSIS, ELECTRE
III, and PROMETHEE II

Building performance simu-
lation

√ √ √

[210] AHP, fuzzy AHP, and
ESM

Aircraft type selection
 √ √

[211] AHP, TOPSIS, and SAW Intercrop selection in rubber
plantations

 √ √

59

Ref.
MCDM methods

compared
Application focus

Analysis performed

S
e

n
si

ti
v

it
y

 a
n

a
ly

si
s

R
e

su
lt

 c
o

m
p

a
ri

so
n

S
ta

ti
st

ic
a

l
te

st
/a

n
a

ly
si

s

R
a

n
k

 r
e

v
e

rs
a

l

C
o

m
p

u
ta

ti
o

n
/t

im
e

co
m

p
le

x
it

y

[212] AHP, TOPSIS, SAW, and
PROMETHEE

Employee placement
 √ √

[213] TOPSIS, VIKOR, im-
proved ELECTRE, PRO-
METHEE II, and WPM

Mining method selection
 √ √

[214] AHP, SMART,
and MACBETH

Incentive-based experiment
(ranking coffee shops within
university campus)

 √ √

[215] AHP, fuzzy AHP, and
fuzzy TOPSIS

Supplier selection

 √ √

[216] TOPSIS, SAW, VIKOR,
and ELECTRE

Evaluating the quality of ur-
ban life

√ √ √ √

[217] AHP, MARE, ELECTRE III Equipment selection √ √

[218] VIKOR and TOPSIS Forest fire susceptibility
mapping

 √ √

[219] PIPRECIA, MABAC, Co-
CoSo, and MARCOS

Measuring the performance
of healthcare supply chains

√ √ √ √

[220] MOORA, MULTI-
MOORA, and TOPSIS

Optimize the process pa-
rameters in the electro-dis-
charge machine

√ √ √

[221] AHP, AHP TOPSIS, and
fuzzy AHP

Mobile-based culinary rec-
ommendation system

 √ √ √

[222] TOPSIS, COPRAS, and
GRA

Evaluation of teachers
 √ √ √

[223] AHP, TOPSIS, ELECTRE
III, and PROMETHEE II

Urban sewer network plan
selection

 √ √

[224] TOPSIS and AHP Dam site selection using GIS √ √

Our
work

EDAS, ARAS, MABAC,
COPRAS, and MARCOS

Resource selection in MCC
(discussed in Chapter 5)

√ √ √ √

2.5 Task Scheduling in MCC

The success of any distributed and collaborative computing based systems very

much depends on the proper scheduling of the tasks at hand. However, optimised

task scheduling in a distributed system, especially in a dynamic environment, is

nontrivial. Researchers have tried different approaches to achieve optimal task

scheduling, considering different parameters pertinent to the application or the

executable task.

With the proliferation of soft computing techniques and artificial intelligence,

60

nature-inspired algorithms like PSO, GA, etc., are gradually getting prominence in

the current era because of their ability to find a near-optimal solution for NP-com-

plete problems. Several works are there in which optimisation techniques have

been used for resource selection and task allocation, and scheduling under various

considerations in a range of distributed computing systems [225] such as grid com-

puting [226] [227], cloud computing [228] [229] [230], mobile cloud computing

[156], mobile edge computing [231], vehicular cloud [232] [233], and software-de-

fined networks [234].

2.5.1 Resource-Aware and Multicriteria-based Scheduling in Mobile and Dis-

tributed Computing

Habak et al. [140], in their proposed mobile cloud, named FemtoClouds, aimed to

maximise the usable computation capabilities of the mobile devices for optimised

task scheduling. They followed a greedy heuristic based optimisation approach to

select the desired device considering the parameters like the computation and

bandwidth capacity of the device and its departure time.

For parallel task distribution to a pool of mobile devices in a mobile ad-hoc cloud,

Venkatraman et al. [157] calculated the composition score for the shareable re-

sources (e.g., CPU, RAM, storage) of the devices. Based on the composition score,

they used a linear programming based model to map the tasks to the mobiles ide-

ally so that all the tasks could be executed using a minimum number of devices.

Viswanathan et al. [158] proposed a mobile grid computing framework for ubiqui-

tous healthcare where the service-providing nodes were selected based on several

parameters such as CPU power, memory, available battery, network resources, the

current position of the node, and its availability period. Based on the number of

available service providers for the required duration, the tasks were optimally dis-

tributed and scheduled to them based on certain optimising objectives such as

minimising the battery drain while maximising the response time and availability

time of the resource. For this problem, they adopted a self-optimisation and self-

healing approach.

Various optimisation techniques and strategies have been tried and adopted for

61

scheduling in multi-core and heterogeneous distributed systems, considering dif-

ferent scheduling and optimising criteria [235] [236] [237]. Akbari et al. [238] pre-

sented a genetic algorithm based static task scheduling method for heterogeneous

computing systems. They aimed to obtain near-optimal solutions with reasonable

execution time. Sulaiman et al. [239] proposed a genetic algorithm based heuristics

for task scheduling for heterogeneous computing systems. They used a list-based

approach and guided random search to reduce the schedule length and the proce-

dural complexity. Biswas et al. [240] proposed multicriteria-based scheduling algo-

rithms for heterogeneous computing systems to minimise the makespan, energy

consumption, and load-balancing while maximising resource utilisation. They

considered the resource parameters such as CPU speed, memory capacity and re-

sidual energy of the systems. The same authors applied PSO [241] and GA [242], to

achieve optimised scheduling in muti-core systems to minimise makespan and

load balancing and maximise resource utilisation and speed-up ratio.

2.5.2 Energy-Efficient Scheduling in Mobile and Distributed Computing

Optimisation techniques are used for energy-efficient scheduling in heterogeneous

and high-performance computing systems [243] [244] [245]. Considering the bat-

tery limitations of the mobile devices, to conserve the energy, researchers proposed

to offload the power-demanding jobs to the cloud [246] [247] or to other mobile

devices [108] [248] [249]. Several works have been proposed on energy-efficient

scheduling for task offloading from mobile devices to the cloud [250] [251] [252].

Shah and Park [253] presented an energy-efficient resource allocation scheme for

an ad-hoc computational grid of mobile nodes. They aimed to minimise the com-

munication energy of the nodes that are allocated some interdependent tasks to

execute. The authors used the kNN search algorithm to find a group of closest

nodes in a grid so that the overall data travelling path became minimum, which

would minimise energy consumption and communication costs. Shah et al. [254]

proposed another resource allocation scheme for such mobile ad-hoc computa-

tional grids to reduce communication costs, including energy costs. They utilised

user mobility patterns and task dependencies to minimise the communication

cost. Viswanathan et al. [158] adopted a self-optimisation and self-healing

62

approach to minimise the battery drain while maximising the resource's response

time and availability time in a mobile grid computing framework for ubiquitous

healthcare.

Chen et al. [255] proposed a heuristic algorithm for resource allocation in an ad-

hoc mobile cloud. They assumed that the devices could harvest energy from the

ambient environment. Hence, their main goal was to minimise the response time

rather than energy consumption. Bonan et al. [256] proposed a PSO-SA (simulated

annealing) based dependent task assignment algorithm for ad-hoc mobile cloud.

They considered time delay, the total energy consumption and fairness of resource

usage of all devices simultaneously. Shi et al. [257] proposed an adaptive scheduler

for local mobile clouds, where the tasks from multiple source nodes could be

scheduled to nearby processing nodes. They aimed to minimise the execution time

of the tasks and the energy consumption.

2.5.3 Research Scope

From the above-cited works, we see that several scheduling algorithms and ap-

proaches for mobile and distributed computing systems are proposed in the liter-

ature. However, we could not find any such readymade solution that suits our pro-

posed concept of MCC. Despite our best effort, we could not find any work that

considered the dynamic resources of SMDs to achieve efficient multicriteria sched-

uling in MCC. Though there are a few similar works (e.g., [140] , [157], [255], [256],

[257]) that attempted task scheduling in mobile clusters, the scale of simulation

(in terms of the number of mobile devices and task size and variety) are not wide-

ranging. Whereas in our experiment, simulation is done on 50 SMDs for two sets

of tasks with the size of 100 and 200 instructions. Also, we consider several addi-

tional resource parameters that are crucial to adjudge the practical fitness of an

SMD as a computing resource. We could not find any energy-efficient scheduling

for MCC that considers load balance also which is very crucial especially in SMD-

based distributed crowdsourced computing. Hence, it open ups the scope for de-

signing efficient scheduling algorithms that fulfil the objectives required to en-

hance the performance of MCC while maintain user satisfaction. A comparative

summary of the related works and this paper is presented in Table 2.3.

63

Table 2.3. Summary of the works related to resource scheduling

R
e

fe
re

n
ce

A
p

p
li

ca
ti

o
n

a
re

a

P
ro

b
le

m

a
d

d
re

ss
e

d

G
o

a
l

S
o

lu
ti

o
n

m
e

th
o

d
/t

o
o

l

P
a

ra
m

e
te

rs

co
n

si
d

e
re

d

P
e

rf
o

rm
a

n
ce

C
o

m
p

a
re

d

w
it

h

E
x

p
e

ri
m

e
n

ta
l

d
a

ta
/s

e
tu

p

A
tt

a
in

m
e

n
t

L
im

it
a

ti
o

n
s/

fu
rt

h
e

r
sc

o
p

e

Shah et
al. [254]

Mo-
bile
ad-
hoc
com-
puta-
tional
grids

Re-
source
alloca-
tion

Minimize:
commu-
nication
costs
Reduce:
task fail-
ure.

Markov
chain
model
(for
mobil-
ity
man-
age-
ment),
pro-
posed
two-
phase
re-
source
alloca-
tion
scheme
(TPRA)
(for
task al-
loca-
tion).

Node
mobility,
node
distance,
and task
depend-
encies.

Distance-
based re-
source al-
location
(DRA)
and
next lo-
cation-
based re-
source al-
location
(NLRA)
schemes
[258].

Simu-
lated
scenario

As per sim-
ulation re-
sults, the
proposed
scheme sig-
nificantly
reduced
the
communi-
cation cost
between
interde-
pendent
tasks.

Compu-
tational
cost was
not con-
sidered.

Viswa-
nathan
et al.
[158]

Mo-
bile
grid
com-
puting

Select-
ing
ser-
vice-
provid-
ing
nodes.

Maxim-
ize: mini-
mum re-
sidual
battery
capacity.

Self-op-
timisa-
tion
and
self-
heal-
ing.

CPU
power,
memory,
available
battery,
network
re-
sources,
current
position
of the
node,
and its
availa-
bility pe-
riod.

Round-
robin,
FCFS-
based
CometCl
oud
[259].

Testbed
of multi-
ple An-
droid-
based
mobile
devices
with
hetero-
geneous
capabili-
ties for
distrib-
uted ob-
ject
recogni-
tion.

The pro-
posed solu-
tion
achieved
symmetric
battery
drain by
exploiting
the varied
battery ca-
pacity of
the devices.

Makespa
n and re-
source
utiliza-
tion were
not con-
sidered as
optimiza-
tion crite-
ria.

Habak
et al.
[140]

Mo-
bile
cloud
com-
puting

Task
sched-
uling

Maxim-
ize: over-
all
through-
put of the
cluster,
resource.
utiliza-
tion, and
network

Greedy
heuris-
tic

Compu-
tation
and
band-
width
capacity
of the
mobile
device
and its

A pres-
ence time
oblivious
scheduler
(PreOb)
and an
emu-
lated. ar-
rival/de-
parture

Experi-
mental
proto-
type de-
signed
using
Android
devices.

The pro-
posed pro-
totype of-
fered better
computa-
tion perfor-
mance
while con-
suming
fewer

Very
small-
scale sim-
ulation
setup.

64

utiliza-
tion.

depar-
ture
time.

scenario. network re-
sources.

Venka-
traman
et al.
[157]

Ad-
hoc
mo-
bile
cloud

Task
sched-
uling

Minimize:
number
of devices
required
for task
execu-
tion.

LPP-
based
model -
an
adapte
d bin
packing
algo-
rithm.

CPU,
RAM,
storage.

Wang et
al. [260]

Simula-
tor de-
signed
that
com-
prised
the sub-
task traf-
fic gen-
erator
and
topology
genera-
tor mod-
ules.

Selecting
the re-
sources
based on
the total
resource
composi-
tion score
improved
the resili-
ence and
overall
computa-
tion perfor-
mance.

Schedul-
ing was
not done
by accu-
rately as-
sessing
the total
resource
require-
ment.
Hence
the allo-
cated
tasks
needed to
be par-
tially of-
floaded.

Chen et
al. [255]

Ad-
hoc
mo-
bile
cloud

Re-
source
alloca-
tion

Minimize:
response
time and
overall
task com-
pletion
time.

Pro-
posed
heuris-
tic al-
go-
rithm.

CPU cy-
cles, en-
ergy
con-
sump-
tion for
task exe-
cution.

With dif-
ferent
simula-
tion pa-
rameter
consider-
ations.

Matlab
simula-
tion
with
random
mobile
device
and task
genera-
tion

The overall
response
time was
reduced for
various
task de-
pendency
topologies
and task
sizes.

Perfor-
mance
was not
com-
pared
with
other al-
gorithms
or similar
work.

Bonan et
al. [256]

Ad-
hoc
mo-
bile
cloud

De-
pend-
ent
task
assign-
ment

Minimize:
time de-
lay and
total en-
ergy con-
sumption
Improve:
fairness of
resource
usage.

PSO-SA
(simu-
lated
anneal-
ing)
based
algo-
rithm.

Each
task’s
data and
instruc-
tion
size, and
depend-
ency.

Binary
PSO and
GA.

A simu-
lated ad-
hoc mo-
bile
cloud
scenario
that vir-
tually
spans for
100m2.

For large
number of
tasks and
large num-
ber of
working
nodes, the
proposed
algorithm
performed
better.

Overall
through-
put and
the en-
ergy con-
sumption
for re-
ceiving
results
were not
consid-
ered.

Shi et al.
[257]

Local
mo-
bile
cloud

Dy-
namic
task
sched-
uling

Minimize:
execution
time and
energy
consump-
tion.

Pro-
posed
distrib-
uted
adap-
tive
proba-
bilistic
Sched-
uler.

Data
size,
compu-
tation
capacity,
commu-
nication
distance.

Round
robin,
greedy,
and
probabil-
istic
sched-
ulers.

A local
mobile
cloud
simula-
tion
setup
devel-
oped on
OM-
NET++

Achieved
satisfactory
throughput
and energy
efficiency
for varied
task sizes,
and can be
a viable
solution for
scheduling
tasks of
real-time

Load bal-
ance and
resource
utiliza-
tion were
not con-
sidered.

65

applica-
tions.

Akbari
et al.
[238]

Heter-
ogene-
ous
com-
puting
sys-
tems

Static
task
sched-
uling

Minimize:
execution
time Max-
imize:
parallel
task as-
signment.

Pro-
posed
GA-
based
algo-
rithm.

Proces-
sors’
compu-
tation
capacity,
tasks’
compu-
tation
require-
ment,
task par-
allelism.

HEFT-T,
HEFT-B,
CPOP
[261],
BGA
[262], SA
[263],
and
SLPSO
[264] al-
gorithms.

Simu-
lated us-
ing C#
by gen-
erating
various
graphs,
e.g., fast
Fourier
transfor-
mation
(FFT),
molecu-
lar,
Gaussian
graphs
and ran-
dom
graph
with dif-
ferent
parame-
ters.

The pro-
posed algo-
rithm
achieved
better
scheduling
with less it-
erations.

Load bal-
ance and
resource
utiliza-
tion, and
energy
con-
sumption
were not
consid-
ered.

Sulaima
n et al.
[239]

Heter-
ogene-
ous
com-
puting
sys-
tems

Static
task
sched-
uling

Minimize:
schedule
length
Reduce:
proce-
dural
complex-
ity.

GA-
based
heuris-
tic (list-
based
ap-
proach
and
guided
random
search).

Compu-
tation
and
commu-
nication
costs.

New GA
(NGA)
[265], en-
hanced
GA for
task
schedul-
ing
(EGA-TS)
[238],
heteroge-
neous
earliest
finish
time
(HEFT)
[261],
and pre-
dict the
earliest
finish
time
(PEFT)
[266].

Simu-
lated da-
taset,
generat-
ing
four
types of
graphs,
i.e., ran-
dom
graphs,
Gaussian
elimina-
tion,
FFT, and
molecu-
lar
dynamic
code
task
graph,
having
diverse
attrib-
utes,
such as
the
number
of tasks
in the
graph,
graph

Achieved
better re-
sults than
the com-
pared algo-
rithms in
terms of
best result
occur-
rences, av-
erage
makespan,
average
schedule
length ra-
tio, average
speed-up,
and the
average
running
time and
quicker
conver-
gence time.

The con-
vergence
speed
could be
bettered.
There is a
scope for
using a
multi-ob-
jective
fitness
function.

66

shape,
nodes’
out-de-
gree,
number
of pro-
cessors,
and
commu-
nication
and
compu-
tation
costs.

Biswas
et al.
[240]

Het-
ero-
gene-
ous
com-
puting
sys-
tems

Mul-
ticrite-
ria-
based
sched-
uling

Minimize:
makespan
, energy
consump-
tion, and
load-bal-
ancing
Maximise:
resource
utilisa-
tion.

Pro-
posed
re-
source-
aware
heuris-
tic al-
go-
rithm.

CPU
speed,
memory
capacity
and re-
sidual
energy.

Min-min,
MCT,
priority
based
perfor-
mance
improved
algo-
rithm
(PPIA),
and GA.

Simu-
lated on
syn-
thetic
and
standard
bench-
mark da-
tasets.

Achieved
better re-
sults in the
simulated
considera-
tion.

Consid-
ered re-
source
parame-
ters were
less.

Biswas
et al.
[241]

Heter-
ogene-
ous
com-
puting
sys-
tems

De-
pend-
ent
work-
flow
sched-
uling

Minimize:
makespan
and load
balancing
Maxim-
ize: re-
source
utiliza-
tion and
speed-up
ratio.

Pro-
posed
PSO-
based
algo-
rithm.

Dy-
namicity
in CPU
speed,
instruc-
tion
length,
and re-
source
capabil-
ity.

Gravita-
tional
search al-
gorithm
(GSA)
Cloudy-
GSA, and
HGSA.

Simu-
lated on
syn-
thetic
and
standard
bench-
mark da-
tasets.

Achieved
satisfactory
results
compared
to Cloudy-
GSA, and
HGSA and
equivalent
perfor-
mance with
the GSA.

Energy
con-
sumption
was not
consid-
ered.

Biswas et
al. [242]

High-
per-
for-
mance
muti-
core
sys-
tems

Inde-
pend-
ent
work-
flow
sched-
uling

Minimize:
makespan
and load
balancing
Maxim-
ize: re-
source
utiliza-
tion and
speed-up
ratio.

Pro-
posed
GA-
based
algo-
rithm.

Dy-
namicity
in CPU
speed,
instruc-
tion
length,
re-
sources
capabil-
ity and
muta-
tion fac-
tors.

GA, PSO,
and PPIA

Simu-
lated on
syn-
thetic
and
standard
bench-
mark da-
tasets.

The pro-
posed algo-
rithm per-
forms con-
siderably
better than
GA and
PPIA. For
makespan
and load
balance, it
performs
better than
GA; how-
ever, for re-
source uti-
lization
and com-
putation
speed up
the

Energy
con-
sumption
was not
consid-
ered

67

perfor-
mance of
the pro-
posed algo-
rithm and
PSO are
closely
similar.

Our
work 1

MCC Mul-
ticrite-
ria-
based
dy-
namic
sched-
uling
for
SMDs.

Minimize:
makespan
and load
balancing
Maximise:
resource
utilisa-
tion.

Pro-
posed
heuris-
tic al-
go-
rithm.

CPU
(clock
fre-
quency,
no. of
cores,
and cur-
rent
load),
RAM
(cur-
rently
availa-
ble),
battery
(total
capacity
and cur-
rent
charge
%), and
device
temper-
ature.

PSO, GA,
and MCT

Syn-
thetic as
well as
real da-
taset
(gener-
ated spe-
cifically
for MCC
experi-
ment).

For all the
scenarios,
the pro-
posed algo-
rithm sig-
nificantly
outper-
forms PSO
and GA.
Though it
performs
better than
MCT, in
some sce-
narios,
their per-
formances
are close.

Energy
con-
sumption
is not
consid-
ered,
which
can be
crucial
for mo-
bile de-
vices.

Our
work 2

MCC En-
ergy-
effi-
cient
task
sched-
uling.

Minimise:
overall
energy
consump-
tion with
load bal-
ance.

PSO-
based
pro-
posed
algo-
rithm.

CPU
clock
fre-
quency,
no. of
CPU
cores,
and cur-
rent
CPU
load.

MCT,
MinMin,
MaxMin,
and
PPIA,
and GA.

Syn-
thetic as
well as
real da-
taset
(gener-
ated spe-
cifically
for MCC
experi-
ment).

Proposed
algorithm
performs
signifi-
cantly bet-
ter than
others
while only
energy effi-
ciency is
considered.
For energy
efficiency
with load
balance,
the perfor-
mance dif-
ference is
slightly
marginal.

Energy
con-
sumption
for data
transfer is
not con-
sidered.

2.6 Resource Availability Prediction in MCC

Assessing the availability of the resources-providing entities in a distributed

68

computing environment is crucial because it affects the system's QoS considerably.

Though in several works, to achieve an improved job scheduling, the suitable re-

sources are targeted based on different criteria, there is not much work found that

addresses the availability issue of the resource, especially in a dynamic environ-

ment. In this section, we try to identify the research works that exactly or sublim-

inally address the resource availability problem in different distributed systems.

We also review the use of deep learning in closely related problems.

2.6.1 Resource Availability Prediction in Mobile Grid/Cloud Computing

Brevik et al. [267] aimed at enabling the grid job scheduler to make on-the-fly de-

cisions by providing live availability predictions. To predict the availability dura-

tion of a resource, they used the Weibull method (parametric model fitting tech-

nique) along with Resample and Binomial methods (non-parametric techniques).

The authors attempted to estimate a specific quantile for the availability distribu-

tion and the confidence for each estimation. Andrzejak et al. [268] attempted to

predict the availability of the grid resources within a time interval [T, T+p], where

p is the prediction interval length with values [1,2]. For this, they used the Naive

Bayes and Decision trees based predictive models. They also aimed to identify the

resource predictability indicators and the factors that incite prediction error. But

these works do not cover the availability prediction of mobile devices in a non-

dedicated mobile grid environment.

Vaithiya and Bhanu [269] proposed a task scheduling algorithm for the mobile

grid, predicting the dynamic availability of mobile resources. To address the node

mobility issue in an ad-hoc mobile grid, Selvi et al. [270] profiled the mobile users'

regular movements over time. But none of these considers the historical charac-

teristics of the devices, which may hinder achieving the optimal effects in SMD

selection.

In FemtoClouds, a mobile device cloud control system presented by Habak et al.

[140], the presence time prediction of mobile devices is incorporated. In this work,

it is assumed that the controller has knowledge of the exact departure time of each

device for each session. But, in practice, some dishonest users may depart before

the declared departure time, while some may be forced to cut off from the network

69

due to some genuine reasons such as battery used up. To counter this problem,

Zhou et al. [156] suggested considering the historical characteristics of the devices

to evaluate the record of honouring their departure promise. They proposed a mo-

bile device selection method, considering the status and stability of the devices.

However, both of these works assume that the SMDs declare the departure time

voluntarily, which may not be practical.

Sipos and Ekler [271] proposed a method to estimate mobile devices' availability

where these devices were used to form a distributed storage system in a P2P (peer-

to-peer) fashion. They predicted the actual availability based on the nodes' self-

declared availability or unavailability for the subsequent considered time period.

Different classifiers were used to check the accuracy of the prediction model in the

simulated mobility scenario.

Haryanti and Sari [272] predicted the mobility of a group of resource-providing

nodes with respect to a resource-seeking node. The purpose was to ensure that the

task from the requesting node should be given only to those resource-providing

nodes which are supposed to be in contact with the requesting node until the task

is completed. Farooq and Khalil [121] also proposed a method to predict a time

duration for which a resource-requesting node would remain within reach of the

resource-providing node in a mobile grid. Based on the predicted time, the task

assignment decision is taken. The prediction is based on the previous record of the

time duration of their contact, whereas the contact is calculated by the distance

between them based on their locations, assessed by their GPS coordinates.

2.6.2 Deep Learning for Resource Management and Prediction

Considering its potential, deep learning has been applied in various domains and

applications for different purposes [273] [274] [275] [276] [277] [278] [279] [280]

[281] [282] [283]. Specifically, in time-series forecasting, LSTM [284] [285] [286]

and GRU [287] [288] [289] are widely used.

Many researchers exploited the convolutional aspect of CNN in combination with

LSTM to improve the performance of time-series prediction/forecasting in various

applications, such as for inventory prediction [290], stock price prediction [291]

70

[292] [293] [294], gold price forecasting [295], Bitcoin price forecasting [296], tour-

ist flow forecasting [297], sentiment prediction of social media users [298], house-

hold power consumption prediction [299] [300], photovoltaic power prediction

[301], wind power forecasting [302], PM2.5 prediction [303] [304], predicting NOx

emission in processing of heavy oil [305], forecasting natural gas price and move-

ment [306], urban expansion prediction [307], predicting waterworks operations

at a water purification plant [308], predicting sea surface temperature [309], ty-

phoon formation forecasting [310], crop yield prediction [311], COVID-19 detection

and predictions [312] [313] [314], human age estimation [315], and so on.

Deep learning based techniques are used for efficient resource management and

prediction in cloud [316] [317] [318] [319] [320] [321], edge computing [322] [323]

[324] and other wireless distributed systems [325] [326] [327] [328] [329].

The inherent capability of capturing short-term as well as long-term instances has

led LSTM [330] [331] [332], CNN [333], and convolutional LSTM [334] [335] to be

popularly used in mobility predictions. In his master's thesis [336], Pamuluri com-

pared different deep learning methods, including LSTM, CNN-LSTM, and GRU, to

predict users' mobility with respect to a mobile base station. Cui et al. [337] used

LSTM to predict the availability of mobile edge computing-enabled base stations

depending on the vehicle's mobility for offloading the computation jobs from the

vehicle to the base station. Li et al. [338] used LSTM to track user mobility for effi-

cient dynamic resource allocation across different network slices in a 5G network.

2.6.3 Research Scope

As we mentioned above, assessing the availability of resources in a dynamic dis-

tributed computing system is very crucial. In a truly dynamic environment like

MCC, it becomes more vital because here, the resources are non-dedicated and

tend to be in mobility unexpectedly. However, in spite best of our effort, we could

not find any significant work that endeavours to predict the availability of the

SMDs or the users in a dynamic MCC environment.

2.7 Mobility-Aware Service Provisioning for P2P MCC

It is normal nowadays for users to run numerous applications on their SMDs. They

71

perform several essential and not-so-essential tasks using their SMDs. Some of

these tasks are resource-demanding, due to which all SMDs, especially with lower

resource specifications, cannot afford to execute them. In these cases, an affordable

and feasible option is to take the help of the neighbouring SMDs. In other words,

when an SMD needs some additional resource, it avails the resource from a peer

SMD, if available. When this approach is applied to MCC, we call it P2P MCC.

Since, in this type of computing system, both the resource provider and consumer

are mobile, it is crucial to address the mobility issue. In this section, we focus on

the research works related to such P2P mobile computing, mobility tracking and

prediction, and mobility-aware service provisioning.

2.7.1 P2P Mobile Computing

Considering the limitations of low-constraint mobile devices, researchers nurtured

the idea of P2P mobile ad-hoc grid computing [248] [339] [340]. To avoid the la-

tency involved in traditional cloud services, a mobile ad-hoc cloud has been pro-

posed where a number of mobile devices cooperatively form a local, minuscule,

and ad-hoc cloud [129] [341] [342]. To study the feasibility of the ad-hoc mobile

cloud, Büsching et al. [93] built a small-scale proof-of-concept cluster with six An-

droid devices connected through Wi-Fi. Huerta and Lee [129] presented a frame-

work of a virtual mobile cloud that detects the nearby mobile devices of the users,

which will stay in the same area or follow the same movement pattern. Shi et al.

[108] presented a P2P mobile computing system in which a computational task is

offloaded from a resource-constrained mobile device to other mobile devices with

which the initiator device comes into contact on its route. The authors assumed

an ideal network environment where the future contact between resource provid-

ers and consumers can be predicted accurately. However, the system does not ad-

dress the node mobility issue.

2.7.2 Mobility Prediction Approaches

The majority of the mobility prediction schemes collect users' movement history

somehow and analyse them to assess and predict the mobility patterns of mobile

users. The prediction accuracy depends not only on the method used for collecting

the mobility patterns but also on the algorithm used for mobility prediction.

72

Typically, the research on mobility prediction for the infrastructure-based wireless

network is mainly aimed to improve the performance of wireless networks on dif-

ferent aspects such as admission control, QoS, handoff management, etc. These

algorithms, as per literature, can be classified into three major approaches, as

shown in Fig. 2.1 and discussed in the following subsections.

Fig. 2.1. Mobility prediction approaches

2.7.2.1 Movement History Based Mobility Prediction

This class of algorithms predicts the future location of the mobile nodes with the

help of the past and current states of the user and can be further classified into two

categories, as discussed in the following.

2.7.2.1.1 The Synthetic Based Mobility Model

The synthetic-based mobility prediction uses mathematical models (e.g., sets of

equations), which try to capture the movement of the devices by studying users'

mobility [343] [344]. There is significant research on mobility prediction for cellu-

lar networks available in the literature, where the prediction approach is based on

the user's movement history [345].

The mobility prediction algorithm proposed by Lium and Maguire [346] consid-

ered the notion that every human has some extent of consistency in his/her move-

ment. The proposed approach consists of regularity detection algorithms (for pre-

dicting users' future regular movement) and a motion prediction algorithm (for

predicting the next states of a user's movement). For predicting the subsequent

movement trail of the mobile user, the motion prediction algorithm utilizes the

database of regular movement patterns of the users and the random probability

information with constitutional constraints. Therefore, this model is well suited

for regular patterns like hourly, weekly, etc. The regular and random components

Mobility prediction approches

Received signal strength based Movement history based

Synthetic-based

Random movement patterns
Movement patterns with

dependencies
Movement with geographic

restrictions

Trace-based

GPS based

73

of user movements can correspond with circle/track patterns, or they can be sim-

ulated by the Markov chain model also.

Liu et al. [347] proposed a hierarchic position prediction algorithm in which user's

movements are mapped to previous mobility patterns by the proposed mobility

prediction model.

For simulating the highway traffic that comprises mobile entities travelling in for-

ward and backward directions with different constant speeds, a shadow cluster

concept was proposed by Levine et al. [348]. In this distributed framework, mobile

terminals inform the neighbouring base station about their requirements, position,

and movement parameters, based on which the base stations predict future de-

mands and reserve resources accordingly. To predict mobility, it uses the user's

movement history traces.

Mobility prediction solutions proposed in [349] and [350] assume that the nodes

move according to the random way point mobility model [351]. The mobility pre-

diction algorithm proposed in [352] used different mobility models such as the

movement circle model, movement track model, and the Markov chain model to

model the user mobility behaviour.

Synthetic mobility models are generally simple to model and implement and easy

to use and have been reported as an effective means to solve problems like signal

attenuation and also consume less power. However, the random nature of the syn-

thetic mobility model often fails to capture human movement patterns correctly

and leads to unrealistic-scenarios and non-uniform distribution [353]. The obser-

vation made and the conclusion drawn from such models may be misleading, es-

pecially where the user movements are predictable to some extent (e.g., mobile

users in an educational campus, office, etc.).

2.7.2.1.2 Trace Based Mobility Prediction

In trace-based mobility prediction, the traces are obtained by using the deployed

systems' measurements and typically consist of connectivity logs or location infor-

mation. A trace-based mobility model is developed based on datasets collected

from real scenarios by tracing or monitoring the movements of the persons

74

carrying mobile devices. The collected movement traces are then analysed to find

specific mobility patterns of those mobile users.

A significant amount of research work has been done to predict mobility using

movement traces of real-life users [354]. The data collected for movements of real

users are used to predict future locations of the users using various prediction

methods.

Kim et al. [355] proposed a method for estimating the physical location of users

from a sizeable trace data of mobile devices associated with APs in a wireless net-

work. The mobility traces collected by Dartmouth College is used to extract users'

locations and their movement trails which were estimated using methods like tri-

angle centroid, time-based centroid and Kalman filter.

The method proposed by Khalifa and Abbas [356] is supposed to predict the future

locations of mobile users and the duration for which they would remain at those

locations. The algorithm is evaluated using the UCSD dataset. The method is found

to have better prediction accuracy than a third-order (O(3)) Markov predictor

[357].

Burbey and Martin [358] used the UCSD dataset to evaluate the proposed Markov

model based mobility prediction method. The method is based on the data com-

pression algorithm called Prediction by Partial Match, which predicts the location

of a user at a given time. The model was tested by trying to predict the location of

a user by giving a particular future time.

The mobility model proposed by Musolesi and Mascolo [359] uses the concept of

social networking, in which the hosts are grouped based on their social relation-

ships. This clustering is mapped to a topographical space, where the potency of

dynamic social ties determines the movements. The model was validated with real

traces indicating the potential of the synthetic mobility traces as a decent approx-

imation of human movement patterns.

The Autoregressive Hello protocol was proposed by Li et al. [360] for neighbour-

hood discovery. Here, each node and its neighbouring nodes predict their positions

through an ever-updated, auto regression-based mobility model. Each node

75

estimates its neighbour's position regularly, using previous location traces. When

the predicted location is very far from the actual location, which causes a topology

distortion, the node transmits a 'hello' message to the state and updates its current

location. This helps in the autocorrection of the mobility model of the concerned

node and its neighbours.

The prediction of topological changes in trace-based mobility prediction requires

constant prediction of the node's location, which may be considered an overhead

in a resource-constrained environment. However, if the location is predicted from

the change of neighbourhood, then it reflects the topological change in the net-

work and helps to determine the node's stability, which is crucial for selecting sta-

ble SMDs in PMC.

2.7.2.2 Received Signal Strength Based Mobility Prediction

In this approach, the mobility of a node is estimated by measuring how much the

received signal strength is dependent on the distance from the source. The esti-

mated values of the node's location and its mobility information are acquired using

signal attenuation versus distance travelled. This type of mobility prediction

method is very simple [361].

A novel mobility metric for mobile ad-hoc networks (MOBIC) was proposed by

Basu et al. [362]. Here, the node with the lowest mobility in the neighbourhood is

selected as the cluster head. Each node assesses the signal strength received from

its neighbours continuously, and based on the variance, the movement rate of that

node relative to the neighbouring nodes is estimated. This mobility measurement

is used for the formation of mobile clusters to improve the scalability of different

services. For selecting a cluster head, MOBIC employs Aggregate Local Mobility

(ALM), a novel mobility metric. However, in the cluster maintenance phase, nodes'

mobility behaviours are not always considered, and hence, a cluster-head does not

guarantee to stand a low mobility characteristic [363].

As an extension of MOBIC, MobDHop, proposed by Er and Seah [364], used a dis-

tributed algorithm to form a stable cluster that can serve as underlying routing

architecture. The variance in received signal strength is used to predict the

76

neighbourhood mobility and, based on mobility metric, forms a d-Hop cluster, as

suggested in [362]. Compared to MOBIC, it exercises more samples of the received

signal to estimate the predicted mobility. The prediction model assumes that the

mobility patterns of nodes will be exactly the same in the future as they were in

the recent past. In MAPLE [365], based on the signal strength received from the

cluster head, each host estimates its distance from the corresponding cluster head.

In a wireless network, poor signal reception is frequently experienced due to the

obstruction of different objects such as trees, buildings, etc. The different object

has a significant effect on path loss and received signal strength. However, if the

environmental condition is known, the power of the signal may include the actual

power plus the signal loss. In such a case, the receiver must be aware of the infor-

mation, which requires an extra field in the transmitted packet and results in an

overhead per packet.

2.7.2.3 GPS Based Mobility Prediction

The GPS-based mobility prediction approach uses geographical locational infor-

mation to determine users' mobility patterns [366].

To elect a cluster-head, the algorithm proposed by Wang et al. [367] used GPS to

predict node mobility and location information. The mobility prediction algorithm

proposed by Su et al. [349] is based on location and mobility information provided

by the GPS system. The algorithm uses the Network Time Protocol [368] or GPS

clock to synchronize the nodes to avoid inconsistent data traces. The duration of

a node at a place was determined by using GPS system data like speed, direction,

radio propagation range etc.

To predict the mobility of the node, a novel routing protocol called Zone-Based

Stable Routing (ZBSR) was proposed in [369]. This prediction algorithm uses the

traces collected by GPS. The area is divided into the non-overlapping square zone.

Every zone has a zone-head that does the job of a router in the network and also

keeps the information about the other nodes in that zone. The node ID is used to

decide the path to every zone.

GPS may not work in particular environments (like indoor places, places lacking a

77

strong cellular network, etc.) and consumes considerable battery power; hence,

dependence on GPS is undesirable in MCC.

2.7.3 Mobility Tracking

The above-mentioned mobility prediction methods have several limitations, as

mentioned in [370]. Researchers tried different means to track human mobility by

analysing their accompanying devices. For example, to analyse human mobility,

Smoreda et al. [371] discussed the data collection methods from mobile phones. In

[372], users’ mobility is analysed and characterised by the data collected from

smartphones and smartwatches. Williams et al. [373] measured human mobility

based on the user’s mobile phone records and GIS data. Wang and Ak Yildiz [374]

predicted user mobility with respect to a set of mobile switching cells based on the

aggregated history of the mobile users and system parameters. To determine the

user’s current location, Ma, Fang, and Lin [375] considered the user’s movement

and the current system time.

2.7.4 Mobility and Stability Prediction in Mobile Computing Systems

Shah et al. [254] proposed to use the history of users' mobility patterns in an ad-

hoc mobile grid to select a resource that would probably remain connected for a

longer period. Zhou et al. [156] proposed a device selection method based on the

stability resource status of the devices in a mobile device cloud. In the proposed

model, the cloud controller maintains the historical information of each partici-

pating device. Based on these information, each device’s stability is assessed, which

helps in selecting a suitable device as a resource provider. Haryanti and Sari [272]

predicted the mobility of a group of mobile nodes to identify a cluster of nodes

among the available resources-providing nodes. Each node of that cluster has cor-

responding mobility with respect to the resource-requesting node. The idea was to

identify a stable cluster of nodes, which would ensure the completion of the as-

signed tasks. Farooq and Khalil [121] proposed a mobility model where the previous

records of the contact duration of two devices were used to predict the duration a

resource-providing node may remain in the vicinity of the resource-requesting

node in a mobile grid. Based on the predicted time, the task assignment decision

is taken.

78

2.7.5 Mobility-aware Service Discovery and Delivery

Deng et al. [376] proposed a mobile service provisioning architecture for sharing

services among the mobile device user community. Tyagi, Som and Rana [377] pro-

posed a reliability-aware data delivery protocol for MANET (mobile ad-hoc net-

work) based on AODV (ad-hoc on-demand distance vector), considering the speed

of intermediate nodes in the route. Vadde and Syrotiuk [378] studied the impact

of various factors such as QoS architecture, routing protocol, medium access con-

trol protocol, offered load, and mobility and their interactions on service delivery,

based on different measures like real-time throughput, total throughput, and av-

erage delay. Various service discovery protocols are discussed in [379], while a de-

centralized service discovery mechanism is presented in [380]. Chang, Srirama, and

Ling [381] proposed a mobile device-hosted service-oriented workflow-based me-

diation framework for mobile social network in proximity (MSNP). The proposed

framework, named as adaptive mediation framework for service-oriented MSNP

(AMSNP), is based on a public mobile P2P network in which mobile users can in-

teract with the neighbouring mobile devices.

2.7.6 Research Scope

As we saw in the previous sections there are several works that addressed the mo-

bility issue in mobile and ad-hoc systems. However, for P2P resource-provisioning

in an infrastructure-less dynamic environment like MCC, mobility is still an issue.

For P2P resource-provisioning, instead of assessing absolute mobility of the nodes

it is sufficient to assess relative mobility or stability between them which can ac-

commodate the change in absolute mobility and still allow to continue exchange

services. To the best of our knowledge, there is no such work available in the liter-

ature. The existing mobility prediction algorithms proposed in the literature are

good for different applications domain. But they fail to predict the relative stability

of a node with respect to its peers, which is the key to selecting a service providing

SMD in PMCC.

2.8 MCC as Edge Computing

Edge computing is getting popularised as the complementary of cloud computing

79

mainly because of its latency advantages [30] [382] [383]. In the following, we re-

port some of prominent research works in which the computing competencies of

the mobile devices are leveraged, especially in some form of edge computing. We

also report the research works, though not many found, that mentions use of edge

computing in smart buildings.

2.8.1 Mobile Devices Edge Computing

In several works, the researchers proposed or experimented with using mobile de-

vices to form local fog/edge computing [384] [385] [386]. Hirsch et al. [387] pro-

posed a resource management scheme for a dew computing model comprising a

mobile cluster made of citizens’ mobile devices for some participatory sensing ap-

plications. The aim of this system is to offer a distributed computing environment

for processing or preprocessing the locally generated sensor data in real-time from

a smart city perspective. In the extended work [388] of this paper, the authors

demonstrated the usefulness of such smartphone-comprised dew computing for

achieving compute-intensive edge jobs such as real-time stream processing using

Tensorflow object recognition models. In their working paper, Kündig et al. [146]

presented a theoretical model of a crowdsourced edge computing architecture

along with highlighting the rudimentary challenges of this computing system. In

their prototype use case, they distributed some object detection tasks to crowds’

mobile devices on a university campus. Zhang et al. [389] suggested utilizing the

idle GPUs of the peer gamers and other nearby private/professional GPU owners

to form an edge network for high-performance online video gaming. Xing et al.

[390] attempted to minimise the computation latency in a local edge computing

comprised of wireless devices such as smart wearable devices, cell phones, tablets,

and laptops. The computations are offloaded from the user device to the mobile

edge in a P2P fashion. Pan et al. [391] also envisioned optimally offloading the tasks

to other mobile devices aiming at minimizing the energy expense and maximizing

the throughput in a crowdsourced mobile edge computing framework where mo-

bile devices at the edge share their heterogeneous resources with each other.

2.8.2 Edge Computing for Smart Buildings

Several research works recognised the need for and demonstrated the use of edge

80

computing for smart buildings [392] [393]. Vilalta et al. [394] presented a fog ar-

chitecture named TelcoFog, as an edge computing service for telecom operators.

The proof of concept was validated in an HVAC environment. Raspberry Pi has

been popularly used in home automation [395] [396] and controlling HVAC sys-

tems [397] [398] [399].

2.8.3 Research Scope

As discussed in Section 2.8.1, establishing mobile and wireless device enabled edge

computing has garnered the researcher's attention. However, the idea is still at a

very nascent stage and needs extensive study for successful implementation. Also,

to the best of our knowledge, no work has been attempted yet to conceptualise and

implement edge computing explicitly using crowdsourced SMDs for real-time pro-

cessing. In this direction, our work, presented in Chapter 9, for implementing edge

computing for a use case of smart HVAC utilising the SMDs available in the vicinity

of the building is certainly the first of its kind.

2.9 Summary

In this chapter, we reported the research works that are related to MCC and the

problems we addressed in this thesis. There are several aspects such as distributed

nature, resource mobility, non-dedicated resources, energy constrained resources,

dynamically changeable resource parameters, etc. make realising MCC challeng-

ing. In this thesis, we covered some selected aspects of MCC such as generalised

architecture of MCC, resource profiling and selection, task scheduling, resource

availability assessment, mobility handling. And to establish the feasibility of MCC

we also presented a proof-of-concept with a use case. Being a distribute system,

MCC naturally inherits several issues from it. Therefore, it is expected that many

of the issues’ solutions also can be found from the existing literature on distributed

systems and computing. However, in this chapter we saw that not all the issues

have existing solutions that can readily be applied on MCC. This is because though

MCC has similarities with other known systems it has its own uniqueness on sev-

eral grounds, as discussed in Chapter 3. Therefore, we needed to think for and

come up with novel solutions that would most suitably be applicable to the context

of MCC presented in this thesis.

3

MCC: Concept, Architecture and Research Challenges

“We don’t have to engage in grand, heroic actions to participate in change. Small

acts, when multiplied by millions of people, can transform the world.”

--- Howard Zinn

3.1 Introduction

The innovation of computers has changed many aspects of mankind. Computers

have not only led to solutions to many existing problems but also to many other

unforeseen and innovative problems that have influenced and eased our life

greatly. Recognising the problem-solving ability, computers are asked for various

purposes, and accordingly, the demand for more powerful computers has grown

steadily.

To meet the high computing demands of organisations, mainframes came into ex-

istence in the 1960’s. At the same time, for number crunching operations, super-

computers were developed that could produce unparalleled performance [400].

With the popularity of microcomputers, the distributed system was the next revo-

lution in HPC in the 1970’s. In the 1990’s, Ian Foster and Carl Kesselman proposed

a new computing paradigm named grid computing as an economical alternative to

the costly supercomputers in which idle computing resources, within the organi-

sation or distributed over the globe, are shared over the network [401]. In early

2000, with the emergence of cloud computing, making forward the vision of grid

computing further, the HPC indeed became utility computing [402] [403] [404].

With the introduction of PDAs by Apple in 1993, the computing horizon changed

drastically. It actually initiated the era of mobile and ubiquitous computing. Since

then, mobile devices have evolved enormously. Over the last couple of years, the

SMD industry has seen an unprecedented focus on hardware. The processing ca-

pability of SMDs to meet various purposes has increased exceptionally, be it CPUs

or GPUs or even DSPs. The CPU and memory architectures are designed and tuned

82

to boost heterogeneous computing. The GPUs are also engineered to enhance

GPGPU computing performance.

Today’s SMDs such as smartphones, phablets, and tablets have become computa-

tionally so powerful that they can easily hands-on defeat yesteryear’s powerful su-

percomputers. For example, NVIDIA’s Tegra X1, released in 2015, became the first-

ever mobile SoC to reach the Tera-FLPOS mark. It is interesting to mention that

Deep Blue, one of the most powerful computers of that time, which defeated Gary

Kasparov in a much-hyped chess rundown in 1997, displayed a performance figure

of a meagre 11.38 GFLOPS. NVIDIA claims that Tegra X1 is more potent than the

ASCI Red, the first Tera-FLPOS supercomputer of 20 years back, employed for ten

years by the Sandia National Laboratory of Department of Energy, United States.

This significant escalation of the modern-day’s SMD’s capability gives us the con-

fidence to consider them a viable option for carrying out computation-intensive

tasks.

Alongside, thanks to their capability of hosting and supporting various services and

applications, SMDs have become all-purpose and indispensable personal devices

in our daily lives. Consequently, the number of worldwide SMD users has seen a

steep ascent in recent years. Leaving behind desktops, laptops, and notebooks,

SMDs have become the primary computing device for most users [405]. Global

Stats, the research arm of the web analytics firm StatCounter found that for inter-

net uses in October 2016, for the first time, the number of worldwide SMDs users

(51.3%) exceeded the number of desktop users (48.7%) [406]. As per their June 2022

report17, the market share for SMDs and desktops are 62% and 38%, respectively.

However, like desktop users, SMD users also use their devices for a fraction of the

time in a day. Therefore, a huge computing potential remains unutilised. In MCC,

we envisage tapping and exploiting these idle computing resources of the SMDs of

the mass user base, very much like grid computing. We advocate utilizing the col-

lective processing powers of these mighty SMDs to achieve HPC. A substantial

17 https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet

83

virtual computing capacity can be garnered utilising the SMD globally (discussed

in Section 3.3.5.1), and MCC can also be employed locally to cater to the needs of

real-time applications. The emergence of big data, IoT, and AI based applications

has escalated the demand for pervasive and ubiquitous HPC significantly [30]. A

local MCC (discussed in Section 3.3.5.2.1) or an ad-hoc MCC (discussed in Section

3.3.5.2.2) can be feasible solutions.

Although the idea of computing on mobile devices is not new, the significant aug-

mentation of today's mobile devices’ competency has prompted many researchers

to explore utilising their computing capabilities in different ways. Researchers pro-

posed to incorporate mobile devices into grid computing to leverage their compu-

ting resources [125] [121] [126]. Few works aimed to utilise the accumulated compu-

ting power of a cluster of smartphones [93] [96]. To minimise communication la-

tency, local clouds have been made utilising neighbouring mobile devices [40] [135]

[128]. Mobile devices are proposed to use for edge and dew computing as well [140]

[76] [387] [388]. Also, utilising volunteered mobile devices to attain MCC has been

introduced in [141] [142] [143]. However, we could not find any paper that exclu-

sively presented the concept and associated aspects of MCC. Seeing the lack of

comprehensive theoretical discussion in the literature, we felt the need to submit

one.

This chapter presents an in-depth study on MCC, attempting to cover every nitty

gritty of this computing paradigm. In the following sections, we explore the feasi-

bility and the promises of this very idea, also mentioning related research works

and projects. We also discuss the obstacles that can be faced to realize this concept

and pledging progress toward their solutions. We suggest some exciting applica-

tion areas of MCC.

In particular, in this chapter, we aim to achieve the followings:

• Extending and re-presenting the concept of MCC.

• Establishing the competence of the modern SMDs as computing devices and

validating achieving HPC utilising them by recognising and associating the fa-

vourable external factors.

• Discussing the idea of crowd and opportunistic computing.

84

• Rendering a taxonomy of grid computing that leads to MCC.

• Stating a concrete definition of MCC and identifying its defining properties.

• Presenting exhaustive comparisons between MCC and other HPC systems

such as desktop grid computing, cloud computing, cluster computing and su-

percomputers, and between MCC and other mobile computing systems such

as mobile grid computing and mobile cloud computing, ad-hoc mobile cloud,

and mobile crowdsourcing.

• Laying out different probable general architectures of MCC, including the

working, major components, advantages, and disadvantages of each architec-

ture.

• Identifying different types of MCC depending on the infrastructure and appli-

cations.

• Meticulously analysing the essential requirements and considerations for MCC

system design, development, deployment, and operations.

• Discussing the advantages of MCC with specific discussions on pervasiveness

and sustainability of MCC.

• Elaborately discussing the issues and challenges of MCC while mentioning its

limitations.

• Identifying and recommending the practical applications of MCC in various

scenarios.

3.2 Enabling Backdrops for Realising MCC

In this section, we analyse some other favourable factors that have directly or in-

directly boosted and accelerated the realisation of MCC.

3.2.1 Competence of Contemporary SMDs as Computing Resources

Over the last few years, the SMD industry has seen an unprecedented focus on its

hardware. The processing capability of SMDs to meet various purposes has in-

creased exceptionally, be it CPUs or GPUs or even DSPs. The CPU and memory

architectures are designed and tuned to boost heterogeneous computing. The

GPUs are also engineered to enhance GPGPU computing performance. SMD man-

ufacturers are putting continuous effort into boosting their products to have com-

puter-like capabilities. They are even going further through their attempt to

85

bundle multiple SoCs on a single unit [407], which will undoubtedly revolutionise

the ability of SMDs as computing devices. These devices are further augmented by

excellent battery life, storage capacity, networking, and several powerful and effec-

tive sensors on a single platform. In this section, we discuss the decisive properties

of modern SMDs that make them competent computing resources.

3.2.1.1 Advancements in Mobile CPU

The CPU architecture for mobile devices has made unprecedented advancements

in recent years. In the following, first, we mention the key technicalities in this

regard. Then we check out some examples of a few latest SMDs’ CPU specifications

to argue about their computing capabilities.

3.2.1.1.1 Symmetrical Multi-Processing

SMP technology applies to a multi-core shared memory architecture where each

identical core is capable of operating independently but maintaining healthy co-

operation. They tend to share workloads whenever possible, lessening the burden

on a particular core. This allows the cores to run at a lower frequency, resulting in

less power consumption, which is crucial to mobile systems [408]. So, SMP em-

powers SMD processors to not only produce greater performance but also tackle

peak performance demands (thanks to sharing workloads) while limiting the

power appetite of SMDs reasonably.

3.2.1.1.2 Heterogeneous Multiprocessing

Modern ARM-based SMD’s multi-core CPUs comprise two different sets of cores

paired together into a single unit. One set of cores is more powerful than the other.

The powerful cores are for high performance, whereas the other set is for better

power efficiency. The decision to submit jobs to the appropriate core is taken dy-

namically by mapping to the varying computational demand of the application.

This scheme is generally known as HMP, which is fashionably termed big.LITTLE™

by the ARM. When tasks are run on the ‘LITTLE’ cores, they use less power. Hence,

they drain the battery less; however, they may run slightly slower. When tasks run

on the ‘big’ cores, they finish sooner, but they eat more battery. Typically, back-

ground tasks featuring in-order execution are employed to the energy-efficient

‘LITTLE’ cores, whereas the user-interactive tasks featuring out-of-order execution

86

are operated by power-incinerating ‘big’ cores, which require being in action typi-

cally for shorter periods. The aim is to use ‘LITTLE’ cores most of the time and use

the ‘big’ cores only for high-frequency operations. Furthermore, when ‘big’ cores

are not in use, they are powered off. The whole concept can save up to fifty percent

of the energy for a standard mobile workload [409]. The prevalent achievement of

the HMP is that of significant average power savings without compromising the

peak performance, which is an essential gain for SMD computing.

3.2.1.1.3 Powerful and energy-efficient CPUs

The first multi-core smartphone, announced at the end of 2010, was the LG Opti-

mus 2X, loaded with the Tegra 2 processor from NVIDIA, with a maximum fre-

quency of up to 1.2 GHz [410] [408]. Since then, all SMD manufacturers have been

in a war to load their products with an increasing number of cores. To buttress this

exigence, the chip makers are regularly coming out with more powerful mobile

processors. Modern SMD CPUs typically consist of two to eight highly efficient

cores. It is very common to find SMDs with a CPU clock speed of more than 2.5

GHz. As per the recent launch, the prime cores of Qualcomm’s Snapdragon 870

and 8+ Gen 1 run at 3.2 GHz, while Kirin 9000 has 3.13 GHz cores. Moreover, taking

along the HMP concept, the CPUs are adequately balanced for computing power

and energy efficiency by an optimal combination of high-power and high energy-

consuming cores with low-power and energy-saving cores. For example, the Snap-

dragon 8 Gen 1 comprises one Cortex-X2 core of 3.0 GHz, three Cortex-A710 cores

of 2.50 GHz, and four Cortex-A510 cores of 1.80 GHz [411]. Depending on the pro-

cessing requirements, different cores are employed, minimising unnecessary en-

ergy wastage.

3.2.1.2 GPU-Accelerated Computing

Bestowed with number-crunching power, GPUs are the key potency that makes

today’s SMDs powerful computing devices. The CPU cores are generally optimized

for sequential serial processing, whereas a typical GPU consisting of many smaller

and more efficient cores, often known as shader cores, is designed for massively

parallel processing [412]. The inherent parallelism property of a GPU enables it to

execute thousands of parallel threads, handle multiple tasks simultaneously, and

87

solve large problems real fast. Several benchmarks have established the superiority

of GPUs over CPUs in terms of raw processing [413].

In GPU-accelerated computing, the compute-intensive segment of the application

is passed on to the GPU; however, the rest of the code is executed on the CPU.

GPU-accelerated computing can deliver exceptional performance if the right pro-

cess is scheduled for the right core. Serial portions of the executable codes are sub-

mitted to CPU cores which are optimized for low latency on a single thread, while

parallel portions of code are sent to GPU’s mass cores which are optimized to max-

imize accumulated throughput. This tactic confers enhanced performance per unit

area than either CPU or GPU cores can alone [414]. In general, accelerated compu-

ting is revolutionizing HPC these days in the way that systems with special accel-

erators offer highly energy-efficient computing delivering the utmost performance

for HPC. So, GPU-accelerated computing plays an important role in SMD compu-

ting not only by executing heavy processes much faster than CPUs but also by con-

suming less energy per computation than CPUs.

With the increasing popularity of virtual reality based gaming apps, SMDs are get-

ting loaded with considerably powerful GPUs. For example, the latest offer from

Qualcomm, the Adreno 73018 (used in Snapdragon 8/8+ Gen 1), comprises 768

shading units, with a base and boost clock speeds of 812 MHz and 970 MHz, re-

spectively, producing a hopping 1.8 TFLOPs for single precision (32) floating point

operations, which is a very good offering for computing-intensive parallel tasks.

3.2.1.3 SoC Technology

At the heart of every SMD, there is a module known as a system-on-a-chip (SoC).

The SoC of an SMD is like the motherboard in a desktop computer. It incorporates

various chips and components that make up an entire electronic setup on a single

chip. Among the components are the CPU cores, GPU, multimedia processor, sig-

nal processors (DSP and ISP), security processor, different types of memories with

a memory controller, wireless radios (Wi-Fi, 3/4/5G, etc.), power management

18 https://gadgetversus.com/graphics-card/qualcomm-adreno-730-specs/

88

circuits, timers, interfaces, OS, and other utility software. Day by day, the SoCs are

becoming more energy-efficient and smaller despite being more powerful. The ad-

vancement in fabrication technology allowed the manufacturers to pack more

power in the same chip volume. For instance, the Snapdragon 870, 888, and 8 Gen

1 are of 7 nm, 5 nm, and 4 nm, respectively. Apparently, SoC has made it materialize

to put a whole computer on a chip and reduced the size to a thumbnail, which is

very crucial to SMDs. Some of the obvious benefits of SoC, from the perspective of

SMD computing, are listed below.

• Higher performance is achieved by embedding heavy computational functions

and logic in a large number of highly integrated circuits [415].

• Smaller footprint and space requirements of SoCs have allowed SMD makers

to place larger batteries for longer power backup.

• SoCs do not demand much power, thanks to the very high level of integration

and considerably shorter wiring, which is a big boon regarding SMD compu-

ting.

• Producing a single chip is far more cost-effective than traditional multi-chip

motherboard-based computers [416]. It has been observed that mobile SoCs

are roughly 70 times cheaper than other HPC systems like PC clusters [417].

• An integrated environment offers greater system reliability.

3.2.1.4 Sufficient Memory

In any distributed computing, dividing a large job into a parallelly runnable num-

ber of small jobs and distributing them to the different nodes for processing is an

overhead. The grain size of the sliced job should be at par with the primary memory

available in the computing node for smooth execution. Though SMDs have a lesser

memory than desktops and laptops, mainly due to the size factor, lately, SMDs are

getting loaded with an abundance of memory (RAM, ROM, and cache) in conjunc-

tion with increased internal data transfer speed. SMDs with 8 GB RAM and 128 GB

ROM are very commonplace. Several high-end phones (e.g., Nothing Phone (1)19,

19 https://in.nothing.tech/pages/phone-1

89

OnePlus 8T20, OnePlus 10 Pro21, Sony Xperia Pro-I22, Red Magic 723, and many

more) offer LPDDR5 RAMs of 12 GB and more with ROMs of 256 GB and higher.

And most of these phones allow to expand the inbuilt memory with external flash

memories to 1 TB and more (e.g., Samsung Galaxy S1024 series phones). This abun-

dance of internal and external memories encourages carrying out data-intensive

tasks besides compute-intensive ones.

3.2.2 SMD Market and User Development

For the last few years, if a single device has to be named, which has impacted the

human lifestyle and business market, most are undoubtedly the smartphone.

Thanks to their all-round capabilities and utilities, the worldwide adoption of

SMDs has exponentially increased in recent years. In 2011, vendors shipped more

smartphones than PCs for the first time in history [418]. A report from Cisco shows

that the number of mobile devices and connections raised to 7.9 billion globally in

2015 from 7.3 billion in 2014 (smartphones 32%, phablets 6% and tablets 2%) [419].

Statista25, a leading market and consumer data provider, estimated that by 2027,

the number of smartphone users would cross 7 billion marks, as shown in Fig. 3.1.

Fig. 3.2 shows the forecasted number of smartphone connections (in millions) in

the top ten countries by 2025, as estimated by Statista. As per GSMA26, a leading

global mobile market analysis organisation, it is expected that globally there will

be 2.5 billion unique mobile subscribers by 2025 [420].

Besides the justifiable reasons such as reduced usage friction via excelled hardware,

improved user interface, ease of use, and expanded and multidimensional services,

the explode in SMD sales is a result of the aggressive penetration of low-cost SMD

makers in emerging markets [418], in conjunction with affordable 4G data plans

[421]. The cost of SMDs is getting lower following the common business-economic

rule that a higher volume of SMD market helps in reducing design, production,

20 https://www.oneplus.in/8t
21 https://www.oneplus.in/10-pro
22 https://www.sony-asia.com/electronics/smartphones/xperia-pro-i
23 https://www.nubiamart.com/nubia-red-magic-7.html
24 https://www.samsung.com/us/app/mobile/galaxy-s10/
25 https://www.statista.com/
26 https://www.gsma.com/

90

and marketing cost, which also leads to faster product evolution with superior per-

formance on a low budget. So, not only the technological demand but also the

economic senses decisively motivate companies to produce SMDs with HPC fea-

tures [417].

Fig. 3.1. Estimated number of worldwide smartphone subscriptions (in millions) from 2022 to

2027 [422]

Fig. 3.2. Estimated number of smartphone connections (in millions) of top ten countries by 2025

[423]

There is a number of factors influencing the growth of SMD use in the global mar-

ket as mentioned below [424]:

• Rapidly falling price of SMDs has accelerated the customers to move from

basic and standard feature phones to smartphones.

• Developing SMD technologies have a reason for the increase in the sale of

low-end SMDs.

• The increasing availability of the highspeed 4G/5G spectrum with increased

mobile broadband connections all around the world.

• The availability of highspeed ‘data-centric’ services and low tariffs has in-

creased the adoption of SMDs in both developed and developing societies.

Further, the availability of cheap data tariffs tailored as per the customers’

needs has also reasoned for smartphone adoption in developing countries.

6567

6841

7074

7296

7514

7690

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800

2022

2023

2024

2025

2026

2027

1458

1171

410

346

204

187

162

146

143

134

0 200 400 600 800 1000 1200 1400 1600

China

India

 Indonesia

USA

Brazil

Russia

Japan

Pakistan

Nigeria

Bangladesh

91

• The concept of tailoring the data tariffs for cost-conscious prepaid consumers

can be linked with the selling rate of SMDs.

• Efficient retail channels and supply chain have helped manufacturers to

reach customers from every corner across the globe.

• The government policies in support of the growth of the SMDs and subsidiary

industries have a significant role in price slicing and the growth of mobile

networks.

3.2.3 Increasing Wi-Fi Zones

As the number of mobile devices and connections proliferates, more and more

places are coming under a Wi-Fi zone due to the dense installation of Wi-Fi

hotspots. These hotspots may be commercial or public, including homespots and

community hotspots. Public hotspots can significantly influence the realization of

MCC. Community hotspots use dual SSIDs that allow nonsubscribers to access Wi-

Fi service as guests. Commercial hotspots are also being offered to the public in

places like shops and malls, cafés and restaurants, hotels, railway stations and air-

ports, public transport, etc. A study from Cisco shows that, globally, total public

W-Fi hotspots will grow to 432.5 million by 2020 from 64.2 million in 2015, i.e., a

seven times upsurge, while commercial hotspots are estimated at 9.3 million by

2020 [419]. The advantage of a greater number of hotspots is the reduced cell size

with strong signal coverage, which results in robust crowd computing systems with

low latency in message passing.

3.2.4 Low-cost and Highspeed Mobile Data

The advancements in mobile network technology have made mobile computing

more practical and affordable. The mobile data bandwidth jumped a big leap with

the launch of 4G/4G LTE, rising to 100 MHz from 25 MHz of 3G. This reached a

new high with a massive upscale to 30-300 GHz with 5G networks thanks to the

technologies like EMBB, URLLC, and MMTC. 5G offers speed in the range of 100

Mbps (low-band) – 20 Gbps (high-band). With these advancements, the cost per

unit data transfer rate is significantly lowered. Furthermore, an innovative idea like

5Gi (5G radio interface technology) promises to offer more range at a lower fre-

quency. 5Gi is a joint initiative by IIT Hyderabad, IIT Madras and other premier

92

academic institutions in India, along with the Centre of Excellence in Wireless

Technology. The project is backed by the Department of Telecommunications,

Govt. of India. Its potential for large-scale deployment with the enhanced coverage

in remote areas, rural regions and difficult terrains makes 5Gi much more econom-

ical in the countries like India.

GSMA estimated that two-thirds of the world’s mobile connections will be running

on 4G and 5G networks by 2025 [425], while their latest estimation states that there

will be 2 billion 5G connections globally by 2025 [420]. While the full potential of

5G is yet to realise as it is still in its early days, people have already started working

on 6G aiming for more speed and increased bandwidth. Organisations like ITU-R

6G Vision Group [426], Orange [427], North America’s Next G Alliance [428], The

University of Texas (6G@UT27) [429], Oppo [430], MIT-Ericsson [431], to name a

few, have kicked off planning, researching, and working towards 6G. Considering

this, we expect to witness more low-priced mobile data with massively higher

speed. This would boost the vision of MCC substantially.

3.2.5 Highspeed and Energy-efficient Short-range Communication

Modern SMDs are equipped with energy-efficient, high-speed, short-range com-

munication technologies such as BLE [432], NFC, Wi-Fi Direct, etc. These technol-

ogies allow forming ad-hoc or P2P MCC in the absence of WLAN and cellular in-

ternet. Besides low power consumption and high-speed data transfer, BLE offers

several advantages over classic Bluetooth, such as cost minimization, robust trans-

mission with minimised interference, extended connection range, ease of use and

integration [433]. Although NFC requires three times less energy than BLE, the very

short-range coverage makes it a little impractical for MCC. Compared to BLE and

NFC, Wi-Fi Direct offers the highest data transfer speed with greater coverage but

compromises energy efficiency. A comparative statistic of these three technologies

is given in Table 3.1.

27 http://6g-ut.org/

93

Table 3.1. Comparing different short-range communication technologies for MCC

Parameters BLE NFC Wi-Fi Direct

Frequency 2.4 GHz 13.56 MHz 2.4 GHz

Data rate Up to 2 Mbps Up to 424 Kbps Up to 250 Mbps

Range < 100 m < 4 cm < 200 m

Power consumption 0.01–0.50 W 0.025 W (approx.) < 20 W

Energy efficiency High (15 mA) Very high (5 mA) Low

Connection stability High High Medium

3.2.6 HPC Through MCC

From the above discussions, we are convinced that the capabilities of the modern

SMDs are sufficient to consider them as individual computing units. However, nor-

mal SMD users do not utilise the full potential of their device’s capabilities. In fact,

the majority of SMDs are not being used to their capacity. Studies suggest that

normal users interact with their SMDs only for a few hours (on average, two to

four) in a day [62] [63]. So, a huge amount of processing capability remains unused

and wasted. The market buzz of 8/10 core processors makes the scenario more in-

teresting. Often 2-core processor is sufficient for a regular user unless he operates

heavy applications like 3D games. So even when SMDs are in use, it is highly prob-

able that some of the CPU cores and the GPUs, along with DSPs, ISPs, etc., remain

free. An enormous processing capability can be generated if these unused pro-

cessing powers are tapped and exploited properly (opportunistically). By accumu-

lating these unused resources on a large scale, we can achieve virtual HPC in the

same way as desktop grid computing. For instance, if 100 or more SMDs with

GFLOPS higher than 500 (e.g., Imagination PowerVR GT7900 or NVIDIA Tegra)

are connected together, the accumulated GFLOPS can challenge some of the

mighty supercomputers in the world28.

3.3 Rudiments of MCC

In this section, we formally and elaborately introduce the concept of MCC along

with its architectures and types while comparing it with other similar computing

systems.

28 https://top500.org/

94

3.3.1 Definition and General Properties of MCC

A crowd is a definite collection or group of people with shared purpose and emo-

tions [434]. The term crowd computing has been used by many people to refer to

the involvement of humans in the computation process. No doubt, computers have

evolved into very powerful and ‘intelligent’ machines. However, there are still cer-

tain kinds of tasks that humans can do far better and more accurately than com-

puters owing to their intrinsic cognitive abilities and natural instinct. Crowd com-

puting aspires to fusion human intelligence and computer algorithms to make

computers more knowledgeable and intelligent. Human capabilities are tapped to

solve the computational problems in crowd computing applications (e.g., Wikipe-

dia, Yahoo! Answer, etc.), which are otherwise difficult to accomplish by comput-

ers only.

However, we intend to envisage MCC as only a distributed computing platform.

Our perception of crowd computing resonates with that presented by Murray et

al. [107] and Fernando et al. [142]. We define MCC as the following:

It is a distributed computing approach where public-owned SMDs are opportunisti-

cally utilised in a resource-scavenging fashion for executing computing-intensive

tasks.

According to our proposed idea of MCC, it can generally be characterised by the

following particulars:

• It is a distributed computing system.

• Every MCC application has a predetermined and defined purpose on which the

corresponding inputs, task properties, and outputs depend.

• The task generator creates distributable tasks dispensed to one or more com-

puting devices (task executors).

• The task generator/distributor and the task executor are different devices.

• The task generator and the task executor are connected through a local or

global network.

• The computing devices (crowdworkers/task executors) are not owned by any

organisation or any single entity; rather, they are owned by the general public

95

as their personal devices.

• The crowdworkers provide their SMD resources voluntarily.

• The crowdworkers might demand or receive some incentives for lending their

SMDs.

• Each crowdworker is treated as an individual computing node.

• Each crowdworker is typically mobile in nature; however, it can have different

mobility statuses, as shown in Fig. 3.3.

• The assigned tasks are executed on the executing device in an opportunistic or

CPU-stealing fashion.

• Generally, the tasks are independently executable, but depending on the ap-

plications, there might be dependency and different workflows.

• The assigned tasks are supposed to be entirely executed by the crowdworkers

and return the results before leaving the network.

• The task generator collects the results from the crowdworkers and assembles

them correctly to get the final result.

Fig. 3.3. Different mobility states of the resource provider and consumer

The common terms used in this chapter in discussing MCC are described in Fig.

3.4.

3.3.2 Comparing MCC with Other HPC Systems

We project MCC as an alternative and sustainable HPC system. This section exam-

ines how MCC differs from other popularly known HPC systems. Table 3.2 sum-

marises the comparison between MCC and other HPC systems that are discussed

below.

•The device is always staticStatic

•The device is generally mobileMobile

•Mobile but relatively static with another device as they move togetherPseudostatic

•Mobile but takes time to relocate from one position to anotherTemporarily static

•Continuously mobileAlways mobile

96

Fig. 3.4. Common terms used in discussing MCC

Table 3.2. Comparing MCC with HPC systems

Comparing
parameters

MCC
Grid

computing
Cloud

computing
Cluster

computing
Super-

computing

Sys-
tem
set up

Resource
anthology

Highly
scattered

Scattered Integrated Highly
integrated

Unified

Nature of
resources

Dynamic Mostly fixed Fixed Fixed Fixed

System
ownership

Small/me-
dium/large
organiza-
tions

medium/
large organ-
izations, ed-
ucational
and
research
institutions

Large com-
panies

Large or-
ganizations
and
research
institutions

Large edu-
cational and
research in-
stitutions

Resource
ownership

Individuals Organiza-
tions, insti-
tutes and
individuals

Service
providing
company

Organiza-
tions and
research in-
stitutions

Educational
and
research in-
stitutions

•Smart mobile devices such as smartphones, phablets, and tablets.SMD

•Gathering of people, but could be generalized as gathering of entities for
resolving an issue by collective decisive power of individuals.

Crowd

•Computing performed by a number of computing devices in distributed manner
for solving a common computational problem.

Crowd
computing

•Agents involved in crowd to do functional job like computation, decision making,
etc.

Crowdworker

•Collection of SMDs connected through local or global communication networks
in a centralised or P2P fashion to provide aggregated computing power.

MCC

•A project wih high computation demand that is catered by MCC.
MCC

application

•A task that is originated from the MCC application. It is large and can be many for
a particular application.

MCC task

•An MCC task is devided into severall smaller subtasks that are sent to a
crowdworker for processing with definite input and output specifications.

Microtask

•The output of the executed task on the crowdworker, and is to be returned to the
coordinator.

Result

•It is the software component of MCC that is responsible for most of the
operations starting from job creation to result aggregation and validation.

MCC
coordinator

•It is the main part of the coordinator that communicates with the crowdworkers
and performs related operations such as task dispatching and result collection.

Middleware

•Resourceful computing device that hosts the coordinator and runs the
middleware.

MCC server

•Part of the MCC application, installed on the crowdworker and is responsible
executing the assigned task on the device opportunistically and return result to
the coordinator.

MCC client

97

Dedicated
system

No; re-
sources are
acquired
opportunis-
tically

Many often,
dedicated,
but mostly
opportunis-
tic

Dedicated,
but not for a
particular
service con-
sumer

Yes Yes

Archi-
tec-
ture

Processing
topology

Distributed Distributed Centralised/
distributed

Distributed Centralised

Compu-
ting node
counts

Large Large Very large Many Unified (of
multiple
cores/CPUs)

Stateful/
stateless

Stateless Can be both Both NA NA

Task grain
size

Smaller Me-
dium/larger

Larger Larger Larger

Resource
coupling

Loose Loose/
medium

Medium/
tight

Tight Tight

Resource
access

Centralised/
decentral-
ised

Centralised/
decentral-
ised

Both Centralised Centralised

Resource
allocation

Decentral-
ised

Decentral-
ised

Both Centralised Centralised

Resource
handling

Decentral-
ised

Decentral-
ised

Both Centralised Centralised

Batch pro-
cessing or
interactive

Batch
processing

Batch
processing

Both Batch
processing

Batch
processing

Central-
ised
control-
ling

Yes, for
centralised
MCC; no,
for P2P
MCC

Yes; no for
P2P grid

Yes Yes Yes

Desir-
able
prop-
erties

Mobility
support

Yes Yes, for
mobile grid

Yes No No

Flexibility Yes Yes Yes No No
Elasticity Medium Me-

dium/high
Unbounded No No

Scalability Scalable Scalable Highly
scalable

Scalable No

QoS
prop-
erties

Load bal-
ancing

Moderate Efficient Very
efficient

Very
efficient

NA

Fault tol-
erance

Less Medium High High High

Processing
latency

Medium Low Low Negligible No

Perfor-
mance

Good Very good Very good Very good Best

Availabil-
ity

Not guaran-
teed

Mostly
guaranteed

Guaranteed Guaranteed Surely
guaranteed

Reliability Less reliable Mostly
reliable

Highly
reliable

Extremely
reliable

Absolutely
reliable

Compu-
ting
capacity

Low/high/
very high
(depends on
SMD availa-
bility)

High/
very high

Very high Very high Very high

98

Net-
work-
ing
and
data
com-
muni-
cation

Network
connectiv-
ity
required

Yes Yes Yes Yes No

Distance
between
compu-
ting
source
and sink

One hop for
local MCC,
multiple for
global

One, in case
of the cam-
pus grid;
otherwise,
multiple
hops

Multiple
hops

One hop One hop

Data
transfer
latency

High for
global MCC;
low for local
MCC

High for
public grid;
low for
campus grid

High Negligible No

Connectiv-
ity

WAN/WLA
N/WiMAX/
hotspot/
Bluetooth/
NFC

WAN/LAN Internet LAN NA

Ser-
vicing

Service
provided

Computing Mostly
computing;
also, data
and storage

Various
services

Computing Computing

Option for
value
added ser-
vices

No Yes Certainly No No

Multi-ten-
ancy

No, but can
be

Yes Yes No No

SLA Less scope
but required

Usually,
SLAs are de-
fined and
followed

Defined and
followed

NA NA

QoS Not
guaranteed

Protected Guaranteed Guaranteed Absolutely
guaranteed

Secu-
rity,
pri-
vacy
and
trust

Security
threat to
host de-
vice

Low for
genuine
MCC appli-
cations

Low Low Very low No

Security
threat
from host
device

High High Very low No No

Attack vul-
nerability
while in
transmis-
sion

Negligible
for local
MCC, high
for global
MCC

Negligible
for campus
grid; other-
wise, high

Very high No No

Privacy is-
sue

High con-
cern

Concern Yes No Absolutely
no

Trust
issue

Very high High for
public grid

Low for
known
service
providers

Absolutely
no

Absolutely
no

Finan-
cial

Upfront
invest-
ment

Negligible Very high,
for setting
up new

Extremely
high

Very high Extremely
high

99

as-
pects

organiza-
tional grid;
negligible,
for utilising
existing
computers
in the or-
ganisation
and also for
public grid

Opera-
tional cost

Negligible
for central-
ised MCC;
otherwise,
none

High for or-
ganizational
grid; negli-
gible for
public grid

Extremely
high

High Very high

Mainte-
nance
overhead

Negligible
for central-
ised MCC;
otherwise,
none

High for or-
ganizational
grid; negli-
gible for
public grid

Very high High High

Band-
width uti-
lization
cost

High High Very high Very high None

Availing
price

Zero or
minimal

Zero or
minimal

Moderate NA NA

Business
oriented

No, but
there is
potential

Generally,
no; but can
be

Absolutely No No

Envi-
ron-
men-
tal
ef-
fects

Energy
consump-
tion

Very low High Very high High Very high

Environ-
mental
hazard
due to
produc-
tion

Less due to
using exist-
ing devices

Less due to
using exist-
ing devices

Very high High High

E-waste Less High Massive Very high Very high

3.3.2.1 MCC vs Grid Computing

The fundamental philosophy of grid computing is to voluntarily share idle compu-

ting resources collaboratively [435] [436]. Though grid computing has been used

in different flavours such as data grid, knowledge grid, application grid, sensor

grid, etc., as shown in Fig. 3.5, in this chapter, our reference to grid computing is

limited only to the computational grid [401] [437]. It is obvious that MCC has been

conceptualized from traditional desktop grid computing [438] [439]; hence, they

share many similarities. But there are a few striking differences, as mentioned be-

low, that make MCC distinct from the desktop grid.

100

• MCC has more opportunities than the desktop grid because the number of

SMDs used worldwide is significantly higher than desktops.

• Due to their mobility, setting up an MCC is more flexible than desktop grids.

Using a P2P MCC, an ad-hoc HPC can be created anywhere.

• In desktop grid computing, the internet is used to access distributed resources,

whereas the internet is not necessarily required to build up MCC systems. The

SMDs can be connected through WLAN technologies such as Wi-Fi, WiMAX,

Bluetooth, mobile hotspot, etc.

• Ensuring the availability of SMDs and maintaining reliability is far more chal-

lenging in MCC.

• Architectural limits in SMDs force the client application to have fewer func-

tionalities. The users do not have much to choose except either run or do not

run the application. At max, they can schedule when their phones should be

accessed. Conversely, resource providers in the desktop grid have the luxury

of having more functional client applications. They enjoy more autonomy and

can set multiple preferences for resource sharing.

• Due to the small memory size in SMDs, the distributed tasks should be much

finer-grained than a desktop grid.

• Privacy and trust issues are more critical in MCC since SMDs are far more per-

sonalized devices than desktops.

Both systems have their fortes and limitations, so combining them should comple-

ment each other. We can have a much superior system comprising the flexibility,

accessibility, and obtainability (a large number of SMD users) of MCC and robust-

ness, reliability and security of the desktop grid.

3.3.2.2 MCC vs Cloud Computing

Cloud computing offers abstracted, centralised, and virtually unlimited compu-

ting-related services on demand to the consumers for a fee [440]. Cloud computing

offers various online services such as storage, CPU, GPU, development platforms,

software and endless applications [441] [442]. Although cloud computing provides

several benefits such as Increased processing power, scalability, utility-based

101

pricing, and dynamic, flexible and agile service provisioning, a few crucial issues

such as the requirement of continuous internet connection and significant latency

limit the utility of cloud computing [30].

Data Grid

Deals with the controlled sharing
and management of distributed

data

Knowledge Grid

 Deals with knowledge management
in the form of distributed metadata

and ontology processing

Information Grid

 Integrates information across
heterogeneous data sources

Grid Computing

Collaboration of networked
resources

Sensor Grid

Collection of distributed and
connected sensors from which data
are collected for specific purposes

Computing Grid

Concerned with the
computation resources

Application Grid

Provide access to remote software
and libraries transparently

Service Grid

Collection of distributed
computational resources that

provide various services

Mobile Grid

Mobile devices are part
of a computing grid,
either as a resource

provider or consumer

Mobile Device as Resource Provider

Resource-rich mobile devices
offer their resources like usual

computational grid

Cluster Grid

Geographically
distributed clusters are
connected for resource

sharing
Supercomputer Grid

 Supercomputers are
connected for resource

sharing

Desktop Grid

Scattered, idle
desktops' (public or

organisational)
resources are utilised

opportunistically

Mobile Device as Resource Consumer

Resource-deficient mobile
devices, running resource-

demanding computing tasks,
utilise grid resources

Desktop as Resource Provider

Desktop computers share their
idle resources in the grid

Desktop as Resource Consumer

Desktop computers avail grid
resources when required

Fig. 3.5. A taxonomy of grid computing

Though MCC also aims to provide scalable HPC like there are several fundamental

differences between the two, as mentioned below [34]:

• The service provisioning philosophy is exactly the opposite of the two ap-

proaches. In cloud computing, the public is the service consumer, whereas, in

MCC, they are the service providers.

• Cloud resources are centralized, but in MCC, it is highly distributed.

• In MCC, ensuring crowdworkers’ availability is a real issue, whereas availability

of services anytime is guaranteed in commercial cloud computing.

• Computing services in MCC can be availed without or with minimal cost. But

availing of cloud services always entails money, and the price depends on the

type and duration of the service availed. Compared to MCC, cloud computing

is considerably expensive.

102

• Not only computing services but cloud computing offers several other services,

as mentioned above. But MCC is meant for computing services only.

• Establishing and operating cloud infrastructure is hugely expensive, whereas

MCC has almost zero cost in this regard.

• Cloud infrastructure needs dedicated space with continuous cooling and

power backup facility, which is not required in MCC.

3.3.2.3 MCC vs Cluster Computing

In cluster computing, several computers are tightly or loosely connected, generally

through highspeed LANs [443]. The connected computers work as a unified entity,

providing considerable HPC [444] [445]. Though MCC and cluster computing both

intend to provide HPC by amassing multiple computing units, they differ by far in

the following aspects:

• The most significant difference between the two is the resource type. In cluster

computing, the PCs are used for computation. No mobile devices are con-

nected as a resource provider or consumer. Whereas in MCC, only SMDs are

the resource providers.

• Establishing a first-hand cluster computing setup is expensive. However, if the

existing computers are utilized in an organisational cluster, this expense can

be waived. In both cases, the maintenance expense remains, which can be high

depending on the cluster size. MCC has zero or minimum establishment and

maintenance costs.

• Though clusters are mainly used for computations, other clusters, such as

memory and storage clusters, can also be achieved, which cannot be said for

MCC.

• A cluster is formed using wired media in contrast to MCC, which connects the

SMDs wirelessly.

• The computing resources in cluster computing generally belong to a single ad-

ministrative domain, whereas in MCC, they belong to individual users.

3.3.2.4 MCC vs Supercomputers

Supercomputing is the oldest attempt to achieve HPC. It is different from all other

103

HPC paradigms mentioned above. A supercomputer is typically a single, large and

non-portable computer stationed at a fixed location and used for applications with

complex computation demands. Not only fundamentally, but it differs from MCC

in most aspects. The only similarity is the purpose; both aim to fulfil the demands

of computing-intensive resources.

3.3.3 Comparing MCC with Other Mobile Computing Systems

In the following, we shall attempt to clarify MCC's misperception with other ap-

parently similar distributed computing systems involving mobile devices. A sum-

mary of the comparison is presented in Table 3.3.

3.3.3.1 MCC vs Mobile Grid Computing

The concept of mobile grid computing initially came to integrate the mobile de-

vices with a grid computing system so that the grid service could be availed from

mobile devices also [446]. Here, the role of mobile devices was only as resource

consumers. However, considering the advancement of mobile devices, many re-

searchers sensed the opportunity to use them as resource providers as well [447]

[448]. In general, a mobile grid is a usual grid computing system in which mobile

devices also take part as resource consumers, providers, or both. Whereas MCC is

purely a mobile grid comprising only SMDs, and except for a P2P MCC, the SMDs

are always resource providers.

3.3.3.2 MCC vs Mobile Cloud Computing

Though the terms mobile crowd computing and mobile cloud computing seem

nearly homophones, they are different altogether. In MCC mobile cloud compu-

ting, the mobile devices offload their works to the cloud [449] [450]. Due to re-

source limitations in a mobile device, the resource-intensive applications are run

on the cloud though it appears they are running on the client mobile device only

[451]. Here, mobile devices act only as resource consumers. Whereas in MCC, no

external cloud provider is involved.

3.3.3.3 MCC vs Ad-hoc Mobile Cloud

Ad-hoc mobile cloud, as its name suggests, is an on-demand assemblage of neigh-

bouring mobile devices. If a traditional remote cloud service is inaccessible (lack

104

of internet connection) or undesirable (to avoid latency), the accumulated services

of its adjacent other mobile devices are utilised to satisfy the need of a mobile de-

vice. In this cloud, the workload and data reside on mobile devices rather than

cloud servers [99]. Typically, there is no centralised control in an ad-hoc mobile

cloud; instead, it follows a P2P architecture. The purpose, architecture and func-

tioning of ad-hoc mobile cloud are pretty similar to ad-hoc MCC, as described in

Section 3.3.5.2.2.

3.3.3.4 MCC vs Mobile Crowdsourcing

Merriam-Webstar29 defines crowdsourcing as - “the practice of obtaining needed

services, ideas, or content by soliciting contributions from a large group of people

and especially from the online community rather than from traditional employees

or suppliers.” Crowdsourcing generally refers to a model for outsourcing tasks to a

broad group of humans or machines, or in some cases, to a small group of experts

or specialists [452]. It aims to procure services such as data, knowledge, computa-

tions, etc., from a large, diverse, and distributed set of service providers (crowd) to

attain a set target or a solution cheaply and quickly [453] [454]. Mobile crowdsourc-

ing refers to accessing services, mainly data, information and knowledge, gener-

ated or captured by mobile devices [455] [456]. Most mobile crowdsourcing appli-

cations’ primary goal is to capture context awareness [457] [458]. Though the gen-

eral perception of mobile crowdsourcing does not consider the computing service,

in our opinion, MCC can be seen as a subset of mobile crowdsourcing if we con-

sider computing as a service.

Table 3.3. Comparing MCC with other mobile computing systems

Comparing
parameters

MCC
Mobile grid
computing

Mobile
cloud

compu-
ting

Ad-hoc mo-
bile cloud

Mobile
crowdsourcing

Service type Computing Computing,
data or stor-
age

Various re-
source-in-
tensive ser-
vices for
mobile ap-
plications

Computing,
data or other
mobile ser-
vices

Data

29 https://www.merriam-webster.com/dictionary/crowdsourcing

105

Roe of mo-
bile devices

Service pro-
vider; both
in case of
P2P MCC

Usually, ser-
vice con-
sumer

Service
consumer

Both Service provider

Resource
shared by
mobile de-
vices

SMDs’ pro-
cessing
units (CPU,
GPU)

None (if con-
sumer) or
processing
unit (if pro-
vider)

None Processing
unit, data or
other mobile
services

Data sensed
and generated
by mobile de-
vices

Service criti-
cality

Very high High High High Low

Importance
of QoS

Absolutely
important

Important Important Important Less important

Human in-
tervention

Not re-
quired after
agreeing to
join MCC

Not required Not re-
quired

Not required
after joining
the ad-hoc
mobile cloud

May require,
depending on
the service

3.3.4 MCC Architectures

Due to the flexibility of the computing nodes in joining each other different topol-

ogies of MCC can be laid out, and based on that, MCC can have different architec-

tural models, as shown in Fig. 3.6. Each of the models is characterized by the way

how the coordinator connects with other coordinators or crowdworkers. In this

section, we discuss each model in detail.

Centralised P2P Extended centralised Extended P2P

Fig. 3.6. Architectural models for MCC

3.3.4.1 Centralized

This is the most prevalent architecture and most suitable to attain HPC through

MCC. In the following, we discuss its basic architecture, components and working.

3.3.4.1.1 Architecture and Working

In a centralized model, the computing tasks across the MCC are managed and con-

trolled by a fixed coordinator from a central point of access. For participating in

the MCC, the SMD user should be pre-agreed to be a crowdworker (i.e., sharing

SMD resources) by installing the MCC frontend application. In this model, the co-

ordinator communicates with crowdworkers and carries out most of the responsi-

bilities such as searching and selecting suitable crowdworker, task creation, task

106

scheduling and dispatching to the selected crowdworkers, handling fault issues,

etc.

Table 3.4. Comparing four MCC architectures

Comparing pa-
rameters

Centralised P2P
Extended cen-

tralized
Extended P2P

Resource coordi-
nation

Easy Not easy Not complex Complex

Network infra-
structure

WLAN/WAN Ad-hoc network WLAN and/or
WAN

Ad-hoc network

Resource man-
agement

Easy Difficult Moderate Difficult

System mainte-
nance

Negligible No mainte-
nance

Negligible No mainte-
nance

Infrastructure
cost

Low No cost Low No cost

Scalability Scalable Restricted Highly scalable Scalable

Ubiquitous com-
puting

No Yes No Yes

Network traffic is-
sue

High Low High High

Susceptible to
DoS attack

Yes No Yes Very less

Single point of
failure

Yes No Yes No

For processing a large computing-intensive task through MCC, the coordinator

split it into several microtasks. Each of these microtasks is queued in a task pool

and is dispatched later for processing to suitable crowdworkers. The coordinator

searches for the presently available crowdworkers and records their resource de-

tails. The available connected SMDs create a resource pool. Among them, it selects

the most suitable SMDs as crowdworker for executing the microtasks. The selec-

tion is based on various criteria such as processing power, memory availability,

battery power, network connectivity and bandwidth, mobility, etc. It then sched-

ules the microtasks from the task pool by mapping the task to a designated

crowdworker and dispatching the microtask to that crowdworker.

The selected crowdworkers receive the MCC tasks from the coordinator, execute

them non-intrusively, and return the results to the coordinator. The coordinator

collects the results obtained from each crowdworker and aggregates them to build

the final result. The coordinator's responsibility is to assess the results for error and

their validity. The coordinator is also responsible for handling the faults generated

due to device mobility, data omission, and other reasons (see Section 3.4.1.5). It

107

also should take measures to check security and privacy threats (see Section

3.6.2.1). The significant steps for executing MCC tasks in a centralised MCC are

shown in Fig. 3.7.

Task farming
Crowdworker
discovery and

selection

Task
scheduling and

dispatching

Task execution
Returning

results

Verification
and

aggregation

Coordinator s end Crowdworker s end

Fig. 3.7. Major steps for executing MCC tasks in a centralised MCC

3.3.4.1.2 Major Components

In the following, we briefly mention a centralised MCC's hardware and software

components, which are also graphically represented in Fig. 3.8.

Hardware: A centralised MCC comprises the following hardware components:

• MCC server: This computing component hosts the backend and the middle-

ware and acts as the coordinator. It can be a traditional server, a computer, an

SBC, a non-mobile and high-end SMD, a programmable edge device such as a

Wi-Fi router or switch, or any other competent device having a computational

facility with an OS. The selection of the MCC server depends on the application

it intends to serve and the infrastructural constraints.

• Crowdworker: The crowdworkers are the SMDs that voluntarily take part in

MCC and carry out the designated MCC microtasks.

• Network: The crowdworkers are connected to the server through WLAN or

WAN.

Software: The major software components of a centralised MCC can be catego-

rised as follows:

• Backend: The backend component includes the MCC database and the server

application.

o MCC host application: It is a computing-intensive application or project that

is required to carry out through MCC.

108

o Database: It stores the crowdworkers’ details (e.g., login, profile details (see

Section 3.4.2.2.2)) and other required data.

• Middleware: The middleware is the core part of an MCC which coordinates

and accomplishes most of the operations mentioned below. Elaborated discus-

sion on the below-mentioned functionalities can be found in Section 3.4.2.

o Resource discoverer: It is responsible for finding out the SMDs in the network.

o Resource profiler and monitor: It creates a profile of every SMDs connected to

the coordinator. The profile describes SMD’s software, hardware, perfor-

mance and log information. It further updates the profile for every subse-

quent connection the device makes based on its previous MCC performance.

o Resource selector: It selects the suitable crowdworkers from the presently

connected SMDs as per the requirement for executing the MCC microtasks.

The crowdworkers are chosen based on their profile by considering their ca-

pability and performance.

o Task farmer: Its job is to split a large MCC task into batches of microtasks and

put them in a task pool.

o Task scheduler and dispatcher: The microtasks in the task pool are mapped to

the available crowdworkers for best suitability and dispatched accordingly.

o Result aggregator: This module collects the processed results from the

crowdworkers, validates and aggregates them, and prepares the final result.

o Fault inspector and handler: This component checks for any fault in the com-

plete process from the task schedule to obtain the final result (see Section

3.4.1.5).

• Frontend: The frontend includes the software applications or set of APIs at the

SMD end that allows receiving the tasks from the MCC coordinator, processing

and sending back the response to the coordinator. Following are the key com-

ponents of the frontend:

o Task receiver: It receives the series of tasks from the coordinator and prepares

them for execution.

109

o Task executor: It always looks for the availability of free processor cycles in

the SMD and executes the given task opportunistically. This module is re-

sponsible for ensuring non-intrusiveness (discussed in Section 3.4.1.8).

o Result dispatcher: After completion, it sends back the results to the coordi-

nator.

MCC application

MCC coordinator

Database Middleware Network
...

Frontend

Frontend

Frontend

Frontend

Fig. 3.8. Key components of a centralised MCC

3.3.4.2 P2P

This architecture is primarily useful in an infrastructure-less MCC scenario. In the

following, we discuss its basic architecture, components, and working.

3.3.4.2.1 Architecture and Working

A peer-to-peer (P2P) model suggests a system where all participating nodes are

equal in different terms. In a general P2P computing system, each node can be a

resource consumer and a resource provider. In this architecture, each SMD com-

municates directly to all other SMDs in the topology. They are responsible for

searching for suitable crowdworkers when the need arises and communicating

with them for the MCC task processing. The resource-seeking SMD broadcasts the

resource requirement in the network. The volunteering SMDs respond by stating

their willingness to donate resources. Based on the responses received, the task

initiator SMD selects the most suitable ones and sends the tasks to them. To keep

up the cluster and task execution, all the SMDs in the cluster continuously broad-

cast messages among themselves. This causes flooding of messages in the network,

creating unnecessary congestion. Also, mitigating faults is more challenging in a

P2P MCC than in a centralised one.

A P2P MCC can have the following three entities:

110

• Resource seeker: This is the SMD that requires external computing resources.

It initiates the task and sends it to other crowdworker(s) in the topology.

• Resource provider: The crowdworker executes the tasks received from the re-

source seeker and returns the result. Depending on the task’s computing re-

quirement, one or multiple resource providers might be required.

• Leader: Among the crowdworkers, one is elected as a leader which temporarily

acts as a coordinator. This is optional and is applicable only for pseudo-central-

ised MCC, not required in pure P2P. The resource seeker and the leader are the

same SMD in the latter.

A P2P MCC can work either of the following two ways:

• Pure P2P: Here, a resource-seeking SMD itself acts as a coordinator and is re-

sponsible for all the duties performed by a coordinator, including task initiation,

crowdworker selection, task scheduling, and result collection. This architecture

lacks a centralized coordinator; hence the resource-requesting SMD itself mon-

itors and manages the kind of service it needs from its peer crowdworkers. The

resource seeker may connect with more than one crowdworkers in a one-to-one

mode for availing of the wanted resources. The crowdworkers cannot delegate

the task further to other SMDs.

• Pseudo-centralised: In this form of P2P MCC, among the available

crowdworker, one, besides the resource seeker, is elected as the leader which

temporarily acts as the coordinator. The usual crowdworker management jobs

are done by the leader. The resource-seeking SMD only initiates the tasks and

sends them to the crowdworker designated by the leader and later receives the

results. This architecture gets the advantages of both P2P and centralised MCC.

The responsibilities of each resource seeker, leader and crowdworkers for pure P2P

and pseudo-centralised MCC are shown in Fig. 3.9.

3.3.4.2.2 Major Components

Since the functionality of both centralised and P2P MCC are fundamentally the

same, i.e., executing tasks on other SMDs, the basic components are the same; the

difference is only in their packaging and localisation. The components of a typical

P2P MCC are shown in Fig. 3.10.

111

Execute tasks

Return results

Receive tasksTask farming
Crowdworker
discovery and

selection

Task
dispatching

Verification
and

aggregation

Task
scheduling

Ensuring fault
tolerance

Task farming
Crowdworker
discovery and

selection

Task
scheduling and

dispatching

Verification
and

aggregation

Ensuring fault
tolerance

Pure P2P Pseudo centralised Both cases

Task initiator Leader CrowdworkerTask initiator

Fig. 3.9. Responsibilities of the entities in P2P MCC

Hardware: In a P2P system, there is no separate MCC server. Therefore, as hard-

ware, only the SMDs and network will be there. Here, instead of an infrastructure-

based network, an ad-hoc network is used to communicate between SMDs. On

requirement, an ad-hoc network is established between the nearby SMDs through

short-range communication technologies such as Bluetooth, NFC, hotspots, etc.

Software: Since there is no separate coordinator, the job of a coordinator is done

either by the resource seeker itself of by the elected leader. Therefore, the func-

tionalities of the coordinator (including task farming, crowdworker discovery, task

scheduling and dispatching, result collection and aggregation) are embedded with

the SMD-friendly MCC package. In a pure P2P MCC, all the crowdworkers should

have the same software installed. However, in an asymmetrical P2P MCC, except

for the resource seeker and the leader, the other crowdworkers can have only the

front-end installed.

Ad-hoc
network

. . . Lightweight complete MCC
package /only frontend

Complete MCC
package

Lightweight complete MCC
package /only frontend

Lightweight complete MCC
package /only frontend

Complete MCC
package

Lightweight complete MCC
package /only frontend

. . .

Service
seeker

Leader

Fig. 3.10. General components of a typical P2P MCC

3.3.4.3 Extended Centralized

This model is an extended form of the centralized architecture and is generally

applicable for a largescale MCC. Multiple small centralized MCC clusters are con-

nected hierarchically. A centralised node at the top acts as the chief coordinator,

112

as shown in Fig. 3.6. Each central node communicates either with the crowdwork-

ers under it, another centralised node under it, or its parent node for resource find-

ing, task distribution, and load balancing.

The extended centralized model helps in offloading job burdens in individual clus-

ters. A particular centralized cluster primarily searches for resources within it and

processes the tasks independent of other clusters. Due to uncertainty in SMD avail-

ability, the number of crowdworkers in a particular cluster keeps fluctuating. This

often causes a scarcity of resources in a cluster leading to task overloading. If a

coordinator is out of resources, it forwards its tasks to its children or parent.

Combining and extending network connections through multiple coordinators

makes this architecture highly scalable. Though it allows sharing task loads in

largescale, it significantly suffers from the overhead of moderating tasks (submit-

ting microtasks and collecting results) from one cluster to another. Especially if

the clusters are designed to address any specific type of computing problem, mi-

grating the tasks between multiple clusters requires additional design considera-

tions.

3.3.4.4 Extended P2P

This MCC architectural model allows multiple P2P MCC clusters to coordinate and

communicate with each other, extending the small P2P clusters into a large P2P

MCC. Each cluster is represented and coordinated by its leader. All the leaders are

again connected to each other, thus forming a wider P2P MCC, making a normal

P2P MCC more scalable.

If any cluster is found to have a shortage of resources, the leader forwards resource

requests to all the peer leaders. If multiple peer leaders come forward for help, the

task is forwarded to one among them. The leader of this resource-providing cluster

takes the responsibility to get the task executed by the crowdworkers under it and

send back the result to the resource-seeking leader, which in turn forwards it to

the actual resource-seeking SMD.

Each leader keeps the information about other peer leaders and their correspond-

ing clusters. In case of any change in a cluster, it is broadcasted to all the leaders.

113

In a dynamic environment like MCC, this message flooding increases data traffic

which is a serious issue for an ad-hoc P2P MCC. Further, improper leader selection

would make the system unstable, which makes its management a complex job.

3.3.5 MCC Types

Fundamentally, MCC can be implemented either as a local set-up (local MCC) or

on a global scale (global MCC) based on the resources exploited and the scale of

the network [124]. Further, a local MCC can be infrastructure-based or infrastruc-

ture-less. The classifications of different MCC types are laid out in Fig. 3.11, while

their topological representations are shown in Fig. 3.12. In the following, we elab-

orate on each of the MCC types. A comparative summary of three MCC types is

presented in Table 3.5.

Fig. 3.11. MCC types classification

WAN

Global
MCC

server
Local MCC

server
Wi-Fi

access point

Task
initator

Ad-hoc
network

Global MCC Infrastructure-based local MCC Ad-hoc local MCC

Network connection Present task assignment

Fig. 3.12. Topological representations of different MCC types

3.3.5.1 Global MCC

Global MCC can be described as a largescale web-based centralized MCC connect-

ing the crowdworkers across the globe. The coordinator in a global MCC is gener-

ally a server or a powerful computer. It runs highly computing resource-demand-

ing applications or projects. As in a centralised MCC, the tasks are farmed into

several batches of microtasks dispatched to crowdworkers via the internet. Since

the crowdworkers are connected through the internet, the crowdworker availabil-

ity issue is not severe because the SMDs are accessible ubiquitously. Since many

MCC

Global
MCC

SMDs are connected to the MCC server through internet

Local
MCC

Infrastructure
based

SMDs are connected to the MCC server through a WLAN

Ad-hoc or P2P SMDs are connected to each other via short-range communication

114

SMDs can be utilised worldwide, a global MCC can garner massive computing

power. Global MCC is incredibly useful in satisfying the computing demands of

large scientific projects that require vast computation power for solving problems

related to physical sciences, astrophysics, mathematics, medicine and health, etc.

[145] [459] [460] [461] [462].

Table 3.5. Comparing three MCC types

Comparing
parameters

Global MCC
Infrastructure-based

local MCC
Ad-hoc local

MCC

Number of
crowdworkers

Hundreds of thou-
sands

Few hundreds and less Very few

Network Internet Wi-Fi/WLAN Bluetooth, hotspot
Establishment Organization Organization Anybody, any-

where

Operational
periphery

Not limited Limited to premises Limited to net-
work range

Cost to SMD owner Internet data (if ap-
plicable)

No No

Operational fault
due to SMD mobility

Low Moderate High

Cost for setup Not much Very less None
Reliability High Moderate low

3.3.5.2 Local MCC

Unlike global MCC, a local MCC is connected through local networking. The scope

of this type of MCC is limited to a local geographic area where SMDs are connected

to a coordinator (centralised MCC) through a WLAN or each other (P2P MCC)

through other short-range communication means [463] [464]. Local MCC, based

on the usage of network infrastructure, can be of two types - infrastructure-based

local MCC and ad-hoc local MCC. In the following, we briefly discuss these two

types of local MCC.

3.3.5.2.1 Infrastructure-based Local MCC

An infrastructure-based local MCC system follows a centralised architecture and

consists of a coordinator and the nearby SMDs. Here, the coordinator is fixed and

can be hosted on a mini server, a computer, or an SBC, but the SMDs are ad-hoc,

i.e., they are not enduring. However, in a campus-based MCC, the SMDs are gen-

erally re-entrant, i.e., they are regularly available for a certain duration [465]. The

SMDs are connected to the coordinator through Wi-Fi. Within a particular Wi-Fi

network, a single coordinator manages the crowdworkers connected to that Wi-Fi

115

access point. The coordinator creates the microtasks, keeps track of the available

crowdworkers and based on their resource capacity, the tasks are dispatched, and

the results are collected after execution. Whenever a crowdworker connects to a

coordinator, it is assumed that the crowdworker is available and willing to lend its

computing resources voluntarily or in return for some incentives.

Infrastructure-based local MCCs are found in organizational or institutional prem-

ises and cater for local computing. A local MCC can be set up within a campus-

based or in-house environment like a college/university campus, office building,

libraries, restaurant, shopping mall, factories, etc., where the footfalls of the SMD

users are regular and large in number. Organizations may utilise the SMDs availa-

ble within their premises to set up a local MCC that would serve its organisational

computing purposes, not requiring investing in infrastructure-based computers.

By taking advantage of many SMDs, organisations can also achieve HPC instead of

investing in owning HPC infrastructures or spending on cloud services. Further-

more, the local MCC can be utilized as edge computing infrastructure [140] [76]

[143] or mobile cloud computing [40] [75] [72] to process IoT data locally near the

source and the sink in real-time. This is helpful for time constraint applications for

processing time-sensitive data without sending them to the cloud and avoiding

processing delay [30].

3.3.5.2.2 Ad-hoc Local MCC

An ad-hoc local MCC is typically a P2P MCC without any fixed network infrastruc-

ture. Here, the SMDs communicate between themselves through short-range com-

munication technologies such as Bluetooth, NFC, hotspots, etc. An ad-hoc local

MCC can be formed and utilised on requiring computing resources where a group

of SMDs can be found. It can be within a campus such as an office, industry, studio,

institute, laboratory, etc. or outside of campus such as roads, fields, parks, accident

and disaster sites, etc.

The resource-seeking SMD broadcasts the resource requirement in close vicinity.

The neighbouring SMDs willing to donate their resources come together and form

an ad-hoc MCC. In this MCC type, it is not always necessary to have multiple SMDs

to process a task. Depending on the tasks and resource requirements, an ad-hoc

116

local MCC can comprise two or more SMDs. If the task size is small and can be

processed by a single crowdworker, the topology might consist of only two SMDs

– resource seeker and resource provider. And if the task size is big and requires

more computation, then other SMDs can be included in the topology to share the

task loads.

An ad-hoc local MCC can fulfil the local and instantaneous computing demands.

As ad-hoc local MCC does not depend on any fixed network infrastructure, it can

be attained anywhere, offering on-demand ubiquitous computing. The ubiquitous

nature of MCC allows the processing of the data where ever it is needed near the

data source or sink.

The high mobility of the crowdworkers in an ad-hoc MCC makes it unstable. In

that case, managing the MCC and maintaining QoS become challenging [124]. As

shown in Fig. 3.3, SMDs may have different mobility statuses. Based on these sta-

tuses, a resource seeker-provider pair in an ad-hoc MCC may be grouped into dif-

ferent possible categories, as shown in Fig. 3.13. Caution needs to be taken when

anyone in the pair is absolutely mobile. If both are mobile and they are moving

together (often observed in a group [466]) they can be treated relatively stable and

is not a matter of concern. The mobility issue is aggravated in the case of an ad-

hoc MCC that follows a pure P2P architecture. A pseudo-centralised architecture

can ease the difficulties to some extent. This architecture will also allow scaling of

the ad-hoc local MCC by setting up multiple local ad-hoc clusters and connecting

them through their respective leaders, as discussed in Section 3.3.5 [467] [468].

3.4 MCC System Design Criteria and Considerations

Designing and developing distributed computing systems are always challenging.

MCC adds extra challenges mainly because the computation is done on

crowdsourced mobile devices. Ensuring acceptable performance and QoS in a sys-

tem where the computing entities are neither controllable nor reliable is challeng-

ing. This section identifies and discusses the requirements and considerations for

designing a functional, efficient and reliable MCC system.

117

Fig. 3.13. MCC taxonomy based on the mobility of the resource provider and consumer

3.4.1 System Design Criteria

The ultimate success of MCC as a system depends on its quality design. The design

goals of an MCC should be to adeptly handle and abstract the inherent issues and

make the MCC robust along with delivering expected QoS. In the following, we

discuss the specific considerations for designing and developing a typical MCC sys-

tem.

3.4.1.1 Abstraction

In computing terms, abstraction refers to hiding trivial details from the system de-

signer and/or end user. Crowdsourced systems always set the challenge of abstrac-

tion due to heterogeneity. The MCC also involves heterogeneity, generally in the

following three aspects:

• Hardware heterogeneity: The SMD market is crowded with a variety of

makes and models. Most of them differ in diverse hardware specifications such

as CPU and GPU clock frequencies, number of cores, other processors such as

DSP and ISP, primary and secondary memory, communication technology

support and interfaces, etc.

• Network heterogeneity: The SMDs might be connected through different

networking technologies such as 3G, 4G, 5G, and WLAN. For local MCC also,

there are various options as communication mediums such as mobile hotspots,

Bluetooth, etc. The SMDs and the coordinator might have different data

M
C

C
Static-Mobile

Static-Pseudostatic

Static-Temporarily static

Static-Always mobile

Mobile-Mobile

Mobile-Pseudostatic

Pseudostatic-Pseudostatic

Temporarily static-Pseudostatic

Always mobile-Pseudostatic

Mobile-Temporarily static

Pseudostatic-Temporarily static

Temporarily static-Temporarily static

Always mobile-Temporarily static

Mobile-Always mobile

Pseudostatic-Always mobile

Temporarily static-Always mobile

Always mobile-Always mobile

118

transfer capabilities depending on their hardware and the communication net-

work bandwidth, leading to disparity in communication latencies. Assorted la-

tencies create overhead for the middleware for the dependent and time-sensi-

tive tasks.

• Operating system heterogeneity: The SMDs might have different operating

systems. Although, this heterogeneity is not on a vast scale because, at this

time, only two major mobile operating systems are running on most of the

SMDs. As per market data30, in June 2022, Android had a market share of 72%,

and the next player, iOS, had 27%. Other mobile operating systems such as

Samsung, KaiOS, Windows, etc., have a negligible presence in the market. Be-

sides, the disparity in the operating systems of the coordinator and the SMDs

also be considered.

Collaborating with diverse SMDs in a unified way by making these heterogeneities

transparent is crucial though not trivial. Obscuring the heterogeneity is also im-

portant to achieve seamless interoperability between different entities in an MCC

system. The issue of heterogeneity is worsened because many SMDs concentrate

on highlighting particular usability (e.g., gaming, photography, music, social net-

working, etc.). Furthermore, in mobile devices, the components are tightly inte-

grated. This helps optimise the purpose of the device made for because the hard-

ware modules are chosen, particularly according to that. But it may also be possible

that the underlying hardware may not support the certain feature(s) of general-

purpose software. In general-purpose computers where hardware is not as tightly

integrated, this may be handled by swapping out the unsupportive module or plug-

ging in an additional module [469].

3.4.1.2 Generalisation

Ideally, an MCC system should not be application or task-specific, i.e., it should

provide a general-purpose computing environment that can support any MCC ap-

plication with various task specifications and requirements. From a software per-

spective, the MCC system should be a kind of ‘plug-n-play’. The task submitter

30 https://gs.statcounter.com/os-market-share/mobile/worldwide

119

should not be bothered about task management details, including microtask crea-

tion, data structuring, deciding on processing and storage requirements, etc. It

should not also have any hand in resource management (see Section 3.4.2.2). An

ideal MCC platform should be able to handle all the necessary measures irrespec-

tive of application or MCC task type. An MCC user would only submit a job and

get the desired output that is ready to use. The MCC application should be plat-

form and function independent, i.e., it should be generalised enough so that the

client application can be installed on SMDs covering a wide range of hardware and

operating systems specifications. The coordinator part also should be portable to

any computer/SBC/server with equal working efficiency.

3.4.1.3 Adaptability

A system is said to be adaptable if it sustains the short-term and long-term changes

in the internal and external operational and environmental changes without com-

promising on the usual functionality of the system. The SMD market is probably

the fastest evolving consumer product market globally. Almost every other day, a

new model is launched with upgraded specifications. Commensurately, operating

systems are also frequently upgraded to more recent versions. In addition to that,

the firmware also gets regular updates and patches. An MCC system should be able

to adapt to these changes and revisions effortlessly without requiring to make

changes in the MCC software frequently.

3.4.1.4 Reliability

In MCC, the processing units are not owned and administered by a single author-

ity. As a result, maintaining the reliability of the whole system is a great challenge.

The coordinator is responsible for verifying the results received from each

crowdworker. The erroneous or unsatisfactory results should be discarded and, if

necessary, recomputed. The middleware should have a well-defined verification

policy and mechanism. Serial offenders (the crowdworkers who send erroneous

results regularly) should be blacklisted.

3.4.1.5 Fault-tolerance and QoS

A system is said to be fault-tolerant if it can continue its usual functioning and

provide its service even if it encounters expected and unexpected faults which

120

otherwise might lead to system failure [470]. Due to infrastructure-less-ness and

volatility, MCC is inherently fragile. Besides the process-level failures, the dynamic

and unreliable wireless environment with its inherent problems, such as the prob-

ability of high fault occurrences and bit-error-rates, and random delays [96], can

make the MCC more prone to faults. To avoid these inevitable communication

problems, steady and stable Wi-Fi connections are desirable. Besides, some foul

crowdworker may intentionally relegate the desired service provisioning.

Table 3.6 lists some of the common failures in distributed systems that are equally

applicable to MCC [471] [472]. Here, we refer fault tolerance at the abstraction

level. We do not discuss the fault tolerance at the core hardware and operating

systems level. We believe that the latest Android versions are equipped with suffi-

cient fault tolerance capabilities.

Table 3.6. Failures in MCC

Failure type Failure site Description

Crash
failure

Amnesia
crash

MCC coordinator Halts and restarts in a predefined initial state
before the crash.

SMD The app stops working and restarts from a
predefined savepoint.

Partial-amne-
sia crash

MCC coordinator Halts, and when restarts, some parts start with
the state immediately before the crash while
the rest start in a predefined initial state.

Pause crash MCC coordinator Halts and restarts with the state immediately
before the crash.

SMD The app stops working but restarts with the
state before the crash.

Halting crash MCC coordinator Stops and never restarts.
SMD The app stops working, or the SMD is hanged

or switched off.

Omis-
sion fail-
ure

Receive omis-
sion

MCC coordinator Fails to receive results.

SMD Fails to receive tasks.
Send
omission

MCC coordinator Fails to send tasks.

SMD Fails to send the results.

Re-
sponse
failure

Value failure SMD Sends incorrect result.

State transi-
tion failure

MCC coordinator Fails to synchronise the flow of control cor-
rectly.

Timing failure SMD Fails to send results within the specified time.

Arbitrary failure SMD Produces arbitrary results at arbitrary times.

Making a system fault-tolerant comprises two phases – fault detection and recov-

ery. Detecting faults in the case of an independent task is not complex. Only while

aggregating the results, it is to be taken care of. But detecting faults for dependent

tasks with multiple workflows is really challenging. Several solutions can be found

121

in the literature for the classic distributed system research [470] [472] [473] [474].

However, considering the uniqueness of MCC, incorporating them straightfor-

wardly in MCC would not be effective. The fault can either be at the crowdworker’s

end or at the coordinator’s end. After correctly detecting the fault, it needs to be

handled properly without affecting the integrity of the MCC system.

Over the years, several approaches have been proposed to mitigate faults in dis-

tributed systems [475]. One of the most common approaches is redundancy or rep-

lication [474]. If the same task is submitted to multiple nodes, it is highly improb-

able that all the instances would be faulty. However, the obvious problem with this

approach is the wastage of resources. Furthermore, in MCC, a large task is generally

split into multiple smaller microtasks, each having a certain input, processing and

output load. Excessive replication of these microtasks would enlarge the overall

processing chain, especially if there is interdependency between the microtasks

[124]. This would, in turn, increase the overall completion time. Moreover, as the

processing chain gets longer, the probability of faults also increases. Therefore, a

proper balance between the expected level of fault tolerance and replication is

highly recommended.

Another common approach to imposing fault tolerance in distributed systems is

rollback and recovery. The system periodically maintains checkpoints which save

the system state at particular instances [476]. If the system crashes, it returns to

the most recent checkpoint and restarts. Instead of setting checkpoints, some sys-

tems continuously log the system events [477]. In case of a crash, the system is

restated using the logged information. This logging approach is fine to handle the

coordinator failure but not ideal for SMD failure. Continuous logging would re-

quire considerable space, which is not so affluent in the SMDs. Also, frequent log-

ging would interfere with the processing and slow the execution of tasks. Check-

point is a better option, but setting them too densely would cause additional over-

head for the client app. So, a fair balance must be maintained between the check-

point scales and acceptable loss due to failure.

Replication and recovery are particularly challenging in MCC. It is difficult to im-

plement them in a loosely coordinated environment like MCC, where resources are

122

likely to behave erratically, especially in opportunistic MCC. Therefore, it is rec-

ommended to go for a reasonable quasi-opportunistic MCC whenever possible.

Nevertheless, implementing fault tolerance for acceptable QoS is crucial for suc-

cessfully realising MCC, especially for commercial and critical applications. An

ideal middleware should mask all the possible systems faults, i.e., even though

some failure occurs either at the coordinator or the SMD end or in the network, it

should be transparent to the system and should not hamper its usual functionality.

The omission failure generally happens due to network failure. In a global MCC,

replication and recovery are the only options to tackle this. However, in a local

MCC, it can be handled with a little bit of improvisation to save the task/result

loss. In a Wi-Fi-connected MCC, the signal strengths of the SMDs are monitored.

If a user continues to move away from the access point, the signal strength of the

SMD weakens slowly. Two thresholds of the signal strength are set. Whenever it

starts decreasing, the first threshold is checked. If it crosses the first threshold, the

system will start setting savepoints and taking backups. When it crosses the second

threshold, the job is withdrawn from the SMD and submitted to another one which

starts from the last savepoint. In a P2P MCC, even if the crowdworker tends to

move, the task need not be offloaded if the task initiator is also moving along, i.e.,

they are relatively stable [466].

As the number of task reassignments increases, the QoS gets more affected because

it has to be reassigned to another SMD, which introduces a significant delay or, in

the worst case, would result in job loss [249]. To minimise the task offloading cir-

cumstances, it should be ideal to assign the job to the crowdworker, which is sup-

posed to be stable and would stay within the grid for a long time or at least till the

task is finished and the result is returned, as discussed in Section 3.4.2.2.4.

3.4.1.6 Scalability and Elasticity

A medium or large-scale MCC would have a great number of crowdworkers con-

nected. An ideal MCC should be competently scalable to cope with this large num-

ber of SMDs and the uncertainty in their availability and reliability. Furthermore,

the MCC should be elastic enough to accommodate the sudden up and down surge

in the crowdworker requirement.

123

3.4.1.7 User Friendliness

Moreover, resources in crowd computing are possessed and functioned by laymen,

most of whom are non-technical people rather than professionals. Given that, in-

stalling and operating the client application should be straightforward.

3.4.1.8 Non-intrusiveness

One apprehension of the users for participating in MCC is the concern that their

native applications in the SMD might get hampered in running the microtasks. To

avoid this intrusiveness, the resource utilization of the microtasks on a

crowdworker need to be strictly regulated and controlled so that the primary func-

tionalities of the crowdworker in no way get affected. The client application needs

to be designed to ensure that the microtasks will not be running when a resource-

demanding native application is running. A microtask should be allowed to run

only if the resource availability meets a certain threshold [478]. Also, the client

application should be able to automatically lower down or stop resource consump-

tion when the crowdworker’s own computing requirement goes up. Non-intrusive-

ness is one of the vital design goals of MCC, not only for attracting new crowdwork-

ers but also to retain the existing ones [82].

3.4.1.9 Energy Efficiency

As discussed in Section 3.6.1.1, battery constraint is an issue for computing on

SMDs. The fear of fast power loss might deter SMD users from participating in

MCC. Therefore, the client application must maximize energy efficiency in its op-

erations while maintaining the required performance level and QoS. Moreover, in

many MCC use cases, especially real-time sensor-based and IoT applications, the

coordinator is hoisted on a battery-operated SBC. In these cases, one of the primary

design goals of the middleware should be to minimise the power consumption ac-

counting for its operations so that the working life span of the SBC extends.

3.4.1.10 SLA, Liabilities and Legalities

A service-level agreement (SLA) typically notes a commitment or pre-set rules and

conditions, describing different aspects of the service, such as quality, availability,

124

responsibilities, etc., that are agreed upon by both the service provider (here,

crowdworker) and the service user (MCC host). For a commercial MCC, document-

ing and adhering to a well-defined SLA is very important. Though strict enforce-

ment of SLA in volunteered MCC is not very sensible, it certainly can be for non-

volunteered MCC where the crowdworkers are incentivised for their services. To

maintain a steady QoS, it is to be ensured that the services received from the

crowdworkers are always up to the mark. The common aspects that an SLA for

MCC should cover are:

• Scope: Services that are expected from the crowdworkers, and the services that

are not being covered in the SLA.

• Constraints: Specifying minimum hardware and software requirements for

certain microtasks.

• Computing performance: The minimum performance benchmark in terms

of computation, such as throughput and turnaround time.

• Network performance: Minimum network quality to be maintained for effi-

cient data transmission and to avoid the loss of data and results.

• Timeliness: The results are to be returned within a stipulated time, i.e., till

they are relevant and valid.

• Availability: Once agreed to be a crowdworker, an SMD should be available

for a certain duration in a particular session.

• Workload: The minimum and maximum workload per session for a

crowdworker should be pre-decided.

• Service failure: If any alternative measures can be taken in case of service

failure.

• Truthfulness: The validity of computations and the results to be assured.

• Security: It is to be ensured that there is no security threat or breach from

both crowdworker and MCC ends.

• Penalties: The penalties applied in case of agreement violations (i.e., if a

crowdworker fails to meet the promised service level expectations).

• Termination: Specification of the SLA termination criteria and procedure, en-

suring the associated configuration information is removed from the SMD.

125

Furthermore, if the termination is due to an SLA violation, the likely actions

to be taken against the violating party depend on the degree of the breach.

Enforcing the SLA involves some legalities. But in a crowdsourced system, it is non-

trivial to demarcate the liabilities in case of serious failures and resultant losses.

This makes it difficult to set the jurisdiction in case of any law infringement. For

example, who should be held legally responsible if the MCC project sends data to

a crowdworker for unauthorised processing? The legalities get complicated in the

case of a global MCC. Enforcing penalties is challenging as the penalty clauses

might function differently in different countries. For a transparent and legal-has-

sle-free MCC implementation, proper permissions, disclaimers, policies, protec-

tions, encryption, and remedies need to be outlined and implemented at all levels

[479].

3.4.2 System Design Considerations

The efficiency of an MCC system depends on various factors. Several aspects need

to be carefully considered to run the system efficiently. In this section, we discuss

the most crucial ones among them.

3.4.2.1 Determining Architectural Model

Adopting a suitable architectural model is important for the proper implementa-

tion and utilization of MCC. This choice should vary as per the type of MCC appli-

cation, as well as other environmental conditions. For example, in the case of a

requirement of small-scale organisational HPC (e.g., scientific computing), a cen-

tralised MCC would be ideal. Whereas, in the case of a large-scale HPC and inter-

organisational MCC, a hierarchical system would be preferable. On the other hand,

when the number of available SMDs is less, and the computing load is low, cen-

tralized or P2P architectures may be attractive. The choice of the architecture

needs to be determined by estimating the effectiveness of the architecture in a par-

ticular situation and the performance expectation. However, an ideal architectural

framework should be able to adapt to dynamically changing requirements, com-

plying with the reactive service management architecture for MCC.

126

3.4.2.2 Crowdworker Management

The success of any distributed system depends on efficient resource management.

The same applies to MCC as well. In this section, we deliberate the different aspects

of resource (crowdworker) management in the context of MCC.

3.4.2.2.1 Crowdworker Discovery

A crucial and primary feature for the usability of MCC is the discovery of available

SMDs. The MCC system should be able to automatically locate the potential

crowdworkers, either by following periodical or on-demand discovery approaches

[82]. In periodical discovery, the coordinator regularly learns about the connected

crowdworker. The periodic approach can further be categorised as the pull (proac-

tive approach from the coordinator’s end) and push (reactive approach from SMD’s

end) method. In the pull model, the coordinator continuously polls the network to

search for the new crowdworkers. This approach is a bit costly and involves a delay

in the discovery process. In the push method, the crowdworkers spontaneously

declare their availability by alerting the controller whenever it joins the MCC net-

work. But the negative side of this approach is that the control is in the

crowdworker’s hand. For a balanced discovery, a combination of both methods can

be employed. On the other hand, the on-demand discovery (reactive approach

from the coordinator’s end) follows the pull method where the controller checks

for the available crowdworkers only when required, i.e., some tasks are to be exe-

cuted.

For crowdworker discovery, whether to use a periodical push or periodical pull or

an on-demand pull model is an MCC design decision. In either case, the coordina-

tor should be able to handle the false and masqueraded crowdworkers. An effective

crowdworker discovery approach that is compatible with the MCC application re-

quirement and infrastructure would enhance the efficacy of the MCC.

3.4.2.2.2 Crowdworker Profiling

In the context of MCC, SMDs can be characterised by several resource attributes

[36]. Some are fixed in nature, such as the clock frequencies of the CPU and GPU,

no. of cores in CPU and GPU, the processing capability of other on-board

127

processors, total memory, battery capacity, etc. Some attributes are variable, i.e.,

their values change dynamically, such as current CPU and GPU loads, available

memory, available battery, and signal strength for communication. Besides, some

other persistent parameters, such as crowdworker’s availability and reliability,

user’s mobility pattern, etc., denote aggregated observations over a period and vary

on a smaller scale compared to the dynamically variable attributes.

In MCC, precisely profiling and assessing these resource attributes is an essential

prerequisite so that the microtasks can be mapped to the most suitable

crowdworker. However, due to the heterogeneity of the SMDs in terms of their

resource types and capacities and the dynamic variability of these resource attrib-

utes, profiling them and assessing their fitment for different requirements are not

trivial. Because capturing and storing these attributes’ values require different pol-

icies and implementations. To profile the static and dynamic resource parameters

of the SMDs in real-time, a systematic methodology and model need to be designed

and developed.

3.4.2.2.3 Crowdworker Selection

Based on the profiled resources of the potential crowdworkers, the most compe-

tent and fitting crowdworkers are selected for the tasks to be executed. Due to

assorted heterogeneity, as discussed in Section 3.4.1.1, it is obvious that not all the

crowdworkers are equally potent in terms of computing ability. Therefore, to get

the best performance out of MCC, selecting the most suitable crowdworker as per

the task requirement in different application scenarios becomes crucial. The pres-

ence of several attributes of different criteria makes the crowdworker selection a

multicriteria decision making problem [480].

The selection parameters differ depending on the MCC model. In an MCC where

the crowdworkers are generally common, the crowdworkers’ historical infor-

mation (such as mobility, availability and resource usage patterns, reliability, etc.)

can be considered. But in an ad-hoc MCC, the MCC coordinator does not have any

historical information about the crowdworkers. The selection should be made on-

the-fly. The problem with the on-the-fly selection is that it may not reflect the

128

actuality of the candidate. Because an SMD may seem fittest in the present context,

it may happen that this fitness may not be consistent over a more extended period.

3.4.2.2.4 Crowdworker Availability

One major hindrance in maintaining QoS in MCC is the uncertainty of crowdwork-

ers’ availability. Crowdworkers’ sudden dropping out of the grid severely affects

the performance and QoS of the system. A crowdworker might go off due to con-

nection termination (intentionally or unintentionally), device malfunction/switch

off, or users’ mobility (for local and ad-hoc MCC). The availability issue can be

either overall or for a particular SMD to which a task is to be assigned or already

assigned. Different approaches are needed to handle these two issues, as discussed

in the following.

3.4.2.2.4.1 Availability of Sufficient Crowdworkers

The scale of MCC depends on the number of crowdworkers connected at any point

in time. In fact, the uncertainty of getting sufficient SMDs when required makes

MCC undependable. Especially, running critical and time-bound applications is

not a good idea if there is the slightest probability of unavailability of a sufficient

number of service providers through the course of job completion. To make the

system reliable, it is to be assured that the minimum required number of SMDs

should be available at any point in time, which may not be achievable in all condi-

tions. The good thing is that, as mentioned in Section 3.2.2, due to mass adoption,

there will not be a dearth of SMDs. Even for local MCC also, Loke et al. [141] esti-

mated that there is a high probability of finding a sufficient number of SMDs. Only,

they need to be tapped by motivating the users, maybe with lucrative incentivising

as discussed in Section 0 and 3.6.2.3.

3.4.2.2.4.2 Availability of a Particular Crowdworker

One major issue in MCC is handling the uncertainty of the device availability due

to various reasons such as users’ mobility, network failure, device malfunction, etc.

[249]. If a crowdworker leaves before completing the assigned task and returning

the result, the task should be resubmitted to another crowdworker and restarted

from the beginning [481]. This negatively affects the performance and QoS of MCC.

129

And if this frequently happens for many crowdworkers, the performance degrada-

tion would be substantial.

One way to mitigate this is to have prior knowledge of the probable departure of

the crowdworker before submitting the task. One option is that each crowdworker

declare their availability period when they join an MCC session [140]. However, it

cannot be taken for granted every time. Besides the unintentional causes of leaving

(e.g., network failure, device hanged/switched off, etc.), some dishonest users may

leave before the declared departure time. Another option is to predict the availa-

bility of a particular crowdworker by analysing her connection or availability his-

tory [156]. Before submitting the task to an SMD, the probability of its availability

till the job is finished is assessed. If the predicted availability is greater than or

equal to the job length, then only the job is assigned to that particular SMD [465],

as shown in Fig. 3.14. But every time calculating this before the job submission will

delay the job submission process. To avoid this, the prediction algorithm may run

periodically (with a small periodical gap) in the background, and the job submis-

sion module can consult the availability prediction module before job submission

[36]. This approach is suitable where the crowdworkers are recurring, i.e., they

have a fixed timing pattern of joining MCC. Although the abrupt issues cannot be

evaded by prior planning, the issue of intentional departure can be mitigated rea-

sonably by this approach.

M2 M4

Task
scheduler

Availability
predictor

Suggests

Consults

M1 M2 M3 M4 M5

Available suitable SMDs

SMDs with
availability task size

Submit
task

Predict SMDs
availability

Fig. 3.14. A crowdworker availability-based task assignment scenario

130

3.4.2.2.5 Crowdworker Monitoring

One-time crowdworker selection does not end the course. Depending on the MCC

application and task granularity, tasks must be scheduled regularly. For every

scheduling event, suitable crowdworkers need to be selected. Considering the dy-

namicity of the MCC environment, continuous monitoring is required. The

changes in the status of the variable and persistent resource attributes need to be

regularly updated in the corresponding crowdworker’s resource profile, which

should be reflected in the next crowdworker selection decision. Continuous mon-

itoring is also required to keep track of the unavailability of the existing

crowdworkers. Like discovery, crowdworker monitoring can also follow either of

the three approaches - periodical push, periodical pull, or on-demand pull. In the

periodical pull method, the controller periodically fetches the resource status from

the crowdworkers. In contrast, in the periodical push method, the crowdworkers

send their resource status information periodically to the controller. Here also, a

combination of both of the methods can be employed. In on-demand monitoring,

the controller procures the resource information from the crowdworkers only

when required, i.e., a new task is to be scheduled for which a suitable crowdworker

needs to be selected.

3.4.2.3 Task Farming

The proper utilization of MCC can be realised only when a larger task can be di-

vided into several granular microtasks, which are sent to the crowdworkers for ex-

ecution. Ideally, these tasks should be independent, i.e., parallelly executable. Usu-

ally, the distributed systems follow a predefined task farming policy. However,

static task farming does not hold good in a complex application (e.g., interactive,

real-time, or process with dynamic and variable inputs). In these cases, the mi-

crotasks with varying sizes are created on-the-go. This makes resource discovery,

selection, and scheduling complex. Because the crowdworkers need to be compat-

ible with the tasks to be assigned to them, this mapping is to be done dynamically

for every task assignment. Considering this, innovative approaches are needed to

realise a more straightforward yet robust task farming mechanism.

131

3.4.2.4 Task Scheduling

Efficient task scheduling is a crucial feature of distributed computing. It becomes

more important when the computing resources are mobile and crowdsourced. A

non-smart scheduler, to avoid complexity, would follow the straightforward task

allocation approach, i.e., whichever crowdworker is available, send the task-in-

hand to it if it satisfies the resource requirements. But this straightforward ap-

proach not only degrades the system's overall performance but also becomes a se-

rious issue in a crowdsourced system. In the following, we acknowledge some cru-

cial properties that need to be considered for framing a decent scheduling policy.

3.4.2.4.1 Optimized Scheduling

The MCC is comprised of public-owned devices which are vastly diverse in terms

of resource capacity and quality. In such an environment, it is pretty challenging

to assign tasks to SMDs according to their resource capability and usability. An

optimised MCC scheduler should be targeting to minimise the overall makespan

and response time while maximising the throughput. The scheduler should also

target to utilise a minimum number of SMDs to minimise the failure probability

and operational overheads and costs. The microtasks may vary in terms of task

length, resource requirements, errors sensitivity, and result verification require-

ments [83]. An ideal scheduler should adopt an intelligent and dynamic mapping

mechanism for scheduling the tasks to the most appropriate SMD, considering the

above-mentioned decisive factors.

3.4.2.4.2 Energy-aware Scheduling

Due to the limited battery life of the SMDs, an essential criterion of the scheduler

is to be energy-aware. The battery level of the SMDs should be included in the

scheduling criteria, i.e., an SMD with a lower battery level should be refrained from

being assigned tasks frequently. The most energy-consuming attributes are task

processing in CPU/GPU, memory transfer and data transmission (between SMD

and coordinator) [253]. Inefficient scheduling can significantly increase communi-

cation traffic and, in turn, energy consumption. This applies to both global and

local MCC. Controlling the power consumption for processing and memory oper-

ations is mainly in the hand of the client application. Therefore, the client

132

application also needs to be energy-efficient, i.e., it should be designed to consume

minimum energy in managing the execution of the assigned task. Furthermore, to

achieve sustainable computing, the scheduler should ensure that the total energy

consumption to complete the task is minimal.

3.4.2.4.3 Balanced and Fair Scheduling

It is commonplace in an opportunistic computing system that a small number of

participatory nodes get overburdened most of the time, while the rest, the larger

segment of the participants, contributes meagrely or, in some cases, not at all. Also,

a typical scheduler might always look for the most competent crowdworkers and

schedule the task to them to achieve a better system performance. But this ap-

proach would overburden a small number of SMDs. Putting excessive load on an

SMD may lead to fast battery drainage and hardware stress, which would coerce

the users to drop out of the MCC. For a satisfactory retention ratio, a decent level

of QoE should be provided to the crowdworkers by implementing a fair and bal-

anced task allocation scheme [482] [483].

This is true for a P2P MCC also. Some users may be eager to use the resources of

other peers without the fair contribution of their own computing resources. These

types of selfish peers are called ‘free riders’. As a result, the good peers become

easily congested and overloaded. To achieve a unbiassed resource utilisation by

tackling with these selfish free riders, proper incentive and pricing schemes or pen-

alty policies are required.

3.4.2.4.4 Dynamic Scheduling

The high mobility of SMDs can debilitate the consistency of the system. If the

SMDs frequently get in and out of the MCC grid, the job scheduling and allocation

would be a real challenge. This factor makes designing an MCC scheduler more

challenging than other traditional distributed computing. An efficient MCC sched-

uler should be adaptive and flexible enough to schedule the task dynamically de-

pending on the availability of the crowdworkers.

3.4.2.5 Resource Scavenging

The MCC client should adopt an efficient, non-intrusive resource scavenging

133

policy. Suppose a crowdworker is executing an MCC task, and in a while, if the

SMD needs to carry out some heavy computational job of its own, the MCC job

should be suspended. If the MCC task is time-bound, then the suspended task

might need to be offloaded to another crowdworker and continue thereon. As in

context switching, this shifting procedure is also costly in terms of time, fault tol-

erance, and reliability. So, if the application is delay tolerant, it may be allowed to

halt for a while and wait at the same device instead of offloading the job. The sus-

pended MCC task is resumed when it finishes its own job and the resource is avail-

able once again. The answer to the obvious question, “how long should it wait?”

may be decided on different criteria and considered separately.

3.4.2.6 Opportunistic Computing

An efficient MCC should be able to utilise the opportunistic scenario to its fullest

advantage. We suppose the opportunistic computing aspect is more pertinent to

local MCC. The opportunistic scenario can be pure or quasi, as discussed in the

following.

Pure opportunistic scenario: Whenever an SMD enters the range of a Wi-Fi

hotspot included in a local MCC infrastructure, it will be considered a probable

crowdworker. In this case, the MCC coordinator continuously hunts for a new en-

trant in the local MCC topology. If the SMD pass the minimum threshold criteria

for resources, it is considered for task scheduling. Opportunistic computing does

not guarantee continuous resource availability; thus, reliability and fault tolerance

are also not guaranteed. This could affect mission-critical applications heavily. This

might happen, particularly where the probability of hanging around phone users

at and around a particular location during a specific time interval is awfully unpre-

dictable.

Quasi-opportunistic scenario: Instead of depending on the random nature of

resource availability as in opportunistic computing, in quasi-opportunistic compu-

ting, it is made sure that the resources are available for a certain period [484]. Be-

fore that specified time, no crowdworker should leave once it has been hooked to

an MCC. This can be assured through some pre-agreement (SLA), economic or

other incentives, intelligent prediction of resource availability or by other means.

134

For mission-critical and real-time applications, every crowdworker should com-

plete the assigned task without any or with minimal interruption. Exiting the MCC

topology should be avoided until the assigned task is completed. In case of emer-

gency and with prior reporting, a crowdworker is permitted to leave in the midway

only if it is assured that there is a suitable alternative. Quasi-opportunistic compu-

ting can be achieved if the MCC is performed within a campus, where there is a

certain probability of the presence of a certain number of SMDs during a certain

period. For example, institutes (school/college/university), libraries, large govt. of-

fices, corporate houses, production units, shopping malls, cinema halls, public

transport (preferably for long distances), etc., are suitable sites for campus-based

quasi-opportunistic MCC. In these sorts of places, it is possible to predict the num-

ber of accessible SMDs and the time duration of their availability, accordingly to

which the MCC tasks should be scheduled.

3.4.2.7 Workflow Management

Ensuring fault tolerance in MCC becomes more complicated if the tasks involve

multiple workflows. A workflow system can be defined as a collection of synchro-

nous or asynchronous processing tasks, executed on the same or different nodes

and organized to accomplish a bigger goal [485]. A distributed task with workflows

is expensive to recreate if not completed successfully. A failed workflow may have

severe ripple effects. Therefore, improper workflow management would destabilise

the system. An ideal workflow manager should be able to orchestrate the whole

operation by synchronising and managing the processes correctly and timely. A

workflow can fail due to network failure, device unresponsiveness, unexpected la-

tency, or incorrect intermediary results. Many efforts have been made toward han-

dling workflow management in distributed computing [475], grid computing [486]

[487], mobile computing [488], and ubiquitous computing [489]. The uncertainty

in the continuous availability of the devices in MCC demands extra efforts in this

regard.

3.4.2.8 Result Verification and Aggregation

To make MCC reliable, it is to be ensured that the tasks are correctly executed; in

other words, the processed outcome is correct and valid. Since the tasks in MCC

135

are divided into microtasks executed on different SMDs, the result verification gets

a little intricate. First, the results for each microtask received from the assigned

crowdworkers must be verified. And then, these results are aggregated to get the

final result which needs to be finally validated. However, the complete process of

verifying, aggregating and validating the results received from heterogeneous com-

puting nodes is not trivial. For this, a suitable framework and policy are to be

adopted [83]. There should be unambiguous and well laid out decision policies in

the cases, for example, what to be done with the partial results, what should be the

standard for verification and validation, if the results could not be immediately

verified how to proceed with the aggregation and validation, etc.

3.5 Advantages of MCC

The unique nature of MCC has spawned several pluses. This section identifies and

discusses MCC's potential advantages and benefits.

3.5.1 General advantages of MCC

Following are the advantages of MCC in general, i.e., they apply to all types and

models of MCC.

Cost-effective: Institutions and organisations do not have to invest in buying and

maintaining extremely pricey HPC systems. They can reap the same service by em-

ploying MCC through smart policy adoption. MCC will also substantially reduce

the electricity bill by eliminating the electricity expenditure for operation, ventila-

tion, and air-conditioning of the IT systems that may include clusters and servers.

Least overhead in IT infrastructure management: Since the resources are

yielded by the public and not owned and managed by the organisation, it should

not be worried about maintaining the IT infrastructure support system, and the IT

team can ponder on more productive works.

Free from DDoS attack: Since the computing has been distributed over many

devices, MCC gives little scope to the DDoS attackers.

Offering computation offloading: Due to several reasons such as insufficient

resources, saving energy, and maximising throughput, sometimes it becomes de-

sirable to offload the workloads of the mobile devices [490]. A P2P MCC would

136

allow other SMDs to offload their workloads, when needed, to other SMDs without

needing any other external services such as the cloud.

Scalability and agility: Today's computing workloads are generally dynamic and

unpredictable, and since the datasets can often grow unpredictably and, in many

cases, exponentially, the systems are required to be able to scale up or down easily

and quickly, depending on the workload. Depending on the availability of the

SMDs, MCC is dynamically scalable as per workload.

Amply available resources: Because of the massive adoption of SMDs, there is

every possibility that a sufficient number of devices would be available for compu-

tation even at scantily populated sites. It would ensure the availability of MCC-

powered HPC.

3.5.2 Benefits of Local MCC

In addition to the above-mentioned advantages, a local MCC specifically offers the

following benefits.

On-premises: MCC can be set up locally utilising the on-premise devices and local

network. A local MCC does not require to be connected to the internet. This offers

a great advantage for sites where internet bandwidth is scarce or not available.

Lower latency: A local MCC has significantly lower latency than internet-based

services such as the cloud. This makes MCC a suitable computing option for im-

proving user experience, especially for interactive applications requiring mini-

mised response time.

Minimized network cost and congestion: Not requiring the data to be sent to

external servers for processing saves communication cost and minimises intra- and

inter-network congestion.

3.5.3 Ubiquity and Pervasiveness of MCC

Depending on the availability of the SMDs, an ad-hoc MCC can be set up perva-

sively. Following the advantages of MCC make it an ideal platform for ubiquitous

and pervasive computation.

137

Anywhere HPC: MCC gives us the flexibility to build up a nomadic HPC facility

anywhere, irrespective of the fixed architecture and internet connection. Since

SMDs are being increasingly used ubiquitously, a collection of such devices con-

nected through pervasively available wireless connectivity will provide a ubiqui-

tous HPC facility.

Location and context awareness: The local nature of MCC allows it to be able to

provide location- and context-aware services, including computing, analytics, local

points of interest, businesses, events, and many more.

Application specificity: Thanks to its agility, it can deal with a range of business-

specific applications which require ubiquitous computations.

Suitable for real-time applications: Since MCC can be set up locally, it is per-

fectly appropriate to cater for the needs of real-time applications that demand

time-constrained responsiveness. Most real-time systems that process real-time

data streams require intensive computing resources [451]. The HPC offered by

MCC can be suitably utilised for this.

Proximity: Closeness to the data source and sink of an ad-hoc MCC is a crucial

enabler for its ubiquity and pervasiveness.

Network flexibility: An ad-hoc MCC offers great networking flexibility since it

can be established using short-range communications such as Bluetooth and de-

vices' hotspots in the absence of infrastructure-based networks such as the internet

and WLAN [55].

3.5.4 Sustainability of MCC

Compared to other dedicated HPCs, MCC offers significant sustainable ad-

vantages, as discussed in the following.

Energy-efficiency: MCC can be a prodigious benefactor in green computing.

Usual HPC systems require enormous electric power to run and cool. For example,

ASCI Red needed 500,000 watts of power to run with additional 500,000 watts just

to cool off the building it was kept in [491], whereas Tegra X1 required less than 15

watts of power [409]. SMD CPUs are more than 20 times more power efficient than

desktop CPUs while delivering nearly equivalent computational power [114].

138

Accordingly, MCC is considerably more energy saver compared to cluster and grid

systems. Ubispark (discussed in Section 2.2.2) estimated that when a task is exe-

cuted on a cluster of nine Samsung Galaxy S4 smartphones, it consumes

only 7.2% of the electricity consumed by an HP Proliant server to run the same

task. Running applications on SMDs will indeed consume extra energy, but it also

implies that the hardware is utilized more. A study suggests that total energy con-

sumed by mobile devices, on account of usage, is only around 25% of the total en-

ergy spent on it through its lifetime, while the rest 75% is guzzled during produc-

tion [492]. Therefore, it will be sensible to do all-out utilization of the device on

which already so much energy has been drained. Furthermore, distributing the

workload over a large number of separate SMDs would reduce the power consump-

tion of each device [105]. As associate technologies and mobile platforms are ad-

vancing continually, it is highly expected that the computation per watt that can

be garnered from SMDs, will be even much higher in coming years [93].

Environment-friendly: The production of computers takes a massive toll on the

environment. For instance, to make a computer with a 17-inch CRT monitor, on

average, 1500 litres of water, 240 kg of fuel, 22 kg of chemicals are needed, which

costs approximately a total of 1.8 tons of material [10] [11]. Besides, it generates a

significant amount of hazardous e-wastes contaminating the earth. MCC utilises

already existing resources, i.e., public's SMDs. Users would buy and use SMDs an-

yway. Optimal and multipurpose use of these devices will restrain the production

and use of new computers. This will certainly minimise the environmental hazards

caused by production and e-waste [2]. Moreover, the small size of SMDs also re-

lieves the adverse effects to some extent since they require less material in manu-

facturing and also, the contribution of e-waste of discarded SMDs will be consid-

erably less. Furthermore, using MCC will not incur additional energy consumption

compared to dedicated HPC systems. This will lessen the need for electricity gen-

eration and the use of fossil fuels, positively impacting the environment.

3.6 Issues and Challenges

Successful implementation is challenging. Several crucial as well as trivial issues

need to be addressed. In this section, we discuss them extensively.

139

3.6.1 SMD and Communication Issues

Here, we discuss some of the elementary issues associated explicitly with SMDs

and networking.

3.6.1.1 Battery Depletion

While portable computers, SMDs, wearable computers, and other mobile devices

are growing ever more advanced, technologically and architecturally, they're still

limited by power. The battery or energy technology hasn't moved at par in decades,

which pulls back the pervasive and ubiquitous computing revolution. In view of

that, the most concerning facet regarding MCC is its limited battery power and fast

drainage. In a recent survey, nearly 70 percent of respondents stated that battery

life is the biggest limitation of their mobile phone, and most are willing to pay

more for phones that offer extended power [493]. Present SMD batteries are strug-

gling to keep up with users’ active and ever-increasing SMD usage demands. And

it will only get worse as next-generation 4G networks come online, giving phones

access to high-speed, always-on connections and torrents of data. The major fac-

tors that escalate battery drainage in an SMD are shown in Fig. 3.15.

However, the scenario is not that gloomy. Hopefully, we might witness a power

revolution very soon [494]. Research groups in universities and organizations are

coming up with innovative ideas to either extend battery life or minimize the re-

charging time or accomplish both. Some are exploring alternate power sources like

ambient energies, including light and sound, bio-mechanical, etc. or for charging

SMD’s battery. Especially the emergence of wireless charging has augmented the

prospect of powering mobile devices persistently and ubiquitously. Table 3.7 lists

some prospective aspects of SMD battery and charging in which researchers are

presently focussing and realising success. Considering these advancements, we are

very much optimistic that the days are not far when the users will no further be

haunted by the horror of ‘low battery’ and the full potential of SMD’s capabilities

will be realised.

140

SMD s power
consumers

Hardware
components

Signalling
modules

Software
components

User s usage
patterns

Other factors

CPU

GPU

Memory

Display

Sensors

Storage

FM radio
reciever

GPS

Cellular
network

Wi-Fi

Hotspots

BluetoothRunning heavy
applications

Faulty
charging slot

Faulty
hardware

Ageing and
faulty battery

Apps

Operating
system

Heating

Incompatible
charger

Calling

Watching videos

Playing music

Gaming

Internet access

Fig. 3.15. Major power-consuming factors in SMDs

Table 3.7. Advancements in different aspects of SMD battery and charging

Focus area
Representative

references

Decelerating discharge rate and stretching operational duration [495] [496] [497]
Increasing battery capacity [498] [499]

Shortening charging time [500] [501] [502]

Increasing energy density [503] [504] [505]

Extending battery lifespan [506] [507]

Wireless charging [508] [509] [510]
Energy harvesting and self-charging [511] [512] [513]

Power sharing and crowd charging [514] [515] [516]

3.6.1.2 Heat

“With great power comes great responsibility” - this saying may well be rephrased,

in the context of SMD processors, as “with great power comes great heat”. For ex-

ample, NVIDIA’s X1, one of the most powerful SoC, can easily overheat the device

unless it is supported by a powerful cooling system [517]. Shoving excessive power

into a tiny space without an adequate cooler or exhauster is the main cause of over-

heating mobile devices. Not only the CPU and GPU but the battery and the screen

are also equally, if not more, responsible for overheating the SMDs. Some of the

key factors responsible for heating the SMDs are listed in Fig. 3.16.

The heat generated by an SMD is largely proportional to the amount of electricity

flowing through it, which directly depends on its workload. This suggests that us-

ers would tend to be impassive in engaging their SMDs for some additional work

as it would make their device more hot. This would certainly hinder the success of

MCC.

Fortunately, like batteries, there is a light of hope here also. Research efforts are

being made to reduce the heating of the different components of the SMDs without

141

compromising the performance and quality. Table 3.8 lists some of the worthwhile

research directions for tackling the heating issues of SMD. Developments are also

witnessed in the commercial market. For example, to prevent heating, a new ICE

10.0 cooling system is incorporated in the Red Magic 7S31 and Red Magic 7S Pro32

gaming smartphones. The ICE 10.0 has a nine-layer cooling structure with a cooling

material area of up to 43525 mm² and a 4124 mm² large VC cooling plate. The com-

pany claims that a temperature drop of 3°C can be achieved.

Fig. 3.16. Causes of SMD overheating

Table 3.8. Research directions to mitigate heating issues of SMDs

Focus area Representative references

Innovative
thermal
management

Body/encapsulating material [518] [519]

Mobile processors [520]
Multicore CPUs [521] [522]

Multicore SoCs [523] [524]

App-oriented [525]

Battery [526] [527]

Efficient heat transferring [528]
Alternative energy encoding [529]

Using effective coolants [530]

3.6.1.3 Network Connectivity and Bandwidth

Crowd computing, or any distributed system, demands stable and uninterrupted

high bandwidth connectivity for smooth communication, low latency, good

31 https://global.redmagic.gg/pages/redmagic-7
32 https://global.redmagic.gg/pages/redmagic-7-pro

• High-intensity gaming apps keeps the CPU and GPU highly active, which
overheats the phone.

Gaming for
long durations

• Watchng videos also puts enormous strain on the processors and keeps the
screen on for long duration. This obviously generates heat.

Running HD
videos

• Impropoer phone settings may cause inefficinet functioning and, in turn,
overheating of the device.

Non-optimal
settings

• Exposure to high temperatures (e.g., sunlight, nearby heat source, hot car
dashboard, etc.) also causes the device to be heated.

Environmental
factors

• Presence of a bug in an app may cause the phone to overheat by overusing the
device’s processor.

Buggy apps

• The outdated system software or firmware which require updates, or a faulty/
incomplete update may cause malfunctioning, hence, heating the device.

Not updating
software

• Malware often keeps the device hardware engaged and consumes RAM and
CPU power highly, which causes the phone to overheat.

Malware
infection

• A faulty charger also causes a phone to be abnormally heated while charging.Faulty charger

142

response time and throughput, and fault tolerance. Since, in most cases of MCC,

communication would be through Wi-Fi, the bandwidth, speed, and traffic at a

particular Wi-Fi access point play a crucial role. Unfortunately, Wi-Fi networks are

disreputable for their instability. Many factors, such as multipath disturbances,

degradation of the power signal, inter-cell hand-off, etc., are to blame [117]. A re-

cent study has estimated that 45% of mobile devices experience failures while con-

necting to a corresponding Wi-Fi access point, and 15% of those that connect suc-

cessfully require a substantial amount of time (5 seconds or more) to connect [531].

Even in the absence of connectivity issues, communication speed through Wi-Fi

cannot match the bandwidth provided by typical wired connections. These short-

comings will certainly hamper the realization of MCC. Nevertheless, due to the

sheer pressure of increasing mobile and portable devices, wireless technology is

advancing continuously, which is established by introducing new Wi-Fi technolo-

gies like 802.11ah and 802.11ad. 802.11ah (also known as low power Wi-Fi) allows

short and bursty data to travel long distances consuming much low power, whereas

802.11ad offers a very high data rate but for short-range communications [532].

Both protocols can be tactically used in MCC for different applications with varied

computational data. Few tricks such as using a Wi-Fi booster extender and bigger

antennas or strategically positioning the router may help in a better Wi-Fi experi-

ence.

The biggest hope in wireless communication technology is the Li-Fi, which can

transfer 100 times faster than the present average Wi-Fi [533]. In lab conditions, it

has attained an unbelievable speed of 224 Gbps, while in real-world trials carried

out in offices and industrial environments, it achieved a substantial speed of 1 Gbps

[534]. But it has its limitations, such that it can’t work across walls, and for data

communication, a Li-Fi-enabled device needs to have a direct line of sight to a

functional light sensor. However, these limitations make Li-Fi a more secure me-

dium than Wi-Fi and Bluetooth. Though there is little probability that Li-Fi will

completely replace Wi-Fi in the near future, they could be used mutually to achieve

more efficient and secure local communications. It is expected that future phones

should come with a Li-Fi feature that would boost the MCC vision.

143

3.6.2 Major Challenges

MCC is descended from grid computing which in turn from distributed computing.

Naturally, the issues involved in the ancestors have been inherited, perhaps even

amplified, in the MCC system as well. In this section, we analyse the major chal-

lenges that are needed to be appropriately addressed for MCC to be successful.

3.6.2.1 Ensuring Security, Privacy, and Trust

Security, privacy and trust are very crucial issues for any crowdsourced systems

[535] [536] [537]. Specifically, MCC's very dynamic and uncertain nature triggers

real security concerns at both the service seeker’s and provider’s end. Allowing for-

eign programs from unacquainted sources to run on one’s personal device is bound

to be sceptical concerning privacy and security. Similarly, sending sensitive tasks

to be operated at unknown entities involves high risk. Design flaws in the interac-

tion between the MCC coordinator and the crowdworker may allow the attackers

to access the coordinator and other crowdworker if the attacker can breach the

client application on any SMD. Similarly, if the attacker can breach the security at

the coordinator, a faulty design may compromise all the crowdworkers connected

to the coordinator. Different threats potentially involved with MCC are discussed

in the following.

• Threats from MCC: This is the most concerning perception that thwarts

crowdworker participation. The most common and probably the only fear

from the end of MCC coordinator is:

o Access to private data on SMD: An ill-conceived MCC application can be-

come a potential avenue for an intruder to access personal information from

an SMD. A compromised coordinator can access the stored passwords, pri-

vate data inputs, and other personal information in the SMD, which might

be severely risky.

• Threats from crowdworker: Typically, the threats from the crowdworkers

are not acknowledged. However, from an MCC system perspective, they can

be very severe as they are capable of disrupting the whole system. Some of such

threats are:

144

o Malicious content injection: An unscrupulous crowdworker or an in-

truder may inject malicious content like corrupt files, media content,

scripts, etc., to contaminate the MCC server and destabilize the whole MCC

system.

o Attack on MCC client application: An infected application caused by ei-

ther malicious script or corrupt content injection to the SMD can poten-

tially paralyze the functioning of the MCC client application, making the

application crash or behave unexpectedly.

o Repudiation issues: An impostor may attempt to repudiate a signature it-

self and pose as a legitimate crowdworker to get connected to the MCC sys-

tem. The repudiation threat may also come from a misplaced SMD that has

been seized by a fraudulent user. The issue of unauthorised crowdworker

can be mitigated by using digital certificates, which would assert the au-

thenticity of the crowdworker. However, with mobile devices, it is not un-

common for private keys to get leaked, leading to digital forgery.

o System integrity: It may also happen that an unscrupulous SMD user ma-

nipulates the results with ill intention or tries to disrupt the overall system.

The MCC should shield itself from these kinds of threats. One solution is to

adopt suitable trust and reputation-building policies and mechanisms [538].

There are other general approaches to maintaining crowd computing sys-

tems’ integrity, as mentioned in Table 3.9.

• Threats from network or third party: Another aspect of concern is that the

security is not that strong in wireless protocols compared to wired network

protocols. Wireless networks are more vulnerable to attacks like eavesdrop-

ping, tracing, spoofing, camouflaging, tampering with data, and others [539]

[540]. Though it is a tough ask to vanquish people in the network with evil

intents continually, all crowd computing projects should be able to eliminate

the apparent risks. Existing network layer (e.g., IPsec) and transport layer (e.g.,

SSL, TLS, SSH) protocols can provide decent end-to-end security. Many wired

security solutions (e.g., WTLS) are also adapted to support wireless networks.

Several other regular security measures for the wireless network and mobile

devices (e.g., WPA2, 802.11i security, wireless IPS, etc.) can be adapted to

145

secure MCC. In the context of MCC, the most severe issues from the network-

ing perspective are:

o Data tampering: Preventing data tampering in networked systems is al-

ways challenging. This can potentially be unsafe if public Wi-Fi or mobile

data networks are used for MCC operations (job distribution and result col-

lection). A man-in-the-middle attack is potentially possible, which can ma-

nipulate the transmitted data while in transit, obliquely affecting MCC's sta-

bility and reliability.

o DoS attack: Like other internetworked systems, a global MCC can be sus-

ceptible to DoS attacks. However, this is not so perilous for the local and

ad-hoc MCCs.

Table 3.9. General approaches to mitigate system integrity in crowd computing [83]

Solution Mechanism Remark References

Voting Each microtask is sent to multiple
crowdworkers, and the best result is se-
lected through voting. Two approaches
can be adopted:

• Majority: The result returned by the
most crowdworker is selected as final.

• m-first: The particular task is continu-
ously executed by different crowdwork-
ers until a threshold (m) is reached for
the first similar results.

It involves redundant
computing, which
leads to resource
wastage.

[541] [542]

Spot-
checking

The MCC coordinator sends a task of
which the result is already known to a
crowdworker to randomly crosscheck the
result returned by the crowdworker. If
the result does not match, the
crowdworker is tagged as a saboteur and
blacklisted for future task assignments.

All the crowdworkers
need to be cross-
checked for best ef-
fects and probably
multiple times,
which is not very
practical.

[543]

Credibility-
based
voting

The credibility is calculated as the condi-
tional probability of the correctness of
the result of a task which is evaluated
against a threshold value. If the credibil-
ity is lower than the threshold, the task is
reassigned to some other crowdworker.

It inherently guaran-
tees that the overall
error rate of the MCC
system will not ex-
ceed a certain limit.

[544]

Encryption and cryptography can solve the problem of privacy and security threat

in public and open network communication. But running cryptography and au-

thentication processes on SMDs would be a bit heavier than on desktop computers.

Volunteer projects based on BOINC prevent hackers from distributing malware

even after breaking into the server by employing code signing.

146

Since the apprehension of security is often associated with trust, it is essential to

establish trust between volunteers and the client project to make crowd computing

successful. To check on corrupt crowdworkers, a reputation-based trust [545]

scheme can be adopted. To maintain trust, resource seekers and providers should

know each other. This can be achieved by pre-registering to a common platform

where both parties can check each other. A crowd computing project should be

able to earn the trust of a contributor on different accounts:

• The project should not harm or corrupt the contributing SMD by any means.

• The client application should not invade the host’s privacy. In other words, the

software can’t read, access, or share an SMD’s personal files.

• The project should adhere to reliable security measures so that contributors’

SMDs are not affected caused by any malicious activity by hackers.

• The project should take the contributor into confidence about the reliability

and legality of the activities being executed by its applications.

• The project should unambiguously declare the purpose and scope of the pro-

ject and how the results will be used to attain that.

• The project also should explicitly state the capacity of the resulting intellectual

property and how it will be exercised.

Researchers are coming up with novel and interesting ideas and solution ap-

proaches to mitigate the above-mentioned issues [145] [546]. Recently, Blockchain-

based solutions are popularly being used to mitigate security and privacy issues in

crowdsourced systems [547] [548] [549]. Especially, the inherent decentralised se-

curity of Blockchain technologies has encouraged researchers to successfully apply

it in safeguarding crowdsourcing applications [550] [551]. Researchers have ex-

plored applications of Blockchain to enforce trust and reputation [552] [553] [554]

[555]. Table 3.10 lists some of the representative research works addressing the se-

curity, privacy and trust in crowdsourced systems. Though the mentioned works

intended to focus on different crowdsourcing applications with different solution

approaches, we believe most of them would also be applicable to MCC.

In summary, the MCC system should ensure that neither the MCC job submitted

to an SMD should interfere with local files and data, nor the host system (SMD)

147

should be able to maltreat the guest processes. The user’s personal data on the

phone should be transparent to the guest program and its source. The MCC client

application should guarantee that the security and privacy of the crowdworker are

strictly maintained. In fact, the MCC application should not be able to access the

user data by any means.

Table 3.10. Research attempts to mitigate the issues of security, privacy and trust in
crowdsourced systems

 Focus area Target problem References
Security Mitigating repudiation

issues
Counter measuring false-name attacks [556] [557]

Crowd computing
system security

Malware identification [546]

Mitigating colluding attacks [558]

Privacy Privacy preservation in
crowdsourced applica-
tions

Anonymous crowdworker selection [559]
Task assignment [560] [561]

Task recommendation [562]

Location secrecy [563] [564]
[565]

Handling crowdworker unavailability [566]
Transaction privacy and transparency [567]

Code and data privacy
vulnerabilities in
crowdsourcing

Detecting and solving code and user
identity privacy issues

[568]

User identity and data privacy protec-
tion

[569] [570]

Trust
and
reliability

Crowdworker recruit-
ment and task assign-
ment

Secure task recommendation [571]

Trust-based task assignment [572]

Trust-based crowdworker recruitment [573] [574]

Reliability-driven task assignment [575]
Crowdsourced data val-
idation

Reliable data analysis in the mobile ad-
hoc cloud

[547]

Ensuring crowd task's reliability and
evaluating crowdworker's data quality

[576]

Trust management for
crowdsourced services

Assessing trust value/worthiness of
crowdsourced services

[577] [557]
[578] [548]

Multi-perspective trust management [579]

Trust establishment [580]

Anonymous authentication on the
trust

[581]

Improving trustworthiness [582] [559]

Trusted crowdsourced servicing and
payment system

[583]

Trust-based consensus
for crowdsourced
services

Automated agreement on crowdwork-
ers' credibility

[584]

As a crowdworker, one should be careful of joining an MCC project. Similar to the

usual precautionary measure while accessing the Web, the authenticity and legiti-

macy of the project source should be validated before downloading the client ap-

plication for the project. Before starting any business, digital signatures, and digital

certificates should be used to authenticate each other.

148

3.6.2.2 Motivating People to Participate in MCC

The success of crowd computing is absolutely dependent on people’s willingness

to participate and donate their devices’ resources. Most often, due to various rea-

sons, the users can get reluctant to lend their devices as crowdworker [585] [586].

To attain acceptable QoS, a sufficient number of active crowdworkers with stable

behaviour need to be maintained, which is challenging to attain. For successful

implementation of MCC, as many as competent SMDs need to be attracted, for

which the users need to be adequately motivated. Also, not only attracting new

crowdworker but also retaining the existing crowdworkers is also equally im-

portant.

In volunteer computing, resources are not bought but earned [587]. A volunteered

MCC project banks on its public appeal to get volunteers. A research project that

has excellent public appeal can get enormous computing power through volun-

teering. It is also the responsibility of the people associated with the project to

persuade and convince the public that their computing resources are being used

for a greater cause and are significantly beneficial to society. If MCC needs to be

adopted in a wide range of applications, it needs to be popularised and draw all

kinds of people from every sector of society and motivate them to lend their de-

vices. People may be tempted to volunteering their computing resources for vari-

ous motivations such as:

• Many people enjoy a sense of gratification in being a part of citizen science,

contributing to research in science, humanities and other greater causes.

• Many crowd computing forums encourage users to share ideas and infor-

mation in the forum. People feel proud of connecting to a noble online com-

munity with shared pursuits.

• Some projects allow crowdworkers to be involved in the project in many as-

pects, including programming, testing, support, documentation, and even

software development via different online modes. In that case, crowdworkers

can cultivate skills and gain technical knowledge, which is a great motivation

factor for IT-savvy enthusiasts.

• Sometimes involvement of the crowdworkers in the various projects creates

149

chances for discoveries that lead them to fame.

• Some crowdworkers revel in healthy competition in chalking up the highest

processing time for a particular project.

3.6.2.3 Framing Sustainable Economic Model

Crowd computing need not necessarily be driven by free volunteering only. In fact,

if MCC is based on free volunteering, then it will not be easy to realise. Availability

of resources is entirely up to the volunteers’ will. In practicality, the motivational

factors mentioned in the previous section have minimal effect. For a more realistic

MCC implementation, appropriate reward and incentive mechanisms need to be

adopted [588] [589]. Establishments running MCC projects can pull off an individ-

ual’s SMD resources by presenting something in return. For example, a shopping

mall can offer shopping credit values to the visitors for using their SMD’s compu-

ting cycles. People may also be interested in offering their resources where there is

a scope of reciprocal allowances. For example, organizations may allow people to

use their Wi-Fi at no cost in return for the user’s SMD resources. Authorities can

persuasively acquire resources. For example, a firm that hands out free SMDs to its

employees can make it obligatory to make their SMDs accessible for crowd com-

puting projects of the organization.

Some people see it as a lucrative option to lend their resources for commercial

purposes if they get fair reimbursement in return. The recompense amount can be

calculated on every unit of time the resource is utilized [590]. A couple of such

initiatives have already hit the market. Zennet33, a public, distributed, and decen-

tralized supercomputer, offers an open commercial market platform for computa-

tion power trading. Anybody can offer his/her hardware for sale, and anybody who

needs computation power to run arbitrary computational tasks can rent these of-

fers. Neocortix34 has developed a viable shared-economy MCC business model in

which they rent computer time on public phones and sell the aggregated compu-

ting capacity via Neocortix Cloud Services. The smartphone owners get paid for

33 http://www.zennet.sc/about/index.html
34 https://neocortix.com/phone-paycheck

150

renting out their phones’ computing capacity. Neocortix claims that in return for

8 hours a day of service a user can earn up to $80 a year, and if the user can offer

her spare phone for 24 hours, the earning can be up to $240 a year. The number of

phones per user is limited to five. Users can redeem their earnings through a PayPal

account. Smartphones are categorised as per their computing abilities. For exam-

ple, devices like Galaxy S9, S10, or S20, are tagged as ‘gold device performance cat-

egory’. Earning rate depends on the phone model. To participate in this business

model, the phones should meet certain requirements35 and obey some restrictions,

such as emulated and rooted devices are not permitted.

To attract mass crowdworker and retain them for the long-term, a sustainable busi-

ness model that would be beneficial for both sides (MCC aggregator and

crowdworker) need to be framed and implemented [82]. Various formulas and

techniques for incentivising and pricing crowdsourced services are proposed in the

literature. The most common techniques and approaches, along with some repre-

sentative references indicating their applications in crowdsourced systems, are

listed in Table 3.11. Furthermore, different criteria such as truthful [591] [592] [593]

[594], reputation [595] [596] [597], quality [598] [599] [600], etc. can also be appli-

cable as incentivising policy. Adopting the right incentivising or pricing technique

and criteria would depend on the application requirement, users’ behaviour or

preferences and organisational strategy.

Table 3.11. Common incentive mechanism techniques for crowdsourcing

Incentivising and pricing
technique/approach

Reference

Game theory [601] [602] [603]
Stackelberg theory [604] [605] [606]

Contract theory [607] [608]

Tournament model [609] [610]

Auction theory [611] [612] [613]

Reverse auction [614] [615] [616]

Rewarding [617] [618]
Cooperative incentive [619] [620]

Dynamic pricing [621] [622] [623]

35 https://neocortix.com/device-requirements

151

3.7 Potential Applications of MCC

Crowd computing is an effective resolution to fulfil the huge computing require-

ments of those who are unable to afford expensive HPC systems. Likewise, MCC

can provide an inexpensive means to carry out compute-intensive tasks. Not lim-

iting to large-scale scientific computing, this pragmatic concept can be utilized in

many other real-life applications. The ability to realise an HPC facility on an ad-

hoc basis as per requirement widens the application horizon of MCC. In the fol-

lowing, we explore some interesting application areas of MCC.

Computing facility for research in universities/research institutions: Uni-

versities and research institutions can frame MCC facilities by combining the

SMDs of students, researchers, faculties, and staff. This setup will be used to meet

the computing requirements of the research problems carried out within the cam-

pus. Enormous computing power can be achieved if MCC is coupled with the cam-

pus-wide grid encompassing in-campus PCs (lab computers, desktops, and laptops

belonging to faculty, staff, and students). This massive computing facility will en-

tice potential faculty and researchers, empowering them to realize computing re-

source-demanding research works [624].

Organizational computing: Organisations spend a large share of expenditure on

IT infrastructure. Lately, cloud computing has emerged as a cost-effective solution

for data storage and processing. But as cloud computing need to be subscribed, it

is not a wise option for those organisations which have extensive and 24/7 require-

ment for high-performance computing. For SMBs, although cloud can provide a

significant cost reduction it still involves a considerable amount of money. In a

large business's case, the savings' margin scale is not that exciting. Organisations

can go for setting up private clouds for cost minimization. But again, this will in-

volve certain upfront infrastructure costs as well as regular operational and

maintenance costs. Older organisations can utilize their existing desktop PCs and

build an organizational grid of computing resources. But as we have discussed ear-

lier, PCs' popularity is declining rapidly, and business organizations can exploit

employees’ SMDs for MCC, not spending on excessive IT infrastructure budget, for

processing and analysing business and financial big data. Many organisations

152

adopt the BYOD policy nowadays, which permits and often obliges employees to

use their own SMDs for carrying out company business. This allows the organisa-

tion to have the following benefits:

• Significant cost savings.

• Flexibility of doing the office work regardless of location, device, or time of

day.

• Ease of use that BYOD provides.

Computing resource for remote research lab: MCC can be very handy to carry

out computing-intensive field research at isolated and remote locations where no

wide-area communication is available. SMD’s Wi-Fi hotspot facility will be used to

construct an MCC environment.

Train/transport navigation and collision avoidance: Nowadays, trains (usually

high-speed and premier trains) are getting equipped with a Wi-Fi facility with ad-

equate charging points for the passengers. Passenger’s SMDs can be exploited to

establish an ad-hoc computing facility that will be required for effectively imple-

menting collision avoidance methods like RCAS36, TCAS37 and others [625] [626].

These systems use multi-sensor navigation, and integrate and calculate the sensed

data with complex algorithms for data fusion and situation analysis, which require

considerable computing resources. The ad-hoc computing system can also be uti-

lized for other complex calculations like forecasting the local weather. The same

idea can be employed on buses and metro trains having the same facilities. That

will yield a very lucrative opportunity for MCC in a crowded country or city.

Aircraft control and navigation: Many airlines offer in-flight Wi-Fi facilities to

the flyers [627] [628]. Out of them, some provide this facility without any extra

charge [629]. In return, these airlines can use passengers’ SMDs to process real-

time flight data. Though connections are often slow and unreliable, we can expect

faster and more reliable connections in the near future, thanks to the ongoing de-

velopment of the core technologies behind in-flight Wi-Fi [630]. Availability of the

36 http://www.collision-avoidance.org/rcas/
37 http://www.hbl.in/product-view-52-engineering-solutions-railways-train-collision-avoidance-system.html

153

passenger’s SMDs is guaranteed during the flight (provided the battery is not a

hurdle). Typically, a jet aircraft is fitted with nearly 5000 sensors that produce

nearly 10 GB of data per second [631]. A 12-hour flight would averagely, produce

844 TB of data. Processing this huge amount of data would require a good amount

of on-board computing. Transmitting this data to the cloud for processing and ob-

taining the response back would waste time and is a bandwidth constraint. A local

MCC utilising the passenger’s SMDs would be an effective solution to process the

in-flight data in near real-time while saving time, bandwidth, and the requirement

of installing an HPC in the aircraft.

Field data processing: Collection and processing of open field data, e.g., agricul-

tural land, river basin, forest, desert, barren land, hills and mountain, etc., become

challenging due to non-existing computing infrastructure and network [105]. An

ad-hoc MCC would provide the required computing facility and be a handful in

collecting those data distributedly with a slight improvisation in the MCC client

application.

On-field military data processing: Owing to the technical advancements, sol-

diers are equipped with multi-sensor devices. Sensors are also installed in the sur-

roundings of their base camps and outposts. These sensors generate a great

amount of data, some of them being real-time data, which require secured HPC

systems to be processed and analysed. If the soldiers are furnished with high-end

SMDs, then an insular MCC can be materialized, which will be secured because it

will require only a low-range communication network, not a WAN. Furthermore,

in war situations, it is essential to monitor and assess a soldier's psychological and

physical health. Also, injured soldiers on the battlefield need to be continuously

monitored for their vitals and physical state to take appropriate medical action.

The biomedical non-invasive sensors help in such situations by assessing the heart-

beat, heart condition, blood flow and pressure, oxygen level, and body sugar. These

sensors produce and transmit a huge amount of data, which need to be processed

and analysed as per real-time health monitoring models. However, this involves a

good amount of computation which is difficult to have in a computer and network

infrastructure-less scenario. An ad-hoc MCC would be helpful utilising the SMDs

154

that the soldiers carry to attain an aggregated computing service.

Disaster management: In the case of large-scale disasters, communication is gen-

erally severely affected, due to which cloud and remote servers become inaccessi-

ble. In these cases, MCC can be very handy to form an ad-hoc computing grid using

SMD’s NFC options such as hotspots, Bluetooth, etc., which can be used to analyse

the image, audio, and video data to assess and manage the situation by helping in

locating and rescuing the victims.

Video and image analysis: Image and video processing, editing, rendering, and

analysis require hefty computation. Instead of going for high-end computers and

cloud services, MCC can be utilised. Using MCC for video and image applications

will cut costs and can be availed at any time and place. Local MCC can also be used

for collaborative image [632] and video [75] processing and analysis.

Biometric verification: For security measures, personal identification and verifi-

cation through biometrics like fingerprints, palmprints, eye scans, and face detec-

tion has been very effective and popularised recently. Biometric verification needs

a good amount of computing resources. An MCC is a suitable solution to increase

the speed and flexibility of data processing as it has two-fold advantages. Besides

saving energy and resources, distributed processing in MCC would add more secu-

rity [105]. In addition to regular in-campus systems, this will be very much appli-

cable for occasional large gatherings where installing permanent computing is not

viable. Attendees’ own SMDs can be utilised to set up a temporary MCC.

Distributed key generation and agreement: In cryptography, private and pub-

lic keys are used for secure communication. Normally, these keys are generated by

the communicating parties. In a distributed key generation, these keys are gener-

ated by multiple parties. This eliminates the possibility of accidental exposure or

misplacement of the keys by precluding the access of the private key by a single

party. Distributed key generation ensures secrecy in the presence of malicious con-

tributions to the key calculation [633]. MCC can be useful for computing such dis-

tributed keys. MCC can also be useful in distributed key agreement in securing

crucial files in an organisation by distributing the access key over different trusted

SMDs within the organisation [105].

155

Cooperative encryption cracking: Encryption cracking (e.g., WPA/WPA2, WEP,

SHA256/512, DES, MD5, Blowfish hash, etc.) involved in brute-force-based intru-

sion is a high-intensity computing task which might take weeks to months and

even years depending on the computer’s capacity [634]. To crack within an agree-

able time, a cluster of high-end computers is usually used where the tasks are exe-

cuted in a distributed fashion [635]. In an ethical hacking scenario, the power of

MCC can be harnessed for this purpose [93].

Business processing: Business processing involves office management, ERP, sta-

tistical data analysis, and decision making. Office management involves employee,

email, and other business data management. The ERP includes optimizing busi-

ness operations and processes, which enhances business output. Likewise, statisti-

cal analysis of business includes finance, market, inventory and other data analysis

for better decision making. The use of AI and computation automatizes business

processing. Due to the huge amount of data and, accordingly, requirement for mas-

sive computing resources, most business houses invest a lot either in in-house

computing infrastructure or getting cloud services. Businesses with large and me-

dium offices having a number of employees can save a lot by exploiting the availa-

ble in-house SMDs to form an in-campus MCC and carry out the business pro-

cessing tasks in real-time.

Enhancing business and sales in shopping malls: Shopping malls encounter a

large number of footfalls every day. Every customer has different shopping behav-

iour and inclination. A smart store can make its servicing smart by analysing and

predicting customer shopping preferences and purchase patterns, organising the

store, and planning its business accordingly. Along with, heat maps on customer

foot traffic, peak period, customer movements, dwell time, etc. can also be very

useful to take various decisions like an advertisement of products, availability of

products, the display positions of the products, arranging product for a controlling

and channelise customer movement and increase sales. All these analyses require

substantial computing resources. It is preferred to have HPC within the mall prem-

ises for real-time analytics rather than going for the cloud. MCC can be an ideal

option, taking advantage of a large number of customers’ SMDs available on the

156

premise along with the permanently available SMDs of to the mall staff. Most of

the customers tend to spend a decent amount of time inside. However, their hang-

ing around stint inside the premise for a certain duration is neither guaranteed nor

can be predicted precisely. Hence the customer’s SMDs may be engaged in fully

opportunistic MCC, whereas the mall staff’s SMDs can contribute to a quasi-op-

portunistic MCC. Big shopping malls also often feature multiplexes where the

availability of resources for a fixed period is more or less guaranteed. That gives an

excellent opportunity for quasi-opportunistic MCC. The vendors, retailers, or

stores can make use of MCC for the computing requirement in increasing their

business by performing real-time data analytics and taking informed and better

decisions.

MCC-based edge computing for processing IoT data: One of the most notable

practical applications of MCC is to be considered edge computing for processing

IoT data. The majority of the IoT applications are time-bound. Due to transmission

latency, cloud computing is not favourable. Edge computing provides a computing

facility near the data source [74] [636]. A local MCC will be a suitable edge compu-

ting solution for processing organizational and industrial real-time IoT data, saving

a lot on proprietary edge solutions [143]. In practice, there are different forms of

edge computing, such as fog computing, cloudlets and MEC [637]. A detailed dis-

cussion on MCC-edge is presented in Chapter 9.

Smart building and smart city: Smart buildings and smart cities bring various

kinds of automation to make people's life easier. To achieve this, intelligent deci-

sions are made based on the sensed data. Thousands of sensors are employed,

which produces enormous data which need to be processed and analysed to make

impromptu and smart decisions to take effective actions. For processing and ana-

lysing this huge data, a local HPC or cloud services are required. Using localised

HPC systems would increase cost, overhead, and carbon footprint, whereas using

remote cloud services not only requires enough bandwidth for data transmission

but also computing data far from the point of source and sink delays the automated

action, nullifying its smartness. Utilizing MCC would help in overcoming these is-

sues. The SMDs available with people in buildings or open areas (roads, parks,

157

grounds) can be utilised to set up a local MCC for processing the data generated

from the nearby data sources.

Public security and policing: Nowadays, in many public places, such as bus

stands, railway stations, etc., criminal face recogniser applications are installed.

Considering the probability of a criminal fleeing by boarding a bus or a train, a

real-time face recognition process runs to search for a probable match of the crim-

inal with the faces captured by the CCTVs installed in that area. Since there will be

abundant SMDs available in these crowded public places, MCC will be a feasible

and better alternative to cloud computing in terms of the latency that is crucial for

real-time applications.

3.8 Limitations and Further Scopes

In this chapter, we concentrated more on the design considerations of MCC. We

did not cover the development, deployment and operational aspects in length. It

would have been complete by including a thorough exploration and assessment on

the required and suitable tools, languages and libraries for developing a general-

ised, platform-independent (including mobile hardware and OS) and lightweight

MCC. In future, we wish to come up with an article on this.

3.9 Summary

In this chapter, we presented an in-depth study on the potential and feasibility of

achieving computing power by utilising the public’s (crowd’s) SMDs. Since in this

computing paradigm, a crowd of SMD’s resources is collectively used to provide

computing resources, it is called mobile crowd computing (MCC). MCC gives us

an economical and sustainable alternative to other HPC systems such as grid,

cloud, clusters and supercomputers to carry out compute-intensive tasks. Thanks

to the ubiquity and dense availability of the SMDs, an ad-hoc HPC facility can be

provided, leading to attaining a truly ubiquitous HPC.

Besides the advancements of SMD hardware and its wide adoption, MCC has been

fuelled by several other factors such as denser Wi-Fi zones, low-cost and highspeed

mobile data, energy-efficient and highspeed short-range communication technol-

ogies, etc.

158

MCC is not an out-of-the-blue concept. It stands on several other established com-

puting paradigms such as distributed computing, parallel computing, grid compu-

ting, volunteer and crowd computing, and opportunistic computing, to name a

few. However, there are certain distinctions between MCC and these foundation

computing systems. We also saw how MCC differs from other similar mobile com-

puting systems such as mobile grid, mobile cloud, ad-hoc mobile cloud and mobile

crowdsourcing.

Primarily, a typical MCC can either follow a centralised or a P2P architecture. How-

ever, hybrid architectures can also be adopted for a large and complex MCC. Also,

depending on the infrastructure and the deployed application, MCC can either be

global (connected through the internet), local (connected through WLAN), or ad-

hoc (connected through Bluetooth, hotspots, etc.). Furthermore, an MCC can be

purely opportunistic or quasi-opportunistic in utilising the crowd resources.

For a successful and efficient MCC design, several aspects need to be considered

and tackled properly. The hardware, software and network heterogeneities need to

be abstracted for better interoperability. Ideally, an MCC platform should be gen-

eralised to support any MCC application irrespective of its type and requirements.

It should be adaptable to various internal and external changes without affecting

the system’s normal functionalities. Being a networked distributed system, in MCC

reliability, fault tolerance, and QoS need to be ensured. Also, an MCC system

should be scalable and elastic to dynamically acclimate to the resource require-

ments. Other design goals include user-friendliness and non-intrusiveness, i.e., the

usual operations of the crowdworkers should not be hampered anyway. Bearing

the energy limitations of the SMDs in mind, executing the microtasks should be

energy efficient. For a commercial MCC, a well-defined SLA should cover the lia-

bilities and legalities. A suitable architectural model should be adopted based on

different aspects for effective deployment. Since the spine of MCC is the

crowdworker base, they need to be managed very efficiently. Management of

crowdworkers includes discovery, profiling, selection, ensuring availability, and

monitoring. A large MCC task is divided into multiple microtasks that are sent to

the crowdworker for execution. The task farming process should be efficient

159

because they are created in such a way that they can be executed by the available

crowdworker resources and as far as possible independently. Scheduling these mi-

crotasks to the appropriate crowdworker is another crucial aspect because an

MCC's overall performance depends on it greatly. While scheduling, various fac-

tors should be considered, such as best resource utilization, energy efficiency, load

balance and fairness, and dynamicity. If an MCC task involves multiple workflows,

it should be handled appropriately, keeping in mind that the crowdworker are not

static and dedicated resources. Another important consideration should be to ver-

ify and aggregate the results received from the crowdworkers. The correctness and

usefulness of the final outcome would very much depend on this.

MCC has several advantages to offer. Cost-effective, least overhead in IT infrastruc-

ture management, DDoS attack-free, offering computation offloading, scalability

and agility, and amply available resources are a few of them. Additionally, local

MCC offers on-premises computing service, which brings on added advantages of

lower latency and minimized network cost and congestion. Besides these, two ma-

jor advantages of MCC are ubiquity and pervasiveness and sustainability.

However, realising MCC is not challenge-free. Two major concerns from user

points of view are battery constraint of the SMD and getting the SMDs heated due

to executing heavy processing tasks for a long duration. Recent studies console us

that these factors will not be much worrisome in the near future. Additionally,

since MCC is a networked system, its performance very much depends on the data

transfer rate. Since the operation and quality of the network are not always guar-

anteed, it remains a challenge to overcome it. Ensuring security, privacy, and trust

always remains one of the most challenging factors for any networked system.

MCC is no exception. Perhaps in MCC, the privacy issue is far more crucial than in

other systems because here, the SMDs that carry out the foreign tasks are very

much personal to their users. Another hurdle in implementing MCC is to motivate

the public to lend their SMDs. They need to be sufficiently motivated to draw into

participation in MCC. One straight option might be offering them lucrative finan-

cial or other financial incentives. Sustainable economic models need to be framed

for this, which would depend on the MCC application type and the user base.

160

Intensive research is going on in all the above-mentioned areas, and many innova-

tive and feasible solutions are coming out. Therefore, we believe these challenges

will not seriously threaten realising MCC.

Appreciating the potential of MCC, it can be leveraged for many real-world appli-

cations. For organisational and scientific computing, MCC can be a suitable HPC

alternative to costly supercomputers and cloud services. The HPC capability of

MCC can also be utilised in the education and healthcare sectors. Even small and

medium businesses can utilise MCC to meet their daily computing demands, in-

cluding for data analysis and predictions. An ad-hoc MCC can be useful for infra-

structure-less use case scenarios such as disaster management, military base and

war fields, and many more. Local MCC can be a feasible alternative to commercial

edge computing.

4

Resource Profiling in MCC

“It's important to determine which surroundings work best for you, and then build

that environment to suit your needs.” --- Marilu Henner

4.1 Introduction

The efficacy of MCC largely depends on the capability and reliability of the incor-

porated SMDs. It is apparent that SMDs with superior computing resources would

offer better throughput. Therefore, to achieve better performance (e.g., maximum

throughput and minimum turnaround time) of an MCC, it is important to schedule

the MCC jobs to the most potential SMDs available in the network. The first step

to achieve this is to recognise the presently available resources and assess them

meritoriously.

To evaluate the capability of an SMD, it is imperative to estimate the capacity and

the present usability of its resource parameters such as CPU, GPU, battery, etc.

Here, by the capacity of an SMD’s resource parameters, we mean a) the fixed pa-

rameters such as the clock frequencies and no. of cores in the CPU and GPU, RAM

size, battery capacity, etc. and b) the present usability that denotes the present

status of variable parameters such as present CPU and GPU load, available RAM

and battery, device temperature, signal strength, etc. The fixed parameters never

change their values, but the values of the variable parameters change dynamically.

Considering the heterogeneity and dynamicity of the resource, the selection of the

best resources might be inaccurate in the absence of a proper resource assessment

machinery. And to assess the resources correctly, they need to be profiled effi-

ciently. For instance, a suitable logger program might be helpful, which would as-

sess the resource parameters of the SMDs correctly and return their persistent and

instantaneous values whenever asked by the MCC coordinator for job scheduling.

For accurate resource assessment, precise values of all these parameters are needed

to be profiled, which is not trivial because capturing and storing these parameters’

values require different policies and implementations. For this, it is important to

162

have a structured framework and policy for resource profiling to appropriately and

applicably profile the SMDs’ various resources that are significant for an SMD to

be considered as a computing device in MCC.

In this chapter, we aim to achieve the followings:

• A methodological approach for profiling various resource parameters that

would be necessary for selecting the most potent SMD as computing resource.

• Ascertain and classify the considered resource parameters with apposite rea-

soning.

• Apply a benchmarking scheme to assess the actual performance of the SMDs,

in addition to other specifications.

• Design a prototype application that incorporates the resource profiling and

selection modules of an MCC.

Fig. 4.1. summarises the resource profiling and selection process, covered in this

chapter.

Resource profiling module Resource selection module

Run
selection
algorithm

Get fixed &
persistent

parameters

Get dynamic
parameters

MCC
database Generate

ranked list
of SMDs

Check for
threshold

criteria

Available SMDs

Get
benchmarks

Fig. 4.1. The pictorial summary of resource profiling and selection

4.2 System Model and Hypotheses

Here, we considered a local MCC scenario in which the SMDs are connected to the

MCC coordinator through a Wi-Fi network [36]. Within a particular Wi-Fi net-

work, there is a single coordinator that manages the crowdworkers connected to

that Wi-Fi AP. SMDs that are connected to the MCC coordinator and are willing

to share their device resources are considered as crowdworkers.

An MCC client is installed on each SMD that is supposed to take part in MCC. The

MCC client service estimates the computational capability (e.g., CPU and GPU

power, etc.) and other vital statistics (RAM and battery capacity, etc.) of the SMD

and shares them with the coordinator. It also assesses the present resource usage

163

status of the SMD when requested by the coordinator. The client application on

the SMD manages the execution by CPU stealing and, upon completion, sends the

result to the server. The coordinator assembles the results received from different

clients.

There is a middleware for job management. The coordinator hosts the MCC mid-

dleware, which manages the operations of MCC that includes searching and select-

ing SMDs, job scheduling, result collecting, and fault handling. The middleware is

also responsible for a few other tasks such as SMD profiling, execution time esti-

mation, resource presence time prediction, and so on.

We assume that all SMDs, which have the MCC client installed, are crowdworker

and willing to share their resources, either voluntarily or in return for some incen-

tives profit or non-profit basis. We also assume that each crowdworker completes

the assigned subtask within a finite time and sends back the results before leaving

the MCC network. Fig. 4.2 lists the general components of a typical local MCC sys-

tem, while Fig. 4.3 presents an abstract model of a local MCC.

Fig. 4.2. General components of a local MCC

4.3 Resource Profiling and Assessment

To assess the goodness of an SMD as a computing resource, the most straightfor-

ward approach is to check its hardware specification. However, this approach

MCC components

MCC coordinator

Searching, profiling and
selecting SMDs

Execution time
estimation

Resource presence
time prediction

Job scheduling

Result collecting

Fault handling

SMDs

Sending its details to
the coordinator

Recieving the MCC jobs

Executing the assigned
job

Send the results back to
the coordinator

Communication network

Communication
between coordinator
and the SMDs locally

164

would be insufficient to assess the overall competency of an SMD, as it may not

reflect the actual usable status of its resources. Furthermore, an SMD may seem

fittest in the present context, but it may happen that this fitness may not be con-

sistent over a longer period. Therefore, we need to consider the consistent behav-

iour of the SMDs to truly assess their suitability for selection.

2. Create and
schedule jobs

Top-
ranked
SMDs

3. Apply selection algorithm
to rank SMDs

M4M3 M2

1. Get details of the SMDs
for logging and profiling

4. Dispatch jobs to top-ranked SMDs

5. Return results

Available SMDs

M1 M5M4M3M2

MCC
coordinator

J1J2J3

Physical connection
Data/work flow

Fig. 4.3. An abstract model of a local MCC

To accurately assess the capabilities of the SMDs as potential crowdworkers in an

MCC, we considered several parameters. Some of these parameters are read on the

fly, while some are retrieved and calculated from the logged data. We characterized

these parameters into three categories, as discussed in the following subsections.

Fig. 4.4 present the taxonomy of the considered parameters for resource profiling.

4.3.1 Fixed Parameters

These information are fixed for any particular SMD and typically never change in

its usable lifetime. That is why these parameters were logged only once, i.e., when

an SMD connects to the MCC for the first time and were permanently stored in a

database. For the subsequent connections of the re-entrant SMDs, profiling of

these parameters is not required. The following parameters fall in this category:

UID: Though this parameter is not considered as a resource parameter, it is used

to identify the SMDs uniquely in the database. In real SMDs, each device can be

recognized uniquely using some identifiers such as Android ID (for Android

phones), MAC, IMEI, etc. Among these, IMEI is simple and easy to implement and

serves our purpose well. Therefore, we considered the IMEI number of the SMDs

165

as the UID (unique identity) to identify the SMDs.

Maximum CPU clock frequency: The capability of a CPU largely depends on its

clock frequency. Though in a multicore CPU, the cores might have different clock

frequencies, we followed the general convention, i.e., considering the highest fre-

quency.

Number of CPU cores: Though the CPUs in SMDs are optimised for serial opera-

tions, the efficiency of an SMD CPU is supposed to increase with the number of

cores in it, which can execute multiple ALU operations in parallel.

Fig. 4.4. Parameters considered for resource profiling

4.3.2 Dynamic Parameters

The values of these parameters in an SMD vary dynamically depending on the us-

age of the SMD. For example, if the usage is high, i.e., the SMD is running several

apps or some resource-intensive apps, some of the parameters would have much

higher while some would have lower values (depending on the resource type),

which would make the SMD an unsuitable crowdworker at that moment. There-

fore, to assess the SMD truly, it is crucial to measure not only the fixed hardware

resources mentioned in the previous section but also their usability status at the

present instance (i.e., at the time of job submission). In our experiment, we

Resource parameters

Considered in this study

Log-based

Fixed parameters

CPU clock
frequency

No. of CPU
cores

Persistent parameters

Average CPU
usage

Average GPU
usage

Availability

CPU
Benchmark

GPU
Benchmark

On-the-fly

Dynamic parameters

Current CPU
load

Current GPU
load

Available RAM

Available
battery

Signal
strength

Device
temperature

Not considered

GPU clock
frequency

No. of GPU
cores

GPU
fabrication

Total RAM

Available
storage

166

considered the following parameters in this category:

Current CPU load: It denotes how much CPU is loaded in terms of running ap-

plications presently. A higher CPU load % denotes that at present, the CPU usage

is high, i.e., the SMD is either running several apps simultaneously or running a

CPU-intensive app. In either case, the SMD is not an ideal crowdworker at that

moment. Hence, always a lower CPU load is preferred.

Current GPU load: A GPU-intensive job (generally a large number of small-scale

but highly parallel tasks) would increase the GPU load. Like CPU, a lower GPU load

is preferred.

Available RAM: Since the MCC client application and the MCC tasks and the re-

lated data need to be in the RAM for efficient execution, there should be enough

free space in the SMD’s RAM. The minimum RAM requirement would, however,

depend on the particular MCC task. In this chapter, we considered an arbitrary

RAM requirement for the experiment. The amount of available RAM is checked at

the time of job submission.

Available battery: SMD battery is a sensitive parameter from the user’s perspec-

tive. Users will generally decline to take part in MCC if they do not have enough

charging left in their devices. Even if they initially agree to lend their device for

MCC, they might suddenly go off if they realise that the task is juicing up the en-

ergy of their device fast. Hence, it is important to weigh up the available charging

in the SMD battery before considering it as a crowdworker. In our experiment, we

used a straightforward policy for this, i.e., to consider a certain cut-off % of the

remaining charge. For example, the SMDs having below 75% charge would not be

considered. It might be noted that this % calculation is relative. For example, the

charge of 75% is of an SMD with 12000 mA of the battery will have much higher

than a phone that has a battery of 6000 mA. However, we did not consider this

factor because to a normal user, the distress of lower battery % is more psycholog-

ical than practical.

Device temperature: Like the case of the battery, users also get concerned when

their devices get heated up. People would not like to allow their SMD for MCC if it

167

is already hot. An SMD might get heated up due to several reasons. Though it is

possible to retrieve temperatures of individual components such as processing

unit, signal module, battery, etc., in this chapter, we considered the overall device

temperature. As we did for the available battery, we considered a certain cut-off

(oC) for device temperature also.

Wi-Fi signal strength: For efficient communication, satisfactory signal strength

is absolutely important. It becomes crucial in the case of mobile computing be-

cause weak signal strength creates a hindrance for data transfer which, in turn,

affects the QoS. Though many factors may be responsible for weak signal strength,

in a mobile computing environment, it is mainly due to the mobility of the users.

The signal gets weaker as the user goes away from the AP. We considered the signal

strength on a scale of 1-5.

4.3.3 Persistent Parameters

These parameters are calculated based on an extended assessment, reflecting the

long-term behaviour of the SMD resources. The values of these parameters might

not change significantly in a short duration, but they vary in a longer duration. In

other words, these information of an SMD typically remain persistent for an aver-

age period of time. We considered the following parameters in this category:

Average CPU usage: In Section 4.3.2, we considered the current CPU load as one

of the resource parameters because a higher CPU power does not guarantee

enough free CPU cycles. However, the current CPU load also does not truly portray

the CPU of the considered SMD. For instance, it might happen that the current

CPU load of an SMD is low for the time being, but usually, it remains high. The

reason for this might be, for example, that the user plays online games frequently.

A large CPU-intensive job requires SMDs which have steady free CPU cycles for a

long duration. Hence, an SMD with less CPU power but having unceasingly free

CPU cycles for a long duration would be preferred than an SMD with higher CPU

power but exhibiting frequently and randomly fluctuating CPU load. Moreover,

the CPU usage pattern can reflect the battery consumption pattern also. If the CPU

usage is to be high in the coming period, it is expected that the battery will also

drain faster. To assess the CPU load of an SMD more practically, we took the

168

average CPU load of each device. During each connection session of an SMD 𝑠𝑖,

defined by Eq. 4.1, the current CPU load of each SMD is recorded periodically.

When 𝑠𝑖 exits the network, its average CPU load for the immediate previous session

𝑁𝑖
𝑝𝑟𝑒𝑣 is calculated using Eq. 4.2, which gives us the average CPU usage for a single

session. We calculate the overall average CPU across all the sessions (i.e., since

when the SMD was connected to the MCC coordinator for the first time) using Eq.

4.3.

𝑁𝑖
𝑝𝑟𝑒𝑣

(𝑛) = 𝑠𝑖
𝑜𝑢𝑡_𝑡𝑖𝑚𝑒(𝑛) − 𝑠𝑖

𝑖𝑛_𝑡𝑖𝑚𝑒(𝑛) (4.1)

where, 𝑠𝑖
𝑖𝑛_𝑡𝑖𝑚𝑒(𝑛) and 𝑠𝑖

𝑜𝑢𝑡_𝑡𝑖𝑚𝑒(𝑛) are the timestamps of 𝑠𝑖 when it entered and

exited the network for the nth session, respectively.

𝑠
𝑖

𝐶𝐿𝑎𝑣𝑔(𝑁𝑖
𝑝𝑟𝑒𝑣

) = {
𝑠𝑖
𝐶𝐿(𝑡), 𝑡 < 2

1

𝑡
∑ 𝑠𝑖

𝐶𝐿𝑡
1 (𝑡), 𝑡 ≥ 2

 (4.2)

where, t is the instances (count) of the current CPU load record of 𝑠𝑖 and 𝑠𝑖
𝐶𝐿(𝑡) is

the tth record of the current CPU load of 𝑠𝑖.

𝑠
𝑖

𝐶𝐿𝑎𝑣𝑔(𝑁𝑎𝑙𝑙) = {
𝑠
𝑖

𝐶𝐿𝑎𝑣𝑔(𝑁𝑖
𝑝𝑟𝑒𝑣

), 𝑛 < 2

𝑠
𝑖

𝐶𝐿𝑎𝑣𝑔
(𝑁𝑎𝑙𝑙)+ 𝑠𝑖

𝐶𝐿𝑎𝑣𝑔
(𝑁𝑖

𝑝𝑟𝑒𝑣
)

2
, 𝑛 ≥ 2

 (4.3)

Average GPU usage: Similar to average CPU load, for a more realistic assessment,

we estimated the average GPU load of the SMDs using Eq. 4.4 and Eq. 4.5.

𝑠
𝑖

𝐺𝐿𝑎𝑣𝑔(𝑁𝑖
𝑝𝑟𝑒𝑣

) = {
𝑠𝑖
𝐺𝐿(𝑡), 𝑡 < 2

1

𝑡
∑ 𝑠𝑖

𝐺𝐿𝑡
1 (𝑡), 𝑡 ≥ 2

 (4.4)

𝑠
𝑖

𝐺𝐿𝑎𝑣𝑔(𝑁𝑎𝑙𝑙) = {
𝑠
𝑖

𝐺𝐿𝑎𝑣𝑔(𝑁𝑖
𝑝𝑟𝑒𝑣

), 𝑁 < 2

𝑠
𝑖

𝐺𝐿𝑎𝑣𝑔
(𝑁𝑎𝑙𝑙)+ 𝑠𝑖

𝐺𝐿𝑎𝑣𝑔
(𝑁𝑖

𝑝𝑟𝑒𝑣
)

2
, 𝑁 ≥ 2

 (4.5)

Availability: In MCC, users’ mobility is an important criterion for considering the

corresponding SMDs for job scheduling. If an SMD leaves the network without

finishing the assigned job, it needs to be reassigned to another SMD. If it is not

handled properly, the result (unfinished) and the job itself might be lost. Frequent

disconnection would hamper the performance and the QoS of MCC. Therefore,

before submitting a task to an SMD, it is better to be assured that it will not leave

169

until the job is finished. Since the MCC model presented in this chapter is campus-

based, most of the users would have a certain mobility/availability pattern. It is

possible to predict the availability of an SMD till the execution completion of the

assigned task before dispatching the task to that SMD [36] [481]. In our selection

policy, we considered the availability of the SMDs as a pre-selection criterion, i.e.,

if the SMD might not be available till the completion of the job, it would not be

considered for selection at all. The predicted out-time 𝑐𝑂 of an SMD 𝑠𝑖 for the cur-

rent session c is given by Eq. 4.6.

𝑠𝑖
𝑐𝑂 = 𝑠𝑖

𝑐𝐼 + 𝑠
𝑖

𝑎𝑝 (4.6)

where, 𝑠𝑖
𝑐𝐼 is the in-time of 𝑠𝑖 for the current session and 𝑠

𝑖

𝑎𝑝is the predicted avail-

ability duration of 𝑠𝑖 from 𝑠𝑖
𝑐𝐼.

The SMD 𝑠𝑖 should be considered for job submission only if Eq. 4.7 satisfies.

𝑠𝑖
𝑐𝑂 ≥ 𝑗𝑡𝑐 + 𝑘1 + 𝑘2 (4.7)

where 𝑘1is the runtime of the prediction algorithm, 𝑘2 is the lagging time between

decision making and job dispatching, and 𝑗𝑡𝑐 is completion time of the job j as de-

fined by Eq. 4.8.

𝑗𝑡𝑐 = 𝑗𝑡𝑠 + 𝑗𝑡𝑒 (4.8)

where, 𝑗𝑡𝑠 is the submission instance of job j and 𝑗𝑡𝑒 is its expected execution time.

An idea of predicting execution time can be found in [35].

CPU Benchmark: Besides the core hardware, we wanted to check the actual per-

formance of the device. Therefore, we benchmarked the CPU performance of each

SMD individually. The details of benchmarking are discussed in the next section.

GPU Benchmark: Similar to CPU, we calculated the performance scores for GPUs

of the SMDs. The details are given in the next section.

4.3.4 Customized Benchmarking

The raw hardware specifications may not reflect the device performance always

correctly. For example, it is observed, on occasions, that an SMD with a higher

clock frequency does not always offer better performance compared to an SMD

170

with a lower clock frequency. This is due to the fact that the computational capa-

bility of a device does not vary in direct proportion to the CPU and GPU power,

rather some other factors such as internal data transferring delay, size and speed

of the cache and its caching scheme, etc. also significantly influence the computa-

tion time. However, determining and predicting these irregularities are not trivial.

To mitigate this issue, i.e., to compare SMDs uniformly, benchmarks are popularly

used. For smartphones, there are a number of benchmarking apps available such

as Antutu38, Geekbench39, 3Dmark40, etc., which assess the performances of various

components of the device and compare with other similar devices. These apps run

a series of pre-programmed operations (e.g., rendering some game scenes, stress

testing of the processor and memory, and so on) on the device to test the respective

components’ performances.

However, since these apps are built and optimised differently, they are not partic-

ularly helpful for comparing the performance of different SMDs in executing sim-

ilar tasks. Most of these apps focus on individual components of the SMD. Further-

more, they do not provide special features to describe how a device would perform

during particular job execution. Also, the comparative assessment by these bench-

marking apps may not be correct for all types of applications and processes. A gen-

eral benchmarking scheme may not scale all SMDs equally for every type of pro-

cessing task as these tasks might have varied resource demands.

Considering the above-mentioned issues, we preferred to have our customized

benchmarking to assess the competency of the SMDs. In our MCC application, in-

stead of individual components, we needed to assess the overall performance of

the SMDs for a certain task. Customized benchmarking would allow assessing the

device performance for particular job execution. Furthermore, the customized

benchmarking would address the inconsistency in the standards of the SMD com-

ponent specification. For example, let us consider the case of fabrication

38 https://www.antutu.com/en/index.htm
39 https://www.geekbench.com/index.html
40 https://www.3dmark.com/

171

technology (nanometer (nm) values) that is used in GPU manufacturing which sig-

nificantly determines its performance. A 7 nm chipset may deliver 20% better per-

formance with a 40% reduction in energy consumption as compared to a 10 nm

chipset. However, there is no universal standard to calculate the nm value. Differ-

ent GPU makers calculate it differently. For instance, the 10 nm from TSMC is not

equivalent to the 10 nm from Samsung, and Intel’s 10 nm is equivalent to TSMC’s 7

nm.

We considered the overall time taken to complete the job as the benchmark. Nev-

ertheless, we calculated the CPU and GPU benchmarks separately. As a template,

we evaluated the CPU and GPU benchmarks by performing a matrix addition and

multiplication, respectively, as shown in Fig. 4.5. However, depending on the char-

acteristics and requirements of the MCC task, different benchmarking schemes can

be adopted.

Vector
addition

Vector
multiplication

NxN
vector

CPU
benchmark

score

GPU
benchmark

score

CPU benchmarking

GPU benchmarking
Fig. 4.5. Customized benchmarking scheme

Table 4.1. Specification and benchmark comparison of two sample SMD models

SMD model Oppo A53 Redmi Y3

CPU

No. of cores 8 8

Highest clock frequency 4x1.8 GHz Kryo 240 4x1.8 GHz Kryo 250

Lower clock frequency 4x1.6 GHz Kryo 240 4x1.8 GHz Kryo 250 Silver

GPU

Model Adreno 610 Adreno 506

No. of ALUs 128 96

Highest clock frequency 950 650

Fabrication (nm) 11 14

64-bit GFLOPS 28.8 - 31.2 28.8 - 68

Average CPU benchmark score 5689.308 4315.077

Average GPU benchmark score 17632.31 14817.75

Table 4.1 shows a sample comparison between two SMDs of different models but

with nearly close specifications. It can be observed that though the first device is

more ‘powerful’ compared to the second one, it took more time to execute the

benchmark tasks both for CPU and GPU. This justifies the necessity of customised

172

benchmarking in assessing the SMDs practically.

The benchmark is calculated when an SMD connects the MCC coordinator as a

crowdworker for the first time. The benchmarking tasks were sent to the SMD, and

the execution time was noted.

The performance of a device varies from time to time. Generally, it degrades over

time. Therefore, it is required to assess the SMDs periodically. To comply with, the

benchmarking can be calculated after every kth entry of each SMD. In our case, we

took k=10; i.e., the benchmark was calculated at the 1st, 11th, 21st, … in-time entries

from the connection log of the corresponding SMD. Each benchmark score of a

particular SMD was cumulatively averaged separately for the CPU and GPU. The

average CPU and GPU benchmarks were calculated using Eq. 4.9 and Eq. 4.10, re-

spectively.

𝑠
𝑖

𝐶𝐵𝑎𝑣𝑔(𝑘) = {
𝑠𝑖
𝐶𝐵(𝑡), 𝑘 < 2

𝑠
𝑖

𝐶𝐵𝑎𝑣𝑔
(𝑡−1)+ 𝑠𝑖

𝐶𝐵(𝑡)

2
, 𝑘 ≥ 2

 (4.9)

𝑠
𝑖

𝐺𝐵𝑎𝑣𝑔(𝑘) = {
𝑠𝑖
𝐺𝐵(𝑡), 𝑘 < 2

𝑠
𝑖

𝐺𝐵𝑎𝑣𝑔
(𝑡−1)+ 𝑠𝑖

𝐺𝐵(𝑡)

2
, 𝑘 ≥ 2

 (4.10)

4.3.5 Parameters that are not Profiled

Besides the above-mentioned resource parameters, there are a few more such as

GPU clock frequency, number of GPU shader cores, GPU fabrication/architecture

(nm), total RAM, available storage that we purposefully excluded from profiling.

Though the GPU specifications are very crucial to determine the GPU capability of

an SMD, all these information are not available uniformly for every SMD. In this

experiment, we avoided the complexity in the resource selection process that

might be introduced by this sparsity in the decision matrix. Regarding the other

two parameters (i.e., total RAM and available storage), todays’ SMDs are furnished

with abundant RAM and storage. For example, Vivo Nex Dual Display Edition, Xia-

omi Black Shark Helo, OnePlus 6T McLaren Edition, etc., have 10 GB RAM [638].

In general, most of the standard SMDs have 6 – 8 GB RAM. The same can be said

for SMD storage. Hence, we felt that these two parameters could be excluded from

173

the list of selection criteria. However, if an MCC application necessitates assessing

these parameters, they can always be included in the criteria list.

4.4 System Design

Our proposed MCC system, in principle, follows a two-tier client/server architec-

ture, as shown in Fig. 4.6. Here, the MCC coordinator represents the server mod-

ule, and the client module is the SMD. The server module should be able to take

care of retrieving and storing the resource details of the connected SMDs efficiently

such that the required data is available at the moment of SMD selection. Whereas

the client module is supposed to carry out the instruction received from the server

module at the SMDs. In terms of connections, there may be two types of SMDs:

• New: The SMD which a new entrant to the network and has no history in the

system log.

• Returning: The SMD has been to the network before and has information rec-

orded in the system log.

The connection details (e.g., the in- and out-times) are logged for all the SMDs.

Since some data of the devices need to be stored for future usage, a database is

required that would be connected to the server.

The details of each component of the system are discussed in the following sub-

sections.

Tier I
Client module

(SMDs)

Tier II
Server module

(MCC coordinator)

Fig. 4.6. Two-tier MCC

4.4.1 Server Module

Some of the key functionalities that a typical MCC server generally has are:

• Data communication: Communicates with the SMDs for data exchange.

• Resource profiling: Keeps record of various resources of the SMDs

• Resource availability prediction: Predicts the availability of an SMD in the

174

MCC network for uninterrupted job assignment and execution.

• Resource selection: Selects the most suitable SMD(s) for job distribution.

• Job distribution: Distributes MCC tasks to the selected SMDs

• Result collection and fault mitigation: Collects the processed output from the

SMDs and takes correction measures in case of faults.

• Data storage: Stores information regarding SMDs and MCC tasks.

However, in this chapter, we primarily focus on data communication, resource pro-

filing, and resource selection, as discussed in the following subsections.

4.4.1.1 Data Communication

The data exchange between the coordinator and an SMD is categorized into the

following four types:

a) SMD registration: When an SMD having the MCC client application gets con-

nected with the MCC coordinator for the first time, the coordinator creates a

log entry for the SMD and collects other resource information, as discussed in

Section 0.

b) Monitoring device usage: The coordinator periodically collects CPU and GPU

usage details of the presently connected SMDs for calculating the persistent

parameters, as discussed in Section 4.4.1.2.2.

c) Present resource status collection: The coordinator fetches the present status

of the dynamic resource parameters when it has to perform SMD selection, as

discussed in Section 0.

d) Task dispatching and result collection: The coordinator sends the MCC tasks

and related data to the SMDs and gets back the result from them.

In this chapter, we considered the first three aspects of data communication, i.e.,

SMD registration and monitoring device usage and present resource status collec-

tion.

The server module connects to clients using sockets, as shown in Fig. 4.7. The re-

quired steps for initiating the communication between client and server are given

in the following, while the process of setting the communication interface at the

server and client ends is shown in Procedure 4.1.

175

1. The coordinator opens the server socket at a specified port.

2. It listens for client requests at the opened socket.

3. An SMD opens a client socket to communicate with the coordinator.

4. The client connects to the server at the static IP: PORT.

5. Once connected, the server creates a separate dedicated channel for the client

to communicate.

6. The coordinator and the SMD communicate through this channel until the

channel is terminated (intentionally or unintentionally).

Procedure 4.1: Communication Interface
//Server module interface

ServerSocket = openServerSockect(PORT) //server opens socket at a given port for communication

while(TRUE)

{

 NewConnection = ServerSocket.listen()//server listens to incoming connection request through

the socket

 String UID = NewConnection.Read() //server module reads the data – UID, received through

socket

}

//Client module interface

ClientSocket = openClientSocket(IP, PORT) //client opens a socket for communication with server

at the specified server port

ClientSocket.Connect() //client connects to server through the socket

ClientSocket.Send(UID) //on successful connection, client sends its UID to server

Server socket

MCC
coordinator

Client
socket

Client
socket

Client
socket

Client
socket

Client
socket

WLAN

Fig. 4.7. The schematic diagram for client-server connection

Fig. 4.8. Resource profiling phases

4.4.1.2 Resource Profiling

Resource profiling is a continuous process involving three phases, as shown in Fig.

4.8. Each phase is discussed in detail in the following. The process flow for resource

•Fixed parameters and benchmarkSMD gets connected

•CPU & GPU live usageDuring connection session

•Persistent parametersSMD gets disconnected

176

profiling is shown in Fig. 4.9.

Procedure 4.2: Resource Profiling - SMD Connected
ServerSocket = openServerSockect(PORT)//server opens socket at a given port for communication

with the clients SMDs

db = openDatabase(“SMD_profile”) //database is opened

NewConnection = ServerSocket.listen() //server listens to incoming connection request through the

socket

UID = NewConnection.Read() //server module reads the data – UID received through socket

login_time = getCurrentTime() //obtains the current system time as the login time of client SMD

dt = getCurrentDate() //obtains the current system date as the login date of client SMD

db.executeUpdate(“insert into Connection_log(UID, login_time, login_date) values(‘”+UID+”’,”+

login_time+”,”+ dt) //UID, login time, and login date of the client SMD are stored in database

find = db.executeQuery(“select UID from SMD_fixed_par”) //the client SMD is searched in

SMD_fixed_par table whether its specification are stored or not

if (find==null) then //if the client SMD is not found in SMD_fixed_par table

{

 //Reading fixed parameters

 NewConnection.send(“max_cpu_clk”) //request made for maximum CPU clock frequency

 max_CPU_clk= NewConnection.read()//server reads the max CPU clock sent by the client SMD

 NewConnection.send(“cpu_core”) //request made for number of CPU cores

 CPU_core= NewConnection.read() //server reads the number of CPU core sent by the client SMD

 db.executeUpdate(“insert into SMD_fixed_par(UID, max_CPU_clk, CPU_core, con_freq) val-

ues(‘”+ UID + “’,”+ max_CPU_clk + “,”+ CPU_core + “,” + 1) //fixed parameters of client SMD thus

obtained is saved in database at server site

getBenchmark (db, NewConnection, UID, 1)

}

else

{

 frequency = db.executeQuery(“select con_freq from SMD_fixed_par where UID = ‘”+UID+”’”)

//obtain number of times the client SMD had been connected to server previously

 frequency++ //increase the number of times the client SMD gets connected to server by one

 db.executeUpdate(“update SMD_fixed_par set con_freq = “+ frequency + “where UID = ‘”+ UID

+”’”) //update the connection frequency count in the SMD_fixed_par table for the newly connected

SMD

}

Log
connection

Get
benchmarks

Get fixed
parameters

New
device?

MCC
database

Yes

Fixed
parameters

CPU & GPU
benchmarks

Server side
socket

U
ID

 an
d

 in
 &

 ou
t tim

e

CPU, GPU
usage

Calculate
average CPU

& GPU usages

Get live
resource

usage

Connection
terminated?

Yes

Connection
session

Get UID

CPU & GPU
load

Frequency
threshold?

Calculate
connection
frequency

Connection
frequency

Yes

Time for
resource

selection?

No

Calculate
availability

Get dynamic
parameters

Yes

SMD
availability

No

Fig. 4.9. Process flow for resource profiling

177

Procedure 4.3: Benchmark Calculation
getBenchmark(db, NewConnection, UID, frequency) //benchmark calculation for the newly con-

nected SMD

{

 for i=0 to 5

 for j=0 to 5

 A[i][j] = random() //random numerical value is generated for matrix A

 for i=0 to 5

 for j=0 to 5

 B[i][j] = random() //random numerical value is generated for matrix B

 NewConnection.send(“device benchmark”)

 NewConnection.send(A, B) //matrices are sent to SMD

 CPU_benchmark_current = NewConnection.read() //CPU benchmark is received from the re-

quested SMD

 GPU_benchmark_current = NewConnection.read() //GPU benchmark is received from the re-

quested SMD

 if (frequency == 1) then

 {

//If the SMD is connected for first time its UID and CPU and GPU benchmarks are stored in Per-

sist_par table

 db.executeUpdate(“insert into Persist_par (UID, CPU_benchmark, GPU_benchmark) values

(‘”+ UID + “’,” + CPU_benchmark + “,” + GPU_benchmark)

 }

 else

 {

//If the SMD is connected for second time or later its previous and present CPU and GPU bench-

marks are averaged individually and stored in Persist_par table

 CPU_benchmark_old = db.executeQuery(“select CPU_benchmark from Persist_par where UID

=‘”+ UID + “’”)

 GPU_benchmark_old = db.executeQuery(“select GPU_benchmark from Persist_par where UID

=‘”+ UID + “’”)

 avg_CPU_benchmark = (CPU_benchmark_old + CPU_benchmark_current)/2

 avg_GPU_benchmark = (GPU_benchmark_old + GPU_benchmark_current)/2

 db.executeUpdate(“update Persist_par set CPU_benchmark =”+ avg_CPU_benchmark +”,

GPU_benchmark =” + avg_GPU_benchmark + “ where UID = ‘”+ UID + “’”)

 }

}

4.4.1.2.1 SMD Connected

When an SMD gets connected to the MCC coordinator for the first time ever, the

coordinator acquires the fixed resource parameters and the benchmark of the de-

vice to be stored in the database permanently. The SMD sends its UID to the coor-

dinator as soon as it connects to the coordinator. The coordinator logs the SMD by

its UID and its login time. If the UID is already existing, it suggests that the SMD

has previously joined this MCC system, and hence its information are already

stored in the database. Otherwise, the SMD is newly connected, and it is required

to store the required initial information, including the benchmark scores. The pro-

cess of a new SMD connection is illustrated through the following steps, while Pro-

cedure 4.2 presents the programmatical procedure:

1. The SMD, using the client socket, connects to the server socket at the static IP:

178

PORT.

2. The coordinator reads the UID sent by the client and makes a record entry for

the UID, login time and date in the Connection_log table.

3. The coordinator searches the UID in the SMD_fixed_par table.

4. If UID is not found, the coordinator requests the SMD for the fixed parameters

and the CPU and GPU benchmarks.

5. The coordinator reads fixed parameters sent from the client connection and

stores them in the SMD_fixed_par table.

6. The coordinator reads the benchmarks sent from the client connection and

stores them in the Persist_par table, as per Procedure 4.3.

7. If UID is found, the frequency is incremented by one and updated in

SMD_fixed_par table.

4.4.1.2.2 During Connection Session

The connection session denotes the period during which the coordinator and the

SMD communicate to each other uninterruptedly through the established connec-

tion. This continues until either the coordinator or the SMD disconnects either

intentionally or unintentionally. The coordinator periodically gathers CPU and

GPU usage of the SMDs during the entire session and stores them in the Live_us-

age_log table. The interval for this data collection might vary depending on the

design and implementation policy of the MCC system. The benchmarks are calcu-

lated periodically, i.e., after a certain value of frequency. The benchmarks are up-

dated in Persist_par. The process is illustrated through the programmatical proce-

dure in Procedure 4.4.

4.4.1.2.3 SMD Disconnected

The coordinator keeps track of when an SMD leaves the MCC network by logging

out or due to connection loss or any other reasons. In either case, the current ses-

sion is closed. While closing the session, the coordinator takes the CPU and GPU

usage data from Live_usage_log table and calculates the CPU and GPU usage for

all the logged sessions. Accordingly, these data are updated in the Persist_par ta-

ble. The process is illustrated through the programmatical procedure in Procedure

4.5.

179

Procedure 4.4: Resource Profiling - During Connection Session
db = openDatabase(“SMD_profile”) //open database

frequency = db.executeQuery(“select con_freq from SMD_fixed_par where UID = ‘”+ UID +”’”)

//obtain number of times the SMD has been connected to LC

if (frequency%10==0) then

{

 getBenchmark (db, NewConnection, UID, frequency) //every 10th time the SMD is connected, its

CPU and GPU benchmarks are calculated

}

while (NewConnection)

{

 if (timeCounter(3000) == TRUE) //time interval considered as 5 minutes

 {

 //For a SMD is connected to LC its CPU and GPU usage are obtained

 at_time = getCurrentTime()

 at_date = getCurrentDate()

 NewConnection.send(“CPU usage”)

 cpu_usage= NewConnection.read()

 NewConnection.send(“GPU usage”)

 gpu_usage= NewConnection.read()

 db.executeUpdate(“insert into Live_usage_log values(‘”+ UID “’,”+ cpu_usage + “,” + gpu_us-

age + “,” + at_time + “,” + at_date) //SMD’s CPU and GPU usage, UID, time, and date are saved in

Live_usage_log table

 }

}

Procedure 4.5: Resource Profiling - SMD Disconnected
db = openDatabase(“SMD_profile”) //open database

dt = getDate()

lin = getLogInTime(UID) //obtain the login time of the SMD

lout = getLogOutTime(UID) //obtain the current logout time of the SMD

if (NewConnection==FALSE) then

//When session closes the average of current and old CPU and GPU usage is calculated and are

saved in Persist_par table

{

 //Obtain the average CPU and GPU usage between login and logout time for current session from

Live_usage_log table

 Avg_cur_CPU=db.executeQuery(“select AVG(CPU_usage) from Live_usage_log where UID = ‘”+

UID +”’ AND atDate = “+ dt +“ AND atTime between“ + lin +” AND ”+ lout +”)

 Avg_ cur_GPU=db.executeQuery(“select AVG(GPU_usage) from Live_usage_log where UID =

‘”+ UID +”’ AND atDate = “+ dt +“ AND atTime between“ + lin +” and” + lout +”)

 //Obtain the average CPU and GPU usage for previous login sessions from Persist_par table

 Avg_old_CPU= db.executeQuery(“select avg_CPU from Persist_par where UID = ‘”+ UID +”’”)

 Avg_old_GPU= db.executeQuery(“select avg_GPU from Persist_par where UID = ‘”+ UID +”’”)

 //Average CPU and GPU is calculated

 Avg_CPU = (Avg_old_CPU + Avg_cur_CPU)/2

 Avg_GPU = (Avg_old_GPU + Avg_cur_GPU)/2

 db.executeUpdate(“update Persist_par set avg_CPU =”+ Avg_CPU + “, avg_GPU =” + Avg_GPU

+ “ where UID = ‘”+ UID +”’”) //average CPU and GPU usage is saved in table Persist_par

 db.executeUpdate(“update Connection_log set selected = ‘FALSE’ where UID = ‘”+ UID +”’ AND

logout_time = lout”) //connection termination is recorded in Connection_log table

}

4.4.1.3 Resource Selection

To achieve the optimal effectivity (e.g., response time, throughput, turnaround

time, etc.) and reliability (e.g., fault tolerance, ensuring resource availability, min-

imized device mobility, minimized hands-off, etc.) from the MCC, it is very crucial

180

to select the most suitable SMDs among the currently available ones as per the

requirement of the MCC task and the application type [156].

Table 4.2. Parameters that are not a part of the selection process but set as threshold criteria

Parameters Threshold Remark

Available
RAM

50 MB The required RAM size is to be specified by the MCC application.
However, for experimental purposes, we considered the thresh-
old value of 50 MB, which might be sufficient for running general
computing-intensive tasks [639].

Available bat-
tery

>70% We have optimistically assumed that people will not be so con-
cerned if the remaining battery charge is greater than equal to
70%.

Device tem-
perature

<45oC 40o-45oC is treated as normal device temperature, running usual
apps.

Availability 1 The availability would have a binary evaluation, i.e., whether the
SMD would be available or not, and calculated using Eq. 4.7.

Table 4.3. Considered parameters for crowdworker selection

Parameters Optimized value

CPU frequency Maximum

No. of CPU cores Maximum

Current CPU load Minimum

Current GPU load Minimum

Signal strength Maximum

Average CPU usage Minimum

Average GPU usage Minimum

CPU benchmark Minimum

GPU benchmark Minimum

When needed (i.e., resource required for MCC task execution), the coordinator

calls the resource selection module. The selection module gets the instantaneous

values of different parameters, as discussed in Section 4.3 and based on which gen-

erates a list of top-ranked SMDs. The selection module works in two phases. In the

first phase, it filters the SMDs based on the threshold criteria for the parameters

listed in Table 4.2. The SMDs that pass through this filtering are considered for the

next level of the selection process, in which the COPRAS method is used to select

the best SMD based on the parameters listed in Table 4.3. We used a flag to distin-

guish between the already selected SMDs that are executing some MCC tasks and

the other available SMDs. If an SMD is already engaged with an MCC task, it would

not be considered for the selection. The selection process is outlined in Procedure

4.6.

Remark 4.1. In this chapter, we added this resource selection module for the shake

of completeness. The details of MCDM-based resource selection are separately

181

discussed in Chapter 5, Adopting COPRAS method in Procedure 4.6 is influenced

by the outcome of Chapter 5.

Procedure 4.6: Resource Selection
db = openDatabase(“SMD_profile”) //open database

SMD_UIDs[] = db.executeQuery(“select UID from Connecttion_log where login_date = ”+ date+”

AND logout_time = null AND selected = ‘FALSE’”)

//SMDs currently logged in to LC but not yet selected for job processing are identified and stored in

array

Decision_matrix[][] //decision matrix is built

i=0

for each UID in SMD_UIDs //considering each identified SMD from the array

{

 connection = getSessionConnection(UID)

 //Obtain dynamic parameters from the presently selected SMD

 connection.send(“Available RAM”)

 available_RAM = connection.read()

 connection.send(“Available Battery”)

 available_battery = connection.read()

 connection.send(“Device Temperature”)

 device_temp = connection.read()

 connection.send(“CPU Load”)

 CPU_load = connection.read()

 connection.send(“GPU Load”)

 GPU_load = connection.read()

 connection.send(“Wifi Strength")

 wifi_strength = connection.read()

 available = calculateAvailability() //calculate the availability of the present SMD for job pro-

cessing

 if (available_RAM >= R AND available_Battery > 70 AND device_temp < 45 AND available) then

//check the SMD’s available RAM, battery, device temperature and availability is beyond threshold

value

 {

 max_CPU_clk, CPU_core, = db.executeQuery(“select max_CPU_clk, CPU_core, from

SMD_fixed_par where UID = ‘” + UID+ “’”) //max CPU clock speed and CPU cores are obtained

from SMD_fixed_par table

avg_CPU, avg_GPU, CPU_benchmark, GPU_benchmarks = db.executeQuery(“select avg_CPU,

avg_GPU, CPU_benchmark, GPU_benchmarks from Persist_par where UID = ‘” + UID+ “’”) //the

average CPU, GPU and benchmarks are obtained from Persist_par table

 Decision_matrix[i][] = {max_CPU_clk, CPU_core, wifi_strength, CPU_load, GPU_load, avg_CPU,

avg_GPU, CPU_benchmark, GPU_benchmarks} //max CPU clock speed, CPU cores, signal strength,

CPU load, average CPU and GPU usage, and CPU and GPU benchmarks of the SMD are stored in

decision matrix

 i++

 }

}

SMD_Rank[] = executeCOPRAS(Decision_matrix) //apply COPRAS method to find the most suitable

SMDs for job processing

4.4.2 Client Module

The client module is implemented in SMD. The functionalities of the client module

include communicating with the server module and executing the assigned MCC

tasks. Since in this chapter, we do not consider any job processing scenario but

only resource profiling, we focus only on the data communication aspect. From the

182

client’s perspective, the data exchange between the client and the server is catego-

rized as follows:

a) Device information: An SMD sends its UID to the coordinator as soon as it

joins the MCC network. Afterward, it provides other information as asked by

the server module.

b) Job execution: It receives the MCC tasks and related data from the coordinator

and sends back the outputs after execution.

Benchmarks
request from

server?

Generate
benchmark

scores

Get fixed
parameters

Yes

SMD
specification
request from

server?

Get dynamic
parameters

Requested parameters
MCC

coordinatorClient module

Current status
request from

server?

Yes Yes

Response

Parameter request

Fig. 4.10. Process flow for the client-server communication

As mentioned earlier, if the SMD connects for the first time, along with its UID,

the fixed parameters and the benchmark values are sent to the coordinator. And if

the SMD is re-entrant, then it sends the dynamic parameters and live resource us-

age data as requested by the coordinator. The entire communication process is

illustrated in the following steps, while the process flow and the corresponding

sequence diagram are shown in Fig. 4.10 and Fig. 4.11, respectively.

1. The SMD opens a client socket and searches for the coordinator (server mod-

ule) by its IP in the MCC network. If the coordinator is found, the SMD con-

nects to it at a specified port.

2. The SMD sends its UID to the coordinator and waits for a response.

3. The SMD, on receiving a request for fixed parameters from the coordinator,

sends back the fixed parameters’ values.

4. The SMD, on receiving a request for benchmark, accompanying the related

assessment data from the coordinator, calculates the benchmark as described

183

in Section 4.3.4 and sends it back to the coordinator.

5. The SMD, on receiving a request for CPU & GPU live usage from the coordina-

tor, sends the required data back to the coordinator.

6. The SMD, on receiving a request for dynamic parameters from the coordinator,

sends back the dynamic parameters’ present values.

Request for communication

Connection establishment with a new channel

UID

Fixed parameters request, benchmark assessment data

Benchmark
calculation

Clinet-server
communication
channel

Server
socket
opened at a
specified
IP:PORT

Current CPU & GPU load

Current CPU & GPU load request

Fixed parameters' values, benchmark scores

...

Connection terminated

Fig. 4.11. Sequence diagram for client-server communication

4.5 System Development

As per the system design, as discussed in the previous section, we present the de-

tails of the development in this section. The details of the devices and tools used

for system development are mentioned in Table 4.4.

4.5.1 Server Module

Our goal is to design a low resource demanding MCC coordinator. Hence, we de-

veloped a lightweight server module, comprising only the necessary components.

For this, we preferred Java, considering its versatility. Also, Android has inbuild

compatibility for Java.

184

Table 4.4. Developmental environment specifications for the resource profiling and selection sys-
tem

 Device/tool Specification details Purpose
H

ar
d

w
ar

e

Workstation

(laptop)

Processor: AMD Ryzen 3 3250U

quadra core (64 Bit) dual-core CPU

(2.6 GHz, 64 bit)

RAM: 4 GB

OS: Windows 11, 64 Bit

Developing the server and client

software modules and testing the

system

Wireless router D-Link DIR-600M wireless router For connecting MCC coordinator

and SMDs wirelessly

Smartphone Model: Vivo Y20A

CPU: 1.95 GHz Snapdragon439 (12

nm) octa-core (4 × 1.95 GHz Cortex-

A53 and 4 × 1.45 GHz Cortex A53)

GPU: Qualcomm Adreno 505

RAM: 3.00 GB

OS: Android 11

Developing and testing the client

module

S
o

ft
w

ar
e

Notepad++ Version 7.5.7, 32 Bit As code editor

Java/JDK Version 8 Developing the server module

Android

Studio

Version 3.3.1 Developing the client module

Database

application

MySQL 8.0 Community Server Storing information related to

SMDs and MCC tasks

4.5.2 Client Module

Considering the popularity and wide availability of Android devices, we preferred

to develop the client application targeting the Android-based SMDs. We used An-

droid 4.4 KitKat as client API. We deliberately considered this version of Android

to include the prospective users having both newer and older SMDs. The client

socket connects to the server socket at server port 1026.

We developed the client module as a service that would run in the background. A

service is an application component generally used for longer operations running

in the background continuously, even if the user switches to other applications.

Usually, a service runs with a higher priority than other inactive or background

applications and processes, and hence there is little possibility of it getting termi-

nated by the Android. However, if, in any case, it is terminated by the Android, it

can be configured to be restarted once sufficient system resources are regained.

In our client module, the user has control over enabling or disabling the service

explicitly. However, the service would be disabled for that particular session only.

It is automatedly enabled whenever the SMD gets disconnected from the network.

Automated resuming of the service would ensure the continuous availability of the

https://developer.android.com/reference/android/app/Service.html

185

SMDs for MCC when they are in the network. The service is deliberately enabled

because it is impractical for a user to remember enabling the service every time

whenever she joins the MCC network.

4.5.3 Database

We used MySQL server for designing the database named SMD_profile to store the

required SMD information. Different aspects of SMDs’ profiles are stored in four

different tables, the details of which are given in Table 4.5.

4.6 Implementation

Before implementation, we tested the system for its proper working. We performed

unit testing for all the functionalities of each module individually. Initially, for sys-

tem testing, we considered a small number of SMDs of different configurations.

After satisfying testing, we implemented the developed resource profiling and se-

lection for an MCC system in a real environment. We deployed the system at the

Data Engineering Lab of the Department of Computer Science & Engineering at

National Institute of Technology, Durgapur. The lab is generally accessed by the

institute's research scholars, the project students, faculty members, and the tech-

nical staff. The coordinator was connected to the Wi-Fi router installed in the lab.

The SMDs that are interested in crowd computing would connect to the coordina-

tor through the same router. The implementational details are discussed in the

following, while Table 4.6 lists the details of hardware and software used for im-

plementing the resource profiling and selection system.

4.6.1 Server

We aim to deploy the MCC in an environment which would not require an exten-

sive infrastructure-based computing system. Hence, we used a small, low-powered

Linux-based SoC as the MCC coordinator that can be set up anywhere without

much burden to IT infrastructure and IT budget. Particularly, we used Raspberry

Pi to deploy the server module that would act as the coordinator. It not only has

sufficient computing capacity, but it supports small user-created databases as well.

186

Table 4.5. Database schema for SMD profiling

Table Purpose Attributes Data type

Connection_log Log in and out time of all the con-

nected SMD

UID Text

Login_time Time

logout_time Time

login_date Date

selected Boolean

SMD_fixed_par Fixed parameter and device benchmark

of a SMD

UID Text

max_CPU_clk Number

CPU_core Number

con_freq Number

Live_usage_log SMD’s live CPU and GPU usage data at

an instant of time

UID Text

CPU_usage Number

GPU_usage Number

atTime Time

atDate Date

Persist_par SMD’s persistent parameters based on

its historical behavior

UID Text

avg_CPU Number

avg_GPU Number

CPU_benchmark Number

GPU_benchmark Number

Table 4.6. Implementational environment specifications for the resource profiling and selection
system

Category Entity Specifications Purpose

Hardware Raspberry

Pi 3 Model

B41

Processor: 1.2 GHz

(ARM Cortex-A53)

RAM: 1 GB

Storage: 8 GB

OS support: Linux

Communication net-

work: Wi-Fi, Ether-

net

USB ports: 4

Ethernet port: 1

HDMI port: 1

MCC coordinator (server)

SMDs Varies for different

devices

Crowdworker (client)

Software Server

module

JRE/JDK version 8 Runtime environment for running server

module

Android Version 4.4. (KitKat)

and above

The SMD OS that hosts the client module

and runs the MCC tasks on the SMD.

4.6.2 Client

The client module was installed on the SMDs of the students, staff, and faculty

members who regularly accessed the lab. All the SMDs were Android devices with

KitKat version and above. We logged the SMD information for nearly eight months

41 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

187

of several users (whoever connected to the AP during this period).

4.6.3 Networking

In an organisational MCC setup, there might be several small-scale MCC installed

in different buildings or floors. These MCCs might be isolated silos or intercon-

nected through a backbone network. In our MCC model, we considered an inter-

connected network. However, each MCC functions independently, i.e., they do not

share any MCC-related information. The SMDs would be connected to the coordi-

nator through a Wi-Fi router which is connected to a network switch. The local

coordinator is also connected to the same Wi-Fi router. In a local MCC, the coor-

dinator and the SMDs connected to that coordinator are in the same address space.

The coordinator always has a fixed address in this address space so that when an

SMD connects to a particular Wi-Fi router, it can easily locate the coordinator and

initiate the communication for MCC. We made this address common to every co-

ordinator, wrapped as a subnet mask. This would allow the client module to con-

nect different MCCs seamlessly. In our setup, every Wi-Fi AP would connect max-

imum 26 devices, and the coordinator was configured by assigning the fixed IP

192.168.x.y2, where ‘x’ denotes the third octet and ‘y’ denotes the first two bits of

the fourth octet. The server socket was configured at port number 1026 for listening

to the client connections. A typical layout for an organisation MCC is shown in Fig.

4.12.

Coordinator 1
Wi-Fi AP 1

MCC 1

Coordinator 2
Wi-Fi AP 2

MCC 2

Organisational network

Fig. 4.12. Network layout of a local MCC

4.7 Limitations and Further Scopes

The benchmarking scheme proposed in this chapter is generalised. But for differ-

ent types of jobs, different competencies are required. Hence, it would be more

efficient if benchmarking could be done for every particular computing task which

188

is expected to be run through MCC. Furthermore, we followed a single predefined

benchmarking calculation approach to assess the SMDs, which suggests that the

MCC tasks are somewhat determined. This makes the benchmarking inflexible,

i.e., it would be impracticable to change the benchmarking scheme dynamically as

per varied requirements of different MCC tasks. The benchmarking mechanism

could be made more accommodating if this was implemented as a lightweight,

portable service that could be invoked by the coordinator at the client module

whenever required.

To avoid inconsistency, we shunned profiling some crucial GPU parameters such

as clock frequency, no. of shader cores, and fabrication. These might be crucial for

a GPU-intensive job. The proposed system can be updated with profiling these in-

formation along with a way out to handle the sparsity in the decision matrix, i.e. if

some of the information are not available from all SMD. We also did not consider

the case if the SMD is in the charging state. Without considering this, we probably

would miss out on some potential SMDs that were superior in all aspects but fil-

tered out due to low battery.

Though we considered a local MCC scenario, the proposed resource profiling

model can certainly be extended to an intra- (multiple local MCCs within a single

network) and inter-MCC system (multiple local MCCs across different networks),

with some added complexity. The distributed resource management solutions

could be quite helpful in this regard.

4.8 Summary

To achieve the best out of MCC, it is highly desirable to consider the most potent

SMDs for MCC task execution. For that, it is necessary to assess the SMDs' re-

sources accurately and justifiably. And for assessing the SMDs, their various re-

source specifications need to be profiled appropriately.

In this chapter, we presented a framework for profiling the SMD resources in a

methodological approach. We considered different categories of resource parame-

ters such as fixed (e.g., clock frequency and cores of the CPU) and variable (e.g.,

present CPU and GPU load, remaining battery, etc.) parameters. Besides these two

189

usual types of parameters, we further considered some behavioural parameters

(e.g., average CPU and GPU load, availability) that would suggest the resource sta-

bility pattern of a certain SMD. Not relying on the straightforward assumption that

the SMD, which has the best quantifiable hardware specifications, would be the

most competent computing device to assess an SMD practically, we opted for a

customised benchmarking scheme to estimate its computing capability with re-

spect to the CPU and GPU.

We considered a local MCC scenario where the SMDs are connected to an organi-

sational Wi-Fi AP, and most of them connect to the same network on a regular

basis. The profiling of the resources would be done by the MCC coordinator. We

presented the minute details of designing, developing, and implementing the re-

source profiling and selection for such a local MCC.

5

Resource Selection in MCC

“The choice to make good choices is the best choice you can choose. Fail to make

that choice and on most choices you will lose.” --- Ryan Lilly

5.1 Introduction

Resource selection is a primary step for task scheduling, having a high impact on

the overall performance of the MCC. The effectivity (e.g., response time, through-

put, turnaround time, etc.) and reliability (e.g., fault tolerance, ensuring resource

availability, device mobility handling, minimized hands-off, etc.) of MCC largely

depend on selecting the right resources for scheduling the MCC tasks.

At any instance, there might be quite many SMDs available at a certain place (local

MCC, connected through a WLAN or other short-range communication means)

[463] [464] or for a certain application (global MCC, connected through the inter-

net) to be considered as computing resources [462] [145] [461]. All of these SMDs

might have diverse values of each resource parameter, which means each SMD will

have different capability as a computing resource.

Now, among this sizable pool of resources, which of them would be chosen as

crowdworker? In other words, to which SMDs the MCC jobs are preferred to be

scheduled? Obviously, it is expected that for a given MCC task, the best SMDs would be

preferred.

Also, for a given task, to minimise the overhead, it is desirable to use a minimum

number of SMDs. This can be achieved by selecting the most capable SMDs for

scheduling and execution of any MCC task. It would not only maximise the

throughput but also improve the overall performance and QoS of the MCC system.

An inefficient SMD selection method will have a negative impact on the QoS of

MCC. Therefore, it is crucial to have an efficient mechanism to select the most

suitable SMDs from the available pool of SMDs as per the requirement of an MCC

task [156].

191

In this chapter, we aim to achieve the followings:

• Establish the problem of resource selection in MCC as an MCDM problem.

• Find out the most suitable MCDM approach that provides consistent and con-

siderably accurate SMD selection decisions, balancing various parameters at a

reasonable time complexity for real-time resource selection in a dynamic en-

vironment like MCC.

• Assess and compare the performance of different MCDM methods belonging

to disparate families in terms of the correctness and robustness of the SMD

rankings given by each method and their precise run-times.

5.2 Resource Selection and MCDM

In this section, we formally define the resource selection problem in MCC and es-

tablish it as an MCDM problem.

5.2.1 Challenge in Resource Selection in MCC

Resource discovery and selection in a distributed system has always been challeng-

ing [640] [641] [642]. In MCC, it has been aggravated by the fact that the MCC

implicates an absolutely dynamic and heterogeneous environment. The heteroge-

neity is not only due to the assorted characteristics of the SMDs (physical diversity)

but also because of users' divergent device usage behaviours (operational diver-

sity).

A number of SMD makers regularly launch plentiful devices with a variety of hard-

ware and software features. People also tend to upgrade (replace) their SMDs reg-

ularly [2]. Hence, in most of the cases, the available SMDs in an MCC would be

vastly heterogeneous in terms of hardware (e.g., CPU & GPU clock frequency, num-

ber of cores, primary memory size, secondary memory size, battery capacity, etc.);

and with different specifications, the SMDs boast varying computing capacities

[138].

The computing capability is one of the most important selection criteria as this

would eventually influence the response time, throughput, and turnaround time

for any given task. Therefore, the straightforward solution would have been to pick

the SMDs that have the best-quantified hardware resources. But this does not

192

always hold true, i.e., the SMD with best hardware assets may not be the optimal

computing resource at every instance. Due to users’ SMD usage behaviour and the

applications running on the SMDs the usable resources would vary time to time.

At different instances, the SMDs would have different values of their dynamic re-

source parameters.

Table 5.1 lists three such cases and their respective corollaries, considering two

SMDs S1 and S2 belonging to the users U1 and U2, respectively. It is obvious that

though S1 has better resources than S2, S1 should not be the most preferred candi-

date for MCC. This indicates that the greater resources on paper should not be the

sole measure for considering an SMD to be the fittest as a crowdworker. To com-

pare the competency of the SMDs, they need to be weighed multidimensionally,

i.e., based on different types of information. The other parameters and external

conditions also should be taken into consideration. Furthermore, at the time of job

submission, the actual statuses (which varies dynamically) of the resources (e.g.,

CPU & GPU load, available memory, available battery, signal strength, etc.) need

to be considered. The values of these variable parameters change depending on the

SMD usage by its user. For a better QoS of MCC, it is crucial to select the most

suitable SMDs with the best usable resources to offer at the moment of job sub-

mission and during its execution.

Furthermore, besides the static and dynamic resource parameters, to assess the

SMDs more accurately, some other persistent parameters such as average CPU and

GPU usage, users’ mobility pattern, etc., should also be considered. As discussed

in Chapter 4, these parameters would suggest the pattern of the SMD’s usability

behaviour.

It is apparent that taking into account the diversity in the considerable parameters,

selecting the most suitable SMD as a candidate for crowdworker is a difficult task.

Moreover, while making the selection decision, these diversified parameters need

to be considered in a unified way. This is really challenging and it makes the selec-

tion process complex. Furthermore, several of these parameters are conflicting in

nature. It poses further challenge to have an optimized selection balancing be-

tween the conflicting assessment criteria.

193

Correspondingly, devising an efficient, dynamic, and time-efficient resource selec-

tion method that would perfectly consider all these diverse resource parameters is

non-trivial.

Table 5.1. Examples of resource selection impasses

Case Respective corollary
S1 and S2 have CPU power c1 and c2,
respectively; where c1 > c2 but the
user U1 continuously plays games
on his/her SMD.

The CPU of S1 is busy most of the time, which would hamper
the execution of the task assigned to it, whereas S2 can pro-
vide slower but steady CPU cycles.

S1 has considerably larger battery
capacity than S2, but S1 is exten-
sively used compared to S2.

The battery drainage of S1 is much faster than S2. Hence, it
may happen that even the job is submitted to S1, after a short
while, u1 withdraws from MCC due to low battery concern.
If the job was submitted to S2, the overhead of job offloading,
and reassigning could be avoided.

S1 has far better hardware than S2
in all respects, but it has a consid-
erably weaker wireless signal
strength than S2 at the time of job
submission.

The weak wireless signal may result in disrupted and unreli-
able communication. Hence, due to this poor communica-
tion channel, the computing strength of S1 is not utilized
properly, whereas S2 could provide sluggish but reliable ser-
vice.

5.2.2 Defining the Resource Selection Problem in MCC

The resource selection problem can be formally presented as following. Assume

that there is a set of m number of heterogeneous SMDs as 𝑆(𝑡) = {𝑠1, 𝑠2, …, 𝑠𝑚}

connected with the MCC coordinator at time t. Here, each SMD (𝑠𝑖) is character-

ized by n number of resource parameters as R = {𝑟1
𝑤1, 𝑟2

𝑤2, …, 𝑟𝑛
𝑤𝑛}, where 𝑤𝑗 is

the associated weight of resource 𝑟𝑗 . R consists of different parameters types, as

discussed in Section 4.3. Typically, Ɐ𝑠𝑖, i = [1,m], except the fixed resource param-

eters (𝑟𝑓), the dynamic resource parameters (𝑟𝑑), persistent resource parameters

(𝑟𝑝) and the benchmarks (𝑟𝑏) vary at times, depending on various factors, where

𝑟𝑓 ∪ 𝑟𝑑 ∪ 𝑟𝑝 ∪ 𝑟𝑏 = 𝑅. With this variations, it is challenging to select the best 𝑠𝑖 in

S at any point of time t, based on the current value of 𝑟𝑗
𝑥(𝑡)(𝑠𝑖) and respective wj,

Ɐrj, Ɐwj and Ɐ𝑠𝑖, where j = [1,n], i = [1,m], and x = f|d|p|b.

For some parameters, as mentioned earlier, instead of including them in the selec-

tion process we used them for pre-selection filtering. Some threshold criteria were

set for these parameters. If 𝑛′ is the total number of such parameters then

(𝑟1
𝑡 ⋀𝑟2

𝑡 ⋀… ⋀ 𝑟𝑛′
𝑡), where 𝑟1

𝑡, 𝑟2
𝑡, … , 𝑟𝑛′

𝑡 ∈ 𝑅, needs to be true for Ɐ𝑠𝑖 to be qual-

ified for the next phase of the selection process. Let us assume, without these pa-

rameters having threshold criteria, the resource set is 𝑅′ = 𝑅 − {𝑟1
𝑡, 𝑟2

𝑡, … , 𝑟𝑛′
𝑡},

194

and after these filtering conditions, the updated set of SMDs, 𝑆′
(𝑡)

 = {𝑠1
′ , 𝑠2

′ , …, 𝑠𝑚′
′ }

If we observe the considered resource parameters, they are conflicting in nature,

i.e., for some parameters (𝑟𝑗𝑚𝑎𝑥), we would prefer the greater values (maximum),

whereas for the rest (𝑟𝑗𝑚𝑖𝑛), the smaller values (minimum) would be ideal, where,

𝑟𝑗𝑚𝑎𝑥 ∪ 𝑟𝑗𝑚𝑖𝑛 = 𝑅. Our goal is to select an 𝑠𝑖 such that it comprises an overall bal-

ance of 𝑟𝑗𝑚𝑎𝑥 and 𝑟𝑗𝑚𝑖𝑛 , considering all 𝑟𝑗. In fact, we need a resource selection

method that would evaluate all 𝑠𝑖 considering the present values of 𝑟𝑗𝑚𝑎𝑥 and 𝑟𝑗𝑚𝑖𝑛

and their corresponding weights 𝑤𝑗, j = [1, 𝑛 − 𝑛′], and rank them accordingly.

Based on the value of 𝑟𝑗
𝑥(𝑡)(𝑠𝑖

′) and taking into account the maximization and min-

imization criteria and 𝑤𝑗, a utility value (𝑠𝑖
′𝑢(𝑡)) is to be calculated of all 𝑠𝑖

′ with

respect to Ɐrj, j = [1, 𝑛 − 𝑛′] at t. And finally, comparing all 𝑠𝑖
′𝑢(𝑡), i = [1, 𝑚 −𝑚′], a

resource selection method should return an updated 𝑆′
(𝑡)

as 𝑆′′
(𝑡)

 = {𝑠1
′′, 𝑠2

′′, …, 𝑠𝑚′
′′ }

where, 𝑠𝑖
′′𝑢(𝑡) ≥ 𝑠𝑖+1

′′𝑢(𝑡).

An ideal selection method should comply the above-mentioned considerations

and return a ranked list of the fittest SMDs.

5.2.3 MCDM

In most real applications, decision-making is not based on a simple if-else pattern;

rather, due to the presence of multiple potentially conflicting requirements, bal-

anced decision-making becomes nontrivial. Traditional optimization-based solu-

tions try to mitigate this by considering the most important requirement(s) as the

objective function(s) and the remainder as constraints. But it still might have the

problem of potentially irreconcilable requirements, which can be handled to an

extent by relaxing the thresholds of the constraints until a feasible solution is ob-

tained [643].

MCDM solutions are suitable alternatives for solving these kinds of problems.

MCDM methods, in general, adopt an interactive approach to deal with the selec-

tion problems with multiple criteria by utilising a variety of processes that clarify

the implications of the underlying trade-offs between the considered criteria in

195

constituting the alternative solutions [174].

An MCDM problem can be described as weighing a set of alternatives based on

multiple pre-set decision criteria. Let us suppose, A = {a1, a2, …, am} denotes a finite

set of distinct alternatives and C = {c1, c2, …, cn} is the set of criteria that evaluates

A. A performance score pij is calculated for each ai, i = 1, 2, …, m with respect to the

criteria C. Based on pij, A is ordered such that ak is better than ak+1.

Though the alternatives are homogeneous, the interrelationship between the de-

cision criteria may be complex in nature. They can be expressed in different units

which might not have any apparent interrelationship. However, the decision-mak-

ing gets complicated when some of the criteria conflict with each other; i.e., some

are profit (maximization) criteria, whereas some are loss (minimization) criteria.

Usually, each criterion has some weight as per their significance in the decision-

making in the context of a particular application [644]. The common stages of a

typical MCDM method are shown in Fig. 5.1.

Fig. 5.1. Typical MCDM stages

MCDM methods have been used for decision-making in numerous applications

and problems [153] [154]. Over the years, several algorithms have been developed

or augmented, targeting the applicability and suitability of the problems, which

significantly contributed to the evolution of the expanding field of MCDM [645]

[153] [646]. These methods differ in terms of their computational logic and assump-

tion, applicability, calculation complexities, and ability to withstand variations in

the given conditions. Table 5.2 lists some of the popular MCDM approaches and

the most noteworthy representatives of each approach. Some MCDM methods

work better for a particular decision-making problem, while others may not per-

form well. That is why it is important to decide the most suitable MCDM method

for a given problem scenario.

5.2.4 Resource Selection as an MCDM Problem

In the stated problem, we wish to find out a rank-based selection method for listing

Identifying and selecting
the effective resource
features as decision

criteria.

Determining the
weights of resource

features.

Ranking the available
resources by applying
some MCDM method.

196

the best SMDs uniquely with tolerable runtime, fulfilling the demand for real-time

dynamic resource-provisioning. For this, we present the resource selection prob-

lem as an MCDM problem, which is expected to assess the SMDs in a balanced way

based on their various resource parameters.

Table 5.2. The popular MCDM approaches and their respective popular representatives

MCDM approach Representative example Reference

Distance-based method
TOPSIS [647] [648]

EDAS [649]

Area-based comparison and approximation method MABAC [650] [651]

Ratio-based additive method

ARAS [652] [653]

SAW [654]

COPRAS [655] [656]

Algorithms that work under compromising situa-
tions

VIKOR [657] [658]

CoCoSo [659]

MARCOS [660]

RAFSI [644]

Witnessing the wide-scale applications of MCDM, especially in decision-making

problems, we believe that it can also offer promising solutions for resource selec-

tion in MCC and other similar computing systems, which is not explored so far

[480].

In our SMD selection problem, the alternatives are the available SMDs at the time

of job submission, and the criteria are different parameters considered for SMD

selection (e.g., CPU frequency, RAM, CPU load, etc.). The MCDM solutions pro-

vide a ranking of the available SMDs based on the selection criteria. From this

ranked list, the resource management module of the MCC selects the top-ranked

SMD(s) for job scheduling. The pictorial representation of the SMD ranking process is

shown in Fig. 5.2.

Available SMDs in
MCC

Get present status of
the dynamic

resource parameters
of each SMD

Apply MCDM to get
top SMDs based on

their resource
parameters

Rank SMDs as per
MCDM outcome

Descending
ranked list

of SMDs

Fig. 5.2. SMD ranking using MCDM

197

5.2.5 MCDM Methods Considered for the Comparative Study

This section briefly describes five MCDM methods considered for the comparative

analysis along with their computation algorithms. In this chapter, we derived the

preferential order of the alternatives based on the following aspects:

• Separation from average solution (EDAS method).

• The relative positioning of the alternatives with respect to the best one (ARAS

method).

• Utility-based classification and preferential ordering on the proportional scale

(COPRAS method).

• Approximation of the positions of the alternatives to the average solution area

(MABAC method).

• Compromise solution while trading of the effects of the criteria on the alterna-

tives (MARKOS method).

Table 5.3. Merits and demerits of the MCDM methods considered in this study

MCDM
method

Merits Demerits

EDAS

• Useful when there are conflicting criteria and deci-
sion-making fluctuations

• Provides realistic solutions as it does not consider ex-
treme ideal points

• Operates with a difference from average solution in-
stead of distance

• Free from rank reversal issue

• In many real-life cases, the
average point does not re-
veal the true picture

• This method is more suited
for risk-neutral cases

ARAS
• Simple computational steps with lesser complexity
• Can operate under the compromising situation
• A relative measurement in terms of the ratio

• ARAS works reasonably well
only when the number of al-
ternatives is limited

MABAC

• Stability in result
• Systematic computation with a precise and rational

solution
• Free from rank reversal
• Can work with large criteria set

• Does not consider non-com-
pensation of criteria

COPRAS

• Evaluates influence of maximizing and minimizing
criteria separately

• Simple calculation
• Free from rank reversal

• Provides unstable results in
case of data variation, and
the results may not reveal
the true nature of the data

MARCOS

• Consideration of the anti-ideal and ideal solution at
the very beginning of the formation of the decision
matrix

• Determination of utility degree for both solutions,
• Can work with a large set of criteria and alternatives
• Stability in solution

• Works on compromising re-
sults

198

We considered the widely used MCDM methods as a representation of each above-

mentioned class. In Table 5.3, we present a comparative analysis of the merits and

demerits of the considered MCDM methods. Since the calculation time is vital in

our problem (resource selection in MCC) and subjective bias might affect the final

solution, we avoided considering the pairwise comparison methods such as AHP,

ANP, ELECTRE, MACBETH, REMBRANDT (multiplicative AHP), PAPRIKA, etc.

5.2.5.1 EDAS Method

EDAS is a recently developed distance-based algorithm that considers the average

solution as a reference point [649]. The alternative with a higher favourable devi-

ation, i.e., the positive distance from average (PDA), is preferred compared to non-

favourable deviation, i.e., the negative distance from average (NDA). As a result,

EDAS provides a reasonably robust solution, free from outlier effect and rank re-

versal problem, and decision-making fluctuations [661]. However, the EDAS

method does not portray a favourable result. Therefore, this method is more suited

in the case of risk aversion considerations. The procedural steps of EDAS are de-

scribed below.

Step 1: Calculation of the average solution

The average solution is the midpoint for all alternatives in the solution space with

respect to a particular criterion and is calculated using Eq. 5.1.

AVj =
∑ xij
m
i=1

m
; j = 1, 2, …., n (5.1)

Step 2: Calculation of PDA and NDA

PDA and NDA are the dispersion measures for each possible solution with respect

to the average point. An alternative with higher PDA and lower NDA is treated as

better than the average one. The PDA and NDA matrices are defined by Eq. 5.2 and

Eq. 5.3, respectively.

PDA = [PDAij]m×n (5.2)

NDA = [NDAij]m×n (5.3)

Where, PDAij and NDAij are defined by Eq. 5.4 and Eq. 5.5, respectively.

199

PDAij =

{

 max(0,(xij− AVj))

AVj
, if 𝑗𝑡ℎ criterion is profit type

max(0,(AVj− xij))

AVj
, if 𝑗𝑡ℎ criterion is cost type

 (5.4)

and

NDAij =

{

 max(0,(AVj− xij))

AVj
, if 𝑗𝑡ℎ criterion is profit type

max(0,(xij− AVj))

AVj
, if 𝑗𝑡ℎ criterion is cost type

 (5.5)

It can be inferred that if PDA > 0, then the corresponding NDA = 0, and if NDA >

0, then the PDA = 0 for an alternative with respect to a particular criterion.

Step 3: Determine the weighted sum of PDA and NDA for all alternatives

Calculate the weighted sum of PDA and NDA using Eq. 5.6 and Eq. 5.7, respec-

tively.

SPi = ∑ wj PDAij
n
j=1 (5.6)

SNi = ∑ wj NDAij
n
j=1 (5.7)

where, wj is the weight of jth criterion.

Step 4: Normalization of the values of SP and SN for all the alternatives

The normalization of linear form for SP and SN values are obtained by using Eq.

5.8 and Eq. 5.9, respectively.

NSPi =
SPi

max
i
(SPi)

 (5.8)

NSNi = 1 −
SNi

max
i
(SNi)

 (5.9)

Step 5: Calculation of the appraisal score (AS) for all alternatives

Here the appraisal score denotes the performance score of the alternatives and is

calculated using Eq. 5.10.

ASi =
1

2
(NSPi + NSNi) (5.10)

where, 0 ≤ ASi ≤ 1. The alternative having the highest ASi is ranked first and so on.

200

5.2.5.2 ARAS Method

ARAS method uses the concept of utility values for comparing the alternatives. In

this method, a relative scale (i.e., ratio) is used to compare the alternatives with

respect to the optimal solution [652] [662] [663]. This method uses a simple addi-

tive approach while working under compromising situations effectively and with

lesser computational complexities [664] [665]. However, it is observed that ARAS

works reasonably well only when the number of alternatives is limited [666]. The

procedural steps of ARAS are described below.

Step 1: Formation of the decision matrix

The decision matrix is constructed using Eq. 5.11.

X = [xij]m×n
 (5.11)

Step 2: Determination of the optimal value

The optimal value for jth criterion is determined using Eq. 5.12.

xij = {
max
i
xij , for profit type

min
i
xij , for cost type

 (5.12)

Step 3: Formation of the normalized decision matrix

The criteria have different dimensions. Normalization is carried out to achieve di-

mensionless weighted performance values for all alternatives under the influences

of the criteria. In this case, we follow a linear ratio approach for normalization.

However, we consider the optimum point as the base level. Therefore, in the nor-

malized decision matrix, we include the optimum value, and the order of the ma-

trix is (𝑚 + 1) × 𝑛. In the ARAS method, a two-stage normalization is followed for

the cost type of criteria. The normalized decision matrix is given by Eq. 5.13 where

rij is defined by Eq. 5.14.

R = [rij](m+1)×n
 (5.13)

rij = {

xij

∑ xij
𝑚
𝑖=0

, for profit type criteria

1/xij

∑ 1/xij
𝑚
𝑖=0

, for cost type criteria
 (5.14)

If in case of cost type criteria xij = 0, we consider rij = 0.

201

Step 4: Derive the weighted normalized decision matrix

The weighted normalized decision matrix is calculated using Eq. 5.15.

V = [vij](m+1)×n
 (5.15)

Where vij is definded by Eq. 5.16 and i = 0,m̅̅ ̅̅ ̅.

vij = rij ×wj (5.16)

Step 5: Calculation of the optimality function value for each alternative

The optimality function value is calculated using Eq. 5.17.

∅𝑖 = ∑ vij
𝑛
𝑗=1 (5.17)

where, i = 0,m̅̅ ̅̅ ̅.

Higher is the value of ∅𝑖, better is the alternative.

Step 6: Find out the priority order of the alternatives based on utility degree with

respect to the ideal solution

The priority order is calculated using Eq. 5.18.

𝜕𝑖 =
∅𝑖

∅0
 (5.18)

where, i = 0,m̅̅ ̅̅ ̅ and 𝜕𝑖 ∈ [0,1].

Obviously, the bigger value of 𝜕𝑖 is preferable. It is pretty certain that the optimality

function ∅𝑖 maintains a direct and proportional relationship with the performance

values of the alternatives and weights of the criteria. Hence, the greater the value

of ∅𝑖, more is the effectiveness of the corresponding solution. The degree of utility

is essentially the usefulness of the corresponding alternative with respect to the

optimal one.

5.2.5.3 MABAC Method

MABAC uses two areas: an upper approximation area (UAA) for favourable or ideal

solutions and a lower approximation area (LAA) for non-favourable or anti-ideal

solutions for performance-based classifications of the solutions. This method pro-

vides lesser computational complexities compared to the EDAS and ARAS meth-

ods. Further, since this method does not involve distance-based separation

202

measures, it generates stable results [650]. MABAC compares the alternatives

based on relative strength and weakness [667]. Because of its simplicity and use-

fulness, MABAC has been a widely popular method in various applications, for ex-

ample, social media efficiency measurement [668], health tourism [669], supply

chain performance assessment [219], portfolio selection [670], railway manage-

ment [671], medical tourism site selection [672], and selection of hotels [673]. The

procedural steps of MABAC are described below.

Step 1: Normalization of the criteria values

Here, a linear max-min type scheme is used, as given in Eq. 5.19.

𝑟𝑖𝑗 = {

(xij− xi
−)

(xi
+− xi

−)
, for beneficial criteria

(xij− xi
+)

(xi
−− xi

+)
, for nonbeneficial criteria

 (5.19)

where, xi
+ and xi

− are the maximum and minimum criteria values, respectively.

Step 2: Formulate the weighted normalization matrix (Y)

Elements of Y are given by Eq. 5.20.

yij = wj(rij + 1) (5.20)

where, wj is the criteria weight.

Step 3: Determination of the Border Approximation Area (BAA)

The elements of the BAA (T) are denoted by Eq. 5.21 where tj is given by Eq. 5.22.

𝑇 = [tj]1×𝑛 (5.21)

tj = (∏ yij
m
i=1)

1/m
 (5.22)

where, m is the total number of alternatives and tj corresponds to each criterion.

Step 4: Calculation of the matrix Q related to the separation of the alternatives from

BAA

Q is calculated using Eq. 5.23.

Q = Y − T (5.23)

A particular alternative ai is said to be belonging to the UAA (i.e., T+) if qij > 0 or

203

LAA (i.e., T−) if qij < 0 or BAA (i.e., T) if qij = 0. The alternative ai is considered to

be the best among the others if more numbers of criteria pertaining to it possibly

belong to T+.

Step 5: Ranking of the alternatives

The ranking is done according to the final values of the criterion functions as given

by Eq. 5.24.

Si = ∑ qij
n
j=1 for j = 1,2, … , n and i = 1,2, … ,m (5.24)

The higher the value is, more is the preference.

5.2.5.4 COPRAS Method

The COPRAS method calculates the utility values of the alternatives under the di-

rect and proportional dependencies of the influencing criteria for carrying out pref-

erential ranking [655] [674] [675]. The procedural steps for finding out the utility

values of the alternatives using the COPRAS method are discussed in the following.

The alternatives are ordered in descending order based on the obtained utility val-

ues.

Step 1: Construct the normalized decision matrix using the simple proportional ap-

proach

The normalised decision matrix is calculated using Eq. 5.25.

dij̃ =
dij

∑ dij
m
i=1

 (5.25)

where, dij is the performance value of the ith alternative with respect to jth criterion

(i = 1, 2, …, m; j = 1, 2, …, n).

Step 2: Calculation of the sums of the weighted normalized values for optimization

in ideal and anti-ideal effects

The ideal and anti-ideal effects are calculated by Eq. 5.26 and Eq. 5.27, respectively.

ℊ+i = ∑ dij̃
k
j=1 . ℰj (5.26)

ℊ−i = ∑ dij̃
n
j=k+1 . ℰj (5.27)

where, k is the number of maximizing (i.e., profit type) criteria and ℰj is the

204

significance of the jth criterion.

In case of ℊ+i, all dij̃ values are corresponding to the beneficial or profit type crite-

ria, and for ℊ−i, we take the performance values of the alternatives related to cost

type criteria.

Step 3: Calculation of the relative weights of the alternatives

The relative weight for any alternative (ith) is given by Eq. 5.28.

Ωi = ℊ+i +
min
i
ℊ−i∑ ℊ−i

m
i=1

ℊ−i∑
min
i

ℊ−i

ℊ−i

m
i=1

≅ ℊ+i +
∑ ℊ−i
m
i=1

ℊ−i∑ (
1

ℊ−i
)m

i=1

 (5.28)

The Ωi value corresponding to the ith alternative signifies the degree of satisfaction

of that with respect to the given conditions. The greater is the value of Ωi better is

the relative performance of the concerned alternative, and hence, higher is the po-

sition. Therefore, the most rational and efficient DMU should have Ωi max i.e., the

optimum value. The relative utility of a particular DMU or alternative is deter-

mined by comparing the Ωi value of any DMU with respect to the Ωi max value,

corresponding to the most effective one.

The utility for each alternative is given by Eq. 5.29. Needless to say, the Ui value for

the most preferred choice is 100%.

Ui =
Ωi

Ωi max
× 100% (5.29)

5.2.5.5 MARCOS Method

MARCOS belongs to a strand of MCDM algorithms that derives solutions under

compromise situations. However, unlike the previous versions, MARCOS starts

with including ideal and anti-ideal solutions in the fundamental decision matrix at

the very beginning. Likewise, COPRAS also finds out the utility values. However,

here the decision-maker can make a trade-off among the ideal and anti-ideal solu-

tions to arrive at the utility values of the alternatives. The MARCOS method is also

capable of handling a large set of alternatives and criteria [660] [676] [677]. The

procedural steps of MARCOS are described below.

Step 1: Formation of the extended decision matrix (D*) by including the anti-ideal

solution (𝑆−) values in the first row and the ideal solution (𝑆+)values in the last row

205

S− and S+are defined by Eq. 5.30 and Eq. 5.31, respectively.

S− = {
min
i
xij , when j ∈ profit type

max
i
xij , when j ∈ cost type

 (5.30)

S+ = {
max
i
xij , when j ∈ profit type

min
i
xij , when j ∈ cost type

 (5.31)

The anti-ideal solution represents the worst choice, whereas the ideal solution is

the reference point that shows the best possible characteristics given the set of

constraints, i.e., criteria.

Step 2: Normalization of D*

The normalized values are given by Eq. 5.32.

rij = {

x
S+

xij
, when j ∈ cost type

xij

xs+
, when j ∈ profit type

 (5.32)

Since it is preferred to set apart from the anti-ideal reference point, in MARCOS,

the normalization is carried out using a linear ratio approach with respect to the

anti-ideal solution.

Step 3: Formation of weighted D*

After normalization, the weighted normalized matrix with elements vij is formu-

lated by multiplying the normalized value of each alternative with the correspond-

ing weight of the criteria, as given in Eq. 5.33.

vij = wjrij (5.33)

Step 4: Calculation of utility degrees of the alternatives for 𝑆+ and 𝑆−

The utility degree of a particular alternative with respect to given conditions rep-

resents its relative attractiveness of the same. The utility degrees are calculated

using Eq. 5.34 and Eq. 5.35 where γi is given as Eq. 5.36.

Ki
− =

γi

γs−
 (5.34)

Ki
+ =

γi

γs+
 (5.35)

γi = ∑ vij
n
j=1 (5.36)

206

Step 5: Calculation of values of utility functions for 𝑆+ and 𝑆−

The utility function resembles the trade-off that the observed or considered alter-

natives make vis-à-vis the ideal and anti-ideal reference points, and are given by

Eq. 5.37 and Eq. 5.38.

f(Ki
−) =

Ki
+

Ki
++ Ki

− (5.37)

f(Ki
+) =

Ki
−

Ki
++ Ki

− (5.38)

The decision is made related to the selection of a particular alternative is based on

utility functional values. The utility function exhibits the relative position of the

concerned alternative with respect to the reference points. The best alternative is

closest to the ideal reference and, subsequently, distant from the anti-ideal one

compared to other available choices.

Step 6: Calculation of the utility function values for the alternatives

The utility function value for ith alternative is calculated by Eq. 5.39.

f(Ki) =
Ki
++ Ki

−

1+
1− f(Ki

+)

f(Ki
+)

+
1− f(Ki

−)

f(Ki
−)

 (5.39)

The alternative having the highest utility function value is ranked first over the

others.

5.2.6 Entropy Method for Criteria Weight Calculation

Each selection criterion carries some weight. The weights define the importance of

the criteria in the decision-making. To determine the criteria weights, we applied

the most popularly used entropy method. The entropy method works on objective

information following the concept of the probabilistic information theory [678].

The objective weighting approach can mitigate the man-made instabilities in the

subjective weighting approach and gives more realistic results [679]. The Entropy

method shows its efficacy in dealing with imprecise information and dispersions

while offsetting the subjective bias [680] [681]. Extant literature shows a colossal

number of applications of Entropy method for determining criteria weights in var-

ious situations (for example, [670] [682] [683] [684] [685] [686]). The steps of the

207

entropy method are given below:

Suppose, X = [xij]m×n
 represents the decision matrix where m is the number of

alternatives and n is the number of criteria.

Step 1: Normalization of the decision matrix

Normalization is carried out to bring the performance values of all alternatives

subject to different criteria to a common unitless form having scale values ϵ(0,1).

Here we follow the linear normalization scheme.

Entropy value signifies the level of disorder. In the case of criteria weight determi-

nation, a criterion with a higher Entropy value indicates that that particular crite-

rion contains more information.

The normalization matrix is represented as (R)m×n where the elements rij are given

by Eq. 5.40.

𝑟𝑖𝑗 =

{

(𝑥𝑖𝑗−x𝑗𝑚𝑖𝑛)

(x𝑗𝑚𝑎𝑥−x𝑗𝑚𝑖𝑛)
, for profit type criteria

(x𝑗𝑚𝑎𝑥−𝑥𝑖𝑗)

(x𝑗𝑚𝑎𝑥−x𝑗𝑚𝑖𝑛)
, for cost type criteria

 (5.40)

Step 2: Calculation of Entropy values

The Entropy value for ith alternative for jth criterion is given by Eq. 5.41.

Hj = −k∑ fij
m
i=1 ln(fij) (5.41)

where, k (a constant value) and fij are defined by Eq. 5.42. and Eq. 5.43, respectively.

If fij = 0 then, fij ln(fij) = 0.

k = 1/ln (m) (5.42)

fij =
rij

∑ rij
m
i=1

 (5.43)

Step 3: Calculation of criteria weight

The weight for each criterion is given by Eq. 5.44.

wj =
1−Hj

n−∑ Hj
n
j=1

 (5.44)

Here, the higher the value of wj is , more is the information contained in the jth

criterion.

208

5.3 Research Methodology

This section discusses the research framework used in this chapter and provides

the computational steps of the MCDM algorithms applied for carrying out the

comparative analysis in a dynamic environment. Fig. 5.3 depicts the steps followed

in this research work.

Criteria weight calculation
(Entropy method)

EDAS

ARAS

MABAC

COPRAS

MARCOS

MCDM frameworks

Goal: Multi-criteria resource selection in a
 dynamic mobile crowd computing system

Data collection Criteria selection

Sensitive
analysis

Comparative analysis
of ranking order

Time-complexity
analysis

Concluding remarks

Case scenarios

Case I
Alternative = 50

Criteria = 13

Case II
Alternative = 10

Criteria = 13

Case III
Alternative = 50

Criteria = 06

Case IV
Alternative = 10

Criteria = 06

Fig. 5.3. Research framework

5.3.1 Resource Selection Criteria

Here, we considered thirteen criteria for SMD selection, as shown in Table 5.4. Out

of these, eight are profit criteria, i.e., their maximized values would be ideal for

selection, whereas five are cost criteria, i.e., their minimized values should be ideal.

Depending on specific applications and specific job types, the criteria and their

weights (significance) would vary. For example, a CPU-bound job may not use GPU

cores, while some highly computing-intensive jobs (such as image and video anal-

ysis, complex scientific calculations, etc.) would use GPU more than the CPU. Sim-

ilarly, the RAM size would be a decisive factor for a data-intensive job that might

not be so important for a CPU-intensive job. Here, we chose the criteria that would,

in general and overall, be considered for selecting an SMD as a computing re-

source.

209

To keep the experiment minimalistic, we ignored several resource parameters such

as persistent parameters and benchmarking that are discussed in Section 4.3. How-

ever, in practical implementation, they can be incorporated as selection criteria.

Table 5.4. List of selection criteria

 Profit type Cost type

Criteria

C
P

U
 f

re
q

u
en

cy
 (

G
H

z)

C
P

U
 c

o
re

s
(i

n
 n

u
m

b
er

s)

G
P

U
 f

re
q

u
en

cy
 (

G
H

z)

T
o

ta
l

R
A

M
 (

G
B

)

A
va

il
ab

le
 m

em
o

ry
 (

M
B

)

B
at

te
ry

 c
ap

ac
it

y
(m

A
h

)

B
at

te
ry

 a
va

il
ab

le
 (

%
)

W
i-

F
i

st
re

n
g

th
 (

1-
5)

C
P

U
 l

o
ad

 (
%

)

G
P

U
 l

o
ad

 (
%

)

C
P

U
 t

em
p

 (
o
C

)

B
at

te
ry

 t
em

p
 (

o
C

)

G
P

U
 A

rc
h

it
ec

tu
re

 (
n

m
)

Code C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Effect
direction

(+) (+) (+) (+) (+) (+) (+) (+) (−) (−) (−) (−) (−)

5.3.2 Data Collection

The data collection for this experiment was done through the resource profiling,

as discussed in Chapter 4. From the logged user data, we picked the users who were

more consistent with high presence frequency and less sparsity. For this study, we

considered such 50 SMDs, selected randomly. Specifically for this experiment, we

considered a total of thirteen resource parameters that are important in the deci-

sion-making process for selecting an SMD as a suitable resource in MCC, as shown

in Table 5.4. It can be seen from the table that some resource parameters are fixed,

i.e., they would not change their values in their lifetime (e.g., C1, C2, C3, C4, C6, and

C13), while some parameters’ values are changed dynamically (e.g., C5, C7, C8, C9,

C10, C11, and C12). We considered some instantaneous values of all the parameters

and used the same for all experimental illustrations for the experimental purpose.

5.3.3 Experiment Cases

Since, in this study, we wanted to assess the effect of the number of criteria and

alternatives in the selection outcome and computational complexity; we consid-

ered different variations of the selection criteria and alternatives for comparison.

Accordingly, we generated four case scenarios, as discussed in the following sub-

sections. Each case has a different number of alternatives (SMDs) and criteria. The

reason behind choosing four datasets of different sizes is to assess the performance

210

of the MCDM methods under different MCC scenarios.

Table 5.5. Decision matrix (Case 1)

SMD
Profit criteria Cost criteria

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
M1 2.2 2 650 8 895 2700 15 4 92 27 43 45 14
M2 1.5 4 450 4 3831 4000 39 4 16 76 39 40 10
M3 1.5 2 650 6 2694 2700 12 3 44 67 38 40 28
M4 1.3 8 650 8 518 4000 11 5 89 78 42 42 10
M5 1.3 8 650 8 1807 3000 10 4 13 8 31 38 10
M6 1.7 8 450 8 1982 3000 68 5 64 32 32 35 14
M7 2.5 2 400 6 3857 3500 18 1 60 16 38 36 10
M8 2.5 4 624 8 558 4000 56 5 99 87 50 48 10
M9 1.7 2 450 8 1908 2700 57 4 26 4 30 34 28
M10 2.5 2 450 6 1767 4000 24 2 53 93 45 44 10
M11 2.5 2 400 4 2853 4000 94 3 53 47 40 40 10
M12 2.2 2 624 6 3535 2700 24 3 26 67 37 39 28
M13 2.2 8 710 4 1734 3500 50 1 19 63 34 38 28
M14 1.5 8 650 4 2954 3000 59 5 15 3 34 33 10
M15 2.2 8 650 6 1916 3000 11 1 19 77 32 39 14
M16 1.3 2 400 6 870 2700 90 5 44 89 35 43 10
M17 1.5 4 400 4 2911 3500 17 2 18 96 36 47 10
M18 1.7 8 450 6 3876 4000 63 4 4 0 45 42 10
M19 1.3 4 650 6 944 2700 75 1 2 72 30 43 14
M20 1.7 2 450 6 2855 4000 22 5 62 9 32 40 10
M21 1.3 4 450 6 2973 3500 18 1 78 92 40 45 14
M22 1.5 8 624 8 3521 4000 22 1 42 44 38 37 10
M23 1.3 4 400 6 1734 3500 84 4 95 24 43 39 28
M24 2.5 2 710 4 3986 3000 16 1 8 57 36 40 28
M25 1.5 4 624 6 2851 3500 31 4 71 2 39 42 10
M26 1.7 4 710 6 2983 3000 50 1 61 58 38 45 10
M27 2.2 2 710 8 1932 4000 87 3 57 21 39 43 14
M28 2.5 2 624 6 972 4000 87 5 77 80 43 46 28
M29 1.3 2 710 6 2579 4000 16 2 69 0 41 40 14
M30 1.3 4 710 6 3537 3500 37 2 4 16 37 37 28
M31 2.5 2 650 4 809 2700 89 5 70 3 41 39 14

M32 1.3 4 450 4 3769 3500 56 2 5 35 33 40 28

M33 1.3 8 400 4 799 3000 39 1 65 47 35 44 10
M34 2.2 4 710 4 1938 4000 17 5 48 11 36 40 28

M35 1.3 8 710 6 2755 3000 92 4 1 48 34 39 14

M36 1.3 2 450 4 2663 2700 30 1 56 46 37 41 10

M37 2.5 8 450 4 1789 2700 12 2 4 15 32 36 14

M38 1.3 4 710 6 759 3500 44 2 66 0 34 35 28
M39 2.2 4 400 4 1748 3000 58 5 99 22 45 44 10

M40 1.3 8 450 8 2690 4000 56 4 22 13 33 34 28

M41 1.5 8 624 8 898 3500 82 4 47 22 34 36 10

M42 2.5 2 450 8 3681 3000 62 5 26 68 35 37 28

M43 1.3 8 624 8 2790 4000 16 3 84 15 37 39 14

M44 1.3 8 400 4 1582 3000 26 4 18 0 32 33 14
M45 2.5 8 650 4 2628 3500 69 4 94 11 42 40 28

M46 2.5 2 400 6 619 3000 52 2 40 52 41 39 14

M47 1.3 2 400 6 2760 2700 69 1 31 38 37 38 10

M48 2.5 8 624 8 1673 2700 29 5 26 7 35 36 28

M49 1.7 4 650 4 1647 3000 48 3 43 0 34 37 10
M50 1.3 8 450 6 1753 4000 29 3 91 64 39 45 28

211

5.3.3.1 Case 1: Full List of Alternatives and Full Criteria Set

This scenario considers the full list of alternatives under comparison (i.e., 50) sub-

ject to the influence of full criteria set consisting of 13 different criteria, as shown

in Table 5.4. Accordingly, the decision matrix (50 × 13) is given in Table 5.5.

5.3.3.2 Case 2: Lesser Number of Alternatives and Full Criteria Set

In this minimized dataset, we assume that only ten SMDs available for crowd com-

puting (typically in a small-scale MCC). In this case, we shortened the number of

alternatives. Here, the decision-maker would be able to compare the MCDM meth-

ods on a limited number of alternatives for the full list of criteria. For simplicity,

we selected one SMD model out of each group of five starting from the beginning,

i.e., M5, M10, M15, and so on. The decision matrix (10 × 13) is given in Table 5.6.

Table 5.6. Decision matrix (Case 2)

SMD
Profit criteria Cost criteria

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
M5 1.3 8 650 8 1807 3000 10 4 13 8 31 38 10
M10 2.5 2 450 6 1767 4000 24 2 53 93 45 44 10
M15 2.2 8 650 6 1916 3000 11 1 19 77 32 39 14
M20 1.7 2 450 6 2855 4000 22 5 62 9 32 40 10
M25 1.5 4 624 6 2851 3500 31 4 71 2 39 42 10
M30 1.3 4 710 6 3537 3500 37 2 4 16 37 37 28
M35 1.3 8 710 6 2755 3000 92 4 1 48 34 39 14

M40 1.3 8 450 8 2690 4000 56 4 22 13 33 34 28

M45 2.5 8 650 4 2628 3500 69 4 94 11 42 40 28

M50 1.3 8 450 6 1753 4000 29 3 91 64 39 45 28

5.3.3.3 Case 3: Full List of Alternatives and a Smaller Number of Criteria

In a situation, depending on the MCC application requirement, the full criteria set

may not need to be considered. For these cases, only a small number of crucial

criteria may be defined. To represent such a scenario, in this case, we considered a

minimized dataset by eliminated some criteria from the original dataset. We as-

sumed that some criteria (e.g., CPU and battery temperature and signal strength)

could be kept out of the selection matrix and, if required, could be set as threshold

criteria straightforwardly. For example, suppose the threshold for temperature is

set at 40°C. In that case, all the SMDs having a temperature more than this would

be filtered out and would not be considered for the selection, irrespective of other

resource specifications. We also removed information of GPU, assuming that the

tasks are CPU bound only and they do not require to exploit the power of GPU,

212

i.e., the jobs are sequential and not parallel. It can also be vice versa, i.e., we could

consider GPU where the MCC job involves mostly parallel processing. Table 5.7

shows the criteria considered, and in Table 5.8, the decision matrix (50 × 6) is pre-

sented.

Table 5.7. Minimized selection criteria

 Profit Cost

Criteria
C

P
U

 f
re

q
u

e
n

c
y

(G
H

z
)

C
P

U
 c

o
re

s

(i
n

 n
u

m
b

e
rs

)

T
o

ta
l

R
A

M

(G
B

)

B
a

tt
e

ry
 c

a
p

a
c

it
y

(m
A

h
)

B
a

tt
e

ry
 a

v
a

il
a

b
le

(%
)

C
P

U
 l

o
a

d
 (

%
)

Code C1 C2 C4 C6 C7 C9

Effect direction (+) (+) (+) (+) (+) (−)

Table 5.8. Decision matrix (Case 3)

SMD
Profit Cost

SMD
Profit Cost

C1 C2 C4 C6 C7 C9 C1 C2 C4 C6 C7 C9

M1 2.2 2 895 2700 15 92 M26 1.7 4 2983 3000 50 61

M2 1.5 4 3831 4000 39 16 M27 2.2 2 1932 4000 87 57

M3 1.5 2 2694 2700 12 44 M28 2.5 2 972 4000 87 77

M4 1.3 8 518 4000 11 89 M29 1.3 2 2579 4000 16 69

M5 1.3 8 1807 3000 10 13 M30 1.3 4 3537 3500 37 4

M6 1.7 8 1982 3000 68 64 M31 2.5 2 809 2700 89 70

M7 2.5 2 3857 3500 18 60 M32 1.3 4 3769 3500 56 5

M8 2.5 4 558 4000 56 99 M33 1.3 8 799 3000 39 65

M9 1.7 2 1908 2700 57 26 M34 2.2 4 1938 4000 17 48

M10 2.5 2 1767 4000 24 53 M35 1.3 8 2755 3000 92 1

M11 2.5 2 2853 4000 94 53 M36 1.3 2 2663 2700 30 56

M12 2.2 2 3535 2700 24 26 M37 2.5 8 1789 2700 12 4

M13 2.2 8 1734 3500 50 19 M38 1.3 4 759 3500 44 66

M14 1.5 8 2954 3000 59 15 M39 2.2 4 1748 3000 58 99

M15 2.2 8 1916 3000 11 19 M40 1.3 8 2690 4000 56 22

M16 1.3 2 870 2700 90 44 M41 1.5 8 898 3500 82 47

M17 1.5 4 2911 3500 17 18 M42 2.5 2 3681 3000 62 26

M18 1.7 8 3876 4000 63 4 M43 1.3 8 2790 4000 16 84

M19 1.3 4 944 2700 75 2 M44 1.3 8 1582 3000 26 18

M20 1.7 2 2855 4000 22 62 M45 2.5 8 2628 3500 69 94

M21 1.3 4 2973 3500 18 78 M46 2.5 2 619 3000 52 40

M22 1.5 8 3521 4000 22 42 M47 1.3 2 2760 2700 69 31

M23 1.3 4 1734 3500 84 95 M48 2.5 8 1673 2700 29 26

M24 2.5 2 3986 3000 16 8 M49 1.7 4 1647 3000 48 43

M25 1.5 4 2851 3500 31 71 M50 1.3 8 1753 4000 29 91

5.3.3.4 Case 4: Lesser Number of Alternatives and Criteria

In this case, we considered the combination of a minimized set of alternatives and

criteria. This scenario considers a limited number of choices and the influence of

213

a limited number of criteria. We considered the alternatives as selected in Case 2

and the criteria as listed in Table 5.7. Hence, in this case, our decision matrix is of

dimension 10 × 6, as shown in Table 5.9.

Table 5.9. Decision matrix (Case 4)

SMD
Profit Cost

SMD
Profit Cost

C1 C2 C4 C6 C7 C9 C1 C2 C4 C6 C7 C9

M1 1.3 8 1807 3000 10 13 M30 1.3 4 3537 3500 37 4

M10 2.5 2 1767 4000 24 53 M35 1.3 8 2755 3000 92 1

M15 2.2 8 1916 3000 11 19 M40 1.3 8 2690 4000 56 22

M20 1.7 2 2855 4000 22 62 M45 2.5 8 2628 3500 69 94

M25 1.5 4 2851 3500 31 71 M50 1.3 8 1753 4000 29 91

5.4 Experiment, Results, and Comparative Analysis

In this section, we present the details of the experiment for the comparative study,

including the results and critical discussion. The experiment focuses on the com-

parative ranking for the SMD selection using five distinct MCDM methods and to

find their time complexities under different scenarios by varying the criteria and/or

alternative sets.

5.4.1 Experiment

We applied the entropy method and the five MCDM methods (i.e., EDAS, ARAS,

MABAC, COPRAS, and MARCOS) on four datasets, as discussed in Section 5.3.3.

The algorithms were implemented using a spreadsheet (MS Excel) as well as

through hand-coded programming (using Java). However, for ranking and sensi-

tivity analysis, we used the spreadsheet calculation, and to estimate the runtime,

we considered the programming outturn. The details of the programmatical im-

plementation are discussed in Section 5.4.4. The aggregate rankings of the SMDs

were derived from each MCDM method for each dataset. We checked the consist-

encies among the results of the individual MCDM methods and the final aggregate

ranks. We also compared the robustness and stability in the performance of the

MCDM methods applied in this work. Finally, the actual runtimes of each method

under different scenarios were calculated.

5.4.2 Results

In this section, we report the details of the experimental results of SMD rankings

using the considered MCDM methods, obtained through the spreadsheet

214

calculation.

Table 5.10 shows the criteria weights calculated for Case 1 using the Entropy method

where ∑wj = 1 and Cj represents the criteria, where j = 1, 2, 3, …, 13. It is seen that

the weights of the criteria are reasonably distributed. However, based on the values

of the decision matrix, the Entropy method calculates higher weights (>10%) for

C1, C2, and C4 while assigning the least weights to C11 and C12.

Table 5.10. Criteria weights (Case 1)

Cri-
teria

(+) (+) (+) (+) (+) (+) (+) (+) (−) (−) (−) (−) (−)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Hj 0.8436 0.8556 0.8985 0.8862 0.9456 0.8998 0.9178 0.9128 0.9498 0.9552 0.9816 0.9696 0.8996

wj 0.1442 0.1332 0.0936 0.1050 0.0501 0.0924 0.0758 0.0804 0.0463 0.0414 0.0170 0.0281 0.0926

Table 5.11. Ranking results of EDAS method (Case 1)

SMD SP SN NSP NSN AS Rank SMD SP SN NSP NSN AS Rank

M1 0.137 0.227 0.423 0.256 0.340 35 M26 0.092 0.131 0.283 0.569 0.426 29

M2 0.145 0.146 0.446 0.521 0.484 25 M27 0.221 0.100 0.680 0.672 0.676 10

M3 0.031 0.269 0.096 0.117 0.106 50 M28 0.209 0.249 0.644 0.184 0.414 31
M4 0.251 0.224 0.771 0.266 0.518 21 M29 0.111 0.218 0.343 0.284 0.314 41

M5 0.277 0.117 0.852 0.616 0.734 7 M30 0.131 0.164 0.403 0.464 0.433 28

M6 0.246 0.057 0.758 0.811 0.785 5 M31 0.251 0.185 0.772 0.392 0.582 14

M7 0.165 0.217 0.508 0.289 0.398 32 M32 0.105 0.202 0.324 0.339 0.331 36

M8 0.230 0.174 0.708 0.429 0.568 15 M33 0.131 0.236 0.403 0.226 0.315 40

M9 0.146 0.188 0.450 0.383 0.416 30 M34 0.156 0.171 0.480 0.440 0.460 27
M10 0.115 0.241 0.354 0.211 0.283 44 M35 0.298 0.059 0.919 0.806 0.862 3

M11 0.210 0.157 0.648 0.486 0.567 16 M36 0.048 0.283 0.146 0.070 0.108 49

M12 0.098 0.225 0.300 0.261 0.281 45 M37 0.238 0.163 0.732 0.465 0.599 13

M13 0.195 0.187 0.601 0.386 0.493 23 M38 0.079 0.204 0.243 0.330 0.287 43

M14 0.311 0.066 0.957 0.782 0.870 2 M39 0.159 0.159 0.490 0.478 0.484 24
M15 0.190 0.170 0.583 0.444 0.514 22 M40 0.259 0.119 0.796 0.610 0.703 8

M16 0.168 0.247 0.517 0.189 0.353 34 M41 0.292 0.054 0.897 0.823 0.860 4

M17 0.086 0.246 0.265 0.193 0.229 47 M42 0.229 0.197 0.705 0.353 0.529 19

M18 0.325 0.030 1.000 0.902 0.951 1 M43 0.214 0.129 0.660 0.577 0.619 12

M19 0.132 0.199 0.408 0.346 0.377 33 M44 0.208 0.155 0.639 0.492 0.566 17
M20 0.155 0.156 0.476 0.489 0.482 26 M45 0.273 0.145 0.839 0.524 0.682 9

M21 0.039 0.272 0.120 0.110 0.115 48 M46 0.094 0.194 0.289 0.365 0.327 38

M22 0.233 0.123 0.718 0.597 0.658 11 M47 0.110 0.215 0.339 0.296 0.317 39

M23 0.112 0.210 0.344 0.312 0.328 37 M48 0.306 0.119 0.941 0.611 0.776 6

M24 0.162 0.305 0.499 0.000 0.250 46 M49 0.107 0.087 0.330 0.716 0.523 20
M25 0.132 0.094 0.406 0.692 0.549 18 M50 0.113 0.236 0.347 0.227 0.287 42

We used these criteria weights to rank the alternatives based on the decision ma-

trix of Table 5.5, applying the five MCDM methods considered in this work. Table

5.11 to Table 5.15 present the rankings of the alternatives based on the final score

values as derived by using the five MCDM algorithms. From Table 5.11, we observe

that considering the average solution point as the reference, M18, M14, M35, M41, and

215

M6 are the top performers while proportional assessment methods such as ARAS

and COPRAS respectively yield M35, M14, M25, M18, M31 and M18, M14, M41, M35, M5 as

better performers (see Table 5.12 and Table 5.14). It is observed that the top-per-

forming DMUs show reasonable consistency. However, Table 5.13 and Table 5.15

show that the relative ranking results derived by MABAC and MARCOS are weekly

consistent with previous rankings.

To find out the aggregate ranking, we used the final score values of the alternatives

as obtained using different algorithms and applied the SAW method [687] for ob-

jective evaluation as adopted in [219]. Table 5.16 exhibits the relative positioning of

the alternatives by different MCDM methods and their aggregate ranks derived by

using SAW. In this context, Table 5.17 shows the findings of the rank correlation

tests among the results obtained by using different methods and the final rank

obtained by SAW. For this, we derived the following two correlation coefficients:

Table 5.12. Ranking results of ARAS method (Case 1)

SMD Ø ∂ Rank SMD Ø ∂ Rank

M1 0.01697 0.46824 38 M26 0.01802 0.49730 30

M2 0.01865 0.51477 29 M27 0.02042 0.56363 15

M3 0.01437 0.39669 49 M28 0.01901 0.52454 25

M4 0.02016 0.55639 18 M29 0.01512 0.41734 47

M5 0.02201 0.60750 9 M30 0.01941 0.53561 22

M6 0.02186 0.60323 10 M31 0.02316 0.63903 5

M7 0.01752 0.48363 33 M32 0.01761 0.48596 32

M8 0.02111 0.58266 12 M33 0.01664 0.45911 40

M9 0.01995 0.55052 19 M34 0.01865 0.51482 28

M10 0.01689 0.46600 39 M35 0.03144 0.86779 1

M11 0.01950 0.53823 20 M36 0.01393 0.38446 50

M12 0.01632 0.45037 42 M37 0.02093 0.57773 14

M13 0.01887 0.52081 26 M38 0.01531 0.42259 46

M14 0.02638 0.72790 2 M39 0.01910 0.52707 23

M15 0.01877 0.51807 27 M40 0.02123 0.58593 11

M16 0.01752 0.48362 34 M41 0.02280 0.62921 7

M17 0.01594 0.43998 45 M42 0.01942 0.53585 21

M18 0.02423 0.66882 4 M43 0.02035 0.56156 17

M19 0.02105 0.58100 13 M44 0.01763 0.48661 31

M20 0.01907 0.52618 24 M45 0.02218 0.61221 8

M21 0.01491 0.41141 48 M46 0.01614 0.44552 43

M22 0.02042 0.56351 16 M47 0.01602 0.44206 44

M23 0.01741 0.48050 36 M48 0.02295 0.63345 6

M24 0.01636 0.45145 41 M49 0.01745 0.48152 35

M25 0.02523 0.69635 3 M50 0.01735 0.47875 37

216

Table 5.13. Ranking results of MABAC method (Case 1)

SMD Sum (Si) Rank SMD Sum (Si) Rank

M1 0.03195 27 M26 0.03081 30

M2 0.03147 28 M27 0.22863 5

M3 -0.15444 49 M28 0.09664 17

M4 0.16694 13 M29 0.00047 33

M5 0.17633 10 M30 0.00290 32

M6 0.18871 8 M31 0.08230 21

M7 0.04362 25 M32 -0.11850 46

M8 0.22907 3 M33 -0.10883 44

M9 -0.03533 36 M34 0.08986 19

M10 0.03880 26 M35 0.19310 7

M11 0.10172 16 M36 -0.22082 50

M12 -0.04397 39 M37 0.07870 23

M13 0.08626 20 M38 -0.04703 40

M14 0.18429 9 M39 0.00801 31

M15 0.11832 15 M40 0.14808 14

M16 -0.08972 43 M41 0.25900 1

M17 -0.11263 45 M42 0.09494 18

M18 0.24866 2 M43 0.17503 11

M19 -0.05184 41 M44 -0.00397 34

M20 0.06734 24 M45 0.17100 12

M21 -0.13421 48 M46 -0.02276 35

M22 0.20566 6 M47 -0.12598 47

M23 -0.08945 42 M48 0.22869 4

M24 -0.04221 37 M49 0.03112 29

M25 0.08176 22 M50 -0.04263 38

Table 5.14. Ranking results of COPRAS method (Case 1)

SMD Q U Rank SMD Q U Rank

M1 0.01794 64.91172 37 M26 0.01886 68.24418 30

M2 0.01965 71.09344 27 M27 0.02207 79.85614 10

M3 0.01551 56.09728 48 M28 0.02011 72.76279 23

M4 0.02044 73.93551 21 M29 0.01756 63.53210 41

M5 0.02449 88.60817 5 M30 0.01899 68.70255 29

M6 0.02342 84.72597 6 M31 0.02099 75.94223 16

M7 0.01880 68.01316 32 M32 0.01776 64.24743 39

M8 0.02126 76.91708 15 M33 0.01755 63.47324 42

M9 0.01880 68.01529 31 M34 0.01948 70.48546 28

M10 0.01728 62.49777 45 M35 0.02465 89.15783 4

M11 0.02073 74.99014 18 M36 0.01493 54.02594 50

M12 0.01752 63.39446 43 M37 0.02205 79.76002 11

M13 0.02011 72.76578 22 M38 0.01728 62.52820 44

M14 0.02647 95.76985 2 M39 0.01965 71.09748 26

M15 0.02004 72.50354 24 M40 0.02245 81.21784 9

M16 0.01811 65.51145 36 M41 0.02469 89.32687 3

M17 0.01645 59.51517 47 M42 0.02070 74.87158 19

M18 0.02764 100 1 M43 0.02136 77.25686 14

M19 0.01833 66.30935 35 M44 0.02174 78.65256 13

M20 0.01987 71.89452 25 M45 0.02273 82.22710 8

M21 0.01549 56.05236 49 M46 0.01765 63.84701 40

M22 0.02194 79.37010 12 M47 0.01779 64.37003 38

M23 0.01837 66.47119 34 M48 0.02340 84.64196 7

M24 0.01699 61.45021 46 M49 0.02090 75.59566 17

M25 0.02059 74.47980 20 M50 0.01838 66.47730 33

217

Table 5.15. Ranking results of MARCOS method (Case 1)

SMD f(Ki
−) f(Ki

+) f(Ki) Rank SMD f(Ki
−) f(Ki

+) f(Ki) Rank

M1 0.22525 0.77475 0.56639 21 M26 0.22525 0.77475 0.50176 31

M2 0.22525 0.77475 0.44928 36 M27 0.22525 0.77475 0.74105 5

M3 0.22525 0.77475 0.46898 34 M28 0.22525 0.77475 0.86193 2

M4 0.22525 0.77475 0.71421 8 M29 0.22525 0.77475 0.44699 37
M5 0.22525 0.77475 0.52483 27 M30 0.22525 0.77475 0.54493 26

M6 0.22525 0.77475 0.66153 14 M31 0.22525 0.77475 0.54586 25

M7 0.22525 0.77475 0.43151 40 M32 0.22525 0.77475 0.42421 41

M8 0.22525 0.77475 0.85395 3 M33 0.22525 0.77475 0.31499 48

M9 0.22525 0.77475 0.48326 33 M34 0.22525 0.77475 0.70693 10
M10 0.22525 0.77475 0.54869 23 M35 0.22525 0.77475 0.63373 17

M11 0.22525 0.77475 0.54848 24 M36 0.22525 0.77475 0.15851 50

M12 0.22525 0.77475 0.57561 19 M37 0.22525 0.77475 0.44642 38

M13 0.22525 0.77475 0.71049 9 M38 0.22525 0.77475 0.52343 28

M14 0.22525 0.77475 0.51506 29 M39 0.22525 0.77475 0.48990 32
M15 0.22525 0.77475 0.58988 18 M40 0.22525 0.77475 0.71645 7

M16 0.22525 0.77475 0.35342 45 M41 0.22525 0.77475 0.67559 13

M17 0.22525 0.77475 0.32342 47 M42 0.22525 0.77475 0.73176 6

M18 0.22525 0.77475 0.64073 16 M43 0.22525 0.77475 0.67850 12

M19 0.22525 0.77475 0.37309 44 M44 0.22525 0.77475 0.33304 46

M20 0.22525 0.77475 0.46101 35 M45 0.22525 0.77475 0.87019 1
M21 0.22525 0.77475 0.41076 42 M46 0.22525 0.77475 0.43541 39

M22 0.22525 0.77475 0.64097 15 M47 0.22525 0.77475 0.22286 49

M23 0.22525 0.77475 0.56692 20 M48 0.22525 0.77475 0.82558 4

M24 0.22525 0.77475 0.54920 22 M49 0.22525 0.77475 0.37653 43

M25 0.22525 0.77475 0.50493 30 M50 0.22525 0.77475 0.67977 11

Kendall’s τ: Let, {(a1, b1), (a2, b2), ..., (an, bn)} is a set of observations for two random

variables A and B where all ai and bi (i = 1, 2, …, n) values are unique. Then, Kendall’s

τ is calculated by Eq. 5.45.

𝜏 =
(𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑒𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)−(𝑁𝑜. 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑒𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

(𝑛 2⁄)
 (5.45)

Spearman’s ρ: Any pair (𝑎𝑖, 𝑏𝑖) and (𝑎𝑗 , 𝑏𝑗) where 𝑖 < 𝑗 is said to be concordant if

either both 𝑎𝑖 > 𝑎𝑗 and 𝑏𝑖 > 𝑏𝑗 or 𝑎𝑖 < 𝑎𝑗 and 𝑏𝑖 < 𝑏𝑗 hold good. The Spearman’s

𝜌 is calculated by Eq. 5.46.

𝜌 = 1 −
6 ∑𝑑𝑖

2

𝑛 (𝑛2−1)
 (5.46)

here, 𝑑𝑖 is the difference between two ranks of each observation, and 𝑛 is the num-

ber of observations.

The aggregated final rank in terms of consistency (of both Kendall’s τ and Spear-

man’s 𝜌) for Case 1 is: MABAC > COPRAS > EDAS > ARAS > MARCOS, as shown

in Table 5.17. Similarly, we derived the ranking of alternatives subject to the influ-

ence of the criteria for the other cases (Case 2 to 4).

218

Table 5.16. Comparative analysis of the rankings by different MCDM methods (Case 1)

SMD
Ranking results Final rank

(SAW) EDAS ARAS MABAC COPRAS MARCOS

M1 35 38 27 37 21 33

M2 25 29 28 27 36 27

M3 50 49 49 48 34 48
M4 21 18 13 21 8 14

M5 7 9 10 5 27 10

M6 5 10 8 6 14 7

M7 32 33 25 32 40 32

M8 15 12 3 15 3 8
M9 30 19 36 31 33 31

M10 44 39 26 45 23 35

M11 16 20 16 18 24 21

M12 45 42 39 43 19 38

M13 23 26 20 22 9 20
M14 2 2 9 2 29 4

M15 22 27 15 24 18 22

M16 34 34 43 36 45 43

M17 47 45 45 47 47 47

M18 1 4 2 1 16 1

M19 33 13 41 35 44 36
M20 26 24 24 25 35 24

M21 48 48 48 49 42 49

M22 11 16 6 12 15 12

M23 37 36 42 34 20 37

M24 46 41 37 46 22 40
M25 18 3 22 20 30 16

M26 29 30 30 30 31 30

M27 10 15 5 10 5 9

M28 31 25 17 23 2 18

M29 41 47 33 41 37 41
M30 28 22 32 29 26 26

M31 14 5 21 16 25 15

M32 36 32 46 39 41 44

M33 40 40 44 42 48 45

M34 27 28 19 28 10 23
M35 3 1 7 4 17 2

M36 49 50 50 50 50 50

M37 13 14 23 11 38 19

M38 43 46 40 44 28 42

M39 24 23 31 26 32 25

M40 8 11 14 9 7 11
M41 4 7 1 3 13 3

M42 19 21 18 19 6 17

M43 12 17 11 14 12 13

M44 17 31 34 13 46 29

M45 9 8 12 8 1 6
M46 38 43 35 40 39 39

M47 39 44 47 38 49 46

M48 6 6 4 7 4 5

M49 20 35 29 17 43 28

M50 42 37 38 33 11 34

219

Table 5.17. Correlation test I (Case 1)

Coefficient
Final
rank

EDAS
rank

ARAS
rank

MABAC
rank

COPRAS
rank

MARCOS
rank

Kendall’s tau SAW_Rank .817** .778** .829** .830** .510**

Spearman’s rho SAW_Rank .947** .917** .960** .951** .704**

Aggregated final rank 0.882 0.848 0.8945 0.8905 0.607
** Correlation is significant at the 0.01 level (2-tailed).

Table 5.18 to Table 5.20 show the criteria weights for Case 2-4 as derived from the

performance values of the alternatives subject to influences of the criteria involved.

In Case 2, we used the full set of criteria but a reduced number of alternatives,

while in Case 3, we used the full set of alternatives subject to a reduced set of cri-

teria. In Case 4, we considered a reduced set for both alternatives and criteria. It

may be noted from Table 5.18 that C1, C2, and C13 obtain higher weights (more than

10%) while C4 and C8 are holding the least weight. It suggests that when we reduce

the number of alternatives, there is a change in the derived criteria weights (see

Table 5.10 and Table 5.18). The same phenomenon is observed when we compared

the derived criteria weights for the reduced set of criteria (for Cases 3 and 4, see

Table 5.19 and Table 5.20).

Table 5.18. Criteria weights (Case 2)

Cri-
teria

(+) (+) (+) (+) (+) (+) (+) (+) (−) (−) (−) (−) (−)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Hj 0.6296 0.8716 0.7732 0.9319 0.8127 0.8225 0.8202 0.9197 0.8744 0.9120 0.9181 0.9015 0.7753

wj 0.1818 0.0630 0.1113 0.0334 0.0919 0.0871 0.0882 0.0394 0.0617 0.0432 0.0402 0.0484 0.1103

Table 5.19. Criteria weights (Case 3)

Criteria
(+) (+) (+) (+) (+) (−)

C1 C2 C4 C6 C7 C9
Hj 0.8436 0.8556 0.9456 0.8998 0.9178 0.9498

wj 0.2660 0.2457 0.0925 0.1705 0.1398 0.0854

Table 5.20. Criteria weights (Case 4)

Criteria
(+) (+) (+) (+) (+) (−)

C1 C2 C4 C6 C7 C9
Hj 0.6296 0.8716 0.8127 0.8225 0.8202 0.8744

wj 0.3169 0.1098 0.1602 0.1519 0.1538 0.1075

Table 5.21 to Table 5.23 show the alternatives’ comparative ranking under Case 2-4,

respectively. After obtaining the ranking of the alternatives by various algorithms,

we found the aggregate rank by using the SAW method based on the appraisal

scores.

Now, for comparative analysis of various MCDM methods, it is important to see

the consistency of their results with the final preferential order. Hence, we

220

performed a non-parametric rank correlation test. Table 5.17 for Case 1 and Table

5.24 to Table 5.26 for Case 2–4 exhibit the results of correlation tests. From Table

5.24, we find that COPRAS > EDAS > ARAS > MABAC (MARCOS shows non-con-

sistency with the final ranking).

Table 5.21. Comparative analysis of the ranking by different MCDM methods (Case 2)

SMD
Comparative ranking Final rank

(SAW) EDAS ARAS MABAC COPRAS MARCOS

M1 3 5 6 2 6 4

M10 9 8 9 9 5 9

M15 8 9 3 8 7 7
M20 7 4 4 6 4 5

M25 5 2 5 5 10 6

M30 6 7 8 7 8 8

M35 1 1 1 1 3 1

M40 4 6 7 4 1 2

M45 2 3 2 3 9 3
M50 10 10 10 10 2 10

Table 5.22. Comparative analysis of the ranking by different MCDM methods (Case 3)

SMD
Ranking Results Final rank

(SAW) EDAS ARAS MABAC COPRAS MARCOS

M1 50 48 46 48 42 50
M2 16 23 21 23 4 13

M3 48 50 49 50 22 46

M4 41 34 29 34 50 44

M5 20 27 32 26 34 29

M6 10 9 18 11 25 15
M7 32 33 20 33 3 18

M8 26 20 9 20 48 31

M9 40 42 44 42 32 43

M10 38 36 19 36 35 33

M11 11 12 4 14 13 7
M12 36 40 37 40 8 23

M13 4 6 3 6 30 4

M14 5 7 15 7 10 6

M15 13 16 11 16 26 16

M16 43 44 48 43 46 49

M17 34 39 33 37 14 28
M18 1 2 2 2 2 2

M19 24 4 41 3 44 30

M20 44 45 35 45 18 35

M21 46 43 42 44 12 39

M22 12 14 8 15 7 5
M23 37 30 40 30 37 36

M24 22 24 24 24 1 14

M25 42 38 38 39 17 34

M26 30 31 34 31 11 22

M27 17 19 12 18 29 21
M28 19 18 10 19 40 24

M29 49 47 45 47 24 45

M30 21 15 31 12 9 17

M31 28 28 27 28 43 37

221

SMD
Ranking Results Final rank

(SAW) EDAS ARAS MABAC COPRAS MARCOS

M32 15 13 26 9 6 11

M33 27 29 36 29 45 40

M34 29 32 16 32 27 26

M35 2 1 14 1 19 1
M36 47 49 50 49 23 47

M37 8 5 6 4 28 9

M38 45 46 43 46 47 48

M39 31 26 25 27 33 32

M40 6 8 7 8 20 8

M41 9 10 13 10 41 19
M42 14 17 17 17 5 10

M43 23 21 22 21 16 20

M44 18 25 30 25 39 27

M45 3 3 1 5 15 3

M46 35 37 28 38 49 42
M47 39 41 47 41 21 41

M48 7 11 5 13 31 12

M49 33 35 39 35 38 38

M50 25 22 23 22 36 25

Table 5.23. Comparative analysis of the ranking by different MCDM methods (Case 4)

SMD
Comparative ranking Final rank

(SAW) EDAS ARAS MABAC COPRAS MARCOS

M1 9 10 10 10 8 10

M10 6 5 2 5 2 3

M15 5 6 5 6 3 6
M20 7 8 7 8 10 8

M25 8 7 8 7 7 7

M30 4 4 6 3 4 4

M35 1 1 4 1 1 1

M40 3 3 3 4 9 5

M45 2 2 1 2 5 2
M50 10 9 9 9 6 9

Table 5.25 indicates that EDAS > ARAS > MABAC > COPRAS > MARCOS, while

from Table 5.26, we trace that ARAS > EDAS > COPRAS > MABAC > MARCOS in

terms of consistency of their individual results with final ranking order as obtained

by using SAW.

Table 5.24. Correlation test II (Case 2)

Coefficient Final rank EDAS rank ARAS rank
MABAC

rank
COPRAS

rank
MARCOS

rank

Kendall’s tau SAW_Rank 0.778** 0.556* 0.556* 0.778** 0.067

Spearman’s rho SAW_Rank 0.903** 0.758* 0.709* 0.927** 0.139

Aggregated final rank 0.8405 0.657 0.6325 0.8525 0.103
** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

5.4.3 Sensitivity Analysis

Some of the essential requirements for MCDM-based analysis are the rationality,

222

stability, and reliability of the rankings [688]. There are several variations in the

given conditions, for instance, change in the weights of the criteria, MCDM algo-

rithms and normalization methods, and deletion/inclusion of the alternatives that

often lead to instability of the results [668] [689] [690]. Sensitivity analysis is con-

ducted to experimentally check the robustness of the results obtained using

MCDM based analysis [691] [692]. A particular MCDM method shows stability in

the result if it can withstand variations in the given conditions, such as fluctuations

in the criteria weights.

Table 5.25. Correlation test III (Case 3)

Coefficient Final rank EDAS rank ARAS rank
MABAC

rank
COPRAS

rank
MARCOS

rank

Kendall’s tau SAW_Rank .763** .701** .659** .700** .407**

Spearman’s rho SAW_Rank .917** .870** .840** .866** .585**
Aggregated final rank 0.84 0.7855 0.7495 0.783 0.496

** Correlation is significant at the 0.01 level (2-tailed).

Table 5.26. Correlation test IV (Case 4)

Coefficient Final rank EDAS rank ARAS rank
MABAC

rank
COPRAS

rank
MARCOS

rank

Kendall’s tau SAW_Rank 0.733** 0.867** 0.733** 0.911** 0.511*

Spearman’s rho SAW_Rank 0.891** 0.952** 0.867** 0.964** 0.685*

Aggregated final rank 0.812 0.9095 0.8 0.9375 0.598

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

For the sensitivity analysis, we used the scheme followed in [693], which simulates

different experimental scenarios by interchanging criteria weights. Table 5.27 to Ta-

ble 5.30 present the experimentations vis-à-vis the four cases used in this study.

Here, the green-highlighted numbers denote that the cell values of that particular

column interchange their weights, in each experiment. In this scheme, we attempt

to interchange weights of optimum and sub-optimum criteria, beneficial and cost

type of criteria to simulate various possible scenarios for examining the stability of

the ranking results obtained by various MCDM methods.

Fig. 5.4 depicts the comparative variations in the rankings of the alternatives as de-

rived by using five MCDM algorithms under different experimental set up for Case

1. We observe that all five considered MCDM methods provide reasonable stability

in the solution while COPRAS and ARAS perform comparatively better.

Table 5.31 highlights the correlation of the actual ranking with those obtained by

changing the criteria weights (see Table 5.27). In the same way, we carried out the

223

sensitivity analysis for all MCDM methods for Cases 2 to 4. Table 5.32 to Table 5.34

show the results of the correlation test as we do for Case 1.

Table 5.27. Interchange of criteria weights for sensitivity analysis (Case 1)

Criteria
Criteria weights under different experimental cases

Original Exp1 Exp2 Exp3 Exp4

C1 0.1441964 0.0169798 0.0501301 0.1441964 0.1441964

C2 0.1331763 0.1331763 0.1331763 0.1331763 0.1331763
C3 0.0936409 0.0936409 0.0936409 0.0936409 0.0936409

C4 0.1049768 0.1049768 0.1049768 0.1049768 0.1049768

C5 0.0501301 0.0501301 0.1441964 0.0501301 0.0925919

C6 0.0924398 0.0924398 0.0924398 0.0924398 0.0924398

C7 0.0757997 0.0757997 0.0757997 0.0757997 0.0757997

C8 0.0803856 0.0803856 0.0803856 0.0803856 0.0803856
C9 0.0462696 0.0462696 0.0462696 0.0462696 0.0462696

C10 0.0413577 0.0413577 0.0413577 0.0413577 0.0413577

C11 0.0169798 0.1441964 0.0169798 0.0925919 0.0169798

C12 0.0280555 0.0280555 0.0280555 0.0280555 0.0280555

C13 0.0925919 0.0925919 0.0925919 0.0169798 0.0501301

Table 5.28. Interchange of criteria weights for sensitivity analysis (Case 2)

Criteria
Criteria weights under different experimental cases

Original Exp1 Exp2 Exp3 Exp4

C1 0.1818299 0.1112996 0.0334131 0.1102984 0.1818299

C2 0.063014 0.063014 0.063014 0.063014 0.063014
C3 0.1112996 0.1818299 0.1112996 0.1112996 0.1112996

C4 0.0334131 0.0334131 0.1818299 0.0334131 0.0334131

C5 0.0919374 0.0919374 0.0919374 0.0919374 0.0919374

C6 0.0871434 0.0871434 0.0871434 0.0871434 0.0871434

C7 0.0882454 0.0882454 0.0882454 0.0882454 0.0882454
C8 0.0394249 0.0394249 0.0394249 0.0394249 0.0394249

C9 0.061668 0.061668 0.061668 0.061668 0.061668

C10 0.0431881 0.0431881 0.0431881 0.0431881 0.0431881

C11 0.0401855 0.0401855 0.0401855 0.0401855 0.1102984

C12 0.0483521 0.0483521 0.0483521 0.0483521 0.0483521

C13 0.1102984 0.1102984 0.1102984 0.1818299 0.0401855

Table 5.29. Interchange of criteria weights for sensitivity analysis (Case 3)

Criteria
Criteria weights under different experimental cases

Original Exp1 Exp2 Exp3 Exp4

C1 0.2660 0.0854 0.0925 0.2660 0.2660

C2 0.2457 0.2457 0.2457 0.2457 0.1705
C4 0.0925 0.0925 0.2660 0.0854 0.0925

C6 0.1705 0.1705 0.1705 0.1705 0.2457

C7 0.1398 0.1398 0.1398 0.1398 0.1398

C9 0.0854 0.2660 0.0854 0.0925 0.0854

Fig. 5.4 depicts the comparative variations in the rankings of the alternatives as

derived by using five MCDM algorithms under different experimental set up for

Case 1. We observe that all five considered MCDM methods provide reasonable

stability in the solution while COPRAS and ARAS perform comparatively better.

Table 5.31 highlights the correlation of the actual ranking with those obtained by

224

changing the criteria weights (see Table 5.27). In the same way, we carried out the

sensitivity analysis for all MCDM methods for Cases 2 to 4. Table 5.32 to Table 5.34

show the results of the correlation test as we do for Case 1.

Table 5.30. Interchange of criteria weights for sensitivity analysis (Case 4)

Criteria
Criteria weights under different experimental cases

Original Exp1 Exp2 Exp3 Exp4

C1 0.3168661 0.1074659 0.1098115 0.3168661 0.3168661

C2 0.1098115 0.1098115 0.3168661 0.1074659 0.1098115

C4 0.1602149 0.1602149 0.1602149 0.1602149 0.1518606

C6 0.1518606 0.1518606 0.1518606 0.1518606 0.1602149

C7 0.153781 0.153781 0.153781 0.153781 0.153781
C9 0.1074659 0.3168661 0.1074659 0.1098115 0.1074659

5.4.4 Time Complexity Analysis

This section reports the time complexity analysis and the runtimes of the five

MCDM methods considered in this study, as summarized in Table 5.35. All the

methods have a worst-case time complexity of O(mn), where m is the number of

alternatives and n is the number of considered criteria. However, EDAS, MABAC,

and COPRAS exhibit Ω(m + n) as the best-case time complexity if the decision

matrix is already prepared. But if the matrix is constructed in runtime, the best-

case time complexity for these methods also would be Ω(mn).

Depending on the MCC application and architecture, the MCC coordinator where

the SMD selection program would run might be a computer or an SMD. That is

why, to check the performance of the MCDM methods, we checked the runtime of

each of them by running on a laptop and a smartphone.

To run the MCDM algorithms on the laptop, we used Java (version 16) as the pro-

gramming language and MS Excel (version 2019) as the database. The programs

were executed on a laptop with AMD Ryzen 3 dual-core CPU (2.6 GHz, 64 bit) and

4 GB of RAM, operating on Windows 10 (64-bit). To run the programs on a

smartphone, we designed an app that could accommodate and run Java program

scripts; and in this case, we used a text file to store the decision matrix. The pro-

grams were executed on an SoC with 1.95 GHz Snapdragon 439 (12 nm), octa-core

(4 × 1.95 GHz Cortex-A53 and 4 × 1.45 GHz Cortex A53) CPU, and Adreno 505 GPU,

with 3 GB of RAM, operating on Android 11.

225

050

Original

Exp 1

Exp 2

Exp 3

Exp 4

(a) (b)

(c) (d)

(e) Legends

Fig. 5.4. Pictorial representation of sensitivity analysis (Case 1) (a) EDAS, (b) COPRAS, (c) ARAS,
(d) MARCOS, (e) MABAC

The MCDM module may get the decision matrix either from the secondary storage

or primary memory. We generally might store the database on the secondary stor-

age when we need to maintain the log for future analysis and prediction. But,

0

10

20

30

40

50
1

2 3 4 5
6

7
8

9
10
11
12
13
14
15

16
17

18
19

20
21

22232425
26

27282930
31

32
33

34
35

36
37
38
39
40
41
42

43
44

45
46

47484950

0

10

20

30

40

50
1

2 3 4 5
6

7
8

9
10
11
12
13
14
15

16
17

18
19

20
21

22232425
26

27282930
31

32
33

34
35

36
37
38
39
40
41
42

43
44

45
46

47484950

0

10

20

30

40

50
1

2 3 4 5
6

7
8

9
10
11
12
13
14
15

16
17

18
19

20
21

22232425
26

27282930
31

32
33

34
35

36
37
38
39
40
41
42

43
44

45
46

47484950

0

10

20

30

40

50
1

2 3 4 5
6

7
8

9
10
11
12
13
14
15

16
17

18
19

20
21

22232425
26

27282930
31

32
33

34
35

36
37
38
39
40
41
42

43
44

45
46

47484950

0

10

20

30

40

50
1

2 3 4 5
6

7
8

9
10
11
12
13
14
15

16
17

18
19

20
21

22232425
26

27282930
31

32
33

34
35

36
37
38
39
40
41
42

43
44

45
46

47484950

226

updating the SMD resource values in the decision matrix on the secondary storage

and retrieving them frequently for decision making involves considerable over-

head. Alternatively, the decision matrix could be updated dynamically where the

SMD resource values come directly to the coordinator’s memory. Compared to sec-

ondary storage, accessing memory takes negligible time.

Table 5.31. Correlation test V (sensitivity analysis—Case 1)

Coefficient Method Scenario Exp1 Exp2 Exp3 Exp4

Kendall’s tau

EDAS

Original

0.789 ** 0.729 ** 0.799 ** 0.824 **

ARAS 0.812 ** 0.781 ** 0.868 ** 0.896 **
MABAC 0.616 ** 0.749 ** 0.780 ** 0.882 **

COPRAS 0.799 ** 0.755 ** 0.827 ** 0.874 **

MARCOS 0.734 ** 0.752 ** 0.796 ** 0.881 **

Spearman’s rho

EDAS

Original

0.932 ** 0.892 ** 0.938 ** 0.952 **

ARAS 0.948 ** 0.936 ** 0.971 ** 0.981 **
MABAC 0.816 ** 0.914 ** 0.935 ** 0.979 **

COPRAS 0.939 ** 0.910 ** 0.950 ** 0.973 **

MARCOS 0.905 ** 0.914 ** 0.945 ** 0.974 **

** Correlation is significant at the 0.01 level (2-tailed).

Table 5.32. Correlation test VI (sensitivity analysis—Case 2)

Coefficient Method Scenario Exp1 Exp2 Exp3 Exp4

Kendall’s tau

EDAS

Original

0.911 ** 0.733 ** 0.689 ** 0.867 **

ARAS 0.778 ** 0.689 ** 0.956 ** 0.733 **

MABAC 0.556 * 0.200 0.556 * 0.600 *

COPRAS 0.911 ** 0.689 ** 0.867 ** 0.778 **
MARCOS 0.511 * 0.111 0.556 * 0.867 **

Spearman’s rho

EDAS

Original

0.976 ** 0.806 ** 0.806 ** 0.939 **

ARAS 0.903 ** 0.806 ** 0.988 ** 0.879 **

MABAC 0.709 * 0.370 0.758 * 0.745 *

COPRAS 0.964 ** 0.830 ** 0.939 ** 0.915 **
MARCOS 0.673 * 0.212 0.661 * 0.964 **

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Table 5.33. Correlation test VII (sensitivity analysis—Case 3)

Coefficient Method Scenario Exp1 Exp2 Exp3 Exp4

Kendall’s tau

EDAS

Original

0.665 ** 0.685 ** 0.980 ** 0.863 **

ARAS 0.767 ** 0.706 ** 0.985 ** 0.878 **

MABAC 0.615 ** 0.628 ** 0.976 ** 0.830 **

COPRAS 0.778 ** 0.719 ** 0.982 ** 0.879 **

MARCOS 0.946 ** 0.956 ** 1.000 ** 0.979 **

Spearman’s rho

EDAS

Original

0.844 ** 0.863 ** 0.998 ** 0.964 **

ARAS 0.923 ** 0.870 ** 0.999 ** 0.974 **

MABAC 0.799 ** 0.811 ** 0.998 ** 0.956 **

COPRAS 0.926 ** 0.880 ** 0.998 ** 0.974 **

MARCOS 0.992 ** 0.994 ** 1.000 ** 0.998 **
** Correlation is significant at the 0.01 level (2-tailed).

Since in MCC, the SMDs are mobile, the available SMDs (alternatives) continu-

ously change. Existing SMDs may leave, and new SMDs may join the network

227

randomly. Also, the status of the variable resources (e.g., C5, C7, C8, C9, C10, C11) of

each SMD varies time-to-time depending on its usage. In fact, in a typical central-

ized MCC, a data logging program always runs in the background to track the val-

ues of these recourses. This leads to change the decision matrix continuously. And

based on the changed decision matrix, the SMD ranking also changes. It is desira-

ble to store the decision matrix in the memory in such a dynamic scenario as long

as resource selection is required.

Table 5.34. Correlation test VIII (sensitivity analysis—Case 4)

Coefficient Method Scenario Exp1 Exp2 Exp3 Exp4

Kendall’s tau

EDAS

Original

0.600 * 0.600 * 1.000 ** 1.000 **
ARAS 0.600 * 0.556 * 1.000 ** 1.000 **

MABAC 0.556 * 0.289 1.000 ** 1.000 **

COPRAS 0.556 * 0.511 * 1.000 ** 1.000 **

MARCOS 1.000 ** 0.867 ** 1.000 ** 1.000 **

Spearman’s rho

EDAS

Original

0.709 * 0.770 ** 1.000 ** 1.000 **
ARAS 0.745 * 0.685 * 1.000 ** 1.000 **

MABAC 0.709 * 0.345 1.000 ** 1.000 **

COPRAS 0.721 * 0.673 * 1.000 ** 1.000 **

MARCOS 1.000 ** 0.952 ** 1.000 ** 1.000 **

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Therefore, to have a comparative analysis in this aspect, we calculated the runtime

considering both the scenarios: (a) when the dataset was fetched from the second-

ary storage and (b) when it was preloaded on RAM. The execution time was calcu-

lated using a timer (a Java function) in the program. The timer counted the time

from data fetching (either from RAM or storage) to completion of the program

execution. We executed each algorithm twenty times and took the average

runtime. To eliminate the outliers, we discarded the particular execution instances

that were abnormally protracted.

From Table 5.35, it can be observed that the average runtimes of the MCDM pro-

grams, when they are executed on a laptop, are significantly higher when the deci-

sion matrix is in the secondary storage as compared to when it is in memory. How-

ever, when these programs are executed on the smartphone, this difference is not

that high. This is because the typical storage used in smartphones is much faster

than the hard disks of laptops. Another point is worth mentioning that we used

text files as a database to execute the programs on the smartphone in our study. If

228

it were other traditional database applications, the time taken to fetch the dataset

from the phone storage would probably be much higher. In that case, the differ-

ence between the dataset in memory and storage would be significantly larger.

Table 5.35. Time complexity and runtimes for each MCDM method under various considerations

Method

Time complexity

Case

Average runtime
on laptop

(milliseconds)

Average runtime
on smartphone
(milliseconds)

Best case
Average

case
Worst
case

Data in
memory

Data in
secondary

storage

Data in
memory

Data in
phone
storage

Entropy
(criteria

weight cal-
culation)

Ω(m + n) θ(mn) O(mn)

Case 1 0.28391 135.1061 0.69546 1.16032

Case 2 0.08841 125.0397 0.17581 0.36809
Case 3 0.12917 124.2696 0.34542 0.73407

Case 4 0.06234 83.45512 0.09523 0.28998

EDAS Ω(m + n) θ(mn) O(mn)

Case 1 0.36754 124.50158 2.02136 2.46483

Case 2 0.08993 65.93222 0.42106 0.63313

Case 3 0.16748 67.90012 0.97938 1.36073

Case 4 0.06874 54.86296 0.22848 0.39752

ARAS Ω(mn) θ(mn) O(mn)

Case 1 0.30266 139.12975 0.87001 1.32013

Case 2 0.06918 65.64650 0.22711 0.41631

Case 3 0.08789 62.64661 0.44734 0.80465

Case 4 0.04303 49.42035 0.12672 0.30301

MABAC Ω(m + n) θ(mn) O(mn)

Case 1 0.27496 118.52908 1.03990 1.50524
Case 2 0.0904 64.17373 0.26752 0.45166

Case 3 0.11870 66.00892 0.53094 0.90594

Case 4 0.07156 52.62466 0.14914 0.34052

COPRAS Ω(m + n) θ(mn) O(mn)

Case 1 0.12264 122.95953 0.61347 1.05754

Case 2 0.04076 64.35327 0.13521 0.34481
Case 3 0.05597 64.29061 0.32844 0.69645

Case 4 0.03058 50.04589 0.08334 0.25656

MARCOS Ω(mn) θ(mn) O(mn)

Case 1 0.30410 127.74245 0.85634 1.29126

Case 2 0.06955 64.84879 0.21106 0.40832

Case 3 0.09898 64.22248 0.44186 0.81885
Case 4 0.04487 53.29281 0.12259 0.29045

In our comparative analysis, we executed each algorithm ten times for each case.

The average runtimes of ten executions were noted. The runtime of any program

varies depending on several internal and external factors. That is why we took the

average of ten execution instances. However, it is observed that the runtime vari-

ations are much higher on a laptop than on a smartphone. This is because the

number of background processes typically run on laptops is significantly higher

than on smartphones. Also, the resource scheduling in a laptop is more complex

than in a smartphone. Nevertheless, the variations in each execution could be more

neutralized if the number of considered execution instances is increased.

229

5.5 Discussion

In this section, we discuss the experimental findings and our observations. We also

present a critical discussion on the judiciousness and practicability of this work

and the findings.

5.5.1 Findings and Observations

In this section, we discuss the observations on the findings obtained through data

analysis. As mentioned throughout the chapter, we had the following four condi-

tions:

• Condition 1: Full set (Case 1: complete set of 13 criteria and 50 alternatives)

• Condition 2: Reduction in the number of alternatives keeping the criteria set

unaltered (Case 2: reduced set of 10 alternatives and complete set of 13 criteria)

• Condition 3: Variation in the criteria set (Case 3: reduced set of 6 criteria) keep-

ing the alternative set the same (i.e., 50)

• Condition 4: Variations in both alternative and criteria sets (Case 4: reduced

set of 10 alternatives and 6 criteria).

For all conditions, we noticed some variations in the relative ranking orders. By

further introspecting the results obtained from different methods and their asso-

ciation with the final ranking (obtained by using SAW), we found that for Case 1,

MABAC and COPRAS are more consistent. For Case 2, COPRAS and EDAS outper-

formed others in terms of consistency with the final ranking. For Case 3, we ob-

served that EDAS and ARAS showed better consistency while COPRAS performed

reasonably well. For Case 4, we found that COPRAS and ARAS showed relatively

better consistency with the final ranking. Therefore, the first level inference advo-

cates in favour of COPRAS for all conditions under consideration.

Moving further, we checked for stability in the results. We performed a sensitivity

analysis for all methods under all conditions, as demonstrated in Section 5.4.3.

Here also, we noticed mixed performance. However, COPRAS shows reasonably

stable results under all conditions given the variations in the criteria weights ex-

cept Case 4.

Therefore, it may be concluded that given our problem statement and

230

experimental setup, COPRAS has performed comparatively well under all case sce-

narios, while ARAS being its nearest competitor in this aspect. For both methods,

the procedural steps are less in number, simple ratio-based or proportional ap-

proach is followed, i.e., no need to identify anti-ideal and ideal solutions or calcu-

late distance. Therefore, the result does not show any aberrations. It may, however,

be interesting to examining the performance of the algorithms when criteria

weights are predefined, i.e., not depending on the decision matrix.

We further investigated the time complexities of the MCDM algorithms used in

this work to find out the most time-efficient one. All the considered MCDM meth-

ods perform equally in this aspect, though the best-case time complexity for EDAS,

MABAC, and COPRAS is better than others. Fig. 5.5 to Fig. 5.8 graphically present

the case-wise comparisons of the runtimes of each MCDM method for all the sce-

narios. Our experiment observed that the COPRAS method exhibits the most pe-

tite runtime for each dataset (cases) for all the considered scenarios, i.e., whether

the dataset is in the secondary storage or memory or the program is run on a laptop

or smartphone. Specifically, considering the average runtime for all the cases and

scenarios, the ranking of the MCDM methods as per their runtime (RT) is:

RT_COPRAS < RT_MARCOS < RT_ARAS < RT_MABAC < RT_EDAS.

Fig. 5.5. Runtime comparison of MCDM methods on the laptop for each case when the dataset is

in the memory

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

Case 1 Case 2 Case 3 Case 4

M
il

li
se

co
n

d
s

231

Fig. 5.6. Runtime comparison of MCDM methods on the laptop for each case when the dataset is

in the secondary storage

Fig. 5.7. Runtime comparison of MCDM methods on the smartphone for each case when the da-

taset is in the phone storage

Fig. 5.8. Runtime comparison of MCDM methods on the smartphone for each case when the da-

taset is in the memory

However, this rank does not hold true for all the executions in each case. For ex-

ample, from Fig. 5.6, it can be noted that ARAS and MABAC took less time to exe-

cute in Case 1. In practice, Case 3 probably would be more common than other

cases for a typical MCC application, i.e., there would be few numbers of SMDs

0

20

40

60

80

100

120

140

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

Case 1 Case 2 Case 3 Case 4

M
il

li
se

co
n

d
s

0

0.5

1

1.5

2

2.5

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

Case 1 Case 2 Case 3 Case 4

M
il

li
se

co
n

d
s

0

0.5

1

1.5

2

2.5

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

E
D

A
S

A
R

A
S

M
A

B
A

C

C
O

P
R

A
S

M
A

R
C

O
S

Case 1 Case 2 Case 3 Case 4

M
il

li
se

co
n

d
s

232

available as computing resources and the application demanding a certain number

of selection criteria. For this case, COPRAS took 0.05597 milliseconds on average

if it runs on a laptop while the dataset resides in the memory and 0.32844 millisec-

onds for a smartphone. For a dynamic resource selection in MCC, this time re-

quirement is tolerable. However, when the dataset is on the secondary storage, the

runtime increases exponentially in the case of the laptop but not a smartphone.

The runtime for both the MCDM method and Entropy calculation should be con-

sidered to get the effective runtime for the ranking process. Like the MCDM meth-

ods, for Entropy calculation also, when the dataset is on the secondary storage, the

runtime increases exponentially in the case of the laptop but not a smartphone, as

shown in Fig. 5.9. Therefore, we can postulate that if the MCC coordinator is a lap-

top or desktop computer, the dataset needs to be stored in the memory before

resource selection.

Fig. 5.9. Runtime comparison for Entropy method

Considering the above discussions, it can be deduced that the COPRAS method is

the most suitable for resource selection in MCC in terms of correctness, robust-

ness, and computational (time) complexity.

5.5.2 Rationality and Practicability

In this section, we present a critical discussion on the rationality and practicability

of this study.

5.5.2.1 Assertion

In the previous section, we conclusively observed that for resource selection in

MCC, the COPRAS method is the most favourable in all respect. However, it should

0

20

40

60

80

100

120

140

L P M L P D S P M S P D

M
il

li
se

co
n

d
s Case 1

Case 2

Case 3

Case 4

233

not be misinterpreted that the COPRAS method is the ideal solution for resource

selection in MCC. In fact, optimized resource selection in a dynamic environment

like MCC is an NP-hard problem. Hence, practically no solution can be claimed as

optimal. We only assert that we found that COPRAS scales favourably in all aspects

compared to other methods. But this does not mean that COPRAS is the ideal so-

lution. There is always scope to explore further for a more suitable multi-criteria

resource selection algorithm that would be more computing and time-efficient.

It is to be noted that the effectiveness of an MCDM solution depends on the par-

ticular problem and the data. In real implementations of MCC, the actual SMD

data would certainly change, be it for different instances of the same MCC system

or in different MCC systems. Due to the dynamic nature of a typical MCC, the

SMDs are not fixed. Even if the SMDs are fixed in an MCC for a certain period, their

resource values will vary depending on the applications running on them and their

users’ device usage behaviour. Moreover, since the need for computing resources

varies according to application requirements, the selection criteria and weights

also differ accordingly. In these cases, the datasets would vary from those we used

in our experiment. But the problem behaviour and data types would be the same

for all MCC applications and throughout their different execution instances.

Hence, a solution found suitable for the given dataset would be applicable to any

similar dataset for MCC. Even if the size of the datasets varies in different MCC,

the finding of this study will hold true because we found that COPRAS performed

comparatively better in all four considered datasets of different sizes.

5.5.2.2 Application

The resource selection module is generally incorporated in the resource manager

module of a typical distributed system. And the resource manager module gener-

ally is part of the middleware of a 3-tier system. Therefore, in the actual designing

and implementation of an MCC system, the MCDM-based resource selection algo-

rithm would be integrated into the middleware of MCC. This resource selection

algorithm should generate a ranked list of the available SMDs based on their re-

sources. The MCC job scheduler would dispatch the MCC jobs to the top-ranked

SMDs from the list. This would ensure a better turnaround time and throughput

234

and, in turn, better QoS of the MCC.

5.5.2.3 Implications

The findings of this work would allow the MCC system designers and developers

to adopt the right resource selection method for their MCC based on its scale and

also on the preference and priority of the resource types. This would also contrib-

ute to managerial decision-making for implementing organizational MCC. As the

study simulates different scenarios and compares the available options, it would

be a likely reference for the decision-makers to choose the right MCDM method

for resource selection and consider the appropriate size of the employed MCC and

decide on the right number of selection criteria.

Furthermore, the pronouncements of this work shall allow the researchers to

choose a suitable MCDM method with reasonably higher accuracy and lesser run

time complexity to solve real-life problems similar to the one discussed in this

chapter. Not only the researchers in the area of MCC and other allied fields (e.g.,

mobile grid computing, mobile cloud computing, and other related forms of dis-

tributed computing), this study would be of interest also to the people from the

MCDM field who might find it motivating to nurture this problem domain and

come up with some novel or improved methods that would be more suitable to

address the associated resource dynamicity.

5.6 Limitations and Further Scopes

The MCC environment is really dynamic in nature, i.e., not only the SMDs but also

the status of the resource parameters of each existing SMDs change frequently.

Therefore, the resource selection not only needs to be optimal but also to be adap-

tive in an unpredictable MCC environment. That is to say, the MCDM method

should be capable of acclimating to the continual alteration in the data matrix due

to the frequent variation of the available SMDs and their resource values. Ideally,

whenever there is a change in the alternative list or in the performance score, the

MCDM method should be able to reflect this change in the overall ranking without

reranking the whole list in the next iteration of resource selection. This should not

only minimize the SMD selection and decision-making time but also truly reflect

235

the dynamic and scalable nature of MCC, which is not in the case of the traditional

MCDM methods.

We used the entropy method to calculate the criteria weights. It is an objective

approach in which the criteria weights depend on the decision matrix values. In a

dynamic environment like MCC, the SMDs may join and leave the network fre-

quently, and the status of their variable resources also changes as per device usage.

This results in frequent alteration in the decision matrix. This implies that the en-

tropy calculation should be done every time for criteria weight determination,

which is a real overhead.

Here, the criteria weights were calculated dynamically based on the present re-

source status of the SMDs, expressed in metric terms. We did not take into account

the criteria preferences in line with the resource specification preference of the

MCC applications. As the dataset gets changed based on varying criteria and alter-

native sets, the criteria weights also get changed according to the performance val-

ues of the alternatives. Hence, this approach might not provide the optimal re-

source ranking as per the real applicational requirements. So, our future study can

explore the possibility of defining the criteria weights based on the required re-

source specifications of a typical MCC user or application.

We opted for the most straightforward normalization technique, i.e., linear nor-

malization. But there are various normalization techniques in practice that could

be used. Therefore, there is a scope to study the effect of different normalization

techniques in the ranking and execution performance of the MCDM methods.

5.7 Summary

For better QoS of MCC, selecting the most capable SMDs is essential. Since the

selection is made based on several diverse SMD resources, the SMD selection prob-

lem can be described as multicriteria decision-making (MCDM) problem.

In this chapter, we performed a comparative assessment of different MCDM meth-

ods (EDAS, ARAS, MABAC, MARCOS, and COPRAS) to rank the SMDs based on

their resource parameters, among a number of available SMDs, for being consid-

ered as computing resources in MCC. The assessment was done in terms of ranking

236

robustness and the execution time of the MCDM methods. Considering the dy-

namic nature of MCC, where the resource selection is supposed to be on-the-fly,

the selection process needs to be as less time-consuming as possible. For selection

criteria, we considered the fixed (e.g., CPU and GPU power, RAM and battery ca-

pacity, etc.) and the variable (e.g., current CPU and GPU load, available RAM, bat-

tery remaining, etc.) resource parameters.

We used the final score values of the alternatives as obtained by using different

algorithms and applied the SAW method for arriving at the aggregate ranking of

the alternatives. We also carried out a comparison of the ranking performance of

the MCDM methods used in this study. We investigated their consistency with

respect to the aggregate ranking and their stability through sensitivity analysis.

We calculated the time complexities of all the methods. We also assessed the ac-

tual runtime of all the methods by executing them on a Windows-based laptop and

an Android-based smartphone. To assess the effect of the size of the dataset, we

executed the MCDM methods with four datasets of different sizes. To have datasets

of varied sizes, we changed the number of selection criteria and alternatives

(SMDs) separately. For each dataset, we executed the programs considering two

scenarios, when the dataset resides in the primary memory and when it is fetched

from secondary memory.

It is observed that in terms of correctness, consistency, and robustness, the COP-

RAS method exhibits better performance under all case scenarios. As per time

complexity, all the five MCDM methods are equal, i.e., O(mn), where 𝑚 × 𝑛 is the

decision matrix (m is the number of SMDs and n is the number of selection crite-

ria). However, EDAS, MABAC, and COPRAS have a better best-case (Ω(m + n))

complexity. Overall, COPRAS has been shown to have the least runtime for each

execution case, i.e., for all four matrix sizes, on the laptop and on the smartphone.

The COPRAS method is found to be better than other MCDM methods (EDAS,

ARAS, MABAC, and MARCOS) for all test parameters and in all test scenarios.

Hence, it can be concluded that among the existing MCDM methods, COPRAS

would be the most suitable choice for resource ranking to select best resources in

MCC and other similar systems.

6

Task Scheduling in MCC

"We can't change the wind, but we can set the sails differently." --- Aristotle

6.1 Introduction

To attain the best performance of an MCC system, it is crucial to schedule the tasks

to the SMDs optimally. The hardware organisations of the SMDs are vastly heter-

ogeneous. The overall computing capacity depends on various SMD resources such

as CPU and GPU power, available RAM, etc. For example, SMDs might have differ-

ent CPU and GPU models with different clock frequencies. Accordingly, the exe-

cution time for a certain task on different SMDs would not be the same. It is un-

derstood that an SMD would be more efficient in executing the assigned task if it

is equipped with more computing power. Besides, factors such as the remaining

battery, device temperature, etc., also play crucial roles for an SMD being consid-

ered a suitable computing entity. An efficient scheduling policy should consider all

these parameters to maximise the overall performance of MCC. Additionally, con-

sidering the limited battery power of the SMDs an ideal schedular should be en-

ergy-efficient, i.e., to achieve the successful and sustainable attainment of MCC as

HPC, it is vital to manage the SMD load efficiently so that the MCC tasks are exe-

cuted with minimum energy consumption.

However, there is an issue in fulfilling the above goals unilaterally. It might happen

that to maximise the system's overall throughput and/or energy efficiency, the

same SMDs are assigned tasks repetitively. While, the low-profile and/or and high

energy consuming SMDs might receive the tasks dispersedly. This leads to im-

proper utilisation of resources and a huge load imbalance among the SMDs. This

is not appreciable for any distributed systems. It becomes more vital in MCC since

it is a crowdsourced system. Obliging the typical human nature, people would be

apprehensive about being part of MCC if their SMDs are continuously overloaded.

Hence, it is necessary to have an efficient scheduling algorithm that not only

238

maximises the MCC performance with minimum energy consumption but also ne-

gotiates the issue of underutilisation of resources with even load balancing among

all the available SMDs. The task scheduling problem in distributed systems is typ-

ically an NP-complete, that is why its solution approaches are generally heuristic

or metaheuristic, by which we attempt to reach an approximately optimal solution

instead of an absolute optimal one. To attain the above objectives, we also use heu-

ristic and metaheuristic approaches to propose two scheduling solutions in this

chapter, divided into the following two sections:

a) In Section 6.2, we present an efficient resource-aware task scheduling algo-

rithm for MCC, conforming to multiple optimisation criteria such as maxim-

ised makespan, and resource utilisation and minimised dispersity in load bal-

ance. For this we, followed a heuristic approach.

b) In Section 6.3, we present a load balance aware energy-efficient task schedul-

ing algorithm for MCC, aiming to schedule the MCC tasks to the designated

SMDs so that the overall energy consumption of the SMDs remains minimum

as well the load distribution among the SMDs remain fairly even. For this so-

lution, we use a PSO-based metaheuristic approach.

Overall, in this chapter, we aim to achieve the followings:

• Design a heuristic-based resource-aware task scheduling algorithm for MCC

by considering multiple real-time dynamic resource parameters of SMDs.

• The algorithm should attain the objectives like minimised makespan and load

dispersity, and maximised resource utilisation that are important aspect of the

performance of MCC.

• Design a metaheuristic-based energy-efficient task scheduling algorithm for

MCC by considering the real-time CPU information of SMDs.

• This algorithm should attain the objectives like minimum energy consumption

and also fair load balancing, which is a crucial aspect for energy-constraint re-

sources.

• Conduct extensive simulation for both the algorithms on synthetic and real

datasets to analyse and validate their efficacy.

• Frame multiple simulation scenarios with different sets of task-SMD mappings

239

to check the algorithms’ reliability and consistency.

• Compare the performance of the proposed algorithms with similar heuristic

and metaheuristic algorithms.

6.2 Resource-Aware Scheduling

In this section, we present a heuristic scheduling algorithm that considers different

resource parameters of the SMDs to schedule the MCC tasks considering

makespan, resource utilization and load balance.

6.2.1 System Model and Problem Formulation

The system and execution models of the proposed scheduler for MCC are discussed

below. Here we also formally establish the addressed problem.

6.2.1.1 System Model

Here, we have considered a local MCC [465]. The coordinator divides a large com-

putationally intensive job into a few smaller noninterfering and parallelly executa-

ble tasks, as shown in Fig. 6.1. Here, we considered the MCC model for the appli-

cations with loosely-coupled parallel tasks, such as the bag-of-tasks (BoT) applica-

tions whose tasks are completely independent. These tasks are assumed of homo-

geneous characteristics and have a uniform format but they might have nonuni-

form computation length (execution time) and input and output data size. The

execution time also varies due to the diverse computing capacities of SMD proces-

sors. The middleware selects and schedules the tasks to the SMDs based on differ-

ent optimising criteria.

Get resource status
of each SMD

Apply proposed
resource-aware

heuristic algorithm

Map tasks
to SMDs,
obliging

the
optimising

criteria

Divide the task
into independent

subtasks

Receive a
computing

intensive task

Available SMDs
in MCC

Fig. 6.1. Task scheduling in MCC

240

We considered the following resource parameters of the SMDs for task scheduling:

a. CPU: CPU power denotes the computation capability of the CPU of an SMD. It

depends on two factors: the clock frequency of the CPU and the number of cores

within it. The effective CPU power of an SMD (𝑚𝑘) is calculated using Eq. 6.1,

where 𝐶𝑃𝑈_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑘 denotes the highest clock frequency of the CPU cores

of 𝑚𝑘, 𝐶𝑃𝑈_𝑐𝑜𝑟𝑒𝑘 indicates the number of CPU cores in 𝑚𝑘 and 𝐶𝑃𝑈_𝑙𝑜𝑎𝑑𝑘 rep-

resents the current CPU load of 𝑚𝑘.

𝑷(𝒎𝒌) =
𝑪𝑷𝑼_𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚𝒌×𝑪𝑷𝑼_𝒄𝒐𝒓𝒆𝒌

𝑪𝑷𝑼_𝒍𝒐𝒂𝒅𝒌
 (6.1)

b. Available RAM: Since the MCC tasks need to be loaded into the RAM for exe-

cution, there should be enough free space in the RAM for efficient execution.

We denote available RAM of an SMD as 𝑅(𝑚𝑘).

c. Battery: It indicates how much battery charge is left. Higher is better. The bat-

tery is generally represented by %, which is typically relative to the total capacity

of the SMDs’ battery. For example, for a 60% availability, the SMD with 12000

mA of the battery will have a much higher charge remaining than the one having

a battery of 6000 mA. The effective available battery of SMD (𝑚𝑘) is calculated

using Eq. 6.2, where 𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑘 indicates the total capacity of 𝑚𝑘’s

battery and 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑎𝑣𝑙𝑘
(%) suggests the current charge % of 𝑚𝑘’s battery.

𝑩(𝒎𝒌) =
𝒕𝒐𝒕𝒂𝒍_𝒃𝒂𝒕𝒕𝒆𝒓𝒚_𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚𝒌 × 𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒃𝒂𝒕𝒕𝒆𝒓𝒚_𝒂𝒗𝒍𝒌

(%)

𝟏𝟎𝟎
 (6.2)

d. Device temperature: SMD's temperature depends on the heat generated by in-

dividual components such as the processing unit, signal module, battery, etc.

However, for simplicity, we considered only the overall device temperature (oC).

We denote the temperature of an SMD as 𝑇(𝑚𝑘).

6.2.1.2 Execution model

Let us assume, at a time instant (τ), the coordinator divides a job T into a set of

independent tasks such that 𝑇 = {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛}. The tasks vary in terms of in-

struction lengths in million instructions per second (MIPS), resource require-

ments, processing time, etc. At τ, a set of SMDs M (𝑀 = {𝑚1, 𝑚2, 𝑚3, … ,𝑚𝑚}) is

available in the MCC system. These n tasks need to be executed on m SMDs. The

processors of M are heterogeneous, i.e., they have different computing capacities,

241

and hence, they take dissimilar durations to execute a certain task. In the follow-

ing, we define the terms used in this work.

Execution time: The estimated time to execute tj on mk is calculated by Eq. 6.3.

𝑋𝑇(𝑡𝑗, 𝑚𝑘) =
𝑧𝑡𝑗

𝑃(𝑚𝑘)
 (6.3)

where, 𝒛𝒕𝒋 denotes the instruction length of tj in MIPS and 𝑷(𝒎𝒌) is the effective

CPU of mk.

Start time: The timestamp at which mk starts executing tj is formulated by Eq. 6.4.

𝑆𝑇(𝑡𝑗, 𝑚𝑘) = min {𝑅𝑇(𝑚𝑘)} (6.4)

Release time: 𝑅𝑇(𝑚𝑘) denotes the timestamp when mk completes executing all

the assigned tasks to it. Initially, 𝑅𝑇(𝑚𝑘) = 0|∀𝑚𝑘 ∈ 𝑀. After execution of tj on mk,

𝑅𝑇(𝑚𝑘) is updated using Eq. 6.5.

𝑅𝑇(𝑚𝑘) = 𝑅𝑇(𝑚𝑘) + 𝐸𝐹𝑇(𝑡𝑗) (6.5)

Earliest finish time: The earliest finish time denotes the shortest time to com-

plete the execution of tj on mk, and is calculated using Eq. 6.6.

𝐸𝐹𝑇(𝑡𝑗) = min {𝐹𝑇(𝑡𝑗,𝑚𝑘)|∀𝑚𝑘 ∈ 𝑀} (6.6)

Finish time: The finish time denotes the timestamp when tj starts its execution

on mk plus its own execution time on mk. It is calculated using Eq. 6.7.

𝐹𝑇(𝑡𝑗, 𝑚𝑘) = 𝑆𝑇(𝑡𝑗, 𝑚𝑘) + 𝑋𝑇(𝑡𝑗 , 𝑚𝑘) (6.7)

Makespan: It denotes the total scheduled length by timestamping when all the

tasks are completed by all the allocated SMDs. The makespan is calculated using

Eq. 6.8.

𝑀𝑆 = max {𝑅𝑇(𝑚𝑘)} (6.8)

Load balancing: The scheduling algorithm should assign the tasks to the SMDs

so that they are evenly loaded. The load balancing is defined by Eq. 6.9. The value

of LB lies between (0,1], and a lower value of LB indicates better balancing of task

loads where 𝑅𝑇
𝑎𝑣𝑔

 is the average release time and is defined by Eq. 6.10.

242

𝐿𝐵 = √
∑ {𝑅𝑇

𝑎𝑣𝑔
−𝑅𝑇(𝑚𝑘)}

2𝑟
𝑘=1

𝑀
 (6.9)

𝑅𝑇
𝑎𝑣𝑔

=
1

𝑀
∑ 𝑅𝑇(𝑚𝑘)
𝑟
𝑘=1 (6.10)

Resource utilisation: The ratio between the average release time and the sched-

uled length is calculated using Eq. 6.11.

𝑅𝑈 =
𝑅𝑇
𝑎𝑣𝑔

𝑀𝑆
 (6.11)

6.2.1.3 Problem Formulation

We present the proposed multicriteria-based resource-aware task scheduling

problem as a linear programming problem (LPP). The goal is to schedule a set of n

number of independent tasks, i.e., 𝑇 = {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} to a set of m number of

SMDs, i.e., 𝑀 = {𝑚1, 𝑚2, 𝑚3, … ,𝑚𝑚} based on combined resources. The objective

is to minimise makespan (MS) and load balance (LB) and maximise resource utili-

sation (RU) simultaneously.

Here, we adopted a weighted sum approach. A weight value (𝜔𝑖), defined by Eq.

6.12, is multiplied with each objective parameter and subsequently are summed up

to form a combined final scheduling objective (𝑆𝑜𝑏𝑗).

∑ 𝜔𝑖 = 1,
3
𝑖=1 0 < 𝜔𝑖 ≤ 1|∀𝑖, 1 ≤ 𝑖 ≤ 3 (6.12)

The goal is to minimise 𝑆𝑜𝑏𝑗, satisfying the set objectives, and the problem is for-

mally expressed by Eq. 6.13, subject to Eq. 6.14 and Eq. 6.12.

𝑆𝑜𝑏𝑗 = 𝜔1 ×𝑀𝑆 + 𝜔2 × 𝐿𝐵 + 𝜔3 × (1 − 𝑅𝑈) (6.13)

∑ 𝛼𝑘
𝑗
= 1|∀𝑗, 1 ≤ 𝑗 ≤ 𝑛𝑚

𝑘=1 (6.14)

where, 𝛼𝑘
𝑗
 is a be a Boolean variable and is defined by Eq. 6.15.

𝛼𝑘
𝑗
= {

1, if 𝑡𝑗 is assigned to 𝑚𝑘

0, otherwise
 (6.15)

Considering Eq. 6.15, Eq. 6.14 represents a non-preemptive scheduling property.

6.2.2 Proposed Heuristic-based Resource-aware Scheduling for MCC

In this section, to discuss the proposed scheduling method, we first calculate the

243

resource strength of each SMD and then accordingly prioritise the tasks for sched-

uling.

6.2.2.1 Resource Strength Assessment

Each SMD or 𝑚𝑘 consists of p number of resource parameters as R = {𝑟1, 𝑟2, …, 𝑟𝑝}.

The resource strength, 𝑅𝑆(𝑚𝑘), of an SMD suggests the overall status of its re-

sources. It signifies an SMD's competence as a computing node at any instant. Con-

sidering the real-time resources, as described in Section 6.2.1.1, 𝑅𝑆(𝑚𝑘) is calcu-

lated by equation Eq. 6.16.

𝑅𝑆(𝑚𝑘) = ∑ 𝜃𝑖
𝑟
𝑖=1 ×

𝑟𝑖𝑘

max (𝑟𝑖𝑘)
 (6.16)

where 𝜃𝑖 is the weight value of ith resource, subject to 0 < 𝜃𝑖 ≤ 1 and ∑ 𝜃𝑖
𝑟
𝑖=1 = 1,

𝑟𝑖𝑘 is the current measure of the ith resource of SMD 𝑚𝑘, r is the number of resource

parameters considered (in our case, it is 4), and max (𝑟𝑖𝑘) indicates the maximum

current measure of the ith resource among all the SMD available in MCC at the

current time.

6.2.2.2 Scheduling Cost Estimation

For mapping the tasks with respect to suitable SMDs, we calculate the scheduling

score (SC) for each combination of (𝑡𝑗 , 𝑚𝑘) using Eq. 6.17. Subsequently, the aver-

age SC of a particular task is calculated for all the SMDs using Eq. 6.18.

𝑆𝐶(𝑡𝑗, 𝑚𝑘) = {
𝑧𝑡𝑗

𝑅𝑆(𝑚𝑘)
×

1

𝑃(𝑚𝑘)
|∀𝑚𝑘 ∈ 𝑀, ∀𝑡𝑗 ∈ 𝑇} (6.17)

𝑆𝐶𝑎𝑣𝑔(𝑡𝑗,𝑀) = ∑
𝑆𝐶(𝑡𝑗,𝑚𝑘)

𝑚
𝑚
𝑘=1 (6.18)

The overall stepwise mapping procedure of 𝑡𝑗 to 𝑚𝑘 based on calculated

𝑆𝐶𝑎𝑣𝑔(𝑡𝑗, 𝑀) is demonstrated in Fig. 6.2. The pseudocode of the proposed sched-

uling algorithm is presented in Algorithm 6.1.

6.2.2.3 Illustration

In the following, we illustrate the working of the proposed methodology. Subse-

quently, we compare it with three other methods.

Let us consider, at a time instance (τ), an MCC task arrives at the MCC coordinator

244

and is divided into ten independent subtasks (𝑡1, 𝑡2, 𝑡3, … , 𝑡10). Each task has a dif-

ferent instruction length. Let us assume at τ four SMDs (𝑚1,𝑚2, 𝑚3, 𝑚4) are avail-

able, and the tasks are to be scheduled to these SMDs. A task would take different

times for execution on different SMDs.

Start
Sort T in

descending order
based on SCavg

Select a pair of
{max(SCavg(tj,M)),
min(SCavg(tj,M))}

All tasks
scheduled?

Yes

From max(SCavg(tj,M)),
schedule tj to mk

with minimum
completion time

From min(SCavg(tj,M)),
schedule tj to mk

with minimum
completion time

Generate the final
schedule (task/
SMD mapping)

End

No

Fig. 6.2. Procedure of mapping tasks to SMDs

Algorithm 6.1: Multicriteria-based Resource-Aware Scheduling for MCC
Input: (1) Set of tasks, 𝑇 = {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} with 𝑧𝑡𝑗 instruction length of 𝑡𝑗

 (2) Set of SMDs, 𝑀 = {𝑚1, 𝑚2,𝑚3, … ,𝑚𝑚}
 (3) Set of resources, R = {𝑟1, 𝑟2, …, 𝑟𝑝} for each 𝑚𝑘

Output: 𝑇 → 𝑀 mapping

for (∀𝑚𝑘 ∈ 𝑀)

{

Calculate 𝑃(𝑚𝑘) using Eq. 6.1

Calculate 𝐵(𝑚𝑘) using Eq. 6.2

}

for (∀𝑚𝑘 ∈ 𝑀)

{

Calculate 𝑅𝑆(𝑚𝑘) using Eq. 6.16

}

for (∀𝑡𝑗 ∈ 𝑇)

{

Calculate 𝑆𝐶(𝑡𝑗,𝑚𝑘) using Eq. 6.17

Calculate 𝑆𝐶𝑎𝑣𝑔(𝑡𝑗 ,𝑀) using Eq. 6.18

}

Sort T in descending order based on 𝑆𝐶𝑎𝑣𝑔(𝑡𝑗, 𝑀)

Initialise

max = 1

min = j

for (i = 1 to j) // run for all the tasks in T

{

if (i%2 == 1) then

{

 Select the max task from T and assign it to the SMD with min(𝐸𝐹𝑇(𝑡𝑗)) as per Eq.

6.6

max ++

}

else

{

Select the min task from T and assign it to the SMD with min(𝐸𝐹𝑇(𝑡𝑗)) as per Eq.

6.6

min --

}

}

Calculate 𝑆𝑜𝑏𝑗 using Eq. 6.13

As mentioned in Section 6.2.2.1, each SMD consists of several resources. The

245

normalised values of the resources of each SMDs are shown in Table 6.1. The re-

source strength (RS) of each SMD is calculated by Eq. 6.16, as shown in the table.

With respect to each task, the scheduling score (SC) is calculated for each SMD, as

shown in Table 6.2.

Now, as per Algorithm 6.1, we first select the task with maximum SCavg and sched-

ule it to the SMD with minimum execution time. From Table 6.2, we can see that

t2 has a maximum SCavg value and is mapped to m2. Next, the task with minimum

SCavg should ideally be mapped to the SMD with minimum execution time. Here,

t6 has the minimum SCavg, which should be mapped to m2 because m2 provides the

minimum execution time for t6. However, m2 is still busy executing t2. Hence, t6 is

mapped to m3 with the next minimum completion (as per Eq. 6.6) time after m2.

The complete scheduling sequence for all the tasks is shown in Table 6.3. It can be

observed (highlighted in bold) that the final schedule length is 331.754, accounting

for t9 → m3, i.e., task t9 is scheduled to SMD m3.

To check the stand of our proposed algorithm, we compared it with PSO, GA, and

MCT. The makespan and execution sequences for PSO, GA, and MTC are shown

in Table 6.4, Table 6.5, and Table 6.6, respectively. The release times for each SMD

after executing all the scheduled tasks are given in Table 6.7. The maximum release

time is the makespan for the respective method, as per Eq. 6.5 and Eq. 6.8. The

overall performance comparison of all the evaluated methods with respect to the

considered objectives is given in Table 6.8. It can be seen that the proposed algo-

rithm outperforms all other three methods in all respects.

Remark 6.1. It can be observed in Table 6.3 that t1 is scheduled to m4; however,

from Table 6.2, it can be seen that the minimum execution for t1 is achieved if it

was mapped to m2. The same can be stated for other tasks also. However, our algo-

rithm does not blindly schedule a task to the SMD that has the minimum execution

time; rather, it calculates the earliest completion time (calculated using Eq. 6.6) of

the given task on any SMDs.

Remark 6.2. The proposed algorithm schedules the tasks not only based on the

earliest finish time but also considers the other two optimising objectives, i.e., load

246

balance and resource utilisation. Thus, our algorithm provides balanced schedul-

ing to achieve the best possible combinations of all three objectives.

Table 6.1. Resource strength calculation

SMD 𝑷(𝒎𝒌) 𝑹(𝒎𝒌) 𝑩(𝒎𝒌) 𝑻(𝒎𝒌) 𝑹𝑺(𝒎𝒌)

m1 0.195 0.074 0.022 0.091 0.653019

m2 0.226 0.078 0.025 0.093 0.724554

m3 0.115 0.144 0.096 0.097 0.967786

m4 0.211 0.112 0.206 0.096 0.698103

Table 6.2. Computation of execution time and scheduling score

Task
Task
size

𝑿𝑻(𝒕𝒋,𝒎𝒌) 𝑺𝑪(𝒕𝒋,𝒎𝒌)

m1 m2 m3 m4 m1 m2 m3 m4 𝑆𝐶𝑎𝑣𝑔

t1 20 102.564 88.889 94.787 173.913 157.061 122.681 97.942 249.122 156.702

t2 44 225.641 195.556 208.531 382.609 345.535 269.898 215.472 548.069 344.744

t3 31 158.974 137.778 146.919 269.565 243.445 190.155 151.810 386.140 242.888

t4 11 56.410 48.889 52.133 95.652 86.384 67.474 53.868 137.017 86.186
t5 20 102.564 88.889 94.787 173.913 157.061 122.681 97.942 249.122 156.702

t6 8 41.026 35.556 37.915 69.565 62.825 49.072 39.177 99.649 62.681

t7 38 194.872 168.889 180.095 330.435 298.417 233.094 186.089 473.332 297.733

t8 23 117.949 102.222 109.005 200.000 180.621 141.083 112.633 286.491 180.207

t9 20 102.564 88.889 94.787 173.913 157.061 122.681 97.942 249.122 156.702

t10 14 71.795 62.222 66.351 121.739 109.943 85.877 68.559 174.386 109.691

Table 6.3. Makespan using the proposed algorithm

Task m1 m2 m3 m4
Schedule
sequence

t1 - - - 121.739-295.652 1. t2 → m2
t2 - 0-195.556 - - 2. t6 → m3

t3 - - 90.048-236.967 - 3. t7 → m1

t4 - - 37.915-90.048 - 4. t4 → m3

t5 194.872-297.436 - - - 5. t3 → m3

t6 - - 0-37.915 - 6. t10 → m4

t7 0-194.872 - - - 7. t8 → m2
t8 - 195.556-297.778 - 8. t1 → m4

t9 - - 236.967-331.754 - 9. t5 → m1

t10 - - - 0-121.739 10. t9 → m3

Table 6.4. Makespan using PSO

Task m1 m2 m3 m4 Schedule sequence
t1 - 0-88.889 - - 1. t3 → m4

t2 - 88.889-284.445 - - 2. t1→ m2

t3 - - - 0-269.565 3. t2 → m2

t4 - 284.445-333.334 - - 4. t5→ m3

t5 - - 0-94.787 - 5. t4 → m2
t6 0-41.026 - - - 6. t6 → m1

t7 - - 94.787-274.882 - 7. t7 → m3

t8 - - 274.882-383.887 - 8. t10 → m2

t9 41.026-143.59 - - - 9. t8 → m3

t10 - 333.334-395.556 - - 10. t9 → m1

247

Table 6.5. Makespan using GA

Task m1 m2 m3 m4
Schedule
sequence

t1 - - 0-94.787 - 1. t2 → m2

t2 - 0-195.556 - - 2. t1 → m3

t3 - 195.556-333.333 - - 3. t4 → m1
t4 0-56.410 - - - 4. t3 → m2

t5 - - - 0-173.913 5. t5 → m4

t6 - - 94.787-132.701 - 6. t6 → m3

t7 56.41-251.282 - - - 7. t9 → m4

t8 - - 132.701-241.706 - 8. t7 → m1
t9 - - - 173.913-347.826 9. t8 → m3

t10 251.282-323.077 - - - 10. t9 → m1

Table 6.6. Makespan using MCT

Task m1 m2 m3 m4
Schedule
sequence

t1 - 0-94.787 1. t7 → m2

t2 - 94.787-303.318 - 2. t1 → m3

t3 0-158.974 - - 3. t3 → m1

t4 - 303.318-352.207 - 4. t9 → m4

t5 168.889-257.778 - - 5. t2 → m3
t6 - - 173.913-243.478 6. t5 → m2

t7 0-168.889 - - 7. t10 → m1

t8 230.769-348.718 - 8. t6 → m4

t9 - - 0-173.913 9. t8 → m1

t10 158.974-230.769 - - 10. t4 → m2

Table 6.7. Comparing the release time of each SMD for each method

SMD Proposed PSO GA MCT

m1 297.436 143.59 323.077 348.718

m2 297.778 395.556 333.333 306.667

m3 331.754 383.886 241.706 303.318
m4 295.652 269.565 347.826 243.478

Table 6.8. Objective comparison

Objective Criteria Proposed PSO GA MCT

Makespan Minimise 331.754 395.556 347.826 348.718

RU Maximise 0.921 0.754 0.896 0.862

LB Minimise 15.09 101.912 41.236 37.491

6.2.2.4 Computation Complexity Analysis

The complexity analysis of the proposed algorithm consists of two phases i) com-

plexity during prioritisation of the tasks based on available resource measures, and

ii) efficient assignment of tasks to its appropriate SMDs by incorporating the con-

sidered objectives. There exist n number of tasks, m number of SMDs and r number

of resources in an MCC. According to Algorithm 6.1, the complexity calculations of

individual segments are as follows:

a) The effective CPU and usable battery calculations using Eq. 6.1 and Eq. 6.2 re-

quire a total 𝑂(𝑚).

248

b) Resource strength calculation using Eq. 6.16 needs 𝑂(𝑟 × 𝑚).

c) Resource cost estimation requires 𝑂(𝑛 ×𝑚).

d) Prioritizing the task execution order needs 𝑂(𝑛).

e) Finally, mapping a task to SMDs requires 𝑂(𝑛2 ×𝑚).

Hence, the overall time complexity is 𝑂(𝑚) + 𝑂(𝑟 × 𝑚) + 𝑂(𝑛 × 𝑚) + 𝑂(𝑛2 ×

𝑚) ≈ 𝑂(𝑛2 ×𝑚).

6.2.3 Experiment, Results and Analysis

This section presents an extensive simulation of the proposed algorithm on a real

dataset. The performance is compared with three other algorithms simulated on

the same data set.

6.2.3.1 Data Curation

We used the collected data as described in Chapter 4. In this experiment, we con-

sidered CPU, RAM, battery, and temperature of the SMDs. We considered a total

of ten SMDs' (𝑀2= {𝑚1, 𝑚2, 𝑚3, … ,𝑚10}) data, chosen randomly from the original

dataset. The complete details of M2 are shown in Table 6.9. We also wanted to check

the performance of the proposed scheduling algorithm on a smaller and larger set

of tasks on a smaller and larger number of SMDs. Therefore, from M2, we randomly

took out another smaller set (𝑀1= {𝑚1, … ,𝑚𝑘, … ,𝑚5}) consisting of five SMDs.

The raw collected data needed to be further prepared for the experiment. The first

thing we did to calculate 𝑃(𝑚𝑘) and 𝐵(𝑚𝑘) using Eq. 6.1 and Eq. 6.2, respectively.

The values of 𝑅(𝑚𝑘) and 𝑇(𝑚𝑘) are considered as they are.

Since each parameter has different units, it is difficult to introduce equal im-

portance to all the parameters. Therefore, we normalised the considered parame-

ters. The normalised value of the jth resource of the ith SMD is calculated by Eq. 19.

𝑁𝑗𝑖 =
𝑣𝑗𝑖

∑ 𝑣𝑗𝑖
𝑚
𝑖=1

 (6.19)

where, 𝑣𝑗𝑖 is the considered value (shown in Table 6.9) of the jth resource of ith SMD,

and m is the total number of available SMDs.

To eliminate any undefined or zero normalised value, we replaced the zero values

249

of 𝑣𝑗𝑖 in the datasets with 1, as shown in Eq. 6.20.

𝑣𝑗𝑖 = 1, if 𝑣𝑗𝑖 == 0 (6.20)

Table 6.9. Details of the dataset used in the experiment

S
M

D

C
P

U
 f

re
-

q
u

e
n

cy

(G
H

z
)

N
u

m
b

e
r

o
f

C
P

U
 c

o
re

s

C
P

U
 l

o
a

d

(%
)

E
ff

e
ct

iv
e

C
P

U

A
v

a
il

a
b

le

R
A

M
 (

M
B

)

B
a

tt
e

ry
 c

a
-

p
a

ci
ty

(m
A

h
)

A
v

a
il

a
b

le

b
a

tt
e

ry
 (

%
)

A
ct

u
a

l

b
a

tt
e

ry

D
e

v
ic

e

te
m

p
 (

C
o
)

m1 1.3 8 13 0.80 1807 3000 10 300 69
m2 2.5 2 53 0.09 1767 4000 24 960 89

m3 2.2 8 19 0.93 1916 3000 11 330 71

m4 1.7 2 62 0.05 2855 4000 22 880 72

m5 1.5 4 71 0.08 2851 3500 31 1085 81

m6 1.3 4 11 0.47 3537 3500 37 1295 74
m7 1.3 8 12 0.87 2755 3000 92 2760 73

m8 1.3 8 22 0.47 2690 4000 56 2240 67

m9 2.5 8 94 0.21 2628 3500 69 2415 82

m10 1.3 8 91 0.11 1753 4000 29 1160 84

Each parameter has associated weight values depending on its importance, as

shown in Table 6.10. However, depending on the MCC application type and re-

quirement, these weights might need to be adjusted.

Table 6.10. Details of the effective parameters used in the algorithm

Considered parame-
ters

Considered value calcula-
tion

Parameter
weight

Ideal
value

Effective CPU Calculated using Eq. 6.1 0.30 Maximized

RAM Present available RAM (MB) 0.30

Effective battery Calculated using Eq. 6.2 0.30

Device temp On a scale of 0-100oC 0.10 Minimised

6.2.3.2 Simulation Provisioning

In this section, we discuss the requirements and considerations to set up the sim-

ulation environment for the experiment.

6.2.3.2.1 Experimental Setup

We performed the simulations to demonstrate our proposed work on a system

running on Intel(R) CoreTM i7-5500U CPU with 2.40 GHz and 4 GB of RAM. It was

implemented on Ubuntu 16.04 using 'C' programming language.

6.2.3.2.2 Task Initiation

For the experiment, we created two task groups – Tr and Tf. Tr was further divided

into two subgroups – 𝑇1
𝑟 = {𝑡11

𝑟 , 𝑡12
𝑟 , 𝑡13

𝑟 , … , 𝑡1100
𝑟 } and 𝑇2

𝑟 = {𝑡21
𝑟 , 𝑡22

𝑟 , 𝑡23
𝑟 , … , 𝑡2200

𝑟 },

250

where 𝑇1
𝑟 ≠ 𝑇2

𝑟. For each of 𝑇1
𝑟

 and 𝑇2
𝑟, we generated four different sets of tasks (i.e.,

a total of eight) such that 𝑇1
𝑟𝑖 ≠ 𝑇1

𝑟𝑗and 𝑇2
𝑟𝑖 ≠ 𝑇2

𝑟𝑗. The tasks were randomly gener-

ated with the instruction length ranging from 5 to 250.

Tf was divided into two task sets – 𝑇1
𝑓
 = {𝑡11

𝑓
, 𝑡12
𝑓
, 𝑡13
𝑓
, … , 𝑡1100

𝑓
} and 𝑇2

𝑓
 =

 {𝑡21
𝑓
, 𝑡22
𝑓
, 𝑡23
𝑓
, … , 𝑡2200

𝑓
}, where 𝑇1

𝑓
≠ 𝑇2

𝑓
. The instruction lengths of the tasks of both

𝑇1
𝑓
and 𝑇2

𝑓
 were between 1 to 150.

The details of task generation and bifurcation are shown in Fig. 6.3. The rationale

behind considering these varieties of task sets is to establish the efficiency of the

proposed algorithm in diverse scenarios, as discussed in Section 6.2.3.3.

1 1 1 1 1

1 2 3 100

2 2 2 2 2

1 2 3 100

3 3 3 3 3

1 2 3 100

4 4 4 4 4

1 2 3 100

1 1 1 1 1

1 2 3 200

2

1 1 1 1 1

1 1 1 1 1

1

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

2

2

{ , , ,..., }

{ , , ,..., }

{ , , ,..., }

{ , , ,..., }

{ , , ,..., }

{

r r r r r

r r r r r

r

r r r r r

r r r r r

r

r r r r r

r

r

T t t t t

T t t t t
T

T t t t t

T t t t t
T

T t t t t
T

T t
T

















2 2 2 2

1 2 3 200

3 3 3 3 3

1 2 3 200

4 4 4 4 4

1 2 3 200

1 2 3 100

1 2 3 200

2 2 2 2

2 2 2 2 2

2 2 2 2 2

1 1 1 1 1

2 2 2 2 2

, , ,..., }

{ , , ,..., }

{ , , ,..., }

{ , , ,..., }

{ , , ,..., }

r r r r

r r r r r

r r r r r

f f f f f

f

f f f f f

t t t

T t t t t

T t t t t

T t t t t
T

T t t t t










Fig. 6.3. Different task sets used in the experiment

6.2.3.2.3 Control Parameters

The details of the control parameters of PSO and GA are listed in Table 6.11. Since

MCT is a heuristic algorithm, no such specific control parameters are there, and

hence not included in the list. We set the weight values for each considered objec-

tives 𝜔1 = 0.4 and 𝜔2 = 𝜔3 = 0.3.

6.2.3.3 Performance Analysis

To assess and analyse the performance of the proposed scheduling algorithm, we

performed an extensive simulation on the real dataset as described above. For a

comparative assessment, we performed the same experiment with the same as-

sumed scenarios using three other popular algorithms. Since our algorithm is a

251

heuristic one, we deliberately chose one heuristic (MTC) and two metaheuristic

(PSO and GA) algorithms that are popularly used in similar problem scenarios.

Table 6.11. Control parameters for PSO and GA

Algorithm Parameter Values

PSO Population size 10

Iterations 100

Initial
parameters

C1, C2 1.0962
r1, r2 Rand(0,1)

w 0.0968

Initial social influence Rand(0,1)

Initial personal influence Rand(0,1)
𝑣𝑚𝑎𝑥 0.5
𝑣𝑚𝑖𝑛 0.5
𝑤𝑚𝑎𝑥 1.0
𝑤𝑚𝑖𝑛 0.0

GA Population size 10

Iterations 100

Crossover point 40
Mutation rate 0.1

As discussed in Section 6.2.3.2.2, we initiated task sets of different sizes – one con-

sisting of 100 (T1) and another consisting of 200 (T2) subtasks. These tasks were

scheduled to two SMD sets (𝑀1and 𝑀2, 𝑀1⊆𝑀2). Considering this setup, to evalu-

ate the efficiency of the proposed algorithm in diverse MCC scenarios, we divided

our experiment into two approaches. In the first, the sets of the same task size were

scheduled to particular sets of SMDs, i.e., T1 and T2 were scheduled to M1 and M2,

respectively. In the second case, T1 and T2 were scheduled to both M1 and M2, alter-

natively, as shown in Fig. 6.4.

1
fT 2

fT

1
2
r

T 2
2
r

T 3
2
r

T 4
2
r

T4
1
r

T3
1
r

T2
1
r

T1
1
r

T

1M 2M

Fig. 6.4. Two experimental scenarios of task-SMD mapping

6.2.3.3.1 Experiment Case I

In the first provision of the experiment, we aimed to assess the overall effectivity

of the algorithm for task heterogeneity. For this, we used eight task sets from the

task group Tr, as shown in Fig. 6.3, in which each task had different instruction

lengths. The tasks were scheduled in the pair of (𝑇1
𝑟 → 𝑀1) and (𝑇2

𝑟 → 𝑀2).

252

Fig. 6.5, Fig. 6.6, and Fig. 6.7 show the performance of the proposed algorithm

along with PSO, GA, and MCT in terms of makespan, resource utilisation, and load

balancing, respectively. It can be observed that for all the task sets, our proposed

algorithm performs better. To make this inference more intuitive, in Fig. 6.8, Fig.

6.9, and Fig. 6.10, we show the average performance of the algorithms for two dif-

ferent task sizes for all three objective criteria.

Fig. 6.5. Makespan comparison with different task sizes with eight task sets

Fig. 6.6. Resource utilisation comparison with different task sizes with eight task sets

0

20000

40000

60000

80000

100000

120000

140000

160000

Task set 1 Task set 2 Task set 3 Task set 4 Task set 1 Task set 2 Task set 3 Task set 4

T:100 → M:5 T:200 → M:10

Proposed PSO GA MCT

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Task set 1 Task set 2 Task set 3 Task set 4 Task set 1 Task set 2 Task set 3 Task set 4

T:100 → M:5 T:200 → M:10

Proposed PSO GA MCT

Fig. 6.7. Load balance comparison with different task sizes with eight task sets

Fig. 6.8. Average makespan comparison with different task sizes

Fig. 6.9. Average resource utilisation comparison with different task sizes

6.2.3.3.2 Experiment Case II

To infer more from the experiment, we wanted to assess the consistency in the

performance of the proposed algorithm with SMD variation with the same task

sizes. For this, we used the task group Tf. As shown in Fig. 6.4, the algorithm was

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

Task set 1 Task set 2 Task set 3 Task set 4 Task set 1 Task set 2 Task set 3 Task set 4

T:100 → M:5 T:200 → M:10

Proposed PSO GA MCT

1
6

7
6

7
.0

4
2

2
6

2
6

9
.2

0
2

6
5

3
2

0
.6

1
2 1
0

3
0

3
8

.5
1

8

6
7

4
5

2
.5

9
0

1
3

1
9

4
2

.7
5

2

1
6

9
7

8
.0

1
3

2
6

5
8

3
.3

6
1

0

20000

40000

60000

80000

100000

120000

140000

T:100 → M:5 T:200 → M:10

Proposed

PSO

GA

MCT

0
.9

6
0

0
.9

5
2

0
.6

1
6

0
.4

8
40

.6
3

0

0
.4

1
3

0
.9

2
8

0
.9

1
9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T:100 → M:5 T:200 → M:10

Proposed

PSO

GA

MCT

254

tested in four different task-SMD pairs - (𝑇1
𝑓
→ 𝑀1), (𝑇2

𝑓
→ 𝑀1), (𝑇1

𝑓
→ 𝑀2), and

(𝑇2
𝑓
→ 𝑀2). For this case, the makespan, resource utilisation and load balance per-

formances of the proposed algorithm and other compared algorithms are shown

in Fig. 6.11, Fig. 6.12, and Fig. 6.13, respectively. In this case, also, we observe that

the proposed algorithm performs better than PSO, GA and MCT in all aspects.

Fig. 6.10. Average load balance comparison with different task sizes

Fig. 6.11. Makespan comparison with same task size

6.2.3.4 Statistical Analysis

In this section, we present two statistical analyses to assess the dominance of the

proposed algorithm compared with the other three considered algorithms.

6.2.3.4.1 ANOVA

ANOVA [694] is a well-known statistical method for hypothesis testing. It allows

checking the significance of the results by determining the equality of the means

of the considered groups. We conducted the one-way ANOVA test to ensure that

7
8

9
.8

8
0

1
4

1
8

.8
9

0

2
4

8
9

5
.7

0
8 3
4

9
9

0
.0

9
2

2
6

2
8

8
.0

3
6

4
2

2
2

0
.6

2
0

9
6

5
.4

8
0

1
9

6
7

.2
3

2

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

T:100 → M:5 T:200 → M:10

Proposed

PSO

GA

MCT

0

20000

40000

60000

80000

100000

120000

T:100 → M:5 T:200 → M:5 T:100 → M:10 T:200 → M:10

Proposed

PSO

GA

MCT

255

our proposed algorithm is significantly varied from other algorithms.

The null hypothesis (H0) assumes that the mean of all the groups is equal, and

based on that, one group can be rejected. Whereas the alternative hypothesis (H1)

assumes means are not equal.

Fig. 6.12. Resource utilisation comparison with same task size

Fig. 6.13. Load balance comparison with same task size

We considered eight sets of sample task groups. The groups consist of 100 or 200

tasks, as shown in Fig. 6.3. The task size of each set is different. The ANOVA test

was conducted using makespan and load balance. We did not consider resource

utilisation values because it ranges from 0 to 1, which would produce a non-signif-

icant result. The H0 was rejected if the P-value < α, α =0.05, i.e., F-statistic >> F-

critical.

The descriptive statistics of the input set for the ANOVA test using makespan and

load balance are given in Table 6.12. It can be observed that the proposed algorithm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T:100 → M:5 T:200 → M:5 T:100 → M:10 T:200 → M:10

Proposed

PSO

GA

MCT

0

5000

10000

15000

20000

25000

30000

35000

40000

T:100 → M:5 T:200 → M:5 T:100 → M:10 T:200 → M:10

Proposed

PSO

GA

MCT

256

has the lowest mean, whereas GA has the lowest variance. The results of the

ANOVA test using makespan and load balance are shown in Table 6.13 and Table

6.14, respectively. It can be observed from both the tables that the proposed algo-

rithm exhibits dissimilar mean and variance compared to other algorithms. There-

fore, we rejected the null hypothesis at the one percent level.

Table 6.12. Input sets of ANOVA test using makespan and load balance

Groups Count
Makespan Load balance

Sum Mean Variance Sum Mean Variance

Proposed 8 172144.975 21518.12 27096272.62 8835.08 1104.385 149600.198

PSO 8 673436.521 84179.57 446158010.5 239543.202 29942.900 48622828.09

GA 8 797581.367 99697.67 1314262960 273183.521 34147.940 85744322.78

MCT 8 174245.495 21780.69 27808493.14 12314.902 1539.363 453088.919

Table 6.13. ANOVA test results using makespan

Source of variation SS DF MS F-statistic P-value F-critical

Between groups 40488110602 3 13496036867 29.73799489 7.53E-09 2.946685266

Within groups 12707280153 28 453831434 - - -

Total - 31 - - - -

Table 6.14. ANOVA test results using load balance

Source of
variation

SS DF MS F-statistic P-value F-critical

Between groups 7622976648 3 2540992216 75.30548206 1.61E-13 2.946685266

Within groups 944788879.9 28 33742460 - - -

Total - 31 - - - -

6.2.3.4.2 Post Hoc

After confirming the superiority of the proposed algorithm in terms of mean dif-

ference, we performed a post hoc analysis [695] to further assess the algorithm's

success. The ANOVA test merely indicates a difference between the groups, but it

does not specify which groups. The post hoc test exposes the specific differences

between the group means when the ANOVA test is significant.

It can be observed from Table 6.14 that the means are different. A 2-sample T-test

was conducted for post hoc analysis. The alpha level was adjusted via the Bonfer-

roni method (adjusted alpha=0.016666). Table 6.15 shows that the pairs of (pro-

posed and PSO) and (proposed and GA) significantly differ. The mean difference

between proposed and PSO is very low compared to the other two groups. Hence,

it can be concluded that this group (proposed and PSO) is significantly different

from others.

257

Table 6.15. Post hoc test results

Groups P-value (T-test) Significant?

Proposed - PSO 1.10717E-06 Yes

Proposed - GA 3.05123E-05 Yes

Proposed - MCT 0.921586675 No

6.2.4 Discussion

We represented the experiment scenario and result analysis in two phases. First,

the algorithm aims to prove its efficacy with task heterogeneity (different task sets)

over fixed SMDs. Second, its efficacy is further analysed and validated with SMD

variability (tasks of fixed size operated on different SMD sets). The results of both

the cases suggest that irrespective of the variations in the size of the task sets, in-

struction lengths of the tasks, the number of SMDs, and their resource parameters,

the performance of the proposed algorithm consistently remains better.

In Fig. 6.5 to Fig. 6.13, we witness that the proposed algorithm outperforms PSO

and GA while performing moderately better than MCT over all the considered ob-

jectives inflicted simultaneously. Further from Fig. 6.5 to Fig. 6.13 and Table 6.12 to

Table 6.15, we realise that among the other three compared algorithms, MCT is

nearest to our algorithm for all the objectives and in all the scenarios, while PSO

digresses most.

The observed performance of our algorithm was achieved due to the appropriate

sequence of task executions based on the overall resource status of the SMDs. Be-

fore the actual scheduling, the algorithm always ensures the earliest start time of a

task along with the load distribution and the proper utilisation of all the SMDs.

Thus, the algorithm returns a better makespan along with load balance and re-

source utilisation simultaneously.

The consistency and scalability of the proposed algorithm would allow the MCC

system developers to adopt the right task scheduling method without worrying

about the size of the MCC both in terms of problem size (that is to be executed in

MCC) and the availability of the resources (number of SMDs in the MCC). Based

on the MCC application type, the weight values of resources (𝜃𝑖) and objectives

(𝜔𝑖) can be tuned based on the preference and priority of the resource require-

ments and system goals.

258

6.3 Energy-efficient Scheduling

In this section, we present a metaheuristic scheduling algorithm based on PSO that

considers the overall energy consumption to carry out certain MCC task along with

load balance among the SMDs.

6.3.1 Overview of PSO

PSO is a nature-inspired population-based optimisation method developed by Ken-

nedy and Eberhart [696] and Eberhart and Shi [697]. It is inspired by the social be-

haviour of animals like bird flocking and fish schooling. This swarm intelligence-

based metaheuristic technique has been popularly used to solve different optimisa-

tion problems in various domains. Initially, a swarm of particles is randomly gener-

ated within the multidimensional problem search space. Each particle attempts to

move towards the optimum solution. After each movement, the particle assesses its

personal best position (𝑃𝑏𝑒𝑠𝑡) and the global best position (𝐺𝑏𝑒𝑠𝑡) within the swarm.

The next movement of an individual particle depends on these two pieces of

knowledge acquired in the previous movements. A particle should always provide a

complete solution to the problem. The ith particle of gth generation can be repre-

sented in Eq. 6.21.

𝑃𝑅𝑖
𝑔
= {𝑝𝑜𝑠(𝑖,1)

𝑔
, 𝑝𝑜𝑠(𝑖,2)

𝑔
, … , 𝑝𝑜𝑠(𝑖,𝐷)

𝑔
} (6.21)

where, D be the dimension of the solution space. All the particles have positions

value, 𝑝𝑜𝑠(𝑖,𝑗)
𝑔
, 1 ≤ 𝑗 ≤ 𝐷 and corresponding velocity, 𝑣𝑒𝑙(𝑖,𝑗)

𝑔
. The personal best of

particle 𝑃𝑅𝑖
𝑔

 is defined by Eq. 6.22.

𝑃𝑏𝑒𝑠𝑡𝑖 = {𝑃𝑏(𝑖,1), 𝑃𝑏(𝑖,2), … , 𝑃𝑏(𝑖,𝐷)} (6.22)

At every iteration, the velocities of the particles are updated by Eq. 6.23.

𝑣𝑒𝑙(𝑖,1)
𝑔

= ∝ × 𝑣𝑒𝑙(𝑖,1)
(𝑔−1)

+ 𝑐1 × 𝑟1 × [𝑃𝑏(𝑖,𝑗) − 𝑝𝑜𝑠(𝑖,𝑗)
(𝑔−1)

] + 𝑐2 × 𝑟2 × [𝐺𝑏𝑒𝑠𝑡𝑗 − 𝑝𝑜𝑠(𝑖,𝑗)
(𝑔−1)

]

 (6.23)

where, ∝ denotes inertia weight which restricts the uncontrolled velocity of the par-

ticles. 𝑐1 and 𝑐2 are the acceleration coefficients. 𝑟1 and 𝑟2 are two different random

generated numbers in the range (0, 1]. After updating velocity, the latest positions

259

(𝑝𝑜𝑠(𝑖,𝑗)
𝑔

) are updated using Eq. 6.24.

𝑝𝑜𝑠(𝑖,𝑗)
𝑔

= 𝑝𝑜𝑠(𝑖,𝑗)
(𝑔−1)

+ 𝑣𝑒𝑙(𝑖,𝑗)
𝑔

 (6.24)

After updating the positions of a particle, the new fitness value is measured. Based

on the updated fitness value, 𝑃𝑏𝑒𝑠𝑡𝑖 and 𝐺𝑏𝑒𝑠𝑡 are also updated. The position and

velocity of all the particles are updated iteratively to achieve a rational and better

solution. The better solution of the particles is measured using the designed fitness

function. The iterative updation process is terminated when an iteration constraint

is obtained.

6.3.2 System Model and Problem Formulation

The system and execution models of the proposed energy efficient scheduler for

MCC are discussed below. We also formally establish the addressed problem. The

system model described in Section 6.2.1.1 is considered here also.

6.3.2.1 Execution Model

Let us assume, at a time instant (τ), the coordinator divides a task (𝑇 =

 {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛}) into a set of independent microtasks. These microtasks need to

be scheduled to the available set of SMDs (𝑀 = {𝑚1, 𝑚2, 𝑚3, … ,𝑚𝑚}). We con-

sider a real MCC scenario where the SMDs have a different number of CPU cores

with different clock frequencies depending on which the computing capability of

each SMD varies. The available computing power of an SMD also depends on its

present load. A highly loaded SMD would be able to execute a smaller number of

microtasks compared to a lightly loaded SMD, given the same turnaround time.

Therefore, the effective CPU of an SMD at τ is calculated using Eq. 6.25.

𝑃(𝑚𝑘) =
𝐶𝑃𝑈_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦×𝐶𝑃𝑈_𝑐𝑜𝑟𝑒𝑠

𝐶𝑃𝑈_𝑙𝑜𝑎𝑑𝜏
 (6.25)

The execution time of a task tj on an SMD mk is calculated by Eq. 6.26.

𝑋(𝑡𝑗, 𝑚𝑘) =
𝑧𝑡𝑗

𝑃(𝑚𝑘)
 (6.26)

where, 𝒛𝒕𝒋 denotes the instruction size (MIPS) of tj.

An ideal MCC should utilise all the available SMDs judiciously so that the

260

computing loads of all the SMDs are evenly balanced as far as possible. The overall

load balance of an MCC with respect to a set of MCC tasks is calculated by Eq. 6.27.

𝐿𝐵 = √
∑ {𝑅𝑇

𝑎𝑣𝑔
−𝑅𝑇(𝑚𝑘)}

2𝑟
𝑘=1

𝑀
 (6.27)

where 𝑅𝑇(𝑚𝑘) denotes the kth SMD's release time and 𝑅𝑇
𝑎𝑣𝑔

 denotes average release

time and is defined by Eq. 6.28.

𝑅𝑇
𝑎𝑣𝑔

=
1

𝑀
∑ 𝑅𝑇(𝑚𝑘)
𝑚
𝑘=1 (6.28)

6.3.2.2 Computational Energy Calculation

Different SMD processors operate at different speeds, with different voltage and

frequency with respect to tj. The cumulative voltage (𝑉𝑀) and frequency (𝐹𝑀) are

given by Eq. 6.29 and Eq. 6.30.

𝐹𝑀 = {𝑓𝑚1
, 𝑓𝑚2

, 𝑓𝑚2
, … , 𝑓𝑚𝑚

} (6.29)

𝑉𝑀 = {𝑣𝑚1
, 𝑣𝑚2

, 𝑣𝑚2
, … , 𝑣𝑚𝑚

} (6.30)

Here, 𝑓(𝑚𝑘) and 𝑣(𝑚𝑘) denote the operating frequency and supply voltage of kth

SMD's CPU, assuming each core has the same operating frequency and voltage.

In heterogeneous multiprocessing, the multi-core SMD CPUs are comprised of two

different sets of cores paired together into a single unit. It is done so to make a

balance between performance and energy efficiency. One set of cores is less pow-

erful and more energy-efficient than the other. The decision to submit jobs to the

appropriate core is taken dynamically by mapping to the varying computational

demand of the application. Normally, the first set of cores deals with the regular

background tasks that require nominal energy, whereas the user-interactive and

performance-demanding tasks are run on the second set of cores. In the second

case, energy consumption is a big concern, so minimising it is highly desired.

The total energy consumption of an SMD CPU is the combined energy consump-

tion of both the high- (EH) and low-performance (EL) core sets, as shown in Eq.

6.31. We assume the energy consumption due to network communication for all

SMDs is constant.

261

𝐸𝑐𝑜𝑚𝑝(𝑚𝑘) = 𝐸𝐻(𝑚𝑘) + 𝐸𝐿(𝑚𝑘) (6.31)

The energy consumption is directly related to the total power dissipation caused

by high (PH) and low (PL) power dissipation. PH is calculated using Eq. 6.32,

whereas PL arises due to running, bias and leakage of currents and is calculated

using Eq. 6.33.

𝑃𝐻(𝑚𝑘) = 𝐾 × (𝑣(𝑚𝑘))
2 × 𝑓(𝑚𝑘) (6.32)

𝑃𝐿(𝑚𝑘) = 𝐾 × (𝑣𝑙𝑜𝑤𝑒𝑠𝑡(𝑚𝑘))
2 + 𝑓𝑙𝑜𝑤𝑒𝑠𝑡(𝑚𝑘) (6.33)

where K is the capacitance load.

As already mentioned, the 𝐸𝐻 consumption is done when the SMD's CPU performs

extensive computation, operating in high voltage and frequency. Therefore, 𝐸𝐻 can

be calculated using Eq. 34.

𝐸𝐻(𝑚𝑘) = ∑ 𝑃𝐻(𝑚𝑘) × 𝑋(𝑡𝑗, 𝑚𝑘)
𝑛
𝑗=1 (6.34)

On the contrary, EL consumption is done when the CPU is either idle or performing

very low-profile background jobs. In this case, we can consider that the CPU (𝑚𝑘)

operates on 𝑣𝑙𝑜𝑤𝑒𝑠𝑡 and 𝑓𝑙𝑜𝑤𝑒𝑠𝑡. Therefore, EL can be calculated using Eq. 35.

𝐸𝐿(𝑚𝑘) = ∑ 𝑃𝐿 × 𝑡𝐿 (𝑚𝑘)
𝑛
𝑖=1 (6.35)

where 𝑡𝐿 (𝑚𝑘) denotes idleness or lower activity of mk.

Remark 6.3. Typically, 𝐸𝐿 ≪ 𝐸𝐻, and the effect of 𝐸𝐿 on the scheduling decision

would be insignificant. Therefore, in this work, we overlooked EL and considered

only EH.

6.3.2.3 Data Transfer Energy Calculation

Receiving the tasks from the MCC coordinator, i.e., downloading them through

Wi-Fi and uploading or sending the results back to the coordinator, also involves

some energy consumption. The energy consumption (𝐸𝐶) of 𝑚𝑘 for data transfer

can be calculated by Eq. 36.

𝐸𝐶(𝑚𝑘) =
1

𝐵𝑚𝑘
𝜏 (∑ 𝑧𝑡𝑗

𝑛
𝑗=1 , 𝑚𝑘 × 𝐸𝐷(𝑚𝑘) + ∑ 𝑧𝑟𝑗

𝑛
𝑗=1 , 𝑚𝑘 × 𝐸𝑈(𝑚𝑘)) (6.36)

where, 𝐵𝑚𝑘
𝜏 is the bandwidth of 𝑚𝑘, which is dependent on its signal strength at τ,

262

∑ 𝑧𝑡𝑗
𝑛
𝑗=1 , 𝑚𝑘 denotes the total instruction length of all the tasks executed by a par-

ticular SMD 𝑚𝑘, 𝑧𝑟𝑗 is the size of the result of 𝑡𝑗 and 𝐸𝐷(𝑚𝑘) and 𝐸𝑈(𝑚𝑘) denote

the energy consumption rate for downloading and uploading data blocks (tasks

and results), respectively.

Remark 6.4. In Eq. 36, we considered the power consumption accounted for only

downloading the MCC tasks and uploading the corresponding results. We assumed

that Wi-Fi is by default on and hence ignored the actual power consumption due

to Wi-Fi operation.

Remark 6.5. Here, we considered our MCC comprised of a single WLAN with a

consistent bandwidth and signal strength for all the SMDs. So, it can be assumed

that the power consumed to download the same set of tasks (sent by the MCC

coordinator) and upload corresponding results (to be sent to the MCC coordina-

tor) are uniform for all SMDs. Though the power consumption for data transmis-

sion slightly varies depending on signal strength (which diverges as per the dis-

tance of the SMD from the AP), it can be considered negligible [698]. Also, the data

transfer rate variations for different SMDs are minimal.

Remark 6.6. We further assumed that our MCC application has mostly computa-

tion-bound tasks. Computation-bound tasks typically have high CPU utilisation

with a smaller extent of data transfer [253]. This suggests higher energy consump-

tion for processing compared to data transferring.

From the above remarks, it can be concluded that the energy consumption due to

data transfer became almost inconsequential in the scheduling decision. Hence,

we ignored the communication power consumption for the further experiment in

this work. We set our focus on the energy consumed by the SMDs accounting only

to execute the MCC tasks.

6.3.2.4 Final Objective

Therefore, the final problem can be stated as designing a scheduling algorithm

conforming to two objectives, as follows:

i) Objective I: Minimise the overall energy consumption considering

263

computational energy along with communication energy, i.e., min(𝐸𝐻(𝑚𝑘) +

𝐸𝐿(𝑚𝑘) + 𝐸𝐶(𝑚𝑘)) ⇒ min((𝐸𝐻(𝑚𝑘)), neglecting 𝐸𝐿(𝑚𝑘) and 𝐸𝐶(𝑚𝑘).

ii) Objective II: Minimise the overall energy consumption with load balance, i.e.,

min(𝐸𝐻(𝑚𝑘) + 𝐿𝐵).

6.3.3 Proposed PSO-based Energy-aware Scheduling for MCC

In this section, we present the proposed PSO-based scheduling algorithm along

with demonstrative illustrations for both objectives.

6.3.3.1 Particle Representation

A particle (𝑃𝑅𝑖
𝑔

) must be represented in such a way that it should always provide

a complete solution to the problem. A particle is always associated with its position

(𝑝𝑜𝑠(𝑖,𝑗)
(𝑔)

) and velocity (𝑣𝑒𝑙(𝑖,𝑗)
(𝑔)

), where 1 ≤ 𝑗 ≤ 𝐷. Here dimension of a particle is

equal to the number of tasks, i.e., D = n. A particle representation is shown in Table

6.16. The first row denotes the task scheduling sequence, while the second row

denotes the position values as SMD index (mk).

From Table 6.16, we understand that five tasks are initiated by the MCC coordina-

tor, which need to be executed by three SMDs. It can also be observed that the first

task (i.e., t1) is assigned to the second SMD (i.e., m2). Likewise, t2, t3, t4, and t5 are

assigned to m3, m1, m2, and m3, respectively. This is how our particle representation

produces a complete solution.

Table 6.16. Particle representation

Tasks t1 t2 t3 t4 t5

Position 2 3 1 2 3

Algorithm 6.2: Generate_Population()
Input: Size of the population N and dimension of the particle D

Output: Generation of population Ppop = {G1, G2, …, GN} //Gi denotes the ith iteration

1. Ppop = {} //initial population is null

2. for (i = 1 to N)

3. for (d = 1 to D)

4. 𝑝𝑜𝑠(𝑖,𝑑)
(𝑔)

 = Rand(1, M) //M is total number of available SMDs

5. end for

6. Gi = {𝑝𝑜𝑠(𝑖,𝑑)
(𝑔)

˅∀i, 1 ≤ i ≤ N, ∀d, 1 ≤ d ≤ D}

7. Ppop = Ppop ∪ Gi

8. end for

The initial population (Ppop) is generated as per Algorithm 6.2, which is depicted

in Table 6.17. It can be observed from the table that the initial population consists

264

of three particles (N = {𝑷𝑹𝟏
𝟎, 𝑷𝑹𝟐

𝟎, 𝑷𝑹𝟑
𝟎}) with dimension five where each 𝑷𝑹𝒊

𝟎 pro-

vides a complete solution.

Table 6.17. Initial population of three particles with dimension five (same as number of tasks)

𝑷𝑹𝒊
𝒈

 𝒑𝒐𝒔(𝒊,𝟏)
𝒈

 𝒑𝒐𝒔(𝒊,𝟐)
𝒈

 𝒑𝒐𝒔(𝒊,𝟑)
𝒈

 𝒑𝒐𝒔(𝒊,𝟒)
𝒈

 𝒑𝒐𝒔(𝒊,𝟓)
𝒈

𝑃𝑅1
0 1 3 2 1 2

𝑃𝑅2
0 2 1 3 2 1

𝑃𝑅3
0 2 3 1 2 3

6.3.3.2 Fitness Calculation

The fitness function evaluates the excellence of particles. Here, the fitness function

is calculated in two phases, corresponding to two objectives mentioned in Section

6.3.2.4. Our final objective is to minimise fitness, as given in Eq. 6.37.

min(fitness) = ∑ 𝑤𝑖 × 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑖
𝑘
𝑖=1 (6.37)

where, k and wi denote the number of objectives and their weight values, respec-

tively.

Here, we followed the weight sum approach for fitness calculation. For Objective

I, since there is only a single parameter (energy efficiency), the value of w is 1. For

Objective II, the value of w for both parameters (energy efficiency and load bal-

ance) are equally assigned, i.e., 0.5 for each.

6.3.3.3 Velocity and Position Updation

Along with position and velocity, after each iteration, the particle 𝑃𝑅𝑖
𝑔

 has a per-

sonal best value (𝑃𝑏𝑒𝑠𝑡𝑖), as shown in Eq. 6.22. and a global best (𝐺𝑏𝑒𝑠𝑡) among all

the particles within the swarm. At every iteration, the velocities and the positions

of the particles are updated by Eq. 6.23 and Eq. 6.24.

During the position's updation, new positions may violate the restricted position

range, i.e., [1,m]. If the updated position becomes negative, less than one, or greater

than m, it maps to a random position [1,m]. This is how n number of particles are

updated iteratively.

After the updation of the positions of a particle, the new fitness value is measured.

Based on the new fitness value, 𝑃𝑏𝑒𝑠𝑡𝑖 and 𝐺𝑏𝑒𝑠𝑡 are also updated as discussed in

Section 6.3.1. The position and velocity of all the particles are updated iteratively

till the termination condition is satisfied (𝑀𝐴𝑋𝑖𝑡𝑟). After reaching 𝑀𝐴𝑋𝑖𝑡𝑟, the

265

particle with minimum fitness, i.e., 𝐺𝑏𝑒𝑠𝑡(𝑀𝐴𝑋𝑖𝑡𝑟) is chosen as the final solution.

The pseudocode of the proposed PSO-based scheduling algorithm is shown in Al-

gorithm 6.3. The overall pictorial representation of the algorithm is depicted in Fig.

6.14.

Algorithm 6.3: PSO-based Energy-Efficient Scheduling for MCC
Input: (1) N number of particles, i.e., 𝑁 = {𝑃𝑅1,𝐷

𝑔
, 𝑃𝑅2,𝐷

𝑔
, … , 𝑃𝑅𝑛,𝐷

𝑔
}

 (2) Termination criterion is MAXitr

Output: Best solution as the minimised fitness value

1. Generate initial_population Ppop = {} //as per Algorithm 6.2

2. Compute fitness() using Eq. 6.37 //considering energy as well as load balance

3. Initialise Pbest ∀ i ∈ N and Gbest from the swarm

4. while (𝑖 ≤ 𝑀𝐴𝑋𝑖𝑡𝑟) do //termination condition (𝑀𝐴𝑋𝑖𝑡𝑟) as number of iterations

5. for (i = 1 to N)

6. Update velocity () and position () using Eq. 6.23 and Eq. 6.24

7. if (𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑝𝑜𝑠(𝑖,𝑗)
(𝑔)
) > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑏𝑒𝑠𝑡)) then

8. 𝑃𝑏𝑒𝑠𝑡 = 𝑝𝑜𝑠(𝑖,𝑗)
(𝑔)

9. end if

10. if (𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑝𝑜𝑠(𝑖,𝑗)
(𝑔)
) > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐺𝑏𝑒𝑠𝑡)) then

11. 𝐺𝑏𝑒𝑠𝑡 = 𝑃𝑏𝑒𝑠𝑡
12. end if

13. i++;

14. end for

15. end while

16. Select 𝐺𝑏𝑒𝑠𝑡(𝑀𝐴𝑋𝑖𝑡𝑟) as the final solution

Remark 6.7. It can be observed from the particle representation that the particle

always guarantees to produce a complete solution to the problem. Moreover, while

updating the velocity and position of a particle, it always preserves its predefined

range of position values, i.e., [1,m]. Therefore, our particle representation always

provides a valid solution even after the updating phase.

Remark 6.8. The computation of a particle's fitness function (as per Eq. 6.37) is

evaluated locally in an iterative manner without having any advance or global

knowledge of the particles or swarm along with their respective fitness values.

Therefore, the fitness calculation is done independently, irrespective of other so-

lutions.

6.3.3.4 Illustration

In this section, we demonstrate the working of the proposed algorithm with a set

of synthetic data. Let us consider, at a time instance (τ), four SMDs

(𝑚1,𝑚2, 𝑚3, 𝑚4) are available with an MCC system, and the MCC coordinator has

eleven independent subtasks (𝑡1, 𝑡2, 𝑡3, … , 𝑡11) to execute on these SMDs. Each task

266

has a different instruction length (task size). The MCC needs to schedule the tasks

for the SMDs conforming to the minimum energy efficiency criteria with load bal-

ance. We present the illustration in two segments: scheduling considering only

energy efficiency and scheduling considering energy efficiency with load balance.

Gbest is
taken as
the final
solution

Yes

Start g=0

d=1 i=i+1

g=g+1

g>MAXitrd>D

i>n

NoNo

d=d+1

Yes

End

No

Generate a population
of n particles (PR(g)

(i)),
0<g<MAXitr and 1 i n

Initialize Pbest(i)
and Gbest for

1 i n

Update velocity
vel(g)

(i,j) and
position pos(g)

(i,j)

Pbest(i) = PR(g)
(i)

fitness(Pbest(i))>
fitness(Gbest)

fitness(PR(g)
(i))>

fitness(Pbest(i))

Evaluate fitness
of (PR(g)

(i))

i=1

Yes

Yes

No

Gbest = Pbest(i)

Yes

No

Fig. 6.14. Flowchart of the proposed algorithm

6.3.3.4.1 Energy-efficient Scheduling

Table 6.18 shows the details of scheduling using the proposed algorithm. The 2nd

column shows the instruction length of each task. Columns 3rd to 6th show the start

and finish times of the tasks assigned to the corresponding SMDs based on the

execution time of that task on that SMD, given in the 8th column. For instance, the

task t2 has an instruction length of 61, and to execute it on m3, its required time is

630.165. It can further be seen (in the 5th column) that t2 starts its execution on m3

at 165.289 and completes at 795.455. Column seven shows the complete scheduling

sequence of the eleven tasks on four SMDs.

Energy consumed by each SMD to execute the assigned tasks and the total energy

consumption to complete the eleven tasks, are given in Table 6.19. It can be ob-

served that by the scheduling policy, no task was scheduled to m2 and m4; hence,

their energy consumption is zero. Whereas most tasks (74.048% of total tasks)

were assigned to m3, and to execute the assigned tasks, m1 was mostly busy

(90.166%).

6.3.3.4.2 Energy-efficient Scheduling with Load balance

In the above, we saw that by using the proposed scheduling algorithm though we

267

achieved a very low overall energy consumption, the scheduling is highly biased to

one or two SMDs to minimise the overall energy consumption. However, as men-

tioned earlier, in MCC, it is vital to ensure that no SMDs are get overloaded, i.e.,

the tasks should be equally distributed as far as possible so that the load of all SMDs

are evenly balanced. We incorporated the load balance factor in the proposed

scheduling algorithm to address this. The scheduling details for this case are shown

in Table 6.20.

Table 6.18. Scheduling sequences without load balancing

Task
Task
size

Execution duration
Schedule
sequence

Execu-
tion
time

m1

(v: 0.259,
 f: 0.004)

m2

(v: 0.527,
f: 0.021)

m3

(v: 0.107,
f: 0.097)

m4

(v: 0.882,
f: 0.017)

t1 16 - - 0 - 165.289 - 1. t1 → m3 165.289

t2 61 - -
165.289 -
795.455

- 2. t2 → m3 630.165

t3 15 0 - 4054.054 - - - 3. t3 → m1 4054.054

t4 46 - -
795.455 -
1270.661

- 4. t4 → m3 475.207

t5 9 - -
1270.661 -
1363.636

- 5. t5 → m3 92.975

t6 31 - -
1363.636 -
1683.884

- 6. t6 → m3 320.248

t7 30
4054.054 -
12162.162

- - - 7. t7 → m1 8108.108

t8 23 - -
1683.884 -
1921.488

- 8. t8 → m3 237.603

t9 11
12162.162 -
15135.135

- - - 9. t9 → m1 2972.973

t10 28 - -
1921.488 -
2210.744

- 10. t10 → m3 289.256

t11 19
15135.135 -
20270.270

- - - 11. t11 → m1 5135.135

Table 6.19. Task lengths for each SMD and energy consumption without load balancing

SMD
Task(s)

scheduled

Total
task
size

% of total
task size

Total exe-
cution
time

% of total
engaged

time

Energy
consump-

tion

Load
balance

m1 t3, t7, t9, t11 75 25.952 20270.27 90.166 5.031

-

m2 - 0 0 0 0 0.000

m3
t1, t2, t4, t5, t6,

t8, t10
214 74.048 2210.744 9.832 2.450

m4 - 0 0 0 0 0.000

Total 11 289 100 22481.014 100 7.481

Now let us check how the issue of biased loading has been mitigated. Table 6.21

shows that in this case, there is no such SMD that has not been assigned any task.

From the 4th column, we see that the task distribution (according to task size) has

been significantly improved than earlier (Table 6.19). A comparison of the variance

268

and standard deviation (STD) of the load distribution for both the cases (with and

without load balance) in terms of the total size of tasks executed and total execu-

tion time is shown in Fig. 6.15. It can be expectedly observed that the variance and

STD are much higher when the focus is on only energy efficiency. But introducing

the load factor in the scheduling has reduced both the parameters' values. How-

ever, to achieve this, we had to sacrifice energy efficiency to some extent. It can be

seen from Table 6.21 that the energy consumption is increased a little bit while the

total load balance factor of 402.614 is achieved.

Table 6.20. Scheduling sequences with load balancing

Task
Task
size

Execution duration
Schedule
sequence

Execu-
tion
time

m1

(v: 0.259,
 f: 0.004)

m2

(v: 0.527,
f: 0.021)

m3

(v: 0.107,
 f: 0.097)

m4

(v: 0.882,
f: 0.017)

t1 11 - - 0 - 165.289 - 1. t1 → m3 165.289

t2 12 - -
165.289 -
795.455

- 2. t2 → m3 630.165

t3 5 - 0 - 704.225 - - 3. t3 → m2 704.225

t4 6 -
704.225 -
2863.850

- - 4. t4 → m2 2159.625

t5 39 0 - 2432.432 - - - 5. t5 → m1 2432.432

t6 41 - - - 0 - 1867.470 6. t6 → m4 1867.470

t7 36 - -
795.455 -
1105.372

- 7. t7 → m3 309.917

t8 23 - -
1105.372 -
1342.975

- 8. t8 → m3 237.603

t9 25 - -
1342.975 -
1456.612

- 9. t9 → m3 113.636

t10 28 - -
1456.612 -
1745.868

- 10. t10 → m3 289.256

t11 19 - -
1745.868 -
1942.149

- 11. t11 → m3 196.281

Table 6.21. Task lengths for each SMD and energy consumption with load balancing

SMD
Task(s)

scheduled

Total
task
size

% of
total

task size

Total
execution

time

% of total
engaged

time

Energy
consump-

tion

Load
balance

m1 t5 39 13.495 2432.432 26.713 0.604

402.614

m2 t3, t4 11 3.806 2863.85 31.450 16.941

m3
t1, t2, t7, t8, t9,

t10, t11
154 53.287 1942.149 21.328 2.152

m4 t6 41 14.187 1867.47 20.508 24.116

Total 11 289 100 9105.901 100 43.813

269

Fig. 6.15. Variance and standard deviation of the load distribution for scheduling with and with-

out load balance in terms of the total size of tasks executed and total execution time

6.3.3.5 Time Complexity Analysis

The complexity analysis of the proposed algorithm is discussed as follows.

• Particle representation and generation of the swarm: The dimension of a par-

ticle is the same as the number of tasks (i.e., n). So, the initial population Ppop of

N particles is generated in O(𝑁 × 𝑛).

• Calculation of fitness value: The particle with length n is evaluated in O(n)

time along with O(N) for initialising 𝐺𝑏𝑒𝑠𝑡.

• Velocity and position updating: Iteratively, the velocity and positions of a sin-

gle particle are updated in O(n) times. Here, the overall iteration to update the

swarm needs O(𝑀𝐴𝑋𝑖𝑡𝑟 × 𝑁 × 𝑛).

Hence, the time complexity of the overall process is O(𝑁 × 𝑛) + O(𝑁) +

O(𝑀𝐴𝑋𝑖𝑡𝑟 ×𝑁 × 𝑛) time or O(𝑁 × 𝑛) time as an upper bound. Therefore, the over-

all complexity of our PSO-based scheduling algorithm for MCC is O(𝑁 × 𝑛).

6.3.4 Experiment, Results and Analysis

In this section, we present the details of the simulated experiment for the energy-

efficient scheduling. We also discuss the observed results and analyse them in the

context of the set objectives.

6.3.4.1 Dataset Curation

We used the same dataset as mentioned in Section 6.2.3.1. However, we considered

only CPU clock frequency, no. of cores, and current CPU load for this experiment.

We considered the CPU information of a total of fifteen SMDs'

(𝑀 = {𝑚1, 𝑚2, 𝑚3, … ,𝑚15}), chosen randomly. We wanted to check the perfor-

mance of the proposed scheduling algorithm on a smaller and larger set of tasks

30.235

18.978

37.837

4.421

914.153

360.169

1431.669

19.550

0 200 400 600 800 1000 1200 1400 1600

Without LB

With LB

Without LB

With LB
%

 o
f

to
ta

l t
as

k
si

ze
%

 o
f

to
ta

l
en

ga
ge

d
 t

im
e

Variance STD

270

on a smaller and larger number of SMDs. Therefore, we further divided M into two

sets of SMDs (𝑀1 = {𝑚1, 𝑚2, 𝑚3, … ,𝑚10} and 𝑀2 = {𝑚11, 𝑚12, 𝑚13, … ,𝑚15}). The

complete details of M1 and M2 are shown in Table 6.22 and Table 6.23, respectively.

Table 6.22. Dataset used in the experiment: resource parameters details of SMDs of set 1 (𝑴𝟏)

Parameter m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
CPU frequency
(GHz)

2.2 1.5 1.5 1.3 1.3 1.7 2.5 2.5 1.7 2.5

CPU cores (in
numbers)

2 4 2 8 8 8 2 4 2 2

CPU load (%) 92 16 44 89 13 64 60 99 26 53
Effective CPU 0.0478 0.3750 0.0682 0.1169 0.8000 0.2125 0.0833 0.1010 0.1308 0.0943

Table 6.23. Dataset used in the experiment: resource parameters details of SMDs of set 2 (𝑀2)

Parameter m11 m12 m13 m14 m15

CPU frequency (GHz) 2.5 2.2 2.2 1.5 2.2

CPU cores (in numbers) 2 2 8 8 8
CPU load (%) 53 26 19 15 19

Effective CPU 0.0943 0.1692 0.9263 0.8000 0.9263

6.3.4.2 Simulation Provisioning

The details of the simulation environment and settings are given in the following.

The experimental setup for this experiment also was same as mentioned in Section

6.2.3.2.1.

6.3.4.2.1 Task Initiation

For experimental purposes, we generated tasks of two different sizes. One set

(𝑇1 = {𝑡11, 𝑡12, 𝑡13, … , 𝑡1100}) comprised of 100 subtasks while the other (𝑇2 =

 {𝑡21, 𝑡22, 𝑡23, … , 𝑡2200}) having 200 subtasks, as shown in Fig. 6.16. Here, 𝑇1 ≠ 𝑇2,

i.e., the instruction lengths of the tasks in the two task sets are dissimilar. The tasks

were randomly generated with the instruction length ranging from 5 to 250. The

purpose and rationale behind considering these varieties of task sets are discussed

in Section 6.3.4.3.

 

 
1 2 3 100

1 2 3 200

1 1 1 1 1

1 2

2 2 2 2 2

, , ,...,
,

, , ,...,

T t t t t
T T T

T t t t t


 



Fig. 6.16. Different task sets used in the experiment

6.3.4.2.2 Control Parameters

The details of the control parameters used in the proposed PSO-based algorithm

and the GA are listed in Table 6.24. Since MCT, MinMin, MaxMin, and PPIA are

271

heuristic algorithms, no such specific control parameters are required.

Table 6.24. Control parameters for PSO and GA

Algorithm Parameter Values

Proposed-
PSO

Population size 10

Iterations 100

Initial
parameters

C1, C2 2.0962

r1, r2 Rand(0,1)

w 0.0967
Initial social influence Rand(0,1)

Initial personal influence Rand(0,1)
𝑣𝑚𝑎𝑥 0.5
𝑣𝑚𝑖𝑛 0.5
𝑤𝑚𝑎𝑥 1.0
𝑤𝑚𝑖𝑛 0.0

GA Population size 10

Iterations 100

Crossover point 40

Mutation rate 0.1

6.3.4.3 Performance Analysis

We performed an extensive simulation of the proposed PSO-based energy effi-

ciency scheduling algorithm for performance assessment and analysis on the real

dataset described in Section 6.3.4.1. We performed the same experiment with the

same assumed scenarios for a comparative assessment using three other popular

algorithms. Since our proposed algorithm is a metaheuristic, to have a justified

comparative assessment, we deliberately selected a combination of heuristics

(MTC, MinMin, MaxMin, and PPIA) and metaheuristic (GA) algorithms that are

popularly used in similar problem scenarios.

As we did in Section 6.3.3.4 to demonstrate the illustration, we also frame the per-

formance analysis into two segments. We wanted to compare the performance of

the proposed PSO-based algorithm with others in terms of i) scheduling consider-

ing only energy efficiency and ii) scheduling considering energy efficiency with

load balance.

Further, to assess the performance of the proposed algorithm, we designed diverse

task-SMD mapping scenarios. As discussed in Section 6.3.4.2.1, we generated task

sets with two different sizes of 100 (𝑇1) and 200 (𝑇2) subtasks, 𝑇1 ≠ 𝑇2. These tasks

were scheduled to two SMD sets of 5 (𝑀1) and 10 (𝑀2), 𝑀1 ≠ 𝑀2. To achieve task

heterogeneity, we assigned two different task sets to the same SMDs alternatively,

i.e., 𝑇1 and 𝑇2 both were mapped first to 𝑀1 and then to 𝑀2. Similarly, for SMD

272

variability, we assigned a single set of tasks to both sets of SMD, i.e., 𝑇1 was first

mapped to both 𝑀1 and 𝑀2 and then 𝑇2 was mapped to both 𝑀1 and 𝑀2. All the

four mapping scenarios are shown in Fig. 6.17.

1T

2T
2M

1T

2T
1M

1M

2M
2T1T

1M

2M

(a) (b)
Fig. 6.17. Task sets to SMD mapping scenarios: (a) task heterogeneity and (b) SMD variability

6.3.4.3.1 Energy Efficiency

First, we ran all the algorithms without considering load balance but with four dif-

ferent sets of task-SMD combinations.

Task heterogeneity: Fig. 6.18 shows the energy efficiency achieved by all six algo-

rithms when a) 𝑇1 and 𝑇2 are scheduled to 𝑀1 and b) 𝑇1 and 𝑇2 are scheduled to

𝑀2. In all the combinations, our algorithm performs significantly well compared to

the other five algorithms. It is no-brainer to assume that the larger task set would

consume more energy. From the figure, it can be seen that our algorithm reflects

this variability better than others. It exhibits almost linear variations for both sets,

very close to the exact variation.

(a) Task heterogeneity with a smaller set of SMDs (b) Task heterogeneity with a bigger set of SMDs

Fig. 6.18. Task heterogeneity for energy efficiency without load balance

SMD variability: Fig. 6.19 shows the energy efficiency achieved by all six algo-

rithms when a) 𝑇1 is scheduled to 𝑀1 and 𝑀2 and b) 𝑇2 is scheduled to 𝑀1 and 𝑀2.

In both the cases, our algorithm performs far better than others. However, here we

witness a contrasting pattern for SMD-task variability. When the number of SMDs

7
4

0
3

.6
7

1

8
8

7
2

.1
3

5

7
9

2
8

.8
6

4

9
3

3
1

.0
4

4

7
2

6
6

.3
3

5

8
8

1
3

.6
7

9

7
3

6
7

.2
6

4

8
8

3
9

.2
8

7

2
7

6
9

.4
3

4

5
5

2
8

.8
4

2

2
4

8
0

.6
3

7 4
8

5
3

.8
7

9

0

2000

4000

6000

8000

10000

100x5 200x5

MCT MinMin MaxMin PPIA GA Proposed

5
6

7
9

.5
4

3

8
3

1
0

.4
2

0

4
7

2
0

.5
4

8

1
4

6
7

4
.0

0
6

5
5

4
5

.9
6

0

8
3

9
0

.0
1

4

5
6

9
5

.3
0

6

8
3

5
6

.7
6

4

2
1

6
5

.0
3

4

8
3

8
8

.3
8

1

1
9

5
5

.1
3

7

6
6

4
8

.1
5

0

0

2000

4000

6000

8000

10000

12000

14000

16000

100x10 200x10

MCT MinMin MaxMin PPIA GA Proposed

273

is increased, the energy consumption decreases for 𝑇1 but it increases for 𝑇2. This

is true for all other algorithms except MCT, MaxMin and PPIA. For these, the en-

ergy consumption decreases marginally when the number of SMDs increases.

(a) SMD variability with a smaller set of tasks (b) SMD variability with a bigger set of tasks

Fig. 6.19. SMD variability for energy efficiency without load balance

6.3.4.3.2 Energy Efficiency with Load Balance

In the second case, we ran all the algorithms considering load balance for schedul-

ing along with energy efficiency with four different sets of task-SMD combinations.

Task heterogeneity: Fig. 6.18 shows the energy efficiency achieved by all six algo-

rithms while considering load balance when a) 𝑇1 and 𝑇2 are scheduled to 𝑀1 and

b) 𝑇1 and 𝑇2 are scheduled to 𝑀2. In this case also for all the combinations, our

algorithm performs appreciably better than other algorithms. As usual, the energy

consumptions upsurge with a larger task size for the same set of SMDs. From the

figure, it can be seen that the energy consumption increased almost more than

threefold when the task size gets doubled for five SMDs. For ten SMDs also, this

trend continues.

SMD variability: Fig. 6.21 shows the energy efficiency achieved by all six algo-

rithms while considering load balance when a) 𝑇1 is scheduled to 𝑀1 and 𝑀2 and

b) 𝑇2 is scheduled to 𝑀1 and 𝑀2. As expected, in this case also our algorithm beats

others handsomely. Similar to the case of SMD variability (Fig. 6.19) in Section

6.3.4.3.1, here also we can see a mix of contrasting patterns for SMD-task variability.

For GA and our algorithm, when the number of SMDs is increased, the energy con-

sumption increases for 𝑇1 but it decreases for 𝑇2. For MCT, MaxMin and PPIA it

7
4

0
3

.6
7

1

5
6

7
9

.5
4

3

7
9

2
8

.8
6

4

4
7

2
0

.5
4

8

7
2

6
6

.3
3

5

5
5

4
5

.9
6

0

7
3

6
7

.2
6

4

5
6

9
5

.3
0

6

2
7

6
9

.4
3

4

2
1

6
5

.0
3

4

2
4

8
0

.6
3

7

1
9

5
5

.1
3

7

0

1000

2000

3000

4000

5000

6000

7000

8000

5x100 10x100

MCT MinMin MaxMin PPIA GA Proposed

8
8

7
2

.1
3

5

8
3

1
0

.4
2

0

9
3

3
1

.0
4

4

1
4

6
7

4
.0

0
6

8
8

1
3

.6
7

9

8
3

9
0

.0
1

4

8
8

3
9

.2
8

7

8
3

5
6

.7
6

4

5
5

2
8

.8
4

2

8
3

8
8

.3
8

1

4
8

5
3

.8
7

9

6
6

4
8

.1
5

0

0

2000

4000

6000

8000

10000

12000

14000

16000

5x200 10x200

MCT MinMin MaxMin PPIA GA Proposed

274

increases for both 𝑇1 and 𝑇2. For MinMin, it is just opposite, i.e., the energy con-

sumption decreases for 𝑇1 and increases for 𝑇2.

(a) Task heterogeneity with a smaller set of SMDs (b) Task heterogeneity with a bigger set of SMDs

Fig. 6.20. Task heterogeneity for energy efficiency with load balance

(a) SMD variability with a smaller set of tasks (b) SMD variability with a bigger set of tasks

Fig. 6.21. SMD variability for energy efficiency with load balance

6.3.4.4 Statistical Analysis

To check the significance of our algorithm in comparison to other considered al-

gorithms, we conducted a one-way ANOVA [694] test on energy efficiency with

load balance. As usual, the null hypothesis (H0) assumes that the mean of all the

groups is equal, and based on that, one group can be rejected. Whereas the alter-

native hypothesis (H1) assumes means are not equal.

We used ten random task sets where each set consisted of 100 tasks executed on

five SMDs. The summary of the input sets of the ANOVA test is presented in Table

6.25. It is observed from the table that the means and variances of the considered

algorithms are different. It can be observed that the proposed algorithm has the

lowest mean, whereas MinMin has the highest.

3
7

0
4

.7
2

1
0

4
5

3
.9

1
7

3
9

4
9

.0
8

7

1
1

0
5

5
.7

2
9

3
7

2
2

.1
5

8

1
0

4
7

9
.3

7
1

3
6

8
8

.0
1

4

1
0

4
2

9
.6

8
3

2
9

4
5

.8
3

1

1
1

5
2

5
.2

6
6

1
8

5
6

.1
3

2

9
1

8
8

.6
5

1

0

2000

4000

6000

8000

10000

12000

14000

100x5 200x5

MCT MinMin MaxMin PPIA GA Proposed

4
0

8
5

.5
6

8

1
2

1
9

4
.3

7
1

3
7

8
1

.5
6

1
8

2
1

5
2

3
.8

9
1

4
0

9
8

.0
4

1

1
1

9
6

0
.4

7

4
1

0
2

.0
8

1

1
2

1
1

9
.6

4
3

3
7

5
6

.9
1

5

8
1

7
4

.6
6

5

3
6

2
7

.2
3

1

7
8

8
4

.4
4

5

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

100x10 200x10

MCT MinMin MaxMin PPIA GA Proposed

3
7

0
4

.7
2

4
0

8
5

.5
6

8

3
9

4
9

.0
8

7

3
7

8
1

.5
6

1
8

3
7

2
2

.1
5

8

4
0

9
8

.0
4

1

3
6

8
8

.0
1

4

4
1

0
2

.0
8

1

2
9

4
5

.8
3

1

3
7

5
6

.9
1

5

1
8

5
6

.1
3

2

3
6

2
7

.2
3

1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5x100 10x100

MCT MinMin MaxMin PPIA GA Proposed

1
0

4
5

3
.9

1
7

1
2

1
9

4
.3

7
1

1
1

0
5

5
.7

2
9

2
1

5
2

3
.8

9
1

1
0

4
7

9
.3

7
1

1
1

9
6

0
.4

7

1
0

4
2

9
.6

8
3

1
2

1
1

9
.6

4
3

1
1

5
2

5
.2

6
6

8
1

7
4

.6
6

5

9
1

8
8

.6
5

1

7
8

8
4

.4
4

5

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

5x200 10x200

MCT MinMin MaxMin PPIA GA Proposed

275

The overall statistics of the input set using energy efficiency with load balance are

given in Table 6.26. Similar to Section 6.2.3.4.1, here also, the H0 was rejected if the

P-value < α, α =0.05, i.e., F-statistic >> F-critical. Therefore, we rejected the null

hypothesis at the one percent level.

Table 6.25. Input sets of ANOVA test

Groups Count Sum Mean Variance

MCT 10 76807.342 7680.734 1476793.675

MinMin 10 90568.831 9056.883 11639390.706

MaxMin 10 76111.989 7611.199 1604243.861

PPIA 10 76723.792 7672.379 1457634.273
GA 10 46001.658 4600.166 5911437.533

PSO 10 39210.122 3921.012 3493183.924

Table 6.26. ANOVA test results

Source of variation SS DF MS F-statistic P-value F-critical

Between groups 204050825.470 5 40810165.094 9.571 0.000 2.386

Within groups 230244155.748 54 4263780.662 - - -
Total 434294981.218 59 - - - -

6.3.5 Discussion

In Section 6.3.4.3, we witnessed that our algorithm is well capable of coping with

the task heterogeneity. It performs almost linearly compared to other algorithms,

reflecting the dynamics of task heterogeneity. However, for SMD variability, it ex-

hibits inconsistent behaviour. In fact, it is true for all the algorithms. None shows

a definitive pattern of energy consumption variations with varying numbers of

SMDs. One possible explanation for this could be the heterogeneity in the CPU

properties of the SMDs.

Nevertheless, our primary goal was to minimise the overall energy consumption

for scheduling a set of MCC tasks to a set of SMDs. In this regard, we can claim

that our algorithm is successful in both the cases – only energy efficiency and en-

ergy efficiency with load balance. Fig. 6.22 shows the average energy consumption

of all the algorithms for four experimental alternatives. Our algorithm outperforms

all other five algorithms. Our algorithm performs significantly better than others

in the first case (only energy efficiency). In the second case (energy efficiency with

load balance), the performance difference is smaller than in the first case.

Based on Table 6.25, the mean differences between the proposed algorithm and

the other compared algorithms are shown in Fig. 6.23. It can be observed that the

276

closest performer to our algorithm was the GA. It is probably due to the similarity

in the optimisation approach. Both GA and the proposed PSO-based algorithm are

metaheuristics, while others are heuristic. Whereas the performance of the

MinMin is the farthest from the proposed one i.e., MinMin has the worst energy

efficiency. This is because MinMin always tries to minimise the execution time by

repeatedly scheduling the tasks to the most potent SMDs. And the energy con-

sumption increases with the power of the SMD CPU.

The energy efficiency achieved by our proposed algorithm not only allows sustain-

able computing but also significantly impacts the monetary expenses like energy

bills to the organisations which adopted MCC as computing infrastructure. Fur-

thermore, the reduction in energy consumption of individual SMDs would ensure

lesser battery drainage due to MCC tasks. This would be a great relief for SMD

users, stopping them from worrying about charging their SMDs frequently. This

will not only lead to minimised users' inhibition in joining MCC but also increase

the retention of the SMD providers in MCC, which would, in turn, steer the success

of MCC.

6.4 Limitations and Further Scope

Although we fulfilled the desired objectives with the solutions presented in Section

6.2 and Section 6.3, and achieved satisfactory performances for scheduling tasks in

an MCC scenario considering various resource parameters, there are a few inade-

quacies which might be addressed to augment its effectiveness and usability. Be-

low, we mention a few such arguments.

Fig. 6.22. Average energy consumption of all the four case scenarios

7
5

6
6

.4
4

2

7
6

0
9

.6
4

4

9
1

6
3

.6
1

5

1
0

0
7

7
.5

6
7

7
5

0
3

.9
9

7

7
5

6
5

.0
1

0

7
5

6
4

.6
5

5

7
5

8
4

.8
5

5

4
7

1
2

.9
2

3

6
6

0
0

.6
6

9

3
9

8
4

.4
5

1

5
6

3
9

.1
1

5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Energy consumption Energy consumption with load balance

MCT

MinMin

MaxMin

PPIA

GA

Proposed

277

Fig. 6.23. Mean differences between the proposed and other algorithms

Here, we considered a simulated task assignment scenario where the size of each

task is exactly known. But for real implementation, pre-calculating the task size

accurately is not trivial, and this would affect the estimation of the resource re-

quirement of the assigned tasks. Though this is true for all scheduling problems, it

would be interesting to observe the performance of the proposed algorithm in a

real MCC implementation.

We assumed that the CPU of the SMDs would be instantaneously available when-

ever an MCC task was scheduled. But in a practical MCC, the tasks are executed in

a cycle stealing fashion, i.e., when the CPU of the allocated SMD is found free, the

task is executed. This might affect the overall execution time. Although this should

not impact the correctness of the proposed scheduling algorithm, its effectiveness

might be affected. However, it would not be generally possible to include CPU cy-

cle availability in the scheduling criteria because it is almost impossible to assess

it beforehand. In a local MCC where the SMD users remain more or less the same

continuously, and if the usage patterns of the devices can be tracked and analysed,

the probable availability of the CPU cycles can be predicted to some extent.

To calculate the resource strength of an SMD, we overlooked the GPU power,

though it plays a crucial role in maximising the throughput for highly parallel tasks.

However, including the GPU would not change the fundamental behaviour of the

algorithm. Hence, it can be said that the proposed algorithm would also work effi-

ciently for GPU-centric tasks.

We assumed that all the tasks were independent and could be executed absolutely

in parallel. But generally, when a large task is divided into multiple smaller tasks,

dependency constraints are associated among the tasks, meaning not all tasks are

3759.722

5135.871

3690.187 3751.367

679.154

MCT MinMin MaxMin PPIA GA

278

parallelly executable. This makes the scheduling more complex. In future work, we

aim to propose a DAG-based task model that would ensure the maximum parallel-

isation with maintaining the serializability.

In the second case, we ignored the energy consumption accounting for data trans-

fer because we assumed our MCC setup of a single WLAN and the MCC tasks as

CPU-intensive. However, for an internetworked MCC and/or an MCC application

with mostly I/O bound jobs, the communication energy consumption would be a

significant factor. Therefore, for an ideal and universal energy-efficient scheduler

for MCC, the data transfer energy should be incorporated.

We did not consider makespan and energy efficiency together as scheduling crite-

ria. It will be challenging to have a balance between these two conflicting objec-

tives. Parity optimality can be used to address this.

6.5 Summary

In this chapter we addressed the scheduling problem in MCC. In the first part of

the chapter, we proposed a multicriteria-based resource-aware task scheduling al-

gorithm for MCC. We aimed to develop a scheduling algorithm that would mini-

mise the makespan and maximise the load balance and resource utilisation of an

MCC system on the whole. We adopted a heuristic approach to attain the consid-

ered optimising criteria to attain the optimisation goal. The SMDs were assessed

by their resource strength based on different static (CPU clock frequency and the

number of cores, battery capacity) and dynamic (present CPU load, available RAM,

available battery, and device temperature) resource parameters. Based on the re-

source strength and the task length, the tasks were mapped to the suitable SMDs

so that the considered objectives were accomplished. We compared our algorithm

with three other popular metaheuristics and heuristic algorithms – PSO, GA, and

MCT. It was observed that for the considered objectives, our algorithm showed

better results in various simulation scenarios. The efficacy of the proposed algo-

rithm was further validated through two statistical measures – ANOVA and post

hoc.

In the second part of the chapter, we proposed a PSO-based scheduling algorithm

279

to minimise the overall energy consumption of the SMDs in executing an MCC task

while maintaining a reasonable load balance among the SMDs. We considered two

different experimental scenarios – first, targeting only energy efficiency and sec-

ond, targeting energy efficiency with load balance. Further, we diversified the anal-

ysis by bringing variability in the number of tasks and SMDs. For each category,

we checked each SMD's energy consumption and the overall energy efficiency

achieved to execute all the scheduled tasks. We compared the performance of the

proposed algorithm with several well-known heuristic and metaheuristic algo-

rithms on various parameters. With respect to task heterogeneity, our algorithm

exhibited almost linear variations of increased energy consumption with increased

task size. But the experiment on SMD variability was inconclusive. Nevertheless,

our algorithm achieved the most energy efficiency for scheduling in MCC with or

without load balance consideration.

7

Resource Availability Prediction in Local MCC

“Your ability will not help if you do not give your availability.” --- Saji Ijiyemi

7.1 Introduction

Due to the user's mobility, the SMDs in a particular network may not be available

continuously over time. However, they might be available for several discrete pe-

riods. Due to this instability, there is always a high probability that a crowdworker

leaves the network without finishing the assigned job. There are two possible so-

lutions when a crowdworker departs before completing the assigned task:

i. The job is restarted from the beginning by another crowdworker. This delays

the task execution as the whole process is to be started again, including re-

source (crowdworker) selection and job assignment.

ii. Savepoints are maintained periodically. When a crowdworker departs, the task

is rollbacked to the last savepoint and resumed from there by another

crowdworker. This approach might be better than starting the job from the

beginning, but keeping savepoints is overhead, and also determining the pe-

riod length after which the savepoints are noted is a decision challenge.

In both cases, the QoS of MCC is compromised, which ultimately affects the suc-

cessful realization of MCC. That is why assessing the availability of the assignee

crowdworker before assigning a task to it is so crucial in MCC.

To address this issue, we suggest, before submitting a task to a crowdworker, it is

to be assured that it would not leave until the job is finished. But, for mobile de-

vices, guaranteeing availability is not straightforward. One approach, as assumed

in [156], is that every crowdworker should announce their departure time immedi-

ately after entering the MCC network. Based on the declared departure time, suit-

able jobs would be assigned so that they could be finished timely. But it has two

issues - i) it is not very practical and ii) there is no guarantee that the crowdworker

will keep its word that it would not leave before the declared time. Due to several

281

reasons, a crowdworker may leave the network unscheduled even if it is priorly

agreed to be there for a specified period.

Another possible option, as suggested in [140], is that if a crowdworker wants to

leave the network, it will notify the coordinator. This would solve the first issue

mentioned above, but not the second completely. The overhead of job handover

remains. Also, some dishonest devices may not follow the rule and leave abruptly

without notifying.

Owing to these drawbacks, we propose an availability-aware SMD selection

scheme for a local MCC. We predict the availability of an SMD for a minimum

duration of the task length (execution period), based on which the resource selec-

tion decision can be made. For this, we tracked the in-time and out-time of the

SMDs on the previous occasions when they were connected to the considered Wi-

Fi AP. Based on this historical mobility/availability information, the probable avail-

ability till a particular duration of an SMD at any given point of time is assessed.

This problem can be represented as time-series analysis.

Considering this, we propose a specialized convolutional feature extraction

method to enhance the performance of the LSTM and GRU models. The presented

approach is most useful for a local MCC environment where the SMD owners visit

and join the MCC network on a regular basis. In such a scenario, the main objective

of this chapter is to improve the QoS and reliability of the MCC by minimizing the

handoff or job offloading and reassignment. The success of this approach will de-

pend on the accuracy of the availability prediction of the considered SMDs.

In particular, in this chapter, we aim to achieve the followings:

• Design a logging model for recording the in-time and out-time of SMDs in

consideration with respect to a Wi-Fi AP.

• Propose a novel dynamic feature extraction process suitable for the datasets

where the features are unknown.

• Designed a novel method for representing time-series data into a vector to

perform the convolutional feature extraction.

• Combine the proposed convolutional feature extraction with both LSTM and

282

GRU for prediction.

• Compare the prediction performances with each other as well as with the basic

LSTM and GRU, and also with ARIMA.

7.2 Solution Approaches and the Proposed Solution

Time-series analysis is exercised on the set of observations where each record is

observed at a specific time. Analysis of these types of data is not like other statisti-

cal modelling and inference due to its apparent correlation in adjoining records

introduced by the sampling time. These features limit the applicability of many

statistical models that assume the observations are independent and identically

distributed. The ARIMA model has been a widely used linear model for forecasting

time-series data, and it has been a standard for a long time. ARIMA considers lag

value determined by the correlation among the continuous values, the dependency

between an observation and the residual, and seasonality (if it exists) for building

the model and result in close prediction of the future [699]. ARIMA models have

the advantages of being more flexible compared to other statistical models and

have a better performance for a longer sequence of data with a stable correlation

between past observations. But ARIMA model can only capture the linear pattern

of the data, but not the hidden patterns that are stochastic and non-linear in nature

[700] [701]. Furthermore, an ARIMA model assumes a constant standard deviation

in errors, which may not be true in practice. Like most of the real data, the dataset

considered in this work is also non-linear in nature.

Another statistical model, the Markov chain process, has been popularly used for

time-series prediction, especially where clarifying the interrelationships of the

model is important [702] [703]. Though they provide significant accuracy for short-

term prediction, they have a probability of presenting miss prediction for long-

term sequences, which is necessary for crowdworker selection. For instance, it may

happen that a particular user was not available for certain days in the previous

months. Due to the lack of memory in the Markov model (and also ARIMA), it will

not be able to hold the long-term historical information; hence it cannot incorpo-

rate such irregularities in the model. This leads to inaccurate predictions.

283

In summary, the classical time-series analysis models suffer from the following lim-

itations:

• They are sensitive towards missing values.

• They require special transformations to convert the data into a linear form.

• Most of them support only univariate data; they do not support multiple inde-

pendent variables to be taken as inputs.

• Though they have satisfactory prediction performance in short-term predic-

tions they miserably fail in long-term predictions.

Furthermore, the traditional prediction models work better when the data follow

a statistical distribution. In our problem, we wanted to capture the real and con-

sistent behavior of the user, which required considering a long-term data relation-

ship. In the user mobility data, there is very little chance of finding a perfect fit of

a distribution, which is a basic requirement for the traditional prediction tools. To

tackle this, a time-series analysis model is needed that can make a prediction on

the dataset without fitting a known distribution.

Considering the above-mentioned issues, machine learning techniques are in-

tensely studied for being used in time-series forecasting. Machine learning models

are good to exercise the non-linear patterns. K-nearest neighbor, decision tree,

support vector machine, etc., can be used to model time-series data when the ob-

servation consists of a non-linear pattern.

Capturing the changes of the contexts in time-series data is an important criterion

for a prediction model. However, traditional machine learning based prediction

models cannot capture these changes appropriately. Hence, they are unable to pro-

vide satisfactory prediction accuracy in cases where the contexts of the considered

data change frequently. In the user mobility data considered in this work, we

needed to identify the users' behavior for a longer period. To provide expected pre-

diction results, the prediction models need to capture these changes appropriately.

Deep learning based model like RNN (recurrent neural network) is capable of re-

taining long-term contextual information due to the presence of specialized

memory. It uses a looping constraint that helps to capture the sequential

284

information in the data. Deep learning models also have the inherent capability of

searching relations in the dataset without prior knowledge of any distribution.

Generally, RNNs are used for time-series data prediction. But traditional RNNs suf-

fer from vanishing gradient problems when the input length is too high [704]. So,

to overcome the issue, upgradations of RNNs like LSTM (long-short term memory)

[705] [706] and GRU [707] [708] were developed. Both methods have been popu-

larly used for sequence modeling and time-series predictions [709].

However, a prediction model is not sufficient to attain a handsome or the expected

prediction accuracy since these models work on the available input features with-

out any feature extraction. For that, it is required to apply a proper feature extrac-

tion mechanism to the dataset. The feature extraction is a crucial aspect of design-

ing a prediction model because it captures the most relevant features from the

data, which generally improves the model performance.

The existing and known feature extraction methods, in most cases, can extract the

exact features required for a particular prediction problem. But they may be in-

competent when we do not have a clear idea of the most dominant features. There-

fore, we needed to frame a feature extraction methodology that would be able to

dynamically extract the features for solving the proposed resource availability pre-

diction problem.

Recently, CNNs (convolutional neural networks), the idea of which was first pre-

sented by Fukushima in 1980 [710] and later improved by LeCun et al. [711] [712],

have become popular for extracting dynamic features for prediction-based models.

A CNN is a special kind of neural network for processing 2-D image data [713] [714]

[715]. CNNs are very effective in extracting and learning features not only from one-

dimensional sequential data, such as univariate time-series data, but also from

multivariate time-series data [716] [300].

Owing to their distinct architecture, the LSTM layers in an LSTM model can cap-

ture the sequence pattern information quite efficiently. As the LSTM networks are

designed to deal with temporal correlations, they utilize only the features provided

with the training set [295]. The convolutional layers of CNNs can extract more

285

valuable features by filtering out the noise prevailing in the raw input data [306].

They are also capable of scooping the hidden features that otherwise could not be

pulled out by using only LSTM. This is the core motivation to exercise a convolu-

tional feature extraction layer in addition to the basic LSTM for our presented

availability prediction problem, so that we could exploit the benefits of both tech-

niques to achieve a better prediction performance. The combination of CNN and

LSTM is useful for learning features of not only short-term time variation but also

long-term dependency periodicity [290].

7.3 System Model and Hypothesis

We considered a local environment (campus) where the SMDs get connected to a

WLAN through a Wi-Fi AP. The owners of the SMDs may come within the range

of the network and get connected more than once a day. Most users (with their

SMDs) are often available for a certain duration. For example, in a classroom and

a workplace, the students and the workers are regularly available for a specific du-

ration in consistent intervals. If they take public transport for commuting to reach

their institute and workplaces, in most probability, they would be available for the

duration from boarding point to the destination. Similarly, some people spend a

certain amount of time in the library regularly while some go to the same coffee

shop or canteen regularly. In all these cases, the availability of the users can be

predicted by analysing their presence history.

The accuracy of the availability prediction depends on the campus type. For exam-

ple, in a classroom or a typical office, the availability is somewhat predetermined.

In comparison, the predictability in a coffee shop (where certain customers come

regularly) varies according to its location and its services. Likewise, in public

transport (regularly used by a group of commuters), the availability is very much

fixed (usually one drops at his stop regularly). The crowdworker predictability gra-

dient based on the availability is shown in Fig. 7.1.

To model the working of a local MCC, we have assumed the following:

• We considered a general task execution model where the SMDs receive some

compute-intensive tasks either individually or in batches.

286

• Each task has its own computation requirements, input and output data size,

and finite execution time. We assume that these parameters are known.

• Each crowdworker avails a fixed and equal bandwidth.

• Each crowdworker completes the assigned subtask within a finite time and

sends back the results before leaving the MCC network.

• A crowdworker would share its resources until it is present in the network.

• All SMDs, which have the MCC client installed, are considered as crowdworker

and willing to share their resources, either on a profit or non-profit basis.

• The SMDs in MCC are uniquely identified by the UIDs.

Increasing possible availability of a set of SMDs for a known and predictable duration

Coffee shop (for
regular customers)

Library (for regular
readers) Office

Public transport (for
regular passengers) Classroom

Fig. 7.1. Predictability gradient of crowdworkers’ availability in a local MCC

To model our proposed availability prediction, we further assume the following

considerations:

• In need of job submission, the coordinator looks for the most appropriate

crowdworker(s).

• The MCC coordinator already has a list of suitable crowdworkers (based on

some pre-set criteria).

• The coordinator decides to pick the top-ranked crowdworker(s) from the list

(as discussed in Chapter 4 and 5).

• Just before submitting the job to the selected crowdworker, the coordinator

wants to be sure of the probability of the crowdworker being available until

the job is finished.

• If, as per prediction, the SMD is not supposed to be available, the next SMD in

the list is considered, and again the availability of this SMD is checked. This

continues until the suitable SMD of which the availability period is greater

than the task execution time is found.

287

In this chapter, we address the last point, i.e., before the job is actually be submit-

ted, the stability of the selected crowdworker is to be assessed for the duration of

execution of the assigned job. If the crowdworker's presence time is greater than

the task size (estimated execution time), then only it is finally considered for the

job assignment. The workflow diagram of the whole process is depicted in Fig. 7.2.

Start

Get the list of
eligible

crowdworkers

Predicted availability
duration job size

Select the next
crowdworker
from the list

Submit the job

Yes

No

Prepare to
submit a job

Pick the most
suitable

crowdworker

Afore

End
Execute the job and
return the result to

the coordinator

Later

Fig. 7.2. Workflow diagram of crowdworker selection based on availability

7.4 Resource Availability Prediction in MCC

In this section, we present the comprehensive details of the proposed resource

availability prediction method along with the experimental results and discussion.

7.4.1 Problem Definition

Let Tj be the job size (execution time) of a job J and M be the preferred crowdworker

for J. At the time of job submission (tj), we need to know how long M might be

available after tj let this be Ma. J should be submitted to M if and only if Eq. 7.1 is

satisfied, where k is some constant.

𝑀𝑎 ≥ 𝑇𝑗 + 𝑘 (7.1)

The details of the 𝑀𝑎 calculation and crowdworker selection criteria are discussed

in the next subsection.

7.4.2 Problem Designing

We considered the resource selection process as the combination of two processes:

a) resource availability prediction and b) resource selection. The resource selection

288

depends on the outcome of resource availability prediction. However, our primary

focus is on resource availability prediction. Major components/modules of the

crowdworker selection procedure are as follows:

Calculate completion time: The job completion time is an approximate higher

bound value of the time required for the particular job to complete. This function

needs two parameters, namely, job size (Tj) and time of job submission (tj). The

completion time (𝑇𝑗
𝑐) of the job J is defined by Eq. 7.2. We assumed that for each J,

Tj is the same for all crowdworkers.

𝑇𝑗
𝑐 = 𝑇𝑗 + 𝑡𝑗 (7.2)

Get selected device: As depicted in Fig. 7.2, the top-ranked SMD in the

crowdworker's list for the reckoned job would be considered.

Get session history: According to the UID from the 'get selected device' module,

the history of the SMD is extracted from the log. The details of data collection are

discussed in Section 7.7.1.

Predict out-time: This module takes the session history of the device's previous

session durations to predict the expected session duration in the current time us-

ing CLSTM (convolutional LSTM). The current session in-time (𝑆𝑖) is added with

the forecasted duration (𝑃𝑀) to get the predicted out-time (𝑆𝑜) of the device in the

current session, as shown in Eq. 7.3. The predicted availability duration (𝑀𝑎) is

calculated by Eq. 7.4.

𝑆𝑜 = 𝑆𝑖 + 𝑃𝑀 (7.3)

𝑀𝑎 = 𝑡𝑗 + 𝑆𝑜 (7.4)

So, Eq. 7.1 can be rewritten as Eq. 7.5, where 𝑘1is the runtime of the prediction

algorithm and 𝑘2 is the padding time between decision making and job dispatch-

ing.

𝑀𝑎 ≥ 𝑇𝑗
𝑐 + 𝑘1 + 𝑘2 (7.5)

Crowdworker selection: This function checks for the availability of the SMD for

the specified duration and returns a Boolean for selection. The SMD would be

289

selected if Eq. 7.5 is satisfied.

Fig 7.3 depicts the combined workflow of the above-mentioned modules, whereas

Fig. 7.4 shows the important steps followed towards SMD selection.

Start

Predict out-
time

Calculate
completion

time

End
Make selection

decision

Select the
most suitable
crowdworker

Get session
history

Estimate Job
dispatch time

Calculate
execution
duration

Get job
details

Assess
resource

requirement

Search for
suitable

crowdworker

Fig 7.3. Availability prediction process of an SMD in MCC

Start

Prediction

Feature
optimisation

Data
normalisation

End

User mobility
(time-series)

data

Create
dataframe

SMD selection
Apply LSTM

Apply LASSO
feature selection

Convolutional
feature extraction

Fig. 7.4. Important steps for SMD selection

As the experiment, we followed the below-mentioned steps:

a. Based on the historical data, a deep learning based prediction model is pre-

sented to predict each SMD’s stability within a particular network, i.e., Wi-Fi

AP, at any given point of time.

b. The session out-time of an SMD is predicted for a given session in-time.

c. A random job submission system is simulated to evaluate the performance of

the prediction model using various metrics.

7.5 LSTM and GRU Architectures

In this section, we discuss the basic architectures of LSTM and GRU.

290

7.5.1 LSTM

An LSTM cell is a special variant of an RNN cell that can handle information of a

more extended sequence of information, which can help make the prediction more

accurate for longer sequences. Each cell is capable of barring information from

flowing through or allowing it to flow through without any change. Allowing the

information without change enables LSTM to remember the information from the

previous timesteps. Through the LSTM cell sequence chain, there are several in-

puts and outputs which allow adding or removing information to the cell

state. Adding or eliminating information to a cell is done through gates. The gates

are the neural networks used to regulate the information flow through the sequence

chain of LSTM cells. These gates or the sigmoid layers turn all output values in a

value between 0 and 1, where 0 indicates nothing of the component should pass

through, and 1 is for the opposite, i.e., everything would be through. The three gates

that control the cell states of an LSTM are briefed below, and a typical LSTM block

is shown in Fig. 7.5.

Forget gate: This gate gets rid of the information we want to remove from the cell

state. The forget gate (𝑓𝑡) is defined by Eq. 7.6.

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 +𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (7.6)

where, 𝜎 is the sigmoid gate activation function, 𝑊𝑓 and 𝑈𝑓 are the weight matrices

for mapping the current input layer and previous output layer into the forget gate,

ℎ𝑡−1 is the output from the previous cell, 𝑥𝑡 is the input layer, and 𝑏𝑓 is the bias

vector for the forget gate calculation.

Input gate: The input gate (𝑖𝑡) controls how much information from the current

input layer (𝑥𝑡) pass to the current input cell state (č𝑡). This gate, defined by Eq.

7.7, gives the outputs between 0 and 1 and decides which values to update. The

candidate values which are to be used to update the cell state are calculated by a

tanh layer, as shown in Eq. 7.8. The input gate combined with the current cell state

updates the current output cell state (𝑐𝑡), as defined by Eq. 7.9.

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (7.7)

č𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (7.8)

291

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × č𝑡 (7.9)

where, 𝑊𝑖 and 𝑈𝑖 are the weight matrices for mapping the current input layer and

previous output layer into the input gate, 𝑊𝑐 and 𝑈𝑐 are the weight matrices for

mapping the current input layer and previous output layer into the current input

cell state, 𝑏𝑖 and 𝑏𝑐 are the bias vectors for the input gate and input cell state cal-

culation, and tanh, a hyperbolic tangent function, is the activation function for

current input cell state.

Output gate: The output gate (𝑜𝑡) controls the amount of information passed from

the current cell state to the current output cell state. To get the filtered output, the

current cell state is passed through a sigmoid layer, as shown in Eq. 7.10, which

decides what parts of the cell state would be considered as output. The final output

(ht) is derived, as shown in Eq. 7.11, by multiplying the output of the sigmoid gate,

with the output cell state that is passed through a tanh layer (to squeeze the values

between -1 and 1).

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (7.10)

ℎ𝑡 = 𝑜𝑡 × tanh (𝑐𝑡) (7.11)

where, 𝑊𝑜 is the weight matrix for mapping the current input layer into the output

gate, 𝑏𝑜 is the bias vector for the output gate calculation, and 𝑐𝑡−1 is the previous

output cell state.

7.5.2 GRU

Unlike LSTM, a GRU unit does not have any output gate; rather, it has only two

gates – a) update gate and b) forget gate. These two gates are trained to retain

information from the past without losing it through time and eradicate the irrele-

vant information that are not needed for prediction. A typical GRU architecture is

shown in Fig. 7.6, while its components are briefed below.

• Update gate: The update gate helps a GRU model determine how much of the

past information from the previous blocks need to be forwarded to the next

block. This allows the model to decide to copy all the past information and

eliminate the vanishing gradient problem. The update gate zt for timestep t is

292

calculated using Eq. 7.12. Here, xt is the input at step t, and ht-1 is the hidden

state that holds the information for the previous t-1 units. Wz and Uz are the

respective weights of xt and ht-1. The sigmoid activation function () helps to

keep the value of zt between 0 and 1.

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1) (7.12)

Input

xt Input vector

ct-1
Memory from
previous block

ht-1
Output of
previous block

Output

ct
Memory from
current block

ht
Output of
current block

Nonlinearities

Sigmoid

tanh
Hyperbolic
tangent

Vector operations

Element-wise
multiplication
Element-wise
summation

0 Bias

Copy

Legends

ct+1

ht+1ht-2

ct-2

ht+1ht-1

xt-1 xt+1

ht-1

ht

ht

ct ct-1

xt

0 1 2 3

Forget
gate

Input gate Output gate

tanh 

tanh



ft
it'

it" ot

Fig. 7.5. A typical LSTM block

• Reset gate: The reset gate rt is used to decide how much of the past infor-

mation to forget. rt is calculated using Eq. 7.13.

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1) (7.13)

• Current memory content: The current memory content h't uses the reset

gate to store the relevant information from the past and is calculated using Eq.

7.14, where ʘ denotes Hadamard (elementwise) product.

ℎ𝑡
′ = tanh (𝑊𝑥𝑡 + 𝑟𝑡ʘ𝑈ℎ𝑡−1) (7.14)

• Final memory: The final memory ht at current timestep t is a vector that holds

information for the current block and is passed to the next. ht is calculated

using Eq. 7.15. The update gate determines how much information to be re-

tained from current (h't) and previous (ht-1) memory contents.

ℎ𝑡 = 𝑧𝑡ʘℎ𝑡−1 + (1 − 𝑧𝑡)ʘℎ𝑡
′ (7.15)

293

ht-1

yt

ht

xt

tanh 
rt

h tzt

Ur

Wz

Uz

Wr

U

W

-1
xt Input vector

ht-1
Information of
previous block

Element-wise
multiplication

Element-wise
summation

Legends

Memory from
current blockht

Output of
current blockyt

Update gate

tanh
Hyperbolic
tangent

 Reset gate

Fig. 7.6. A typical GRU block

7.6 Performance Measurement Metrics

In this section we brief the performance measurement metrics used in the experi-

ment.

Accuracy: It is the measurement of a prediction model's performance based on the

total number of correct predictions made and defined by Eq. 7.16. Higher accuracy

indicates better efficacy of the prediction model.

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7.16)

where, TP: true positive, TN: true negative, FP: true positive, FN: false negative,

and N: total no. of predictions.

Precision: It states the proportion of positive predictions that was actually correct

and is defined by Eq. 7.17.

𝑃𝑅𝐶 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (7.17)

Recall: States the proportion of actual positives that were predicted correctly and

is defined by Eq. 7.18.

𝑅𝐶𝐿 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7.18)

F1-Score: It is calculated as the harmonic mean of Precision and Recall, and some-

times provides a better understanding of the model performance than accuracy.

F1-score is defined by Eq. 7.19.

𝐹1 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (7.19)

Perplexity: It measures how well a probability model predicts an output and is

294

often used to compare probabilistic prediction models [717]. Although perplexity

is popularly used in NLP (natural language processing) [718], here, we used it to

represent the prediction loss for an input sample in the current timestep. A lower

perplexity signifies a better prediction.

Error: It is the forecast error, which can be defined as the complement of accuracy,

as given in Eq. 7.20.

1 −
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7.20)

Mean Absolute Error (MAE): An error is defined as the difference between the

actual out-time and the predicted out-time of each SMD. MAE is calculated as the

average of the prediction errors where all the error values are forced to be positive,

as given in Eq. 7.21.

𝑀𝐴𝐸 =
1

𝑚
∑ |(𝑝𝑖 − 𝑎𝑖
𝑚
𝑖=1)| (7.21)

where, m is the number of samples, pi is predicted out-time, and ai is the actual

out-time.

Since an MAE of zero indicates no error, a lower MAE value is always desirable for

a good prediction.

Mean Squared Error (MSE): The forecast error is squared to make it squared er-

ror and taking the mean gives us MSE. MSE is defined by Eq. 7.22. This score pro-

vides worse results to those models that make largely erroneous forecasts.

𝑀𝑆𝐸 =
1

𝑚
∑ (𝑝𝑖 − 𝑎𝑖)

2𝑚
𝑖=1 (7.22)

Root Mean Squared Error (RMSE): It measures the root of the average of the

errors' squares, as shown in Eq. 7.23. Here, the deviations are squared to prevent

the positive and negative deviations from nullifying each other. It is the most im-

portant error measure for a model's performance if the main purpose of the model

is prediction. Since RMSE tends to exaggerate large errors, it might be insightful

when comparing different prediction methods. Also, it is easier to interpret be-

cause the RMSE values are in the same units as the samples. A lower RMSE value

suggests a better prediction, while a zero value means no error in prediction.

295

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑝𝑖 − 𝑎𝑖)

2𝑚
𝑖=1 (7.23)

R-squared (R2): In comparison to RMSE, which is an absolute measure of correct

prediction, R-squared is a relative measure of it. R2 is defined by Eq. 7.24. The value

of R2 ranges between 0 to 1, while a higher R2 generally suggests a better prediction

performance.

𝑅2 = 1 −
∑ (𝑎𝑖−𝑝𝑖)

2𝑚
𝑖=1

∑ (𝑎𝑖−
1

𝑚
∑ 𝑎𝑗)
𝑚
𝑗=1

2
𝑚
𝑖=1

 (7.24)

Forecast Bias (FB): It is the mean of the Residual Forecast Error (RFE) metric and

is defined by Eq. 7.25. The RFE can be calculated as the difference in the expected

value and the predicted value. Minimization of this value should be the objective

in order to achieve the best forecasting.

𝐹𝐵 =
∑ (𝑎𝑖−𝑝𝑖)
𝑚
𝑖=1

∑ (𝑝𝑖)
𝑚
𝑖=1

 (7.25)

7.7 Data Collection and Selection

In this section, we present the detailed methodologies followed for collecting the

real data, selecting the usable data, and making them fit to be fed into the predic-

tion model.

7.7.1 Data Collection

For the experimental purpose, we considered a computer laboratory scenario in an

educational institute. To generate the experimental data (i.e., SMD's presence time

and duration), the digital simulation could have been opted, but it might not have

the uncertainties that are associated with the user presence pattern. Without the

uncertainties, the simulation may not behave like the real case scenario. Introduc-

ing uncertainties artificially in the simulation may not be feasible as it might break

the co-similarities among the data points.

Therefore, we counted on user data traces from a real network with respect to a

particular Wi-Fi AP covering a mid-size hall. For every entry and exit time of a user

was logged. The data collection details are discussed in Chapter 4. Since we wanted

to consider only SMDs, we avoided logging for other connected devices than SMDs

296

(e.g., PCs and laptops). This enabled us to collect more data efficiently and validate

the prediction algorithm using real availability data. The description of the re-

quired data particularly for this experiment is shown in Fig. 7.7.

Fig. 7.7. The database schema for SMD availability logging

7.7.2 Data Selection

We collected user data for nearly eight months. From the complete dataset, we

selected data of 150 days, considering the data quality after applying the normal

distribution over the dataset. Out of total days, the maximum concentration of the

connected devices was on these 150 days (Td). However, we also wanted to check

the performance of the prediction model when the collected data are less. For this,

we had a dataset of 120 days, which is a subset of the 150 days data. Opting for two

datasets with a difference of a month of data would allow us to evaluate the ap-

plicability of the prediction model in different crowdsourcing applications. Fur-

ther, out of all recorded users, we considered 50 users for whom there was high

presence frequency and less sparsity.

7.8 Prediction Using ConvLSTM2D

For resource availability prediction, we begin with a straightforward and easier ap-

proach, i.e., to use a readymade framework. For this, we used ConvLSTM API in

Keras [719] that utilizes a convolutional layer for feature extraction and LSTM for

prediction. The convolutional layer is directly built into each of the present LSTM

units. The stages of SMDs’ availability prediction using ConvLSTM2D and thereaf-

ter selection are shown in Fig. 7.8. As a prototype experiment, for the particular

SMD availability prediction method (i.e., using ConvLSTM2D), we simplified the

necessary steps in comparison to the method discussed in Section 7.9.

7.8.1 Data Preprocessing

We performed the following operations as data preprocessing:

Data filtering: Data filtering is the process of choosing a smaller segment of the

UID

Number

In-time

Date & time

Out-time

Date & time

297

data set using some threshold parameters such that the remaining data is more

suitable for the task. Filtering is mostly used to remove sparse data and redundant

data from the dataset. This filtered subset of the data is used for viewing or analysis.

Out of all the recorded users, we selected the top 50 users with the highest number

of login activities, and the rest of the users were excluded from the test. This filter-

ing ensured that only the active users were considered as a part of the prediction

and not some random user who probably logged in only a few times.

Data sampling: Data sampling is the process of selecting the samples of the data

from the entire population, which might be useful in introducing variability in the

dataset. We used random sampling, a type of sampling technique in which each

sample has an equal probability of being chosen. A sample chosen randomly is

meant to be an unbiased representation of the total population. Using the random

sampling method, the dataset has been divided into ten chunks (D_1 to D_10) of

test and train sets with an 80:20 ratio for training and testing, respectively.

Data
collection

Feature
extraction

Prediction model
(ConvLSTM2D)

Crowdworker
selection

Start

End

Data pre-processing

Data
filtering

Data
sampling

Fig. 7.8. Process flow of the SMD availability prediction model using ConvLSTM2D

7.8.2 Feature Extraction

In the dataset, all the input variables are of numeric type and three important

methodologies used are scaling, transforming distribution, and identification and

removal of linear dependencies between the input variables. MinMaxScaler has

been used to scale the data and normalize them. We used Quantile Transformer

for the transformation of distribution, and PCA is performed for removal of linear

dependencies.

7.8.3 Prediction Model

The input to our prediction model is the UID of the considered SMD, its past

298

session duration log, and the expected job completion time. For feeding the data

into ConvLSTM model, the data samples are split into subsequences, where the

time steps are the count of the subsequence. The number of steps for 50 total users

is selected as six for every 2016 data points, and a total of 336 steps for each user.

The model expects the input data shape as a 2-D image; hence the input data are

reshaped accordingly. Since the session duration is the only feature, the number of

features is set to 1. The Keras Python API provides a predefined implementation of

the ConvLSTM module. The ConvLSTM2D accepts four parameters (filters, ker-

nel_size, activation, and input_shape) to make the data flatten. The selected pa-

rameter values for the experiment are shown in Table 7.1. The steps in designing

the ConvLSTM prediction modeling are as follows:

1. The sequential Keras model is selected, and the ConvLSTM2D layer is added

using the parameters specified in Table 7.1.

2. The model output is flattened (converted to a single dimension) in order to

work with LSTM.

3. A single dense layer is introduced as the last output layer with one node.

4. The model is compiled using the default Adam optimizer [720], and the loss is

calculated using the MSE loss function.

7.8.4 Test Result and Analysis

We tested the prediction model by assigning tasks with various task sizes randomly

to the simulator. We recorded the number of times when a crowdworker departs

before completing the assigned task. The observed performance of the model and

the evaluation metrics are discussed below.

Table 7.1. Parameters used for ConvLSTM2D

Parameters Value Description
filters 64 64 filters are used for capturing the localized data points.

kernel_size (1,2)
The row number is always selected as 1 due to the univariate nature
of the data.

activation relu
Rectified Linear Unit (ReLU) is used as an activation function; this
helps in introducing non-linearity in the dataset.

input_shape (2,1,3,1) n_seq = 2, 1

7.8.4.1 Training and Testing Performance

Accuracy is used to measure the performance of the prediction model based on the

299

total number of correct predictions made. Higher the accuracy, the better the

model. On the other hand, we aimed to minimize the loss, which is the summation

of training and testing errors in each epoch. To evaluate our proposed model’s per-

formance, we have considered using these metrics over 10 epochs as per the exper-

iment. The accuracy vs. loss graphs for training and testing are shown in Fig. 7.9,

respectively. Results show that the training accuracy the model is able to achieve

over 10 epochs is 82%, and the testing accuracy is 78%. The differences in accuracy

and loss between training and testing are 4% and 7%, respectively. This indicates

that the model is neither overfitting nor underfitting.

(a) (b)

Fig. 7.9. Accuracy vs. Loss for a) training and b) testing

7.8.4.2 Model Evaluation

The results obtained from the experiment are tabulated in Table 7.2. The average

accuracy for the considered ten sampled datasets is 78.43%, and the average pre-

diction error is approximately 21%, which makes the prediction model consistent.

The forecasting error estimations are shown in Fig. 7.10.

Table 7.2. Evaluation metrics for ten sampled datasets

Dataset Precision Recall F1-score Accuracy Error

D_1 0.75 0.81 0.78 0.79 0.21

D_2 0.7 0.78 0.74 0.77 0.23

D_3 0.73 0.93 0.82 0.79 0.21

D_4 0.78 0.77 0.77 0.77 0.23
D_5 0.77 0.75 0.76 0.79 0.21

D_6 0.69 0.8 0.74 0.79 0.21

D_7 0.75 0.79 0.77 0.79 0.21

D_8 0.73 0.84 0.78 0.79 0.21

D_9 0.72 0.86 0.78 0.78 0.22
D_10 0.75 0.8 0.77 0.8 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy
/L

o
ss

Epochs

Accuracy Loss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy
/L

o
ss

Epochs

Accuracy Loss

300

Fig. 7.10. Forecasting error estimates

7.8.5 SMD Selection

The criterion for crowdworker selection is that the predicted availability duration

must be greater than the job execution duration. For the selection, the confidence

of the prediction model is taken into account. The minimum confidence threshold

for selection criterion depends on the particular application, job execution time,

etc. For the sake of simplicity, we set this threshold heuristically to 0.74 since the

system precision using forecast bias is found to be 0.7371 (refer Section 7.8.3).

7.9 Prediction Using Convolutional LSTM and GRU

In the above-presented approach, we just used the readily available ConvLSTM2D

model that is specially meant for 2D spatial data and requires advanced transfor-

mations to work with time-series data. The limitation of the model is that it does

not have the required flexibility. The only available tuning option for the model

was the selection of the hyper-parameters and the transformation technique. This

opens up the scope for exploring other options which are more generalized and

flexible, which would lead to better model performance. In view of that, in this

section, we aim to propose a CNN-based prediction model using the most two pop-

ular deep learning methods for time-series data – LSTM and GRU.

7.9.1 Data Preparation

Since we used the time-series data as the raw data, they needed to be converted

into a suitable form so that the convolutional filters could be applied to extract the

features. The steps that we performed before sending the data to the LSTM/GRU

model are elaborated in the following subsections.

Before feeding the time-series data into the LSTM/GRU model, we needed to pre-

pare the data that would be suitable for applying convolutional filters for feature

extraction. The user mobility data are time-series data that contain multiple

0
.0

4
6

5
9

6 0
.2

1
5

8
6

2

0
.2

1
5

7
0

4

0
.2

1
4

8
4

MSE RMSE FB MAE

301

transactions for in-time and out-time for each user. One transaction represents a

pair of in-time and out-time data. These data in the raw form usually have very

fewer attributes that can be used in a prediction model. For example, by consider-

ing only the duration attribute as a difference of in-time and out-time, the predic-

tion performance may not be sufficient; hence, some form of feature extraction

methodology needs to be introduced, as presented in [481]. Using these initial fea-

tures and a static feature extraction technique may not give the best results. To

improve the results, we needed to use a dynamic feature extraction technique that

requires the data to be in an image form. The tasks carried on to transform the raw

user mobility time-series data into frame-by-frame image data are discussed in the

following subsections.

7.9.1.1 Data Frame Creation

To represent the users' mobility, we pursued the following steps for creating the

required data frames, as shown in Fig. 7.11.

a) The data frames, each representing one week's data of users' mobility, were

created. Each frame has two channels - channel 1 and channel 2, representing

the in-time and out-time records of the users, respectively.

b) The data frames have UxD dimensions, where U (number of users) = 50 and D

(number of days) = 7.

c) The total number of frames for in-time and out-time is calculated by 2*Td/D.

d) Each cell in channel 1 contains the in-time of the user on a particular day. Sim-

ilarly, the out-time is recorded in channel 2.

e) A user might have multiple entries on a single day. In that case, we normalized

the entries by keeping only the entry for the longest duration (for example, if

U1 entered four times on D1 and the durations are of 4, 23, 37, and 57 minutes,

only the entry for 57 minutes is considered). We adopted this approach to im-

plement a fair share policy so that one SMD would be given a job in only one

session. Furthermore, a deep learning model works better with data that is

consistent and has less deviation. In the case of MCC, the data may contain

session information for multiple short and inconsistent sessions. To avoid fit-

ting inconsistent data, we selected the longest continuous session duration to

302

be the final session if the gap between the sessions is smaller than a particular

threshold time value. Algorithm 1 presents the procedure of calculating the

longest continuous session duration. Here, Sn denotes the nth session, IN and

OUT represent the in-time and out-time for the respective session, and λ is the

threshold criteria for merging two sessions. In our experiment, we considered

λ = 0.05, i.e., 5% of the entire duration.

Algorithm 1: Selecting Longest Continuous Session Duration
Input: Raw session data

Output: Updated session data

while (𝑆𝑛+1)
 if

 (𝑆𝑛+1
𝐼𝑁 − 𝑆𝑛

𝑂𝑈𝑇) < {(𝑆𝑛+1
𝑂𝑈𝑇 − 𝑆𝑛+1

𝐼𝑁) + (𝑆𝑛
𝑂𝑈𝑇 − 𝑆𝑛

𝐼𝑁)} × λ
 then

 concatenate (𝑆𝑛+1, 𝑆𝑛)
end while

7.9.1.2 Data Normalization

Each of the cells in the channels contains time values that are not appropriate for

direct input to the prediction model. For this reason, we represented the collected

user mobility data (time-series data) as image data. To convert the in-time and out-

time frames from temporal data to image intensity data, we needed to normalize

the frames. Each cell in a channel represents the time values. Typically, the channel

intensity values of an image range between 0-255. Hence, we normalized the time

values for both the channels between 0 and 255, as shown in Fig. 7.12.

Fig. 7.11. A sample frame for in-time and out-time

The pixel-wise normalization of the time-series data (x) into image intensity (y) is

achieved by applying a linear equation, as shown in Eq. 7.26.

𝑦 = 10.625𝑥 (7.26)

A sample of data normalization based on input data is shown in Fig. 7.13. The

303

transition of darker to lighter shades indicates the increasing hour of a day, and

the black colour indicates the unavailability of the particular user on that particular

day. For example, from the figure, it can be observed that U1 was absent on Satur-

day and Sunday.

Fig. 7.12. Mutual linear normalization of time and pixel intensity

7.9.2 Feature Optimization

To increase the model accuracy and training and inference speed, we needed to

optimize the feature sets. Feature optimization includes extracting new features

from the input data and removing the unwanted features. Feature optimization

improves the model's performance and makes it more interpretable. The followed

steps for feature optimization are discussed in this section.

7.9.2.1 Feature Extraction

A machine learning model execution is just on par with the provided data, and the

data is as great as the way it is prepared for the model. This means that a model

will perform decently if we have a decent quality of data with sufficient features.

Therefore, we need to identify some features from the data that might help in im-

proving the model’s performance.

Typically, in the time-series datasets, the features (e.g., length of time-series, pe-

riod, mean value, standard deviation value, etc.) are not sufficient for prediction

modelling and cannot be used straightforwardly. The format of the existing data

features may not be suitable for direct analysis and comparison. The new features

are generated by reformatting, combining, and transforming the original features.

This makes the data suitable for modelling and increases the model's training and

prediction accuracy.

0

50

100

150

200

250

300

0 5 10 15 20 25

P
ix

el
 in

te
n

si
ty

Time (hrs)

304

Fig. 7.13. A sample of data normalization based on input data

7.9.2.1.1 Issues with Popular Feature Extraction Methods

There are various methods for feature extraction, which are used depending on the

type of the data and problem. PCA, GLCM, etc., are the popular feature optimiza-

tion methods for dimension reduction in image data. These methods have been

proven to work well in time-series predictions and image classifications. However,

these methods are not suitable for the problem addressed here because the re-

source availability prediction in MCC is a generalized time-series prediction prob-

lem without any prior knowledge of the important features.

Further, PCA requires some hyperparameter tuning to generate quality features,

which is not trivial. GLCM can extract only certain known features and is highly

dependent on the characteristics of the data. However, our problem demands a

dynamic and generalized feature extraction methodology that is not affected by

the data size and quality.

7.9.2.1.2 Need for Convolutional Feature Extraction

In our dataset, except the in-time and out-time of the users, no other information

is available. This means there are not sufficient features to model the users’ avail-

ability pattern. To elaborate further, let us consider the in-time and out-time of

305

three randomly chosen users over a period of 30 days, as shown in Fig. 7.14. It can

be observed that there is a high variance in the in-time and out-time patterns for

all users. It also varies day-wise for each individual user. It implies that even if a

user's availability seems to follow a pattern, it might not hold true throughout the

considered period. This inconsistency could be either intentional or driven by sev-

eral factors that are not apparently visible from the raw dataset.

However, these nonobvious features might provide some valuable information.

But it is impossible to unearth these features manually. For this, we needed some

automated and dynamic feature extraction mechanism, which would extract the

useful features from the dataset.

Fig. 7.14. The in-times and out-times of three sample users over a period of 30 days

We found the convolutional feature extraction method as a suitable option for our

problem. In many of the dynamic feature extraction problems, CNN has popularly

been used. CNN is a supervised classification model comprised of two major seg-

ments: a) a convolutional feature extractor and b) a SoftMax classifier. In a tradi-

tional CNN, feature optimization (extraction and selection) is automatic. But when

using only the convolutional feature extractor, we need a separate feature selection

model. A convolutional feature extractor is known for its capability to generate

dynamic and new features. Therefore, we transformed our time-series data so that

convolutional feature extraction can be applied.

09:36:00

12:00:00

14:24:00

16:48:00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In
-t

im
e

14:24:00

16:48:00

19:12:00

21:36:00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

O
u

t-
ti

m
e

Days U1 U2 U3

306

7.9.2.1.3 The Convolutional Feature Extraction Process

In this section, we present the details of the convolutional feature extraction

method designed specifically for the problem presented in this chapter. The input

to the considered convolutional feature extraction model is shown in Fig. 7.15. We

considered the stride or the window size as 1, i.e., the data frame window slides for

each day, as shown in Fig. 7.16.

A frame represents the number of values considered in a single instance of the

model. The architecture for convolutional feature extraction is shown in Fig. 7.17.

Frames ChannelsSamples Rows Columns

 Sample
input

7n 2 mx n

Total no.
of users

Total no.
of weeks

In
time

Out
time

No. of
days

x: window
size

1 1
Input

description

Fig. 7.15. Input parameters for the considered CNN model

Fig. 7.16. Distribution of the frames for training the feature extractor model

To train the model, we needed to feed the data into it. We did not have a much

larger dataset, which was generated by acquiring mobility data for only a few

months. Hence, we fed the training data into the model serially, adding one day at

the end of the window and removing one day from the front in each iteration.

The distribution of the frames to train the feature extractor model is shown in Fig.

7.16. In the figure, 𝑥𝑖𝑗 represents the input frame for a particular user j, while i is

the set of days available as prediction input. Here, we considered the value of i as

50 (however, the value of i would vary according to the total number of available

samples). Since we considered the mobility data of 50 users (m), the maximum

307

value of j in this problem would be 50, and j would iterate for all the users, i.e., 50

times (m = 50). Here, 𝑑𝑛represents the data instance for a particular day n. Since

we considered two datasets consisting of user mobility data for 120 and 150 days,

the maximum value of n would be either 120 or 150.

50x50x16

25x25x16

23x23x32

21x21x64

10x10x64

8x8x32

6x6x16
3x3x16

Conv 1 Max-pool 1 Conv 1 Conv 2 Conv 2Max-pool 1 Max-pool 1Conv 1

Block 1 Block 2 Block 3

Fig. 7.17. Convolutional feature extraction architecture

After creating the input frames, we proceeded to the feature extraction phase. A

novel feature extraction model is developed specifically for this work, as presented

in Fig. 7.18. The proposed CNN model contains the following five segments:

• Weekly mobility data: Each week of mobility data for all the users in the

considered duration is represented by one data frame. These frames are the

input to the feature extraction model.

• Channels for in-time and out-time: Each frame is split into two channels;

one for in-time and the other for out-time for all the users. The subsequent

functions were repeated for each channel separately.

• Frame-by-frame training: For training the convolutional feature extractor,

the frames in a group of 50 were arranged in a single block. In the next

timestep, a single stride of each frame was made for further predictions till all

the frames were considered, as shown in Fig. 7.16.

308

• Model: This is the CNN model for convolutional feature extractor without the

classifier, as shown in Fig. 7.15. The model is architected using three blocks of

varied convolutional and max-pooling layers, as shown in Fig. 7.17. We consid-

ered a filter of dimension 3x3. Block 1 comprises a single convolutional layer

with a dimension of 50x50 and 16 filters and a max-pooling layer of dimension

25x25. Block 2 comprises two convolutional layers with a dimension of 23x23

and 21x21, along with 32 and 64 filters, respectively. It also has a max-pooling

layer of dimension 10x10. In block 3, there are two convolutional layers, 8x8

and 6x6, along with 32 and 16 filters, respectively.

• Feature extraction: The extracted features from each input data frame were

stored in a vector form, which was fed into the LSTM and GRU prediction

models.

C12C11 C13 ... C22C21 C23 ...

 CNN CNN

Frame 2

C1 C2

Frame 3

C1 C2

Frame 1

C1 C2

Frame-
by-frame
training

Model

Feature
extraction

Extracted
features

for in-time

Extracted
features for

out-time

Weekly
mobility
data

Channels
for in-
time and
out-time

C1p C2p

Fig. 7.18. Feature extraction for in-time and out-time using CNN

7.9.2.2 Feature Selection

Not all the features in the dataset are really useful. Irrelevant and redundant fea-

tures increase the training time, decrease the accuracy, and make it complex to

interpret. That is why, for model construction, it is important to select only those

features that are essential and can represent all the features. Feature selection is

used to select relevant features from the dataset by eliminating the redundant or

irrelevant features or the strongly correlated features in the data without losing

309

much information. The primary reasons for using feature selection and the popular

regression methods are mentioned in Fig. 7.19. The features that contribute most

to the desired prediction or output are generally retained. Even after convolutional

feature extraction, the model may contain some features that may cause perfor-

mance degradation due to multi-collinearity. Feature selection not only removes

multi-collinearity and improves the prediction accuracy but also reduces training

time, simplifies the model for better interpretation, and improves the chances of

generalization, thus, avoiding overfitting.

Feature
selection

What?Methods Purpose

Making the model easier to interpret

Reducing the problem size for efficient
working with high-dimensional data

Reducing the model training time
significantly

Increasing the accuracy and
robustness of the model

Reducing overfitting

A process that chooses a reduced
number of explanatory variable to

describe a response variable.

OLS
regression

Stepwise model
selection

Ridge

PLS
regression

LASSO

Fig. 7.19. Purpose of feature selection and the popular regression methods

Though there are a few regression methods for feature selection, as shown in Fig.

7.19, we avoided the traditional methods such as OLS regression, stepwise model

selection, and PLS regression, etc., due to their sensitiveness to random errors. In

the case of multi-collinearity in the input values, Ridge and LASSO methods per-

form effectively. However, we preferred LASSO because the major problem with

Ridge is that though it shrinks the coefficients nearly to zero but not exactly to

zero. Hence the ridge regression fails to provide an unambiguous and easily inter-

pretable sparse model, especially when the number of predictors is large [721]. On

the other hand, LASSO offers a better prediction accuracy and model interpreta-

bility by eliminating the irrelevant variables/coefficients that are not associated

with the response variable. If there is a high correlation in a set of predictors,

LASSO picks only one among them while shrinking the others exactly to zero. The

leftover non-zero values are selected to be used as features in the model. This

method leads to a reduction in variance without increasing the bias much. This is

especially beneficial when the dataset consists of a small number of observations

and a large number of features. The cost function of LASSO is defined by Eq. 7.27.

310

𝐽(𝑤) =
1

2𝑚
∑ (𝑦𝑖 − (𝑤0 + ∑ 𝑥𝑖𝑗𝑤𝑗

𝑋
𝑗=1))2 + 𝜆∑ |𝑤𝑗

𝑋
𝑗=1

𝑚
𝑖=1 | (7.27)

where, m is the total number of training samples or instances in the dataset, X is

the total number of features, 𝑦𝑖 represents the value of target variable for ith train-

ing example, 𝑥𝑖𝑗is the ith observation for jth feature, 𝑤0 is the intercept term, 𝑤𝑗

represents the weight of the jth feature, and λ is the tuning parameter that controls

the feature reduction. The larger λ becomes, the more feature coefficients shrink

to zero. Also, as λ increases, bias increases, and variance decreases. Here, the goal

is to minimize the error function ∑ (𝑦𝑖 − (𝑤0 + ∑ 𝑥𝑖𝑗𝑤𝑗
𝑚
𝑗=1))2𝑛

𝑖=1 , subject to the reg-

ularization term 𝜆∑ |𝑤𝑗
𝑚
𝑗=1 |.

After applying the convolutional feature extraction, we had a total of 46,384 fea-

tures in our considered user mobility dataset. After using LASSO on this feature

set, the total number of features was reduced to 4,976.

7.9.3 Prediction Method

In this section, we present the proposed CLSTM and CGRU models.

7.9.3.1 Convolutional LSTM and GRU Modelling

To model the CLSTM and CGRU, we used two layers of the LSTM and GRU net-

works, respectively, with an input of frame groups with 50 samples, as shown in

Fig. 7.16.

The layered representation of the CLSTM/CGRU prediction model is shown in Fig.

7.20. The objective of both models is to maximize the conditional probability of

the convolutional features at the current timestep (C) over the input (N), for which

the prediction is to be made, at the next timestep, as given in Eq. 7.28. This implies

that the model optimizes the current prediction based on N. The timestep and the

input frames can be modified during the training phase to check for improvements.

In our experiment, the number of input vectors is quite low; therefore, we pro-

ceeded with a single stride over the input vectors for each timestep.

𝑝(𝐶|𝑁) = ∏ 𝑝(x(i+j)j , 𝑁)
𝑚
𝑗=1 (7.28)

where, m is the total number of users, 𝑥𝑖𝑗is the input frame for user j, and i = 50.

311

The input to the initial LSTM/GRU cell is the convolutional feature vector of the

input data at timestep t, while the current LSTM/GRU cell output at timestep t is

qt, and the hidden states are ht. The input to the next LSTM/GRU cell is the output

of the previous LSTM/GRU cell, which then passes into a SoftMax layer for classi-

fication, as shown in Eq. 7.29.

𝑝(𝑥𝑡|(𝑥𝑡+1)) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑊𝑓ℎ𝑡) (7.29)

where, Wf is a learnable parameter, and xt and xt+1 are two adjacent input vectors

to the model.

The output hidden states at the current timestep for CLSTM and CGRU are gener-

ated using Eq. 7.30 and Eq. 7.31, respectively.

ℎ𝑡 = 𝐿𝑆𝑇𝑀 (𝑥𝑡 , 𝑐𝑡−1, ℎ𝑡−1) (7.30)

ℎ𝑡 = 𝐺𝑅𝑈 (𝑥𝑡 , ℎ𝑡−1) (7.31)

7.9.3.2 Training

Training a model is used for making the model learn the trainable parameters and

tuning the hyperparameters. The objective of the training phase is to decrease the

error in the training dataset d of size m. The training objective function T is defined

by Eq. 7.32, where pi is the predicted output and ai is the actual output.

𝑇 = ∑ − log 𝑝 (𝑝𝑖|𝑎𝑖)
𝑚
𝑖=1 (7.32)

7.9.4 Experiment, Results, and Analysis

This section presents the details of experimental environment and the results and

analysis.

7.9.4.1 Experimental Setup

The hardware specifications of the system used in training and testing the predic-

tion model is as follows:

• Operating system: Windows 10 Professional

• CPU: AMD® Ryzen™ 7-3700X Processor

• RAM: 32 GB DDR4

• GPU: NVIDIA GeForce® GTX 1080 Ti

312

The Windows version of the Python (64-bit) with IPython notebook [722] was used

to build the models. Several important APIs including TensorFlow [723], NumPy

packages [724], SciPy [725], scikit-learn [726] and Matplotlib [727] were used in the

experiment. NVIDIA CUDA Version 9.1 [728] for Windows environment was used

to avail GPU (graphics processing unit) computing.

X1 X2 X3 X50

LSTM LSTM LSTM LSTM

Prediction X51

Input
features

Model

Output

LSTM LSTM LSTM LSTM

Layer
1

Layer
2

...

...

...

Convolutional feature extractor

Input data

Normalisation

Feature
optimisation

Pixel-wise data transformer

Time-series data

Fig. 7.20. Layered representation of the CLSTM prediction model

7.9.4.2 Training and Testing Split

To conduct a prediction experiment and evaluate the model performance, the

complete dataset is generally split into two parts as training and testing sets. This

ensures that the model trains on the known data and is able to perform predictions

properly for unknown data, which is validated using the test set. Though in this

problem, the dataset is too small (150 data instances for each user) to split into two

sub-datasets, we had to do it because no other data was available for validating the

accuracy of the model in case of unfamiliar data. Hence, the existing data was split

into training and testing sets in the ratio of 7:3, as it is found that 70% as the train-

ing set can sufficiently represent the data patterns. This splitting ratio is used

throughout the experiment. Further, the sequence of the entire data is maintained

properly after splitting.

7.9.4.3 Experiment and Result Analysis Consideration

313

As discussed in Section 7.7.2, we used two datasets for understanding the model

performance for a lower volume of data. This is important in this problem due to

its implementational and usage nature.

To evaluate our proposed model's performance, we considered using the perfor-

mance measurement metrics as mentioned in Section 7.6 over 20 epochs as the

training model perplexity and accuracy did not improve after that. We used train-

ing and testing statistics for evaluation, which shows the perplexity vs. accuracy

graph for each of the datasets. For comparison, we considered using GRU with 12

epochs without convolutional features and measured its efficacy over CGRU.

7.9.4.4 Prediction Results Using Conventional GRU

The training and testing statistics (accuracy and perplexity) of the GRU prediction

model are shown in Fig. 7.21. The training and testing accuracy for 150 days are 39.9

and 38.1, respectively, and for 120 days, 33.4 and 28.9. The accuracy improvements

of CLSTM over GRU are 133.18% and 121.2% for 120 and 150 days, respectively.

7.9.4.5 Prediction Results Using Convolutional GRU

The training and testing statistics (accuracy and perplexity) of the CGRU predic-

tion model are shown in Fig. 7.22. The training and testing accuracy for 150 days

are 79.7 and 76.8, respectively, and for 120 days, 69.8 and 66. The accuracy im-

provements of CLSTM over GRU are 2.11% and 7.48% for 120 and 150 days, respec-

tively.

(a) (b)

Fig. 7.21. Statistics of GRU for two datasets of (a) training and (b) testing

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12

T
ra

in
in

g
P

er
p

le
xi

ty
 a

n
d

 A
cc

u
ra

cy

Epochs

Perplexity (150 days) Accuracy (150 days)

Perplexity (120 days) Accuracy (120 days)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12T
es

ti
n

g
P

er
p

le
xi

ty
 a

n
d

 A
cc

u
ra

cy

Epochs
Perplexity (150 days) Accuracy (150 days)

Perplexity (120 days) Accuracy (120 days)

314

7.9.4.6 Comparing CGRU with Traditional GRU

Fig. 7.23 shows the improvements of the testing accuracy with respect to (a) the

number of days of data used and (b) the prediction model used. With an increment

of 30 days of data, the GRU model shows a significant improvement of 15.47% over

CGRU. This is because the performance of GRU with less amount of test data is

very bad. A slight increase in the data volume makes the performance significantly

better. Whereas, since the performance of CGRU is already far better than GRU,

the increase in data amount does not make much difference in the performance of

the CGRU model. For the same reason, when comparing the GRU and CGRU mod-

els for 120 and 150 days of data, GRU lacks significantly.

(a) (b)

Fig. 7.22. Statistics of CGRU for two datasets of (a) training and (b) testing

(a) (b)

Fig. 7.23. Improvement percentage of testing accuracy with respect to (a) number of days of data
used and (b) prediction model used

These statistics prove that CGRU outperforms GRU in both cases when the volume

0

20

40

60

80

100

120

0 5 10 15 20

T
ra

in
in

g
P

er
p

le
xi

ty
 a

n
d

 A
cc

u
ra

cy

Epochs

Perplexity (150 days) Accuracy (150 days)

Perplexity (120 days) Accuracy (120 days)

0

20

40

60

80

100

120

0 5 10 15 20

T
es

ti
n

g
P

er
p

le
xi

ty
 a

n
d

 A
cc

u
ra

cy

Epochs

Perplexity (150 days) Accuracy (150 days)

Perplexity (120 days) Accuracy (120 days)

0

20

40

60

80

GRU CGRU

28.9

66
38.1

76.8

31.83

16.36

120 days 150 days Improvement %

0

50

100

150

120 days 150 days

28.9
38.1

66
76.8

128.37

101.58

GRU CGRU Improvement %

315

of data is low and high. So, the CGRU-based prediction model is suitable for crowd

computing applications where sufficient crowd data is not available.

7.9.4.7 Prediction Results Using Conventional LSTM

The training and testing statistics of the LSTM prediction model are shown in Fig.

7.24. The training and testing accuracy for 150 days are 45.6 and 44.35, respectively,

and for 120 days, 41.9 and 32.89. The accuracy improvements of CLSTM over LSTM

are 104.9% and 90.03% for 120 and 150 days, respectively.

(a) (b)

Fig. 7.24. Statistics of LSTM for two datasets of (a) training and (b) testing

7.9.4.8 Prediction Results Using Convolutional LSTM

To evaluate the proposed CLSTM model's performance, we considered evaluating

these metrics over 22 epochs because the training model's perplexity and accuracy

did not improve after 22 epochs. The perplexity vs. accuracy graph for training and

testing is shown in Fig. 7.25. It is observed that for 150 days of data, the achieved

training accuracy of the model over 22 epochs is 89.97%, and the testing accuracy

is 84.28%, while for 120 days, it is 80.44% and 67.39%, respectively. A difference of

5.69% and 13.05% are seen between the training and testing models in the two

cases, which signifies that the model is not overfitting.

7.9.4.9 Comparing CLSTM with Other Methods

The performance of the proposed CLSTM was compared with the other three pre-

diction models. Fig. 7.26 shows the accuracy comparison between the proposed

CLSTM model and the other compared models. It is observed that CLSTM has sig-

nificantly higher accuracy over GRU and LSTM. However, there is not much

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14T
ra

in
in

g
 P

er
p

le
x
it

y
 a

n
d

 A
cc

u
ra

cy

Epochs

Perplexity (150 days) Accuracy (150 days)

Perplexity (120 days) Accuracy (120 days)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
es

ti
n

g
 P

er
p

le
x
it

y
 a

n
d

 A
cc

u
ra

cy

Epochs

Perplexity (150 days) Accuracy (150 days)

Perplexity (120 days) Accuracy (120 days)

316

difference between CLSTM and CGRU in terms of accuracy. This suggests that

when the traditional LSTM and GRU are combined with our proposed convolu-

tional feature extractor, they perform considerably better. This proves the efficacy

of the proposed model.

(a) (b)

Fig. 7.25. Statistics of CLSTM for two datasets of (a) training and (b) testing

(a) (b) (c)

Fig. 7.26. Accuracy comparison between (a) GRU and CLSTM (b) LSTM and CLSTM and (c)

CGRU and CLSTM

To compare the model's sensitiveness towards the input data size, we checked the

model's accuracy by varying set sizes. It is observed from Fig. 7.27 that all the mod-

els perform better with the larger data size. However, for the traditional LSTM and

GRU models, the accuracy improvement with larger data set is comparatively

greater than CLSTM and CGRU. It is always desirable to have a higher improve-

ment percentage, but the final attained accuracy value must also be considered.

This implies that even if the traditional models have the highest improvement

0

25

50

75

100

125

1 4 7 10 13 16 19 22T
ra

in
in

g
 P

er
p

le
x
it

y
 a

n
d

 A
cc

u
ra

cy

Epochs

Perplexity (150 days) Accuracy (150 days)

Perplexity (120 days) Accuracy (120 days)

0

25

50

75

100

125

1 4 7 10 13 16 19 22

T
es

ti
n

g
 P

er
p

le
x
it

y
 a

n
d

 A
cc

u
ra

cy
Epochs

Perplexity (150 days) Accuracy (150 days)

Perplexity (120 days) Accuracy (120 days)

120 days 150 days

2
8

.9

3
8

.1

6
7

.3
9

8
4

.2
8

1
3

3
.1

8

1
2

1
.2

GRU

CLSTM

Improvement %

120 days 150 days

3
2

.8
9

4
4

.3
5

6
7

.3
9

8
4

.2
8

1
0

4
.9

9
0

.0
3

LSTM

CLSTM

Improvement %

120 days 150 days

6
6 7

6
.8

6
7

.3
9 8
4

.2
8

2
.1

1

7
.4

8

CGRU

CLSTM

Improvement %

317

percentage, their final attained accuracies are too low compared to the convolu-

tional models. Furthermore, the accuracy improvement of CLSTM is much higher

than CGRU, from which we can expect to have further higher accuracy for CLSTM

with a larger data set.

Fig. 7.27. Improvement percentage of testing accuracy of each model with respect to the number

of days of data used

We further compare CLSTM with other prediction methods: ARIMA, LSTM, GRU,

and CGRU in terms of the prediction error estimation. In Section 7.2, we categori-

cally stated that the traditional statistical prediction methods would not work well

for this problem. However, to prove our claim, in this comparison, we included

ARIMA, the most popularly time-series prediction method, along with other deep

learning based prediction methods.

Fig. 7.28 shows the error estimation results in terms of MAE, RMSE, and R2. The

MAE and RMSE errors are calculated in minutes, while R2 is presented in percent-

age. It can be observed that for each error estimation, CLSTM produces least errors

than other methods. It was also observed that not only the CLSTM but other mod-

els also performed better if the size of the training dataset increased.

It can be further discerned that ARIMA exhibits the worst error estimations. This

can be due to the fact that ARIMA cannot handle datasets with missing values. In

this, the missing values should be handled by some fillers. Furthermore, ARIMA is

suitable for short-time prediction because due to the absence of memory, the pre-

diction window is very limited. That is why it fails in long-term prediction.

Since ARIMA generates a very high degree of prediction error which is

0

20

40

60

80

GRU LSTM CGRU CLSTM

28.9 32.89

66 67.39
38.1 44.35

76.8 84.28

31.83 34.84

16.36
25.06

120 days

150 days

Improvement %

318

unacceptable for our problem, we did not consider it for further comparative anal-

ysis.

(a) (b) (c)

Fig. 7.28. Error comparison of CLSTM with ARIMA, GRU, LSTM, and CGRU based predictions:
(a) MAE (b) RMSE, and (c) R2

7.9.5 SMD Selection

After the initial ranking, the top-ranked (as per other criteria) SMD is forwarded

to the prediction model along with its in-time and the job duration. The minimum

required out-time is calculated by adding current time and job duration. The

CLSTM model predicts the out-time against the in-time of the SMD and forwards

it to the selection module. Now, if the predicted out-time is more than the mini-

mum required out-time, then the selection module selects the SMD.

7.10 Discussion

In this section, we present a brief discussion on the crucial aspects of the proposed

CLSTM/CGRU methods for availability prediction.

7.10.1 GRU vs LSTM

GRU and LSTM are popular deep learning methods used in sequence modelling

and time-series analysis and predictions. GRUs are sometimes preferred over

LSTM because GRUs are more straightforward and easier to modify. Also, since

GRU uses fewer training parameters, it not only needs much less memory, but also

2
2

5
.4

1

2
0

5
.3

9

2
8

.7
2

2
4

.9
8

2
1

.6

1
9

.6
1

1
6

.7
4

1
2

.8
4

1
3

.1
5

8
.1

6

0

50

100

150

200

250

120 days 150 days

Er
ro

r
in

 m
in

u
te

s

ARIMA GRU LSTM

CGRU CLSTM

2
7

3
.1

5

2
4

9
.2

9

8
7

.7
2

3
9

.7
66

5
.7

9

3
6

.3
7

4
3

.8
6

2
2

.0
9

2
1

.9
3

8
.8

3

0

50

100

150

200

250

300

120 days 150 days

Er
ro

r
in

 m
in

u
te

s

ARIMA GRU LSTM

CGRU CLSTM

0
.3

1

0
.3

4

0
.4

8 0
.5

4

0
.5

3 0
.5

8

0
.6

9 0
.7

5

0
.8

5 0
.8

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

120 days 150 days

ARIMA GRU LSTM

CGRU CLSTM

319

is faster to train and execute than LSTM [729]. GRUs are generally preferred when

we require a decent degree of accuracy but do not have sufficient computing re-

sources to train data samples with longer sequences.

However, there are some issues with GRUs compared to LSTM, such as the GRUs

cannot regulate the amount of memory content that is to be forwarded to the next

unit, as they do not store cell state. Whereas LSTMs are capable of regulating the

amount of information that is to be forwarded to the next unit. Nevertheless, we

tested our model with both LSTM and GRU to compare the effectiveness of these

models for this particular problem.

7.10.2 Concern Over Space and Time Cost of LSTM

LSTM models provide satisfactory accuracy in predicting or forecasting. However,

there is a general concern over LSTM models is that they usually involve high pro-

cessing and memory costs because of linear layers present in each cell.

Nowadays, the space requirement issue is not a big deal considering the availability

of cheap and compact memory. Similarly, the processing requirement can be min-

imized by exploiting the parallel execution capability of the modern many-core

GPUs, which are powerful enough to carry out computing-intensive jobs quickly.

Furthermore, the complexity of the machine learning model mainly contributed to

its training process. During the testing, when the model is already built, the

runtime is minimal. Hence, the time requirement of implementing the LSTM-

based availability prediction process would be negligible, and the proposed system

can be deployed for real-time purposes.

In our proposed MCC system, the prediction model runs on a dedicated MCC co-

ordinator. Moreover, as we considered a local MCC environment, the number of

SMDs or users is limited. Also, the time span of data gathering is not much wide.

Therefore, the data volume is not exceptionally huge. As a result, the hardware

requirement would not be too extensive. In our experiment, we leveraged the par-

allel processing capability of NVIDIA GPU using CUDA API, and it was found quite

acceptable.

However, if the MCC is implemented in an environment where such a powerful

320

system is not present, or if the data size is hugely voluminous such as in a smart

city scenario, the cloud services can always be availed. Today's commercial cloud

services such as AWS, Google, etc., not only offer on-demand highly scalable GPU

and TPU (tensor processing unit) stacks but they are also proffered with viable and

affordable prices. Therefore, the LSTM model can be trained on the cloud, lever-

aging the powerful heterogeneous hardware environments to achieve significant

speedups.

7.10.3 CNN for Temporal Data

It is observed that LSTM performs quite satisfactorily with higher accuracy in many

forecasting applications while combined with CNN. In our experiment also, we ob-

served significant performance improvement by using CLSTM compared to only

LSTM. It is known that LSTM works well on temporal data, whereas CNN is de-

signed to exploit the spatial correlation in the data and works well on the data

having spatial features; they are not generally capable in efficient handling of com-

plex and long temporal dependencies [730]. While in our SMD availability prob-

lem, the dataset is only temporal in nature. Even then, the CLSTM provides much

better performance than LSTM. In our dataset, there is some inherent incon-

sistency that cannot be reflected using traditional LSTM. So, to avail the ad-

vantages of CNN, the sequential data is needed to be mapped somehow into a spa-

tio-temporal pattern.

To the best of our knowledge, besides extracting the new features using CNN, the

technicality behind mapping temporal or sequential data to spatio-temporal data

for prediction performance improvement is still not quite obvious. However, from

Fig. 7.14, it is intuitive that identifying the shape of the users' in-time and out-time

patterns may significantly improve the performance of the predictive model. The

obvious reason behind this assumption is that the mobility pattern shape can cap-

ture the hidden features associated with the dataset. If we treat the users' in-time

and out-time patterns as an object, then acquiring the object's shape would allow

us to extract the unknown features, as in the case of image analysis.

7.11 Limitations and Further Scopes

321

Though the experimental results indicate satisfactory accuracy, there is a scope for

improvement of this work. Since the job completion time of different devices will

be different, the variance of the completion time over various devices could be

measured separately to make the model more accurate and justified.

Further, we considered only the longest duration of a user's presence time in the

network for each day. This somehow curbs the effectiveness of the crowdworker

selection. It may happen that a session duration of a crowdworker is sufficiently

larger than a job to be assigned. However, since this session is not this crowdwork-

er's longest session on that day, it would not be listed as the probable candidate

crowdworker, even it fulfils all other criteria adequately. Increasing the depth and,

in turn, the dimension of the data frame may allow the model to consider all the

sessions.

The prediction may further be enriched by considering the difference in the pre-

dicted out-time and the job duration to get a confidence value that may be used to

rank the SMDs based on availability in the absence of any prior ranking scheme,

where the minimum confidence threshold for selection criterion will depend on

the particular application, job execution time, etc.

7.12 Summary

In this chapter, we designed a model for predicting mobile devices' availability for

a local MCC where people join the MCC regularly and stay connected for varying

periods. Before submitting the job to a crowdworker, the probability of the consid-

ered crowdworker being available until the job execution is finished is evaluated.

If the job execution time is greater than the predicted availability duration, an al-

ternative crowdworker is considered. This will improve the QoS of MCC by mini-

mizing the job reassignment.

We presented a novel dynamic feature extraction method where the features are

unknown. Based on the extracted and selected features, we experimented with a

convolutional prediction model applied on LSTM and GRU. Utilizing the real user

mobility traces for a Wi-Fi AP deployed in a research lab, a convolutional LSTM

(CLSTM) and a convolutional GRU (CGRU) based prediction methods were

322

applied to predict the out-time of the user for each in-time. The prediction model

was implemented on two datasets of different volumes.

Our experiment showed that introducing the proposed convolutional feature ex-

tractor to the LSTM and GRU prediction models exhibit significant improvement

in the prediction accuracy compared to the traditional LSTM and GRU-based pre-

diction models. The proposed model competes favourably against another models,

viz. ARIMA, popularly used in time-series prediction. The proposed CLSTM and

CGRU models give satisfactory performance accuracy not only when the dataset is

large enough but also for the small-sized dataset. It is observed that with an in-

crease in dataset size, the performance of the model improves significantly. Also,

with the increase in the dataset, the error estimation of the model gets better.

However, compared to the CGRU, CLSTM model exhibited better performance.

Thus, we can conclude that the proposed CGRU model can be a feasible resource

availability prediction model in mobile crowd computing both with small- and

large-scale user mobility data.

8

Mobility-Aware Service Provisioning in P2P MCC

"Movement is everything, direction is what matters." --- Manfred Hinrich

8.1 Introduction

Due to their usefulness, flexibility and capability to be an all-purpose device, SMDs

have been integrated with our daily life. With the increased demand for diverse

pervasive and ubiquitous computing and other online services, people are becom-

ing greatly dependent on their SMDs for more effective and functional services to

satisfy these needs. Accordingly, various utility and imperative applications are be-

ing developed that are supposed to make our lifestyle easier. Furthermore, many

applications involve real-time inputs such as sensor data and crowdsourced data

which might big in size. As a result, they often comprise computing-intensive jobs

which demand significant computing capacity. In summary, many sophisticated

mobile applications and services demand certain hardware and software resources

requirements.

But all the SMDs do not boast equivalent functionality and resource capacity. The

SMD market is crowded with a huge variety of devices incorporating a diverse

range of resources. Some of them are very high-end devices with greater capacity,

and thereby can afford to host various types of applications and service. Whereas,

some of the SMDs that are aimed only for basic purposes, might have inferior con-

figuration and capacity; hence, they may not afford to have/run the resource-de-

manding applications and services are low in resources [249]. If they want to, they

need to offload their job to the cloud, which is known as mobile cloud computing

[451]. But, accessing cloud services are not always viable or desired. In the context

of this chapter, following are some of the issues with the cloud:

• It may happen that due to some reason (e.g., unavailability of internet connec-

tion or network infrastructure failures, mobile data used up and there is no

Wi-Fi, etc.) cloud is not accessible.

324

• A real-time application may not tolerate the latency required to obtain a cloud

service.

• A reluctant user may not want to use paid cloud services.

• With limited wireless bandwidth, sending compute and data-intensive jobs to

the cloud causes network and performance bottleneck for mobile cloud ser-

vices.

In these scenarios, P2P MCC (PMCC) can be a worthwhile alternative. In PMCC, a

resource-low mobile device can lend resources from a peer or neighbouring re-

source-rich mobile device. We perceive the idea of PMCC as a collection of heter-

ogeneous SMDs that are locally connected (usually, through WLAN, Bluetooth,

hotspots, etc.) and are capable of and willing for sharing their resources or services

among themselves, when in need.

The proposed service lending scheme using PMCC can be used in several real-life

scenarios and has a wide range of significant applications. PMCC will play a critical

role for anytime-anywhere computing service provisioning through impromptu

collaboration. These services may include educational programs, multimedia ser-

vices, business applications, instant messaging, etc. PMCC may also be useful for

hiring network services such as routing and packet forwarding to other nodes.

Moreover, ad-hoc environments such as military battlefields and disaster manage-

ment areas also can make use of PMCC.

However, such a local PMCC is prone to become fragile due to the users’ mobility.

Availability of a service provider within a dynamic environment as PMCC cannot

always be guaranteed. The resource availability is greatly affected by user mobility.

It may happen that a service provider agreed to lend its resources but exits before

the assigned job is finished. For an efficient PMCC, the resource consuming and

providing SMDs should ideally be together or in contact until the resource is fully

availed.

The unavailability of the designated service provider can be tackled by reassigning

the job to another service providing SMD, but if the SMDs move in and out of the

PMCC very frequently, resource switching and the associated overhead, will

325

increase accordingly and that will hamper the QoS of PMCC in terms of through-

put and reliability. Therefore, service provisioning in PMCC must be supported

with an accurate mobility prediction mechanism.

In a traditional mobility prediction approach, the mobility of each SMD is assessed

individually, and if there is a change in mobility, it is assumed that the device might

be unavailable. In this chapter, we try to assess the relative mobility of the peer

SMDs. We argue that instead of focussing on the absolute mobility or stability, of

the SMDs, it is more practical to ensure the relative stability between the service

consuming and providing SMDs.

We define relative stability as an attribute of a mobile node that determines its

stability, which says whether it is stationary or in motion with respect to the nodes

in its neighbourhood, not its absolute movement (that which is determined by

GPS) with respect to its geographical surroundings. We further categorise relative

stability based on the time fractions of the relative stability as follows:

• Continuous relative stability: A group of SMDs stay together for a certain

duration without being separated in between.

• Discrete relative stability: The togetherness of the SMDs is not continuous

rather discrete, i.e., a pair or group of SMDs meet at some point of time, get

separated, and after a while meet again.

In this chapter, we demonstrate two such scenarios. In the first case, presented in

Section 8.5, we consider a single cluster of peer SMDs which continuously stay to-

gether for some duration and share resources. In the second case, presented in

Section 8.6, we consider a multi-cluster PMCC providing an inter-cluster service

provisioning.

Overall, in this chapter, we aim to achieve the following objectives:

• Lay out a service provisioning model for PMCC.

• Predict the relative stability of the SMDs in a single-clustered PMCC with re-

spect to their neighborhood.

• Find a group of mobile users who tend to stay together longer.

• Find out relative mobility and stability among the service requester, provider,

326

and the carrier in a multi-clustered PMCC based on their individual mobility

pattern.

• Based on the mobility pattern, predict the contact times between these three

entities.

• Specifically, we attempt to find answers to the following questions:

a) Which are the users stay together within an AP for a certain period of time?

When and how long?

b) Whether they remain together when they go to another AP.

c) If b) is not true then is there any pattern that user (u1) belongs to a group

(g1) in AP1 but belongs to g2 in AP2 steadily?

8.2 Single- and Multi-cluster PMCC

Single-cluster PMCC: In a single-cluster PMCC, the SMDs are connected through

only a particular small-range communication network. The scale and coverage of

the cluster is limited to the capacity of the network for supporting multiple devices

simultaneously and its range. A resource requester can avail computing resources

from one or multiple SMDs. If a single SMD has sufficient resources and is willing

to cater the service demand, then the job is directly sent to it. If multiple SMDs are

required, the job is divided and distributed among the service providers. A typical

single-cluster PMCC model is shown in Fig. 8.1.

P2P MCC
cluster

Resource
consumer

Resource
providers

Low-range
network

Fig. 8.1. A typical single-cluster P2P MCC model

Multi-cluster PMCC: In this model, there are multiple isolated PMCC clusters,

typically belongs to the same organisation. In our experiment, a cluster is

327

represented by an AP and each cluster is disjoint, i.e., an SMD is connected to only

one AP at a time. Within a cluster, one leader is selected or elected. All SMDs

within the cluster forward the service request to the leader. If the requested service

is not available in the cluster, then searching will be done in another cluster, typi-

cally in the clusters that are immediate neighbour to the original cluster. If all the

clusters are dense in nature, i.e., all the clusters are placed near to each other, then

it is easy to find the service across the clusters; but if the clusters are sparse and

placed far from each other and also not directly connected, as shown in Fig. 8.2,

then the mobility property plays a crucial role in searching as well as getting the

service. In such cases, an SMD is selected, within the cluster, that has the highest

mobility in the requesting cluster. It goes to another cluster that might have the

requested service, collect the service, and get back to the requesting cluster and

provide to the requesting node.

Clusters

Mobile nodes

(a) (b)
 Fig. 8.2. Clustering in (a) dense network and (b) sparse network

8.3 Service Lending Scenarios

Let us theorise an PMCC environment where a low-end SMD can get/hire the ser-

vice, that it requires but does not have, from one SMD that has the concerned ser-

vice. To make it simple, software and hardware capabilities can be delivered and

consumed as services, and if an SMD (or its user) needs such service, it may contact

one nearby SMD which has the service and is willing to give/lend that. The SMD

may provide the service on profit (gets something in return) or non-profit (doing

social service) basis. To understand and visualise the usefulness of PMCC better

the let us consider the following real application scenarios:

Scenario 1: Akash is on a group tour with his friends. He is on the train. Suddenly

he receives an urgent email from his office. He is asked to complete the financial

328

calculations attached with the mail immediately. Obviously, Akash is not happy

but also knows that he has to do it anyhow. As the job is computing-intensive,

Akash faces the following two problems:

a) He has not brought his laptop with him and neither his friends. All of them are

carrying only smartphones. But none of these devices is capable enough to

carry out the computing-intensive calculations individually.

b) As he is in a moving train, there is no continuous internet connectivity. And

so, he cannot use the cloud.

So, Akash decided to utilize PMCC and requests his friends to lend their SMDs'

resources. The PMCC application on his smartphone divides the computation task

into a number of small tasks and sends each small task to the SMDs of Akash's

friends. Each SMD executes its part and sends the result back to Akash's

smartphone. Once, all the results are accumulated, they are assembled to have the

final result. Akash sends the result to his office and moves on to enjoy his holidays

without any tension.

Scenario 2: John, while sitting in the student canteen, downloads a research article

that seems to be related to his project. But after downloading, he finds that the

document is not opening on his SMD as it is in some unknown format. John has a

pdf reader application installed in his device, and if the document could be con-

verted to pdf format, he could read it. But he does not have any such conversion

app. So, he searches the network for a buddy, having the conversion service. And

thank goodness, he found one such and got the file converted to pdf. John is elated

and dives into the paper without delay.

Scenario 3: Lilly goes to a shopping mall to buy a laptop. The salesman shows her

a couple of models from different companies. Though the salesman tries his best

to explain to her about the features of the products, Lilly wants to be sure about

the advantages and disadvantages, in a comparative manner, of the products the

salesman showed her. Her SMD is not able to help her because she does not have

any such benchmarking applications installed. She also tries to visit the websites

of the companies of the products using her SMD, but due to the inferior cellular

329

connection, she cannot manage to open all the websites either. In a PMCC envi-

ronment, she requests for a benchmarking service to a service provider (SP), in her

vicinity. The SP agrees to help her and makes the comparison for her and sends

her the comparison result. Satisfied with the best one (according to her require-

ments) she bought the laptop and went home happily.

Scenario 4: Merry intends to fill up the library subscription form while sitting in

the college library. But the form is in pdf format, and she does not have the edit

option in her pdf reader version (the pdf reader might be a pirated one or with a

limited licence). So, she tries to convert it into a Word document. But again, she

does not have the conversion software. So, she searches for an SP which can pro-

vide this conversion service within the network. Unfortunately, there was no SP

available in the network. So, a service carrier (SC) comes to her rescue, which goes

out and searches for the required service in other networks. Once it finds the ser-

vice, gets from that SP, returns to the previous network, and delivers the converted

Word document to Merry. But interestingly, Merry is not aware of all these pro-

cesses. The PMCC system took care of all these, transparently.

8.4 UCSD Dataset

To implement our system for finding relative mobility, we used the UCSD trace

dataset42, obtained from the University of California, San Diego. Marvin McNett

and Geoffrey M. Voelker of the University of California, San Diego conducted a

study of the movements of as many as 275 students of the university for the period

from 22nd September 2002 to 8th December 2002 – a total of 78 days [731]. The trace

data was collected for 402 APs within a range of approximately 130 m X 130 m

square area. In the trace collection, the users were given a Jornada PDA which rec-

orded the trace information with the help of a data collection tool called WTD, an

in-house developed software. The WTD software sampled and collected the trace

data before uploading them periodically to a server. The users are identified

through the MAC addresses of their devices’ wireless network cards. It is assumed

42 http://sysnet.ucsd.edu/wtd/data_download/wtd_data_release.tgz

330

that there is a one-to-one mapping between users and wireless network cards.

However, the mapping is anonymous, i.e., there is no mapping between usernames

and MAC addresses.

After a user’s device was powered on, the WTD software collected the following

data periodically during the 11-week trace period:

• The signal strength of each detected AP.

• MAC address of each AP that was detected.

• Current AP association.

• The version number of the WTD program.

• Type of device (Jornada 548 or 568).

• Power state the device is running on (connected to an AC socket or using bat-

tery power).

It is to be noted that the WTD program recorded the MAC address of all APs that

were detected by the PDA, not only the AP the PDA was associated with at the

time of sampling. This is evident from the recorded data contained in the trace file

wtd.csv (described later in this section). A sampling of data was done with a time

interval of 20 seconds, i.e., the WTD software recorded data after every 20 seconds.

During data collection, when the local data file reached a critical size, the WTD

software contacted the data collecting server and uploaded the file at the next op-

portunity. A feature of the WTD software was that it automatically checks the

server for new updates and downloads and installs them, so that it may adapt to

unexpected problems if necessary.

Key terms: The key terms used in the trace data analysis are as follows:

• User: A user is someone who has a mobile device connected to one of the AP

in the context.

• AP session: An AP session is a contiguous time period for which a user’s de-

vice was associated with a particular AP in the UCSD campus.

• User session: A user session is a contiguous time period in which a user’s de-

vice is powered on and is able to detect the signals of nearby APs. A user

331

session includes the user’s movements among different APs.

Contents: The dataset contains three files, namely, ap_locations.csv, README,

and wtd.csv. The files ap_locations.csv and wtd.csv are trace files containing the

data recorded by the UCSD researchers and README, a text file, is the metadata

file of these two trace files. The files ap_locations.csv and wtd.csv contain comma-

separated values comprising four and seven fields, respectively, as shown in Fig.

8.3 and Fig. 8.4, respectively. The trace file wtd.csv was processed to generate the

set of files required for the mobility study.

Unique identifier assigned to the AP.

Z-coordinate (in ft) of AP w.r.t. campus coordinate system.

Y_COORDINATE

Z__COORDINATE

AP_ID

Y-coordinate (in ft) of AP w.r.t. campus coordinate system.

X-coordinate (in ft) of AP w.r.t. campus coordinate system.X_COORDINATE

Fig. 8.3. Fields of ap_locations.csv and their descriptions

Whether the SMD was associated with this AP (1) or not (0).

Whether the SMD used AC power (1) or battery (0).

Strength of AP signals received by the SMD.

Unique identifier assigned to the detected AP.

The time the sample was taken by the WTD software.

ASSOCIATED

SIG_STRENGTH

AC_POWER

SAMPLE_DATE

SAMPE_TIME

AP_ID

The date the sample was taken by the WTD software.

Unique identifier assigned to the user.USER_ID

Fig. 8.4. Fields of wtd.csv and their descriptions

Fig. 8.5. Snapshot of the 3D view of APs

It is to be noted that the trace file wtd.csv and the metadata file README, both do

332

not mention the field SAMPLE_DATE, probably due to the human error or as per

the researchers’ discretion. A snapshot of the 3D view of APs are shown in Fig. 8.5,

and the snapshots of the files ap_locations.csv and wtd.csv are shown in Fig. 8.6

and Fig. 8.7, respectively.

Fig. 8.6. Snapshot of the file ap_locations.csv

333

Fig. 8.7. Snapshot of the file wtd.csv

8.5 Predicting Continuous Relative Stability in a Single-cluster PMCC

In this section, we present a relative stability prediction method for the mobile

devices in a single-cluster PMCC.

8.5.1 Resource Availability Problem in PMCC

It should be ideal to assign the job to the SMD, which is supposed to be stable and

would stay within the PMCC for a longer time (till the job is finished). In order to

select one or multiple SMDs as stable resource providers, predictions about the

future mobility behaviour of each of the participating nodes are crucial. Particu-

larly, the following information are needed:

a) For how long the SMD is available in the PMCC cluster?

b) What is the mean/average period of availability?

c) What is the probability of the service requester and the provider being in con-

tact until the request is fulfilled?

8.5.2 Relative Topological Stability

In many situations, it is observed that though a pair or a group of mobile users

change their topological position, relatively they stay together, i.e., they generally

move together. Fig. 8.8 depicts such a scenario. The figure shows the mobility

traces of a number of SMD users (A, B, C, D, E, F, G, H, I, J, K, L, M, N, and O) from

the APs AP1 to AP4 along with time t1 to t4. It can be seen from the figure that a

group of users (C, G, I, J, and O) always move together. Which means, though their

topological positions are changed they are relatively stable. This is the exact case

in the scenario described in Section 8.3. Here, though Akash and his friends are in

the mobile state, they are relatively static as they are moving together.

In these circumstances, i.e., when the resource seeker and provider move together,

there is no need for handoff or switching of the resource provider. Here, mobility

does not affect PMCC topology and operation. The primary concept of this ap-

proach is that even the SMDs are mobile, if they are relatively static, i.e., they move

together, resource exchange can be done. Finding such a group of SMD users

334

enables us to select the resource providers which minimizes the chance of incom-

plete job execution and job reassignment in PMCC.

HLA N

Location 2 (AP2) at t2

J CI GO D

B DF JCI GO

Location 4 (AP4) at t4

E KM J CI GO

Location 1 (AP1) at t1

HLA JCI GO KM

Location 3 (AP3) at t3
Fig. 8.8. Relative stability is maintained between a group of mobile users, although their topologi-

cal positions are changed

The proposed mobility prediction algorithm should identify the users whose prob-

ability to be relatively static is higher, i.e., they stay together most often across

different network segments and locations.

8.5.3 Experiment and Validation

In this section, we introduce and elaborate the concept of relative stability with

details of experiment done. Results are analysed using statistical measures and

validation techniques.

8.5.3.1 Calculating Relative Stability

The relative stability of an SMD is measured by its stability (or dynamism) with

respect to its neighbourhood. Each SMD monitors its neighbourhood at different

time intervals. Let, x denotes an SMD and NH be its set of neighbourhood SMDs.

The mobility of an SMD at 𝑡1 is calculated using Eq. 8.1, where 𝑁𝐻𝑡1
𝑥 = list of neigh-

bours of x at time 𝑡1, 𝑁𝐻𝑡1−1
𝑥 = list of neighbours of x at time (𝑡1 − 1) and 𝑀𝑡1

𝑥 is

the mobility of x at time 𝑡1.

𝑀𝑡1
𝑥 =

|𝑁𝐻𝑡1−1∩𝑁𝐻𝑡1|

|𝑁𝐻𝑡1|
 (8.1)

The relative stability, over a time span T, is calculated using Eq. 8.2, where, 𝑅𝑆𝑡1
𝑥 =

relative stability of x at time 𝑡1 which is stored for the last 𝑆𝑇 time steps.

335

𝑅𝑆𝑡1
𝑥 =

1

𝑆𝑇
∑ 𝑀𝑡1

𝑥
𝑖=𝑡1−𝑥 (8.2)

The algorithm for relative stability calculation is given in Algorithm 8.1.

Algorithm 8.1: Relative Stability Calculation
Input: Node neighbour list database of x.

Output: Relative stability 𝑹𝑺𝒕𝟏
𝒙 of x.

1. 1. Find current neighbour list 𝑵𝑯𝒕𝟏
𝒙 .

2. 2. Calculate the change in the neighbourhood using Eq. 8.1.

3. 3. Store the obtained values in a linear list.

4. 4. Calculate relative stability using Eq. 8.2.

5. 5. Return relative stability 𝑹𝑺𝒕𝟏
𝒙 .

The mobility at a particular time 𝑡1 is considered as a temporal process. The spati-

otemporal prediction tool is not considered because the node mobility at a partic-

ular time instance 𝑡1 depends on the neighbour list at 𝑡1 − 1 and 𝑡1, for i = 1 to n,

where n is the number of intervals.

8.5.3.2 Short-term Relative Stability Assessment

This section describes our study of relative stability made on a short-term basis.

The descriptions of the variables which were used in our analysis are given in Table

8.1. Here, A and N are partially dependent variables, depending on independent

variables U, T and D, whereas S is a completely dependent variable, depending on

N.

For computing the short-term mobility, the value of relative stability was calcu-

lated from 20 users selected randomly from the dataset, and the relationship be-

tween their mobility and the obtained relative stability was analyzed. The selected

users had the following USER_ID’s: 10, 12, 22, 30, 35, 18, 24, 2, 7, 70, 77, 98, 135, 142,

208, 255, 263, 270, 240, and 210.

Since the relative stability prediction algorithm requires information about the

neighbourhood of an SMD for the calculation of its relative stability, the original

trace file was processed to obtain the neighbourhood information of all users. Each

day was divided into 96 intervals, each of 15 minutes duration. The connection in-

formation of each user during these intervals was recorded. The connection infor-

mation answered the following two questions:

a) To which AP a particular user was connected during a particular 15-minute

336

interval on a particular day?

b) What is the set of neighbours of a particular SMD (user) during a particular 15-

minute interval on a particular day?

For each user, a particular session of two-hours duration on a particular day during

which he/she was connected to some AP was selected. The set of neighbours of a

user Ui for a particular time interval was defined as the set of users, other than Ui

itself, who were connected to the same AP as the user Ui during the particular time

interval.

Table 8.1. Notations used in the relative stability analysis

Variable Dependency Description

U Independent USER_ID of users from trace dataset.

T Independent Time interval of 15-minute duration, where T=1 denotes 00:01 am –
00:15 am, T=2 denotes 00:16 am – 00:30 am, and so on. T lies in [1,
96].

D Independent Day of observation selected from the trace period, where D=1 de-
notes 22nd September 2002, D=2 denotes 23rd September 2002, and
so on. D lies in [1, 78].

Ai,k
j

 Partially de-
pendent on
U, T and D

AP_ID of the AP to which user with U=j is associated with during
time interval T=i on day D=k; its value is "NC" if the user is not
connected to any AP.

Ni,k
j

 Partially de-
pendent on
U, T and D

Neighbourhood set of users with U=j during time interval T=i on
day D=k; its value is "NC" if the user is not connected to any AP.

Si1,k1,i2,k2
j

 Dependent
on N

Relative stability of user with U=j calculated over the time span:
time interval T=i1 on day D=k1 to time interval T=i2 on day D=k2. R

lies in [0, 1]. It is to be noted that if k1 = k2, Si1,k1,i2,k2
j

 can be written

as Si1,i2
j,k

.

Table 8.2 shows the neighbourhood information of four sample users during busy

hours (10 am to 5 pm) and lazy hours (5 pm to 10 am), on a weekday and a weekend,

using the notation defined in Table 8.1. It is expected to have more SMDs in the

busy hours while very few or nil in lazy hours.

The detailed information about the chosen session for a set of representative users

and relative stability calculated over the session is given in Table 8.3, which also

shows the relative stability of a set of representative users, calculated on a short-

term basis.

337

Table 8.2. Sample user's information

Time interval
(T)

Lazy/
busy
hour

USER_ID
(U)

Weekend neighbourhood
(D=8)

Weekday neighbour-
hood (D=25)

00:01 – 00:15
(1)

Lazy 16 𝑁1,8
16 = {}

(empty neighbourhood)

𝑁1,25
16 = {3, 24, 127, 225}

12:45 – 13:00
(52)

Busy 16 𝑁52,8
16 = {50, 64, 191, 235, 264} 𝑁52,25

16 = NC

00:01 – 00:15
(1)

Lazy 103 𝑁1,8
103 = NC 𝑁1,25

103 = {165, 207, 238}

12:45 – 13:00
(52)

Busy 103 𝑁52,8
103 = {171, 185, 193, 238} 𝑁52,25

103 = NC

01:00 – 01:15 (5) Lazy 39 𝑁5,8
39 = {32, 128, 164, 166, 220} 𝑁5,25

39 = NC

09:45 – 10:00
(40)

Lazy 39 𝑁40,8
39 = {32, 164, 166, 208, 244} 𝑁40,25

39 = NC

01:00 – 01:15 (5) Lazy 65 𝑁5,8
65 = {235, 264} 𝑁5,25

65 = {16, 47, 64, 212,

243}

09:45 – 10:00
(40)

Busy 65 𝑁40,8
65 = NC 𝑁40,25

65 = {}

(empty neighbourhood)

Table 8.3. Selected session and relative stability information of a set of representative sample us-
ers

USER_ID Day Session (T1–T8) Relative stability Mobility/stability behaviour

10 18 1 – 8 𝑆1,8
10,18 = 0.8333 Static; high relative stability

12 13 2 – 9 𝑆2,9
12,13 = 0.95 Static; high relative stability

22 31 36 – 43 𝑆36,43
22,31 = 0.25 Dynamic; low relative stability

30 2 7 – 14 𝑆7,14
30,2 = 0.875 Static; high relative stability

35 32 61 – 68 𝑆61,68
35,32 = 0 Dynamic; low relative stability

It is observed that the users who have a higher value of relative stability are rela-

tively more static compared to the users who have a lower value of relative stability.

By relatively static, we mean that a user is static with respect to its neighbours,

irrespective of its actual geographical location. Detailed analysis reveals that the

users who have relative stability value close to '1' have unchanging AP connection,

whereas the users who have relative stability value close to '0' have frequently

changing AP connection. From Fig. 8.9, we intuitively choose 0.5 as the threshold

value for determining relative stability of the users, separating them into two

groups, namely static users and dynamic users. A user whose relative stability is

above 0.5 is regarded as static, and one whose relative stability is below this thresh-

old value is regarded as dynamic.

338

Fig. 8.9. Relative stability of 20 sample users

Fig. 8.10. Relative stability/mobility analysis for two users (USER_ID’s 39 and 156) on weekday

and weekend

Furthermore, a study of the relative stability of two sample users (USER_ID's 39

and 156) on a weekday and a weekend in terms of the mean and standard deviation

of the neighbourhood change (according to Eq. 8.1) was performed; the related

graphs are shown in Fig. 8.10. The mean and standard deviation values are calcu-

lated by taking spans of two hours (eight 15-minute intervals) throughout the day.

The mean and standard deviation values corresponding to an interval t are the

mean and standard deviation of the neighbourhood change values over a time span

0.833

0.950

0.250

0.875

0

0.438

0.688

0.365

0.125

0.896

0.271

0

0.250

0.375

0.688

0.958

0.500

0.125

0

0.375

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 12 22 30 35 18 24 2 7 70 77 98 135 142 208 255 263 270 240 210

R
el

at
iv

e
St

ab
il

it
y

User ID

339

t′ to t, where t′ = t - 7. Observing the weekday and weekend graphs of the two users,

we come across different scenarios, as mentioned in Fig. 8.11.

It is to be noted that a user getting disconnected (going out of range of all

APs/turning off his or her SMD) is regarded as a neighbourhood change, and the

neighbourhood change value at the disconnection interval is assumed to be zero.

From the above observations, it is concluded that the short-term mobility study is

not sufficient to determine a user's inherent behaviour, the reason being that when

the standard deviation value becomes greater than the mean value of the neigh-

bourhood change over a given timespan, the user's behaviour is unpredictable,

even if it exhibits a high value of relative stability. To determine the inherent mo-

bility behaviour of users, a logistic regression analysis of their relative stability for

the entire trace period is needed, as described in the next section.

Fig. 8.11. Different possible scenarios based on Fig. 8.10

8.5.3.3 Long-term Mobility Prediction Using Logistic Regression Analysis

A long-term study of mobility behaviour of all users is necessary to determine the

effectiveness of our proposed prediction algorithm when users' neighbourhood

records are taken over a long period of time. It indicates the degree of correctness

Stability Ratio < Standard Deviation and Stability Ratio < Threshold ValueCase 1

•The user’s behaviour is unpredictable.
•There is no fixed group of neighbours with which the user stays connected.
•For example, such behaviour is exhibited by user 39 during intervals 66 to 73 on day 6.

Stability Ratio < Standard Deviation and Stability Ratio >= Threshold ValueCase 2

•The user behaviour is erratic.
•The user stays connected to a fixed group of neighbours for some intervals but it changes its

neighbourhood at other intervals.
•For example, such behaviour is exhibited by user 156 during intervals 53 to 60 on day 6.

Stability Ratio > Standard Deviation and Stability Ratio < Threshold ValueCase 3

•The user’s behaviour is predictable and it is dynamic.
•The user changes its neighbourhood in a similar pattern leading to an almost constant low value

of neighbourhood change during the timespan.
•For example, such behaviour is exhibited by user 156 during intervals 69 to 76 on day 8.

Stability Ratio > Standard Deviation and Stability Ratio >= Threshold ValueCase 4

•The user’s behaviour is predictable and it is static.
•The user stays connected with almost the same fixed group of neighbours throughout the

timespan leading to an almost constant high value of neighbourhood change. Such a user can be
regarded as static.
•For example, such behaviour is exhibited by user 156 during intervals 56 to 63 on day 8.

340

of our method when a large database of users' movements is analyzed. If both

short-term and long-term prediction results are consistent for a particular user,

the user can be predicted to be static or dynamic with a high chance of the predic-

tion being correct.

The proposed algorithm was applied on the UCSD dataset and the average value

of relative stability, termed as average stability ratio (ASR), was calculated for all

the users in the dataset over the entire trace period of 78 days (taking the average

of 78 daily values of relative stability for each user), after which a logistic regression

model was derived to predict whether a user is static or dynamic. Out of the 275

users in the trace, 240 users were used for the analysis (the other users were filtered

out as they remained active in zero or very few sessions during the entire trace

period, leading to an insignificant value of the standard deviation of neighbour-

hood change). This set of users was divided into two sets for training and testing.

Records of the first 160 users were used as the training set to derive the logistic

regression model, and of the remaining 80 users were used as the test set to vali-

date the model.

Before performing logistic regression, we needed a method to classify a user as

static or dynamic. We took the dependent variable as static or dynamic and one

independent variable of ASR. The descriptions of variables are summarised in Ta-

ble 8.4 and Table 8.5. There is no definite method for defining the status of a node

as static or dynamic. We used a method that is simple and objective, i.e., if the

coefficient of variation (CV), defined by Eq. 8.3, of the relative stability of a user is

less than 1, it is classified as Static, and otherwise, it is classified as Dynamic.

𝐶𝑉 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜
 (8.3)

As the dependent variable or outcome is a dichotomous one, we have taken Static

= 0 and Dynamic = 1 to classify the nodes, as shown in Table 8.4.

8.5.3.4 Results and Analysis

In this section, we analyse the results using logistic regression and empirical tests.

We also observe the classification accuracy. Furthermore, the model’s performance

is validated through goodness fit. We also compare the performance of the model

341

for short- and long-term relative stability predictions.

Table 8.4. Dependent variable based on the coefficient of variation

Degree of relative stability Type of user based on ASR Criterion Internal value

High relative stability Static CV < 1 0

Low relative stability Dynamic CV > 1 1

Table 8.5. Independent variable

Variable name Description

Avg_SR ASR of a user, calculated for the full trace period of 78 days

8.5.3.4.1 Logistic Regression Analysis

Logistic regression [732] [733] has popularly been used for predicting the outcome

of an event, or the probability of the presence or absence of a characteristic in a

considered context is based on the values of a set of predictor variables. Precisely,

it is the most popular modelling approach for binary outcomes. Since, in our pre-

diction requirement, there are only two possible outcomes, either static or dy-

namic, the logistic regression is the automatic choice for prediction modelling. The

basic characteristics of logistic regression are shown in Fig. 8.12.

Considers

Used for

Generates

Predicts

Goal

Uses

Requires
The dependent variable to be dichotomous, with the groups being
discrete, non-overlapping and identifiable.

The cost of type I and type II errors for selecting the optimal cut-off
probability.

Performing probabilistic binary classification.

What?

A sigmoid function to define the probability of the model s prediction.

Label probabilities rather than a hard value of the label.

The coefficients of a formulation to predict a logit transformation of the
probability that the feature or attribute of interest is present or absent.

To find the best fitting model for describing the relationship between the
dichotomous characteristic of interest, and a set of independent variables.

A statistical methodology for analyzing a dataset with single or multiple
independent variables that determine two possible outcomes.

Fig. 8.12. Basic characteristics of logistic regression

Compared to the linear regression model, it is more appropriate to model the sit-

uation where the dependent variable is dichotomous (a 0/1 variable). In a linear

regression model, the input of the dependent variables might be greater than 1 or

less than 0. Therefore, it is impractical to model probabilities with linear regression

since the boundary of the probability of an event should be within 0 to 1. To over-

come this, the logistic regression model adopts a generalized form of the linear

342

model and extends it by mapping the real numbers to the 0-1 range [734].

The relationship between the regression coefficient (z) and the probability (p) of

an event of interest (i), in a logistic regression model, is described by the link func-

tion, given in Eq. 8.4. Here, the dependent variable (zi) is a logit, which is a log of

odds, in other words, it is the value of the unobserved continuous variable for the

ith case, and pi is the probability that the ith case experiences the event of interest

and zi and is defined by Eq. 8.5.

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑧𝑖 = 𝑙𝑛
𝑝𝑖

1−𝑝𝑖
 (8.4)

𝑝𝑖 =
𝑒𝑙𝑜𝑔𝑖𝑡(𝑝𝑖)

1+𝑒𝑙𝑜𝑔𝑖𝑡(𝑝𝑖)
=

𝑒𝑧𝑖

1+𝑒𝑧𝑖
=

1

1+ 𝑒−𝑧𝑖
 (8.5)

In Fig. 8.13, the predicted variable pi and the explanatory variable zi are represented

through the vertical and horizontal axes, respectively. The odds ratio (z value) of

each independent variable in the logistic regression model can be estimated using

the regression coefficients, as given in Eq. 8.6.

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑧𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑘𝑥𝑖𝑘 (8.6)

where, xij is the jth predictor for the ith case, βj is the jth coefficient, and k is the

number of predictors.

Fig. 8.13. Link function pi

Here, βs are the regression coefficients that are evaluated by means of an iterative

maximum likelihood method. Logistic regression analysis does not consider the

prior probabilities of failure as well as the restrictive assumptions regarding the

normal distribution of independent variables or the equal dispersion matrices [735]

[736]. Though, due to the subjectivity of the choice of these misclassification costs

343

in practice, most researchers aim to minimize the total error rate, implicitly as-

suming equal costs of type I and type II errors [736] [737].

8.5.3.4.2 Empirical Testing

To test the proposed model, we opted for the Wald statistic that is used to assess

the significance or contribution of the coefficients in the model [738]. It is defined

by Eq. 8.7.

𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 =
(𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)2

(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)2
 (8.7)

Wald statistic is based on Chi-square distribution with degree of freedom (DF) is

1; i.e., the number of independent parameters is one. The parameter for which the

Wald statistic is maximum is the best one that contributes to predicting the out-

come properly. Maximization of Wald statistic means the minimization of the

standard error of the corresponding parameter.

The estimated results of the logistic regression model for the ASR of the users in

the total sample are shown in Table 8.6. The maximum likelihood estimation for

user classification is used to estimate the final logistic regression, as expressed in

Eq. 8.8, where, z is defined as in Eq. 8.6. Here, the event (i) is Static; hence, pi

denotes the probability of the outcome Static.

𝑧 = −6.455 + 21.293 × 𝐴𝑆𝑅 (8.8)

Table 8.6. Estimated results of the logistic regression model of the ASR of the mobile users

Coefficient of

the predictor (β)
Standard
error (SE)

 Wald

((𝜷 𝑺𝑬)⁄ 𝟐
)

Degree of
freedom

Significance

ASR 21.293 3.453 38.019 1 .000

Constant -6.455 .981 43.251 1 .000

8.5.3.4.3 Classification Accuracy

The accuracy of the proposed model has been diagnosed using classification table

(also known as confusion matrix), as shown in Table 8.7, which gives a statistical

estimation of the number of observations that have been predicted correctly. Clas-

sification tables help to evaluate the correctness of the model by cross tabulating

the actually observed successes with the predicted number of successes and actu-

ally observed failures with a predicted number of failures. For each case, if the pre-

dicted probability of a category is greater than the user-specified cut-off, the

344

predicted response of that category is considered as 0. The cut-off value was con-

sidered as 0.5.

Table 8.7. Classification table of the proposed model

Observed performance

Predicted performance

Static Dynamic

Positive prediction Negative prediction

Static Positive observation TN FP
Dynamic Negative observation FN TP

8.5.3.4.3.1 Classification of Training Dataset

Table 8.8 shows the comparison of the observed and the predicted mobility behav-

iour of the users and to the extent that it can be correctly predicted on the training

dataset. Dynamic users can be classified 95.4% correctly, while 78.4% of Static us-

ers can be properly classified. The overall prediction is 90.0% correct. The cut-off

value can be changed to notice the change/improvement in the predicted correct

response.

Table 8.8. Classification table for training dataset

Observed
performance

Predicted performance Correct prediction
percentage Static Dynamic

Static 40 11 78.4

Dynamic 5 104 95.4
Overall correct prediction percentage 90.0

8.5.3.4.3.2 Classification of Evaluation Dataset

Table 8.9 shows the comparison of the observed and the predicted mobility behav-

iour of the users and to the extent that it can be correctly predicted on the evalua-

tion dataset. Dynamic users were classified 95.6% correctly, while 88.6% of Static

users were predicted accurately. The overall prediction is 92.5% correct.

Table 8.9. Classification table for evaluation dataset

Observed
performance

Predicted performance Correct prediction
 percentage Static Dynamic

Static 31 4 88.6
Dynamic 2 43 95.6

Overall correct prediction percentage 92.5

8.5.3.4.4 Validation

In model validation, the prediction performance of the model is observed by check-

ing against independent data. Typically, the validation process includes collecting

an independent dataset and validation of the results on it. To validate our model,

345

as shown in Table 8.9, we took 80 test users, and the results were validated using

various evaluation metrics, as listed in Table 8.10. The performance measures of

the prediction model are compared for the training and evaluation datasets and

shown in Fig. 8.14.

Table 8.10. Performance measure details for prediction model evaluation

Evaluation metrics Significance
Ideal
value

Calculation

True positive rate
(TPR) or sensitivity
or recall

Indicates how many static SMDs, out of all
the static SMDs, have been predicted cor-
rectly.

Close
to 1

TP/(TP+FN)

True negative rate
(TNR) or specificity

Indicates how many dynamic SMDs, out of
all the dynamic SMDs, have been predicted
correctly.

Close
to 1

TN/(TN+FP)

False positive
rate (FPR) or fall-
out (Type-I error)

Indicates how many dynamic SMDs, out of
all the dynamic SMDs, have been predicted
incorrectly.

Close
to 0

FP/(TN+FP)

False negative
rate (FNR) or miss
rate (Type-II error)

Indicates how many static SMDs, out of all
the static SMDs, have been predicted in-
correctly.

Close
to 0

FN/(TP+FN)

Positive predictive
precision (PPP) or
positive predictive
value (PPV)

Indicates how many SMDs, out of all the
predicted static SMDs, are actually static.

Close
to 1

TP/(TP+FP)

Negative predictive
precision (NPP) or
negative predictive
value (NPV)

Indicates how many SMDs, out of all the
predicted dynamic SMDs, are actually dy-
namic.

Close
to 1

TN/(TN+FN)

False discovery
rate (FDR)

Indicates how many SMDs, out of all the
predicted static SMDs, are actually dy-
namic. In other words, it is the probability
of making any Type-I error at all.

Close
to 0

FP/(FP+TP)

False omission
rate (FOR)

Indicates how many SMDs, out of all the
predicted dynamic SMDs, are actually
static. In other words, it is the probability
of making any Type-II error at all.

Close
to 0

FN/(FN+TN)

Accuracy (ACC) Determines the overall predicted accuracy
of the model. In other words, it measures
the fitment of the model.

Close
to 1

(TN +TP)/
(TN+FN+TP+FP)

Balanced accuracy
(BA)

Gives a balanced accuracy calculation for
the imbalanced test set, like ours. It is cal-
culated as the average of TPR and TNR for
each class (here, static and dynamic).

Close
to 1

(TP/(TP+FN)+
TN/(TN+FP))/2

F1-score Provides a better understanding of the per-
formance of the model than ACC, espe-
cially in case of an uneven class distribu-
tion, like ours. It is calculated as the har-
monic mean of TPR and PPP.

Close
to 1

2TP/
(2TP+FP+FN)

As the validation approach we followed the tests for goodness of fit. The goodness

of fit asserts how well a statistical model and the sample data fit to a set of obser-

vations. It helps to identify if there is any discrepancy between observed values and

https://en.wikipedia.org/wiki/Statistical_model

346

the values predicted from the considered model in a normal distribution case. Alt-

hough several methods are there for testing the goodness of fit of the logistic re-

gression, in this work, we used the popular Hosmer and Lemeshow test (HL test)

[735] that provides useful information about the calibration of the model. If the p-

value produced by the HL test for goodness of fit is small, the model is considered

as a poor fit. Typically, if it is less than 0.05, then the model is rejected; otherwise,

it is passed.

The HL test is fundamentally a chi-square goodness of fit test for grouped data,

where the samples are divided into g groups according to their predicted probabil-

ities. Typically, the value of g (number of groups) is chosen as 10. The observations

with the lowest 10% predicted probabilities are placed in the first group, the next

lowest 10% are placed in the second group, and so on. The grouping is done on the

estimated parameter values (zi), for the probability that stability is predicted cor-

rectly for each observation in the sample, based on each observation's covariate

values, as defined by Eq. 8.4.

Fig. 8.14. Performance measures for training and evaluation datasets

0
.9

5
4

0
.7

8
4

0
.2

1
6

0
.0

4
6

0
.9

5
4

0
.8

8
9

0
.0

9
6

0
.1

1
1

0
.9

0
0

0
.8

6
9 0
.9

2
9

0
.9

5
6

0
.8

8
6

0
.1

1
4

0
.0

4
4

0
.9

5
6

0
.9

3
9

0
.0

8
5

0
.0

6
1

0
.9

2
5

0
.9

2
1

0
.9

3
5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TPR TNR FPR FNR PPP NPP FDR FOR ACC BA F1

Training dataset Evaluation dataset

347

Chi-square statistic is calculated by HL test is given by Eq. 8.9.

𝑋𝐻𝐿
2 = ∑

(𝑂𝑗−𝑃𝑗)
2

𝑃𝑗(1−𝑃𝑗 𝑛𝑗)⁄
10
𝑗=1 ~𝑋8

2 (8.9)

where, nj = number of observations in the jth group; Oj = number of observed cases

in the jth group; Pj = number of predicted cases in the jth group; Χ2 = standard Chi-

square.

The degree of freedom and the p-value are calculated using Eq. 8.10 and Eq. 8.11,

respectively, where k is the number of regrouping (i.e., 10 in HL test) of the ob-

served and predicted cases of two dependent variables.

𝐷𝐹 = 𝑘 − 2 (8.10)

p-value = ∫ 𝑓(𝑋2) 𝑑(𝑋2)
11.053

0
 (8.11)

The observed significance level for Chi-square value is found to be 0.199, as shown

in Table 8.11, which indicates that the null hypothesis of the model is acceptable,

i.e., the observed values are close to the predicted values. The acceptance of the

null hypothesis ensures that the hypothetical model fits the observations reasona-

bly satisfactory. The calculated Chi-square value of this model at the level of sig-

nificance below 0.05 indicates that logistic regression is very meaningful and our

null hypothesis for goodness of fit, i.e., observed mobility are equal to the predicted

mobility tested by the HL test.

Table 8.11. Hosmer and Lemeshow test results

Chi-square DF p-value

11.053 8 .199

8.5.3.4.5 Comparison of Short- and Long-term Relative Stability

Previously, the instantaneous relative stability of 20 sample users from the trace

dataset was calculated and analysed. The relative stability of two additional users

throughout a particular weekday and weekend was analysed as well. Later, the

overall ASR of all users (240 users out of 275 users of the entire trace dataset) was

calculated, and a logistic regression model was derived to predict the mobility of

the users in terms of Static or Dynamic. The significance of the logistic regression

analysis is that it shows us the inherent nature of the users. The short-term relative

348

stability and its analysis may show a result different from the overall nature of a

particular user. For an exemplar demonstration, Table 8.12 summarises the analysis

information of two users.

Table 8.12. Analysis of two sample users

USER_ID
Instantaneous

relative
stability

Behaviour
(by

intuition)

Classification ac-
cording to logistic
regression model

Remarks

24 0.6875
(day: 61, inter-
vals: 42-49)

Static Dynamic Mobility cannot be pre-
dicted convincingly; be-
haviour is misleading.

255 0.9583
(day: 45, inter-
vals: 29-36)

Static Static Mobility can be convinc-
ingly predicted because
of consistent behaviour.

It is observed from the table that the user with USER_ID 24 has a relative stability

value of 0.6875 on the 61st day of the trace period during intervals 42-49, giving us

the impression that it is nearly static. Logistic regression analysis classifies it into

the category of Dynamic. Due to this difference in the two results, the exact ten-

dency (to be static or dynamic) of the user in the 50th interval cannot be deter-

mined convincingly. On the other hand, the user with USER_ID 255 has a relative

stability value of 0.9583 on the 45th day of the trace period during intervals 29-36.

Logistic regression analysis shows that it is indeed static on a long-term basis, clas-

sifying it as static analysing its ASR. This user can be convincingly predicted as

static in the 37th interval. For users that satisfy a consistent behaviour with both

the instantaneous and regression analysis, i.e., if their results in both the analysis

match, prediction about their stability can be made convincingly.

8.6 Predicting Discrete Relative Stability in a Multi-cluster P2P MCC

In this section, we present a service provisioning scheme in a multi-cluster PMCC

by predicting the relative stability of the service seekers and the service providers.

Since this approach involves latency, it particularly suits the delay-tolerant appli-

cations, which may afford to wait for the required service.

8.6.1 System Model

In this section, we present the system model of a multi-cluster PMCC and the de-

tails of the proposed service provisioning scheme.

349

8.6.1.1 Key Components

Before diving into the details, let us be familiar with the key components of the

proposed system. Some of the crucial terms we encounter throughout the article

are as follows:

Service seeker (SS): An SMD (or SMD user) which needs a service that it does not

have.

Service provider (SP): An SMD which has the service that is requested by a SS

and it (or the mobile phone user) is willing to lend/provide the service.

Service carrier (SC): An SMD which, if required, carries the request (with neces-

sary details) of an SS to an SP and gets back the result/service to the SS.

Access point (AP): Usually, a Wi-Fi router to which the SMDs are connected. Also,

each AP forms an individual cluster comprising the SMDs connected to it. The APs

are not connected to each other.

Reference node (RN): It is one of the most resourceful and highly stable SMDs in

the cluster. It acts as the leader of the concerned cluster and is responsible for

keeping the information of all the peers within the cluster so that when it receives

a service request form an SS, it can rightly suggest the most suitable SP or SC to

the SS, regarding services that could be provided by the SMDs in the network. Un-

der each AP, at any point of time, an RN should be present.

8.6.1.2 Proposed Service Provisioning Scheme

The working of the proposed system is stepwise described in the following:

1. As mentioned earlier, under each AP, an RN is maintained, which holds the

information of all the peer SMDs in the same network.

2. When needed, an SMD refers to the concerned RN for probable SP.

3. If the requested service is available within the own network (AP) then:

i. RN suggests SS the most suitable SP.

ii. SS requests the SP for the service.

iii. SP provides the service to the SS.

350

This scenario is depicted in Fig. 8.15.

4. If the service is not available in the network, the RN suggests a suitable SC

under it that has a higher probability of moving to another network where the

service may be available and come back soon. If the SC is willing to do this job,

then:

i. The SC takes along the request with the required data/inputs to another

network and requests the RN of that network (remote RN) to suggest the

most suitable SP (remote SP) for the job.

ii. As per the suggestion from the remote RN, the SC requests the suggested

SP for the desired service.

iii. SC gets the service, returns to the previous AP (home network), and hands

over the service to the SS.

This scenario is depicted in Fig. 8.16.

5. If the service is not found in the other network also, any one of the following

measures can be adopted:

i. The searching cycle might go on in other networks.

ii. SS can try later to get the service.

iii. The request is aborted.

The workflow of the whole system is presented in Fig. 8.17.

Fig. 8.15. Service is available within the network

351

(a) The service request is of-

floaded to an SC
(b) SC moves to another net-

work and gets the service
(c) SC returns to the home

network and handovers the
service to the SS

Fig. 8.16. Service is not available within the network

Service
available within
own network?

Suggest a local
service provider

Suggest a
service carrier

Intimate the
service carrier
so that he can

search in
another

network or
inform the local
reference node

about the
unavailability of

the service

No

Yes

Local
reference

node

Remote
reference

node

Refer to the
reference
node of a
remote

network

Suggest a
service provider

Service
available in the

network?

Yes

 Provide
service

No

Provide service

Local service provider

Remote service provider

Service seeker

Service
carrier

Deliver
the service

Inform the local
reference node

 Fig. 8.17. The workflow of the proposed service provisioning system

8.6.1.3 Issues and Challenges in the Proposed System

Some of the following mentioned issues are crucial and need to be addressed for

successful implementation of the proposed system for service provisioning:

Synchronisation between SS and SC: Since the nodes in an MCC are typically

352

dynamic in nature, it is crucial to synchronise the presence of SS and SC in the

same network. The absence of which may result in the following significant prob-

lems (also depicted in Fig. 8.18):

• Liveness problem: The SS assigns the job of getting the service from a differ-

ent network to SC (Fig. 8.18(a)). But SC may not come back with the service to

the SS network, as illustrated in Fig. 8.18(b). It is treated as liveness problem.

The liveness problem can be avoided if an SMD is selected as SC that has high

mobility.

• Availability problem: On the contrary, it may happen that the SC returns

with the service but finds that SS is not present in the network, as illustrated

in Fig. 8.18(c). To avoid this availability problem, we require a mechanism that

makes synchronization between the SS and SC and so that SS remains in the

network when SC comes back with the service.

Selecting a node with high mobility: We just mentioned that a highly mobile

SC could help in avoiding the liveness problem. Also, an SC with high mobility has

a better chance to get a service in different networks at different times. Because, if

the service is not available in one network, a highly mobile SMD can move to other

networks and find the service. That implies, the search for service is widely propa-

gated across several networks. But identifying the node that is highly mobile is not

straight forward.

(a) SS1 requests SC1 to get the

service
(b) SS1 waits for SC1 to come
back with the service, but SC1
does not return within a finite
time period (the carrier is not

live)

(c) When SC1 returns with the
service, SS1 is not present (una-

vailable) in the network

Fig. 8.18. Availability and Liveness problems

353

Calculating the probability and the probable time of meeting SS with SC

again: In addition to being highly mobile, an SC should be selected based on the

contact frequency with the SS. This requires calculating the number of times the

SC comes in contact with the SS.

Calculating the overall contact period of SC with the SP: It is very crucial to

know the approximate time for which the SP will remain in contact with the SC

because if the stay-time of the SP in the network (while providing the service) is

less than the amount of time required for serving the request, the purpose is not

fulfilled. So, the contact period between SP and SC should be larger than that of

service providing time.

Deciding on the optimal waiting time of SS for SC to bring the service: The

SS cannot wait indefinitely for the SC to get the service for it. This might result in

an indefinite lock in for a certain service. So, there should be a timeout value for

SS as well as SC to wait or search for the particular service.

Permissible time an SC can spend in other networks while carrying a pend-

ing service request: When carrying a service request form an SS an SC cannot

stay in other networks for a very long or very small duration. If SC stays for an

abnormally long time outside of the network, the SS may starve for the service, and

if the SC stays in the external network (from it is supposed to get the service) for a

very small duration, it may not get enough time to receive the service. Therefore,

finding out the optimum time duration an SC can stay in another network is very

important.

Weighing the reliability of SC: How to be sure that the designated SC will surely

get the service? Due to several reasons (intentional or circumstantial, SC may not

deliver the service to the SS, even after agreeing to do that. Though exact assessing

is not trivial, an approximation should be made on the reliability of SC in getting

the service assuredly. To tackle this problem, the SC can be incentivised so that

they will find interest in delivering the service to SS successfully.

8.6.1.4 Essential Criteria of the Key Components

From the above discussions, now we are able to get a clear depiction of the

354

desirable properties of the key components mentioned in Section 8.6.1.1.

SS: Ideally, should be stable in the network, so that whenever SC returns to the

network, it should be available to receive the service.

SC: Since SC plays a crucial role in getting the requested service while selecting an

SMD as an SC, the following crucial factors should be considered:

• A node with high mobility should be chosen as an SC since the highly mobile

node has a high frequency of changing its position and comes in contact with

different networks and thus, having a high probability that it will search the

service providing node faster.

• In spite of the high mobility, the SC should regularly be in contact with the SS

for service delivery.

• The SC should be present in the network of the SP for sufficient duration so

that it can receive the service fully and successfully.

• The SC should have sufficient memory to carry the service request and the

service itself.

SP: Ideally should be stable in the network. If not, then, it should be stable at least

for the contact period with SC so that the service can be provided completely to

SC.

RN: The RN is also an important entity which should have the following charac-

teristics:

• Ideally, should be very much stable in the network.

• It should be active enough to retrieve the information of the SMDs whenever

they enter the network.

• To store the information of all other SMDs, the RN must have sufficient hard-

ware and software resources.

• It should have adequate decision-making capability for suggesting SP and SC.

8.6.2 Experiment and Validation

In the experiment, our goal is to obtain the followings:

a) Average time (in seconds) after which a user connects to an AP.

355

b) Average duration (in seconds) a user remains connected to an AP.

c) A set of four users who are simultaneously connected a particular AP.

Above-mentioned first (a) and second (b) types of information are useful to find

out the movement of the users that at which time the user will come again in con-

tact with the AP and how much time a user spends. And the third information will

help to find the expected future location (AP) of a group of users, i.e., when they

will be in contact with that particular AP.

To attain the above-mentioned goals, we performed the following operations on

the original wtd.csv file in steps:

1. Eliminate all the users with associated value ‘0’ and create a separate file which

includes all the users with associated value ‘1’.

2. Find out the average time gap (in seconds) after which a user comes back and

reconnects to the AP, he/she was connected to earlier. We calculate separate

average time connection per AP for every user in the network and name these

files on the name of users, for example, the file of user with ID ‘1’ is saved as

1.avg.txt.

3. Find out at least four users who are connected to a particular AP at the same

time. For example, four users - user ‘32’, user ‘54’, user ‘97’ and user ‘21’ are

connected to AP ‘245’ at time 13:12:54, 13:12:57, 13:12:46, and 13:13:00 respectively.

Here, the maximum time difference is 14 second, which is not much, hence

ignored; i.e., we consider that they are connected at the same time frame.

4. To find such combinations, we write a program in Python and identify a set of

four users who are connected at the same time with a particular AP.

5. Calculate average connection time (ACT) (the average time a user is connected

to a particular AP) of the users.

The details of each operation are discussed in the following subsections.

8.6.2.1 Data Preprocessing

First, we filter according to the ASSOCIATED value available from the downloaded

wtd.csv file. This value is used to calculate/identify the neighbours of a node (user).

356

To make it clear, suppose three nodes at a time are in the range of an AP but the

first node is only connected to this AP and the second and the third nodes are not

connected or connected to some other AP. Then, they cannot be treated as neigh-

bours of each other. To eliminate entries with ASSOCIATED value ‘0’ (i.e., not con-

nected), we write a program in Java which use MySQL in the backend to access the

file. Snapshot of the output is shown in Fig. 8.19.

8.6.2.2 Calculate the Time Gap After a User Returns to the Network Again

After doing away with the unwanted values (nodes that are not connected), we aim

to estimate the average time period after which a user comes back to the contact

(ASSOCIATED) with the particular AP. A Python program was written for this,

which considered the details of the connected nodes (users) during the data trac-

ing period, i.e., for 78 days. Fig. 8.20 gives an idea of the average time after which

a user gets connected to a particular AP. This is important to get rid of the availa-

bility problem. Based on this information, the SMD that is highly mobile and has

a high possibility of meeting with the SS after getting the service from the SP is

selected as SC.

Fig. 8.19. Snapshot of the dataset after eliminating not connected entities

357

Fig. 8.20. Snapshot of ACT of a particular users for a number of APs

8.6.2.3 Identifying a Group of SMDs Connected to an AP Simultaneously

To continue our experiment, we find a group of four users who are connected to

an AP at the same time. An instance of such set is shown in Table 8.13. It can be

observed that a group of four users are connected to AP ‘354’ on 24-sept between

13:00:51 to 13:01:08.

Table 8.13. Sample group of four users

USER_ID SAMPLE_DATE SAMPLE_TIME AP_ID ASSOCIATED ACT (in secs.)

208 24-sept 13:00:51 354 1 180

242 24-sept 13:00:59 354 1 40
41 24-sept 13:01:03 354 1 1481

232 24-sept 13:01:08 354 1 2493

8.6.2.4 Selecting the Reference Node

From Table 8.13, we select an SMD as an RN. To find the RN, we calculated the

ACT of the SMDs, which indicate how long an SMD is available in the network and

how many occasions and for how long they are disconnected. This is important for

a node to active in the network to provide or access services.

We divided a day into 12 sessions of 2 hours each and track the movement of the

SMDs for each session. For example, the first session of 2 hours’ starts from

00:00:00 to 02:00:00, and we calculate ACT of User 42, User 208, User 232, and

User 242 in this time interval. Similarly, the ACTs of these users are collected for

all sessions, as shown in Table 8.14. Using these ACT, we calculate average time

and standard deviation.

The mean (𝜇) of ACT, collected for different sessions, and the standard deviation

(𝜎) were calculated using Eq. 8.12 and Eq. 8.13, respectively, where s, xi and N

358

denote no. of sessions, values, and total no. of values, respectively.

𝜇 =
1

𝑁
∑ 𝑥𝑖
𝑠
𝑖=1 (8.12)

𝜎 = √
1

𝑁
∑ (𝑥𝑖 − 𝜇)

2𝑁
𝑖=1 (8.13)

Using the mean value and the standard deviation, we spot the user (SMD) that

stays in the network for most of the time. Within the considered four users, we

find out that User 41 is more frequently available in the network. For comparative

demonstration, ACT graphs of User 41 and User 208 are shown in Fig. 8.21.

Table 8.14. ACT of four users for a particular AP

Session
Connection time (in secs.)

User 41 User 208 User 232 User 242
1 1280 1260 0 0

2 0 930 0 0

3 0 0 0 0

4 0 0 0 0

5 1730 80 20 0
6 453.33 455 1760 0

7 1213.33 0 0 0

8 1345 0 0 0

9 933.33 4220 0 0

10 180 7060 0 0

11 410 6320 0 0
12 200 3540 0 0

(a) (b)

Fig. 8.21. Average connection time graph of (a) User 41 and (b) User 208

From Fig. 8.21(a), it can be observed that the ACT of User 41 is close to its mean

and standard deviation, which shows that there is less variation in the ACT.

Whereas, in Fig. 8.21(b), we can see that there is a large difference between

359

standard deviation and ACT of User 208, and the variation of ACT is more than

User 41. So, we consider User 41 as a better choice to be an RN.

8.6.2.5 Calculating Relative Stability

Another decisive criterion for choosing an SMD as an RN is relative stability (RS).

To calculate the RS of each user, we used the algorithm proposed in [739], as shown

in Eq. 8.14. The RSs of the four users in consideration are shown in Table 8.15.

𝑠𝑡
𝑥 =

1

𝑠
∑ 𝑚𝑡

𝑥𝑡
𝑖=𝑡−𝑥 (8.14)

where, 𝑠𝑡
𝑥  relative stability, 𝑚𝑡

𝑥  current neighbour list and is defined by Eq.

8.15.

𝑚𝑡
𝑥 =

|𝑁𝑡−1∩𝑁𝑡|

|𝑁𝑡|
 (8.15)

Table 8.15. The relative stability of four users

Time
interval

Relative stability

User 41 User 208 User 232 User 242

8 0.666667 0.125 0 0

16 0.416667 0.45833333 0 0
24 0.375 0 0 0

32 1 0 0 0

40 0.479167 0.0833333 0 0

48 0 0.2833333 0 0

56 0.15625 0.125 0 0
64 0 0.0833333 0 0

72 0 0 0.3563 0

80 0 0 0.25 0

88 0.041667 0 0 0

96 0.59375 0 0 0

The RS graphs for User 41, User 208, User 232, and User 242, obtained from Table

8.15, are shown in Fig. 8.22.

From Fig. 8.22(a), it can be observed that the RS for User 41 is varying very close to

the standard deviation and mean, which are almost equal. In the case of User 208

also, the RS is varying around standard deviation, as can be seen in Fig. 8.22(b).

But the difference between mean and standard deviation is much higher for User

232, and this user is not active/relatively stable for most of the time, as can be seen

in Fig. 8.22(c), hence, not suitable as the RN. User 242 is not active at this duration

(Fig. 8.22(d)). So, comparing these 4 graphs, we found that User 41 and User 208

are the two choices to be selected as the RN. But the ACT of User 41 is better than

360

User 208; therefore, we select User 41 as the RN.

(a) (b)

(c) (d)

Fig. 8.22. Relative stability graph of (a) User 41 (b) User 208 (c) User 232 (d) User 242

8.6.2.6 Calculate the Latency of the Users in Returning to the AP

Now, we estimate when a user returns to the previous AP after it left. It is important

because if a SS leave the AP, it should come back as soon as the service is available

which is brought by an SC. Similarly, for an SC also, it is crucial to return with the

service as soon as possible. To calculate the return time, we use the ACT of the

users. For this calculation, we used Table 8.16, which includes all the values re-

quired to calculate. An instance of the four considered users is shown in the table.

It can be seen that the SCs (User 208 and User 242) returns to the network after

0.085 days.

Fig. 8.23 shows the arrival time of the four users when they return after leaving the

A; in this case, AP 354. User 41 and User 232 are SSs, which require services and

User 208 and User 242 are SCs, which are mobile in nature and supposed to bring

361

service to the requesting node.

Table 8.16. Date and time of future connection at AP 354

SS SC

Time after which
SC returns in the

network

Predicted next
contact day and
time (approx.)

SCs connect with the
SSs (connected/not con-

nected)

User 41,
User 232

User 208,
User 242

0.085 days 24-Sept 13:30:00 Yes

The estimated time of returning of User 208 and User 242 to the AP is at 13:30:00,

as shown in Table 8.16. It is assumed that they bring the service along with them.

Hence, at that time, the SSs, i.e., User 41 and User 232, should be present in the

network to receive the requested services.

(a) (b)

(c) (d)

Fig. 8.23. Predicted arrival time of (a) User 41 (b) User 208 (c) User 232 (d) User 242

The standard deviation is used to measure variation between the ACT of the ses-

sions. From Fig. 8.23, it is evident that though the users seem to be roaming around

the campus across the sessions, they all are connected to the particular AP (354)

between session 6 and 7, which indicates time duration 12:00:00 to 14:00:00, and

362

this is in range of our predicted time (13:30:00).

8.6.2.7 Validation

Now let us check how our proposed approach for estimating the relative mobility

works in a different scenario. Let us consider that User 41 and User 208 are the SSs

(which request for services that are not available in the network) and User 232 and

User 242 are the SCs. The estimated time of returning of User 232 and User 242 to

the AP is at 16:00:00 on 25-Sept, as shown in Table 8.17.

Table 8.17. Future date and time of connection

SS SC
Time after which
SC returns in the

network

Contact day
and time (ap-

proximate)

SCs connect with the SSs
(connected/not connected)

User 41,
User 208

User 232,
User 242

1.183
25-Sept
16:00:00

No (User 41 and User 208,
both are not connected with

AP 354)

(a) (b)

(c) (d)

Fig. 8.24. Nodes did not arrive on the predicted time

363

Now, let us check if the SCs can deliver the service to the SSs at the time of contact.

As we have seen, according to our estimation, the predicted time of contact is 25-

Sept at 16:00:00 pm (approx.), which belongs to session 8 (14:00:00-16:00:00). From

Fig. 8.24, we can see that at that time, User 208 and User 41 are not active; and User

242 is not active on 25 Sept, whereas User 232 is active on that session but con-

nected to some other AP which are not in the range of the SS. So, SSs are not able

to get the requested service from the SCs on the predicted time.

In the first case (Fig. 8.23), users arrived at the predicted location on time, but in

the second case (Fig. 8.24), the same does not happen. So, using these two scenar-

ios, we can conclude that to predict the future time on which SS and SC may com-

municate, a fixed pattern is required.

8.7 Limitations and Further Scopes

The results show that the proposed algorithm can be used to efficiently predict the

behaviour of the nodes in a PMCC. However, it does not make any prediction about

how long a node in the network is going to remain static once it has been predicted

to be static. If a node is found to be static at a particular location, its duration of

stay at that location is a criterion that should be considered while making the de-

cision about selecting a stable SMD in PMCC. Further research will be carried out

to predict the duration of stay of a static node to bring more improvement in the

mechanisms of service management in PMCC.

Another shortcoming of the experiments is that the dataset that is used in the ex-

periment is not wide enough; it is only of 78 days. And also, the traces do not follow

a fixed pattern whereas our proposed model is based on a fixed mobility pattern

because, in real life, most people do their task in a fixed pattern like they wake up

in the morning, take breakfast, go to their work, stay at the workplace till evening,

return back to their home and, generally, follow the same pattern, except holidays.

So, experimenting with a dataset of fixed mobility patterns would have yielded a

better prediction.

8.8 Summary

In this chapter, we presented the concept of P2P MCC where mobile devices share

364

resources and services between themselves. Being a local system, connected

through short-range communication, for effective implementation, the service

consumers and the providers need to be together (connected) continuously or at

least periodically. In this regard, we introduced relative stability that defines the

probability of two mobile devices being topologically in sync. We considered two

PMCC scenarios – one comprising only a single cluster of SMDs and another of

multiple clusters.

In the first case, we found the mobility pattern of a group of mobile users, con-

nected to different Wi-Fi APs, from the UCSD dataset, created using real user

traces. Two studies were conducted on the dataset using the proposed algorithm.

The first study applied the algorithm to calculate relative stability for 20 sample

users from the trace, choosing time spans of 2-hour duration. These values gave

the instantaneous behaviour of the nodes. In the second study, the average relative

stability of a user was calculated taking its neighbourhood information during a

trace period of 78 days. A logistic regression analysis of the average stability of all

users from the trace was performed. The regression model was derived using a

training set of 160 users and was evaluated using a test set of 80 users.

The general observation is that the short-term grouping does not necessarily re-

flect the true behaviour in the long term. It is observed that the result of the in-

stantaneous analysis and that of the regression analysis, which takes into account

the overall mobility of users for a long time period, do not match in case of some

users. These users can be considered to be erratic in their movements on the cam-

pus in consideration, and therefore their behaviour is unpredictable. Based on their

relative stability, the users were classified into two categories: static and dynamic.

If a user's instantaneous relative stability and its classification derived by the re-

gression model indicate similar behaviour, its mobility, i.e., whether it is static or

dynamic, can be predicted with a high probability of accuracy.

In the second case, we presented an inter-cluster service provisioning scheme

where a service can be availed from another cluster in case the service is not avail-

able in the base cluster. The mismatch in the contact time between the service

consumer, provider, and the carrier (that acts as a mediator to exchange the service

365

between the provider and the consumer) will prohibit in exchanging the service.

Hence, it is very important to know when they will be in contact with each other

so that the service can be exchanged. We applied a mobility prediction algorithm

on a dataset of real mobility traces to extract different mobility-related infor-

mation. These information are used to select the service carrier and the provider

so that the availability (consumer waits for the service indefinitely) and liveness

(the carrier returns with the service but cannot find the consumer) problems can

be averted.

9

MCC as Edge Computing: A Proof-of-Concept

“Anything that won't sell, I don't want to invent. Its sale is proof of utility, and

utility is success.” --- Thomas A. Edison

9.1 Introduction

In Chapter 1, we discussed the environmental effects of increasing computing de-

mands. If we do not check on our device consumption model and carry on at the

current pace, we might have to face serious consequences [20]. On the other side,

the global warming has led to an increase of average temperature. Not only that,

the erratic behaviour of the environment has caused unusual snowing and chilling

at many places in the world [2]. This has triggered the use of HVAC systems world-

wide in a huge scale. Going along the smart building and smart city trends the

traditional HVAC systems also have transformed as smart systems. Typically, these

smart systems generate huge amount of data that need to be processed quickly for

taking swift action. This requires sufficient computing and networking resources

which has further aggravated the ICT and environment scenario.

In this chapter, we present a proof-of-concept of using MCC as a sustainable and

feasible edge computing infrastructure that is generally used for real-time compu-

tations.

9.1.1 Edge Computing

Cloud computing has revolutionised the landscape of scalable high-performance

computing by offering utility computing resources on demand [740]. The pay-as-

you-go policy of computing resources at affordable prices made cloud computing

an instant hit among not only the small/mid/large-scale organisations but also in-

dividual users. This ubiquitous accessibility of elastic computing resources has

paved the way for numerous innovative consumer-centric networked applications

[741]. However, the latency involved in availing the cloud services, which is ex-

tremely crucial for real-time applications, has led the researchers to think about

provisions of in-network computing resources [637]. In this approach, the

367

computing services are deployed at and accessed from somewhere in between the

cloud and the user. One such solution is known as edge computing, where a set of

small-scale computing resources is deployed at the edge of the external network

[74]. Edge computing has let minimising the response time and the overall latency

significantly compared to the cloud [636] [742]. Considering various application

scenarios and infrastructural establishments, different forms of edge computing

have been proposed [637]. Among them, the most prominent edge architectures

are cloudlet [743] [744], fog computing [745] [746], and MEC [747] [748].

9.1.2 Crowdsourced Edge Computing

Considering the large-scale implementation of IoT, location and context-aware

services, and virtual and augmented reality supported applications, edge compu-

ting will be demanded almost everywhere. But deploying the edge infrastructure

on this vast scale is immensely challenging in terms of financial and ecological

costs, coordination, and management. One worthwhile solution is to attain

crowdsourced edge computing by utilising the nearby idle computing nodes

owned by home users, organisations, or internet and mobile service providers as

local computing endpoints [749]. Especially, in light of the emergence of DIY net-

working [750], in which SMDs and SBCs are leveraged to form ad-hoc networks

quickly and efficiently, crowdsourced edge computing is certainly practicable with

great potential [152] and is believed to democratize the computation [751].

9.1.3 Edge Computing through MCC

Thanks to the availability of enough SMDs almost everywhere, an MCC-powered

edge computing (MCC-edge) can be a unique opportunity to realise crowdsourced

edge computing. In an MCC-edge, public-owned SMDs can be leveraged to mate-

rialise an ad-hoc edge computing system ubiquitously. MCC-edge would be truly

suitable for the time-constrained real-time applications as the computing nodes

are in very close proximity to the data sources and as well as data sinks. The ad-

vantages of MCC-edge over other edge computing approaches are listed in Table

9.1. Considering the potential of MCC-edge, proper designing and deployment of

it can be a crucial catalyst in realisation of smart cities and smart infrastructures.

368

Table 9.1. Advantages of MCC-edge over other edge computing approaches

Criteria Cloudlet Fog MEC MCC-edge

Dedicated infrastruc-
ture

Yes Yes Yes No

HPC No No No Depends on the
number of SMDs

Computing nodes per
site

Single Multiple Single Many

Elasticity No No No Yes

Dependency on cor-
porate service

Yes Yes Yes No

Upfront investment High Moderate High Negligible

Operational and
maintenance cost

High High High Negligible

Environment-friendly No No No Yes

System development Generic Generic Generic Tailormade

Responsibility Control and
compute

Control and
compute

Control and
compute

Only compute

9.1.4 Smart HVAC and MCC-Edge

The HVAC (heating, ventilation, and cooling) system is responsible for heating,

cooling, and continuing air flow in the building, maintaining the ideal comfort

level of the occupants in terms of temperature, moisture, and fresh air [12]. An ideal

comfort level not only enhances the living of the occupants but also tittivates their

functioning and behaving. In a commercial building scenario, it has been observed

that the ambient environment and comfort level have a great impact on the effi-

ciency and output of the employees. Considering the advantages, HVAC systems

have become popular and have been an integral part of modern buildings.

9.1.4.1 HVAC: A Major Energy Consumer

HVAC is the largest energy consumer of modern buildings. Generally, HVAC sys-

tems account for nearly 40% of total electricity consumption either in residential

or office buildings. Fig. 9.1 shows the energy consumption of the commercial build-

ings and HVAC, particularly. The continuous increase in global average tempera-

ture, as well as increasing population, are leading to more and more use of AC

systems [752].

9.1.4.2 Smart HVAC: Reducing the Energy Consumption

Sensor-connected smart HVACs not only reduce the energy consumption substan-

tially by optimising the configurations and operations but also maximise the user

experience by adapting to the ambient conditions as and when required. For

369

example, if the occupancy sensor senses that there is no one in the room, the heater

or the cooler and the lights can be turned off automatically. Similarly, if a particular

area of the floor experiences a sudden steep increase in occupancy, the ventilation

system should inflow more fresh air immediately. Besides, sensor-enriched HVACs

reduce facility staff’s onsite visits by sending an auto alert for equipment damage,

inoperability condition, efficiency dropping, replacement requirements, etc. This

not only lowers the maintenance costs but also improves operating life and energy

efficiency. Data collected from the sensors attached to different HVAC compo-

nents can give the facility workers and managers real-time insight into the proper

functioning. The key benefits of smart HVACs are summarised in Fig. 9.2.

 Fig. 9.1. Energy consumption in commercial buildings [753]

Fig. 9.2. Major advantages of a smart HVAC system in the context of an office building

9.1.4.3 Edge Computing for Smart HVAC

Depending on the building size, there might be hundreds to thousands of HVAC

data points from which sensory data are captured and collected. And, depending

on the data capturing frequency, annual data generation might be in terabytes to

exabytes scale. To process, HVAC data of a standard mid-size commercial building,

significant computing infrastructure is needed. It can be achieved through the

cloud; otherwise, the building authority should have its own infrastructure. In

practice, the first option is more sensible. But the following issues negate the

2%
3%

4%
6%

8%
11%

30%
36%

Water heating
Cooking

Office equipments
Computers

Lighting
Refrigeration

HVAC
Other uses

Overall energy consumption (17.83 Quads, 17%)

28%

29%

43%

Space cooling

Ventilation

Space heating
HVAC energy consumption (5.35 Quads, 30%)

•Reduced energy consumption
•Reduced operating expenses
•Greater control
•Improved employee experience
•Less workload on facilities staff

Advantages of Smart
HVAC

370

advantages of the cloud:

i. Cloud inherently suffers from high latency. Sending the data to the cloud and

getting the results require some time which might not be suitable for non-

delay-tolerant applications.

ii. To send the huge amount of data generated by different components of HVAC

to the cloud requires significant bandwidth. Transmitting redundant or exces-

sive data incurs network and energy costs.

iii. Cloud data centres consume huge energy, causing significant carbon emis-

sions. It is estimated that by 2025, the data centre will share 25% of total global

energy consumption [39]. And, they already account for nearly 2% of total

global greenhouse gas emissions.

To handle the above-mentioned issues, a local processing facility nearer to the data

source is required. This is known as edge computing [30], which can be advanta-

geous in the following ways:

i. Processing smart HVAC data locally to generate real-time alarms for the events

that require immediate attention. The typical round-trip times of the order of

tens of milliseconds for cloud servers can be reduced to less than 10 ms by

using a nearby server, deployed in the room or within the building premise

[743] [754].

ii. Preprocessing smart HVAC data to reduce the data volume before sending it

to the cloud for further analysis such as prediction, pattern finding, etc. Pre-

processing at the edge will not only reduce the traffic but also lessen the load

on cloud servers which in effect may lead in declining the requirement of the

number of servers at the data centre. This will help the environment greatly.

In summary, local computing lets more in-hand information, intelligence, and lo-

cal controls for HVAC devices and systems, which allows instant anomaly detec-

tion and quicker response while dwindling the environmental hazards. In [755] and

[756], the significant differences between local processing and cloud processing in

terms of time and energy are argued.

371

9.1.4.4 MCC-Edge for Smart HVAC

Usually, HVAC systems are installed in residential and office buildings where there

is a high probability of a number SMDs being available in the building premises.

Appropriate and viable policies can be framed to employ these personal devices in

the on-premise infrastructure-less edge computing system. This local MCC-edge

in the building might be dedicated to handling the HVAC operations, or it might

be general-purpose, i.e., used for other building operations (e.g., analysing security

camera data). The smart HVAC data would be sent to the SMDs, which would pro-

cess those data as per pre-set instructions and return the results for actionable

control of the HVAC in real-time.

9.1.5 Chapter Objective

In this chapter, we aim to achieve the followings:

• Demonstrate the viability and usability of MCC as a sustainable alternative to

conventional vendor-based proprietary edge computing solutions.

• Design a MCC framework for real-time processing of the HVAC data generated

from various sensors

• Maintaining the ideal comfort level in the room by using automated AC con-

trol and fault detection by processing the sensor data.

• Compare MCC-edge with commercial edge and cloud computing services in

terms of cost, energy consumption, latency and environmental impacts.

9.2 Considerations for the Proof-of-Concept

In this section, we elaborate the concept of MCC, the considered HVAC scenario

and the idea of MCC-edge enabled smart HVAC. A proof-of-concept typically en-

tails several considerations to build up the initial prototype. Such considerations

for the proposed system are also declared. For the proof-of-concept, we considered

a local MCC with a client/server model, as described in Chapter 4.

9.2.1 Use Case Scenario

To demonstrate the viability of MCC as an edge computing solution, we considered

a smart HVAC scenario. HVAC systems can be of two types: a) self-contained in-

dividual units or b) centralised systems. Fig. 9.3 shows types of HVAC and AC

372

systems. Small and medium-sized buildings generally use AC units for individual

rooms. In our experiment, we considered split AC which is much common nowa-

days. We aimed to employ MCC for dynamic temperature control and error report-

ing for each room and the whole building. We assume that each room is fitted with

the right-sized AC, not under or over-sized, so that our algorithm for maintaining

the ideal dew point works uniformly for each AC. An undersized AC would not

lower the temperature as expected, and an oversized AC would not lower the hu-

midity. For experimental purposes, we chose to deploy the prototype MCC appli-

cation at an institutional building in Kolkata, India. Since Kolkata falls in the trop-

ical region, we considered the related parameters accordingly, as discussed in the

following subsections.

(a) (b)

Fig. 9.3. Types of (a) HVAC systems and (b) air conditioning systems

9.2.2 Overview of the MCC-Edge Enabled HVAC System

Fig. 9.4 depicts a basic overview of the MCC-edge enabled HVAC system. The data

generated by the temperature and humidity sensors and occupancy sensors of the

individual rooms are read, processed, and analysed through MCC, and based on

the outcome, the AC is controlled through suitable controllers. The purposes of

the major components of the automated AC controlling are shown in Fig. 9.5. Here,

for sensor data processing, we used public-owned SMDs, and the analysis is done

on a Raspberry Pi based SBC, which acts as a local coordinator (LC) of MCC. The

room temperature is dynamically regulated for the ideal comfort level of the occu-

pant(s) by increasing and decreasing the AC temperature as per requirement. Fur-

thermore, if an unusual increase or decrease of temperature is detected in a partic-

ular room, an error notification is sent to the facility staff. Similarly, the AC will be

turned off if there is no one in the room (detected by the occupancy sensor). The

H
V

A
C

 s
y

st
em

s

Self-contained
individual unit

Rooftop HVAC
systems

AC units for
individual roomsCentralised

systems

A
ir

 c
o

n
d

it
io

n
in

g Centralised

Packaged AC

Central plant
(chiller based)

Non-centralised

Window AC

Split AC

373

key inputs and the utilisation of the MCC-driven HVAC system are shown in Fig.

9.6.

Fig. 9.4. Overview of the MCC-edge enable HVAC

Fig. 9.5. Major components of the automated AC controlling in a typical smart HVAC system

• Temperature
• Occupancy

• Maintaining ideal
room temperature
• Error reporting

Air conditioner

Controller
MCC

Mobile Crowd Computing

MCC-powered
automated HVAC

Fig. 9.6. Key inputs and the purpose of the MCC-driven smart HVAC system

9.2.3 General Considerations

Since this work is only a preliminary experiment, to make the system implementa-

tions straightforward, we made some up-front considerations. However, for a full-

fledged implementation, they need to be suitably incorporated. The assumptions

are listed below and further discussed in Section 9.5.5.

• The SMD users voluntarily agreed to participate in MCC by installing the MCC

client application on request.

• All the SMDs which have the MCC client application installed fulfil the mini-

mum requirement of the fixed hardware resources such as CPU, GPU, etc.

• Each task sent to the crowdworkers has uniform computation requirements,

input and output data size, and format.

• The crowdworker is available till the allocated job is finished. After comple-

tion, it returns the result to the coordinator.

Tasks

Results

Sensor
data

Control
instruction

SMDsMCC-edge
coordinatorHVAC

•Thermal sensors assess the room teperature and humidity, based on which
HVAC system adjust the temperature of the location.

Thermal
sensors

•Occupancy sensors detects the presence of humans in the room, based on
which, temperature and fan speed of the AC are adjusted or switched off.

Occupancy
sensors

•Depending on the ambient temperature and occupancy levels, the automated
controller regulates the AC temperature accordingly.

Controller

374

• There is no cap on the number of tasks a crowdworker is assigned to.

9.3 HVAC Control Data Calculation

For impulsive adjustments of the room’s environment as per the occupants’ ideal

comfort levels, we considered the following parameters:

a) Dry-bulb temperature: It is the ambient air temperature in the room that

can be measured directly using a thermometer. It indicates the heat content in

the atmosphere. Since we used a humidity sensor, we did not require to meas-

ure the wet-bulb temperature, the adiabatic saturation temperature.

b) Relative humidity: Relative humidity indicates "how close the air is to be sat-

urated". It is the ratio between the specific humidity of the sample air (the

amount of moisture in the air) and the specific humidity of saturated air (the

amount of moisture that the air can hold at that temperature) of the same

quantity. Table 9.2 shows the corresponding comfort levels for different hu-

midity levels.

Table 9.2. Relative humidity and respective comfort levels

Humidity level (%) Comfort level

Less than 15 Very dry

15 ~ 30 Dry

30 ~ 40 Comfortable
40 ~ 50 Ideal

50 ~ 60 Comfortable

60 ~ 80 Uncomfortable

More than 80 Very uncomfortable

c) Dew point: The temperature at which air becomes saturated with moisture,

i.e., it reaches 100% relative humidity, is called the dew point. This measure-

ment indicates “how does the air feel" and is always lower or equal to the air

temperature. The higher the dew point, the muggier it would feel. Dew point

gives a good measure for balancing temperature and relative humidity. A com-

fortable level of dew point indicates the right balance of temperature and hu-

midity. Therefore, instead of assessing temperature and humidity individually,

it is a good practice to assess the dew point of a room and try to keep it at a

comfortable level. Fig. 9.7 depicts a sample representation of dewpoint with

respect to temperature and relative humidity. Fig. 9.8 demonstrates the

change in dew point with respect to increasing temperature and decreasing

375

relative humidity. Considering the weather of Kolkata, we set the comfort lev-

els against different dew points, as shown in Table 9.3.

Fig. 9.7. Temperature, relative humidity, and dew point chart43

43 https://www.mrfixitbali.com/images/articleimages/dew-point-chart-full.pdf

376

Fig. 9.8. Corresponding swing in dew point with continuous varying temperature and relative hu-

midity

Table 9.3. Dewpoints and respective comfort levels as per Kolkata’s weather

Dew point (°C) Air quality

Below 5 Very dry

5 ~ 10 Dry

10 ~ 13 Ideal

13 ~ 16 Comfortable

16 ~ 19 Little humid but still comfortable

19 ~ 21 Humid

21 ~ 24 Very humid

24 ~ 26 Oppressive

26 and more Health hazards

d) Heat index: This measurement indicates “how does the temperature feel",

hence, also known as apparent temperature. Typically, in humid conditions,

the air feels much hotter because it restrains the evaporation of perspiration

from the skin. Even in the same environment (e.g., in the same room), different

persons may experience different heat indices, though the variation may be

very small. Although this measurement sounds subjective, using complex re-

gressions with a combination of temperature and humidity, an indicative heat

index can be calculated [757]. The heat index calculation is often associated

with outdoor conditions, but as it is not intended to address direct sunlight

rather is used to measure the air temperature in the shade, it can well also be

an ideal metric to measure the indoor comfort level, especially in the tropical

regions [758]. A higher heat index may be a severe health hazard and might

cause heat cramps, heat exhaustion, heat stroke, or even death in extreme

cases. Fig. 9.9 depicts a sample representation of heat index (oC) with respect

377

to temperature and relative humidity.

Fig. 9.9. Temperature, relative humidity, and heat index chart

9.3.1 Dew Point Calculation and Consideration

To calculate the dew point, we used the Magnus-Tetens formula, defined by Eq. 9.1

and Eq. 9.2, considering two inputs – a) room temperature (TC) and b) the relative

humidity (RH).

𝑑𝑒𝑤 𝑝𝑜𝑖𝑛𝑡 (𝐷𝐶) =
𝑏 × 𝛾(𝑇𝐶 , 𝑅𝐻)

𝑎 − 𝛾(𝑇𝐶 , 𝑅𝐻)
 (9.1)

where,

𝛾(𝑇𝐶 , 𝑅𝐻) =
𝑎 × 𝑇𝐶

𝑏 + 𝑇𝐶
 + 𝑙𝑛

𝑅𝐻

100
 (9.2)

with a = 17.27 and b = 237.7 (°C) [Different set of values of a and b are proposed.

We considered the values used by [759] based on [760].]

378

The above calculation is correct to within ±0.4 °C and valid for the following

ranges:

a) 0 °C < TC < 60 °C

b) 1% < RH < 100%

c) 0 °C < 𝐷𝐶 < 50 °C

Fig. 9.10 represents the relative humidity levels in Kolkata measured through the

period between 1st February 2019 and 31st January 2020. It can be observed that the

RH levels vary between 42% and 98%. Therefore, for our calculation, we considered

the minimum RH as 40% and the maximum as 100%.

Fig. 9.10. Relative humidity (%) of Kolkata from 1.2.2019 to 31.1.2020 (retrieved from weather-

online.in44)

As per Table 9.3, we set to maintain the dew point within a range of 10oC – 13oC for

any percentage of relative humidity. Table 9.4 tabulates the desired room temper-

atures for min and max dew points of 10oC and 13oC, respectively, for the humidity

levels of 40 – 100%. Algorithm 9.1 imparts the procedure of adjusting the AC tem-

perature based on Table 9.4 data.

Let us understand the working of Algorithm 9.1 with an example. Assume, at t1

44 https://www.weatheronline.in/weather/maps/city#

https://www.weatheronline.in/weather/maps/city

379

time, humidity is 75 and room temperature is 30. Using Eq. 9.1 and Eq. 9.2, the

calculated dew point is 25. To bring down the dew point to 13, the AC temperature

will be set to 16. In effect, the humidity drops and reaches 70 at t2 time when the

dew point is 10.5, which is within the ideal range, so there will be no change in

temperature. 16oC might seem to be too cold, but it is to be noted that this is for a

humidity level of 75, which is considerably higher. As the AC continues to run at

this low temperature, the humidity will gradually decrease, which will lead to a

decrease in dew point, considering the typical phases to decrease the humidity, as

shown in Fig. 9.11. After a while, when again the room temperature and humidity

are sensed, the dew point will be different. Let’s say, at t3 time, humidity is 50. So,

at 16oC, the dew point will be 5.6. Therefore, the temperature now should be set to

22. This way, gradually, the dew point would settle somewhere between 10 to 13,

and the AC temperature would also settle around 24. Table 9.5 shows the various

comfort levels against different humidity concentrations and dew points.

Table 9.4. A representative calculation for desirable AC temperature

Relative hu-
midity of the

room’s air (%)

Desirable room
temperature
for dew point

10 (°C)

Desirable room
temperature
for dew point

13 (°C)

Average desira-
ble room tem-

perature
(rounded off)

AC tempera-
ture to be set

100 10 13 12 16
95 10.8 13.8 12 16

90 11.6 14.6 13 16

85 12.5 15.5 14 16

80 13.4 16.5 15 16

75 14.4 17.5 16 16
70 15.4 18.6 17 17

65 16.6 19.8 18 18

60 17.9 21.1 20 20

55 19.3 22.5 21 21

50 20.8 24.1 22 22
45 22.5 25.9 24 24

40 24.5 27.9 26 26

Usually, 𝑅𝐻∝
1

𝑇
, i.e., relative humidity decreases as temperature increases if no

moisture is added to the air because as the air becomes hotter, its water vapor

holding capacity also increases, which means the saturation point increases. But,

in a closed room with AC on, as the temperature decreases, its water vapor holding

capacity also decreases; as a result, the relative humidity should increase, but most

of the modern ACs have an evaporator coil that condenses water vapor in the air

380

of the room. This actually reduces the amount of water in the air resulting in de-

creased relative humidity. A perfectly working AC installed in a compatible-sized

room can bring down the relative humidity as below as 30 at a temperature of 22oC

- 24oC.

Algorithm 9.1: AC Temperature Adjustment Based on Dew Point
Input: Current room temperature (oC), Relative humidity (%)

Output: AC temperature adjustment required

AC_temp_adjst_DP(CurrRoomTemp, RH)

{

 if (RH >= 40 && RH <= 100)

 {

 Temp10 = calculateDesiredTemp(10, RH) //calculate desired room temperature using Eq. 9.1

and Eq. 9.2 for dew point 10 and relative humidity RH

 Temp13 = calculateDesiredTemp(13, RH) //calculate desired room temperature Eq. 9.1 and

Eq. 9.2 for dew point 13 and relative humidity RH

 TempAvg = (Temp10+Temp13)/2

 if (TempAvg ≤ 16)

 DesiredTemp = 16 //set AC temperature to 16

 else

 DesiredTemp = TempAvg //set AC temperature to average desirable temperature

 diff = DesiredTemp - CurrRoomTemp

 }

 return (diff)

}

Fig. 9.11. Typical and necessary steps for reducing humidity from room air

Table 9.5. Relative humidity, dew point, and respective comfort level at a temperature of 24oC

Relative humidity at 24°C Dew point (°C) Comfort level

1 ~ 5 -35.4 ~ -18 Hazardous

5 ~ 10 -18 ~ 9.5 Unhealthy

10 ~ 20 -9.5 ~ -0.4 Very dry

20 ~ 30 -0.4 ~ 5.4 Dry

30 ~ 40 5.4 ~ 9.6 Comfortable

40 ~ 50 10.5 ~ 12.9 Ideal

50 ~ 60 12.9 ~ 15.8 Comfortable

60 ~ 70 15.8 ~ 18.2 Uncomfortable

70 ~ 80 18.2 ~ 20.3 Very uncomfortable

80 ~ 90 20.3 ~ 22.3 Extremely muggy

90 ~ 95 22.3 ~ 23.1 Oppressive

95 ~ 100 23.1 ~ 24 Hazardous

9.3.2 Heat Index Calculation and Consideration

There are several approaches and formulas for calculating heat index [761]. We

381

adopted the standard described by the National Weather Service45 and was pro-

posed by Lans P. Rothfusz. Eq. 9.3 shows the calculation of heat index, based on

two inputs – a) Temperature (in Fahrenheit) and b) relative humidity (0 - 100%).

𝐻𝐼 = −42.379 + 2.04901523 × 𝑇𝐹 + 10.14333127 × 𝑅𝐻 − 0.22475541 × 𝑇𝐹 × 𝑅𝐻 −

 0.00683783 × 𝑇𝐹
2 − 0.05481717 × 𝑅𝐻2 + 0.00122874 × 𝑇𝐹

2 × 𝑅𝐻 + 0.00085282 ×

𝑇𝐹 × 𝑅𝐻
2 − 0.00000199 × 𝑇𝐹

2 × 𝑅𝐻2 (9.3)

However, Eq. 9.3 needs to be corrected a little bit for two certain situations, as

mentioned below:

If 80 ≤ 𝑇𝐹 ≤ 112 and RH < 13, Correction1 is calculated using Eq. 9.4 and subtracted

from Eq. 9.3.

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛1 = (3.25 − 0.25 × 𝑅𝐻) × √1 −
|𝑇𝐹−95|

17
 (9.4)

If 80 ≤ 𝑇𝐹 ≤ 87 and RH > 85, Correction2 is calculated using Eq. 9.5 and added to

Eq. 9.3.

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛2 = (0.1 × 𝑅𝐻 − 8.5) × (17.4 − 0.2 × 𝑇𝐹) (9.5)

The heat index, calculated using Eq. 9.3, may not be correct when HI < 80°F. In

that case, Steadman's formula, as given in Eq. 9.6, is used to calculate the heat

index. Actually, the normal convention is to first calculate heat index using Eq. 9.6,

if HI ≥ 80°F, then Eq. 9.3, along with suitable corrections, is used. The flowchart

for calculating the heat index in our experiment is shown in Fig. 9.12. Since both

Rothfusz and Steadman's formula are Fahrenheit-based calculations, we converted

the Celsius reading into Fahrenheit, and for decision making, the calculated heat

index is again converted to Celsius.

𝐻𝐼 = 0.5 × {𝑇𝐹 + 61.0 + (𝑇𝐹 − 68.0) × 1.2 + 0.094 × 𝑅𝐻} (9.6)

The heat index calculated for a person using Eq. 9.3 assumes that s/he is of average

stature (170 cm, 67 kg), has a normal body temperature of 98.6 °F (37.0 °C), has

minimal physical activity, is wearing a usual long trouser and a short-sleeved shirt,

45 https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml

https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml

382

and not sweating. Deviating from these may result in a slight change in the heat

index of that particular person.

Start

Temperature
(TC°C)

HIA < 80°F
Calculate HIF
using Eq. 9.3

HIF = HIA

Stop

No Yes

Relative
humidity (RH)

Calculate HIA
using Eq. 9.6

80 T 112
&& RH < 13

80 T 87
&& RH > 85

HIF = HIF –
Correction1

(from Eq. 9.4)

HIF = HIF +
Correction2

(from Eq. 9.5)
Yes

No

No

HIC (°C) =
 (HIF

Yes

TF (°F) =
 TC *1.8+32

Fig. 9.12. Flowchart for calculating heat index

As mentioned earlier, though generally heat index is used for outdoor conditions,

we emphasised to consider in our experiment bearing in mind that often in the

peak summer, the sealed-off rooms (without windows opened) become extremely

hot. Especially the rooms that get direct sunlight (e.g., the top-floor rooms) usually

become like hot chambers without AC on. Therefore, it is necessary to check for

the heat index of such rooms and set the AC accordingly so that the room gets

cooled earliest. Table 9.6 shows comfort levels and the degree of health hazards for

different levels of heat indices. To make it straightforward, we set the AC temper-

ature to 16 if the heat index is found to be higher than 27oC. Algorithm 9.2 presents

the scheme of AC temperature adjustment based on the heat index.

9.4 System Architecture and Implementation

This section exhaustively elaborates the complete architecture and implementa-

tional details of the proposed MCC-edge enabled smart HVAC system.

383

Table 9.6. Heat indices and respective comfort levels46

Heat index
(°C)

Ambiance Concern
Health hazard due to continuing exposure and

activity

Below 27 Little to no
discomfort

Safe No risk of heat hazard.

27 ~ 32 Very warm Caution Fatigue and heat cramps.

32 ~ 39 Hot Extreme
caution

Fatigue, heat cramps, heat exhaustion, convul-
sions, and heat stroke.

39 ~ 51 Very hot Danger Severe fatigue, heat cramps, heat exhaustion, con-
vulsions, and heat stroke.

Above 51 Extremely hot Extreme
danger

Heat stroke is imminent.

Algorithm 9.2: AC Temperature Adjustment Based on Heat Index
Input: Current room temperature (oC), Relative humidity (%)

Output: Boolean value for considerable heat index

AC_temp_adjst_HI(CurrRoomTemp, RH)

{

 if (RH >= 40 && RH <= 100) //consider minimum humidity 40% and maximum humidity 100%

 {

 Hx = calculateHeatIndex(CurrRoomTemp, RH) //calculate heat index using Eq. 9.3, Eq. 9.4, Eq.

9.5 and Eq. 9.6

 if (Hx ≥ 27)

 HeatFlag = True

 else

 HeatFlag = False

 }

 return (HeatFlag)

}

9.4.1 The MCC-Edge System Model

In this section, we specifically discuss the details of the proposed MCC-edge sys-

tem. This includes the components, architecture and the working of the system.

9.4.1.1 Major Components

A typical MCC-edge system consists of the following major components:

SMDs: The computing tasks are carried out on the SMDs that agree to be a

crowdworker. A crowdworker is an SMD that is willing to take part in MCC and

allow its computing resources for executing external jobs.

Local coordinator: In an MCC environment, the SMDs are coordinated by the

local coordinators (LCs) which are in direct contact with the SMDs. An LC can be

an SBC, an SMD, an AP, a computer, and so on. In this experimental setup, we

46 https://www.weather.gov/safety/heat-index

384

considered SBCs as LCs. The responsibilities of an LC are listed in Fig. 9.13.

Middleware: The middleware is a part of LC and is responsible for performing

most of the jobs of LC. The jobs include SMD selection, job formation, job distri-

bution, job scheduling and allocation, fault handling, result collection (from the

SMDs), etc.

Client program: The client part of the MCC application is installed on the

crowdworkers. It is responsible for sending the SMD’s information to the LC. It is

also responsible for executing the allocated task in the SMD, opportunistically, in

a work-stealing fashion, i.e., without interrupting the other applications running

in the device. Before installing the client application, it is to be checked if the SMD

satisfies the minimum resource requirement. If it fulfils, then only the client appli-

cation is installed.

MCC coordinator: Supervises the overall MCC, including fault tolerance and ag-

gregated resource management. It keeps track of all the LCs and their resource

requirement and SMD availability. If a particular LC does not have the minimum

resources, the MCC coordinator (MC) makes arrangements to allow the LC to use

SMDs from other neighbouring LCs. In case of no sufficient SMDs are available in

the MCC, the MC coordinates with the cloud to get the job done.

Cloud: Cloud services are used as the backup to MCC when sufficient crowdwork-

ers are not available. Furthermore, the required information are stored in the cloud

for long-term access. This would allow the application of different analytical meth-

ods for pattern and knowledge discovery, which helps in predictive maintenance.

Communication network: Different communication methods are used to con-

nect the components of MCC. The sensors are connected to the LC through Wi-Fi.

The LCs and the SMDs are connected to the Wi-Fi APs. All the APs are connected

through a LAN. MCs are connected to the LCs through Wi-Fi and to the cloud

through an external network. A high-level communication architecture of MCC is

shown in Fig. 9.14.

385

Fig. 9.13. Responsibilities of the local coordinator

Fig. 9.14. High-level communication architecture of MCC

9.4.1.2 System Architecture

The proposed system can be perceived through different architectural views, as

discussed below.

9.4.1.2.1 Layered Architecture

An abstract layered architecture of the proposed system is portrayed in Fig. 9.15.

The functionalities of the layers are described below.

•Colects the data produced by the sensors connected to it.
Acquiring the
sensor data

•Stores the collected sensor data temporarily.
Store aquired

data

•Keeps tracks when an SMD enters within its range. Also notify the MC if there is
no or sufficient number of SMDs available.

Track SMD
availability

•Collects the dynamic statistics (e.g. RAM, battery, Wi-Fi, etc.) of the connected
SMDs to decide their suitability.

SMD selection

•Dispatch job threads to the selected SMDs for processing.
Job schedule
and dispatch

•After processing SMDs send the result to the LC (via AP).
Result

collection

•The results are temporarily stored for immediate analysis and event
notification.

Store result

•Results are analysed, based on which actions are taken.Analyse result

•Triggers alerts in case of abnormalities in AC operations.
Error

notification

•Takes the responsibility of neighbouring LC's jobs if such request received from
MC.

Support
neighbours

SMDsLC

MC Cloud

LAN

AP

Middleware Client
module

386

Cyber-physical layer: This is the base layer that comprises hardware components

like sensors, controllers, and actuators. The sensor transmits the sensed data to the

upper layer, while the controller gets instructions/commands from the upper layer

to control the heating/cooling and air flow systems.

LC layer: LC layer directly communicates with the hardware layer. This layer man-

ages the job processing, which includes coordinating the available SMDs, job dis-

tribution and dispatch, and result collection. The acquired sensor data are sent to

the job dispatch module, which packages the data as a processing job and assigns

it to the SMDs for processing. The resource control & coordinate module keeps

resource status and availability information of the SMDs. If sufficient resources are

not available at its disposal, it coordinates with the resource control and coordinate

module of the MC layer. SMD select module selects the best crowdworkers among

the available crowdworkers and sends the list of selected crowdworker to the job

dispatch module, which dispatches the job to the selected crowdworkers. The re-

sults obtained from the SMDs are stored in a database through the result collection

module and are analysed by the result analysis module to generate instruction for

hardware control and event notification. Subsequently, the hardware control mod-

ule sends commands to the corresponding controller, and the event notification

generates user notification.

Data processing layer: This layer contains SMDs as data processing units that

take jobs as inputs, process them, and send the output to the corresponding LC.

Each SMD communicates with the LC layer through the communication interface.

A buffer is used to synchronise the incoming and the outgoing rates of the jobs and

the output, respectively.

MC layer: MC layer is responsible for the overall supervising and managing of

MCC. It, on the top of the architecture, observes for available SMDs under each

LC, and based on the resource availability, it coordinates the load distribution from

one LC to another. The MC helps an LC to find resources in the neighbourhood if

it does not have sufficient SMDs under its management. The resource coordination

is done through the communication between the respective resource control & co-

ordinate modules of the MC and LC layers. MC layer also interfaces MCC with the

387

cloud. In case of unavailability of SMDs or below threshold availability for all LCs,

the data processing jobs are forwarded to the cloud. The job dispatch module ob-

tains the job and dispatches it to the cloud through the cloud interface. The ob-

tained results are sent to the database of the respective LCs.

Fig. 9.15. The layered architecture of the proposed MCC-edge system

9.4.1.2.2 Hierarchical Architecture

The proposed system is perceived as a hierarchical client/server model, as shown

in Fig. 9.16. Each SMD runs the client module of the MCC-edge application. The

client module is responsible for carrying out the assigned MCC task opportunisti-

cally or in a CPU-stealing fashion. The LC controls the SMDs under it and performs

the responsibilities of a typical server, such as resource management, job

Communication
Interface

Job Buffer

Job Processing

Communication
Interface

Job Buffer

Job Processing

Communication
Interface

Job Buffer

Job Processing

Event Notification

Resource Control & Coordinate

Resource Control & Coordinate

Result Analysis

Hardware Control

Job Dispatch SMD Select Result Collection

SMD Communication Interface

Sensor Data Acquisition

Sensors

Job Dispatch

LC Communication Interface

Actuators

Cloud

C
y

b
er

-
p

h
y

si
ca

l
la

y
er

L

C
 la

y
er

D
at

a
p

ro
ce

ss
in

g
la

y
er

 (
SM

D
)

M
C

 la
ye

r

Cloud Interface

Database

Result Collection

SMD1 SMD2 SMDn

388

management, and error reporting. The MC takes care of fault tolerance globally

and error notification, as discussed in Section 9.4.1.2.1 and Section 9.4.3.5.

Fig. 9.16. Hierarchical architecture of MCC-edge

9.4.1.3 System Process

The sequence of the key processes through which the functioning of the proposed

system proceeds is shown in Fig. 9.17, while the complete process flow is shown in

Fig. 9.18. The data generated by the sensors are sent to the LC, which creates inde-

pendent jobs, selects suitable crowdworker among the available SMDs, and dis-

patch the jobs to the selected SMDs. The SMD executes the assigned job and re-

turns the result to the LC, which analyses the result and forwards the actionable

instructions to the AC controller. As shown in Fig. 9.18, if no sufficient crowdwork-

ers are available under an LC, it forwards its jobs to the peer LCs with the guidance

of the MC. If no crowdworker is available at all, the jobs are sent to the cloud. In

case of any issue, such as the AC is not able to maintain the desired temperature

for a long time, an alert message is sent to the maintenance people. The complete

system cycle is complemented by several data silos. The key data management

components in a typical MCC system are shown in Table 9.7.

Fig. 9.17. The system process sequence of a typical MCC

9.4.2 System Set Up

To design the MCC-edge system, various hardware and software were used. In the

section, we give the details of each component along with the hardware and net-

working set up.

9.4.2.1 Hardware and Software

The key hardware and software used in the experiment are discussed in the

SMD SMDSMD SMD SMD

LC

MC

LC

Global
server

Local
server

Client

389

following. In Table 9.8, all the necessary hardware and software elements, in gen-

eral, along with their purpose and other details are listed, while

Table 9.9 lists the details of the hardware and software, in particular, used in the

experiment.

Fig. 9.18. System process flow

Table 9.7. Key data management components in a typical MCC-enabled HVAC system

Process Purpose
Concerned

entity
Employed site

Data
generation

Assess the ambient environment Sensors Each individual room

Data transport Transmission of data from source
to processing unit and to sink

Wi-Fi, LAN Throughout the build-
ing

Data
collection

Accumulate sensor data SBC Each LC

Data
computations

Process sensor data SMD SMDs under a certain
LC

Data storage Store processed data for a limited
period

Light-wight
database

Each LC

Data analysis Detecting anomaly and reporting SBC Each LC

Data access/
uses

Receiving real-time alert and pe-
riodical report

Facility staff,
managers

Devices of facility staff
and managers

NodeMCU: Node Micro Controller Unit (NodeMCU47) is an open-source IoT

47 https://www.nodemcu.com/index_en.html

Start

Refer to MC

Send sensor
data to

respective LC

Schedule job
to SMDs for
processing

Analyse
result

Notify the
subscriber

SMD
available

 No

Yes

Look for
suitable

SMDs

Need
adjustments in AC

parameters

 Yes

SMD
available in
other LCs

Send job
to other LC

Yes

 No
Search for

SMDs in
other LCs

Send to
cloud for

processing

Send instruction
to respective

controller
Any issue Yes

No

No

Acccumulate
sensor data

Collect
results

https://www.nodemcu.com/index_en.html

390

platform that runs on an ESP8266 Wi-Fi chip. The firmware of this micro-control-

ler communicates through Wi-Fi using TCP/IP. It comes onboard with analogue

and digital pins and acquires data from the different types of sensors with the sup-

port of serial communication protocols like UART, SPI, I2C, etc. The detailed tech-

nical specification NodeMCU v3 can be found at [762]. In our experiment, we used

it to connect the temperature and occupancy sensors and also to control the AC

through infrared signals.

Raspberry Pi: It is a small SBC that supports small databases (user-created), is

loaded with Linux operating system, and provides an environment for Java and

Python programming. The Raspberry Pi 3 Model B48, used in our experiment, has

a 1.2 GHz processor, 1 GB RAM, and an SDD secondary storage. It supports Wi-Fi

and Ethernet communication networks and has four USB ports, one Ethernet port,

and one HDMI port. In our model, the Raspberry Pi is used as the coordinator (LC)

for collecting data from the connected sensors and coordinating the job processing

in the SMDs.

Lua script: Lua49 is a lightweight, embedded scripting language that supports ob-

ject-oriented, procedural, and data-driven programming approaches. It works

across multiple platforms ranging from servers to mobile devices. Lua provides a

programmable interface to microcontrollers like NodeMCU, enabling them to con-

trol the equipment's operability. Lua script is being flashed on the NodeMCU firm-

ware, which is loaded into RAM for processing the required operation. It uses a

library package named AdaFruit to read the sensor values. We wrote the NodeMCU

controlling program using the Lua script.

MariaDB: MariaDB50 is one of the most popular lightweight open-source rela-

tional database servers and is fully compatible with MYSQL. MariaDB is the default

choice of Debian-based operating systems such as Raspberry Pi. Installation of the

MariaDB server in Raspberry Pi is very straightforward; also, it works very fast in

48 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
49 https://www.lua.org/about.html
50 https://mariadb.org/

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.lua.org/about.html

391

Raspberry Pi, even in the older versions of hardware. We used MariaDB version

10.5 at the LC module for storing data temporarily.

DHT22: For acquiring temperature and humidity data, DHT22, a low-cost digital

humidity and temperature sensor, is used. The sensor consists of an in-built hu-

midity sensor and temperature measuring thermistor. The sensor reads the sur-

rounding air and produces the temperature and relative humidity measurement as

a digital output. We used a DHT22 from SparkFun51, the technical specification of

which is summarised in Table 9.10, and the details can be found at [763]. The de-

tails of the measurement of a DHT22 are shown in Table 9.11. We used this sensor

to assess the room temperature and the relative humidity.

PIR sensor: A PIR (Passive Infra-Red) sensor perceives the movement or presence

of people in a room by detecting infrared heat radiation of moving people (up to

20 feet or 6 meters with 110° x 70° detection range). The sensor produces high volt-

age if motion is detected, otherwise low. We used this sensor to detect if there is

any person in a room.

9.4.2.2 Circuit Design

The DHT22 and PIR sensors are accessed and controlled by a program-enabled

micro controller NodeMCU. DHT22 and PIR sensors are connected to NodeMCU

through a single-wire interface at a digital input pin, as shown in Fig. 9.19. Each

sensor is connected with a Raspberry Pi (LC) through a NodeMCU, as shown in

Fig. 9.20. A control program written using Lua script is flashed into the ESP8266

board, which gathers the digital signals from DHT22 and PIR and decodes suitably.

The Lua script sends the acquired data (temperature and RH for DHT22 and occu-

pancy for PIR), annotated with the sensor id, to the LC using a socket connection.

9.4.2.3 Networking and Communication

In our implementational model, each LC controls a small-scale local MCC, typically

covering a portion of a certain floor of the building. Generally, in a crowded com-

mercial building, several Wi-Fi APs are installed on the same floor because the Wi-

51 https://www.sparkfun.com/products/10167

https://www.sparkfun.com/products/10167

392

Fi speed gets deteriorated imperceptibly as more devices get connected. All the

LCs are connected to a centralised MC through the backbone network, and the MC

communicates with the cloud.

Table 9.8. Hardware and software requirements for a typical MCC setup for an HVAC system

Category Element Purpose
Provider/
developer

Working/installation site

Hard-
ware
setup

Sensors Assessing the ambi-
ent conditions

Sensor vendor Installed in each room

Wi-Fi
APs

Through which sen-
sors and SMDs are
connected to the LC

Network ven-
dor

Installed for a floor

SBCs Gathers sensor data
and connects to AC
controller

SBC vendor Installed in each room

Control-
lers

Regulates the AC
temperature

Controller
vendor

Installed with each ACs in
room

Gateway Connects the MC to
the cloud

Network ven-
dor

Installed along the backbone
network, one unit installed
per building

SMDs Process the job re-
ceived from LC and
receive notifications

Mobile device
vendor

For processing, the SMDs
(crowdworkers) available
within the premises, and for
notifications, the SMDs of the
maintenance people

Software
support

Client
applica-
tion

Receive the MCC job
from LC, get it exe-
cuted on the SMD,
and return the result
to the LC

Designed and
developed by
the MCC de-
veloper

Voluntarily installed on the
SMDs

Server
program

Performs and super-
vises the core func-
tions of MCC

Design and
developed by
MCC devel-
oper

Installed at LC and MC

APIs Connects/interfaces
different software ap-
plication programs

Library pack-
age provided
by the system
software ven-
dor

LC, MC, and SMD

GUIs Access HVAC system
operations report

Design and
developed by
MCC devel-
oper

Devices of administrators and
facility staffs

Local da-
tabase

Stores sensor data
and processed infor-
mation

Open-source Installed at each LC

Control-
ler pro-
gram

Accesses sensors and
controls AC

Library pack-
age provided
by system
software ven-
dors

Loaded on NodeMCU and SBC

Each local MCC under each LC functions independently, unless in certain

393

scenarios like unavailability of the required number of crowdworkers. The SMDs

are connected to the LC through the AP that is connected to the backbone network

via a switch. The typical layout of our network representation for the experiment

is shown in Fig. 9.21.

Table 9.9. Implementational environment specifications for the proposed system

Program/
application

Runs on Language/platform Purpose

Sensor
module

NodeMCU Lua script and associated li-
brary

Accumulating and transmitting
sensor data

LC module Raspberry Pi Java Hosting the functionalities of
the LC

Database Raspberry Pi MariaDB Storing system data generated
from various components

SMD mod-
ule

Android mo-
bile devices

Java, compatible with Android
version 4.4 (KitKat) and above

Execute the MCC job opportun-
istically

Controller
module

NodeMCU Lua script and associated li-
brary

Sending control signal to regu-
late AC

MC module Computer Java Overall supervising and ensur-
ing fault tolerance

Table 9.10. Specifications of DHT22

Specification Value

Sampling rate 0.5Hz (one reading per two seconds)

Size 15.1x25x7.7 mm
Operating voltage 3-5V

Max current during measuring 2.5mA

Repeatability ±1%

Durability ±0.5% per year

Manufacturer MaxDetect Technology Co. Ltd.

Table 9.11. DHT22 measurement details

Measurement Range Accuracy

Temperature -40°C to +125°C ±0.5°C

Relative humidity 0 to 100% ±2%RH

Fig. 9.19. Circuit connection between NodeMCU and DHT22, PIR sensor, and IR LED

Node
MCU

Power

DHT22

PIR
sensor

IR LED

394

Fig. 9.20. Connection between NodeMCU and Raspberry Pi

The LC and the SMDs connected to it are in the same address space. The LC always

has a fixed address in this address space so that an SMD can easily locate the LC

when it connects to the associated AP and initiate communicating with the LC. We

planned to make this address common to every LC in the building, wrapped as a

subnet mask. This would allow the client module of a mobile user to connect dif-

ferent LCs within the building seamlessly.

At the application layer, socket connections are used, the details of which are

shown in Table 9.12. The socket connection helps in data communication irrespec-

tive of the interfacing programs at the end of the communication channel. Physi-

cally the NodeMCU is connected with the LC through Wi-Fi, while it controls the

AC through an infra-red signal. At the data communication level, the NodeMCU

connects to LC through a socket.

Table 9.12. Socket connections used in the experiment

Entity
Port
no.

Incoming/
outgoing

Connects
to

Purpose

LC 5000 Both SMD Sending job packets and receiving results

6000 Incoming NodeMCU Receiving sensor data

7000 Outgoing NodeMCU Sending AC control instructions

Fig. 9.21. Network layout of a local MCC

NodeMCULua
script

Wireless
communication

Raspberry Pi

Sensor

Room 3

LC 1

NodeMCU

AC unit

Room 1 Room 2

LC 2

Sensors

Wired communicationWi-Fi communicationInfrared communication Backbone network

395

9.4.2.4 System Layout

Fig. 9.22 demonstrates a representative layout of the MCC-powered HVAC system

for a four-storey office building. Each room houses decentralised AC units. The

exhaust fans are placed at the roof top. Each temperature sensor is associated to

each AC. The number of sensors installed according to the room size. For example,

in a room of size less than 12 x 12 feet, one DHT22 is sufficient, while for a bigger

room, depending on the size, two or more could be used. Similarly, in a large hall,

depending on the room size, two or more PIR sensors are installed. All the sensors

are placed in such a way so that the whole room is covered uniformly. It should be

noted that though for designing the system we took into account the whole build-

ing, for experimental purpose we considered only three adjacent rooms on the

same floor. However, we believe this should not deter the working of the proof-of-

concept.

Fig. 9.22. System model layout for a four-storey office building

9.4.3 System Design and Implementation

The design of the HVAC-MCC system is presented in Fig. 9.23. The design consists

of five modules which are discussed in this section.

396

9.4.3.1 Sensor Module

The sensor module, embedded on NodeMCU, is configured to capture the ambi-

ance information through sensors and transmit them to the LC. The module per-

forms the following functions:

a) Data acquisition, filtering, and annotation: With the help of the AdaFruit li-

brary, the Lua Script, running on the NodeMCU, accesses the digital sensors,

acquires the digital signal, and converts it into data. Due to faulty sensors and

other reasons, it may return an erroneous value. The program script filters out

the erroneous data (anomaly) based on the threshold value set for each type of

sensor reading. The filtered data is being tagged with the sensor id. The Lua

script program gathers the PIR sensor and DHT22 sensor data in a period of

thirty seconds and five seconds, respectively. The pseudocode for the data ac-

quisition process is shown in Procedure 9.1.

b) Establishing data communication: Using the Lua script, the client socket con-

nection is created in NodeMCU, which connects the server socket at LC. Using

the established socket connection, temperature, humidity, and occupancy

data are transmitted from the sensor module to the LC module.

9.4.3.2 SMD Module

SMD module is designed to provide computing services for the jobs dispersed by

the LC module. The functionality of this module is described in Procedure 9.2.

When a crowdworker enters an LC network, the LC retrieves the status of its re-

source parameters. If it is selected as the resource provider, it receives the job from

the LC and stores it in the form of a sequential list structure in the buffer. A rule

set is defined in the client application according to which the jobs are processed in

a CPU-stealing fashion, i.e., when the SMD has a low processing load or is in an

idle state. On processor availability, the job from the buffer is fetched in first-in-

first-out (FIFO) manner for processing. The process result is sent back to the LC

module. We implemented the SMD module as an Android application that was

developed in Java to run on an Android device.

The client module receives the sensor data (temperature, humidity, and

397

occupancy) from LC. Using the temperature and humidity, the dew point and heat

index are calculated. With these two parameters, the ideal room temperature is

decided. The client module checks the difference between the ideal temperature

and the current temperature using Algorithm 9.1 and Algorithm 9.2. If they are

different, the difference value is sent to the LC based on which the AC temperature

would be adjusted. The temperature difference (∇𝑇𝑎) is calculated using Eq. 9.7.

For example, let us assume the present room temperature is 30oC and the desired

temperature is 20oC. Therefore, the SMD module would send ‘-10’ to LC.

∇𝑇𝑎 = 𝑇𝑑 − 𝑇𝑐 (9.7)

where, 𝑇𝑐 is the current temperature and 𝑇𝑑 is the desired temperature.

Fig. 9.23. Various modules of the proposed HVAC-MCC system

9.4.3.3 LC Module

The LC module is designed to carry out the responsibilities listed in Fig. 9.13. To

communicate (for job dispatching and result collection) with the SMDs, the LC

initiates individual threads for each selected SMD, i.e., each SMD communicates

to the LC through different interfaces. Each thread maintains a live connection

until the communication is terminated. In the LC, a job pool is maintained where

WLAN

Cloud
services

Wired LAN

Sensor data
interfacing

Data pre-
processing
& tagging

Sensors

Sensor module

Socket

Alert
generation

Threads

Job
dispatcher Database

AC
control

Data
analysisLC module

AC
Instruction
decoding

Controller module

NodeMCU
Job buffer Data

processing Rules

SMD module

Alert
notification

Analytics &
reporting

Fault tolerance
and global
scheduling

MC module

398

the jobs to be processed are pooled temporarily before dispatching to the desig-

nated SMD. When an SMD leaves the network, the connection is gracefully termi-

nated, the buffer space in the pool is released, and the SMD is deallocated so that

there is no further job dispatch to that particular SMD. The entire LC module is

implemented through seven functional activities, discussed in the following sub-

sections.

Procedure 9.1: Sensor Data Acquisition
clientSocket = createSocket() //a client socket is created

clientSocket.connect(LC_IP, 6000) //connect the LC at port 6000 at LC_IP for data transmission

tempSenseThread = TempSense.createThread() //thread created for continuous room temperature

sensing

pirThread = OccupSense.createThread() //thread created for occupancy sensing

tempSenseThread.start() //a thread for temperature and humidity data acquisition and transmis-

sion is started

pirThread.start() //a thread for occupancy data acquisition and transmission is started

Thread TempSense //defining the thread for temperature and humidity data

{

 start()

 {

 while (True)

 {

 wait(5) //read temperature and humidity data every 5 seconds

 sensor = accessSensor(DHT22) //access the DHT22 sensor

 tempData = sensor.getTemperature() //read the temperature data from DHT22

 RHData = sensor.getRelativeHumidity() //read the humidity data from DHT22

 if (tempData ≥ 5 && tempData ≤ 55) //we considered temperature range between 5oC to

55oC

 {

 data = sensorId + “#” + tempData + “#” + RHData //’#’ is used as temperature and hu-

midity data delimiter

 clientSocket.send(data) //send the temperature and humidity data to LC

 }

 }

 }

}

Thread OccupSense //defining the thread for occupancy data

{

 start()

 {

 while(True)

 {

 wait(30) //read occupancy data every 30 seconds

 occupData = accessSensor(PIR) //access the PIR sensor

 if (occupData == 1 || occupData == 0) //occupancy value 0 denotes no body in the room,

and 1 denotes one or more persons are there in the room

 {

 data = sensorId + “@” + occupData //’@’ is used as occupancy data delimiter

 clientSocket.send(data) //send the occupancy data to LC

 }

 }

 }

}

399

Procedure 9.2: MCC Task Execution in SMD
clientSocket = createSocket()

clientSocket.connect(LC_IP, 5000) //connect the LC at port 5000 at LC_IP for data communication

while(True)

{

 data = clientSocket.receive() //the client application in SMD module receives data from LC

 t1 = t2 = getTime()

 while (t2-t1 ≤ 30) //the life of a received task is 30 seconds; if it is not executed by this time, it is

aborted

 {

 if (getCPULoad() ≤ 70) //the task will be executed if CPU load is less than equal to 70%

 {

 sensorId, tempData, RHData, t_date, t_time = data.split()

 if (AC_temp_adjst_HI(tempData, RHData)) //check for heat index using Algorithm 9.2

 ta =16 - tempData

 else

 ta = AC_temp_adjst_DP(tempData, RHData) //calculate temperature to be adjusted using

Algorithm 9.1

 result = sensorId + “#” + t_date + “#” + t_time + “#” + tempData + “#” + RHData + “#” + ta

//combine temperature to be adjusted with other information

 clientSocket.send(result) //send result to LC

 break //present task is executed

 }

 else

 t2=getTime() //get the present time to check the timer for 30 seconds

 } //if resource is not available even after 30 seconds, the task is aborted

}

9.4.3.3.1 Sensor Data Collection and Job Creation

A server socket is created at the server program of LC to connect the client socket

of the sensor module. The sensor data are continually collected in the form of data

streams. The received data are stored as processable job units in a list-structured

job pool. The jobs are comprised of sensor readings and required metadata (e.g.,

sensor id, date & time). Each job has uniform computation requirements, input

and output data size, and format. It is to be noted that only the temperature and

humidity data were used as processable jobs and sent to the SMDs. The occupancy

data are directly checked for a binary outcome (occupancy yes or no) at the LC.

The pseudocode for the process of data collection and job creation is shown in

Procedure 9.3.

9.4.3.3.2 SMD Resource Acquiring

When a crowdworker connects to an LC, its resource parameter statistics are ac-

quired by the LC. The LC only acquires some variable parameters (e.g., available

RAM, battery remaining, and Wi-Fi signal strength) and checks their present sta-

tus. It is assumed that all the SMDs that have the client application installed pos-

sess the minimum strength of the key hardware resource parameters (e.g., CPU

400

frequency, CPU cores, GPU, total RAM, etc.) that are sufficient to process HVAC

data, and hence, are eligible to be crowdworker. Each SMDs are uniquely identified

by their IMEI numbers. The pseudocode for the SMDs’ resource acquiring function

is shown in Procedure 9.4.

Procedure 9.3: Sensor Data Collection and Job Creation
db = databaseConnect(Database)

serverSocket = createSocket(6000) //open port for receiving data from sensor module

jobPool as List //define a job pool as list data structure

while (True)

{

 data = serverSocket.recieve() //reading data from the sensors

 if (isTemperatureData(data)) //check if the data are coming from DHT22. Temperature and hu-

midity data and occupancy data are distinguished by some internal demarcation

 {

 data = data + “#” + getDate() + “#” + getTime() //received sensor data are annotated with

timestamp

 jobPool.add(data) //add sensed data to the job pool

 }

 elseif (isOccupancyData(data)) //check if the data are coming from PIR

 {

 sensorId, occupData = data.split() //received data are split into two fields for storing in the da-

tabase

 db.executeUpdate(insert into Occu_data(O_sen_id, o_data, o_time, occupancy) values (sen-

sorId, getDate(), getTime(), occupData)) //store the occupancy data in the database

 }

}

Procedure 9.4: Acquiring SMD Resource Values
getResPar(mobileDevice mobile, Socket serverSocket) //acquire the value of the resource parame-

ters from the SMD

{

 serverSocket.send(“IMEI”) //request made to SMD for sending its IMEI no.

 mobile.IMEI = serverSocket.read() //get the IMEI no. of the SMD as unique id

 serverSocket.send(“Battery”) //request made to SMD for sending its available battery

 mobile.Battery = serverSocket.read() //get the remaining battery of the SMD

 serverSocket.send(“Signal”) //request made to SMD for sending its Wi-Fi signal strength

 mobile.Signal = serverSocket.read() //get the Wi-Fi signal strength of the SMD

 serverSocket.send(“freeRAM”) //request made to SMD for sending its available RAM

 mobile.freeRAM = serverSocket.read() //get the available memory of the SMD

 mobile.Allocated = False //the newly entrant SMDs are not allocated initially

 mobile.serverSocket = serverSocket

}

9.4.3.3.3 SMD Selection

As mentioned in the previous subsection that the LC checks only three dynamic

resource parameters. It is assumed that all the SMDs which have the client appli-

cation installed fulfil the minimum requirement of the fixed hardware resource

parameters such as CPU and GPU capacity. But, as mentioned before, there are

some changeable SMD properties that are crucial in a crowdworker. Since these

properties are variable and change dynamically as per device usage and user be-

haviour they need to be checked for their instantaneous status before task

401

submission. An SMD would be deemed fit and selected for job submission if these

dynamic parameters fulfil the threshold criteria. Table 9.13 lists the considered dy-

namic parameters with their threshold values and justification. The pseudocode

for the SMD selection process is presented in Procedure 9.5.

Table 9.13. Threshold criteria for dynamic parameters for SMD selection

Resource
parameters

Threshold
values

Comment

Available
RAM

≥ 100 MB To run the client module, a minimum amount of memory is
needed. The RAM requirement varies depending on the MCC ap-
plication. In the HVAC application, the requirement is nominal.

Battery ≥ 60% SMD users are always worried of the battery. If the remaining bat-
tery is low, they will not participate in MCC. Therefore, we put a
check on the remaining battery level of the SMD for considering it
as crowdworker.

Wi-Fi signal ≥ 2 A satisfactory degree of wireless signal strength is required for data
transmission. We also assume a lower-strength signal suggests the
user might be moving away from the AP, which might lead to con-
nection loss.

Procedure 9.5: SMD Selection
socket = createSocket(5000) //open port for communicating with the SMD

mobileDevice //define SMD’s resource parameters

{

 IMEI as String

 Battery as Integer

 Signal as Integer

 freeRAM as Float

 Buffer as List

 Allocated as Boolean

 serverSocket as Socket

}

selectedDevice as <mobileDevice> List

while(True)

{

 serverSocket = socket.connect() //connect SMD through port 5000 for data receiving

 mobile as mobileDevice

 getResPar(mobile, serverSocket) //get the SMD resource parameters

 if (mobile.freeRAM ≥ 100 && mobile.Battery ≥ 60 && mobile.Signal ≥ 2) //check for threshold cri-

teria

 selectedDevice.add(mobile) //maintain a list of the selected SMDs

}

9.4.3.3.4 SMD Allocation

As per requirement, a number of SMDs are allocated for job processing from the

pool of the selected SMDs. The allocated SMDs are registered using threads. The

LC runs multiple thread processes for job dispersion and result accumulation. Each

thread is dedicated to and interfaced with each registered SMD through a socket

connection between LC and the SMD. Since the MC requires maintaining the rec-

ords of all the available crowdworkers (as discussed in Section 9.4.1.2.1 and Section

402

9.4.3.5), the information of the number of available and allocated crowdworkers

are sent to MC. The process of SMD allocation is presented in Procedure 9.6.

Procedure 9.6: SMD Allocation
AllocatedDevice as <Thread>List //create a list of threads for the allocated SMDs

SMDAllocation(int req) //SMD allocation as per requirement

{

 count = 0 //set a counter for number of allocated SMDs

 for each mobile in selectedDevice

 {

 if (mobile.Allocated == False) //if the SMD is free, i.e., not yet allocated

 {

 mobile.Allocated = True //the SMD is allocated

 mobileCommnThread = MobileCommn.createThread (mobile, mobile.serverSocket) //cre-

ate a separate thread for communication with the allocated SMD

 AllocatedDevice.add(mobileCommnThread) //append the created thread to the list of allo-

cated devices

 mobileCommnThread.start() //start the thread

 count++

 }

 if (count == req) //check if number of required SMDs are allocated

 break; //if no SMDs are required further, stop allocation

 }

 if (count < req) //if sufficient SMDs are not available

 {

 SMDDef = req – count // calculate the deficiency in the number of required crowdowrkers

 resourceRequestMC(LCId, SMDDef) //send resource request to MC

 }

 resStatusMC(LCId, selectedDevice.length, AllocatedDevice.length) //send information of availa-

ble and allocated SMDs to MC

}

9.4.3.3.5 Job Schedule and Dispatch

Jobs are allocated and dispatched sequentially to the respective registered SMDs

for processing. Here, each SMD is represented as an independent computing re-

source thread. Each thread maintains a job buffer into which the scheduled jobs

are queued in a round-robin fashion, as shown in Fig. 9.24. The jobs are dispatched

serially from each thread to the corresponding SMDs. The data are timestamped

before pushing to the job buffer. We noted this time for analysing the time-variant

records of the temperature sensor data. The pseudocodes for job scheduling and

dispatching are shown in Procedure 9.7 and Procedure 9.8, respectively.

9.4.3.3.6 Result Collection

The processed results are sent back from the SMDs to the respective LCs and are

stored in a database. Here, the result includes the difference between the desired

temperature and the actual temperature, i.e., the measure of AC temperature

needs to be adjusted (increased or decreased). The database is used for performing

403

analysis on the information received from the SMD module to make decisions for

AC controlling. Also, based on the analysis, appropriate alerts are generated. The

schema of the LC database is shown in Fig. 9.25. The following five tables are de-

fined to store the sensor information and processed results, and the fields of these

tables are described in Report generation: The results are stored in the LC database

for one month, which are analysed, and a monthly report is generated. However,

we limited our experiment only to analysing the monthly AC faults. We aimed to

identify the ACs that are more fault-prone. This report is forwarded to MC for fur-

ther analysis and decision-making.

Table 9.14.

• Temp_sensor: Stores the temperature and humidity sensors’ ids along with the

AC to which they are associated and the room where they are placed.

• Temp_data: Stores the temperature and humidity data, and the temperature

magnitude needs to be adjusted.

• Occu_sensor: Stores the PIR sensors’ ids along with the AC to which they are

associated and the room where they are placed.

• Occu_data: Stores the occupancy (yes or no) of a room.

• AC_fault_rp: Logs the AC fault occurrences to generate alerts.

Fig. 9.24. Job scheduling and dispatching

Procedure 9.7: Job Scheduling
jobSchedule() //schedule the jobs into the individual threads

{

 while(True)

 {

 for each mobileCommnThread in AllocatedDevice //select each thread representing an SMD

from the allocated list

 {

 job = read(jobPool) //pick the jobs from the job pool

 mobileCommnThread.Buffer.add(job) //add the jobs to the job threads

 }

 }

}

DispatcherSchedular

....

....

....

Job buffer

Thread 1

...
Thread 2

Thread n

. . . J m . . . J n . . .

Data stream Job pool

SMD 1

SMD 2

SMD n

404

9.4.3.3.7 Result Analysis and Action Steps

The stored results are assessed at regular intervals, and based on the outcome, ap-

propriate action is taken by the LC. Periodically after every one minute, an SQL

script is run over the database to analyse the results. The complete processes of

result analysis and actions taken based on temperature and humidity data and oc-

cupancy data are shown in Procedure 9.9 and Procedure 9.10, respectively. Based

on the result analysis, the following two types of actions are taken:

i. Instruct controller module to initiate AC control mechanism: We considered

the following three automated AC adjustments:

a. Adjust AC temperature: As mentioned earlier, we intend to maintain the ideal

comfort level of the room occupants by adjusting the AC temperature. The

result indicates the adjustment (+ or -) needed in the current temperature to

achieve the desired temperature. To make this decision, we took the average

of the results of the stretch of one-minute duration for each sensor, and based

on that, the final AC adjustment value (how much temperature is to be de-

creased or increased) is calculated by the LC and sent to the AC controller.

b. Adjust AC fan speed: The AC fan speed is regulated as per the requirement of

temperature adjustment. For example, if the value of temperature to be ad-

justed (-) is considerably high to cool the room as quickly as possible, the fan

speed should be set to a higher measure.

c. Switch off the AC: Based on the occupancy analysis, the AC is automatedly

switched off if there is no one in the room for a certain duration. The occu-

pancy is checked after every 5 minutes. We checked for continuous ten read-

ings of the occupancy data. If no one is in the room for this duration, the

occupancy value would be 0. In this case, the LC module sends an instruction

to the controller of the respective AC to be switched off.

ii. Generate alerts and forwards to MC: Based on our calculations (Algorithm 9.1

and Algorithm 9.2), the room temperature should reach the comfort level

sooner or later, depending on the difference between the current room tem-

perature (and humidity) and the desired room temperature. However, if the

room temperature does not reach close to the ideal temperature even after a

405

long time, we assume that the AC is not working properly. For the AC fault-

checking measure, we set a flag if the temperature is less than 16oC or more

than 30oC. We observed the status of this flag for continuous 10 minutes. For

every abnormal temperature reading, the flag value is incremented by one. If

the flag value reaches 10, it is assumed that the AC is not working properly. In

that case, an alert is generated and sent to MC to be forwarded to the facility

staff.

Procedure 9.8: Job Dispatching and Result Collection
Thread MobileCommn //define a thread for SMD communication

{

 mobile as mobileDevice //create an SMD instance representing the SMD

 serverSocket as Socket //create a socket variable

 MobileCommn(mb, ss) //initialise the SMD instance

 {

 mobile = mb

 serverSocket = ss

 }

 start() //define the thread functionalities

 {

 while(True)

 {

 job = mobile.read(Buffer) //pick the jobs from the SMD buffer in FIFO manner

 serverSocket.send(job) //send the picked job to the designated SMD

 result = serverSocket.recieve() //receive the results from the SMD after processing

 sensorId, t_date, t_time, tempData, RHData, ta = result.split() //split the results to store in the

database

 db = databaseConnect(Database) //connect to the database

 db.executeUpdate(insert into Temp_data values(sensorId, t_date, t_time, tempData, RHData,

ta)) //store the values into respective fields in the designated table

 }

 }

}

406

Fig. 9.25. Database schema for LC

iii. Report generation: The results are stored in the LC database for one month,

which are analysed, and a monthly report is generated. However, we limited

our experiment only to analysing the monthly AC faults. We aimed to identify

the ACs that are more fault-prone. This report is forwarded to MC for further

analysis and decision-making.

Table 9.14. Fields used in the result database

Field Description

room_no The room number where the particular sensor and AC are placed

AC_id Identifies each AC uniquely

LC_id Identifies each LC uniquely
t_sen_id Identifies each DHT22 sensor

t_date The date of temperature and humidity acquisition

t_time The time of temperature and humidity acquisition

temp Sensed temperature data

RH Sensed humidity data
ta Temperature to be adjusted

fault_check_freq Counting for fault checking period

o_sen_id Identifies each PIR sensor

o_date The date of occupancy acquisition

o_time The time of occupancy acquisition
occupancy Sensed occupancy data

rpt_msg Alert message

r_date The date of alert generation

r_time The time of alert generation

Procedure 9.9: Result Analysis and Action Taken by LC Module Based on Temperature and
Humidity Data
db = databaseConnect(Database)

Tsensors[] = db.executeQuery(select t_sen_id from Temp_sensor) //consider all the temperature

Temp_sensor Temp_data

Occu_sensor Occu_data

AC_fault_rpt

t_sen_id Varchar (10)PK

room_no Varchar (10)

AC_id Varchar (10)

LC_id Varchar (10) t_date DatePK

temp Double (4,2)

RH Double (5,2)

ta Double (4,2)

t_sen_id Varchar (10)PK

t_time TimePK

fault_check_
freq Int (2)

o_sen_id Varchar (10)PK

room_no Varchar (10)

AC_id Varchar (10)

LC_id Varchar (10) o_date DatePK

occupancy Int (3)

o_sen_id Varchar (10)PK

o_time TimePK

r_date DatePK

room_no Varchar (10)

rpt_msg String

AC_id Varchar (10)PK

r_time TimePK

407

and humidity sensors under the considered LC

serverSocket = createSocket(7000) //open port to send temperature-based control instruction to AC

controller

while (True)

{

 wait(60) //wait for one minute for average analysis

 for each Tsensor in Tsensors[] //consider each temperature and humidity sensor in the room

 {

 T1 = getTime() //get the current time

 T2 = T1 – 60 //get the start off clock time of the immediate last one minute

 avgTa = db.executeQuery(select avg(ta) from Temp_data where t_sen_id = Tsensor and t_time

between T1 and T2) //calculate the average of adjustable temperature (ta) for a period of one mi-

nute for a particular sensor

 ACId = db.executeQuery(select AC_id from Temp_sensor where t_sen_id = Tsensor) //get the

AC id associated to the particular sensor

 RoomId = db.executeQuery(select room_no from Temp_sensor where t_sen_id = Tsensor) //get

the room no. where the particular sensor is installed

 if (|avgTa| ≥10) //check the deviation between the current and desirable room temperature to

set the AC fan speed

 fanSpeed = High //if the deviation is more set the fan speed to high

 elseif (9 ≥ |avgTa| ≥ 6)

 fanSpeed = Medium //if the deviation is moderate set the fan speed to medium

 else

 fanSpeed = Low //if the deviation is less set the fan speed to low

 serverSocket.send(ACId, avgTa, fanSpeed) //send the AC temperature and fan speed to be ad-

justed to the AC controller

 /* check for abnormalities of AC functioning */

 avgTmp = db.executeQuery(select avg(temp) from Temp_data where t_sen_id = Tsensor and

t_time between T1 and T2) //check the average room temperature returned by a particular sensor

for last one minute

 fault_check_freq = db.executeQuery(select fault_check_freq from Temp_sensor where t_sen_id

= Tsensor) //get the frequency of AC faults connected to the particular sensor

 if (AC == “ON”) //check whether the AC is running

 {

 if (avgTmp > 30 || avgTmp ≤ 16) //check for abnormality of the room temperature

 fault_check_freq = fault_check_freq + 1 //if the room temperature is abnormal AC fault

frequency in incremented by one

 else

 fault_check_freq = 0 //if the room temperature is normal set AC fault frequency to zero

 }

 db.executeUpdate(update Temp_sensor set fault_check_f = fault_check_freq where t_sen_id =

Tsensor) //update the AC fault frequency in the database

 if (fault_check_freq ≥ 10) //check for fault for continuous 10 minutes

 {

 msg = "AC is not working properly. Room temperature is” + avgTmp + ”degree for last 10

minutes" //build the alert message

 Time = getTime() //time of alert

 Date = getDate() //date of alert

 SendMssgCenter(msg, ACId, RoomId, Date, Time) //forward the alert message to MC

 db.executeUpdate(insert into AC_fault_rpt values (ACId, RoomId, msg, Date, Time)) //log for

long-term AC fault report generation

 }

 }

}

Procedure 9.10: Result Analysis and Action Taken by LC Module Based on Occupancy Data
db = databaseConnect(Database)

Osensors[] = db.executeQuery(“select o_sen_id from Occu_sensor”) //consider all the occupancy

408

sensors under the considered LC

serverSocket = createSocket(7000) //open port to send occupancy-based control instruction to AC

controller

while (True)

{

 wait (300) //wait for 5 minutes

 for each Osensor in Osensors[] //consider each occupancy sensor in the room

 {

 T1 = getTime() //get the current time

 T2 = T1 – 300 //get the start off clock time of the immediate last five minutes

 ACId = db.executeQuery(select AC_id from Occu_sensor where o_sen_id = Osensor) //get

the AC id associated to the particular occupancy sensor

 os_sum = db.executeQuery(select sum(occupancy) from Occu_data where o_sen_id = Osensor

and o_time between T1 and T2) //get the cumulative value of occupancy reading for five minutes

 if (os_sum == 0) //check if cumulative occupancy value is zero

 serverSocket.send (ACId, ”OFF”) //if cumulative occupancy value is zero turn off the AC

 else

 serverSocket.send (ACId, ”ON”) //if cumulative occupancy value is not zero turn on the AC

 }

}

9.4.3.4 Controller Module

The AC in each room is controlled by the same NodeMCU (ESP8266 Wi-Fi chip),

which is used for housing the DHT22 and PIR sensors. The NodeMCU fitted with

infrared LED acts as a remote that mimics the infrared signals of an AC remote

controller for operations like a) temperature adjustment, b) fan speed regulating,

and c) AC switch on/off. The process for AC control by NodeMCU is given in Pro-

cedure 9.11.

Procedure 9.11: Controlling AC
clientSocket = createSocket()

clientSocket.connect(LC_IP, 7000) //connect the LC at port 7000 for data receiving

ACIds[] = getConnectedACId() //get the ACs connected to the controller

while (True)

{

 msg = clientSocket.receive() //receive AC control instruction from LC

 ACId, data, fanSpeed = msg.split() //extract the control instruction for the AC to take action

 for each id in ACIds //consider each AC in connected to the controller in the room

 {

 if (id == ACId) //identify the particular AC for which the instruction is meant

 {

 if (isNumeric(data)) //check for the instruction data type

 {

 adjustTemp(ACId, data) //if the value of data is numeric, the AC temperature would be

adjusted by data

 adjustFanSpeed(ACId, fanSpeed) //AC fan speed is regulated

 }

 elseif (data == “OFF”) //check if the instruction is equal to Off

 offAC(ACId) //turn off the AC

 elseif (data == “ON”) //check if the instruction is equal to Off

 onAC(ACId) //turn on the AC

409

 }

 }

}

9.4.3.5 MC Module

The MC is a centralised coordinator of the whole MCC system deployed in the

building. It is responsible for the overall management of the MCC that includes the

LCs and the SMDs. The primary responsibilities of the MC are:

• Fault tolerance: The MC ensures the fault tolerance due to the non-availabil-

ity of the SMDs. The MC keeps track of the number of available and allocated

crowdworkers for each LC. If an LC does not have the required number of

crowdworkers, it sends an SOS to the MC, which, in turn, suggests a suitable

LC in the neighbourhood of the low-resourced LC to which it can send the

tasks temporarily and get them executed.

• Communicating with the cloud: If there are no sufficient crowdworkers

available in the building, the MC sends the sensor data forwarded by the LCs

to the cloud. It retrieves the results from the cloud and redirects them to the

respective LCs.

• Alert notification: Each LC generates event notifications in case of abnormal-

ities in AC functioning. These notifications are forwarded to the MC, which in

turn send them to the appropriate authorities (e.g., facility staff). A sample

error report is shown in Fig. 9.26. This error report was generated using

dummy data because, while experimenting, we did not experience any faulty

condition.

• Analytics: The MC receives the periodical (e.g., monthly) reports from each

LC. It performs data analysis on these reports to find patterns and actionable

information.

Procedure 9.12 and Procedure 9.13 present the processes of resource management

and alert notifications submodules of the MC module.

Procedure 9.12: MC Module – Resource Management
socket = createSocket(8000) //MC opens a socket at port 8000 for communicating with LC

while(True)

{

 serverSocket = socket.connect() //connects to an individual LC on its request

 CommnThread = faultTolerance.createThread (serverSocket) //create a communication thread

for the LC

410

 CommnThread.start()

}

Thread faultTolerance

{

 serverSocket as Socket //create a socket variable

 faultTolerance(ss) //initialise the server socket

 {

 serverSocket = ss

 }

 Start()

 {

 LCId, SMDReq = serverSocket.read() //receive resource request from a LC in case of SMD una-

vailability

 LC_IP = searchSuitableLC(LCId, SMDReq) //look for other nearby LCs with adequate SMDs

 if (LC_IP == Null) //if no such LC found

 {

 cloudInterface = connectCloud() //connect to the cloud

 while(job = serverSocket.read()) //task received from LC

 {

 cloudInterface.send(job) //send the task to the cloud

 result = cloudInterface.read() //receive the results from the cloud

 serverSocket.send(result) //send the results to the concerned LC

 }

 }

 else

 serverSocket.send(LC_IP) //send the address of the LC to whom the requesting LC would

send the task

 }

}

Procedure 9.13: MC Module – Alert Notification
socket = createSocket(9000) //open a socket at port 9000 for communicating with LC

while(True)

{

 serverSocket = socket.connect() //connects to an individual LC on its request

 msg = serverSocket.read() //get the alert message from the LC

 saveNotice(msg) //log the alert for future analysis

 alertNotification(msg) //send the alert notification immediately to the facility staff

}

Fig. 9.26. A sample error report generated by LC/MC

9.5 Comparing MCC-Edge with Commercial Edge and Cloud Computing

To validate the advantages of MCC we compared it with other computing

411

architectures such as cloud and edge computing in terms of cost, latency and en-

ergy consumption in HVAC system scenario. To compare these three architectures,

we made the following considerations:

• We excluded the devices (e.g., sensors, Node MCU, actuators, switches, rout-

ers) that are generally commonly employed by all the three architectures for

implementing an automated HVAC control system.

• We considered only those devices that are associated with the specific archi-

tecture.

• We considered a four-storey building wholly covered by the HAVC system.

We used a Raspberry Pi as the MCC coordinator; hence it is included in the com-

parison. Similarly, for implementing HVAC controls system through proprietary

edge computing, edge devices like a single unit of edge server and edge gateway

are required, in addition to other usual hardware and networking components.

Likewise, to implement HVAC control system through cloud, a local gateway

(computer) is required for accumulating data acquired from different sensors and

forwarding them to cloud. Since, the data centres play a primary role in cloud ser-

vices, the cost incurs for cloud services and the energy consumption of data centre

are also included in the comparative study.

The three architectures follow different technologies and frameworks for opera-

tion. Moreover, edge and cloud computing can be implemented in various ways,

resulting in multiple options for comparison. Thus, for a justified comparison

among the three technologies many considerations are made, and are discussed

wherever applicable. We considered only those products of which the comparable

data were available openly.

9.5.1 Cost

Infrastructural cost is a great factor for adopting and implementing technologies

in largescale. Specifically, for computing infrastructure, not only its usefulness but

also the cost (both fixed and variable) involved need to be estimated for employing

in organisational levels. Keeping that in mind, we compared the three computing

architectures in terms of infrastructural and service cost for smart HVAC

412

implementation. For comparison, we considered only the cost of MCC devices,

some commercial edge computing solutions and cloud services that are applicable

in respective architectures to process the HVAC data streams.

We considered Dell Edge Server and Dell Edge Gateways, Lenovo Edge Server and

Cisco Edge Series Switch as sample edge devices. On average, these devices cost

approximately $3,045. Likewise for cloud, a local gateway computer, Dell EMC

PowerEdge R340 was considered as a sample product. Further for processing data

in cloud, we considered Amazon EC2, Microsoft Azure, Google cloud, and Heroku

as sample cloud services. We considered a cloud service of 16 GB RAM and octa-

core virtual CPU and the cost was calculated on hourly basis which resulted in an

average yearly cost of approximately $4,809. In case of MCC-edge, the public-

owned SMDs are used for computational tasks, hence cost of these was not taken

into consideration. The LC is implemented on Raspberry Pi, per unit cost of which

is approximately $3552. It is the only expense in MCC architecture, not considering

the cost of the Wi-Fi APs and associated networking, assuming they are commonly

available in a modern office or residential building. An additional cost of the MC

should be taken into account depending on the MC deployment device. We used

a Raspberry Pi, hence, another $35 would be added. Cost comparisons are given in

the Table 9.15. It is very obvious that among the three approaches, the MCC-edge

involves the least cost.

Table 9.15. Comparing MCC with cloud and edge computing in terms of cost

Proprietary edge Cloud services MCC-edge

Product Cost Service Cost Device Cost
Dell Edge server
PowerEdge T34053
server

$1,029.00

Amazon EC2
(vCPUs: 8,
RAM: 32 GB)

$0.384/hour,
$3363/ year
(24*7) [764]

Raspberry
Pi
(1 per floor
i.e., total 4
units)

LC: $35*4
+
MC: $35
 Dell Edge Gateway

510054
$1,928.74 Microsoft Az-

ure
$0.437/hour,
$3828/ year
(24*7)55 [764]

Lenovo Think Sys-
tem SE35056 edge
server

$2,589.00 Google cloud

$0.268/hour,
$2347/ year

52 https://www.tomshardware.com/how-to/raspberry-pi-buying-guide
53 https://i.dell.com/sites/csdocuments/Product_Docs/en/dell-emc-poweredge-t340-spec-sheet.pdf
54 https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Spec_Sheet_Dell_Edge_ Gate-
way_5000_Series.pdf
55 https://www.parkmycloud.com/cloud-pricing-comparison/
56 https://lenovopress.lenovo.com/datasheet/ds0088-thinksystem-se350

https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Spec_Sheet_Dell_Edge_
https://www.parkmycloud.com/cloud-pricing-comparison/

413

(24*7)57 [764]
Cisco Edge 30058 se-
ries switch

$545.95 Heroku cloud $3000/year59

Average
cloud service
cost (yearly)

$3134/year

Dell EMC
PowerEdge
R340 (local
gateway com-
puter)

$1675.00

Approximate total
(server and gate-
way)

$3,045.00 Approximate
total

$4,809.00 Approxi-
mate
total

$175.00

9.5.2 Latency

Latency is one of the most important metrics to be considered for real-time appli-

cations. Here in the HVAC case scenario, we considered latency as the time taken

to send HVAC data to processing unit, time for processing the data and return back

the result for control decision. We have compared the latency among the three

considered computing architectures i.e., edge, cloud and MCC-edge. The average

latencies for each case are given in Table 9.16.

To estimate the latency in cloud, we deployed the SMD module in cloud. There are

many commercial cloud services available. Among them, we considered the three

most popular cloud services, namely AWS, Azure and Heroku cloud as sample for

latency test case study. The latency time found varying from 49 ms to 3017 ms. For

most of the cases the latency remains in the time frame of 1000 ms or more. The

big reason for higher latency is due to network constraint and far distance of the

data centres. Similarly, to estimate the latency in edge, the SMD module was de-

ployed on an edge server. Due to infrastructural constraints, instead of using a pro-

prietary edge server, we deployed a high-end server as an edge server. The latency

for the edge was found in the range of 20 ms to 35 ms. While, in case of MCC-edge,

the latency was approximately 75-100 ms, which includes the transmission and job

distribution time.

As expected, the latency for MCC is much lesser than cloud computing, but higher

57 https://www.parkmycloud.com/cloud-pricing-comparison/
58 https://www.connection.com/product/cisco-edge-300-series-switch/cs-e300-k9/15017294
59 https://www.heroku.com/pricing

https://www.parkmycloud.com/cloud-pricing-comparison/

414

than traditional edge systems. This is due to the fact that the edge devices are ded-

icated and powerful computing nodes whereas in case of MCC, the SMDs are less

powerful than the edge devices and also, the task are executed only when the SMD

CPUs is free. Furthermore, distributing the jobs to different SMDs also involves

some extra latency. Relatively, the cloud computing involves higher latency due to

transmission delay and network traffic. The data need to travel a number of inter-

mediate nodes before they get processed at a data centre. In contrast, both in edge

computing and MCC-edge, the data need to travel maximum of two to three nodes

before it gets processed and hence saves time resulting in lower latency than cloud.

Table 9.16. Comparing MCC with cloud and edge computing in terms of latency

Proprietary edge Cloud services MCC-edge

20-35 ms AWS 49-3017 ms60 75-100 ms

Azure 70-316 ms
Heroku 2000 ms

9.5.3 Energy Consumption

In the recent years, power consumption has become an important factor for com-

puting resources. Energy efficient frameworks not only save money but also are

good for the planet. They help in reducing air and water pollution caused by energy

consumption and generation and minimizes the harmful impacts on the ecosys-

tem.

For the comparison, we considered the energy consumption of different devices

used each of the approach, as shown in Table 9.17. The energy consumption was

calculated in watt hour unit. In cloud architecture, a data centre consumes massive

energy than edge computing and MCC. Further in cloud, the data need to traverse

hundreds of miles from the point of data generation before to be processed.

Whereas in MCC and edge computing, the applications run close to the data gen-

eration and consumption; hence data traversing is reduced, which in turn mini-

mises energy consumption [35]. The energy consumptions of an edge computing

server and an edge gateway are very less. While in MCC setup, the total energy

60 https://ping.psa.fun/

415

consumption of Raspberry Pi and an average SMD is negligible compared to cloud

and edge devices. So, it can be concluded that MCC is the most energy efficient

approach compared to edge or cloud computing.

Table 9.17. Comparing MCC with cloud and edge computing in terms of energy consumption

Proprietary edge Cloud services MCC-edge

Device
Energy

consump-
tion

Cloud compo-
nent

Energy
consump-

tion
Device

Energy
consumption

Edge server
PowerEdge
T340

2.232
kWh61

Data center
[765] [766]

13.9 mWh Raspberry Pi 0.0576 kWh62

5 Raspberry
Pis

0.288 kWh

Dell Edge
Gateway 5100

1.56 kWh63 Dell EMC Pow-
erEdge R340

8.4 kWh64 SMD 0.015 kWh

10 SMDs 0.15 kWh
Total energy
consumption

3.792 kWh Total energy
consumption

(8.4 + τ)
kWh

Total energy
consump-
tion

< 0.438 kWh

τ is the energy consumption for processing a client application in a data centre

9.5.4 Environmental Hazards

In Section 1.2, we mentioned the environmental threats of computing devices and

the need to minimise them. We also discussed in Section 1.6, considering the en-

vironmental benefits, how MCC can be a suitable option for this. We also briefly

discussed the environmental benefits of MCC-edge in Section 9.1.4.3. We under-

stand that the SMDs will be used by the users anyway and if these existing devices

are utilised effectively there will be significant reduction in additional manufactur-

ing materials as required for dedicated computing devices as in case of edge and

cloud. Also, due to the much smaller size, SMDs have much less negative environ-

mental impact and e-waste than larger computers. Moreover, non-requirement of

dedicated power backups and cooling systems results in significantly reduced car-

bon emission. The environmental advantages of MCC-edge have been corrobo-

rated by a statistical comparison with traditional edge and cloud, as presented in

Table 9.18. In the table, the operational CO2 emission for SMDs and cloud are for

general uses. The actual figures accounting to processing MCC tasks only would be

61 https://www.servethehome.com/dell-emc-poweredge-t340-review-a-high-end-low-cost-server/4/
62 https://www.pidramble.com/wiki/benchmarks/power-consumption
63 https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Spec_Sheet_Dell_Edge_ Gate-
way_5000_Series.pdf
64 https://i.dell.com/sites/csdocuments/Product_Docs/en/poweredge-r340-spec-sheet.pdf

https://www.servethehome.com/dell-emc-poweredge-t340-review-a-high-end-low-cost-server/4/
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Spec_Sheet_Dell_Edge_%20Gateway_5000_Series.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Spec_Sheet_Dell_Edge_%20Gateway_5000_Series.pdf

416

much lower.

Table 9.18. Environmental hazards comparison of MCC-edge with cloud data centres and edge
infrastructure

Environmental
hazard aspects

Cloud data centre Edge devices MCC-edge (SMD)

Operational CO2
emission

45.12 trillion kg (over-
all) [767].

0.3 - 47.41 kg (per de-
vice/year) [768].

Raspberry Pi: 8.322 kg
(per unit/year) [767].
Smartphone: 63 kg (for
1hour usage/year)
[769].

CO2 emission in
the manufactur-
ing process

171,630 kg CO2 [42].
Around 0.3% of overall
carbon emissions [5].

22 to 153 metric tons
per year for all edge de-
vices globally [768].

16 kg [45] to 55 kg [46]
[770] CO2 equivalent
for an average
smartphone.

Other environ-
mental hazards
related to manu-
facturing

The hazardous materi-
als used in manufactur-
ing different compo-
nents used in data cen-
tre includes PVC, PCBs,
Hg, Pb, Cd, Be, Cr(VI),
Sb, BFRs. Besides,
other harmful elements
used in data centres in-
clude ethylene/propyl-
ene glycol for cooling
systems, diesel fuel for
backup generators,
lead-acid in UPS bat-
teries, and compressed
gases for fire suppres-
sion [771].

The hazardous materi-
als used in manufactur-
ing of different edge
devices includes PVC,
PCBs, Pb, Cd, Be,
Cr(VI), Sb, BFRs, etc.
[771].

Various hazardous
metals such as Cd, Pb,
Li, Hg, BFRs, Cl, Cr(VI)
and plastics are used in
mobile manufacturing
[45].

E-waste genera-
tion

32360 metric tons e-
waste in 2018.

4.7 million metric ton
e-waste by small IT
equipment in 2019
[772].

More than 5 million
metric tons in 2019
[773] [774].

E-waste decom-
position

The e-waste generated
from data centres in-
clude computers, net-
work communication
devices, and cables and
other power systems.
The generator, UPS
and other electrical
equipment have long
lifecycle (5-10 years)
and are repurposed.
While the computers,
communication device,
cables are redeployed,
remarketed, recovered
and recycled.
The recycle companies
are mainly involve in
collection of e-waste
from data centers.

The e-waste generated
from edge device in-
clude switch, routers,
edge gateway, cables,
and UPS.
The edge devices have
long lifecycle (10 years
or more) and are often
repurposed and re-
marketed.
Discarded edge devices
are recycled to obtain
steel, plastic, and PCB.
PCB are source of pre-
cious metals like Au,
Ag, Cu, Ta, Pd. PCB are
recycled according to
standard practice like
reusing ICs, cable cir-
cuit, large metal

Mobile devices have an
average life span of ap-
proximately four years.
As a reason, huge mo-
bile devices are dis-
carded as e-waste. 80%
mobile devices are re-
cycled using standard
recycling policy. Plastic
and glass are recycled
for reuse.
PCBs are recycled to
obtain precious metals
such as Au, Ag, Cu, Pd,
Ta and other mobile
device parts like micro-
phone, speaker, con-
nector, metal fittings
are recycled to get
steel, Cu and other

417

The material which are
recovered in huge
quantity includes plas-
tic, Al, and steel. The
other material which
are recovered in small
quantity are Au, Ta, Pb,
Cu.
While the hazardous
wastes are decomposed
as per the e-waste de-
composition policy
[775] [776].

component, plastics
are sent for further
treatment, glass are
sent for refining while
battery and Hg are
land filled [777] [778].

metals.
The batteries that can-
not be recycled are
landfilled.
Though the quantity of
e-waste by a single mo-
bile device is small, the
total amount of e-
waste can be substan-
tial [779] [778].

9.5.5 Evaluation

From the comparative study based on cost, latency, energy consumption and e-

waste generation it can be concluded that MCC architecture is sustainable and en-

vironment friendly as compared to proprietary edge and cloud infrastructure for

small and medium computing requirement such as smart HVAC.

This cost factor is an important aspect for an organization when the question of

sustainability arises. It is very much evident from the cost comparison that the

MCC architecture bears negligible cost for implementation and is thus lucrative to

organization as compared to other two architectures. It was observed that the la-

tency of MCC is significantly lower than cloud but slightly higher than edge. How-

ever, this smaller latency is bearable for the soft real-time applications such as

HVAC. Further in MCC, the extra energy consumption accounting to the compu-

tation is negligible which is not only eco-friendly (less carbon emission) but also

economical for the organizations in long run, compared to the edge and cloud.

Moreover, as in MCC the devices are utilised which are already being used by the

users there will be no need for exclusive or additional device production. This not

only minimises the environmental hazards arises due the manufacturing process

but also ensures no extra e-waste is contributed to the environment unlike the

dedicated computing and allied devices as in case of edge and cloud computing

architectures.

All these advantages make MCC-edge a low cost, greener, and environment

friendly computing solution and a feasible alternative to the traditional edge and

cloud computing.

418

9.6 Discussion

In this section, we cover a couple of points in which, we assume, the readers might

be inquisitive of. Below, we try to shed light on a couple of such apparent reserva-

tions.

How would the system materialise if no SMDs were available? In MCC, since

the computing devices are mobile and not dedicated, their availability is uncertain.

However, the primary requirement of MCC is the availability of sufficient SMDs.

For a global MCC like BOINC, the availability of the SMDs is not that bothersome

because they are connected through the internet, and the physical location of an

SMD does not count for being available. But in the case of a local or campus-based

MCC, the SMDs need to be physically available since they are connected to the

coordinator through a short-distance local network. In this case, users’ presence

and mobility are of big concern. In an office environment, it is assumed that the

users remain at their designated places most of the time during office hours. Hence

the movement and chance of unavailability of the SMDs will be minimal during

office hours. Even if an LC does not have sufficient SMDs under it, the MC will

handle it, as discussed in Section 9.4.3.5. Nevertheless, the concern is for the non-

office hours and the holidays, when no SMD would be available in the building. It

can be well assumed that there would be no requirement of real-time controlling

of the HVAC system; hence it is not required real-time processing. In this case, the

HVAC operations data need to be processed only for long-term monitoring and

analysis purposes. This can be done on the MC itself if the data streaming and

hence processing interval is set to a longer period. Otherwise, a cloud service can

also be availed.

Why not to use a cluster of Raspberry Pi instead of MCC? It can be argued that

why not use a cluster of multiple Raspberry Pi [780] [781] instead of a cluster of

SMDs. It seems a valid argument considering the uncertainty of SMDs and the in-

creasing capacity of every updated version of Raspberry Pi. But there are some fun-

damental issues with Raspberry Pi, as mentioned in the following, due to which it

is not a wise option to implement the whole edge computing solution on it:

419

• With a small number of cores, multitasking is limited in Raspberry Pi.

• Raspberry Pi has a limited amount of usable memory. For heavy tasks, it uses

an SD card, and frequent swapping between RAM and SD card causes thrash-

ing and affects the throughput.

• Raspberry Pi is not suitable for computing-intensive applications.

• Data transmission is slower. Raspberry Pi has only a 100Mbps Ethernet port

and a single controller for USB and Ethernet, which divides the speed.

• Raspberry Pi is prone to heat as there is no heatsink. Hence, continuous com-

pute-intensive processing makes the RP hot and early wear out and even dam-

age SSD.

• Raspberry Pi is constrained in terms of flexibility and scalability.

• Raspberry Pi has reliability issues. It has no fuse protection. So, there is a high

chance of the board getting damaged.

9.7 Limitations and Further Scopes

Since in this work, our aim was to present a working prototype of the proposed

system, we tried to keep the things uncomplicated as far as possible. In this section,

we submit the aspects that we intentionally or insistently overlooked. These un-

addressed facets can be incorporated or implemented in the future enhancement

of the system. We also list out some interesting points which can augment the

MCC-edge enable HVAC or the MCC-edge in general further. For a better con-

strual, we divided the deficiencies of this prototype and the scopes for further en-

hancements into two categories, as discussed in the following subsections.

9.7.1 MCC-Edge

Below, we list down the lacking aspects and the further development scopes con-

cerned to the proposed MCC-edge in general:

• The minimum resource capacity of each SMD requisite for the job to-be-sched-

uled is required to be determined. Also, for wholesome job allocation, the

number of SMDs required under each LC individually needs to be estimated,

depending on the size of the room and the number of sensors.

• We did put aside designing and implementing the analytics part in the MC

420

module as future work.

• Although in the core MCC-HVAC model, we suggested interfacing between

MC with the cloud, in the proof-of-concept, it was not implemented.

• Instead of Wi-Fi, connecting the sensors with the LC using some energy-aware

low-range protocols like ZigBee, BLE, etc., might be more energy-efficient

[433] [782].

• We assumed that the computing resources (hardware and software) do not

influence the SMD selection if all pass the threshold criteria. But this is a very

naïve assumption. In practice, SMDs vary vastly as per their resources, and ac-

cordingly, the throughput would differ [480]. This varying capacity should be

considered for crowdworker selection.

• Though the scenario of crowdworker unavailability is considered in the design,

due to complexity, it was not implemented in the MC module. The fault toler-

ance aspect of MCC should be explored and implemented in the LC and MC

levels.

• For simplicity, we did not set any task execution deadline at the crowdworker’s

end. However, in a hard real-time system, this needs to be enforced and ad-

ministered.

• The computation time of different MCC modules can be further reduced by

fine tuning the programs. Ideally the turnaround time should be very close to

the computation time on a dedicated edge device.

• We did not include any fault-checking mechanism, i.e., what to be done if the

crowdworker fails to send the results to LC. Furthermore, the LC itself might

be unavailable (due to network failure) or out of order (due to the reason men-

tioned in Section 9.6). However, for critical applications, it is crucial to imple-

ment fault handling mechanisms.

• As mentioned in Section 9.6 that Raspberry Pis may not be reliable; therefore,

implementing the LC on a Raspberry Pi would make the MCC system unstable.

Instead of relying only on the Raspberry Pi, as a backup, the LC module can

also be implemented on one of the crowdworkers among the SMDs connected

to the same AP. The SMD should be selected or elected as a leader, satisfying

some predesignated criteria [783].

421

• The presented MCC-edge prototype is not general purpose. It is neither appli-

cation nor job neutral. The tasks (instructions) are predefined and hardcoded

in the client module. However, a generalised MCC system should be open and

flexible, which is capable of carrying different types of jobs. This requires send-

ing the tasks that include the data and instructions to the crowdworkers in-

stantaneously by the coordinator. The client program should abstract the het-

erogeneity in the type, format, and size of the tasks and the associated data.

9.7.2 MCC-Edge Enabled HVAC

In the following, we identify the features that could be incorporated specifically to

the MCC-edge enabled HVAC, leading to further extensive development of the

demonstrated prototype:

• In our prototype experiment, only the front-end of the HVAC, i.e., AC and air

vents, are considered. The backend part of the HVAC that includes the opera-

tions of the boiler, chiller, cooling tower, heat exchangers, etc., is not consid-

ered.

• Being in the demands, the sensors are manufactured by different companies

based on different locations. Hence, the sensors are designed and tested under

dissimilar conditions. Using them in other conditions might cause a slight de-

viation from the actual readings. Likewise, the DHT22 sensor also might ex-

hibit a bit different characteristic in the tropical region. To avoid this error, the

sensors should be calibrated by comparing the temperature and humidity

value obtained using some authentic manual measurement such as ASTM-117C

[784] and ASTM E337-84 [785] methods. However, in this experiment, we did

not perform any such calibration.

• The PIR sensor that is used to detect occupancy has a major disadvantage when

the occupant remains stationary for a certain period of time. Since the PIR

sensors are designed to detect deviations of positions (or movement) if the

occupant remains stationary at a location, the sensor will not perceive any

change in the movement, leading to the failure in occupancy observation. In-

stead of a motion sensor, CCTV video processing can be used to detect real-

time occupancy [397].

422

• Another problem with the PIR sensor is that it cannot recognize the increase

in occupancy. We intended to auto adjust the AC fan-speed based on occu-

pancy level that would allow better humidity controlling, but could not due to

this limitation. CCTV-based occupancy detection will be helpful in this case

also.

• We only considered the occupancy presence. However, there are several fac-

tors that could be considered as discussed in the following [752]:

 Occupant’s position: The exact position of the occupant(s) in the room (to

determine the distance from the AC vent based on which the fan speed

should be regulated). For this, radio frequency identification (RFID) can be

used [786].

 Occupancy density: Maintaining the same AC temperature and fan speed

might not offer the equal comfort when the number of the people varies in

the room significantly. Therefore, occupancy density based HVAC control-

ling would be a better choice for superior comfort. The PIR sensors are not

sufficient for this. Some Wi-Fi devices and camera sensors could be useful

to assess the number of occupants in the room.

 Occupants’ activity: Similar to knowing the number of people in the room,

the comfort level can be set ideally based on what they are doing [787]. Dif-

ferent activities would have different perceived heat levels [788].

 Personalised comfort: Each person’s perceived comfort level varies, though

slightly. It can be possible to set comfort levels if each occupant can be iden-

tified with their predicted comfort levels. However, this is not applicable for

multioccupancy.

 Movement trajectory: Tracking one’s movement trajectory within the build-

ing would allow identifying moving-from and moving-to locations. This in-

formation can be used proactively to set the comfort level at the destination

room for a particular occupant, especially in a residential building where

the scope and room areas of the occupant's activities are limited or do not

change much in comparison to a commercial building [789]. However, this

is also not applicable for multiple persons unless they move together.

• The occupancy sensors could be more effectively utilised by exploiting

423

machine-learning techniques and dynamic analysis for predicting the occu-

pancy patterns of the rooms, based on which the HVAC can be controlled pro-

actively. This would result in better occupancy comfort and considerable en-

ergy savings. Vision-based techniques can be used for detecting occupant

numbers, locations, and activities [790]. To predict occupancy presence and

occupants’ activities, machine learning models that use camera data can be

helpful [790] [791] [792]. Towards this, various radiofrequency-based sensor

networks such as RFID, Wi-Fi, WLAN, Bluetooth, and Zigbee can be utilised

[793] [794].

• The proposed system can be integrated with real-time local weather infor-

mation, accordingly which the thermal comfort thresholds would be adjusted

automatically and proactively.

• We generated the basic report from the LC for identifying the ACs that more

frequently falters. However, suitable data logging would enable the LCs to gen-

erate more useful reports such as:

 Running duration of each AC, room-wise, based on which the power con-

sumption is estimated.

 Which rooms are more crowded and at which time and for how long?

 Working status of the ACs.

• The responsibilities of the MC can further be extended by storing every HVAC

operational detail for longer periods and analysing them to assess the HVAC

operations and understand the requirements better.

• In standard HVAC systems, humidifier/dehumidifiers are used to maintain the

ideal humidity in the room. A humidifier/dehumidifier unit can work in con-

junction with the AC but can be operated independently, offering more control

in maintaining an optimized humidity level. If the room temperature is low-

ered, the moisture holding capacity of air is reduced, resulting in condensation

of the excess water vapour which is carried away outside by the dehumidifier

unit of a standard HVAC. This lessens the humidity in the room. But in our

experiment, we were restricted and did not have a humidifier/dehumidifier.

Hence, we aimed to maintain the ideal dew point in the room by adjusting the

room temperature. This might have compromised the optimal comfort level

424

slightly.

• The comfortable RH level varies with the season. For instance, in summer,

cooling by evaporation of body moisture is necessary in order to expel the heat;

hence, it is suggested to keep the RH below 60%. On the other hand, in winter,

a higher level of humidity can be tolerated; hence the RH level can be up to

80%. However, we did not consider this fact in our calculation. Inclusion of

this adjustment in the calculation of dew points and heat index would offer

more accurate operations of the HVAC.

• We straightforwardly set the AC temperature to the lowest i.e., 16 if the heat

index is above 27oC. Here, a regressive method could be adopted to set the AC

temperature as per different heat index levels mentioned in Table 9.6. This

would allow to shun imposing unnecessary load on the AC and hence, saving

energy.

• The HVAC operations can be made more energy-efficient by considering the

enthalpy change [795] [796]. Enthalpy is a function of temperature and humid-

ity and signifies the total change in heat content. In the context of a HVAC

system, a change in enthalpy is deemed equivalent to the heat absorbed or

released. For cooling, the heat is absorbed from the airstream and transferred

to somewhere, often outdoors, while the cool air is distributed to the room.

The mechanical cooling process uses electricity for transferring the heat from

room air to the coolant. Whereas another energy-efficient method known as

free cooling makes the most of favourable conditions outdoors to introduce air

with greater capacity for heat absorption instead of the recycled air [797] [798].

9.8 Summary

In this chapter, we presented a proof-of-concept of MCC demonstrating the feasi-

bility of its practical applications We proposed to use MCC as a viable and sustain-

able alternative to proprietary edge computing. For this, we considered the HVAC

system of an office building as a use case scenario.

HVACs are attributed to the foremost energy consumers in commercial and resi-

dential buildings. The energy consumption can be reduced to some extent while

offering optimal comfort to the occupants if the building HVACs are controlled

425

smartly. However, the smart HVACs are equipped with several sensors which gen-

erate a huge amount of data. For real-time response, these data are required to be

processed immediately for which, edge computing is the favourable option. But

proprietary and dedicated edge computing solutions incur financial and energy

costs. In view of that, we considered utilising the SMDs available in the building

premises to build a dynamic computing environment and employed it as a local

edge computing setup.

We attempted to maintain the ideal comfort level for the occupants in a room by

automatedly controlling the AC settings. In the setup, we used temperature and

humidity sensors and occupancy sensors. To measure the ambient comfort level

precisely, we calculated the dew point and heat index using the room temperature

and humidity. Based on the occupancy data, the fan speed of the AC was regulated,

and in case of no occupancy, the AC was automatedly turned off.

We used DHT22 as temperature and humidity sensors and PIR sensors to assess

the occupancy in a room. All the required computations were conducted on the

SMDs. We used a Raspberry Pi based single-board computer (SBC) to implement

the local coordinator (LC), which is responsible for collecting the sensor-generated

data, composing independent jobs, selecting suitable SMDs, dispatching the jobs

to the SMDs, collecting the results from the SMDs, analysing the results, send in-

structions to the controller, and generate error alerts in case of abnormality. The

LC module was programmed using Java. The controller was implemented using a

NodeMCU microcontroller, which was programmed using LuaScript. The overall

MCC is monitored by the centralised MCC coordinator (MC). MC monitors the

resource availability under each LC. In case of unavailability of SMDs under an LCs,

MC refers the job to other LCs or to the cloud.

To establish the advantage of MCC as edge computing, we compared it with the

commercial edge computing solutions and also with cloud services in terms of cost,

energy consumption, latency and environmental impacts. In all the parameters,

MCC has shown to have significant advantages over the other two. MCC is most

energy efficient, environment friendly and economical. Only the latency of MCC is

slightly higher than edge computing. But this difference is not significant enough

426

to discourage using MCC for real-time applications. In conclusion, MCC is defi-

nitely a lucrative and feasible sustainable computing solution that can be used as

edge infrastructure to cater the needs of data- and computing-intensive real-time

applications.

We presented the technical approach to bootstrapping the operations of each

module with a bit of extra emphasise on the LC module, as it acts as the nucleus of

the MCC. We depicted the minute details of designing, developing, and imple-

menting the proposed prototype. To aid the interested researchers and program-

mers in recreating and deploying the MCC-edge of their own, the procedures of

each designed module (sensor, SMD, LC, controller and MC) are presented in suf-

ficient specifications and descriptions. All the modules are built from a curated set

of easily available open-source and commodity tools and libraries that are being

popularly adopted and well supported by the development communities. This

might be an absolute boon for researchers for effortless and hassle-free designing

and deploying MCC-edge at small-scale or individual levels.

10

Conclusions and Future Vision

“Life is the art of drawing sufficient conclusions from insufficient premises.” ---

Samuel Butler

Global warming has become the most dreadful reality for the inhabitants of the

Earth. This has resulted in erratic climate change, causing to increasing severe

weather events from powerful storms to devastating floods and from deadly heat-

waves to extreme snowfalls and notwithstanding to the rising sea levels due to the

melting of the polar ice plates. Industrial developments are the major reasons for

deteriorating environmental conditions. Environmental effect is the most common

negative externality for any industry. The damage is done through various forms

such as excessive energy consumption, carbon and greenhouse gas emission, heat

generation, use of toxic materials in production, non-degradable waste generation,

etc. To sustain the Earth’s environment, we need to focus on sustainable develop-

ments. Sustainable computing is an important armament for that. In line with the

data volume increase, the need for computing resource has increased tremen-

dously. Along with the supercomputers, the traditional HPCs, recently cloud com-

puting has been popularized as a cheap and on-demand computing resource. But

both of them have problems in terms of environmental externalities. Grid compu-

ting intends to use the existing resources (mainly desktops) for catering to the need

for HPC. But desktops are losing popularity; in fact, same for laptops.

SMDs are gaining huge acceptance, and with the computing power they offer

thanks to the power-packed hardware, they can be considered our new computer.

Actually, they already have become our new computer for daily computing chores.

The philosophy of combining computation power of numerous distributed SMDs

to escalate the computation power leads to mobile crowd computing (MCC). The

cumulative computing power achieved by such grids of SMDs can well be com-

pared to other HPC systems and can tail off the dependency on the data centres

and low-end supercomputers as well. MCC is established on the policy of sharing

428

the CPU cycles of multiple SMDs in a distributed manner, voluntary or involuntary

basis, to resolve high computation tasks. The easy availability of SMDs and the

distributed nature makes MCC flexible highly scalable, which could be set up in an

ad-hoc or on-demand basis.

With setting the ground and motivation in Chapter 1, in this thesis, we proposed

to exercise MCC to attain sustainable computing. The use of SMDs would lessen

the externalities because the manufacturing process and device operation would

be minimized significantly. Due to smaller in size, less raw materials would be used

in production which means less exposure to harmful elements and less pollution

due to e-waste. Furthermore, if organizations can avoid buying computing re-

sources can save a significant IT investment and operational cost.

MCC is not a totally new concept. It is standing on the strong basis of many existing

and established computing paradigms such as distributed systems, parallel com-

puting, distributed computing, grid computing, volunteer computing, opportunis-

tic computing, crowdsourced computing, to name a few. In Chapter 2, we briefly

discussed these technologies. In this chapter, we investigated the theoretical and

empirical research works which are closely related to the problems addressed in

this thesis. We confirmed the research scope for each case that led us to nurture

the problem to find an acceptable solution. We found that not much work has been

done specifically on MCC. This motivated us to take a deep dive into the realm of

MCC.

In Chapter 3, we established the concept of MCC and presented its various aspects

in detail. Since its inception, mobile devices have evolved a long way. The latest

SMD CPUs, accompanied by their apposite counterpart GPUs, enable us to accom-

plish all the tasks for which we currently need a computer using an SMD. Today’s

SMDs are powerful enough to compete with the supercomputers of a few years

back. The revolution of SMDs, regarding capability and usage, has changed our

perception of what computing is today. Also, the popularity and adoption of SMDs

have vanquished all estimations. Presently, nearly 6.648 billion people (83.37% of

the world's population) use SMDs, not counting tablets. And like any other elec-

tronic consumer, SMDs also remain unused most of the day. This yields a vast pool

429

of unutilised resources, considering the global SMD user base. Along with, several

other reinforcing factors such as increasing Wi-Fi zones, low-cost and highspeed

mobile data, and highspeed and energy-efficient short-range communication tech-

nologies gave us the confidence to consider MCC as a feasible HPC option.

Besides presenting an unambiguous definition of MCC we made clear the confu-

sions between MCC and other alike computing systems. We also saw that MCC

can have two fundamental architecture types – centralised and P2P and based on

these, can be of three types – global, local, and ad-hoc MCC. For proper and ex-

pected functioning of MCC it should be designed suitably. For this several criteria

such as abstraction, generalisation, adaptability, reliability, fault-tolerance, QoS,

scalability, elasticity, user friendliness, non-intrusiveness, energy efficiency, and

mitigating SLA, liabilities and legalities should be met. Also, several other factors

such as determining appropriate architecture as per MCC applications and availa-

ble infrastructure, crowdworker management (including discovery, profiling, se-

lection, ensuring availability, and monitoring), task farming, task scheduling, uti-

lising resource scavenging and opportunistic computing, workflow management,

and result verification and aggregation should be considered carefully. We dis-

cussed the advantages that MCC brings on that includes ubiquitous and sustaina-

ble computing.

No system does come without issues and challenges. MCC is also no exception.

Some crucial issues like battery constraint and quick heating of the SMDs, and

unreliable wireless network connectivity and bandwidth might hamper the em-

ployment of MCC. For successful application of MCC, several other challenges such

as ensuring security, privacy and trust, motivating people in taking part in MCC,

and, for that, framing sustainable economic models need to be addressed. We

mentioned several potential applications of MCC ranging from meeting conven-

tional HPC demands, businesses, military to smart cities, and many more.

MCC indeed has immense computational potential. But the success of MCC en-

tirely depends on the availability of usable SMDs. It will be an outright failure if a

sufficient number of SMDs are not available in crucial times of execution. That is

why it is not advised to rely completely on MCC to perform critical jobs unless

430

there is an absolute guarantee of availability. In that case, we suggest to have an

alternate computing system (e.g., cloud service) as a backup option. Nonetheless,

barring this kind of unfortunate conditions, MCC is a brilliant scheme to have in-

expensive HPC.

Regarding empirical study, in this thesis, we mainly addressed different aspects of

local MCC where the public-owned SMDs are connected to the organisational

MCC through a local wireless network (e.g., WLAN), and most of the SMDs are

recurrently and regularly connected. In Chapter 4, we designed an operational

framework for profiling various information of the connected SMDs which are re-

quired for assessing the compatibility and capability of the SMD for being assigned

an MCC task. We also conceived a customised benchmarking scheme to assess the

computing competency of the SMDs.

After profiling the resource capacity of the SMDs the next challenging job was to

select the right SMDs among the available ones. This selection process is not trivial

due to the fact that the resource parameters which define an SMD’s suitability as a

computing resource provider are vastly heterogeneous and dynamically variable.

This problem can be perceived as an MCDM problem where the selection would

be made by optimally balancing all the parameters. There are several MCDM meth-

ods in the literature and in practice. To find out the most suitable MCDM method

for resource selection in MCC, in Chapter 5, we performed a comparative analysis

of different MCDM methods. Here, we considered five distinct MCDM methods

(EDAS, ARAS, MABAC, MARCOS, and COPRAS) that follow different solution ap-

proaches. Among them, we found COPRAS being the most favourable MCDM

method for the given problem.

In Chapter 6, we adopted heuristic and metaheuristic optimisation techniques for

task scheduling in MCC. We proposed a) a resource-aware heuristic scheduling

algorithm considering makespan, resource utilisation and load balance and b) a

PSO-based scheduling algorithm considering energy consumption and load bal-

ance. Both of these scheduling criteria are crucial for a better performance of MCC

and its successful implementation by maintaining the required level of user satis-

faction. The first one ensures minimising overall execution time while utilising all

431

the available SMDs evenly without overburdening only a few particular SMDs. The

second on ensures minimising overall energy consumption while maintaining a

fair load balance among the SMDs. Both of our proposed algorithms performed

better in different simulation set ups (different combinations of varied task size

and number of SMDs) compared to other existing heuristic and metaheuristic al-

gorithms.

In Chapter 7, we designed a model for predicting mobile devices' availability for a

local MCC where people join the MCC regularly and stay connected for varying

periods. Before submitting the job to a crowdworker, the probability of the consid-

ered crowdworker being available until the job execution is finished is evaluated.

If the job execution time is greater than the predicted availability duration, an al-

ternative crowdworker is considered. This would improve the QoS of MCC by min-

imizing the job reassignment. We presented a novel dynamic feature extraction

method where the features are unknown. Based on the extracted and selected fea-

tures, we experimented with a convolutional prediction model applied on LSTM

and GRU. Utilizing the real user mobility traces for a Wi-Fi AP deployed in a re-

search lab, a convolutional LSTM (CLSTM) and a convolutional GRU (CGRU)

based prediction methods were applied to predict the out-time of the user for each

in-time. The prediction model was implemented on two datasets of different vol-

umes. Our experiment showed that introducing the proposed convolutional fea-

ture extractor to the LSTM and GRU prediction models exhibit significant im-

provement in the prediction accuracy compared to the traditional LSTM and GRU-

based prediction models. The proposed model competes favourably against an-

other models, viz. ARIMA, popularly used in time-series prediction. The proposed

CLSTM and CGRU models give satisfactory performance accuracy not only when

the dataset is large enough but also for the small-sized dataset. It is observed that

with an increase in dataset size, the performance of the model improves signifi-

cantly. Also, with the increase in the dataset, the error estimation of the model gets

better. However, compared to the CGRU, CLSTM model exhibited better perfor-

mance. Thus, we can conclude that the proposed CGRU model can be a feasible

resource availability prediction model in MCC both with small- and large-scale

432

user mobility data.

In Chapter 8, we presented the concept of a P2P MCC. Though P2P MCC is a bril-

liant opportunity for sharing computing services in a flexible and ad-hoc manner,

the failure in addressing the mobility factor of the participating mobile devices will

lead to an unsuccessful implementation. We presented solutions to the problem

of finding a stable pairs of service provider and consumer for both single and multi-

cluster PMCCs. In a single-cluster PMCC, to avoid frequent job loss and job hand-

over, it is desired that the SMDs which are relatively static to the service requesting

SMD for a longer period should be chosen as the service providers. To find the

mobility patterns of a group of mobile users using the proposed algorithm, we con-

ducted two studies on a dataset of real traces of mobile users connected to different

Wi-Fi APs. The first study applied the algorithm to calculate relative stability for

20 sample users from the trace, choosing time spans of 2-hour duration. These val-

ues gave the instantaneous behaviour of the nodes. In the second study, the aver-

age relative stability of a user was calculated taking its neighbourhood information

during the entire trace period of 78 days. A logistic regression analysis of the aver-

age stability of all users from the trace was performed.

In a multi-cluster PMCC, the mismatch in the contact time between the service

consumer, provider, and the carrier (that acts as a mediator to exchange the service

between the provider and the consumer) prohibits in exchanging the service.

Hence, it is very important to know when they would be in contact with each other

so that the service could be exchanged. In a mobile setup, it is not trivial to know.

But if the mobility patterns of the devices are tracked, the location of the devices

and the duration for which they remain in a network can be predicted. We applied

a mobility prediction algorithm on the same dataset to extract different mobility-

related information of the users. These information were utilised in selecting the

service carrier and the provider so that the availability (consumer waits for the

service indefinitely) and liveness (the carrier returns with the service but cannot

find the consumer) problems could be averted.

To validate the utility of MCC, in Chapter 9, we presented a proof-of-concept. We

demonstrated the feasibility of MCC as a case of crowdsourced edge computing.

433

We proposed to use MCC as a viable and sustainable alternative to proprietary edge

computing. For this, we considered a smart HVAC system of a building as a use

case scenario where the sensor data are processed in real time using MCC. We

considered dew temperature and heat index to auto adjust the room temperature

at an ideal level. Data generated by the temperature and humidity sensors and oc-

cupancy sensors were collected by a local coordinator which then curated them

into parallelly executable subtasks and dispatched to the SMDs. As per the pre-set

algorithms and depending on the results returned by the SMDs, the coordinator

sent the required adjustment values to the AC controllers.

To make it straightforwardly reproduceable, we illustrated the exhaustive details

of designing, developing, and implementing of each module of the prototype with

sufficient specifications and descriptions. All the modules were built using open-

source and commodity tools and libraries that are being popularly accepted and

well supported by the development communities.

To establish the advantage of MCC as edge computing, we compared it with the

commercial edge computing solutions and also with cloud services in terms of cost,

energy consumption, and latency. MCC had been emerged as the most sustainable

edge computing solution thanks to its crucial advantages such as energy efficient,

environment friendly, and economical.

We considered the HVAC system just to demonstrate the feasibility of using MCC

as an edge computing solution. However, this can be extended for the other aspects

of a smart building, such as security, fire system, etc. In our view, the MCC-edge

system should be of general purpose and its utilisation would not be limited to a

building; rather, it can be utilised to set up a semi-infrastructure based or infra-

structure-less ad-hoc and dynamic edge computing system ubiquitously, support-

ing diverse applications. Actually, that would upshot the realization of the true

value of MCC. Therefore, we encourage the research community to explore the

application of MCC in the diverse domains while addressing the challenging issues.

Though building prototypes and proof-of-concept is a necessary measure to eval-

uate and validate ideas, it is not sufficient for the full-fledged implementation and,

434

most importantly, to excite the commercial and general userbase. Due to practical

limitations, our study has been restricted to a few aspects of MCC only. However,

there are several important aspects and crucial issues yet to be addressed, which

we wish to investigate in the future.

To make the designed prototype simple, we did not include the aspects presented

in chapters 4 to 8. Here our focus was to establish a working MCC system that can

be used to process sensor data distributedly on a set of SMDs. However, for real-

world adoption of the projected proof-of-concept, all the components should be

integrated into a fully operational system so that people are convinced of the sys-

tem processes and their effectiveness, which is essential for any sustainable prop-

osition. We believe the demonstrated proof-of-concept is a modest but definitive

step towards sustainable computing. We advocate making the proposed system

evolve and much worthful by gaining experience through its live deployments,

which would lead to filling the obvious gaps with innovative solutions from the

allied research community.

We envisage MCC to be flourished as a dependable and widely-used computing

paradigm. We expect that the computation and storage capacity of the future

SMDs will most likely continue to increase according to Moore's law. However, it

will be interesting to see to what extent the wireless data transmission speed and

battery capacity will match that. Because the battery still remains the major hurdle

and will be for at least a couple of years with the present battery technology. Also,

the wireless technology has failed to reach the users’ satisfactory level till now with

a continuous increase in data traffic due to a massive upsurge in sophisticated data-

intensive applications. Nevertheless, the continuous growth in the number of SMD

users gives us confidence in alleviating the availability issue. There will be a suffi-

cient number of devices in the vicinity that can be harnessed. The SMD user base

will continue to grow as people of all levels would be forced to have SMDs with the

introduction of more digitised services (both government and private), which

might be essential to lead daily life for each individual. Furthermore, in the coming

years, more people will shift towards the cities, and as the density of cities in-

creases, the availability of the required number of SMDs at any place will be almost

435

certain. This would be advantageous to integrate MCC with smart city applications

such as traffic monitoring and management, public security and policing, etc. On

account of the flexibility and ad-hoc nature of MCC, it will play a crucial role in

satisfying the need for ubiquitous computing. Especially in the M2M, IoT, and IoE

scenario, MCC can play a vital role in providing an impromptu HPC milieu for real-

time data processing and analysis. We believe proper utilisation of MCC can make

it an integral part of the IoE ecosystem and industry 5.0. Well-thought designing

and deployment would allow us to leverage the services of MCC for varieties of

trending and futuristic technologies such as UAVs, autonomous vehicles, context-

aware servicing, etc.

We further suppose that MCC will realise its success when its services are not only

limited to the organisation directed to solve certain specific problems but also

equally accessible to the common people in a generalised way. The SMD users will

not only be service providers (crowdworkers) but also can avail of computing ser-

vices when needed. We are optimistic about realising MCC-as-a-Service (MaaS) is

very much like IaaS in cloud computing. The MaaS recipients should only submit

their jobs with a wrapper without worrying much about the underlying complexi-

ties. The MCC system would handle the required actions such as task farming, task

distribution, result aggregation and verification, and returning the final results to

the service recipient. Unlike cloud computing, the cost of availing of MaaS will be

either zero or very nominal. A barter system can be followed, i.e., a crowdworker

can avail of free services in return for a certain level of contribution to the MCC

from its end. This will build a largescale sustainable MCC ecosystem.

At long last, stating our conviction, we are expectant that the research work re-

ported in this thesis is able to add a small stone towards building a sustainable

computing paradigm. Our effort will be rewarding if it is successful in drawing at-

tentions of the prospective researchers and take along the mission. It will be great

if this study encourages the organisations and other stakeholders to give a serious

thought on the negative impacts of computing devices and consider adopting MCC

as their primary computing infrastructure.

436

References

[1] Climatenexus, “Top climate events of 2017,” 2018. [Online]. Available: https://climatenexus.org/

2017-top-climate-events/. [Accessed 19 August 2018].

[2] P. K. D. Pramanik, S. Pal and P. Choudhury, “Smartphone crowd computing: a rational solution

towards minimising the environmental externalities of the growing computing demands,” in

Emerging Trends in Disruptive Technology Management, R. Das, M. Banerjee and S. De, Eds., New

York, Chapman and Hall/CRC, 2019, pp. 45-80.

[3] R. Monroe, “Comment on recent record-breaking CO2 concentrations,” 20 April 2016. [Online].

Available: https://scripps.ucsd.edu/programs/keelingcurve/2016/04/20/comment-on-recent-record-

breaking-co2-concentrations/#more-1406. [Accessed 26 August 2018].

[4] WWF-Australia, “Causes of global warming,” WWF-Australia, 2018. [Online]. Available: https://

www.wwf.org.au/what-we-do/climate/causes-of-global-warming. [Accessed 28 August 2018].

[5] N. Jones, “How to stop data centres from gobbling up the world’s electricity,” 12 September 2018.

[Online]. Available: https://www.nature.com/articles/d41586-018-06610-y. [Accessed 24 February

2019].

[6] E. Gelenbe and Y. Caseau, “The impact of information technology on energy consumption and

carbon emissions,” Ubiquity, vol. 2015, no. June, pp. 1-15, 2015.

[7] United Nations University Newsletter, “Study tallies environmental cost of computer boom,” 2004.

[Online]. Available: http://archive.unu.edu/update/archive/issue31_5.htm. [Accessed 18 February

2019].

[8] P. H. Gleick and M. J. Cohen, “Water content of things: the biennial report on freshwater resources,”

in The World’s Water 2008–2009, Island Press, 2009, pp. 335-338.

[9] K. D. Decker, “The monster footprint of digital technology,” Low-tech Magazine, 16 June 2009.

[Online]. Available: https://www.lowtechmagazine.com/2009/06/embodied-energy-of-digital-

technology.html. [Accessed 13 May 2022].

[10] “To manufacture the computer in which you read this, 1,500 liters of water were consumed,” EL

PAÍS, 7 March 2007. [Online]. Available: https://elpais.com/tecnologia/2007/03/07/actualidad/

1173259681_850215.html. [Accessed 13 May 2022].

[11] A. Wang, “TrendForce reports notebook shipments totaled 164.4 million units in 2015 with Apple

gaining greater market share annually,” TrendForce, 16 February 2016. [Online]. Available:

https://www.trendforce.com/presscenter/news/20160216-9238.html. [Accessed 13 May 2022].

[12] P. K. D. Pramanik, B. Mukherjee, S. Pal, T. Pal and S. P. Singh, “Green smart building: requisites,

architecture, challenges, and use cases,” in Green Building Management and Smart Automation, A.

Solanki and A. Nayyar, Eds., IGI Global, 2019, pp. 1-50.

[13] R. Monroe, “Potent greenhouse gas more prevalent,” 23 October 2008. [Online]. Available: https://

ucsdnews.ucsd.edu/archive/newsrel/science/10-08GreenhouseGas.asp. [Accessed 31 July 2018].

[14] Research and Markets, “Global e-waste recycling & reuse rervices market size, market share,

application analysis, regional outlook, growth trends, key players, competitive strategies and

forecasts, 2018 to 2026,” January 2019. [Online]. Available: https://www.researchandmarkets.com/

research/lwvm28/ewaste_recycling?w=4. [Accessed 18 February 2019].

[15] S. Honda, D. S. Khetriwal and R. Kuehr, “Regional e-waste monitor: East and Southeast Asia,”

United Nations University, Bonn, Germany, 2016.

[16] R. Leblanc, “E-Waste Recycling Facts and Figures,” 31 December 2018. [Online]. Available: https://

www.thebalancesmb.com/e-waste-recycling-facts-and-figures-2878189. [Accessed 21 February

2019].

[17] C. Gillespie, “Negative effects of pollution,” 11 June 2018. [Online]. Available: https://

sciencing.com/negative-effects-pollution-5268664.html. [Accessed 26 August 2018].

[18] S. Prakash, R. Liu, K. Schischke and L. Stobbe, “Timely replacement of a notebook under

consideration of environmental aspects,” Federal Environment Agency (Umweltbundesamt),

Germany, 2012.

[19] “The environment and electronic devices,” Alboan, 2022. [Online]. Available: https://www.

tecnologialibredeconflicto.org/en/environment/. [Accessed 13 May 2022].

[20] E. Gillespie, “‘Spaceship earth’: design for the challenge of sustainability in the 21st century,” 2004.

[Online]. Available: https://www.sda-uk.org/Ed%20Gillespie.ppt. [Accessed 14 May 2022].

437

[21] ProKerala, “Responsibility of the government on e-waste management,” 21 July 2012. [Online].

Available: https://www.prokerala.com/going-green/e-waste-management-and-role-of-government-

and-indistries.htm. [Accessed 26 February 2019].

[22] Silicon Mechanics, “Sustainable computing at silicon mechanics,” 2018. [Online]. Available: https://

www.siliconmechanics.com/i16642/sustainable-computing.php. [Accessed 21 February 2019].

[23] M. Maksimovic, “Greening the future: green Internet of Things (G-IoT) as a key technological

enabler of sustainable development,” in Internet of Things and Big Data Analytics Toward Next-

Generation Intelligence, Springer, 2017, pp. 283-313.

[24] W. Chedid and C. Yu, “Survey on power management techniques for energy efficient computer

systems,” Cleveland State University, Cleveland, 2002.

[25] Y. Liu and H. Zhu, “A survey of the research on power management techniques for high performance

systems,” Software-Practice & Experience, vol. 40, no. 11, pp. 943-964, 2010.

[26] S. Mittal, “Power management techniques for data centers: a survey,” Oak Ridge National

Laboratory, USA, 2014.

[27] K. Goyal, “Power management in mobile devices by various protocols,” International Journal of

Computer Science and Communication, vol. 2, no. 2, pp. 505-508, 2011.

[28] C. Shah, S. Chaudhary and P. Agrawal, “Performance analysis of efficient power management

controls in Android device,” International Journal of Advanced Research in Computer and

Communication Engineering, vol. 6, no. 3, pp. 83-89, 2017.

[29] A. Abdelmotalib and Z. Wu, “Power management techniques in smartphones operating systems,”

International Journal of Computer Science Issues, vol. 9, no. 3, p. 157–160, 2012.

[30] P. K. D. Pramanik, S. Pal, A. Brahmachari and P. Choudhury, “Processing IoT data: from cloud to

fog. It’s time to be down-to-earth,” in Applications of Security, Mobile, Analytic and Cloud (SMAC)

Technologies for Effective Information Processing and Management, P. Karthikeyan and M.

Thangavel, Eds., IGI Global, 2018, pp. 124-148.

[31] E. Knorr, “What serverless computing really means,” 11 July 2016. [Online]. Available:

https://www.infoworld.com/article/3093508/what-serverless-computing-really-means.html.

[Accessed 28 March 2019].

[32] Cloudflare, “How are serverless computing and platform-as-a-service different? | PaaS vs.

serverless,” 2019. [Online]. Available: https://www.cloudflare.com/learning/serverless/glossary/

serverless-vs-paas/. [Accessed 28 March 2019].

[33] J. G. Koomey, “Growth in data center electricity use 2005 to 2010,” 1 August 2011. [Online].

Available: https://www.missioncriticalmagazine.com/ext/resources/MC/Home/Files/PDFs/Koomey

_Data_Center.pdf. [Accessed 1 September 2018].

[34] P. K. D. Pramanik, S. Pal, G. Pareek, S. Dutta and P. Choudhury, “Crowd computing: the computing

revolution,” in Crowdsourcing and Knowledge Management in Contemporary Business

Environments, R. Lenart-Gansiniec, Ed., IGI Global, 2018, pp. 166-198.

[35] M. Y. Arslan, I. Singh, S. Singh, H. V. Madhyastha, K. Sundaresan and S. V. Krishnamurthy, “CWC:

a distributed computing infrastructure using smartphones,” IEEE Transactions on Mobile

Computing, vol. 14, no. 8, pp. 1587-1600, 2015.

[36] P. K. D. Pramanik, N. Sinhababu, K.-S. Kwak and P. Choudhury, “Deep learning based resource

availability prediction for local mobile crowd computing,” IEEE Access, vol. 9, pp. 116647-116671,

2021.

[37] P. Prakash, “Environmental impact of internet searches and data centers,” 10 July 2017. [Online].

Available: https://www.linkedin.com/pulse/environmental-impact-internet-searches-data-centers-

pranav-prakash/. [Accessed 18 August 2018].

[38] T. Bawden, “Global warming: data centres to consume three times as much energy in next decade,

experts warn,” 23 January 2016. [Online]. Available: https://www.independent.co.uk/environment/

global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-

warn-a6830086.html. [Accessed 23 February 2019].

[39] A. S. Andrae, “Total consumer power consumption forecast,” in Nordic Digital Business Summit,

Helsinki, Finland, 2017.

[40] D. M. Shila, W. Shen, Y. Cheng, X. Tian and X. S. Shen, “AMCloud: toward a secure autonomic

mobile ad hoc cloud computing system,” IEEE Wireless Communications, vol. 24, no. 2, pp. 74-81,

2017.

438

[41] Energuide, “How much power does a computer use? And how much CO2 does that represent?,”

Sibelga, 2019. [Online]. Available: https://www.energuide.be/en/questions-answers/how-much-

power-does-a-computer-use-and-how-much-co2-does-that-represent/54/. [Accessed 22 February

2019].

[42] IEA, “CO2 emissions from fuel combustion highlights,” 2013.

[43] Fujitsu, “Life cycle assessment and product carbon footprint,” Fujitsu, 2010.

[44] Arizona State University, “Factory is where our computers eat up most energy,” 14 April 2011.

[Online]. Available: https://phys.org/news/2011-04-factory-energy.html. [Accessed 22 February

2019].

[45] Lovefone Blog, “How much CO2 does it take to make a smartphone?,” 28 March 2018. [Online].

Available: https://www.lovefone.co.uk/blogs/news/how-much-co2-does-it-take-to-make-a-

smartphone. [Accessed 22 February 2019].

[46] Restart, “The global footprint of mobiles,” 2018. [Online]. Available: https://therestartproject.org/

the-global-footprint-of-mobiles/. [Accessed 24 February 2019].

[47] Research Triangle Institute, “Hazard sssessment of the electronic component manufacturing

industry,” U.S. Department of Health and Human Services, Ohio, 1985.

[48] S. Needhidasan, M. Samuel and R. Chidambaram, “Electronic waste – an emerging threat to the

environment of urban India,” Journal of Environmental Health Science & Engineering, vol. 12, no.

36, 2014.

[49] ERIdirect, “How long does it take electronic waste to decompose?,” 3 November 2015. [Online].

Available: https://eridirect.com/blog/2015/11/how-long-does-it-take-electronic-waste-to-

decompose/. [Accessed 22 February 2019].

[50] C. Conger, “Can my computer poison me?,” 22 August 2009. [Online]. Available: https://

computer.howstuffworks.com/computer-poison1.htm. [Accessed 22 February 2019].

[51] A. Zeenat, “A study and development of an efficient e-waste management system for minimizing the

risks of environmental pollution,” Savitribai Phule Pune University, Pune, 2016.

[52] R. Mihindukulasuriya, “Your mobile phone is a major contributor to toxic e-waste in the country,”

28 October 2018. [Online]. Available: https://theprint.in/science/your-mobile-phone-is-a-major-

contributor-to-toxic-e-waste-in-the-country/141430/. [Accessed 25 February 2019].

[53] S. Liu, “Analysis of electronic waste recycling in the United States and potential application in

China,” Columbia University, New York City, 2014.

[54] MCMC, “Mobile e-waste: old phone, new life,” 2015. [Online]. Available: https://mobileewaste.

mcmc.gov.my/en-my/about-mobile-e-waste. [Accessed 25 February 2019].

[55] P. K. D. Pramanik, P. Choudhury and A. Saha, “Economical supercomputing thru smartphone crowd

computing: an assessment of opportunities, benefits, deterrents, and applications from India’s

perspective,” in 4th International Conference on Advanced Computing and Communication Systems

(ICACCS-2017), Coimbatore, India, 2017.

[56] S. Srivastava, “Global smartphone shipments reached record 1.55 billion units in CY 2017,” 2

February 2018. [Online]. Available: https://www.counterpointresearch.com/global-smartphone-

shipments-reached-record-1-55-billion-units-cy-2017/. [Accessed 17 August 2018].

[57] A. Scarsella, “Worldwide smartphone forecast update, 2021–2025: December 2021,” IDC,

December 2021. [Online]. Available: https://www.idc.com/getdoc.jsp?containerId=US48451621.

[Accessed 17 March 2022].

[58] S. O'Dea, “Smartphone users worldwide 2016-2023,” 31 March 2021. [Online]. Available: https://

www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/. [Accessed 9 April

2021].

[59] S. O'Dea, “Number of smartphone subscriptions worldwide from 2016 to 2027,” Statista, 23 February

2022. [Online]. Available: https://www.statista.com/statistics/330695/number-of-smartphone-users-

worldwide/. [Accessed 17 March 2022].

[60] Statista Research Department, “Smartphone users in India 2015-2025,” 17 February 2021. [Online].

Available: https://www.statista.com/statistics/467163/forecast-of-smartphone-users-in-india/#:~:

text=Smartphone%20users%20in%20India%202015%2D2025&text=The%20number%20of%20s

martphone%20users,3.8%20billion%20users%20in%202021.. [Accessed 9 April 2021].

439

[61] A. Al-Heeti, “Android is on over 2.5 billion active devices,” 7 May 2019. [Online]. Available: https://

www.cnet.com/tech/mobile/android-is-on-over-2-5-billion-active-devices/. [Accessed 21 April

2022].

[62] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan and D. Estrin, “Diversity in

smartphone usage,” in MobiSys’10, San Francisco, USA, 2010.

[63] D. T. Wagner, A. Rice and A. R. Beresford, “Device analyzer: understanding smartphone usage,” in

Mobile and Ubiquitous Systems: Computing, Networking, and Services, vol. 131, Springer

International Publishing, 2014, pp. 195-208.

[64] K. Abualsaud, T. M. Elfouly, T. Khattab, E. Yaacoub, L. S. Ismail, M. H. Ahmed and M. Guizani,

“A survey on mobile crowd-sensing and its applications in the IoT era,” IEEE Access, vol. 7, pp.

3855-3881, 2018.

[65] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich and P. Bouvry, “A survey on

mobile crowdsensing systems: challenges, solutions, and opportunities,” IEEE Communications

Surveys & Tutorials, vol. 21, no. 3, pp. 2419-2465, 2019.

[66] A. I. Chittilappilly, L. Chen and S. Amer-Yahia, “A survey of general-purpose crowdsourcing

techniques,” IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 9, pp. 2246-2266,

2016.

[67] W. Soliman and V. K. Tuunainen, “Understanding continued use of crowdsourcing systems: an

interpretive study,” Journal of Theoretical and Applied Electronic Commerce Research, vol. 10, no.

1, pp. 1-18, 2015.

[68] M. Hosseini, C. M. Angelopoulos, W. K. Chai and S. Kundig, “Crowdcloud: a crowdsourced system

for cloud infrastructure,” Cluster Computing, vol. 22, p. 455–470, 2019.

[69] Y. Wang, X. Jia, Q. Jin and J. Ma, “Mobile crowdsourcing: framework, challenges, and solutions,”

Concurrency and Computation: Practice and Experience, vol. 29, no. 3, p. e3789, 2017.

[70] W. Li, W.-j. Wu, H.-m. Wang, X.-q. Cheng, H.-j. Chen, Z.-h. Zhou and R. Ding, “Crowd intelligence

in AI 2.0 era,” Frontiers of Information Technology & Electronic Engineering, vol. 18, pp. 15-43,

2017.

[71] S. C. Shah, “Recent advances in mobile grid and cloud computing,” Intelligent Automation & Soft

Computing, 2017.

[72] E. Miluzzo, R. Cáceres and Y.-F. Chen, “Vision: mClouds – computing on clouds of mobile devices,”

in 3rd ACM workshop on Mobile cloud computing and services (MCS’12), Low Wood Bay, UK,

2012.

[73] S. W. Loke, Crowd-powered mobile computing and smart things, Cham, Switzerland: Springer,

2017.

[74] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1, pp. 30-39, 2017.

[75] E. E. Marinelli, “Hyrax: cloud computing on mobile devices using MapReduce,” Masters Thesis,

Carnegie Mellon University, Pittsburgh, 2009.

[76] M. Hirsch, C. Mateos and A. Zunino, “Augmenting computing capabilities at the edge by jointly

exploiting mobile devices: a survey,” Future Generation Computer Systems, vol. 88, no. November,

pp. 644-662, 2018.

[77] J. Kozlowicz, “8 ways data center environmental impact goes beyond emissions,” 11 November

2015. [Online]. Available: https://www.greenhousedata.com/blog/data-center-environmental-

impact-goes-beyond-emissions. [Accessed 18 August 2018].

[78] A. S. Tanenbaum and M. v. Steen, Distributed systems: principles and paradigms, 2nd ed., New

Jersy, USA: Pearson, 2007.

[79] M. J. Quinn, Parallel computing: theory and practice, India: McGraw-Hill Education, 1994.

[80] M. Baker and R. Buyya, “Cluster computing at a glance,” in High Performance Cluster Computing

- Architectures and Systems, New Jersey, USA, Prentice Hall PTR, 1999, pp. 3-47.

[81] M. Baker and R. Buyya, “Cluster computing: the commodity supercomputer,” Journal of Software:

Practice and Experience, vol. 29, no. 6, pp. 551-576, 1999.

[82] T. M. Mengistu and D. Che, “Survey and taxonomy of volunteer computing,” ACM Computing

Surveys, vol. 52, no. 3, pp. 1-35, 2020.

[83] M. N. Durrani and J. A. Shamsi, “Volunteer computing: requirements, challenges, and solutions,”

Journal of Network and Computer Applications, vol. 39, pp. 369-380, 2014.

440

[84] E. J. Korpela, “SETI@home, BOINC, and volunteer distributed computing,” Annual Review of Earth

and Planetary Sciences, vol. 40, pp. 69-87, 2012.

[85] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins and Z. Xu,

“Peer-to-peer computing,” HP Laboratories Palo Alto, 2003.

[86] D. Barkai, “An introduction to peer-to-peer computing,” Intel Developer Update Magazine, pp. 1-7,

February 2000.

[87] D. Xu, Y. Li, X. Chen, J. Li, P. Hui, S. Chen and J. Crowcroft, “A survey of opportunistic offloading,”

IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2198-2236, 2018.

[88] M. Conti and M. Kumar, “Opportunities in opportunistic computing,” Computer, vol. 43, no. 1, pp.

42-50, January 2010.

[89] M. D. Kristensen, “Scavenger: transparent development of efficient cyber foraging applications,” in

IEEE International Conference on Pervasive Computing and Communications (PerCom),

Mannheim, Germany, 2010.

[90] M. R. H. Ahangar, M. R. E. Taba and A. Ghafouri, “On a novel grid computing-based distributed

brute-force attack scheme (GCDBF) by exploiting botnets,” International Journal of Computer

Network and Information Security, vol. 6, pp. 21-29, 2017.

[91] J. W. Strickland, V. W. Freeh, X. Ma and S. S. Vazhkudai, “Governor: autonomic throttling for

aggressive idle resource scavenging,” in 2nd International Conference on Autonomic Computing

(ICAC'05), Seattle, USA, 2005.

[92] E. Rosales, G. Sotelo, A. Vega, C. O. Díaz, C. E. Gómez and H. Castro, “Harvesting idle CPU

resources for desktop grid computing while limiting the slowdown generated to end-users,” Cluster

Computing, vol. 18, no. 4, pp. 1331-1350, 2015.

[93] F. Büsching, S. Schildt and L. Wolf, “DroidCluster: towards smartphone cluster computing - the

streets are paved with potential computer clusters,” in 32nd International Conference on Distributed

Computing Systems Workshops, Macau, China, 2012.

[94] D. P. Anderson, “iSGTW Opinion - Volunteer computing: grid or not grid?,” 4 July 2007. [Online].

Available: https://sciencenode.org/feature/isgtw-opinion-volunteer-computing-grid-or-not-grid.php.

[Accessed 6 August 2022].

[95] G. Massari, M. Zanella and W. Fornaciari, “Towards distributed mobile computing,” in Mobile

System Technologies Workshop (MST), Milan, Italy, 2016.

[96] D. Datla, X. Chen, T. Tsou, S. Raghunandan, S. M. Hasan, J. Reed, B. Fette, C. B. Dietrich, J.-H.

Kim and T. Bose, “Wireless distributed computing: a survey of research challenges,” IEEE

Communications Magazine, vol. 50, no. 1, 2012.

[97] A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen and V. H. Tuulos, “Misco: a MapReduce

framework for mobile systems,” in 3rd International Conference on PErvasive Technologies Related

to Assistive Environments (PETRA '10), Samos Greece, 2010.

[98] T. Kakantousis, I. Boutsis, V. Kalogeraki, D. Gunopulos, G. Gasparis and A. Dou, “Misco: a system

for data analysis applications on networks of smartphones using MapReduce,” in IEEE 13th

International Conference on Mobile Data Management (MDM), Bengaluru, India, July 2012.

[99] S. Lee, K. Grover and A. Lim, “Enabling actionable analytics for mobile devices: performance issues

of distributed analytics on Hadoop mobile clusters,” Journal of Cloud Computing: Advances, Systems

and Applications, vol. 2 (Article number: 15), 2013.

[100] E. Arnold, AVRF: a framework to enable distributed computing using volunteered mobile resources,

vol. Paper 127, University of Puget Sound, 2011.

[101] Z. Dong, L. Kong, P. Cheng, L. He, Y. Gu, L. Fang, T. Zhu and C. Liu, “REPC: reliable and efficient

participatory computing for mobile devices,” in Eleventh Annual IEEE International Conference on

Sensing, Communication, and Networking (SECON), Singapore, 2014.

[102] C. Dumont, F. Mourlin and L. Nel, “A mobile distributed system for remote resource access,” in 14th

International Conference on Advances in Mobile Computing and Multi Media (MoMM '16),

Singapore, 2016.

[103] H. m. Salem, “Distributed computing system on a smartphones-based Network,” in Software

Technology: Methods and Tools (TOOLS 2019). Lecture Notes in Computer Science, vol. 11771, M.

Mazzara, J. M. Bruel, B. Meyer and A. Petrenko, Eds., Springer, Cham, 2019, pp. 313-325.

441

[104] P. Sanches, J. A. Silva, A. Teófilo and H. Paulino, “Data-centric distributed computing on networks

of mobile devices,” in Parallel Processing (Euro-Par 2020). Lecture Notes in Computer Science,

vol. 12247, M. Malawski and K. Rzadca, Eds., Springer, Cham, 2020, p. 296–311.

[105] D. E. Attia, A. M. ElKorany and A. S. Moussa, “High performance computing over parallel mobile

systems,” International Journal of Advanced Computer Science and Applications, vol. 7, no. 9, pp.

99-103, 2016.

[106] M. Conti, S. Giordano, M. May and A. Passarella, “From opportunistic networks to opportunistic

computing,” IEEE Communications Magazine, vol. 48, no. 9, September 2010.

[107] D. G. Murray, E. Yoneki, J. Crowcroft and S. Hand, “The case for crowd computing,” in 2nd ACM

SIGCOMM workshop on Networking, systems, and applications on mobile handhelds (MobiHeld

'10), New Delhi, India, 2010.

[108] C. Shi, V. Lakafosis, M. H. Ammar and E. W. Zegura, “Serendipity: enabling remote computing

among intermittently connected mobile devices,” in 13th ACM international symposium on Mobile

Ad Hoc Networking and Computing (MobiHoc '12), South Carolina, USA, 2012.

[109] A. Mtibaa, K. A. Harras, K. Habak, M. Ammar and E. W. Zegura, “Towards mobile opportunistic

computing,” in IEEE 8th International Conference on Cloud Computing, New York, USA, 2015.

[110] C. Tapparello, C. Funai, S. Hijazi, A. Aquino, B. Karaoglu, H. Ba, J. Shi and W. Heinzelman,

“Volunteer computing on mobile devices: state of the art and future research directions,” in Enabling

Real-Time Mobile Cloud Computing through Emerging Technologies, IGI Global, 2015, pp. 153-

181.

[111] E. Lavoie, L. Hendren, F. Desprez and M. P. Correia, “Pando: personal volunteer computing in

browsers,” in 20th International Middleware Conference (Middleware '19), California, United

States, 2019.

[112] P. Jenviriyakul, G. Chalumporn, T. Achalakul, F. Costa and K. Akkarajitsakul, “ALICE Connex: a

volunteer computing platform for the time-of-flight calibration of the ALICE experiment. An

opportunistic use of CPU cycles on Android devices,” Future Generation Computer Systems, vol.

94, pp. 510-523, 2019.

[113] D. P. Anderson, “BOINC: a system for public-resource computing and storage,” in Fifth IEEE/ACM

International Workshop on Grid Computing, Pittsburgh, USA, 2004.

[114] M. Y. Arslan, I. Singh, S. Singh, H. V. Madhyastha, K. Sundaresan and S. V. Krishnamurthy,

“Computing while charging: Building a distributed computing infrastructure using smartphones,” in

8th international conference on Emerging networking experiments and technologies (CoNEXT '12),

France, 2012.

[115] S. Schildt, F. Busching, E. Jorns and L. Wolf, “CANDIS: heterogeneous mobile cloud framework

and energy cost-aware scheduling,” in IEEE GreenCom iThings/CPSCom, Beijing, 2013.

[116] T. Phan, L. Huang and C. Dulan, “Integrating mobile wireless devices into the computational grid,”

in 8th Annual International Conference on Mobile Computing and Networking (MobiCom '02),

Atlanta, USA, 2002.

[117] T. Phan, L. Huang and C. Dulan, “Challenge: integrating mobile wireless devices into the

computational grid,” in 8th Annual International Conference on Mobile Computing and Networking

(MobiCom '02), New York, USA, 2002.

[118] F. Gonzalez-Castano, J. Vales-Alonso and M. Livny, “Condor grid computing from mobile handheld

devices,” Mobile Computing and Communications Review, vol. 6, no. 2, pp. 117-126, April 2002.

[119] B. P. Clarke and M. Humphrey, “Beyond the 'device as portal': meeting the requirements of wireless

and mobile devices in the legion grid computing system,” in 16th International Parallel and

Distributed Processing Symposium (IPDPS 2002), Fort Lauderdale, FL, USA, 2002.

[120] D. C. Chu and M. Humphrey, “Mobile OGSI.NET: grid computing on mobile devices,” in 5th

IEEE/ACM International Workshop on Grid Computing (associated with Supercomputing 2005),

Pittsburgh, PA, 2004.

[121] U. Farooq and W. Khalil, “A generic mobility model for resource prediction in mobile grids,” in

International Symposium on Collaborative Technologies and Systems, Las Vegas, USA, 2006.

[122] S. Kurkovsky and Bhagyavati, “Wireless grid enables ubiquitous computing,” in 16th International

Conference on Parallel and Distributed Computing Systems (PDCS-2003), Reno, NV, 2003.

[123] S. Kurkovsky, Bhagyavati and A. Ray, “A collaborative problem-solving framework for mobile

devices,” in 42nd annual Southeast regional conference (ACM-SE 42), New York, USA, 2004.

442

[124] K. Katsaros and G. C. Polyzos, “Optimizing operation of a hierarchical campus-wide mobile grid for

intermittent wireless connectivity,” in 15th IEEE Workshop on Local & Metropolitan Area Networks,

Princeton, USA, 2007.

[125] M. Black and W. Edgar, “Exploring mobile devices as grid resources: using an x86 virtual machine

to run BOINC on an iPhone,” in 10th IEEE/ACM International Conference on Grid Computing,

Melbourne, Australia, 2009.

[126] H. Viswanathan, E. K. Lee, I. Rodero and D. Pompili, “Uncertainty-aware autonomic resource

provisioning for mobile cloud computing,” IEEE Transactions on Parallel and Distributed Systems,

vol. 26, no. 8, pp. 2363-2372, 2015.

[127] R. Sriraman K., “Grid computing on mobile devices: a point of view,” Altimetrik Insights, April

2014.

[128] I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, M. Imran and S. Guizani, “Mobile ad hoc cloud: a

survey,” Wireless Communications and Mobile Computing, vol. 16, no. 16, pp. 2572-2589, 2016.

[129] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for mobile devices,” in 1st ACM

Workshop on Mobile Cloud Computing & Services: Social Networks and Beyond (MCS '10), San

Francisco, California, 2010.

[130] A. Khalifa, R. Hassan and M. Eltoweissy, “Towards ubiquitous computing clouds,” in 3rd

International Conference on Future Computational Technologies and Applications, Rome, Italy,

2011.

[131] A. Khalifa and M. Eltoweissy, “A global resource positioning system for ubiquitous clouds,” in

International Conference on Innovations in Information Technology (IIT), Abu Dhabi, UAE, 2012.

[132] A. Khalifa and M. Eltoweissy, “Collaborative autonomic resource management system for mobile

cloud computing,” in The Fourth International Conference on Cloud Computing, GRIDs, and

Virtualization, Valencia, Spain, 2013.

[133] A. Khalifa and M. Eltoweissy, “MobiCloud: A reliable collaborative mobilecloud management

system,” in 9th IEEE International Conference on Collaborative Computing: Networking,

Applications and Worksharing, Austin, USA, 2013.

[134] A. Khalifa, M. Azab and M. Eltoweissy, “Resilient hybrid mobile ad-hoc cloud over collaborating

heterogeneous nodes,” in 10th IEEE International Conference on Collaborative Computing:

Networking, Applications and Worksharing, Miami, USA, 2014.

[135] T. Nishio, R. Shinkuma, T. Takahashi and N. B. Mandayam, “Service-oriented heterogeneous

resource sharing for optimizing service latency in mobile cloud,” in First international workshop on

Mobile cloud computing & networking, Bangalore, India, 2013.

[136] C. Funai, C. Tapparello, H. Ba, B. Karaoglu and W. Heinzelman, “Extending volunteer computing

through mobile ad hoc networking,” in IEEE Global Communications Conference, Austin, USA,

2014.

[137] D. Remédios, A. Teófilo, H. Paulino and J. Lourenço, “Mobile device-to-device distributed

computing using data sets,” in 12th EAI International Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services (MOBIQUITOUS), Coimbra, Portugal, 2015.

[138] I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar and M. Imran, “Heterogeneity-aware task allocation in

mobile ad hoc cloud,” IEEE Access, vol. 5, p. 1779–1795, 2017.

[139] V. Balasubramanian and A. Karmouch, “An infrastructure as a service for mobile ad-hoc cloud,” in

IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas,

USA, 2017.

[140] K. Habak, M. Ammar, K. A. Harras and E. Zegura, “FemtoClouds: leveraging mobile devices to

provide cloud service at the edge,” in 8th International Conference on Cloud Computing, New York,

USA, 2015.

[141] S. W. Loke, K. Napier, A. Alali, N. Fernando and W. & Rahayu, “Mobile computations with

surrounding devices: proximity sensing and multiLayered work stealing,” ACM Transactions on

Embedded Computing Systems, vol. 14, no. 2, 2015.

[142] N. Fernando, S. W. Loke and W. Rahayu, “Honeybee: a programming framework for mobile crowd

computing,” in Mobile and Ubiquitous Systems: Computing, Networking, and Services (MobiQuitous

2012). Lecture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, vol. 120, K. Zheng, M. Li and H. Jiang, Eds., Berlin, Heidelberg,

Springer, 2013, pp. 224-236.

443

[143] N. Fernando, S. W. Loke and W. Rahayu, “Computing with nearby mobile devices: a work sharing

algorithm for mobile edge-clouds,” IEEE Transactions on Cloud Computing, vol. 7, no. 2, pp. 329-

343, 2019.

[144] S. W. Loke, “Crowd+Cloud Machines,” in Crowd-powered mobile computing and smart things,

Cham, Springer, 2017, pp. 11-25.

[145] M. P. Kumar, R. R. Bhat, S. R. Alavandar and V. S. Ananthanarayana, “Distributed public computing

and storage using mobile devices,” in IEEE Distributed Computing, VLSI, Electrical Circuits and

Robotics (DISCOVER), Mangalore, India, 2018.

[146] S. Kündig, C. M. Angelopoulos, S. R. Kuppannagari, J. Rolim and V. K. Prasanna, “Crowdsourced

edge: a novel networking paradigm for the collaborative community,” in 16th International

Conference on Distributed Computing in Sensor Systems (DCOSS), Marina del Rey, USA, 2020.

[147] University of California, “BOINC on Android,” 2014. [Online]. Available: https://

boinc.berkeley.edu/trac/wiki/AndroidBoinc. [Accessed 18 August 2016].

[148] matszpk, “NativeBOINC,” 13 September 2012. [Online]. Available: http://nativeboinc.org/site/

uncat/start. [Accessed 18 August 2016].

[149] J. Duda and W. Dłubacz, “Distributed evolutionary computing system capable to use mobile

devices,” in Conference of Informatics and Management Sciences, 2013.

[150] “DreamLab: app creates 'smartphone supercomputer' to help find cure for cancer,” 9 November 2015.

[Online]. Available: http://www.abc.net.au/news/2015-11-09/smartphone-app-dreamlab-helps-find-

cure-for-cancer/6923452. [Accessed 11 August 2022].

[151] E. Lavoie and L. Hendren, “Personal volunteer computing,” in 16th ACM International Conference

on Computing Frontiers (CF '19), Alghero, Italy, 2019.

[152] A. Zavodovski, L. Corneo, A. Johnsson, N. Mohan, S. Bayhan, P. Zhou, W. Wong and J.

Kangasharju, “Decentralizing computation with edge computing: potential and challenges,” in

Interdisciplinary Workshop on (de) Centralization in the Internet (IWCI'21), Germany, 2021.

[153] A. Mardani, A. Jusoh, K. M. Nor, Z. Khalifah, N. Zakwan and A. Valipour, “Multiple criteria

decision-making techniques and their applications – a review of the literature from 2000 to 2014,”

Economic research, vol. 28, no. 1, pp. 516-571, 2015.

[154] E. K. Zavadskas, Z. Turskis and S. Kildienė, “State of art surveys of overviews on MCDM/MADM

methods,” Technological and Economic Development of Economy, vol. 20, no. 1, pp. 165-179, 2014.

[155] E. K. Zavadskas, J. Antucheviciene, H. Adeli, Z. Turskis and H. Adeli, “Hybrid multiple criteria

decision making methods: a review of applications in engineering,” Scientia Iranica, vol. 23, no. 1,

pp. 1-20, 2016.

[156] A. Zhou, S. Wang, J. Li, Q. Sun and F. Yang, “Optimal mobile device selection for mobile cloud

service providing,” Journal of Supercomputer, vol. 72, no. 8, pp. 3222-3235, 2016.

[157] B. Venkatraman, F. A. Zaman and A. Karmouch, “Optimization of device selection in a mobile ad-

hoc cloud based on composition score,” in 2nd International Conference on Communication Systems,

Computing and IT Applications (CSCITA), Mumbai, India, 2017.

[158] H. Viswanathan, E. K. Lee and D. Pompili, “Mobile grid computing for data- and patient-centric

ubiquitous healthcare,” in 1st IEEE Workshop on Enabling Technologies for Smartphone and

Internet of Things (ETSIoT), Seoul, Korea (South), 2012.

[159] M. Hosseinzadeh, H. K. Hama, M. Y. Ghafour, M. Masdari, O. H. Ahmed and H. Khezri, “Service

selection using multi-criteria decision making: a comprehensive overview,” Journal of Network and

Systems Management, vol. 28, pp. 1639-1693, 2020.

[160] P. Bagga, A. Joshi and R. Hans, “QoS based web service selection and multi-criteria decision making

methods,” International Journal of Interactive Multimedia & Artificial Intelligence, vol. 5, no. 4, pp.

113-121, 2019.

[161] I. Grgurević and G. Kordić, “Multi-criteria decision-making in cloud service selection and adoption,”

in 5th International Virtual Research Conference In Technical Disciplines, Žilina, Slovak Republic,

2017.

[162] H. Alabool, A. Kamil, N. Arshad and D. Alarabiat, “Cloud service evaluation method-based multi-

criteria decision-making: a systematic literature review,” Journal of Systems and Software, vol. 139,

pp. 161-188, 2018.

[163] G. Büyüközkan, F. Göçer and O. Feyzioğlu, “Cloud computing technology selection based on

interval-valued intuitionistic fuzzy MCDM methods,” Soft Computing, vol. 22, pp. 5091-5114, 2018.

444

[164] A. E. Youssef, “An integrated MCDM approach for cloud service selection based on TOPSIS and

BWM,” IEEE Access, vol. 8, pp. 71851-71865, 2020.

[165] C. Singla, N. Mahajan, S. Kaushal, A. Verma and A. K. Sangaiah, “Modelling and analysis of multi-

objective service selection scheme in IoT-cloud environment,” in Cognitive Computing for Big Data

Systems Over IoT. Lecture Notes on Data Engineering and Communications Technologies, vol. 14,

A. Sangaiah, A. Thangavelu and V. Meenakshi Sundaram, Eds., Springer, Cham, 2018, pp. 63-77.

[166] H. Wu, “Multi-objective decision-making for mobile cloud offloading: a survey,” IEEE Access, vol.

6, pp. 3962-3976, 2018.

[167] H. Bangui, M. Ge, B. Buhnova, S. Rakrak, S. Raghay and T. Pitner, “Multi-criteria decision analysis

methods in the mobile cloud offloading paradigm,” Journal of Sensor and Actuator Networks, vol.

6, no. 4, p. 25, 2017.

[168] A. Ravi and S. K. Peddoju, “Handoff strategy for improving energy efficiency and cloud service

availability for mobile devices,” Wireless Personal Communications, vol. 81, pp. 101-132, 2015.

[169] M. K. Mishra, N. K. Ray, A. R. Swain, G. B. Mund and B. S. P. Mishra, “An adaptive model for

resource selection and allocation in fog computing environment,” Computers & Electrical

Engineering, vol. 77, pp. 217-229, 2019.

[170] A. A. Gad-ElRab and A. S. Alsharkawy, “Multiple criteria-based efficient schemes for participants

selection in mobile crowd sensing,” International Journal of Communication Networks and

Distributed Systems, vol. 21, no. 3, pp. 384-417, 2018.

[171] S. Mohammadi, S. Homayoun and E. T. Zadeh, “Grid computing: strategic decision making in

resource selection,” International Journal of Computer Science Engineering and Applications, vol.

2, no. 6, pp. 1-12, 2012.

[172] A. M. Abdullah, H. A. Ali and A. Y. Haikal, “A reliable, TOPSIS-based multi-criteria, and

hierarchical load balancing method for computational grid,” Cluster Computing, vol. 22, pp. 1085-

1106, 2019.

[173] M. Kaur and S. S. Kadam, “Discovery of resources using MADM approaches for parallel and

distributed computing,” Engineering Science and Technology, an International Journal, vol. 20, pp.

1013-1024, 2017.

[174] W. N. S. W. Nik, B. B. Zhou, J. H. Abawajy and A. Y. Zomaya, “Cost and performance-based

resource selection scheme for asynchronous replicated system in utility-based computing

environment,” International Journal on Advanced Science, Engineering and Information

Technology, vol. 7, no. 2, pp. 723-735, 2017.

[175] A. Yildiz and E. U. Ergül, “A two-phased multi-criteria decision-making approach for selecting the

best smartphone,” The South African Journal of Industrial Engineering, vol. 26, no. 3, 2015.

[176] G. Büyüközkan and S. Güleryüz, “Multi criteria group decision making approach for smart phone

selection using intuitionistic fuzzy TOPSIS,” International Journal of Computational Intelligence

Systems, vol. 9, no. 4, pp. 709-725, 2016.

[177] S. S. Goswami and D. K. Behera, “Evaluation of the best smartphone model in the market by

integrating fuzzy-AHP and PROMETHEE decision-making approach,” DECISION: Official Journal

of the Indian Institute of Management Calcutta, vol. 48, no. 1, pp. 71-96, 2021.

[178] S. Kumar, S. K. Singh, T. Ashwin Kumar and S. Agrawal, “Research methodology: prioritization of

new smartphones using TOPSIS and MOORA,” in International Conference of Advance Research

& Innovation (ICARI), Meerut, India, 2020.

[179] A. Aggarwal, C. Choudhary and D. Mehrotra, “Evaluation of smartphones in Indian market using

EDAS,” Procedia Computer Science, vol. 132, pp. 236-243, 2018.

[180] I. Irvanizam, M. Marzuki, I. Patria and R. Abubakar, “An application for smartphone preference

using TODIM decision making method,” in International Conference on Electrical Engineering and

Informatics (ICELTICs), Banda Aceh, Indonesia, 2018.

[181] A. Q. Abdulhadi, “Selection a new mobile phone by utilize the voting method, AHP and enhance

TOPSIS,” International Journal Academic Research in Business and Social Sciences, vol. 10, no. 8,

pp. 717-732, 2020.

[182] E. Triantaphyllou, Multi-criteria decision making methods: a comparative study, Springer, Boston,

MA, 2000.

[183] M. Velasquez and P. T. Hester, “An analysis of multi-criteria decision making methods,”

International Journal of Operations Research, vol. 10, no. 2, pp. 56-66, 2013.

445

[184] S. H. Zanakis, A. Solomon, N. Wisharta and S. Dublish, “Multi-attribute decision making: a

simulation comparison of select methods,” European Journal of Operational Research, vol. 107, no.

3, pp. 507-529, 1998.

[185] J. A. B. Ruby Annette and P. Subash Chandran, “Comparison of multi criteria decision making

algorithms for ranking cloud renderfarm services,” Indian Journal of Science and Technology, vol.

9, no. 31, 2016.

[186] A. Piegat and W. Sałabun, “Comparative analysis of MCDM methods for assessing the severity of

chronic liver disease,” in Artificial Intelligence and Soft Computing (ICAISC 2015). Lecture Notes

in Computer Science, vol. 9119, L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.

Zadeh and J. Zurada, Eds., Springer, Cham, 2015, pp. 228-238.

[187] M. Mathew and S. Sahu, “Comparison of new multi-criteria decision making methods for material

handling equipment selection,” Management Science Letters, vol. 8, pp. 139-150, 2018.

[188] I. Ghosh and S. Biswas, “A comparative analysis of multi-criteria decision models for ERP package

selection for improving supply chain performance,” Asia-Pacific Journal of Management Research

and Innovation, vol. 12, no. 3-4, pp. 250-270, 2016.

[189] A. Nesticò and P. Somma, “Comparative analysis of multi-criteria methods for the enhancement of

historical buildings,” Sustainability, vol. 11, no. 17, p. 4526, 2019.

[190] M. Moradian, V. Modanloo and S. Aghaiee, “Comparative analysis of multi criteria decision making

techniques for material selection of brake booster valve body,” Journal of Traffic and Transportation

Engineering, vol. 6, no. 5, pp. 526-534, 2019.

[191] A. M. Ghaleb, H. Kaid, A. Alsamhan, S. H. Mian and L. Hidri, “Assessment and comparison of

various MCDM approaches in the selection of manufacturing process,” Advances in Materials

Science and Engineering, vol. 2020 (Article ID 4039253), 2020.

[192] B. Ceballos, M. T. Lamata and D. A. Pelta, “A comparative analysis of multi-criteria decision-

making methods,” Progress in Artificial Intelligence, vol. 5, no. 4, pp. 315-322, 2016.

[193] E. Mulliner, N. Malys and V. Maliene, “Comparative analysis of MCDM methods for the assessment

of sustainable housing affordability,” Omega, vol. 59, no. Part B, pp. 146-156, 2016.

[194] M. Vuković, S. Pivac and Z. Babić, “Comparative analysis of stock selection using a hybrid MCDM

approach and modern portfolio theory,” Croatian Review of Economic, Business and Social

Statistics, vol. 6, no. 2, pp. 58-68, 2020.

[195] W. Sałabun and A. Piegat, “Comparative analysis of MCDM methods for the assessment of mortality

in patients with acute coronary syndrome,” Artificial Intelligence Review, vol. 48, pp. 557-571, 2017.

[196] A. Valipour, H. Sarvari and J. Tamošaitiene, “Risk assessment in PPP projects by applying different

MCDM methods and comparative results analysis,” Administrative Sciences, vol. 8, no. 4, p. 80,

2018.

[197] H.-C. Lee and C.-T. Chang, “Comparative analysis of MCDM methods for ranking renewable energy

sources in Taiwan,” Renewable and Sustainable Energy Reviews, vol. 92, pp. 883-896, 2018.

[198] P. Karande, E. K. Zavadskas and S. Chakraborty, “A study on the ranking performance of some

MCDM methods for industrial robot selection problems,” International Journal of Industrial

Engineering Computations, vol. 7, no. 3, pp. 399-422, 2016.

[199] E. Harirchian, K. Jadhav, K. Mohammad, S. E. A. Hosseini and T. Lahmer, “A comparative study of

MCDM methods integrated with rapid visual seismic vulnerability assessment of existing RC

structures,” Applied Sciences, vol. 10, no. 18, p. 6411, 2020.

[200] J. Sidhu and S. Singh, “Design and comparative analysis of MCDM-based multi-dimensional trust

evaluation schemes for determining trustworthiness of cloud service providers,” Journal of Grid

Computing, vol. 15, pp. 197-218, 2017.

[201] S. A. A. Alrababah, K. H. Gan and T.-P. Tan, “Comparative analysis of MCDM methods for product

aspect ranking: TOPSIS and VIKOR,” in 8th International Conference on Information and

Communication Systems (ICICS), Irbid, 2017.

[202] S. K. Kaya, “Evaluation of the effect of COVID-19 on countries’ sustainable development level: a

comparative MCDM framework,” Operational Research in Engineering Sciences: Theory and

Applications, vol. 3, no. 3, pp. 101-122, 2020.

[203] T. Li, A. Li and X. Guo, “The sustainable development-oriented development and utilization of

renewable energy industry - a comprehensive analysis of MCDM methods,” Energy, vol. 212, p.

118694, 2020.

446

[204] R. Sun, Z. Gong, G. Gao and A. A. Shah, “Comparative analysis of multi-criteria decision-making

methods for flood disaster risk in the Yangtze River Delta,” International Journal of Disaster Risk

Reduction, vol. 51, p. 101768, 2020.

[205] F. Antoniou and G. N. Aretoulis, “Comparative analysis of multi-criteria decision making methods

in choosing contract type for highway construction in Greece,” International Journal of Management

and Decision Making, vol. 17, no. 1, pp. 1-28, 2018.

[206] P. Madhu, C. S. Dhanalakshmi and M. Mathew, “Multi-criteria decision-making in the selection of

a suitable biomass material for maximum bio-oil yield during pyrolysis,” Fuel, vol. 277, p. 118109,

2020.

[207] S. Hezer, E. Gelmez and E. Özceylan, “Comparative analysis of TOPSIS, VIKOR and COPRAS

methods for the COVID-19 regional safety assessment,” Journal of Infection and Public Health, vol.

14, no. 6, pp. 775-786, 2021.

[208] M. Keshavarz-Ghorabaee, E. K. Zavadskas, Z. Turskis and J. Antucheviciene, “A comparative

analysis of the rank reversal phenomenon in the EDAS and TOPSIS methods,” Economic

Computation and Economic Cybernetics Studies and Research, vol. 52, no. 3, pp. 121-134, 2018.

[209] N. Kokaraki, C. J. Hopfe, E. Robinson and E. Nikolaidou, “Testing the reliability of deterministic

multi-criteria decision-making methods using building performance simulation,” Renewable and

Sustainable Energy Reviews, vol. 112, pp. 991-1007, 2019.

[210] S. Dožić and M. Kalić, “Aircraft type selection problem: application of different MCDM methods,”

in Advanced Concepts, Methodologies and Technologies for Transportation and Logistics (EURO

2016, EWGT 2016). Advances in Intelligent Systems and Computing, vol. 572, J. Żak, Y. Hadas and

R. Rossi, Eds., Springer, Cham, 2018, pp. 156-175.

[211] C. Srisawat and J. Payakpate, “Comparison of MCDM methods for intercrop selection in rubber

plantations,” Journal of Information and Communication Technology, vol. 15, no. 1, pp. 165-182,

2016.

[212] M. M. D. Widianta, T. Rizaldi, D. P. S. Setyohadi and H. Y. Riskiawan, “Comparison of multi-

criteria decision support methods (AHP, TOPSIS, SAW & PROMENTHEE) for employee

placement,” Journal of Physics: Conf. Series, vol. 953, p. 012116, 2018.

[213] B. C. Balusa and A. K. Gorai, “A comparative study of various multi-criteria decision-making models

in underground mining method selection,” Journal of The Institution of Engineers (India): Series D,

vol. 100, pp. 105-121, 2019.

[214] A. Ishizaka and S. Siraj, “Are multi-criteria decision-making tools useful? An experimental

comparative study of three methods,” European Journal of Operational Research, vol. 264, no. 2,

pp. 462-471, 2018.

[215] M. Alkahtani, A. Al-Ahmari, H. Kaid and M. Sonboa, “Comparison and evaluation of multi-criteria

supplier selection approaches: a case study,” Advances in Mechanical Engineering, vol. 11, no. 2,

2019.

[216] S. Vakilipour, A. Sadeghi-Niaraki, M. Ghodousi and S.-M. Choi, “Comparison between multi-

criteria decision-making methods and evaluating the quality of life at different spatial levels,”

Sustainability, vol. 13, no. 7, p. 4067, 2021.

[217] R. E. Hodgett, “Comparison of multi-criteria decision-making methods for equipment selection,” The

International Journal of Advanced Manufacturing Technology, vol. 85, no. 5-8, pp. 1145-1157, 2016.

[218] F. Sari, “Forest fire susceptibility mapping via multi-criteria decision analysis techniques for Mugla,

Turkey: a comparative analysis of VIKOR and TOPSIS,” Forest Ecology and Management, vol. 480,

p. 118644, 2021.

[219] S. Biswas, “Measuring performance of healthcare supply chains in India: A comparative analysis of

multi-criteria decision making methods,” Decision Making: Applications in Management and

Engineering, vol. 3, no. 2, pp. 162-189, 2020.

[220] J. Anitha and R. Das, “A comparative analysis of multi-criteria decision-making techniques to

optimize the process parameters in electro discharge machine,” in Recent Trends in Mechanical

Engineering. Lecture Notes in Mechanical Engineering, G. S. V. L. Narasimham, A. V. Babu, S. S.

Reddy and R. Dhanasekaran, Eds., Springer, Singapore, 2021, pp. 675-686.

[221] R. K. Dewi, B. T. Hanggara and A. Pinandito, “A comparison between AHP and Hybrid AHP for

mobile based culinary recommendation system,” International Journal of Interactive Mobile

Technologies, vol. 12, no. 1, pp. 133-140, 2018.

447

[222] A. Martin, T. Miranda Lakshmi and V. Prasanna Venkatesan, “A study on evaluation metrics for

multi criteria decision making (MCDM) methods - TOPSIS, COPRAS & GRA,” International

Journal of Computing Algorithm, vol. 7, no. 1, pp. 29-37, 2018.

[223] Z. Wu and G. Abdul-Nour, “Comparison of multi-criteria group decision-making methods for urban

sewer network plan selection,” CivilEng, vol. 1, no. 1, pp. 26-48, 2020.

[224] A. Jozaghi, B. Alizadeh, M. Hatami, I. Flood, M. Khorrami, N. Khodaei and E. G. Tousi, “A

comparative study of the AHP and TOPSIS techniques for dam site selection using GIS: a case study

of Sistan and Baluchestan Province, Iran,” Geosciences, vol. 8, no. 12, p. 494, 2018.

[225] A. Kishor and R. Niyogi, “An evolutionary approach for optimal multi-objective resource allocation

in distributed computing systems,” Concurrent Engineering, vol. 28, no. 2, pp. 97-109, 2020.

[226] F. Xhafa and A. Abraham, “Meta-heuristics for Grid Scheduling Problems,” in Metaheuristics for

Scheduling in Distributed Computing Environments. Studies in Computational Intelligence, vol. 146,

F. Xhafa and A. Abraham, Eds., Berlin, Heidelberg, Springer, 2008, pp. 1-37.

[227] A. Kuijl, M. Emmerich and H. Li, “A novel multi-objective optimization scheme for grid resource

allocation,” in 6th international workshop on Middleware for grid computing (MGC '08), 2008.

[228] J. Chen, T. Du and G. Xiao, “A multi-objective optimization for resource allocation of emergent

demands in cloud computing,” Journal of Cloud Computing, vol. 10 (Article number: 20), 2021.

[229] B. Shrimali and H. Patel, “Multi-objective optimization oriented policy for performance and energy

efficient resource allocation in Cloud environment,” Journal of King Saud University - Computer

and Information Sciences, vol. 32, no. 7, pp. 860-869, 2020.

[230] E. S. Alkayal, N. R. Jennings and M. F. Abulkhair, “Efficient task scheduling multi-objective particle

swarm optimization in cloud computing,” in IEEE 41st Conference on Local Computer Networks

Workshops (LCN Workshops), Dubai, UAE, 2016.

[231] H. Wu, S. Deng, W. Li, M. Fu, J. Yin and A. Y. Zomaya, “Service selection for composition in

mobile edge computing systems,” in IEEE International Conference on Web Services (ICWS), San

Francisco, USA, 2018.

[232] S. Midya, A. Roy, K. Majumder and S. Phadikar, “Multi-objective optimization technique for

resource allocation and task scheduling in vehicular cloud architecture: A hybrid adaptive nature

inspired approach,” Journal of Network and Computer Applications, vol. 103, pp. 58-84, 2018.

[233] X. Xu, R. Gu, F. Dai, L. Qi and S. Wan, “Multi-objective computation offloading for Internet of

Vehicles in cloud-edge computing,” Wireless Networks, vol. 26, pp. 1611-1629, 2020.

[234] N. Bao, J. Zuo, H. Zhu and X. Bao, “Multi-objective optimization for SDN based resource selection,”

in IEEE 18th International Conference on Communication Technology (ICCT), Chongqing, China,

2018.

[235] H. Zhu, L. He and S. A. Jarvis, “Optimizing job scheduling on multicore computers,” in 22nd

International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication

Systems, Paris, France, 2014.

[236] G. Wang, Y. Wang, H. Liu and H. Guo, “HSIP: a novel task scheduling algorithm for heterogeneous

computing,” Scientific Programming, vol. 2016 (Article ID 3676149), 2016.

[237] M. Orr and O. Sinnen, “Optimal task scheduling for partially heterogeneous systems,” Parallel

Computing, vol. 107, p. 102815, 2021.

[238] M. Akbari, H. Rashidi and S. H. Alizadeh, “An enhanced genetic algorithm with new operators for

task scheduling in heterogeneous computing systems,” Engineering Applications of Artificial

Intelligence, vol. 61, pp. 35-46, 2017.

[239] M. Sulaiman, Z. Halim, M. Lebbah, M. Waqas and S. Tu, “An evolutionary computing-based

efficient hybrid task scheduling approach for heterogeneous computing environment,” Journal of

Grid Computing, vol. 19 (Article number: 11), 2021.

[240] T. Biswas, P. Kuila and A. K. Ray, “A novel resource aware scheduling with multi-criteria for

heterogeneous computing systems,” Engineering Science and Technology, an International Journal,

vol. 22, p. 646–655, 2019.

[241] T. Biswas, P. Kuila and A. K. Ray, “A novel workflow scheduling with multi-criteria using particle

swarm optimization for heterogeneous computing systems,” Cluster Computing, vol. 23, p. 3255–

3271, 2020.

448

[242] T. Biswas, P. Kuila and A. K. Ray, “A novel scheduling with multi-criteria for high-performance

computing systems: an improved genetic algorithm-based approach,” Engineering with Computers,

vol. 35, no. 4, p. 1475–1490, 2019.

[243] L. Zhang, K. Li, C. Li and K. Li, “Bi-objective workflow scheduling of the energy consumption and

reliability in heterogeneous computing systems,” Information Sciences, vol. 379, pp. 241-256, 2017.

[244] T. Biswas, P. Kuila and A. K. Ray, “A novel energy efficient scheduling for high performance

computing systems,” in 9th International Conference on Computing, Communication and

Networking Technologies (ICCCNT), Bengaluru, India, 2018.

[245] E. Gabaldon, F. Guirado, J. L. Lerida and J. Planes, “Particle swarm optimization scheduling for

energy saving in cluster computing heterogeneous environments,” in 4th International Conference

on Future Internet of Things and Cloud Workshops (FiCloudW), Vienna, Austria, 2016.

[246] J. Hao, M. Xian, H. Wang, F. Tang and P. Xiao, “Mobile cloud computing: the state of art, application

scenarios and challenges,” in 4th International Conference on Computational Intelligence &

Communication Technology (CICT), Ghaziabad, India, 2018.

[247] D. De, Mobile cloud computing: architectures, algorithms and applications, Boca Raton, FL:

Chapman and Hall/CRC, 2015.

[248] S. C. Shah, “Mobile ad hoc computational grid: opportunities and challenges,” in IEEE Military

Communications Conference, San Diego, USA, 2013.

[249] P. K. D. Pramanik and P. Choudhury, “Mobility-aware service provisioning for delay tolerant

applications in a mobile crowd computing environment,” SN Applied Sciences, vol. 2, no. 3 (Article

no. 403), pp. 1-17, 2020.

[250] H. Qian and D. Andresen, “An energy-saving task scheduler for mobile devices,” in IEEE/ACIS 14th

International Conference on Computer and Information Science (ICIS), Las Vegas, USA, 2015.

[251] A. Ali, M. M. Iqbal, H. Jamil, F. Qayyum, S. Jabbar, O. Cheikhrouhou, M. Baz and F. Jamil, “An

efficient dynamic-decision based task scheduler for task offloading optimization and energy

management in mobile cloud computing,” Sensors (Basel), vol. 21, no. 13, p. 4527, 2021.

[252] T. Liu, F. Chen, Y. Ma and Y. Xie, “An energy-efficient task scheduling for mobile devices based

on cloud assistant,” Future Generation Computer Systems, vol. 61, pp. 1-12, 2016.

[253] S. C. Shah and M.-S. Park, “An energy-efficient resource allocation scheme for mobile ad hoc

computational grids,” Journal of Grid Computing, vol. 9, pp. 303-323, 2011.

[254] S. C. Shah, Q.-U.-A. Nizamani, S. H. Chauhdary and M.-S. Park, “An effective and robust two-phase

resource allocation scheme for interdependent tasks in mobile ad hoc computational Grids,” Journal

of Parallel and Distributed Computing, vol. 72, no. 12, pp. 1664-1679, 2012.

[255] W. Chen, C. T. Lea and L. Kenli, “Dynamic resource allocation in ad-hoc mobile cloud computing,”

in IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, 2017.

[256] H. Bonan, X. Weiwei, Y. Zhang, Z. Qian, Y. Feng and L. Shen, “Dependent task assignment

algorithm based on swarm optimization and simulated annealing in ad-hoc mobile cloud,” journal of

southeast university (English Edition), vol. 34, no. 4, pp. 430-438, 2018.

[257] T. Shi, M. Yang, X. Li, Q. Lei and Y. Jiang, “An energy-efficient scheduling scheme for time-

constrained tasks in local mobile clouds,” Pervasive and Mobile Computing, vol. 27, pp. 90-105,

2016.

[258] S. C. Shah, S. H. Chauhdary, A. K. Bashir and M. S. Park, “A centralized locationbased based job

scheduling algorithm for interdependent jobs in mobile ad hoc computational grids,” Journal of

Applied Sciences, vol. 10, no. 3, p. 174–181, 2010.

[259] H. Kim, Y. e. Khamra, I. Rodero, S. Jha and M. Parashar, “Autonomic management of application

workflows on hybrid computing infrastructure,” Telecomm. Sys., vol. 19, no. 2-3, p. 75–89, 2011.

[260] X. Wang, Y. Sui, C. Yuen, X. Chen and C. Wang, “Traffic-aware task allocation for cooperative

execution in mobile cloud computing,” in IEEE/CIC International Conference on Communications

in China (ICCC), Chengdu, China, 2016.

[261] H. Topcuoglu, S. Hariri and M.-Y. Wu, “Performance-effective and low-complexity task scheduling

for heterogeneous computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 13, no.

3, pp. 260-274, 2002.

[262] S. Gupta, V. Kumar and G. Agarwal, “Task scheduling in multiprocessor system using genetic

algorithm,” in Second International Conference on Machine Learning and Computing, Bangalore,

India, 2010.

449

[263] P. Damodaran and M. C. Vélez-Gallego, “A simulated annealing algorithm to minimize makespan

of parallel batch processing machines with unequal job ready times,” Expert Systems with

Applications: An International Journal , vol. 39, no. 1, pp. 1451-1458, 2012.

[264] X. Zuo, G. Zhang and W. Tan, “Self-adaptive learning PSO-based deadline,” IEEE Transactions on

Automation Science and Engineering, vol. 11, no. 2, pp. 564-573, 2014.

[265] B. Keshanchi, A. Souri and N. J. Navimipour, “An improved genetic algorithm for task scheduling

in the cloud environments using the priority queues: Formal verification, simulation, and statistical

testing,” Journal of Systems and Software, vol. 124, pp. 1-21, 2017.

[266] H. Arabnejad, “List based task scheduling algorithms on heterogeneous systems - an overview,”

Doctoral Symposium in Informatics Engineering, vol. 93, 2013.

[267] J. Brevik, D. Nurmi and R. Wolski, “Automatic methods for predicting machine availability in

desktop Grid and peer-to-peer systems,” in IEEE International Symposium on Cluster Computing

and the Grid (CCGrid 2004), Chicago, USA, 2004.

[268] A. Andrzejak, D. Kondo and D. P. Anderson, “Ensuring collective availability in volatile resource

pools via forecasting,” in Managing Large-Scale Service Deployment (DSOM 2008), Lecture Notes

in Computer Science, vol. 5273, F. De Turck, W. Kellerer and G. Kormentzas, Eds., Berlin,

Heidelberg, Springer, 2008, pp. 149-161.

[269] S. S. Vaithiya and S. M. S. Bhanu, “Mobility and battery power prediction based job scheduling in

mobile grid environment,” in International Conference on Parallel Distributed Computing

Technologies and Applications (PDCTA 2011), 2011.

[270] V. V. Selvi, S. Sharfraz and R. Parthasarathi, “Mobile ad hoc grid using trace based mobility model,”

in Advances in Grid and Pervasive Computing (GPC 2007), Paris, France, 2007.

[271] M. Á. Sipos and P. Ekler, “Predicting availability of mobile peers in large peer-to-peer networks,” in

3rd Eastern European Regional Conference on the Engineering of Computer Based Systems,

Budapest, Hungary, 2013.

[272] S. C. Haryanti and R. F. Sari, “Improving resource allocation performance in mobile ad hoc grid with

mobility prediction,” in International Conference on Intelligent Green Building and Smart Grid

(IGBSG), Taipei, Taiwan, 2014.

[273] S. Dargan, M. Kumar, M. R. Ayyagari and G. Kumar, “A survey of deep learning and its applications:

a new paradigm to machine learning,” Archives of Computational Methods in Engineering, vol. 27,

pp. 1071-1092, 2020.

[274] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu, S.-C. Chen and S. S.

Iyengar, “A survey on deep learning: algorithms, techniques, and applications,” ACM Computing

Surveys, vol. 51, no. 5, pp. 1-36, 2019.

[275] C. A. Dhawale, K. Dhawale and R. Dubey, “A review on deep learning applications,” in Deep

Learning Techniques and Optimization Strategies in Big Data Analytics, J. J. Thomas, P. Karagoz,

B. B. Ahamed and P. Vasant, Eds., USA, IGI GLobal, 2020, pp. 21-31.

[276] S. Khan and T. Yairi, “A review on the application of deep learning in system health management,”

Mechanical Systems and Signal Processing, vol. 107, pp. 241-265, 2018.

[277] R. Miotto, F. Wang, S. Wang, X. Jiang and J. T. Dudley, “Deep learning for healthcare: review,

opportunities and challenges,” Briefings in Bioinformatics, vol. 19, no. 6, pp. 1236-1246, 2018.

[278] B. Yang and Y. Xu, “Applications of deep-learning approaches in horticultural research: a review,”

Horticulture Research, vol. 8 (Article number: 123), 2021.

[279] A. Carrio, C. Sampedro, A. Rodriguez-Ramos and P. Campoy, “A review of deep learning methods

and applications for unmanned aerial vehicles,” Journal of Sensors, vol. 2017 (Article ID 3296874),

2017.

[280] J. Huang, J. Chai and S. Cho, “Deep learning in finance and banking: A literature review and

classification,” Frontiers of Business Research in China, vol. 14 (Article number: 13) , 2020.

[281] A. Sarraf, M. Azhdari and S. Sarraf, “A comprehensive review of deep learning architectures for

computer vision applications,” American Scientific Research Journal for Engineering, Technology,

and Sciences, vol. 77, no. 1, pp. 1-29, 2021.

[282] Y. Zhang, J. Yan, S. Chen, M. Gong, D. Gao, M. Zhu and W. Gan, “Review of the applications of

deep learning in bioinformatics,” Current Bioinformatics, vol. 15, no. 8, pp. 898-911, 2020.

450

[283] M. I. Tariq, N. A. Memon, S. Ahmed, S. Tayyaba, M. T. Mushtaq, N. A. Mian, M. Imran and M. W.

Ashraf, “A review of deep learning security and privacy defensive techniques,” Mobile Information

Systems, vol. 2020 (Article ID 6535834), 2020.

[284] A. Sagheer and M. Kotb, “Time series forecasting of petroleum production using deep LSTM

recurrent networks,” Neurocomputing, vol. 323, no. 5, pp. 203-213, 2019.

[285] J. Choi and B. Lee, “Combining LSTM network ensemble via adaptive weighting for improved time

series forecasting,” Mathematical Problems in Engineering, vol. 2018 (Article ID 2470171), 2018.

[286] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen and J. Liu, “LSTM network: a deep learning approach for

short-term traffic forecast,” IET Intelligent Transport Systems, vol. 11, no. 2, 3, pp. 68-75, 2017.

[287] P. B. Weerakody, K. W. Wong, G. Wang and W. Ela, “A review of irregular time series data handling

with gated recurrent neural networks,” Neurocomputing, vol. 441, pp. 161-178, 2021.

[288] Z. Che, S. Purushotham, K. Cho, D. Sontag and Y. Liu, “Recurrent neural networks for multivariate

time series with missing values,” Scientific Reports, vol. 8, p. 6085, 2018.

[289] K. Lu, X. R. Meng, W. X. Sun, R. G. Zhang, Y. K. Han, S. Gao and D. Su, “GRU-based encoder-

decoder for short-term CHP heat load forecast,” IOP Conference Series: Materials Science and

Engineering, vol. 392, no. 6, p. 062173, 2018.

[290] N. Xue, I. Triguero, G. P. Figueredo and D. Landa-Silva, “Evolving deep CNN-LSTMs for inventory

time series prediction,” in IEEE Congress on Evolutionary Computation (CEC), Wellington, New

Zealand, 2019.

[291] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon and K. P. Soman, “Stock price

prediction using LSTM, RNN and CNN-sliding window model,” in International Conference on

Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 2017.

[292] J. M.-T. Wu, Z. Li, N. Herencsar, B. Vo and J. C.-W. Lin, “A graph-based CNN-LSTM stock price

prediction algorithm with leading indicators,” Multimedia Systems, 2021.

[293] T. Kim and H. Y. Kim, “Forecasting stock prices with a feature fusion LSTM-CNN model using

different representations of the same data,” PLoS ONE, vol. 14, no. 2, p. e0212320, 2019.

[294] W. Lu, J. Li, Y. Li, A. Sun and J. Wang, “A CNN-LSTM-based model to forecast stock prices,”

Complexity, vol. 2020 (Article ID 6622927), 2020.

[295] I. E. Livieris, E. Pintelas and P. Pintelas, “A CNN–LSTM model for gold price time-series

forecasting,” Neural Computing and Applications, vol. 32, pp. 17351-17360, 2020.

[296] Y. Li and W. Dai, “Bitcoin price forecasting method based on CNN-LSTM hybrid neural network

model,” The Journal of Engineering, vol. 2020, no. 13, pp. 344-347, 2020.

[297] T. Ni, L. Wang, P. Zhang, B. Wang and W. Li, “Daily tourist flow forecasting using SPCA and CNN-

LSTM neural network,” Concurrency and Computation: Practice and Experience, vol. 33, no. 5, p.

e5980, 2021.

[298] J. Zhao, J. Lin, S. Liang and M. Wang, “Sentimental prediction model of personality based on CNN-

LSTM in a social media environment,” Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp.

3097-3106, 2021.

[299] T.-Y. Kim and S.-B. Cho, “Predicting the household power consumption using CNN-LSTM hybrid

networks,” in Intelligent Data Engineering and Automated Learning (IDEAL 2018). Lecture Notes

in Computer Science, vol. 11314, H. Yin, D. Camacho, P. Novais and A. Tallón-Ballesteros, Eds.,

Springer, Cham, 2018, pp. 481-490.

[300] T.-Y. Kim and S.-B. Cho, “Predicting residential energy consumption using CNN-LSTM neural

networks,” Energy, vol. 182, no. Sept, pp. 72-81, 2019.

[301] M. Tovar, M. Robles and F. Rashid, “PV power prediction, using CNN-LSTM hybrid neural network

model. Case of study: Temixco-Morelos, México,” Energies, vol. 13, no. 24, p. 6512, 2020.

[302] H. Kuang, Q. Guo, S. Li and H. Zhong, “Short-term wind power forecasting model based on multi-

feature extraction and CNN-LSTM,” IOP Conference Series: Earth and Environmental Science, vol.

702, p. 012019, 2021.

[303] C. Ding, G. Wang, X. Zhang, Q. Liu and X. Liu, “A hybrid CNN-LSTM model for predicting PM2.5

in Beijing based on spatiotemporal correlation,” Environmental and Ecological Statistics, vol. 28,

pp. 503-522, 2021.

[304] T. Li, M. Hua and X. Wu, “A hybrid CNN-LSTM model for forecasting particulate matter (PM2.5),”

IEEE Access, vol. 8, pp. 26933-26940, 2020.

451

[305] W. He, J. Li, Z. Tang, B. Wu, H. Luan, C. Chen and H. Liang, “A novel hybrid CNN-LSTM scheme

for nitrogen oxide emission prediction in FCC unit,” Mathematical Problems in Engineering, vol.

2020 (Article ID 8071810), 2020.

[306] I. E. Livieris, E. Pintelas, N. Kiriakidou and S. Stavroyiannis, “An advanced deep learning model for

short-term forecasting U.S. natural gas price and movement,” in Applications and Innovations (AIAI

2020), IFIP WG 12.5, International Workshopsmhdw 2020 and 5G-PINE 2020, Neos Marmaras,

Greece, 2020.

[307] W. Boulila, H. Ghandorh, M. A. Khan, F. Ahmed and J. Ahmad, “A novel CNN-LSTM-based

approach to predict urban expansion,” Ecological Informatics, vol. 64, no. Sept, p. 101325, 2021.

[308] K. Cao, H. Kim, C. Hwang and H. Jung, “CNN-LSTM coupled model for prediction of waterworks

operation data,” Journal of Information Processing Systems, vol. 14, no. 6, pp. 1508-1520, 2018.

[309] P. K. Jonnakuti and U. B. T. V. Sai, “A hybrid CNN-LSTM based model for the prediction of sea

surface temperature using time-series satellite data,” in 22nd EGU General Assembly (EGU2020-

817), Online, 2020.

[310] R. Chen, X. Wang, W. Zhang, X. Zhu, A. Li and C. Yang, “A hybrid CNN-LSTM model for typhoon

formation forecasting,” Geoinformatica, vol. 23, no. 3, pp. 375-396, 2019.

[311] S. Khaki, L. Wang and S. V. Archontoulis, “A CNN-RNN framework for crop yield prediction,”

Frontiers in Plant Science, vol. 10, p. 1750, 2020.

[312] M. ZabirulIslam, M. M. Islam and A. Asraf, “A combined deep CNN-LSTM network for the

detection of novel coronavirus (COVID-19) using X-ray images,” Informatics in Medicine Unlocked,

vol. 20, p. 100412, 2020.

[313] A. G. Dastider, F. Sadik and S. A. Fattah, “An integrated autoencoder-based hybrid CNN-LSTM

model for COVID-19 severity prediction from lung ultrasound,” Computers in Biology and

Medicine, vol. 132, no. May, p. 104296, 2021.

[314] S. Dutta, S. K. Bandyopadhyay and T.-H. Kim, “CNN-LSTM model for verifying predictions of

Covid-19 cases,” Asian Journal of Research in Computer Science, vol. 5, no. 4, pp. 25-32, 2020.

[315] S. A. Rahman and D. A. Adjeroh, “Deep learning using convolutional LSTM estimates biological

age from physical activity,” Scientific Reports, vol. 9 (Article number: 11425), 2019.

[316] Y. Zhang, J. Yao and H. Guan, “Intelligent cloud resource management with deep reinforcement

learning,” IEEE Cloud Computing, vol. 4, pp. 60-69, 2017.

[317] Y. Lu, L. Liu, J. Panneerselvam, B. Yuan, J. Gu and N. Antonopoulos, “A GRU-based prediction

framework for intelligent resource management at cloud data centres in the age of 5G,” IEEE

Transactions on Cognitive Communications and Networking, vol. 6, no. 2, pp. 486-498, 2020.

[318] H. Jing, Y. Zhang, J. Zhou, W. Zhang, X. Liu, G. Min and Z. Zhang, “LSTM-based service migration

for pervasive cloud computing,” in IEEE International Conference on Internet of Things (iThings)

and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, Canada, 2018.

[319] Y. Zhu, W. Zhang, Y. Chen and H. Gao, “A novel approach to workload prediction using attention-

based LSTM encoder-decoder network in cloud environment,” EURASIP Journal on Wireless

Communications and Networking, vol. 2019 (Article number: 274), 2019.

[320] J. Kumar, R. Goomer and A. K. Singh, “Long Short Term Memory Recurrent Neural Network

(LSTM-RNN) Based Workload Forecasting Model For Cloud Datacenters,” Procedia Computer

Science, vol. 125, pp. 676-682, 2018.

[321] Anupama K C, Shivakumar B R, Nagaraja R, “Resource utilization prediction in cloud computing

using hybrid model,” International Journal of Advanced Computer Science and Applications, vol.

12, no. 4, pp. 373-381, 2021.

[322] H. Li, K. Ota and M. Dong, “Learning IoT in edge: deep learning for the Internet of Things with edge

computing,” IEEE Network, vol. 32, no. 1, pp. 96-101, 2018.

[323] J. Shuja, K. Bilal, W. Alasmary, H. Sinky and E. Alanazi, “Applying machine learning techniques

for caching in next-generation edge,” Journal of Network and Computer Applications, vol. 181, p.

103005, 2021.

[324] J. Violos, E. Psomakelis, D. Danopoulos, S. Tsanakas and T. Varvarigou, “Using LSTM neural

networks as resource utilization predictors: the case of training deep learning models on the edge,”

in Economics of Grids, Clouds, Systems, and Services. GECON 2020. Lecture Notes in Computer

452

Science, vol, vol. 12441, K. Djemame, J. Altmann, J. Á. Bañares, O. Agmon Ben-Yehuda, V.

Stankovski and B. Tuffin, Eds., Springer, Cham, 2020, pp. 67-74.

[325] F. Hussain, S. A. Hassan, R. Hussain and E. Hossain, “Machine learning for resource management

in cellular and IoT networks: potentials, current solutions, and open challenges,” IEEE

Communications Surveys & Tutorials, vol. 22, no. 2, pp. 1251-1275, 2020.

[326] B. Gu, X. Zhang, Z. Lin and M. Alazab, “Deep multi-agent reinforcement learning-based resource

allocation for internet of controllable things,” IEEE Internet of Things Journal, vol. 8, no. 5, pp.

3066-3074, 2021.

[327] K. Li, W. Ni, E. Tovar and A. Jamalipour, “Deep Q-learning based resource management in UAV-

assisted wireless powered IoT networks,” in IEEE International Conference on Communications

(ICC), Dublin, Ireland, 2020.

[328] U. Challita, L. Dong and W. Saad, “Proactive resource management for LTE in unlicensed Spectrum:

a deep learning perspective,” IEEE Transactions on Wireless Communications, vol. 17, no. 7, pp.

4674-4689, 2018.

[329] R. C. Bhaddurgatte, B. P. Vijaya Kumar and S. M. Kusuma, “Machine learning and prediction-based

resource management in IoT considering QoS,” International Journal of Recent Technology and

Engineering, vol. 8, no. 2, pp. 687-694, 2019.

[330] Y. Peng, G. Zhang, J. Shi, B. Xu and L. Zheng, “SRA-LSTM: social relationship attention LSTM

for human trajectory prediction,” arXiv:2103.17045v1 [cs.CV], 2021.

[331] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei and S. Savarese, “Social LSTM: human

trajectory prediction in crowded spaces,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Las Vegas, USA, 2016.

[332] H. Manh and G. Alaghband, “Scene-LSTM: A model for human trajectory prediction,”

arXiv:1808.04018v2 [cs.CV], 2019.

[333] N. Nikhil and B. T. Morris, “Convolutional neural network for trajectory prediction,” in Computer

Vision – ECCV 2018 Workshops. Lecture Notes in Computer Science, vol. 11131, L. Leal-Taixé and

S. Roth, Eds., Springer, Cham, 2019, pp. 186-196.

[334] X. Song, K. Chen, X. Li, J. Sun, B. Hou, Y. Cui, B. Zhang, G. Xiong and Z. Wang, “Pedestrian

trajectory prediction based on deep convolutional LSTM network,” IEEE Transactions on Intelligent

Transportation Systems, 2020.

[335] G. Xie, A. Shangguan, R. Fei, W. Ji, W. Ma and X. Hei, “Motion trajectory prediction based on a

CNN-LSTM sequential model,” SCIENCE CHINA Information Sciences, vol. 63, no. 11, p. 212207,

2020.

[336] H. R. Pamuluri, “Predicting user mobility using deep learning methods,” Master's Thesis, Department

of Computer Science, Blekinge Institute of Technology, Karlskrona, Sweden, 2020.

[337] C. Cui, M. Zhao and K. Wong, “An LSTM-method-based availability prediction for optimized

offloading in mobile edges,” Sensors (Basel), vol. 19, no. 20, p. 4467, 2019.

[338] R. Li, C. Wang, Z. Zhao, R. Guo and H. Zhang, “The LSTM-based advantage actor-critic learning

for resource management in network slicing with user mobility,” IEEE Communications Letters, vol.

24, no. 9, pp. 2005-2009, 2020.

[339] S. C. Shah, A. K. Bashir, S. H. Chauhdary, C. Jiehui and M.-S. Park, “Mobile ad hoc computational

grid for low constraint devices,” in International Conference on Future Computer and

Communication, Kuala Lumpar, Malaysia, 2009.

[340] P. G. Tiburcio and M. A. Spohn, “Ad hoc grid: an adaptive and self-organizing peer-to-peer

computing grid,” in 10th IEEE International Conference on Computer and Information Technology,

Bradford, UK, 2010.

[341] G. A. McGilvary, A. Barker and M. Atkinson, “Ad hoc cloud computing,” in IEEE 8th International

Conference on Cloud Computing, New York, USA, 2015.

[342] C. Barca, C. Barca, C. Cucu, M.-R. Gavriloaia, R. Vizireanu, O. Fratu and S. Halunga, “A virtual

cloud computing provider for mobile devices,” in 8th International Conference on Electronics,

Computers and Artificial Intelligence (ECAI), Ploiesti, Romania, 2016.

[343] M. Gonzlez, C. Hidalgo and A. L. Barabsi, “Understanding individual human mobility patterns,”

Nature, vol. 453, pp. 479-482, 2008.

[344] W. Navidi and T. Camp, “Stationary distributions for the random waypoint mobility model,” IEEE

Transactions on Mobile Computing, vol. 3, no. 1, pp. 99-108, 2004.

453

[345] J. Chan and A. Seneviratne, “A practical user mobility prediction algorithm for supporting adaptive

QoS in wireless networks,” in Seventh IEEE International Conference on Networks (ICON'99), 1999.

[346] G. Lium and G. Maguire Jr., “A class of mobile motion prediction algorithms for wireless mobile

computing and communications,” Mobile Networks Application, vol. 1, no. 2, pp. 113-121, 1996.

[347] T. Liu, P. Bahl and I. Chlamtac, “Mobility modeling, location tracking, and trajectory prediction in

wireless ATM networks,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 6, pp.

922- 936, 1998.

[348] D. Levine, I. Akyildiz and M. Naghshineh, “A resource estimation and call admission algorithm for

wireless multimedia networks using the shadow cluster concept,” IEEE/ACM Transactions on

Networking, vol. 5, no. 1, pp. 1-12, 1997.

[349] W. Su, S. J. Lee and M. Gerla, “Mobility prediction and routing in ad hoc wireless networks,”

International Journal on Network Management, vol. 11, no. 1, pp. 3-30, 2001.

[350] A. Agarwal and S. R. Das, “Dead reckoning in mobile ad hoc networks,” in IEEE Wireless

Communications and Networking (WCNC), New Orleans, USA, 2003.

[351] T. Camp, J. Boleng and V. Davies, “A survey of mobility models for ad hoc network research,”

Wireless Communication & Mobile Computing, vol. 2, no. 5, pp. 483-502, 2002.

[352] F. Erbas, J. Steuer, K. Kyamakya, D. Eggesieker and K. Jobmann, “A regular path recognition

method and prediction of user movements in wireless networks,” in IEEE Vehicular Technology

Conference (VTC), 2001.

[353] W. Wang, X. Guan, B. Wang and Y. Wang, “A novel mobility model based on semi-random circular

movement in mobile Ad hoc network,” Journal of Information Sciences, vol. 180, no. 3, pp. 399-

413, 2010.

[354] T. Gross and C. Truduce, “A mobility model based on wlan traces and its validation,” in 24th Annual

Joint Conference of the IEEE Computer and Communications Societies, Miami, USA, 2005.

[355] M. Kim, D. Kotz and S. Kim, “Extracting a mobility model from real user traces,” in 25th IEEE

International Conference on Computer Communication (INFOCOM), 2006.

[356] I. Khalifa and H. Abbas, “Mobility Prediction in Dynamic Grids,” Journal on Computer and

Information Science, vol. 5, no. 3, 2012.

[357] L. Song, D. Kotz, R. Jain and X. He, “Evaluating location predictors with extensive Wi-Fi mobility

data,” in IEEE INFOCOM, Hong Kong, 2004.

[358] I. Burbey and T. L. Martin, “Predicting future locations using prediction-by-partial-match,” in First

ACM international workshop on Mobile entity localization and tracking in GPS-less environments

(MELT '08), San Francisco; USA, 2008.

[359] M. Musolesi and C. Mascolo, “Designing mobility models based on social network theory,” ACM

SIGMOBILE Mobile Computing and Communications Review, vol. 11, no. 3, 2007.

[360] X. Li, N. Mitton and D. Simplot-Ryl, “Mobility prediction based neighborhood discovery in mobile

ad hoc networks,” in NETWORKING 2011. Lecture Notes in Computer Science , vol. 6640, J.

Domingo-Pascual, P. Manzoni, S. Palazzo, A. Pont and C. Scoglio, Eds., Berlin, Heidelberg,

Springer, 2011, pp. 241-253.

[361] H. Velayos and G. Karlsson, “Limitations of range estimation in wireless LAN,” in 1st Workshop on

Positioning, Navigation and Communication (WPNC'04) , Hannover, Germany, 2004.

[362] P. Basu, N. Khan and T. Little, “A mobility based metric for clustering in mobile ad hoc networks,”

in 21st International Conference on Distributed Computing Systems Workshops, Mesa, AZ, USA,

2001.

[363] J. Yu and P. Chong, “A survey of clustering schemes for mobile ad hoc networks,” IEEE

Communications Surveys & Tutorials, vol. 7, no. 1, pp. 32-48, 2005.

[364] I. Er and W. Seah, “Mobility-based d-hop clustering algorithm for mobile ad hoc networks,” in IEEE

Wireless Communications and Networking Conference, Atlanta, GA, USA, 2004.

[365] R. Palit, E. Hossain and P. Thulasiraman, “MAPLE: a framework for mobility‐aware pro‐active low

energy clustering in ad hoc mobile wireless networks,” Wireless Communications and Mobile

Computing, vol. 6, no. 6, pp. 773-789, 2006.

[366] J. B. Y. Tsui, Fundamental of global positioning system receivers: a software approach, 2nd ed., John

Wiley and Sons, 2004.

454

[367] G. Wang, L. Zhang and J. Cao, “A virtual circle-based clustering algorithm with mobility prediction

in large-scale MANETs,” in Networking and Mobile Computing (ICCNMC 2005). Lecture Notes in

Computer Science, vol. 3619, X. Lu and W. Zha, Eds., Berlin, Heidelberg, Springer, pp. 364-374.

[368] D. Mills, “Internet time synchronization: the network time protocol,” IEEE Transactions on

Communications, vol. 39, no. 10, pp. 1482-1493, 1991.

[369] H. S. Hassanein, H. Du and C. Yeh, “Robust route establishment in high mobility MANETS,” in

International Computer Engineering Conference, 2004.

[370] P. Brown, J. A. Estefan, K. Laskey, F. G. McCabe and D. Thornton, “OASIS reference architecture

foundation for service oriented architecture version 1.0,” 4 December 2012. [Online]. Available:

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.pdf. [Accessed 10 March

2019].

[371] Z. Smoreda, A.-M. O. Raimond and T. Couronné, “Spatiotemporal data from mobile phones for

personal mobility assessment,” in Transport Survey Methods: Best Practice for Decision Making, J.

Zmud, M. Lee-Gosselin, J. A. Carrasco and M. A. Munizaga, Eds., Emerald, 2013.

[372] S. Faye, W. Bronzi, I. Tahirou and T. Engel, “Characterizing user mobility using mobile sensing

systems,” International Journal of Distributed Sensor Networks, vol. 13, no. 8, 2017.

[373] N. E. Williams, T. A. Thomas, M. Dunbar, N. Eagle and A. Dobra, “Measures of human mobility

using mobile phone records enhanced with GIS data,” PLOS ONE, vol. 10, no. 7, p. e0133630, 2015.

[374] W. Wang and I. F. A. Yildiz, “On the estimation of user mobility pattern for location tracking in

wireless networks,” in IEEE Global Telecommunications Conference (GLOBECOM '02), Taipei,

Taiwan, 2002.

[375] W. Ma, Y. Fang and P. Lin, “Mobility management strategy based on user mobility patterns in

wireless networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 1, 2007.

[376] S. Deng, L. Huang, J. Taheri, J. Yin, M. Zhou and A. Y. Zomaya, “Mobility-aware service

composition in mobile communities,” IEEE Transactions on Systems, Man, and Cybernetics:

Systems, vol. 47, no. 3, pp. 555-568, 2017.

[377] S. Tyagi, S. Som and Q. P. Ranab, “A reliability based variant of AODV in MANETs: proposal,

analysis and comparison,” Procedia Computer Science, vol. 79, pp. 903-911, 2016.

[378] K. K. Vadde and V. R. Syrotiuk, “Factor interaction on service delivery in mobile ad hoc networks,”

IEEE Journal on Selected Areas in Communications, vol. 22, no. 7, pp. 1335-1346, 2004.

[379] Z. Gao, Y. Yang, J. Zhao, J. Cui and X. Li, “Service discovery protocols for MANETs: a survey,” in

Mobile Ad-hoc and Sensor Networks (MSN 2006), J. Cao, I. Stojmenovic, X. Jia and S. K. Das, Eds.,

Berlin, Heidelberg, Springer , pp. 232-243.

[380] V. Lenders, M. May and B. Plattner, “Service discovery in mobile ad hoc networks: A field theoretic

approach,” Pervasive and Mobile Computing, vol. 1, pp. 343-370, 2005.

[381] C. Chang, S. N. Srirama and S. Ling, “An adaptive mediation framework for mobile P2P social

content sharing,” in Service-Oriented Computing (ICSOC 2012). Lecture Notes in Computer Science,

vol. 7636, C. Liu, H. Ludwig, F. Toumani and Q. Yu, Eds., Springer, Berlin, Heidelberg, 2012, pp.

374-388.

[382] G. Carvalho, B. Cabral, V. Pereira and J. Bernardino, “Edge computing: current trends, research

challenges and future directions,” Computing, vol. 103, pp. 993-1023, 2021.

[383] M. Larouia, B. Nour, H. Moungla, M. A. Cherif, H. Afifi and M. Guizani, “Edge and fog computing

for IoT: A survey on current research activities & future directions,” Computer Communications,

vol. 180, pp. 210-231, 2021.

[384] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder and B. Koldehofe, “Mobile fog,” in 2nd

ACM SIGCOMM Workshop on Mobile Cloud Computing (MCC’13), Hong Kong, China, 2013.

[385] A. Chandra, JonWeissman and B. Heintz, “Decentralized edge clouds,” IEEE Internet Computing,

vol. 17, no. 5, pp. 70-73, 2013.

[386] A. Jonathan, M. Ryden, K. Oh, A. Chandra and JonWeissman, “Nebula: distributed edge cloud for

data intensive computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 11,

pp. 3229-3242, 2017.

[387] M. Hirsch, C. Mateos, A. Zunino, T. A. Majchrzak, T.-M. Grønli and H. Kaindl, “A simulation-based

performance evaluation of heuristics for dew computing,” in 54th Hawaii International Conference

on System Sciences, Maui, Hawaii, 2021.

455

[388] M. Hirsch, C. Mateos, A. Zunino, T. Majchrzak, T. Grønli and H. Kaindl, “A task execution scheme

for dew computing with state-of-the-art smartphones,” Electronics, vol. 10, no. 16, p. 2006, 2021.

[389] X. Zhang, H. Chen, Y. Zhao, Z. Ma, Y. Xu, H. Huang, H. Yin and D. O. Wu, “Improving cloud

gaming experience through mobile edge computing,” IEEE Wireless Communications, vol. 26, no.

4, pp. 178-183, 2019.

[390] H. Xing, L. Liu, J. Xu and A. Nallanathan, “Joint task assignment and resource allocation for D2D-

enabled mobile-edge computing,” IEEE Transactions on Communications, vol. 67, no. 6, pp. 4193-

4207, 2019.

[391] Y. Pan, L. Gao, J. Luo, T. Wang and J. Luo, “A multi-dimensional resource crowdsourcing

framework for mobile edge computing,” in IEEE International Conference on Communications

(ICC), Dublin, Ireland, 2020.

[392] F.-J. Ferrández-Pastor, H. Mora, A. Jimeno-Morenilla and B. Volckaert, “Deployment of IoT edge

and fog computing technologies to develop smart building services,” Sustainability, vol. 10, no. 11,

p. 3832, 2018.

[393] A. Seitz, J. O. Johanssen, B. Bruegge, V. Loftness, V. Hartkopf and M. Sturm, “A fog architecture

for decentralized decision making in smart buildings,” in 2nd International Workshop on Science of

Smart City Operations and Platforms Engineering (SCOPE '17), Pittsburgh, Pennsylvania, 2017.

[394] R. Vilalta, V. Lopez, A. Giorgetti, S. Peng, V. Orsini, L. Velasco, R. Serral-Gracià, D. Morris, S. D.

Fina, F. Cugini, P. Castoldi, A. Mayoral, R. Casellas, R. Martínez, C. Verikoukis and R. Muñoz,

“TelcoFog: a unified flexible fog and cloud computing architecture for 5G networks,” IEEE

Communications Magazine, vol. 55, no. 8, pp. 36-43, 2017.

[395] S. Goodwin, Smart ohme automation with Linux and Raspberry Pi, 2nd ed., Apress, 2013.

[396] M. Mahadi Abdul Jamil and M. Shukri Ahmad, “A pilot study: development of home automation

system via raspberry Pi,” in 2nd International Conference on Biomedical Engineering (ICoBE),

Penang, Malaysia, 2015.

[397] M. Aftab, C. Chen, C.-K. Chau and T. Rahwan, “Automatic HVAC control with real-time occupancy

recognition and simulation-guided model predictive control in low-cost embedded system,” Energy

and Buildings, vol. 154, pp. 141-156, 2017.

[398] Z. A. Ali, M. Shafiq, M. Aamir, F. M. and K. Hessan, “Heating, ventilation and air conditioning

system using Raspberry Pi and interfacing touch screen,” International Research Journal of

Engineering and Technology, vol. 2, no. 1, 2015.

[399] P. Khot and N. Hulle, “Raspberry Pi based wireless sensor network in heating, ventilation and air

condition application,” International Research Journal of Engineering and Technology, vol. 4, no.

12, 2017.

[400] E. G. Swedin and D. L. Ferro, Computers: the life story of a technology, Baltimore, Maryland: Johns

Hopkins University Press, 2007.

[401] I. Foster and C. Kesselman, Eds., The grid: blueprint for a new computing infrastructure, San

Francisco, United States: Morgan Kaufmann Publishers, 1998.

[402] E. Brynjolfsson, P. Hofmann and J. Jordan, “Cloud computing and electricity: beyond the utility

model,” Communications of the ACM, vol. 53, no. 5, pp. 32-34, 2010.

[403] T. Korri, “Cloud computing: utility computing over the Internet,” in TKK T-110.5190 Seminar on

Internetworking, 2009.

[404] R. Buyya, “Market-oriented cloud computing: vision, hype, and reality of delivering computing as

the 5th utility,” in 4th ChinaGrid Annual Conference, Yangtai, China, 2009.

[405] C. Bonnington, “In less than two years, a smartphone could be your only computer,” 10 February

2015. [Online]. Available: http://www.wired.com/2015/02/smartphone-only-computer/. [Accessed

27 June 2016].

[406] StatCounter Global Stats, “Mobile and tablet internet usage exceeds desktop for first time

worldwide,” 1 November 2016. [Online]. Available: http://gs.statcounter.com/press/mobile-and-

tablet-internet-usage-exceeds-desktop-for-first-time-worldwide. [Accessed 2 November 2016].

[407] Digit NewsDesk, “Turing wants to bring the future flagship smartphone by 2017,” 2 September 2016.

[Online]. Available: http://www.digit.in/mobile-phones/this-is-turings-vision-of-a-future-flagship-

smartphone-31600.html. [Accessed 3 September 2016].

[408] NVIDIA, “The benefits of multiple CPU cores in mobile devices,” NVIDIA Corporation, 2010.

456

[409] “ARM and QUALCOMM: enabling the next mobile computing revolution with highly integrated

ARMv8-A based SoCs,” ARM/Qualcomm, 2014.

[410] C. Ziegler, “LG Optimus 2X: first dual-core smartphone launches with Android, 4-inch display,

1080p video recording,” 15 December 2010. [Online]. Available: https://www.engadget.com/

2010/12/15/lg-optimus-2x-first-dual-core-smartphone-launches-with-android/. [Accessed 211

August 2022].

[411] S. Choudhury, “List of phones with Snapdragon 8 gen 1 to buy in 2022,” 6 January 2022. [Online].

Available: https://www.dealntech.com/snapdragon-898-processor-phones/. [Accessed 24 July

2022].

[412] A. Asaduzzaman, D. Gummadi and C. M. Yip, “A talented CPU-to-GPU memory mapping

technique,” in IEEE SOUTHEASTCON 2014, Lexington, KY, 2014.

[413] C. Cullinan, C. Wyant and T. Frattesi, “Computing performance benchmarks among CPU, GPU, and

FPGA,” MathWorks, 2012.

[414] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE Computer Society, 2010.

[415] N. Muralidharan, S. Wunnava and A. Noel, “The system on chip technology,” in 2nd Latin American

and Caribbean Conference for Engineering and Technology (LACCEI’2004), Miami, Florida, 2004.

[416] S. Anthony, “SoC vs. CPU – the battle for the future of computing,” 19 April 2012. [Online].

Available: http://www.extremetech.com/computing/126235-soc-vs-cpu-the-battle-for-the-future-of-

computing. [Accessed 11 August 2022].

[417] N. Rajovicxz, P. M. Carpenterx, I. Geladox, N. Puzovicx, A. Ramirezxz and M. Valero,

“Supercomputing with commodity CPUs: are mobile SoCs ready for HPC?,” in International

Conference on High Performance Computing, Networking, Storage and Analysis (SC ’13), Denver,

USA, 2013.

[418] W. Oh, “India will overtake US to become world's second largest smartphone market by 2017,” 01

July 2015. [Online]. Available: https://www.strategyanalytics.com/strategy-analytics/news/strategy-

analytics-press-releases/strategy-analytics-press-release/2015/07/01/India-will-overtake-US-to-

become-world's-second-largest-smartphone-market-by-2017#.VuHPKPl97IX. [Accessed 11 March

2016].

[419] Cisco, “Cisco visual networking index: global mobile data traffic forecast update, 2015–2020,”

Cisco, February 2016.

[420] GSMA Intelligence, “The mobile economy 2022,” GSMA, 2022.

[421] Newsroom, “Gartner says worldwide smartphone sales grew 3.9 percent in first quarter of 2016,”

Gartner, 19 May 2016. [Online]. Available: https://www.gartner.com/en/newsroom/press-releases/

2016-05-19-gartner-says-worldwide-smartphone-sales-grew-4-percent-in-first-quarter-of-2016.

[Accessed 11 August 2022].

[422] S. O'Dea, “Smartphone subscriptions worldwide 2016-2027,” 23 February 2022. [Online]. Available:

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/. [Accessed 13

July 2022].

[423] S. O'Dea, “Number of smartphone connections 2025, by country,” 29 2021 April. [Online].

Available: https://www.statista.com/statistics/982135/smartphone-connections-by-country/.

[Accessed 13 July 2022].

[424] GSMA, “Smartphones to account for two thirds of world's mobile market by 2020 says new GSMA

intelligence study,” 11 September 2014. [Online]. Available: https://www.gsma.com/newsroom/

press-release/smartphones-account-two-thirds-worlds-mobile-market-2020/. [Accessed 17 August

2018].

[425] GSMA Newsroom, “Two-thirds of mobile connections running on 4G/5G networks by 2025, finds

new GSMA study,” 26 February 2018. [Online]. Available: https://www.gsma.com/newsroom/press-

release/two-thirds-mobile-connections-running-4g-5g-networks-2025-finds-new-gsma-study/.

[Accessed 13 July 2022].

[426] A. Weissberger, “Development of “IMT vision for 2030 and beyond” from ITU-R WP 5D,” 15 June

2021. [Online]. Available: https://techblog.comsoc.org/2021/06/15/development-of-imt-vision-for-

2030-and-beyond-from-itu-r-wp-5d/. [Accessed 13 July 2022].

[427] Orange, “Orange’s vision for 6G,” Orange, March 2022.

[428] Next G Alliance Working Groups, “National 6G roadmap,” 2022. [Online]. Available: https://

nextgalliance.org/working_group/national-6g-roadmap/. [Accessed 13 July 2022].

457

[429] UT News, “New 6G research center unites industry leaders and UT wireless experts,” 07 July 2021.

[Online]. Available: https://news.utexas.edu/2021/07/07/new-6g-research-center-unites-industry-

leaders-and-ut-wireless-experts/. [Accessed 13 July 2022].

[430] Oppo, “6G AI-cube intelligent networking,” July 2021.

[431] Ericsson Press Release, “Ericsson and MIT enter into collaboration agreements to research next

generation of mobile networks,” 2021 July 8. [Online]. Available: https://www.ericsson.com/en/

press-releases/6/2021/7/ericsson-and-mit-enter-into-collaboration-agreements-to-research-next-

generation-of-mobile-networks. [Accessed 13 July 2022].

[432] R. Heydon, Bluetooth low energy: the developer's handbook, Prentice Hall, 2012.

[433] P. K. D. Pramanik, A. Nayyar and G. Pareek, “WBAN: driving e-healthcare beyond telemedicine to

remote health monitoring. Architecture and protocols,” in Telemedicine Technologies: Big data,

Deep Learning, Robotics, Mobile and Remote Applications for Global Healthcare, D. J. Hemanth

and V. E. Balas, Eds., Elsevier, 2019, pp. 89-119.

[434] D. Schneider, K. Moraes, J. M. d. Souza and M. G. P. Esteves, “CSCWD: five characters in search

of crowds,” in IEEE 16th International Conference on Computer Supported Cooperative Work in

Design (CSCWD), Wuhan, China, 2012.

[435] R. Buyya and S. Venugopal, “A gentle introduction to grid computing and technologies,” Database,

vol. 2, no. R3, 2005.

[436] B. Jacob, M. Brown, K. Fukui and N. Trivedi, Introduction to grid computing, IBM Redbooks, 2005.

[437] J. Joseph, Grid computing, Pearson Education India, 2004.

[438] C. Cerin and G. Fedak, Eds., Desktop grid computing, Chapman and Hall/CRC, 2019.

[439] Z. Constantinescu-Fuløp, “A desktop grid computing approach for scientific computing and

visualization,” 2008.

[440] C. Wu, R. Buyya and K. Ramamohanarao, “Cloud pricing models: taxonomy, survey, and

interdisciplinary challenges,” ACM Computing Surveys, vol. 52, no. 6, pp. 1-36, 2020.

[441] H. Jin, S. Ibrahim, T. Bell, W. Gao, D. Huang and S. Wu, “Cloud types and services,” in Handbook

of Cloud Computing, B. Furht and A. Escalante, Eds., Boston, MA, Springer, 2010, pp. 335-355.

[442] Q. Zhang, L. Cheng and R. Boutaba, “Cloud computing: state-of-the-art and research challenges,”

Journal of Internet Services and Applications, vol. 1, pp. 7-18, 2010.

[443] C. S. Yeo, R. Buyya, H. Pourreza, R. Eskicioglu, P. Graham and F. Sommers, “Cluster computing:

high-performance, high-availability, and high-throughput processing on a network of computers,” in

Handbook of Nature-Inspired and Innovative Computing, A. Y. Zomaya, Ed., Boston, MA, Springer,

2006, pp. 521-551.

[444] M. Baker, R. Buyya and D. Hyde, “Cluster computing: a high-performance contender,” Computer,

vol. 32, no. 7, pp. 79-80,83, 1999.

[445] M. Baker, “Cluster computing white paper,” arXiv, vol. arXiv:cs/0004014v2, 2000.

[446] A. Martínez, S. Prieto, N. Gallego, R. Nou, J. Giralt and T. Cortes, “XtreemOS-MD: grid computing

from mobile devices,” in Mobile Wireless Middleware, Operating Systems, and Applications

(MOBILWARE 2010). Lecture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, vol. 48, Y. Cai, T. Magedanz, M. Li, J. Xia and C. Giannelli, Eds.,

Berlin, Heidelberg, Springer, 2010, pp. 45-58.

[447] C. B. Wehner, M. F. Wehner and S. A. Snow, “Mobile grid computing”. USA Patent

US20100281095A1, 4 November 2010.

[448] J. Furthmüller and O. P. Waldhorst, “Survey on grid computing on mobile consumer devices,” in

Grid and Cloud Computing: Concepts, Methodologies, Tools and Applications, IGI Global, 2012,

pp. 1197-1220.

[449] T. H. Noor, S. Zeadally, A. Alfazi and Q. Z. Sheng, “Mobile cloud computing: challenges and future

research directions,” Journal of Network and Computer Applications, vol. 115, pp. 70-85, 2018.

[450] M. Shiraz, M. Sookhak, A. Gani and S. A. A. Shah, “A study on the critical analysis of computational

offloading frameworks for mobile cloud computing,” Journal of Network and Computer

Applications, vol. 47, pp. 47-60, 2015.

[451] N. Fernando, S. W. Loke and W. Rahayu, “Mobile cloud computing: a survey,” Future Generation

Computer Systems, vol. 29, no. 1, pp. 84-106, 2013.

[452] S. Greengard, “Following the crowd,” Communications of the ACM, vol. 54, p. 20–22, 2011.

458

[453] M. Vukovic and C. Bartolini, “Towards a research agenda for enterprise crowdsourcing,” in

Leveraging Applications of Formal Methods, Verification, and Validation, T. Margaria and B.

Steffen, Eds., Berlin/Heidelberg, Springer, 2010, p. 425–434.

[454] R. Buettner, “A systematic literature review of crowdsourcing research from a human resource

management perspective,” in 48th Annual Hawaii International Conference on System Sciences,

Kauai, Hawaii, 2015.

[455] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias and D. Zeinalipour-Yazti, “Crowdsourcing with

smartphones,” IEEE Internet Computing, vol. 16, no. 5, pp. 36-44, 2012.

[456] A. Ray, C. Chowdhury, S. Bhattacharya and S. Roy, “A survey of mobile crowdsensing and

crowdsourcing strategies for smart mobile device users,” CCF Transactions on Pervasive Computing

and Interaction, 2022.

[457] J. Phuttharak and S. W. Loke, “A review of mobile crowdsourcing architectures and challenges:

toward crowd-empowered Internet-of-Things,” IEEE Access, vol. 7, pp. 304-324, 2018.

[458] X. Kong, X. Liu, B. Jedari, M. Li, L. Wan and F. Xia, “Mobile crowdsourcing in smart cities:

technologies, applications, and future challenges,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.

8095-8113, 2019.

[459] IBM Corporation, “Running on Android,” 2021. [Online]. Available: https://www.

worldcommunitygrid.org/help/viewTopic.do?shortName=android. [Accessed 2021 July 16].

[460] D. P. Anderson, “BOINC: a platform for volunteer computing,” Journal of Grid Computing, vol. 18,

pp. 99-122, 2020.

[461] M. Curiel, D. F. Calle, A. S. Santamaría, D. F. Suarez and L. Flórez, “Parallel processing of images

in mobile devices using BOINC,” Open Engineering, vol. 8, no. 1, pp. 87-101, 2018.

[462] M. M. Mohamed, V. A. Srinivas and D. Janakiram, “Moset: an anonymous remote mobile cluster

computing paradigm,” Journal of Parallel and Distributed Computing, vol. 65, no. 10, pp. 1212-

1222, 2005.

[463] T. Kandappu, A. Misra, S.-F. Cheng, N. Jaiman, R. Tandriansiyah, C. Chen, H. C. Lau, D. Chander

and K. Dasgupta, “Campus-scale mobile crowd-tasking: deployment & behavioral insights,” in 19th

ACM Conference on Computer-Supported Cooperative Work & Social Computing (CSCW '16), San

Francisco; USA, 2016.

[464] L. W. McKnight, J. Howison and S. Bradner, “Guest editors' introduction: wireless grids - distributed

resource sharing by mobile, nomadic, and fixed devices,” IEEE Internet Computing, vol. 8, pp. 24-

31, 2004.

[465] P. K. D. Pramanik, N. Sinhababu, A. Nayyar, M. Masud and P. Choudhury, “Predicting resource

availability in local mobile crowd computing using convolutional GRU,” Computers, Materials and

Continua, vol. 70, no. 3, pp. 5199-5212, 2021.

[466] P. K. D. Pramanik, G. Bandyopadhyay and P. Choudhury, “Predicting relative topological stability

of mobile users in a P2P mobile cloud,” SN Applied Sciences, vol. 2, 2020.

[467] L. S. h. Li and E. C. Ifeachor, “Challenges of mobile ad-hoc grids and their applications in e-

healthcare,” in 2nd International Conference on Computational Intelligence in Medicine and

Healthcare (CIMED2005), 2005.

[468] M. C. Dan, M. M. Gabriela, Y. Ji, B. Ladislau and H. J. Siegel, “Ad hoc grids: communication and

computing in a power constrained environment,” in IEEE International Conference on Performance,

Computing, and Communications, Phoenix, USA, 2003.

[469] K. Karra, Wireless distributed computing on the Android platform, Virginia Polytechnic Institute and

State University, 2012.

[470] C. Storm, “Fault tolerance in distributed computing,” in Specification and Analytical Evaluation of

Heterogeneous Dynamic Quorum-Based Data Replication Schemes, Vieweg+Teubner Verlag, 2012,

pp. 13-79.

[471] F. Cristian, H. Aghili, H. R. Strong and D. Dolev, “Atomic broadcast: from simple message diffusion

to Byzantine agreement,” Information and Computation, vol. 118, no. 1, pp. 158-179, 1995.

[472] F. Cristian, “Understanding fault-tolerant distributed systems,” Communications of the ACM, vol.

34, no. 2, pp. 56-78, 1991.

[473] A. Sari and M. Akkaya, “Fault tolerance mechanisms in distributed systems,” International Journal

of Communications, Network and System Sciences, vol. 8, no. 12, pp. 471-482, 2015.

459

[474] F. C. Gärtner, “Fundamentals of fault-tolerant distributed computing in asynchronous environments,”

ACM Computing Surveys, vol. 31, no. 1, p. 1–26, 1999.

[475] D. Poola, M. A. Salehi, K. Ramamohanarao and R. Buyya, “A taxonomy and survey of fault-tolerant

workflow management systems in cloud and distributed computing environments,” in Software

Architecture for Big Data and the Cloud, I. Mistrik, R. Bahsoon, N. Ali, M. Heisel and B. Maxim,

Eds., Morgan Kaufmann, 2017, pp. 285-320.

[476] E. N. Elnozahy, L. Alvisi, Y.-M. Wang and D. B. Johnson, “A survey of rollback-recovery protocols

in message-passing systems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375-408, 2002.

[477] L. Alvisi and K. Marzullo, “Message logging: pessimistic, optimistic, and causal,” in 15th

International Conference on Distributed Computing, Systems (ICDCS 1995), Vancouver, 1995.

[478] T. Mengistu, A. Alahmadi, A. Albuali, Y. Alsenani and D. Che, “A "no data center" solution to cloud

computing,” in IEEE 10th International Conference on Cloud Computing (CLOUD), Honololu,

USA, 2017.

[479] B. Moyer, “Is crowd computing the next big thing?,” 25 November 2019. [Online]. Available:

https://www.eejournal.com/article/is-crowd-computing-the-next-big-thing/. [Accessed 12 July

2022].

[480] P. K. D. Pramanik, S. Biswas, S. Pal, D. Marinković and P. Choudhury, “A comparative analysis of

multi-criteria decision-making methods for resource selection in mobile crowd computing,”

Symmetry, vol. 13, no. 9, p. 1713, 2021.

[481] P. K. D. Pramanik, N. Sinhababu, A. Nayyar and P. Choudhury, “Predicting device availability in

mobile crowd computing using ConvLSTM,” in 7th International Conference on Optimization and

Applications (ICOA), Wolfenbüttel, Germany, 2021.

[482] D. Fu and Y. Liu, “Fairness of task allocation in crowdsourcing workflows,” Mathematical Problems

in Engineering, vol. 2021 (Article ID 5570192), 2021.

[483] F. Basık, B. Gedik, H. Ferhatosmanoğlu and K.-L. Wu, “Fair task allocation in crowdsourced

delivery,” IEEE Transactions on Services Computing, vol. 14, no. 4, pp. 1040-1053, 2021.

[484] V. Kravtsov, D. Carmeli, W. Dubitzky, A. Orda, A. Schuster, M. Silberstein and B. Yoshpa, “Quasi-

opportunistic supercomputing in grid environments,” in 8th International Conference on Algorithms

and Architectures for Parallel Processing (ICA3PP 2008), Cyprus, 2008.

[485] A. Dogac, E. Gokkoca, S. Arpinar, P. Koksal, I. Cingil, B. Arpinar, N. Tatbul, P. Karagoz, U. Halici

and M. Altinel, “Design and implementation of a distributed workflow management system:

METUFlow,” in Workflow Management Systems and Interoperability. NATO ASI Series, vol. 164,

A. Doğaç, L. Kalinichenko, M. T. Özsu and A. Sheth, Eds., Berlin, Heidelberg, Springer, 1998, pp.

61-91.

[486] L. Wang, W. Jie and H. Zhu, “State-of-arts: workflow management for grid computing,” in Grid

Technologies: Emerging from Distributed Architectures to Virtual Organizations, Southampton, UK,

WIT Press, 2006, pp. 241-270.

[487] J. Yu and R. Buyya, “A taxonomy of scientific workflow systems for grid computing,” ACM

SIGMOD Record, vol. 34, no. 3, pp. 44-49, 2005.

[488] G. Alonso, R. Günthör, M. Kamath, D. Agrawal, A. El Abbadi and C. Mohan, “Exotica/FMDC: a

workflow management system for mobile and disconnected clients,” in Databases and Mobile

Computing, D. Barbara, R. Jain and N. Krishnakumar, Eds., Boston, Springer, 1996, pp. 27-45.

[489] F. Tang, M. Guo, M. Dong, M. Li and H. Guan, “Towards context-aware workflow management for

ubiquitous computing,” in International Conference on Embedded Software and Systems, Chengdu,

China, 2008.

[490] S. Tarkoma, M. Siekkinen, E. Lagerspetz and Y. Xiao, “Overview,” in Smartphone Energy

Consumption: Modeling and Optimization, Cambridge, Cambridge University Press, 2014, pp. 227-

233.

[491] S. A. Gordon, “8 things you need to know about Nvidia's groundbreaking Tegra X1 mobile super

chip,” 05 January 2015. [Online]. Available: https://www.androidpit.com/nvidia-tegra-x1. [Accessed

04 March 2016].

[492] J. Yu, E. Williams and M. Ju, “Analysis of material and energy consumption of mobile phones in

China,” Energy Policy, vol. 38, no. 8, p. 4135–4141, August 2010.

460

[493] P. K. D. Pramanik, S. Pal and P. Choudhury, “Green and sustainable high-performance computing

with smartphone crowd computing: benefits, enablers, and challenges,” Scalable Computing:

Practice and Experience, vol. 20, no. 2, pp. 259-283, 2019.

[494] P. K. D. Pramanik, N. Sinhababu, B. Mukherjee, S. Padmanaban, A. Maity, B. K. Upadhyaya, J. B.

Holm-Nielsen and P. Choudhury, “Power consumption analysis, measurement, management, and

issues: a state-of-the-art review on smartphone battery and energy usage,” IEEE Access, vol. 7, no.

1, pp. 182113-182172, 2019.

[495] Q. Zhang, Z. Xu and B. Lu, “Strongly coupled MoS2–3D graphene materials for ultrafast charge

slow discharge LIBs and water splitting applications,” Energy Storage Materials, vol. 4, pp. 84-91,

2016.

[496] W. Zou, F.-J. Xia, J.-P. Song, L. Wu, L.-D. Chen, H. Chen, Y. Liu, W.-D. Dong, S.-J. Wu, Z.-Y. Hu,

J. Liu, H.-E. Wang, L.-H. Chen, Y. Li, D.-L. Peng and B.-L. Su, “Probing and suppressing voltage

fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery,”

Electrochimica Acta, vol. 318, pp. 875-882, 2019.

[497] P. Wu, G. Shao, C. Guo, Y. Lu, X. Dong, Y. Zhong and A. Liu, “Long cycle life, low self-discharge

carbon anode for Li-ion batteries with pores and dual-doping,” Journal of Alloys and Compounds,

vol. 802, pp. 620-627, 2019.

[498] L. L. Perreault, F. Colò, G. Meligrana, K. Kim, S. Fiorilli, B. Federico, R. N. Jijeesh, V.-B. Chiara,

F. Justyna, K. Freddy and G. Claudio, “Spray‐dried mesoporous mixed Cu‐Ni Oxide@Graphene

nanocomposite microspheres for high power and durable Li‐ion battery anodes,” Advanced Energy

Materials, vol. 8, no. 35, p. 1802438, 2018.

[499] S. W. Lee, N. Yabuuchi, B. M. Gallant, S. Chen, B. S. Kim, P. T. Hammond and Y. Shao-Horn,

“High-power lithium batteries from functionalized carbon-nanotube electrodes,” Nature

nanotechnology, vol. 5, no. 7, p. 531, 2010.

[500] F. B. Spingler, W. Wittmann, J. Sturm, B. Rieger and A. Jossen, “Optimum fast charging of lithium-

ion pouch cells based on local volume expansion criteria,” Journal of Power Sources, vol. 393, pp.

152-160, 2018.

[501] V. H. Pham, J. A. Boscoboinik, D. J. Stacchiola, E. C. Self, P. Manikandan, S. Nagarajan, Y. Wang,

V. G. Pol, J. Nanda, E. Paek and D. Mitlin, “Selenium-sulfur (SeS) fast charging cathode for sodium

and lithium metal batteries,” Energy Storage Materials, vol. 20, pp. 71-79, 2019.

[502] J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang and W. Xu, “Electrolyte additive

enabled fast charging and stable cycling lithium metal batteries,” Nature Energy, vol. 2, 2017.

[503] Y. Gao, Z. Yan, J. L. Gray, X. He, D. Wang, T. Chen, Q. Huang, Y. C. Li, H. Wang, S. H. Kim, T.

E. Mallouk and D. Wang, “Polymer–inorganic solid–electrolyte interphase for stable lithium metal

batteries under lean electrolyte conditions,” Nature Materials, vol. 18, pp. 384-389, 2019.

[504] W. Xing, “High energy/power density, safe Lithium battery with nonflammable electrolyte,” ECS

Transactions, vol. 85, no. 13, pp. 109-114, 2018.

[505] X. Fan, E. Hu, X. Ji, Y. Zhu, F. Han, S. Hwang, J. Liu, S. Bak, Z. Ma, T. Gao, S.-C. Liou, J. Bai, X.-

Q. Yang, Y. Mo, K. Xu, D. Su and C. Wang, “High energy-density and reversibility of iron fluoride

cathode enabled via an intercalation-extrusion reaction,” Nature Communications, vol. 9 (Article

number: 2324), 2018.

[506] A. R. Mainar, L. C. Colmenares, H.-J. Grande and J. A. Blázquez, “Enhancing the cycle life of a

Zinc–air battery by means of electrolyte additives and Zinc surface protection,” Batteries, vol. 4, no.

3, p. 46, 2018.

[507] L. Edwards, “Nanowire battery can extend your phone battery life by hundreds of thousands of

times,” 21 April 2016. [Online]. Available: https://www.pocket-lint.com/gadgets/news/137387-

nanowire-battery-can-extend-your-phone-battery-life-by-hundreds-of-thousands-of-times.

[Accessed 17 July 2019].

[508] F.-G. Efrén, G. Espinosa-Medina, D. d. L.-Z. Ramón, A. D. d. l. Rosa-Zapata and J. V. González-

Fernández, “Analysis and design of a simple wireless charger for mobile phones,” in IEEE

International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico,

2019.

[509] X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, “Wireless charging technologies: fundamentals,

standards, and network applications,” IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp.

1413-1452, 2016.

461

[510] N. Ahuja, M. M. Eshaghian‐Wilner, Z. Ge, R. Liu, A. S. N. Pati, K. Ravicz, M. Schlesinger, S. H.

Wu and K. Xie, “Wireless power for implantable devices: a technical review,” in Wireless Computing

in Medicine: From Nano to Cloud with Its Ethical and Legal Implications, M. M. Eshaghian‐Wilner,

Ed., Wiley, 2016, pp. 187-209.

[511] O. A. Saraereh, A. Alsaraira, I. Khan and B. J. Choi, “A hybrid energy harvesting design for on-body

Internet-of-Things (IoT) networks,” Sensors, vol. 20, no. 2, p. 407, 2020.

[512] X. Fan, J. Chen, J. Yang, P. Bai, Z. Li and Z. L. Wang, “Ultrathin, rollable, paper-based triboelectric

nanogenerator for acoustic energy harvesting and self-powered sound recording,” ACS Nano, vol. 9,

no. 4, pp. 4236-4243, 2015.

[513] N. Jain, X. Fan, W. D. Leon-Salas and A. M. Lucietto, “Extending battery life of smartphones by

overcoming idle power consumption using ambient light energy harvesting,” in IEEE International

Conference on Industrial Technology (ICIT), Lyon, France, 2018.

[514] E. Bulut, M. E. Ahsen and B. K. Szymanski, “Opportunistic wireless charging for mobile social and

sensor networks,” in IEEE Globecom Workshops (GC Wkshps), Austin, USA, 2014.

[515] S. Nikoletseas, T. P. Raptis and C. Raptopoulos, “Wireless charging for weighted energy balance in

populations of mobile peers,” Ad Hoc Networks, vol. 60, pp. 1-10, 2017.

[516] E. Bulut, S. Hernandez, A. Dhungana and B. K. Szymanski, “Is crowdcharging possible?,” in 27th

International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China,

2018.

[517] D. Luis, “Tech war: Nvidia Tegra X1 takes on Snapdragon 810 with raw GPU power,” 15 January

2015. [Online]. Available: http://www.phonearena.com/news/Tech-war-Nvidia-Tegra-X1-takes-on-

Snapdragon-810-with-raw-GPU-power_id64748. [Accessed 11 August 2022].

[518] T. Ahmed, M. Bhouri, D. Groulx and M. A. White, “Passive thermal management of tablet PCs using

phase change materials: intermittent operation,” Applied Sciences, vol. 9, no. 5, p. 902, 2019.

[519] Y. Tomizawa, K. Sasaki, A. Kuroda, R. Takeda and Y. Kaito, “Experimental and numerical study on

phase change material (PCM) for thermal management of mobile devices,” Applied Thermal

Engineering, vol. 98, p. 320–329, 2016.

[520] C. Wang, L. Hua, H. Yan, B. Li, Y. Tu and R. Wang, “A thermal management strategy for electronic

devices based on moisture sorption-desorption processes,” Joule, vol. 4, no. 2, pp. 435-447, 2020.

[521] A. K. Singh, S. Dey, K. McDonald-Maier, K. R. Basireddy, G. V. Merrett and B. M. Al-Hashimi,

“Dynamic energy and thermal management of multi-core mobile platforms: a survey,” IEEE Design

& Test, vol. 37, no. 5, pp. 25-33, 2020.

[522] Y. G. Kim, M. Kim, J. Kong and S. W. Chung, “An adaptive thermal management framework for

heterogeneous multi-core processors,” IEEE Transactions on Computers, vol. 69, no. 6, pp. 894-906,

2020.

[523] S. Chetoui and S. Reda, “Coordinated self-tuning thermal management controller for mobile

devices,” IEEE Design & Test, vol. 37, no. 5, pp. 34-41, 2020.

[524] A. Iranfar, F. Terraneo, G. Csordas, M. Zapater, W. Fornaciari and D. Atienza, “Dynamic thermal

management with proactive fan speed control through reinforcement learning,” in Design,

Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2020.

[525] J. Park, S. Lee and H. Cha, “App-oriented thermal management of mobile devices,” in International

Symposium on Low Power Electronics and Design (ISLPED '18), Seattle, USA, 2018.

[526] M. Hao, J. Li, S. Park, S. Moura and C. Dames, “Efficient thermal management of Li-ion batteries

with a passive interfacial thermal regulator based on a shape memory alloy,” Nature Energy, vol. 3,

p. 899–906, 2018.

[527] X. Feng, D. Ren, X. He and M. Ouyang, “Mitigating thermal runaway of Lithium-ion batteries,”

Joule, vol. 4, no. 4, pp. 743-770, 2020.

[528] K. Abinav, P. Palani Rajeshwar, J. S. Punnoose, J. Daniel and M. Sreekanth, “Heat transfer

enhancement in a smart phone,” International Journal of Engineering Research and Application, vol.

7, no. 4 (Part-5), pp. 12-23, 2017.

[529] Y. Wang, D. Zhu, Y. Yang, K. Lee, R. Mishra, G. Go, S.-H. Oh, D.-H. Kim, K. Cai, E. Liu, S. D.

Pollard, S. Shi, J. Lee, K. L. Teo, Y. Wu, K.-J. Lee and H. Yang, “Magnetization switching by

magnon-mediated spin torque through an antiferromagnetic insulator,” Science, vol. 366, no. 6469,

p. 1125, 2019.

462

[530] J. Rogerson, “An unlikely name is going to stop your phone overheating,” 17 March 2015. [Online].

Available: http://www.techradar.com/news/phone-and-communications/mobile-phones/an-unlikely-

name-is-going-to-stop-your-phone-overheating-1288525. [Accessed 26 February 2016].

[531] C. Pei, Z. Wang, Y. Zhao, Z. Wang, Y. Meng, D. Pei, Y. Peng, W. Tang and X. Qu, “Why it takes

so long to connect to a WiFi access point?,” in IEEE Conference on Computer Communications

(IEEE INFOCOM), Atlanta, USA, 2017.

[532] LinkLabs, “WiFi's future: examining 802.11ad, 802.11ah HaLow (& others),” 1 February 2018.

[Online]. Available: https://www.link-labs.com/blog/future-of-wifi-802-11ah-802-11ad. [Accessed

11 August 2022].

[533] Y. Heisler, “Future iPhones may contain Li-Fi, a technology with transfer speeds 100x faster than

Wi-Fi,” 18 January 2016. [Online]. Available: http://bgr.com/2016/01/18/iphone-li-fi-ios-wireless-

data-transfer-speeds/. [Accessed 22 May 2016].

[534] B. Crew, “Li-Fi has just been tested in the real world, and it's 100 times faster than Wi-Fi,” 24

November 2015. [Online]. Available: http://www.sciencealert.com/li-fi-tested-in-the-real-world-for-

the-first-time-is-100-times-faster-than-wi-fi. [Accessed 22 May 2016].

[535] K. Yang, K. Zhang, J. Ren and X. Shen, “Security and privacy in mobile crowdsourcing networks:

challenges and opportunities,” IEEE Communications Magazine, vol. 53, no. 8, pp. 75-81, 2015.

[536] W. Feng, Z. Yan, H. Zhang, K. Zeng, Y. Xiao and Y. T. Hou, “A survey on security, privacy, and

trust in mobile crowdsourcing,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2971-2992, 2018.

[537] Y. Ma, Y. Sun, Y. Lei, N. Qin and J. Lu, “A survey of blockchain technology on security, privacy,

and trust in crowdsourcing services,” World Wide Web, vol. 23, pp. 393-419(, 2020.

[538] M. Allahbakhsh, A. Ignjatovic, B. Benatallah, S.-M.-R. Beheshti, E. Bertino and N. Foo, “Reputation

management in crowdsourcing systems,” in 8th International Conference on Collaborative

Computing: Networking, Applications and Worksharing (CollaborateCom), Pittsburgh, USA, 2012.

[539] D. G. Padmavathi and M. D. Shanmugapriya, “A survey of attacks, security mechanisms and

challenges in wireless sensor networks,” International Journal of Computer Science and Information

Security, vol. 4, no. 1 & 2, 2009.

[540] M. Kaur and M. M. Bansal, “A survey on security and privacy challenges in mobile grid computing,”

International Journal of Advances in Cloud Computing and Computer Science, vol. 1, no. 2, pp. 20-

26, 2015.

[541] K. Watanabe, M. Fukushi and M. Kameyama, “Adaptive group-based job scheduling for high

performance and reliable volunteer computing,” Journal of Information Processing, vol. 19, pp. 39-

51, 2011.

[542] L. F. G. Sarmenta, “Volunteer computing,” PhD Thesis, Massachusetts Institute of Technology,

2001.

[543] K. Watanabe and M. Fukushi, “Generalized spot-checking for sabotage-tolerance in volunteer

computing systems,” in 10th IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing, Melbourne, Australia, 2010.

[544] K. Watanabe, M. Fukushi and S. Horiguchi, “Expected-credibility-based job scheduling for reliable

volunteer computing,” IEICE Transactions on Information and Systems, vol. E93.D, no. 2, pp. 306-

314, 2010.

[545] L. Buttyan and J.-P. Hubaux, “Enforcing service availability in mobile ad-hoc WANs,” in First

Annual Workshop on Mobile and Ad Hoc Networking and Computing (MobiHOC), Boston, USA,

2010.

[546] I. Bibi, A. Akhunzada, J. Malik, M. K. Khan and M. Dawood, “Secure distributed mobile volunteer

computing with Android,” ACM Transactions on Internet Technology, vol. 22, no. 1, pp. 1-21, 2022.

[547] S. Rasool, M. Iqbal, T. Dagiuklas, Z. Ul-Qayyum and S. Li, “Reliable data analysis through

blockchain based crowdsourcing in mobile ad-hoc cloud,” Mobile Networks and Applications, vol.

25, pp. 153-163, 2019.

[548] W. Feng and Z. Yan, “MCS-chain: decentralized and trustworthy mobile crowdsourcing based on

blockchain,” Future Generation Computer Systems, vol. 95, pp. 649-666, 2019.

[549] J. Zhang, W. Cui, J. Ma and C. Yang, “Blockchain-based secure and fair crowdsourcing scheme,”

International Journal of Distributed Sensor Networks, vol. 15, no. 7, 2019.

463

[550] Y. Lu, Q. Tang and G. Wang, “ZebraLancer: private and anonymous crowdsourcing system atop

open blockchain,” in IEEE 38th International Conference on Distributed Computing Systems

(ICDCS), Vienna, Austria, 2018.

[551] M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J.-N. Liu, Y. Xiang and R. H. Deng, “CrowdBC:

a blockchain-based decentralized framework for crowdsourcing,” IEEE Transactions on Parallel and

Distributed Systems, vol. 30, no. 6, pp. 1251-1266, 2019.

[552] S. Seebacher and R. Schüritz, “Blockchain technology as an enabler of service systems: a structured

literature review,” in International Conference on Exploring Services Science, Italy, 2017.

[553] E. Bellini, Y. Iraqi and E. Damiani, “Blockchain-based distributed trust and reputation management

systems: a survey,” IEEE Access, vol. 8, pp. 21127-21151, 2020.

[554] C. Huang, Z. Wang, H. Chen, Q. Hu, Q. Zhang, W. Wang and X. Guan, “RepChain: a reputation

based secure, fast and high incentive blockchain system via sharding,” IEEE Internet of Things

Journal, vol. 8, no. 6, pp. 4291-4304, 7 February 2021.

[555] A. Shahid, U. Sarfraz, M. W. Malik, M. S. Iftikhar, A. Jamal and N. Javaid, “Blockchain-based

reputation system in agri-food supply chain,” in Advanced Information Networking and Applications

(AINA 2020). Advances in Intelligent Systems and Computing, vol. 1151, L. Barolli, F. Amato, F.

Moscato, T. Enokido and M. Takizawa, Eds., Springer, Cham, 2020, pp. 12-21.

[556] X. Zhang, G. Xue, R. Yu, D. Yang and J. Tang, “Countermeasures against false-name attacks on

truthful incentive mechanisms for crowdsourcing,” IEEE Journal on Selected Areas in

Communications, vol. 35, no. 2, pp. 478-485, 2017.

[557] K. Wang, X. Qi, L. Shu, D.-j. Deng and J. J. P. C. Rodrigues, “Toward trustworthy crowdsourcing

in the social internet of things,” IEEE Wireless Communications, vol. 23, no. 5, pp. 30-36, 2016.

[558] G. A. K. Kamhoua, “Mitigating colluding attacks in online social networks and crowdsourcing

platforms,” PhD Thesis, Florida International University, 2019.

[559] Q. Yang, T. Wang, W. Zhang, B. Yang, Y. Yu, H. Li, J. Wang and Z. Qiao, “PrivCrowd: a secure

blockchain-based crowdsourcing framework with fine-grained worker selection,” Wireless

Communications and Mobile Computing, vol. 2021 (Article ID 3758782), 2021.

[560] Y. Gong, L. Wei, Y. Guo, C. Zhang and Y. Fang, “Optimal task recommendation for mobile

crowdsourcing with privacy control,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 745-756,

2016.

[561] B. Zhao, S. Tang, X. Liu, X. Zhang and W.-N. Chen, “iTAM: bilateral privacy-preserving task

assignment for mobile crowdsensing,” IEEE Transactions on Mobile Computing, vol. 20, no. 12, pp.

3351-3366, 2021.

[562] J. Shu, X. Jia, K. Yang and H. Wang, “Privacy-preserving task recommendation services for

crowdsourcing,” IEEE Transactions on Services Computing, vol. 14, no. 1, pp. 235-247, 2021.

[563] Z. Chi, Y. Wang, Y. Huang and X. Tong, “The novel location privacy-preserving CKD for mobile

crowdsourcing systems,” IEEE Access, vol. 6, pp. 5678-5687, 2017.

[564] L. Meftah, R. Rouvoy and I. Chrisment, “Empowering mobile crowdsourcing apps with user privacy

control,” Journal of Parallel and Distributed Computing, vol. 147, pp. 1-15, 2021.

[565] G. Qiu, Y. Shen, K. Cheng, L. Liu and S. Zeng, “Mobility-aware privacy-preserving mobile

crowdsourcing,” Sensors, vol. 21, no. 7, p. 2474, 2021.

[566] Y. Xu, H. Liu and C. Yan, “A privacy-preserving exception handling approach for dynamic mobile

crowdsourcing applications,” EURASIP Journal on Wireless Communications and Networking,

Vols. 2019, Article number: 113, 2019.

[567] S. Zhu, H. Hu, Y. Li and W. Li, “Hybrid blockchain design for privacy preserving crowdsourcing

platform,” in IEEE International Conference on Blockchain, Atlanta, USA, 2019.

[568] J. Wang, G. Sun, Y. Gu and K. Liu, “ConGradetect: blockchain-based detection of code and identity

privacy vulnerabilities in crowdsourcing,” Journal of Systems Architecture, vol. 114, p. 101910,

2020.

[569] C. Lin, D. He, S. Zeadally, N. Kumar and K.-K. R. Choo, “SecBCS: a secure and privacy-preserving

blockchain-based crowdsourcing system,” Science China Information Sciences, vol. 63 (Article

number: 130102), 2020.

[570] X. Xu, Q. Liu, X. Zhang, J. Zhang, L. Qi and W. Dou, “A blockchain-powered crowdsourcing

method with privacy preservation in mobile environment,” IEEE Transactions on Computational

Social Systems, vol. 6, no. 6, pp. 1407-1419, 2019.

464

[571] J. Shu and X. Jia, “Secure task recommendation in crowdsourcing,” in IEEE Global Communications

Conference (GLOBECOM), Washington, DC, 2016.

[572] H. Qin, Y. Zhang and B. Li, “Truthful mechanism for crowdsourcing task assignment,” in IEEE 10th

International Conference on Cloud Computing (CLOUD), Honololu, USA, 2017.

[573] Y. Gao, X. Li, J. Li and Y. Gao, “A dynamic-trust-based recruitment framework for mobile crowd

sensing,” in IEEE International Conference on Communications (ICC), Paris, France, 2017.

[574] A. Khanfor, A. Hamrouni, H. Ghazzai, Y. Yang and Y. Massoud, “A trustworthy recruitment process

for spatial mobile crowdsourcing in large-scale social IoT,” in IEEE Technology & Engineering

Management Conference (TEMSCON), Novi, USA, 2020.

[575] T. Halabi and M. Zulkernine, “Reliability-driven task assignment in vehicular crowdsourcing: a

matching game,” in 49th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks Workshops (DSN-W), Portland, USA, 2019.

[576] H. Wu, B. Düdder, L. Wang, S. Sun and G. Xue, “Blockchain-based reliable and privacy-aware

crowdsourcing with truth and fairness assurance,” IEEE Internet of Things Journal, vol. 9, no. 5, pp.

3586-3598, 2022.

[577] M. Bahutair, A. Bougeuttaya and A. G. Neiat, “Adaptive trust: usage-based trust in crowdsourced

IoT services,” in IEEE International Conference on Web Services (ICWS), Milan, Italy, 2019.

[578] M. Bahutair, A. Bouguettaya and A. G. Neiat, “Just-in-time memoryless trust for crowdsourced IoT

services,” in IEEE International Conference on Web Services (ICWS), Beijing, China, 2020.

[579] M. Bahutair, A. Bouguettaya and A. G. Neiat, “Multi-perspective trust management framework for

crowdsourced IoT services,” IEEE Transactions on Services Computing, vol. 15, no. 4, pp. 2396-

2409, 2022.

[580] K. Liu, W. Chen and Z. Zhang, “Blockchain-empowered decentralized framework for secure and

efficient software crowdsourcing,” in IEEE World Congress on Services (SERVICES), Beijing,

China, 2020.

[581] W. Feng, Z. Yan, L. T. Yang and Q. Zheng, “Anonymous authentication on trust in blockchain-based

mobile crowdsourcing,” IEEE Internet of Things Journal, vol. 9, no. 16, pp. 14185-14202, 2022.

[582] C. Li, X. Qu and Y. Guo, “TFCrowd: a blockchain-based crowdsourcing framework with enhanced

trustworthiness and fairness,” EURASIP Journal on Wireless Communications and Networking, vol.

2021, no. 1, 2021.

[583] L. Tan, H. Xiao, X. Shang, Y. Wang, F. Ding and W. Li, “A blockchain-based trusted service

mechanism for crowdsourcing system,” in IEEE 91st Vehicular Technology Conference (VTC2020-

Spring), Antwerp, Belgium, 2020.

[584] X. Zhu, Y. Li, L. Fang and P. Chen, “An improved proof-of-trust consensus algorithm for credible

crowdsourcing blockchain services,” IEEE Access, vol. 8, pp. 102177-102187, 2020.

[585] Y. Sun and N. Zhang, “A resource-sharing model based on a repeated game in fog computing,” Saudi

Journal of Biological Sciences, vol. 24, no. 3, pp. 687-694, 2017.

[586] L. Islam, S. T. Alvi, M. N. Uddin and M. Rahman, “Obstacles of mobile crowdsourcing: a survey,”

in IEEE Pune Section International Conference (PuneCon), Pune, India, 2019.

[587] “Volunteer computing,” BOINC, 2018. [Online]. Available: https://boinc.berkeley.edu/trac/

wiki/VolunteerComputing. [Accessed 10 August 2022].

[588] X. Zhang, Z. Yang, W. Sun, Y. Liu, S. Tang, K. Xing and X. Mao, “Incentives for mobile crowd

sensing: a survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 54-67, 2016.

[589] C. Muldoon, M. J. O’Grady and G. M. P. O’Hare, “A survey of incentive engineering for

crowdsourcing,” The Knowledge Engineering Review, vol. 33, p. E2, 2018.

[590] distributed.net, “What kinds of problems are well-suited for distributed computing?,” [Online].

Available: http://faq.distributed.net/cache/280.html. [Accessed 10 August 2022].

[591] C. Hu, M. Xiao, L. Huang and G. Gao, “Truthful incentive mechanism for vehicle-based

nondeterministic crowdsensing,” in IEEE/ACM 24th International Symposium on Quality of Service

(IWQoS), Beijing, China, 2016.

[592] Z. Ju, C. Huang, Y. Chen and L. Ma, “A truthful auction mechanism for resource provisioning in

mobile crowdsensing,” in IEEE 36th International Performance Computing and Communications

Conference (IPCCC), San Diego, USA, 2017.

465

[593] Y. Fan, H. Sun and X. Liu, “Truthful incentive mechanisms for dynamic and heterogeneous tasks in

mobile crowdsourcing,” in IEEE 27th International Conference on Tools with Artificial Intelligence

(ICTAI), Vietri sul Mare, Italy, 2015.

[594] C. Huang, H. Yu, R. A. Berry and J. Huang, “Using truth detection to incentivize workers in mobile

crowdsourcing,” IEEE Transactions on Mobile Computing, vol. 21, no. 6, pp. 2257-2270, 2022.

[595] Q. Li, H. Cao, S. Wang and X. Zhao, “A reputation-based multi-user task selection incentive

mechanism for crowdsensing,” IEEE Access, vol. 8, pp. 74887-74900, 2020.

[596] J. Sun, F. Hou and S. Ma, “Reputation-aware incentive mechanism for participatory sensing,” in

IEEE/CIC International Conference on Communications in China (ICCC), Shenzhen, China, 2015.

[597] X. Ma, J. Ma, H. Li, Q. Jiang and S. Gao, “RTRC: a reputation-based incentive game model for

trustworthy crowdsourcing service,” China Communications, vol. 13, no. 12, pp. 199-215, 2016.

[598] L.-Y. Jiang, F. He, Y. Wang, L.-J. Sun and H.-p. Huang, “Quality-aware incentive mechanism for

mobile crowd sensing,” Journal of Sensors, vol. 2017 (Article ID 5757125), 2017.

[599] D. Peng, F. Wu and G. Chen, “Pay as how well you do: a quality based incentive mechanism for

crowdsensing,” in Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc

Networking and Computing (MobiHoc '15), Hangzhou, China, 2015.

[600] J. Wang, J. Tang, D. Yang, E. Wang and G. Xue, “Quality-aware and fine-grained incentive

mechanisms for mobile crowdsensing,” in IEEE 36th International Conference on Distributed

Computing Systems (ICDCS), Nara, Japan, 2016.

[601] Y. Ueyama, M. Tamai, Y. Arakawa and K. Yasumoto, “Gamification-based incentive mechanism

for participatory sensing,” in IEEE International Conference on Pervasive Computing and

Communication Workshops (PERCOM WORKSHOPS), Budapest, Hungary, 2014.

[602] L. Pang, G. Li, X. Yao and Y. Lai, “An incentive mechanism based on a Bayesian game for spatial

crowdsourcing,” IEEE Access, vol. 7, pp. 14340-14352, 2019.

[603] Q. Zhang, Q. Zhang, X. Liu, J. Dai and X. Zhang, “The evolutionary game analysis of incentive

mechanism for crowd sensing of public environment,” Journal of Physics: Conference Series, vol.

1187, no. 5, 2019.

[604] S. Luo, Y. Sun, Y. Ji and D. Zhao, “Stackelberg game based incentive mechanisms for multiple

collaborative tasks in mobile crowdsourcing,” Mobile Networks and Applications, vol. 21, pp. 506-

522, 2016.

[605] X. Yang, J. Zhang, J. Peng and L. Lei, “Incentive mechanism based on Stackelberg game under

reputation constraint for mobile crowdsensing,” International Journal of Distributed Sensor

Networks, vol. 17, no. 6, 2021.

[606] D. Yang, G. Xue, X. Fang and J. Tang, “Crowdsourcing to smartphones: incentive mechanism design

for mobile phone sensing,” in 18th annual international conference on Mobile computing and

networking (Mobicom '12), Istanbul, Turkey, 2012.

[607] Q. Ma, L. Gao, Y.-F. Liu and J. Huang, “A contract-based incentive mechanism for crowdsourced

wireless community networks,” in 14th International Symposium on Modeling and Optimization in

Mobile, Ad Hoc, and Wireless Networks (WiOpt), Tempe, USA, 2016.

[608] N. Zhao, M. Fan, C. Tian and P. Fan, “Contract-based incentive mechanism for mobile

crowdsourcing networks,” Algorithms, vol. 10, no. 3, p. 104, 2017.

[609] Y. Zhang, C. Jiang, L. Song, M. Pan, Z. Dawy and Z. Han, “Incentive mechanism for mobile

crowdsourcing using an optimized tournament model,” IEEE Journal on Selected Areas in

Communications, vol. 35, no. 4, pp. 880-892, 2017.

[610] Y. Zhang, Y. Gu, L. Song, M. Pan, Z. Dawy and Z. Han, “Tournament based incentive mechanism

designs for mobile crowdsourcing,” in IEEE Global Communications Conference (GLOBECOM),

San Diego, USA, 2015.

[611] D. Yang, G. Xue, X. Fang and J. Tang, “Incentive mechanisms for crowdsensing: crowdsourcing

with smartphones,” IEEE/ACM Transactions on Networking, vol. 24, no. 3, pp. 1732-1744, 2016.

[612] Y. Chen, H. Chen, S. Yang, X. Gao, Y. Guo and F. Wu, “Designing incentive mechanisms for mobile

crowdsensing with intermediaries,” Wireless Communications and Mobile Computing, vol. 2019

(Article ID 8603526), 2019.

[613] H. Zhang, B. Liu, H. Susanto and G. Xue, “Auction-based incentive mechanisms for dynamic mobile

ad-hoc crowd service,” arXiv, vol. 1503.06819v1 [cs.NI], 2015.

466

[614] Y. Liu, H. Li, G. Zhao and J. Duan, “A reverse auction based incentive mechanism for mobile

crowdsensing,” in IEEE International Conference on Communications (ICC), Kansas City, USA,

2018.

[615] H. Jin, L. Su, D. Chen, K. Nahrstedt and J. Xu, “Quality of information aware incentive mechanisms

for mobile crowd sensing systems,” in 16th ACM International Symposium on Mobile Ad Hoc

Networking and Computing (MobiHoc '15), Hangzhou, China, 2015.

[616] T. Zhou, B. Jia and W. Li, “A reverse auction incentive mechanism based on the participant’s

behavior in crowdsensing,” in Security and Privacy in New Computing Environments (SPNCE 2019).

Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, vol. 284, J. Li, Z. Liu and H. Peng, Eds., Springer, Cham, 2019, pp. 637-646.

[617] G. Yang, S. He, Z. Shi and J. Chen, “Promoting cooperation by the social incentive mechanism in

mobile crowdsensing,” IEEE Communications Magazine, vol. 55, no. 3, pp. 86-92, 2017.

[618] L. G. Jaimes, I. Vergara-Laurens and A. Chaker, “SPREAD, a crowd sensing incentive mechanism

to acquire better representative samples,” in 2014 IEEE International Conference on Pervasive

Computing and Communication Workshops (PERCOM WORKSHOPS), Budapest, Hungary, 2014.

[619] L. G. Jaimes, A. Chakeri, J. Lopez and A. Raij, “A cooperative incentive mechanism for recurrent

crowd sensing,” in SoutheastCon, Fort Lauderdale, USA, 2015.

[620] R. F. E. Khatib, N. Zorba and H. S. Hassanein, “A fair reputation-based incentive mechanism for

cooperative crowd sensing,” in IEEE Global Communications Conference (GLOBECOM), Abu

Dhabi, UAE, 2018.

[621] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du and J. Ye, “Dynamic pricing in spatial crowdsourcing:

a matching-based approach,” in International Conference on Management of Data (SIGMOD '18),

Houston, USA, 2018.

[622] H. Wang, D. N. Nguyen, D. T. Hoang, E. Dutkiewicz and Q. Cheng, “Real-time crowdsourcing

incentive for radio environment maps: a dynamic pricing approach,” in IEEE Global

Communications Conference (GLOBECOM), Abu Dhabi, UAE, 2018.

[623] M. Asghari, “Dynamic pricing and task assignment in real-time spatial crowdsourcing platforms,”

PhD Thesis, University of Southern California, 2018.

[624] BOINC, “Create a virtual campus supercomputing center (VCSC),” 2011. [Online]. Available:

http://boinc.berkeley.edu/trac/wiki/VirtualCampusSupercomputerCenter. [Accessed 10 August

2022].

[625] J. Deign, “How the Internet of Things is keeping trains on track,” 31 March 2014. [Online].

Available: https://www.govtech.com/fs/how-the-internet-of-things-is-keeping-trains-on-track.html.

[Accessed 18 August 2016].

[626] A. Jain and N. Tyagi, “Collision detection and avoidance in railways using WiMAX,” Indian Journal

of Computer Science and Engineering, vol. 3, no. 6, pp. 789-795, 2013.

[627] C. Elliott, “These airlines have the best Wi-Fi in the world,” 14 January 2016. [Online]. Available:

http://fortune.com/2016/01/14/airlines-wifi-internet/. [Accessed 25 August 2016].

[628] Chelsa, “List of airlines offering inflight WiFi,” eDreams Blog, 27 July 2015. [Online]. Available:

http://www.edreams.com/blog/in-flight-wifi/. [Accessed 10 August 2022].

[629] R. Qubein, “These 11 airlines offer fliers free in-flight Wi-Fi,” Road Warrior Voices, 4 February

2016. [Online]. Available: https://www.usatoday.com/story/travel/roadwarriorvoices/2016/02/04/

these-11-airlines-offer-fliers-free-in-flight-wi-fi/83276604/. [Accessed 10 August 2022].

[630] M. Williams, “How does airplane Wi-Fi work? And will it ever get any better?,” FutureTech, 9

August 2013. [Online]. Available: http://www.in.techradar.com/news/world-of-tech/future-

tech/How-does-airplane-Wi-Fi-work-And-will-it-ever-get-any-better/articleshow/38758474.cms.

[Accessed 10 August 2022].

[631] B. Rapolu, “Internet of aircraft things: an industry set to be transformed,” 18 January 2016. [Online].

Available: http://aviationweek.com/connected-aerospace/internet-aircraft-things-industry-set-be-

transformed. [Accessed 10 August 2022].

[632] M. Satyanarayanan, “Mobile computing: the next decade,” in 1st ACM Workshop on Mobile Cloud

Computing & Services: Social Networks and Beyond (MCS’10), New York, USA, 2010.

[633] A. Kate and I. Goldberg, “Distributed private-key generators for identity based cryptography,” in

Security and Cryptography for Networks. Lecture Notes in Computer Science, vol. 6280, J. A. Garay

and R. De Prisco, Eds., Berlin, Heidelberg, Springer, 2010, pp. 436-453.

467

[634] T. Chang, C. Chen, H. Hsiao and G. Lai, “The cryptanalysis of WPA & WPA2 using the parallel-

computing with GPUs,” in Mobile Internet Security (MobiSec 2016). Communications in Computer

and Information Science, vol. 797, I. You, F. Y. Leu, H. C. Chen and I. Kotenko, Eds., Singapore,

Springer, 2018, pp. 118-127.

[635] L. Yong-lei and J. Zhi-gang, “Distributed method for cracking WPA/WPA2-PSK on multi-core CPU

and GPU architecture,” International Journal of Communication Systems, vol. 28, no. 4, pp. 723-

742, 2015.

[636] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge Computing: vision and challenges,” IEEE Internet

of Things Journal, vol. 3, no. 5, pp. 637-646, 2016.

[637] P. K. D. Pramanik and P. Choudhury, “IoT data processing: the different archetypes and their security

& privacy assessments,” in Internet of Things (IoT) Security: Fundamentals, Techniques and

Applications, S. K. Shandilya, S. A. Chun, S. Shandilya and E. Weippl, Eds., River Publishers, 2018,

pp. 37-54.

[638] Team Digit, “Best 10 GB RAM mobile phones,” Digit, 18 June 2019. [Online]. Available:

https://www.digit.in/top-products/best-10-gb-ram-mobile-phones-592.html. [Accessed 2019 June

18].

[639] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley and L. V. Gool, “AI benchmark:

running deep neural networks on Android smartphones,” arXiv, no. 1810.01109v2, 2018.

[640] A. Iosup, O. Sonmez, S. Anoep and D. Epema, “The performance of bags-of-tasks in large-scale

distributed systems,” in 17th international symposium on High performance distributed computing

(HPDC '08), 2008.

[641] M. Hussin, A. Abdullah and S. K. Subramaniam, “Adaptive resource allocation for reliable

performance in heterogeneous distributed systems,” in Algorithms and Architectures for Parallel

Processing (ICA3PP 2013). Lecture Notes in Computer Science, vol. 8286, R. Aversa, J. Kołodziej,

J. Zhang, F. Amato and G. Fortino, Eds., Springer, Cham, 2013, pp. 51-58.

[642] L. F. Bittencourt, A. Goldman, E. R. M. Madeira, N. L. d. Fonseca and R. Sakellariou, “Scheduling

in distributed systems: A cloud computing perspective,” Computer Science Review, vol. 30, no.

November, pp. 31-54, 2018.

[643] A. Jahan, K. L. Edwards and M. Bahraminasab, Multi-criteria decision analysis for supporting the

selection of engineering materials in product design, 2nd ed., Kidlington, Oxford: Butterworth-

Heinemann, Elsevier, 2016.

[644] M. Žižović, D. Pamučar, M. Albijanić, P. Chatterjee and I. Pribićević, “Eliminating rank reversal

problem using a new multi-attribute model - the RAFSI method,” Mathematics, vol. 8, no. 6, p. 1015,

2020.

[645] J. Figueira, S. Greco and M. Ehrogott, Multiple criteria decision analysis: state of the art surveys,

Springer, New York, 2005.

[646] A. Alinezhad and J. Khalili, New methods and applications in multiple attribute decision making

(MADM), Springer, 2019.

[647] C. L. Hwang and K. Yoon, Multiple attribute decision making: methods and applications, New York,

NY, USA: Springer, 1981.

[648] C.-L. Hwang, Y.-J. Lai and T.-Y. Liu, “A new approach for multiple objective decision making,”

Computers & Operations Research, vol. 20, no. 8, pp. 889-899, 1993.

[649] M. Keshavarz Ghorabaee, E. K. Zavadskas, L. Olfat and Z. Turskis, “Multi-criteria inventory

classification using a new method of evaluation based on distance from average solution (EDAS),”

Informatica, vol. 26, no. 3, pp. 435-451, 2015.

[650] D. Pamučar and G. Ćirović, “The selection of transport and handling resources in logistics centers

using Multi-Attributive Border Approximation area Comparison (MABAC),” Expert systems with

applications, vol. 42, no. 6, pp. 3016-3028, 2015.

[651] A. Alinezhad and J. Khalili, “MABAC Method,” in New Methods and Applications in Multiple

Attribute Decision Making (MADM). International Series in Operations Research & Management

Science, vol. 277, Springer, Cham, 2019, pp. 193-198.

[652] E. K. Zavadskas and Z. Turskis, “A new additive ratio assessment (ARAS) method in multicriteria

decision‐making,” Technological and Economic Development of Economy, vol. 16, no. 2, pp. 159-

172, 2010.

468

[653] A. Alinezhad and J. Khalili, “ARAS method,” in New Methods and Applications in Multiple Attribute

Decision Making (MADM). International Series in Operations Research & Management Science,

vol. 277, Springer, Cham, 2019, pp. 67-71.

[654] K. R. MacCrimmon, Decisionmaking among multiple-attribute alternatives: a survey and

consolidated approach, Santa Monica Ca: Research Memorandum, 1968.

[655] E. K. Zavadskas, A. Kaklauskas and V. Sarka, “The new method of multi-criteria complex

proportional assessment of projects,” Technological and Economic Development of Economy, vol. 1,

no. 3, pp. 131-139, 1994.

[656] A. Alinezhad and J. Khalili, “COPRAS method,” in New Methods and Applications in Multiple

Attribute Decision Making (MADM). International Series in Operations Research & Management

Science, vol. 277, Springer, Cham, 2019, pp. 87-91.

[657] L. Duckstein and S. Opricovic, “Multiobjective optimization in river basin development,” Water

Resources Research, vol. 16, no. 1, pp. 14-20, 1980.

[658] S. Opricovic and G. H. Tzeng, “Compromise solution by MCDM methods: a comparative analysis

of VIKOR and TOPSIS,” European Journal of Operational Research, vol. 156, no. 2, pp. 445-455,

2004.

[659] M. Yazdani, P. Zarate, E. K. Zavadskas and Z. Turskis, “A combined compromise solution (CoCoSo)

method for multi-criteria decision-making problems,” Management Decision, vol. 57, no. 9, pp.

2501-2519, 2019.

[660] Ž. Stević, D. Pamučar, A. Puška and P. Chatterjee, “Sustainable supplier selection in healthcare

industries using a new MCDM method: Measurement of alternatives and ranking according to

COmpromise solution (MARCOS),” Computers & Industrial Engineering, vol. 140, p. 106231,

2020.

[661] M. Keshavarz Ghorabaee, E. K. Zavadskas, M. Amiri and Z. Turskis, “Extended EDAS method for

fuzzy multi-criteria decision-making: An application to supplier selection,” International Journal of

Computers Communications & Control, vol. 11, pp. 358-371, 2016.

[662] D. Stanujkic and R. Jovanovic, “Measuring a quality of faculty website using ARAS method,” in

Proceeding of the International Scientific Conference Contemporary Issues in Business,

Management and Education, 2012.

[663] E. K. Zavadskas, Z. Turskis and T. Vilutiene, “Multiple criteria analysis of foundation instalment

alternatives by applying additive ratio assessment (ARAS) method,” Archives of Civil and

Mechanical Engineering, vol. 10, no. 3, pp. 123-141, 2010.

[664] C. Ghenai, M. Albawab and M. Bettayeb, “Sustainability indicators for renewable energy systems

using multi-criteria decision-making model and extended SWARA/ARAS hybrid method,”

Renewable Energy, vol. 146, pp. 580-597, 2020.

[665] L. Balezentiene and A. Kusta, “Reducing greenhouse gas emissions in grassland ecosystems of the

central Lithuania: multi-criteria evaluation on a basis of the ARAS method,” The Scientific World

Journal, no. Article ID 908384, 2012.

[666] P. Hoan and Y. Ha, “ARAS-FUCOM approach for VPAF fighter aircraft selection,” Decision

Science Letters, vol. 10, no. 1, pp. 53-62, 2021.

[667] J. Roy, A. Ranjan, A. Debnath and S. Kar, “An extended MABAC for multi-attribute decision making

using trapezoidal interval type-2 fuzzy numbers,” arXiv preprint , no. arXiv:1607.01254, 2016.

[668] Z. Bobar, D. Božanić, K. Djurić and D. Pamučar, “Ranking and assessment of the efficiency of social

media using the fuzzy AHP-Z number model-fuzzy MABAC,” Acta Polytech Hungarica, vol. 17,

pp. 43-70, 2020.

[669] G. Büyüközkan, E. Mukul and E. Kongar, “Health tourism strategy selection via SWOT analysis and

integrated hesitant fuzzy linguistic AHP-MABAC approach,” Socio-Economic Planning Sciences,

vol. 74, p. 100929, 2021.

[670] S. Biswas, G. Bandyopadhyay, B. Guha and M. Bhattacharjee, “An ensemble approach for portfolio

selection in a multi-criteria decision making framework,” Decision Making: Applications in

Management and Engineering, vol. 2, no. 2, pp. 138-158, 2019.

[671] H. K. Sharma, J. Roy, S. Kar and O. Prentkovskis, “Multi criteria evaluation framework for

prioritizing Indian railway stations using modified rough AHP-MABAC method,” Transport and

Telecommunication Journal, vol. 19, no. 2, pp. 113-127, 2018.

469

[672] J. Roy, K. Chatterjee, A. Bandyopadhyay and S. Kar, “Evaluation and selection of medical tourism

sites: A rough analytic hierarchy process based multi‐attributive border approximation area

comparison approach,” Expert Systems, vol. 35, no. 1, p. e12232, 2018.

[673] S. M. Yu, J. Wang and J. Q. Wang, “An interval type-2 fuzzy likelihood-based MABAC approach

and its application in selecting hotels on a tourism website,” International Journal of Fuzzy Systems,

vol. 19, no. 1, pp. 47-61, 2017.

[674] P. Chatterjee and S. Chakraborty, “Flexible manufacturing system selection using preference ranking

methods: A comparative study,” International Journal of Industrial Engineering Computations, vol.

5, no. 2, pp. 315-338, 2014.

[675] E. K. Zavadskas, A. Kaklauskas, Z. Turskis and J. Tamošaitienė, “Multi-attribute decision-making

model by applying grey numbers,” Informatica, vol. 20, no. 2, pp. 305-320, 2009.

[676] Ž. Stević and N. Brković, “A novel integrated FUCOM-MARCOS model for evaluation of human

resources in a transport company,” Logistics, vol. 4, no. 1, p. 4, 2020.

[677] M. Stanković, Ž. Stević, D. K. Das, M. Subotić and D. Pamučar, “A new fuzzy MARCOS method

for road traffic risk analysis,” Mathematics, vol. 8, no. 3, p. 457, 2020.

[678] C. E. Shannon, “A mathematical theory of communication,” Bell Systems Technical Journal, vol. 27,

no. 3, pp. 379-423, 1948.

[679] Y. Suh, Y. Park and D. Kang, “Evaluating mobile services using integrated weighting approach and

fuzzy VIKOR,” PLoS ONE, vol. 14, no. 6, p. e0217786, 2019.

[680] M. Z. Abidin, R. Rusli and A. M. Shariff, “Technique for order performance by similarity to ideal

solution (TOPSIS) - entropy methodology for inherent safety design decision making tool,” Procedia

Engineering, vol. 148, pp. 1043-1050, 2016.

[681] P. Liu and X. Zhang, “Research on the supplier selection of a supply chain based on entropy weight

and improved ELECTRE-III method,” International Journal of Production Research, vol. 49, no. 3,

pp. 637-646, 2011.

[682] S. Laha and S. Biswas, “A hybrid unsupervised learning and multi-criteria decision making approach

for performance evaluation of Indian banks,” Accounting, vol. 5, no. 4, pp. 169-184, 2019.

[683] S. Gupta, G. Bandyopadhyay, M. Bhattacharjee and S. Biswas, “Portfolio selection using DEA-

COPRAS at risk–return interface based on NSE (India),” International Journal of Innovative

Technology and Exploring Engineering, vol. 8, no. 10, pp. 4078-4086, 2019.

[684] P. Karmakar, P. Dutta and S. Biswas, “Assessment of mutual fund performance using distance based

multi-criteria decision making techniques - An Indian perspective,” Research Bulletin, vol. 44, no.

1, pp. 17-38, 2018.

[685] X. Li, K. Wang, L. Liu, J. Xin, H. Yang and C. Gao, “Application of the entropy weight and TOPSIS

method in safety evaluation of coal mines,” Procedia Engineering, vol. 26, pp. 2085-2091, 2011.

[686] Z. H. Zou, Y. Yi and J. N. Sun, “Entropy method for determination of weight of evaluating indicators

in fuzzy synthetic evaluation for water quality assessment,” Journal of Environmental Sciences, vol.

18, no. 5, pp. 1020-1023, 2006.

[687] R. Simanaviciene and L. Ustinovichius, “Sensitivity analysis for multiple criteria decision making

methods: TOPSIS and SAW,” Procedia-Social and Behavioral Sciences, vol. 2, no. 6, pp. 7743-

7744, 2010.

[688] I. Mukhametzyanov and D. S. Pamučar, “A sensitivity analysis in MCDM problems: A statistical

approach,” Decision Making: Applications in Management and Engineering, vol. 1, no. 2, pp. 51-80,

2018.

[689] S. Biswas and D. S. Pamučar, “Facility location selection for b-schools in Indian context: A multi-

criteria group decision based analysis,” Axioms, vol. 9, no. 3, p. 77, 2020.

[690] D. S. Pamučar, G. Ćirović and D. Božanić, “Application of interval valued fuzzy-rough numbers in

multi-criteria decision making: the IVFRN-MAIRCA model,” Yugoslav Journal of Operations

Research, vol. 29, no. 2, pp. 221-247, 2019.

[691] D. S. Pamučar, D. Božanić and A. Ranđelović, “Multi-criteria decision making: An example of

sensitivity analysis,” Serbian Journal of Management, vol. 12, no. 1, pp. 1-27, 2017.

[692] Z. Ali, T. Mahmood, K. Ullah and Q. Khan, “Einstein geometric aggregation operators using a novel

complex interval-valued Pythagorean fuzzy setting with application in green supplier chain

management,” Reports in Mechanical Engineering, vol. 2, no. 1, pp. 105-134, 2021.

470

[693] S. Biswas and O. P. Anand, “Logistics competitiveness index-based comparison of BRICS and G7

countries: an integrated PSI-PIV approach,” IUP Journal of Supply Chain Management, vol. 17, no.

2, pp. 32-57, 2020.

[694] K. E. Muller and B. A. Fetterman, Regression and ANOVA: an integrated approach using SAS

software, New York, United States: John Wiley & Sons, 2003.

[695] M. Allen, Ed., “Post hoc tests,” in The SAGE Encyclopedia of Communication Research Methods,

Vols. 1-4, SAGE Publications, 2017.

[696] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in International Conference on Neural

Networks (ICNN'95), Perth, Australia, 1995.

[697] R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms and particle swarm

optimization,” in Evolutionary Programming VII (EP 1998). Lecture Notes in Computer Science,

vol. 1447, V. W. Porto, N. Saravanan, D. Waagen and A. E. Eiben, Eds., Berlin, Heidelberg, Springer,

1998, pp. 611-616.

[698] A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,” in USENIX

conference on USENIX annual technical conference (USENIXATC'10), Berkeley, United States,

2010.

[699] B. Zhu and Y. Wei, “Carbon price forecasting with a novel hybrid ARIMA and least squares support

vector machines methodology,” Omega, vol. 41, no. 3, pp. 517-524, 2013.

[700] N. H. Miswan, N. A. Ngatiman, K. Hamzah and Z. Z. Zamzamin, “Comparative performance of

ARIMA and GARCH models in modelling and forecasting volatility of Malaysia market properties

and shares,” Applied Mathematical Sciences, vol. 8, no. 140, pp. 7001-7012, 2014.

[701] R. Fu, Z. Zhang and L. Li, “Using LSTM and GRU neural network methods for traffic flow

prediction,” in 31st Youth Academic Annual Conference of Chinese Association of Automation

(YAC), Wuhan, China, 2016.

[702] N. N. Zakaria, M. Othman, R. Sokkalingam, H. Daud, L. Abdullah and E. A. Kadir, “Markov chain

model development for forecasting air pollution index of Miri, Sarawak,” Sustainability, vol. 11, p.

5190, 2019.

[703] S. Elgharbi, M. Esghir, O. Ibrihich, A. Abarda, S. El Hajji and S. Elbernoussi, “Grey-Markov model

for the prediction of the electricity production and consumption,” in Big Data and Networks

Technologies (BDNT 2019). Lecture Notes in Networks and Systems, vol. 81, Y. Farhaoui, Ed.,

Cham, Springer, 2020, pp. 206-219.

[704] Y. Bengio, P. Simard and P. Frasconi, “Learning long-term dependencies with gradient descent is

difficult,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166, 1994.

[705] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8,

pp. 1735-1780, 1997.

[706] A. Yadava, C. K. Jhaa and A. Sharan, “Optimizing LSTM for time series prediction in Indian stock

market,” Procedia Computer Science, vol. 167, pp. 2091-2100, 2020.

[707] Y.-g. Zhang, J. Tang, Z.-y. He, J. Tan and C. Li, “A novel displacement prediction method using

gated recurrent unit model with time series analysis in the Erdaohe landslide,” Natural Hazards, vol.

105, pp. 783-813, 2021.

[708] Q. Tan, M. Ye, B. Yang, S. Liu, A. J. Ma, T. C.-F. Yip, G. L.-H. Wong and P. Yuen, “DATA-GRU:

dual-attention time-aware gated recurrent unit for irregular multivariate time series,” Proceedings of

the AAAI Conference on Artificial Intelligence, vol. 34, no. 1, pp. 930-937, 2020.

[709] M. d. Caux, F. Bernardini and J. V. Viterbo, “Short-term forecasting in Bitcoin time series using

LSTM and GRU RNNs,” in Symposium on Knowledge Discovery, Mining and Learning (KDMILE

2020), Rio Grande, Brazil, 2020.

[710] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern

recognition unaffected by shift in position,” Biological Cybernetics, vol. 36, pp. 193-202, 1980.

[711] Y. LeCun, B. Boser, J. S. Denker, R. E. Howard, W. Hubbard, L. D. Jackel and D. Henderson,

“Handwritten digit recognition with a back-propagation network,” Advances in neural information

processing systems, vol. 2, pp. 396-404, 1990.

[712] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

471

[713] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang and W. Xu, “CNN-RNN: a unified framework for

multi-label image classification,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas, USA, 2016.

[714] A. Borovykh, S. Bohte and C. W. Oosterlee, “Conditional time series forecasting with convolutional

neural networks,” arXiv, no. 1703.04691v5, 2018.

[715] Y. Wei, W. Xia, M. Lin, J. Huang, B. Ni, J. Dong, Y. Zhao and S. Yan, “HCP: a flexible CNN

framework for multi-label image classification,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 38, no. 9, pp. 1901-1907, 2016.

[716] C.-L. Liu, W.-H. Hsaio and Y.-C. Tu, “Time series classification with multivariate convolutional

neural network,” IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4788-4797, 2019.

[717] W. Shen, Z. Wei, C. Yang and R. Zhang, “Travel pattern modelling and future travel behaviour

prediction based on GMM and GPR,” Int. J. Simulation and Process Modelling, vol. 13, no. 6, pp.

548-556, 2018.

[718] F. Jelinek, R. L. Mercer, L. R. Bahl and J. Baker, “Perplexity - a measure of the difficulty of speech

recognition tasks,” The Journal of the Acoustical Society of America, vol. 62, no. S1, p. S63, 1977.

[719] F Chollet and others, “Keras,” 2015. [Online]. Available: https://keras.io/. [Accessed 13 February

2021].

[720] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” arXiv:1412.6980v9 [cs.LG],

2017.

[721] R. Muthukrishnan and R. Rohini, “LASSO: a feature selection technique in predictive modeling for

machine learning,” in IEEE International Conference on Advances in Computer Applications

(ICACA), Coimbatore, India, 2016.

[722] F. Perez and B. E. Granger, “IPython: a system for interactive scientific computing,” Computing in

Science & Engineering, vol. 9, no. 3, 2007.

[723] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, et al., “TensorFlow: large-scale machine

learning on heterogeneous distributed systems,” Google, 2015.

[724] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, et al.,

“Array programming with NumPy,” Nature, vol. 585, pp. 357-362, 2020.

[725] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, et al., “SciPy 1.0: fundamental

algorithms for scientific computing in Python,” Nature Methods, vol. 17, pp. 261-72, 2020.

[726] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, et al., “Scikit-learn: machine

learning in Python,” Journal of Machine Learning Research, vol. 12, no. Oct, pp. 2825-2830, 2011.

[727] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science & Engineering, vol.

9, no. 3, pp. 90-95, 2007.

[728] NVIDIA, P. Vingelmann and F. H. Fitzek, “CUDA, release: 10.2.89,” 2020. [Online]. Available:

https://developer.nvidia.com/cuda-toolkit. [Accessed 3 July 2021].

[729] S. Yang, X. Yu and Y. Zhou, “LSTM and GRU neural network performance comparison study:

taking Yelp review dataset as an example,” in International Workshop on Electronic Communication

and Artificial Intelligence (IWECAI), Shanghai, China, 2020.

[730] Y. Bengio, A. Courville and P. Vincent, “Representation learning: a review and new perspectives,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828,

2013.

[731] M. McNett and G. M. Voelker, “Access and mobility of wireless PDA users,” Mobile Computing

and Communications Review, vol. 9, no. 2, 2005.

[732] N. Balakrishnan, Handbook of the logistic distribution, CRC Press, 2019.

[733] J. M. Hilbe, Logistic regression models, Chapman and Hall/CRC, 2017.

[734] A. Agresti, Categorical data analysis, 3rd ed., Wiley, 2012.

[735] D. Hosmer Jr., S. Lemeshow and R. X. Sturdivant, Applied logistic regression, 3rd ed., Wiley, 2013.

[736] C. V. Zavgren, “Assessing the vulnerability of American industrial firms: a logistic analysis,”

Journal of Business Finance and Accounting, vol. 12, no. 1, pp. 19-45, 1985.

[737] J. A. Ohlson, “Financial ratios and the Probabilistic prediction of bankruptcy,” Journal of Accounting

Research, vol. 18, no. 1, pp. 109-131, 1p80.

[738] S. W. Menard, Quantitative applications in the social sciences: applied logistic regression analysis,

2nd ed., Thousand Oaks, CA: SAGE Publications, Inc., 2002.

472

[739] P. Choudhury, S. Nandi and N. C. Debnath, “A publish/subscribe system using distributed broker for

SOA based MANET applications,” Journal of Computational Methods in Sciences and Engineering,

vol. 12, no. S1, pp. 129-138, 2012.

[740] J. Surbiryala and C. Rong, “Cloud computing: history and overview,” in IEEE Cloud Summit,

Washington, DC, USA, 2019.

[741] E. F. Coutinho, F. Sousa, P. Rego, D. Gomes and J. Souza, “Elasticity in cloud computing: a survey,”

Annals of Telecommunications - annales des télécommunications, vol. 70, p. 289–309, 2015.

[742] S. Yi, Z. Hao, Z. Qin and Q. Li, “Fog computing: platform and applications,” in Third IEEE

Workshop on Hot Topics in Web Systems and Technologies (HotWeb), Washington DC, 2015.

[743] M. Satyanarayanan, P. Bahl, R. Caceres and N. Davies, “The case for VM-based cloudlets in mobile

computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14-23, 2009.

[744] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu and B. Amos, “Edge

analytics in the Internet of Things,” IEEE Pervasive Computing, vol. 14, no. 2, pp. 24-31, 2015.

[745] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, “Fog computing and its role in the Internet of Things,”

in MCC workshop on Mobile cloud computing (MCC '12), Helsinki, Finland, 2012.

[746] L. M. Vaquero and L. Rodero-Merino, “Finding your way in thefFog: towards a comprehensive

definition of fog computing,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 5,

pp. 27-32, 2014.

[747] Y. C. Hu; M. Patel; D. Sabella; N. Sprecher; V. Young, “Mobile edge computing: a key technology

towards 5G,” ETSI (European Telecommunications Standards Institute), September 2015.

[748] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta and D. Sabella, “On multi-access edge

computing: a survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1657-1681, 2017.

[749] N. H. Chun, Resource auction in crowdsourced edge computing platform, Hong Kong University of

Science and Technology, 2021.

[750] P. Antoniadis and I. Apostol, “The right (s) to the hybrid city and the role of DIY networking," The

Journal of Community Informatics, vol. 10, no. 3, 2014.

[751] L. Peterson, T. Anderson, S. Katti, N. McKeown, G. Parulkar, J. Rexford, M. Satyanarayanan, O.

Sunay and A. Vahdat, “Democratizing the network edge,” ACM SIGCOMM Computer

Communication Review , vol. 49, no. 2, pp. 31-36, 2019.

[752] B. Yang, F. Haghighat, B. C. M. Fung and K. Panchabikesan, “Season-based occupancy prediction

in residential buildings using machine learning models,” e-Prime - Advances in Electrical

Engineering, Electronics and Energy, vol. 1 (100003), 2021.

[753] W. Goetzler, R. Shandross, J. Young, O. Petritchenko, D. Ringo and S. McClive, “Energy savings

potential and RD&D opportunities for commercial building HVAC systems,” U.S. Department of

Energy, 2017.

[754] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra and P. Bahl, “MAUI:

making smartphones last longer with code offload,” in 8th international conference on mobile

systems, applications, and services, San Francisco, 2010.

[755] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies and M. Satyanarayanan, “The impact of

mobile multimedia applications on data center consolidation,” in IEEE International Conference on

Cloud Engineering, San Francisco, CA, 2013.

[756] M. Satyanarayanan, “A brief history of cloud offload: a personal journey from odyssey through cyber

foraging to cloudlets,” GetMobile: Mobile Computing and Communications, vol. 18, no. 4, pp. 19-

23, 2015.

[757] R. G. Steadman, “The assessment of sultriness. Part I: a temperature-humidity index based on human

physiology and clothing science,” Journal of Applied Meteorology and Climatology, vol. 18, no. 7,

p. 861–873, 1979.

[758] A. Quinn, J. D. Tamerius, M. Perzanowski, J. S. Jacobson, I. Goldstein, L. Acosta and J. Shaman,

“Predicting indoor heat exposure risk during extreme heat events,” Science of The Total Environment,

vol. 490, p. 686–693, 2014.

[759] Paroscientific Inc., “MET4 and MET4A calculation of dew point,” 26 May 2012. [Online].

Available: https://archive.is/20120526034637/http://www.paroscientific.com/dewpoint.htm#

selection-413.0-413.39. [Accessed 7 June 2020].

473

[760] A. W. T. Barenbrug, Psychrometry and psychrometric charts, 3rd ed., Cape Town: Cape and

Transvaal Printers Ltd., 1974.

[761] G. B. Anderson, M. L. Bell and R. D. Peng, “Methods to calculate the heat index as an exposure

metric in environmental health research,” Environmental health perspectives, vol. 121, no. 10, pp.

1111-1119, 2013.

[762] “NodeMCU v3,” Zerynth, 2020. [Online]. Available: https://docs.zerynth.com/latest/official/

board.zerynth.nodemcu3/docs/index.html. [Accessed 21 March 2022].

[763] T. Liu, “Digital-output relative humidity & temperature sensor/module: DHT22,” [Online].

Available: https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf. [Accessed 28

March 2020].

[764] Z. Juhasz, “Quantitative cost comparison of on-premise and cloud infrastructure based EEG data

processing,” Cluster Computing, vol. 24, pp. 625-641, 2021.

[765] B. Daigle, “Data centers around the world: a quick look,” May 2021. [Online]. Available:

https://www.usitc.gov/publications/332/executive_briefings/ebot_data_centers_around_the_world.

pdf. [Accessed 12 February 2022].

[766] M. Koot and F. Wijnhoven, “Usage impact on data center electricity needs: a system dynamic

forecasting model,” Applied Energy, vol. 291, 2021.

[767] P. Kanani and M. Padole, “An effort to reduce the CO2 emission in computation for green

computation,” SAMRIDDHI: A Journal of Physical Sciences, Engineering and Technology, vol. 12,

no. SUP 1, pp. 340-346, 2020.

[768] T. Pirson and D. Bol, “Assessing the embodied carbon footprint of IoT edge devices with a bottom-

up life-cycle approach,” Journal of Cleaner Production, vol. 322, p. 128966, 2021.

[769] M. A. E. Aziz, “How smartphones are contributing to climate change,” 7 February 2022. [Online].

Available: https://infomineo.com/how-smartphones-are-contributing-to-climate-change/#:~:text=

Research%20on%20the%20annual%20carbon,per%20day%2C%20for%20a%20year.. [Accessed

23 June 2022].

[770] E. M. Ercan, “Global warming potential of a smartphone using life cycle assessment methodology,”

Royal Institute of Technology, Stockholm, 2013.

[771] Five Winds International, “Toxic and hazardous materials in electronics an environmental scan of

toxic and hazardous materials in IT and telcomm products and waste,” Five Winds International,

Ottawa, Canada, 2001.

[772] ITU Telecommunication Development Sector, “The global e-waste monitor 2020,” 2020. [Online].

Available: https://www.itu.int/en/ITU-D/Environment/Pages/Spotlight/Global-Ewaste-Monitor-

2020.aspx. [Accessed 28 December 2022].

[773] S. Dalul, “To solve the smartphone e-waste problem we first need fewer disposable devices,”

Android Authority, 20 July 2020. [Online]. Available: https://www.androidauthority.com/e-waste-

smartphones-1133322/. [Accessed 5 May 2022].

[774] M. Chatterji, “Repairing – not recycling – is the first step to tackling e-waste from smartphones.

Here’s why.,” World Economic Forum, 19 July 2021. [Online]. Available: https://www.

weforum.org/agenda/2021/07/repair-not-recycle-tackle-ewaste-circular-economy-smartphones/

#:~:text=Emissions%20and%20waste&text=The%20total%20annual%20carbon%20footprint,50%

20million%20tonnes%20in%202019. [Accessed 5 May 2022].

[775] Sims Lifecycle Services, “Sustainable data center decommissioning,” Sims Lifecycle Services, 2003.

[Online]. Available: https://www.simslifecycle.com/resources/white-paper-data-center/. [Accessed

06 May 2022].

[776] Sims Lifecycle Services, “How we do it,” Sims Lifecycle Services, 2003. [Online]. Available: https://

www.simslifecycle.com/business/e-waste-recycling/how-we-do-it/. [Accessed 06 May 2022].

[777] Z. Chen, M. Yang, Q. Shi, X. Kuang, H. J. Qi and T. Wang, “Recycling waste circuit board efficiently

and environmentally friendly through small-molecule assisted dissolution,” Scientific Reports, vol.

17902, pp. 1-9, 2019.

[778] H. Vermeșan , A.-E. Tiuc and M. Purcar, “Advanced recovery techniques for waste materials from

IT and telecommunication equipment printed circuit boards,” Sustainability, vol. 12, no. 1, pp. 1-23,

2020.

[779] G. P. Thomas, “Recycling of mobile phones,” AZO Cleantech, 30 August 2012. [Online]. Available:

https://www.azocleantech.com/article.aspx?ArticleID=275. [Accessed 6 May 2022].

474

[780] W. Hajji and F. P. Tso, “Understanding the performance of low power Raspberry Pi cloud for big

data,” Electronics, vol. 5, no. 2, p. 29, 2016.

[781] A. Komninos, I. Simou, N. Gkorgkolis and J. Garofalakis, “Performance of Raspberry Pi

microclusters for edge machine learning in tourism,” in Joint Proceeding of the Poster and Workshop

Sessions of AmI-2019, the 2019 European Conference on Ambient Intelligence, Rome, Italy, 2019.

[782] N. Naji, M. R. Abid, N. Krami and D. Benhaddou, “Energy-aware wireless sensor networks for smart

buildings: a review,” Journal of Sensor and Actuator Networks, vol. 10, no. 4, p. 67, 2021.

[783] N. Malpani, J. L. Welch and N. Vaidya, “Leader election algorithms for mobile ad hoc networks,” in

Proceedings of the 4th international workshop on Discrete algorithms and methods for mobile

computing and communications (DIALM '00), Boston, USA, 2000.

[784] R. Septiana, I. Roihan and R. A. Koestoer, “Testing a calibration method for temperature sensors in

different working fluids,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences,

vol. 68, no. 2, pp. 84-93, 2020.

[785] R. A. Koestoer, N. Pancasaputra, I. Roihan and H. Harinaldi, “A simple calibration methods of

relative humidity sensor DHT22 for tropical climates based on Arduino data acquisition system,”

AIP Conference Proceedings, vol. 2062, no. 1, p. 020009, 2019 .

[786] N. Li, G. Calis and B. Becerik-Gerber, “Measuring and monitoring occupancy with an RFID based

system for demand-driven HVAC operations,” Automation in Construction, vol. 24, pp. 89-99, 2012.

[787] H. Saha, A. R. Florita, G. P. Henze and S. Sarkar, “Occupancy sensing in buildings: A review of data

analytics approaches,” Energy and Buildings, vol. 188–189, pp. 278-285, 2019.

[788] C. Lee and D. Lee, “Self-error detecting and correcting algorithm for accurate occupancy tracking

using a wireless sensor network,” in 4th International Conference on Smart and Sustainable

Technologies (SpliTech), Split, Croatia, 2019.

[789] L. Klein, J.-y. Kwak, G. Kavulya, F. Jazizadeh, B. Becerik-Gerber, P. Varakantham and M. Tambe,

“Coordinating occupant behavior for building energy and comfort management using multi-agent

systems,” Automation in Construction, vol. 22, pp. 525-536, 2012.

[790] P. W. Tien, S. Wei, J. K. Calautit, J. Darkwa and C. Wood, “A vision-based deep learning approach

for the detection and prediction of occupancy heat emissions for demand-driven control solutions,”

Energy and Buildings, vol. 226 (Article 110386), 2020.

[791] Y. Benezeth, H. Laurent, B. Emile and C. Rosenberger, “Towards a sensor for detecting human

presence and characterizing activity,” Energy and Buildings, vol. 43, pp. 305-314, 2011.

[792] V. L. Erickson, Y. Lin, A. Kamthe, R. Brahme, A. Surana, A. E. Cerpa, M. D. Sohn and S. Narayanan,

“Energy efficient building environment control strategies using real-time occupancy measurements,”

in Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in

Buildings, New York, NY, USA, 2009.

[793] H. Shan, Y. Da, A. Jingjing, G. Siyue and Q. Mingyang, “Investigation and analysis of Chinese

residential building occupancy with large-scale questionnaire surveys,” Energy and Buildings, vol.

193, pp. 289-304, 2019.

[794] H. Zou, Y. Zhou, H. Jiang, S.-C. Chien, L. Xie and C. J. Spanos, “WinLight: a WiFi-based

occupancy-driven lighting control system for smart building,” Energy and Buildings, vol. 158, pp.

924-938, 2018.

[795] C. B. Smith and K. E. Parmenter, “Management of heating and cooling,” in Energy Management

Principles: Applications, Benefits, Savings, 2nd ed., Elsevier, 2016, pp. 125-187.

[796] D. Youn, “Air conditioning system using enthalpy of outside air”. United States Patent

US20030183380A1, 2 October 2003.

[797] C.-L. Li and S.-L. Chung, “Enthalpy-based automatic temperature control for automobiles,” in IEEE

Control Applications (CCA) & Intelligent Control (ISIC), St. Petersburg, Russia, 2009.

[798] R. Kosonen and J. Penttinen, “The effect of free cooling and demand-based ventilation on energy

consumption of self-regulating and traditional chilled beam systems in cold climate,” Indoor and

Built Environment, vol. 26, no. 2, pp. 256-271, 2017.

