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Abstract
The overall behavior of road vehicles depends majorly on their driver’s traits. The last several years wit-
nessed digitalization growth and an increase of onboard data collection, which paved the way to Machine
Learning applications. In this project, Unsupervised and Supervised learning approaches were investigated
in order to detect driving profiles, because in reality, a clustering phase could be used to detect a pattern
in an unlabeled data, then after a labeling phase, a classification phase would be mandatory to recognize
a certain profile. At the end it was concluded that the Random Forest algorithm combined with Sliding
window technique outperformed the other classical Machine Learning algorithms with an accuracy of 88%.
In addition, Deep Learning was investigated, leading to a Neural Network with four layers achieving a
testing accuracy of 83%.

Keywords: Driving Profile, Data Processing, Machine Learning, Supervised Learning, Clustering, Sliding
Window, Deep Learning.

List of Acronyms:

Abbreviation Definition
ML Machine Learning

DBA Driving Behavior Analysis
CAN Controller Area Network
DS Data Set
RF Random Forest
NN Neural Network

ADAS Advanced Driver-Assistance Systems



1 Introduction
Driving behavior is a complex concept that represents a sequence of decisions and actions taken by a person
while driving a vehicle. This concept can directly impact the car’s global functioning, which depends also
on the manufacturer’s known specifications only. Not only the driver can affect the car performance, in
particular energy consumption and gas emissions, but also his comfort and comfort of the passengers, and
crucially road safety.
In fact, the World Health Organization (WHO) stated in a global status report on road safety that ap-
proximately 1.35 million fatalities occur yearly because of road accidents, in addition to millions more of
injuries [1]. They estimated that car accidents are the major cause of death for the young people worldwide.

The recognition of drivers and their behaviors provides important and helpful insights for different stake-
holders in the field to potentially find optimal solutions for the problems that are induced by the incertitude
and diversity of driving styles.
Recently, driving profile analysis had an increasing potential in numerous fields like vehicle energy manage-
ment, advanced driver-assistance systems (ADAS), development of automated vehicles, fleet management,
intelligent transportation systems. And With this rises the demand of the ability to detect multiple driving
profiles.

On the other hand, modern cars contain an increasing number of embedded sensors and processors, which
lead to an abundance of data one can collect and use in Real-Time or later for the development of the
automotive field. In addition, the field of Artificial Intelligence is advancing rapidly and especially Machine
Learning, which relies heavily on data that is overflowing in modern cars. All of that offer a great oppor-
tunity in the driving profile detection and analysis domain, that is not fully exploited yet.

2 Context and Key Issues
The main motivation behind this project is that fact that enabling style and profile detection will unlock a
potential feature that helps in energy consumption of a vehicle, especially in the age of electric cars where
the recharging speed is slow, and the autonomy is a real concern. For example, we can imagine a scenario
where a certain driver is aggressive on the pedals, consuming more energy in a result, so the recognition of
this driver with this energy consuming style can help adapting his driving style to reach optimum energy
consumption. Another application would be the automatic customization of a car depending on who’s
behind the wheel. Imagine the settings of the seating, air temperature, list of music, recently visited places
list, etc., all changing automatically based on the driver recognition.

So the ultimate goal of driver profiling is to be able to implement it in Real-Time on board the car, so
the computations and memory costs are major constraints to be considered later on. To make the driver
profiling useful and efficient, it must be done by the processors inside the vehicle. In fact, if one is aiming
to effectively improve each vehicle’s energy management, the global system of driving style recognition and
feeding it back to the powertrain must be flexible. Also, managing the Big Data generated from internal
sensor might pose a challenge.

Like any other project involving Machine Learning, the preprocessing phase of the raw data can be very
challenging, as making the dataset clean before feeding it to the ML model is very critical for a better per-
formance. Plus, the raw data can be so inconsistent and erroneous, causing the detection task to be more
contesting. Besides, the driving style can vary for the same driver depending on the external conditions
and events like weather, road type, traffic, and even biometric signals of the driver. The challenge here is
to process this data or to model those events and merge them with the internal vehicle data to get more
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reliable results. A simple example would be that a certain driver is cruising slower than usual, not due to
the change of his driving style, but since it is raining, and he cannot go faster because of tires aquaplaning.
Lastly, every set of input data has its own particularities in machine learning applications, and the pre-
processing phase can differ from one set of data to another. Adding to that, some algorithms are more
suited to a type of dataset compared to another.

All the motivations and potential applications stated above encouraged the kick-off of this project, which
is a first phase towards unlocking all the potential of driver and style detection.

3 Related Works
The literature is full of research hovering around the concept of driving behavior analysis, which includes
several tasks like driving style detection, driver identification (driver fingerprinting), driver inattention de-
tection, driving event detection/prediction (two of them are tackled in the scope of this project). And
Artificial Intelligence, especially Machine Learning, is a trendy and effective tool to tackle these tasks, as
it mentioned heavily in research related to this topic.

Driving style refers to the way a driver operates a vehicle on the road, including their habits, attitudes,
and behaviors while driving. It can be influenced by a variety of factors, such as the driver’s personality,
experience, skills, age, gender, the type of vehicle they are driving, and the road and weather conditions.
The recognition and analyze of driving styles is proven that it has the potential to assist the drivers in
managing their energy consumption. For instance, Yang et al. were able to improve energy consumption
in hybrid vehicles by 7% and 5% for aggressive and normal drivers respectively [2]. Also, Magaña and
Muñoz-Organero [3] introduced a driving assistant that gives recommendations for fuel saving based on
customized drivers’ styles. The system analyzes external conditions, and whether the driver’s style is eco-
friendly or not, and suggests therefore an optimal average speed. The study showed that this system can
help to reduce fuel consumption by up to 11%.

On the other hand, the other DBA task that is tackled in the scope of this project is driver fingerprinting. It
is simply guessing who is the person behind the wheel and labeling him with a unique identifier. Martinez et
al. [4] proposed an architecture aiming to improve the security of ADAS systems by identifying in real-time
drivers and detecting imposters. This method used a feedforward neural network data from CAN-bus and
IMU accelerometers.

Several approaches and algorithms were implemented to recognize a driver or detect his driving style.
The simplest methodology has to be the Rule-based algorithms. It defines rules depending on fixed thresh-
olds over an observed set of data. Murphey et al. [5] used this approach and determined the driving style
by counting the amount of aggressive maneuvers. Similarly, Stoichkov [6] utilized this algorithm to detect
6 driving events. The rule-based algorithms showed poor accuracy mainly because of its limited number of
parameters, showing inability to handle complex problem like ML.
Under the same approach, Fuzzy Logic maps were implemented, allowing to incorporate more parameters,
and resulting in more robustness. This algorithm implemented by Syed et al. [7] estimated the ideal throttle
and brake pedals operation and provided the driver haptic feedbacks. Note that in rule-based and fuzzy
logic algorithms, there is a strong correlation between the quality of the classification and the thresholds
choice, and a limit in the amount of data that can be processed.

Machine Learning algorithms take the biggest share of models in the DBA scheme. These algorithms can
be grouped into different families.
Li Guofa et al. [8] adopted Random Forest, a well known algorithm in the Ensemble methods family, to
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classify driving styles using selected features. Also, the latter algorithm was used in detecting driving events
(Das et al. [9]), and drivers themselves. In fact, Chowdhury et al. [10] recognized drivers and reached the
best results by applying Random Forest on smartphone’s GPS data only. In addition to RF, other ensemble
algorithms are present in the literature, like Gradient Boosting and Adaboost.
In the Instance-based family, the most promising algorithm is support vector machine (SVM). It was im-
plemented by Wang et al. [11] in his semi supervised approach to detect styles, and by Moreira-Matias et
al. [12] to recognize who is behind the wheel.
Decision tree algorithms were not mentioned a lot despite their easy implementation, due to their limita-
tions in terms of features used.

Also, Deep Neural Networks, a subclass of ML models, have their fair share in the literature. Although it
is computationally more expensive compared to classical ML algorithms, but they are better at extracting
hidden features and critically temporal dependencies. Convolutional Neural Nets (CNN) have shown good
results in time series classification, for the purpose of driving style detection (Bejani et al. [13]), and driver
fingerprinting (Jeong et al. [14]).

All the methods above can be categorized as Supervised ML algorithms. However, Unsupervised ML algo-
rithms were also used to categorize driving styles. In fact, Gace et al. [15] relied on k-means clustering to
identify three types of trips using automotive and traffic context data sets. Another proposed unsupervised
learning strategy to categorize 5 styles included Principal Component Analysis and Hierarchical Cluster
Analysis with time-series motion data (Constantinescu et al. [16]). Feng et al. [17] classified robustly
driving styles using Support Vector Clustering method. In this article, they were able to differentiate the
variations in styles of the same driver and provided an objective classification.

Another implementation is to apply both Unsupervised and Supervised learning successively; unsupervised
to specify the most efficient classification strategy and supervised learning to get better categorizing re-
sults. For example, Van Ly et al. [18] applied K-means (unsupervised) and Supported Vector Machine
(supervised) for the classification.

4 Aims and Objectives
This project is considered as a first step towards unlocking all the potential application for recognizing
drivers, and their driving behaviors. So the goal here is to detect who is behind the wheel using Machine
Learning algorithms and try to find the best possible solution. To enable this task, lots of data are needed,
the choice was to utilize data collected from the CAN-bus of the vehicle, since it is the most common
present data, and it doesn’t rely on external devices like smartphones.
Therefore, the first step is to acquire the sensors’ data and perform pre-processing and features extractions,
in order to clean it and make the most out of it before feeding it to the ML algorithms that rely heavily on
the quality of the dataset in hand.
The second step is to apply an Unsupervised Learning approach as a way to detect some patterns in the
dataset in hand, and then detect a particular style for each driver. Afterward, in a third phase, supervised
learning algorithms are implemented aiming at identifying the driver. In this third step, classical ML
techniques will be applied as well as Deep Learning and its Neural Networks modelling. All of this to find
the best approach possible, giving the best results. Note that the second and third steps, unsupervised and
supervised approaches respectively, are implemented using different datasets.

Page 3 of 41



Semester 2: Unsupervised Learning Approach

5 Machine Learning Types
Since this project is going to evolve around utilizing some Machine Learning techniques, the first step was
to familiarize with this vast environment. Machine learning is a subfield of Artificial Intelligence (AI) that
involves the development of algorithms and statistical models that enable computers to automatically learn
and improve from experience, without being explicitly programmed. The primary goal of machine learning
is to enable machines to identify patterns and make predictions or decisions based on data inputs.

Figure 1: General formulation of ML

There are four main types of machine learning algorithms:

• Supervised Learning: it is the most common type of machine learning. During the training phase, the
training set, containing the inputs, is labelled with the desired output. Also, there is a strong learning
signal here.

• Unsupervised Learning: contrary to the supervised learning, the training sets are not labelled, leaving
the system searching for common traits between them, and evolving based on internal knowledge.

• Semi-supervised Learning: as its name suggests, it combines a large amount of unlabeled training
data sets and a small amount of labelled data.

• Reinforcement Learning: in this paradigm, there is a learner called agent, and the goal is to take a
correct “action” for each environment “situation”. In fact, the environment will reveal itself to the agent
in the form of states, and the agent will have influence on the environment by taking actions, and then
agent receive a “reward” for a correct combination of (state, action) before the next state.

Besides, one should not forget about a major subfield of ML called Deep Learning. It is focused on de-
veloping algorithms inspired by the structure and function of the human brain, known as artificial neural
networks. These algorithms are designed to analyze and interpret complex data sets, such as images, videos,
and text, and extract useful features and patterns that can be used for various tasks, including classification,
regression, and clustering. Thus, neural networks can handle both supervised and unsupervised learning.

6 Dataset Exploration
Data is the holy grail of Machine Learning, without it, it is impossible to train models and get results. That
is why is it critical to first analyze the presented data and understand what information can be extracted
from it.
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During the first period of the project, a set of data was provided (it will be referenced as DS1 from now
on). The dataset DS1 was given in a ’csv’ format, which can be easily imported to a Python environment
using the Pandas library. Pandas is a fast and powerful data analysis and manipulation library integrated
in Python. DS1 contains 511,595 different data points divided into 6 columns, with a sampling rate of
2 Hz as seen in the figure below.

Figure 2: A sample of the first 10 elements of the provided dataset.

In DS1, the sampling period is constant and equal to 0.5 seconds. It contains only one metric, which is
the vehicle’s velocity in m/s. Also, each data point is linked to a Driver, Car and a Trip. We can notice
that when a certain path is over (driver reaches his destination for example), Time and Meters columns
are set back to 0.
In total, there are 8 drivers (labeled from 1 to 8), 4 cars, and 2 trips. The car 1 is driven by D1 and D5,
car 2 by D2 and D6, car 3 by D3 and D7, and car 4 by D4 and D8. Also, note that all drivers take both
trips, which could be interpreted as two different trajectories.

Figure 3: Velocity vs time plot of one trajectory of Trip 1 taken by Driver 2.

Figure 3 shows one sample of the speed trend in one trip. For this trajectory, most of the time the velocity
gradient is small, but alters significantly in six occasions.
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7 Dataset Expansion
Due to the fact that the current dataset only contains one feature, in this section the goal is to extract more
hidden information present inside the dataset. The first that comes to mind is to calculate the instantaneous
acceleration at every time step. It is well known as the first derivative of the velocity, expressed in m/s2.
The following formula was used to create an ‘Acceleration’ column:

aTi =
VTi − VTi−1

Ti − Ti−1

Then, positive and negative accelerations were separated to two different columns to differentiate between
applying the gas and the brakes pedal.

In addition to the acceleration, one can also extract the Jerk at every point, which is the rate of change of
the acceleration (the second derivative of the velocity) expressed in m/s3. It was used by some researchers
[5] to analyze the driver’s behavior.

JerkTi =
aTi − aTi−1

Ti − Ti−1

8 Time Series Segmentation

There are now 5 time series (Velocity, positive and negative acceleration, positive and negative jerk). It
is illogical to set the whole driver path as one sample, because firstly it is too large, and secondly if the
chronology of braking changes a bit, the time series will be classified differently, which is irrelevant. Hence,
the obvious idea was to split the time series, where the Car and Trip numbers are the same, into smaller
chunks based on a criterion.

The main segmentation algorithms are: [19]

• The Sliding Window Algorithm

• The Top-Down Algorithm

• The Bottom-Up Algorithm

The use of the Sliding Window algorithm was investigated. In fact, this technique requires choosing a fixed
size window and an overlap percentage. Sliding window alone with its fixed frame size as hyperparameter
could be a potential solution.
But the idea of time-series segmentation base on detected driving events (inspired by [17]) seemed a more
interesting solution at this stage.

9 Events Detection
To help in detecting the longitudinal driving events during a cruise, the speed variance was used. For every
data point (except the first ones, since variance is chosen to be calculated for a duration of 4 seconds).
Pandas’ rolling() and var() functions were used with a frame size equal to 8 (4 seconds), and the variance
threshold was chosen to be equal to 1 after several trials.

d f . l o c [ d f [ ’T ’ ] == df [ ’T ’ ] . s h i f t ( m inpe r i ods −1) ,
’ Speed va r ’ ] = d f [ ’ Speed ’ ] . r o l l i n g ( m i n p e r i o d s = minpe r i ods ,

window = window s i ze ,
c e n t e r = True ) . va r ( )
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The second step in the section was to define the longitudinal events that can occur during a cruise:

• Accelerating:
- if the acceleration is positive and the speed variance is above the threshold.
- if the acceleration is positive for 2 seconds or more, no matter what the speed variance is.

• Braking:
- if the acceleration is negative and the speed variance is above the threshold.
- if the acceleration is negative for 2 seconds or more no matter what the speed variance is.

• Stopping:
- if the velocity is equal to zero.

• Maintaining speed:
- if the speed variance is below the chosen threshold.

Figure 4: Schematic showing the transitions between events.

Figure 5: A chunk example of the current data frame with events assigned to every point.

10 Feature Extraction

10.1 Features Selection and Calculation
The idea was to extract features for every detected event segment. Note that some events would last more
than the others. Thus, four statistical features were calculated for the speed, acceleration (positive and
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negative), and jerk along each event duration:

• Mean

• Standard deviation: the spread of a group of numbers from the mean (square root of the variance).

• Maximum value

• Minimum value

Instead of iterating over the all the rows and performing the calculations where the event is the same, the
efficiency and strength of Pandas was exploited. Firstly, a column called evchange was add, and every
time there is a change in an event, its value inside the current row is incremented by 1:

d f [ ’ evchange ’ ] = df [ ’ Event ’ ] != df [ ’ Event ’ ] . s h i f t ( )
d f [ ’ evchange ’ ] = df [ ’ evchange ’ ] . cumsum ( ) − 1 # to enumerate from 0

Secondly, the four parameters were calculated for every event segment very rapidly and in four lines of code
using groupby function:

df mean = df . groupby ( [ ’ evchange ’ , ’ Event ’ ] ) . mean ( )
d f s d = df . groupby ( [ ’ evchange ’ , ’ Event ’ ] ) . s t d ( )
df max = df . groupby ( [ ’ evchange ’ , ’ Event ’ ] ) . max ( )
d f min = df . groupby ( [ ’ evchange ’ , ’ Event ’ ] ) . min ( )

Finally, the four new dataframes were concatenated into one consisted of 19 columns and, 30834 rows (the
total number of event change in the dataset).

10.2 Features Analysis
When preparing features to be fed to a clustering algorithm, one must think of the ’Collinearity’ problem.
It is defined as a high level of correlation between two variables. In fact, when two variables collinear, they
correspond to technically the same concept. The latter is now represented twice is the data, therefore gets
double the weight of the other features, so the final results will most likely be asymmetrical in the direction
of the double weighted feature.

As you can see in Figure 35 (appendix 26.1), we are not particularly interested by the rectangle where
the color is light (positive correlation), or dark (inversely proportional). Instead, we are more interested in
using features that have a correlation close to zero.
There are several methods to overcome this inconvenience:

• Variable elimination

• Factor analysis

• Variable index

Luckily, there is a way to solve this dilemma using the Principal Component Analysis method, which can
be imported from ‘Sklearn’ Python library.
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11 Principal Component Analysis (PCA)
It is a statistical technique whose main goal is to convert high dimensional data to lower dimensional data
by identifying the features that contain the maximum information about the dataset. PCA combines the
input variables in a way and eliminates the least important variables while maintaining precious parts of all
the variables. In addition, it is a projection based method which transforms the data by projecting it onto
a set of orthogonal axes [17].

The features are selected based on variance that they cause on the output, so the first component will
be the feature that causes the highest variance, and so on. Note that the resulting principal components
won’t be correlated.

To conclude, PCA regroups input features in a manner to preserve the most valuable information and drops
the least important features to form linearly independent PCA components.

One can summarize several advantages of such Dimensionality Reduction method:

• Easier visualization of higher dimension data with 2D or 3D plots (reduction to 2 and 3 components
respectively).

• Reduction of required time and memory storage.

• Removal of the multi-collinearity.

• Lower threat of overfitting (the more the features, the higher the risk of overfitting [20]).

The breakdown of PCA can be found in the Appendix 26.2.

It was interesting to be able to see a representation of the data, which is one of the reasons to perform PCA.
Thus, we set the number of components to three, and we checked if it is acceptable using the Explained
Variance.
The Explained Variance Ratio informs about the percentage of variance (i.e. information) corresponding
to the principal components. To avoid the overfitting of the model, ideally the total variance of the
components must be higher than 80%.

p r i n t ( pca . e x p l a i n e d v a r i a n c e r a t i o )
p r i n t ( ”sum = { : . 1 f}%” . format (100∗sum( pca . e x p l a i n e d v a r i a n c e r a t i o ) ) )

Figure 6: Execution of the previous code.

For 3 principal components, 87.4% of the information is conserved, which is sufficient at an initial stage.
As a result, 3 new uncorrelated features are now ready for some unsupervised learning.
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Figure 7: Correlation matrix of the new variables after PCA.

A new data frame was constructed with the new three components as columns:

Figure 8: The obtained data frame after PCA.

The following step is to detect some patterns, hence identifying the driving styles of the 8 drivers.

12 Data Visualization

DS1 was split into 80% for training set and 20% for the testing set as recommended by many experts.
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(a) Drivers distribution. (b) Trip numbers distribution
Figure 9: The training set visualized in 3D space.

As you can see in Figure 9a, the 8 drivers are distributed on what appearing to be several congestions of
points, a first signal that the behavior of one driver can change during the same route.

Also, one can read from Figure 9b that the points are equivalently distributed in both groups. In other
words, the behaviors of the drivers do not change drastically based on the trip.

13 Clustering
Clustering is an unsupervised ML approach that combines objects in a way that the ones grouped in the
same cluster have similarities [21]. In other words, the data point will have similar aspects to the other
points in its cluster, but different traits to the ones in other groups.
Clustering is considered one of the types of data modelling. So, its main objective is to discover structures
and patterns in a dataset, which reduces complexity and facilitates interpretation. Note that the mea-
surements of similarities between objects may be distance, correlation, cosine similarity, or something else
depending on the context.

There are different types of clustering, such as:

• Partitioning methods:
Techniques that divide the data set into k subsets, where k is a predefined number by the user.

• Hierarchical clustering:
In this technique each is treated as an independent cluster at first. Then, in continuously executes two
steps: identify two clusters that are closest together and merge the two most similar ones. The ’loop’
breaks when all the clusters are merged.

• Fuzzy clustering:
The main difference between this method and the previous ones is that data points in fuzzy clustering
can be present in more than one cluster. To find the optimal location of a data point, it uses the least
squares, and hence this location may be in a probability space between several clusters.
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• Model-based clustering:
It uses probabilistic distributions to create the clusters. The data is considered coming from a mixture
of density, and each cluster is modeled by a Gaussian distribution.

• Density based clustering:
It recognizes clusters based on considering that a cluster in a data space is an adjacent region of high
point density and separated by regions of low point density.

13.1 K-means Clustering
It is one of the famous, easy to implement partitioning clustering algorithms. Its objective is to classify
the data set naturally into k different clusters [22]. Like any other method, it has some advantages and
drawback. Starting with the pros:

• Easy to implement and computationally fast.

• Has a time complexity of O(n.k.t), with n number of data objects, k number of clusters and t the
number of iterations in the algorithm (developed below).

• Easy to understand and interpret.

• Produce tighter clusters.

For the disadvantages, here are the main ones:

• The number of clusters k must be chosen in advance, and it is difficult to predict its value.

• Sensitive to scaling.

• The results vary with different representations of the data.

13.1.1 Algorithm

After placing k centroids randomly between the data points as an initialization phase, the k-means algorithm
is based on an iteration over two steps until the stopping criterion is met.

1. Data Assignment:
By relying on square Euclidean distance, each data point is assigned to the closest centroid. Each
centroid and its assigned points form a cluster.
Let d be the Euclidean distance defined as:

d(xi, yi) =
[

n∑
i=1

(xi − yi)2
]1/2

With x and y two points with n coordinates. Hence, the data assignment is based on the following:

argminci∈C d(ci, x)2

With C the set containing the k centroids, and x each point in the dataset.

2. Centroid update:
At this stage, each centroid has its assigned points. Therefore, the new centroid of these points is
recomputed using the mean of all the present points in the cluster. Let Xi be the set containing the
points assigned to the centroid ci.

ci = 1
|Xi|

∑
xi∈Xi

xi
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These two steps are repeated until there is no change in the centroids’ positions (the stopping criterion is
met).

Figure 10: Flowchart of the K-means clustering algorithm.

13.1.2 Optimal value of K: Elbow Method

Before executing the k-means clustering algorithm, it is essential to decide the optimal number of clusters
into which the data may be grouped. The Elbow Method is one of the most well-known methods to
determine the optimal value of k that should be chosen before performing the k-means clustering.

Figure 11: Plot showing the squared error vs the chosen number of clusters.

In this method, k is iterated between 1 and 10. And for every value k, the ‘Within-Cluster Sum of Square’
is calculated. The latter is the sum of square distance between each point of the cluster and its centroid.

As seen in Figure 11 above, the trend looks like an elbow and the optimal K according to it should be 4.
But when combining this method with the Silhouette Score (developed below), one can see that k = 3
was the better choice, and it is still in the ’elbow region’ of the plot.
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13.1.3 Python Code

To perform the k-means method, the ’KMeans’ library from ’sklearn.cluster’ is imported, then the following
code is executed with a chosen number of clusters k equal to three:

kmeans = KMeans ( n c l u s t e r s =3,
i n i t = ’ k−means++’ ,
r andom sta te = 42)

kmeans . f i t ( X t r a i n n p )
y kmeans = kmeans . p r e d i c t ( X t r a i n n p )

With X train np being an array of 3-by-1, the algorithm assigns for each of those arrays, which represents
a point in the Principal Components dimension space (in this case 3 dimensions), a cluster number and
stores those numbers in y kmeans array.

13.2 Hierarchical Clustering
It was interesting to apply another famous type of clustering which is the Agglomerative Hierarchical
Clustering, which is called a bottom-up approach.

13.2.1 Algorithm

At the start, every data point is considered as a cluster on its own. So, there are n clusters if n is the
number of points in the dataset. Then, a new cluster is formed by joining the closest two clusters (distance
calculation), thus the number of clusters becomes n− 1. The previous step is repeated until there is one
bug cluster.

Figure 12: The algorithm of agglomerative hierarchical clustering.
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13.2.2 Python Code

c l u s t e r = A g g l o m e r a t i v e C l u s t e r i n g ( n c l u s t e r s =3,
a f f i n i t y = ’ e u c l i d e a n ’ ,
l i n k a g e = ’ ward ’ )

c l u s t e r . f i t p r e d i c t ( X t r a i n n p )

The linkage criterion determines which distance to use between sets of observation. The algorithm will
merge the pairs of clusters that minimize this criterion. ‘ward’ minimizes the variance of the clusters being
merged (from Scikit-learn). And the affinity is used to calculate the linkage. Since we are used ‘ward’,
there is no choice but to use ‘Euclidean’ affinity.

14 Results and Analysis

14.1 Silhouette Method
The Silhouette score is a cluster validity measure [23]. It measures how similar a data point is to its cluster
compared to other clusters. The Silhouette value for each point is defined as follows:

Si = bi − ai

max(ai, bi)

Where ai measures the similarities of the point i to its own cluster (mean intra cluster distance), and bi is
the distance between the point i and the nearest cluster which it doesn’t belong to.

For the Python implementation, the importation of ’silhouette score’ from ‘sklearn.metrics’ is needed.
Then, the score is calculated for k = 2 to k = 10.

s i l s c o r e = [ ]
f o r k i n range (2 , 11) :

kmeans = KMeans ( n c l u s t e r s = k ,
i n i t = ’ k−means++’ ,
r andom sta te = 42) . f i t ( X t r a i n n p )

l a b e l s = kmeans . l a b e l s
s i l s c o r e . append ( s i l h o u e t t e s c o r e ( X t r a i n np , l a b e l s , me t r i c = ’ e u c l i d e a n ’ ) )

Note that the Silhouette coefficient is defined only for 2 < k < nsamples−1, that’s why the iteration starts
from 2.
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Figure 13: Silhouette Coefficient values for different number of clusters.

It is clear that for this application, that the number of clusters predefined earlier (= 3) was the best choice
with the highest score.
One should note that the Silhouette is a validation metric and can be combined with the Elbow Method.
A combination of both is considered a strong tool to take more assertive decisions about the K value.

14.2 K-means Clustering Results
After running the k-means clustering algorithm, with k equals to three as input, the following 3D scatter
was obtained with a clear distribution of data points over the three clusters.

The clusters seem fairly distributed on the data points. But the real problem here is that at this point we
have no idea what is does every cluster represent in terms of meaning, one of the major disadvantages of
the PCA.

The table in Figure 14 shows the number of data points in each of the clusters. They are grouped by
driving events, on which the original dataset was segmented, and the features were extracted.

Note that the points belonging to the Stop event, where the velocity is 0, were taken out of the dataset
before performing PCA and the k-means.

The results assert that the algorithm detected a pattern. For example, cluster 2 is a Braking cluster,
meaning that it contains data points where there were heavy braking zones. Also, it contains 2 ’Maintain-
ing speed’ events out of 2021 (0.099%) which are obviously False Negative and do not ideally belong to
this cluster.
Similarly, cluster 1 is an Accelerating cluster, signaling heavy acceleration zones with 5 Maintaining
False Negative points.
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(a) 3D visualization of the clusters. (b) Distribution of data points belonging to events.
Figure 14: Results of the K-means clustering with k=3.

On the other hand, the cluster 0 is the largest one in terms of points density. It contains in total 20,168 out
of 24,113 points (83%), of which the majority are Maintainingspeed zones. This cluster seems to contain
all the zones where the driver is either maintaining his velocity or he is doing slight accelerations and braking.

The table in Figure 15 shows the distribution of the 8 drivers on the clusters. As you can see, all drivers are
present in all the three clusters, but in different proportions. For example, the driver 1 is 49.1% of the time
in cluster 0 (stable speed), 24.5% in the heavy acceleration cluster and 26.3% in the braking zone (cluster
2). Also, we see similar behaviors for the drivers 7 and 8. For those three drivers, approximately half of the
time they are maintaining speed, with small accelerations and decelerations, and the other half doing some
heavy positive and negative accelerations. Therefore, these three drivers seem to be aggressive, especially
if they are compared with driver 2. The latter possesses 91.1% of his proper data points in the ’Maintaining
speed’ cluster, with the rest distributed equally between clusters 1 and 2 (4.1% and 4.6% respectively).
Hence, one can say that D2 is a calm driver, spending most of his cruise time without applying heavily on
the acceleration and braking pedals.
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Figure 15: Table showing the distribution of the 8 drivers on the different clusters.

Taking a closer look, the drivers can be joined in three groups based on their proportions in each one of
the clusters (Figure 15):
• Group 1: Contains D1, D7 and D8. It can be labelled as an Aggressive group, where the time of

maintaining speed does not surpass 50% of the total cruise time.

• Group 2: Contains D2, D3, D4 and D6. It can be considered as Calm or Eco-friendly driving style
group, and the percentage of time the driver is not applying heavily on any pedal is more than 85%.

• Group 3: Contains D5, who is 69% of the time in cluster 0. So, he can be considered as more aggressive
than the ones in group 2 but less than the group 1 drivers. Hence, D5 can easily be classified as a
Normal Driver.

After this analysis, some subjective thresholds can be assigned to roughly be able to classify new drivers
based on their proportion in Cluster 0, where it is dominated by maintaining events, and small accelerations
and braking.

Figure 16: Distributing the drivers on 3 ’driving zones’: Calm (Green), Normal (Orange), Aggressive (Red).
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The chosen 3 zones are as follows:

• ’Calm style’: above 85% of belonging to C0.

• ’Normal style’: between 55% and 85%.

• ’Aggressive style’: below 55%.

The total number of data points belonging to ‘Trip1’ is larger than the ‘Trip2’ points. But the two trips are
similarly distributed in all the clusters, meaning that their type of path is sort of similar and didn’t affect
the results.

14.3 Agglomerative Hierarchical Clustering Results
In a hierarchical clustering method, it is a good practice to plot the clustering dendograms to see the
distances between clusters (which are equal to the number of data points at the beginning), and thus
decide the number of clusters to feed as input to the Agglomerative Clustering model.

Figure 17: Hierarchical Clustering Dendograms of a chunk of the data.

The vertical height of a dendogram represents the Euclidean distance between two clusters. One can decide
three as number of clusters as recommended by the dendograms color distribution, or the choice can be 4
or even 6 clusters. For the comparison to be valid, a number of clusters equal to 3 was chosen.
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(a) Obtained clusters distribution (b) Events distribution.
Figure 18: Hierarchical clustering results.

The results obtained from the agglomerative clustering are quite similar to the ones obtained from the
k-means clustering. But from Figure 18b, one can see that there is only one-off point belonging to the
’Accelerating’ and ’Braking’ clusters, compared to a total of 7 for k-means.

Also, one should note that the k-means clustering algorithm was significantly faster than the hierarchical
clustering. In addition, the Silhouette score of the latter is 0.67 for 3 clusters, very close to k-means’
(Figure 13).
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Semester 3: Supervised Learning Approach
In this section, the goal shifted from trying to detect a certain particular behavior of a driver into detecting
the identity of the person behind the wheel (also known as driver fingerprinting). This was supported with
a new labeled dataset, which made the implementation of supervised machine learning possible.

15 Dataset Exploration

The work was based on Ocslab driving dataset that can be found online [24]. This dataset was used for
a driver classification challenge track in the 2018 Information Security R&D dataset challenge in South
Korea. It consists of 51 variables taken from different sensors on the Controller Area Network (CAN)
bus. The retrieval of this dataset was done using the Onboard Diagnostics 2 (OBD-II) and CarbigsPare as
OBD-II scanner, at a sampling rate of 1 Hz [25].

The dataset currently in use has the following characteristics:

• A driving time of about 23 hours.

• A driving length of 46 kilometers.

• A dimension of 94380 x 54 (94380 different records and 51 possible features).

• A number of drivers equal to 10 designated from ’A’ to ’J’.

• A size of 16.7 MB.

In a first step, after examining all 51 potential features, only 26 that seemed the most useful and represen-
tative for the goal of profile detection were selected. The full dataset variables descriptions can be found
in Table 5 (appendix 26.3).

The list of all selected features is in Table 6 in appendix 26.4. These features can be classed into 3
categories: Engine, Fuel, and Transmission related.

16 Data Pre-processing

16.1 Sliding Window
The sliding window method is widely used to solve time-series supervised learning problems, by converting
the latter into the classical supervised learning problem. So, the main advantage of this method consists
of allowing us to apply any classical supervised learning algorithm. The sliding window method build a
window classifier hw, which maps a frame of width w into a single output value [26].

Let’s consider d = (w−1)/2 as half-length of a frame centered at time c, so for each feature, hw generates
yc from the frame [xc−d, ..., xc, ..., xc +d]. In addition, other parameters will be introduced, which are the
stride s and the overlap ratio between 2 consecutive frames r. Thus y is generated every s = w× (1− r).
One cannot conclude about the best values for frame width w and the overlap ratio r, therefore they will
be tuned based on the best results later on.

The frame length is chosen at first to be w = 4 seconds and r = 0.5, meaning that the window moves
s = 2 seconds at each step. And since the sampling rate is 1 Hz, the width is equal to 4 frames and the
stride to 2 frames. This choice is represented in Figure 19, where each windowing step is represented by a
color.
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In conclusion, all the 26 continuous signals go through a framing function with two parameters w and r
before being fed to the feature extraction stage.

Figure 19: Sliding window illustration on the vehicle speed of driver A.

16.2 Features Extraction
From each small frame, some statistical features were extracted, as they represent the general behavior of
each variable along the frame;

• Maximum: argmax xi for i ∈ [c− d; c + d].

• Minimum: argmin xi for i ∈ [c− d; c + d].

• Mean: (
∑

i xi)/w

• Standard deviation:
√

(
∑

i(xi − µ)2)/w

• Median: found by ordering the samples in the frame by ascending order and finding the exact middle.
It is a better measure than mean in terms of central tendency of the set.

Hence, from each windowing execution, hw outputs five features (ymax, ymin, yµ, ystd, and ymed) for each
of the 26 time series, resulting in a 130-D problem.

16.3 Data Normalization
Since the scale of each feature is different, a normalization step is needed before training the classifier.
Normalizing the features means scaling them into the range [0, 1]. Note that this type of scaling is chosen
over standardization because the latter is used on data having Gaussian distribution, which is not necessarily
the case of the current dataset.

After splitting the dataframe into training and testing sets, the method MinMaxScaler() from sklearn
preprocessing is used.

# S p l i t the d a t a s e t i n t o t r a i n i n g and t e s t i n g
d f T ra i n , d f T e s t = t r a i n t e s t s p l i t ( df3 , t e s t s i z e =0.2 , s h u f f l e=True )
x t r a i n = d f T r a i n . l o c [ : , f e a t u r e s ] . to numpy ( )
y t r a i n = np . r a v e l ( d f T r a i n . l o c [ : , t a r g e t ] . to numpy ( ) )
x t e s t = d f T e s t . l o c [ : , f e a t u r e s ] . to numpy ( )
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y t e s t = np . r a v e l ( d f T e s t . l o c [ : , t a r g e t ] . to numpy ( ) )

s c a l e r = MinMaxScaler ( )
s c a l e r . f i t ( x t r a i n )
x t r a i n = s c a l e r . t r an s f o rm ( x t r a i n )

16.4 PCA Testing
Since the number of features is significant, one can think about using PCA in order to reduce the dimension
of the problem, benefiting from all its advantages. But at the same time, one should not compromise with
the accuracy of the model. Therefore, since we cannot know at first sight the optimal number of principal
components, the latter hyperparameter is variated, and a base Random Forest classifier model is trained
using each time a different number of principal components. The goal is to observe if it is beneficial to
reduce the dimension, and if so, to which dimension.

In Figure 20, one can see that the model starts to reach an acceptable accuracy above 30 principal
components. And above 40, the accuracy stays stable around 80%.
On the other hand, the training time was represented just to confirm that reducing the dimension of the
problem does indeed decrease the training time of the model.

Figure 20: Plot showing the evolution of the model’s accuracy and training time vs number of principal components.

Since decreasing the number of components did not save a major amount of time while keeping a maximal
accuracy, we chose to stick with the original dimension and to not use PCA here.

17 Classification

17.1 Multi-class Classification
Classification problems can be separated into two families; binary and multi-class classification. Since binary
classification can only separate between two classes, this is clearly the case of multi-class (multinomial)
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classification, more specifically a 10-class problem (10 different drivers in DS2.

There are a lot of algorithms that are conceptualized to be binary classifiers. But a way to turn around it
is by using one of the two different strategies that arise when performing multi-class classification, in order
to transform an N-class problem into multiple binary classification problems:

• One-vs-Rest (OvR): the idea here is to train k binary classifiers, each one of them as a detector of
one of the k classes. Then the predicted class will be the one whose classifier has the highest score.

• One-vs-One (OvO): this strategy consists of training binary classifiers that are able to distinguish
between a pair of classes. Thus, one needs k × (k − 1)/2 classifiers for k-class problem.

Scikit-learn can detect if the user is trying to use a binary classifier for a multi-class problem, so it implements
automatically OvR (except SVM where it runs OvO, because SVM scales poorly with the size of the training
sets, hence it is faster to train many classifiers on small training sets (OvO) than training few classifiers on
large training sets.

17.2 Classification Algorithms
To classify the 10 drivers based on the selected features, the following machine learning algorithms were
considered:

• Random Forest:
It is an Ensemble of Decision Trees trained via the bagging method in general [27]. It combines the
outputs of these multiple trees to attain a single result.
An Ensemble is a combination of individual models that creates a more powerful new model.
To simplify, a decision tree starts with a root node. The outgoing branches from the root node then
feed into the internal decision nodes. Based on the available features, the nodes form homogenous
subsets, which are called leaf nodes, on the basis of comparison. The leaf nodes represent all the
possible outcomes within the dataset.
So each tree in this Ensemble is trained on a random subset of features (bagging), to decrease the
correlation between trees. While in a classical decision tree, the algorithm considers all the possible
features splits.

• Support Vector Machine:
It is a supervised ML algorithm used for linear and non-linear classification, and regression. Its goal is
to find a hyperplane in an N-dimensional space that segregates the data points. The dimension of the
hyperplane is always N − 1, with N the number of used features. The algorithm searches for nearest
points from the decision boundaries for all the classes (these points are called support vectors). Then
the algorithm tries to maximize the margins (distances) between the support vectors and the potential
hyperplane, and that’s how the latter is found.
As mentioned before, its multi-class support is handled according to OvO scheme.

• K Nearest Neighbors:
It is a supervised non-parametric1 and lazy2 classifier, that uses proximity to make predictions about
the grouping of data points. It relies on majority voting to assign a label for a data point, meaning it
will decide based on the label that is most frequent around this data point. KNN is very simple, easy
to understand and versatile.

• AdaBoost:
Boosting is a technique used for Ensemble modelling, it was first presented by Freund and Schapire
1No assumption for underlying data distribution.
2There is no need for training of the model as all the data points used at the time of prediction.
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in 1977 [28]. It fits a first model, then builds a second one that predicts accurately where the first’s
performance is poor. Hence, the combination of these two should perform better. So, this procedure
continues by adding iteratively a new model that improves the performance of the previous combination.
Thus, AdaBoost or Adaptative Boosting is a technique used as an Ensemble method. It builds a model
and gives similar weights to all data points, then it assigns higher weights to the wrongly classified
points. Then, the next model will be training while taking into consideration those higher weights, thus
giving more importance to the previous false classification, hoping to decrease the errors.

• Gradient Boosting:
Gradient Boosting is a type of Machine Learning Boosting, it consists of choosing the best possible
next model by minimizing the overall prediction error. It actually fits a new model to the residual errors
made by the previous predictor model.

18 Model Training
To train any estimator, Scikit-learn provide a similar method. Also, because training time is an important
metric, it was recorded systematically using the time module. Note that if a random state parameter exists
for a certain estimator, it will always be set to the same number to enable reproducibility.

s t a r t = t ime . t ime ( )
e s t i m a t o r . f i t ( x t r a i n , y t r a i n )
f i n i s h = t ime . t ime ( )
t r a i n i n g t i m e = f i n i s h − s t a r t

18.1 Random Forest
The first Random Forest model’s parameters were kept to default, except random state.

RandomForest 0 = R a n d o m F o r e s t C l a s s i f i e r ( n e s t i m a t o r s =100 , c r i t e r i o n=’ g i n i ’ ,
max depth=None , m i n s a m p l e s s p l i t =2, m i n s a m p l e s l e a f =1,
m i n w e i g h t f r a c t i o n l e a f =0.0 , ma x f e a t u r e s=’ s q r t ’ ,
m a x l e a f n o d e s=None , m i n i m p u r i t y d e c r e a s e =0.0 ,
b o o t s t r a p=True , o o b s c o r e=Fa l s e , n j o b s=None ,
r andom sta te =123 , v e r bo s e =0, warm sta r t=Fa l s e ,
c l a s s w e i g h t=None , c cp a l pha =0.0 , max samples=None )

Its most important hyperparameters are the following:

• n estimators: the number of decision trees in the forest. Default = 100.

• criterion: the function to measure the quality of each split. It can be ”gini” (for the Gini impurity)
or ”log loss” or ”entropy” (for the Shannon information gain). Default = gini.

• max depth: the maximum depth of each individual tree. The bigger the depth, the more the chance
of overfitting. But the latter is not a problem because of the existence of several trees. Default =
None.

• min samples split: the minimum samples required to split an internal node. Default = 2.

• max features: the number of random features to include when looking for the best node splitting.
Default = ”sqrt” (square root of the number of features).
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• bootstrap: whether bootstrap samples are used when building trees or no. If False, the whole dataset
is used to build each tree. Default = False.

• min samples leaf: The minimum number of samples required to be at a leaf node. A split point at
any depth will only be considered if it leaves at least min samples leaf training samples in each of
the left and right branches. Default = 1.

18.2 Support Vector Machine
SVM uses a mathematical function defined in its parameters, which is the kernel. The goal of the kernel
function is to map the original non-linear data points into a higher dimensional space, where they become
separable by the decision boundary. The chosen kernel was ’RBF’ (Gaussian Radial Basis Function), which
is usually preferred for non-linear data. The formula of RBF depends on γ which is one of the parameters.
For now, it is kept in its default value ’scale’, meaning it will be equal to 1/(n features×X.var()). This
parameter in addition to others will be tuned in a following phase.
Hence, the first SVM model is initialized in the following way:

Svm 0 = svm . SVC( k e r n e l= ’ r b f ’ ,
C=1000 ,
c l a s s w e i g h t=’ ba l anced ’ ,
r andom sta te =123)

The value ’balanced’ was passed to class weight parameter to let SVC automatically adjust the weights of
the different classes, in a way that a more present class doesn’t influence more the training of the estimator.
The C parameter tells the SVM optimization how much the user wants to avoid misclassifying each training
example. For large values of C, the optimization will choose a smaller margin hyperplane if that hyperplane
does a better job of getting all the training points classified correctly.

18.3 K Nearest Neighbors
The main parameter to choose here is the number of neighbors k (n neighbors). Research has shown that
there is no optimal solution that fits all data sets. But one has to keep in mind that for a small k, noise will
have a higher influence on the result, whereas a large k will make the algorithm computationally expensive.
Generally, an odd number of neighbors is chosen for an even number of classes.
An iteration over several values of k was done to observe its effect on the accuracy of the model.

As you can see in Figure 21, it is clear that the highest accuracy was attained with only one neighbor,
and it became worst as the number of neighbor increased. Also, the figure shown the significant difference
between training and predicting time of the models.
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Figure 21: The evolution of the model accuracy, training and predicting time with respect to k.

KNN dict = {}
f o r i i n range (1 , 200) :

KNN dict [ s t r ( i ) ] = {}
KNeighbors= K N e i g h b o r s C l a s s i f i e r ( n n e i g h b o r s=i )
s t a r t = t ime . t ime ( )
KNeighbors . f i t ( x t r a i n , y t r a i n )
s top = t ime . t ime ( )
KNN dict [ s t r ( i ) ] [ ’ t r a i n i n g t i m e ’ ] = s top − s t a r t
s t a r t = t ime . t ime ( )
y p r ed = KNeighbors . p r e d i c t ( x t e s t )
s top = t ime . t ime ( )
KNN dict [ s t r ( i ) ] [ ’ p r e d i c t i n g t i m e ’ ] = s top − s t a r t
knn acc = a c c u r a c y s c o r e ( y t e s t , y p r ed )
KNN dict [ s t r ( i ) ] [ ’ a c cu racy ’ ] = knn acc

To conclude, this algorithm didn’t show any potential in this application, especially if it is compared with
Random Forest algorithm for example. This might be the case because it is sensitive to the quality of the
data (If it is noisy for example), and does not work well with high dimensionality, as this will complicate
the distance calculations. Also, it requires high memory because it needs to store all the training data.

18.4 AdaBoost
AdaBoostClassifier has base estimator as first parameter, which is basically the base estimator from which
the boosted Ensemble is built. It is kept to default, which is DecisionTreeClassifier with max depth = 1.

Other than that, the main hyperparameters are:

• n estimator : the maximum number of estimators at which boosting is terminated. Default = 50.

• learning rate: weight applied to each classifier at each boosting iteration, meaning a higher learning
rate increases the contribution of each classifier. Default = 1.
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The number of hyperparameters is relatively small for this classifier, meaning the hyperparameters tuning
phase won’t be as expensive as for the others.

AB 0 = A d a B o o s t C l a s s i f i e r ( b a s e e s t i m a t o r=None ,
n e s t i m a t o r s =50,
l e a r n i n g r a t e =1.0 ,
a l g o r i t h m=’SAMME.R ’ ,
r andom sta te =123)

18.5 Gradient Boosting
The Gradient Boosting classifier’s parameters were initially kept to default to get a baseline idea of the
performance. These parameters can be divided into three categories:

• Tree specific parameters: affect each individual tree. (min samples split, min samples leaf, max depth,
min weight fraction leaf, max leaf nodes, max features).

• Boosting parameters: affect the boosting operation. (learning rate, n estimators, subsample).

• Miscellaneous parameters: other parameters for overall functioning. (loss, init, random state, ver-
bose, warm start, presort).

GB 0 = G r a d i e n t B o o s t i n g C l a s s i f i e r ( l o s s=’ l o g l o s s ’ , l e a r n i n g r a t e =0.1 ,
n e s t i m a t o r s =100 , subsample =1,
c r i t e r i o n=’ f r i edman mse ’ , m i n s a m p l e s s p l i t =2,
m i n s a m p l e s l e a f =1, m i n w e i g h t f r a c t i o n l e a f =0,
max depth =3, m i n i m p u r i t y d e c r e a s e =0,
i n i t=None , r andom sta te =123 ,
ma x f e a t u r e s=None , v e r bo s e =1,
m a x l e a f n o d e s=None ,
wa rm sta r t=Fa l s e , v a l i d a t i o n f r a c t i o n =0.1 ,
n i t e r n o c h a n g e=None , t o l =1e −4,
c cp a l pha =0)

19 Model Evaluation

19.1 Confusion Matrix
A confusion matrix is a useful tool for evaluating the performance of a classification model. It provides a
clear and concise summary of how well the model is performing by comparing its predicted labels with the
true labels of a set of data.

The confusion matrix is presented as a table, where the rows represent the actual (true) labels and the
columns represent the predicted labels. The diagonal elements of the matrix represent the number of
correct predictions, while the off-diagonal elements represent the misclassifications.

In essence, the confusion matrix allows us to easily identify the number of true positives, false positives, true
negatives, and false negatives, giving a comprehensive view of the model’s performance. This information
is critical for understanding the strengths and weaknesses of a classifier and making informed decisions on
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how to improve its accuracy.

The four values contained in the matrix, which are used to calculate some metrics, can be defined as follows
(in a binary classification context):

• True Positive (TP): when a model correctly predicts a positive class (the class in question).

• False Negative (FN): when a model incorrectly predicts a negative class (the class not in question). In
other words, it predicts the positive class for a negative one.

• False Positive (FP): when a model incorrectly predicts a positive class, indicating that the item in
question does not actually belong to that class.

• True Negative (TN): when a model correctly predicts a negative class.

Figure 22: Confusion matrix in a binary classification problem.

19.2 K-Fold Cross Validation
K-fold cross-validation is a technique for evaluating the performance of machine learning models on a
limited data sample. It is used for assessing how the statistical analysis generalizes to an independent
dataset. This technique evaluates ML models by training them on of the input data, and then testing these
model on unused complementary subset of the data.
Since one should never use the testing set during the training phase, cross-validation is applied only on the
training DS.

Figure 23: 5-fold cross-validation representation

Page 29 of 41



The value of k should be chosen in a way that the train/validation chunks are large enough to be repre-
sentative of the full dataset. The rule of thumb was followed here by using 5-fold cross validation, because
it is not time expensive, and it is sufficient to validate the models’ training.

At the beginning, all the training set is divided into k subsets (k = 5 in this case). Then in a first iteration
out of k, the model is trained based on k − 1 subsets, then validated on the complementary chunk left.
This procedure is repeated k times until all the chunks are used once for testing (see Figure 23). By doing
that, it is guaranteed that every data point get an equal opportunity to be included in the validation subset.

For each iteration, the performance of the estimator in question is evaluated by calculating performance
metrics such as:

• Accuracy: the proportion of correct predictions out of all the prediction made.

• Precision: the proportion of positive predictions that are actually correct. P = TP/(TP + FP ).

• Recall: also known as sensitivity, it is the ratio of positive instances that are correctly detected by
the classifier. TP/(TP + FN).

• F1 score: It is the harmonic mean of precision and recall. It is a good metric to use when the positive
class is rare or when the cost of false positives and false negatives is different:

f1 score = 2
1/precision + 1/recall

= TP

TP + F N+F P
2

After cross validation phase, one can calculate the average of each metric, thus obtain a robust general
results.

20 Results and Analysis
For each of the 5 classifiers mentioned above, 5-folds cross validation was implemented, and 4 scoring
metrics were retrieved, as well as the training times. The code can be found in appendix 26.5.
Note that for the precision, recall, and f1 scores, the average parameter is set to ’weighted’, meaning that
we are aggregating the performance metrics across all classes, taking into account the relative importance
of each class in the dataset. For example, if the driver ’A’ has more samples than the other drivers, it will
give more weight to the performance of this class in the overall evaluation.

Classifier Accuracy (%) Precision (%) Recall (%) F1 (%) Training Time (s)
Random Forest 81.6± 0.4 81.9± 0.4 81.6± 0.4 81.5± 0.4 25.8± 1.4
SVM 80.5± 0.3 80.5± 0.2 80.5± 0.3 80.5± 0.3 112.9± 9.7
20 Nearest Neighbors 60± 0.1 60.4± 0.1 60± 0.1 59.9± 0.1 0.07± 0.037
AdaBoost 32.4± 0.9 34.2± 1.0 32.4± 0.9 29.2± 1.1 14.8± 0.49
Gradient Boosting 72.5± 0.2 73± 0.3 72.5± 0.2 72.2± 0.2 481.6± 16.3

Table 1: Table showing the results obtained after the classifiers’ cross validation training.

From the scoring table above, it is clear that both Random Forest and Support Vector Machine
outperformed all the others in all metrics. But RF’s training time is way faster than SVM’s.
Inversely, AdaBoost algorithm with its default parameters performed very poorly. Most probably if we
experimented more and focused on tuning its parameters, it will reach better accuracy, but it is highly
unlikely that it will reach RF’s scores.
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Figure 24: Accuracies of the classifiers (cross validation results)

Figure 25: Logarithmic training times of the classifiers (cross validation results)

Notice that for Nearest Neighbor classifier, the training time is negligible (less than 1 second), because
this algorithm’s time cost is in his predicting phase rather than training (visualized in Figure 21). Also,
Gradient Boosting’s performance is acceptable (accuracy = 72.5%), but it takes almost 20 times more
than Random Forest to train, which is relatively poor.

As a consequence of analyzing the results above, Random Forest algorithm outperformed all the others
in terms of scores and training time. (accuracy = 81.6%, training time = 25.8 s)

21 Hyperparameters Tuning
As RF was the winner between the other tested classifiers, it will be tuned to get even better performance
out of it. Hyperparameter tuning is the process of selecting the optimal values of hyperparameters for ML
model (RF classifier in our case).
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The steps involved in hyperparameters tuning are the following:

1. Choose the appropriate algorithm for the model.

2. Decide the parameter space.

3. Decide the method for searching parameter space.

4. Decide the cross-validation method.

5. Decide the score metrics to evaluate the model.

The hyperparameters that will be tuned are the following:

• n estimators
• max features
• max depth
• min samples split
• min samples leaf
• bootstrap

The tuning phase will be divided into two parts, one being a more broad search of parameters using
Sklearn.model selection’s RandomizedSearchCV, and one is a detailed search in a specific range of hyper-
parameters’ values using GridSearchCV.

21.1 Randomized Search CV
In technical terms, RandomizedSearchCV will take the default Random Forest classifier, a set of hyperpa-
rameters, and a distribution of values for each hyperparameter as input. It then performs a randomized
search by selecting a random combination of hyperparameters from the specified distributions, fitting the
estimator on the training data with these hyperparameters, and evaluating the performance of the estima-
tor on a validation set. This process is repeated for a specified number of iterations or until the search
reaches a predefined limit. 50 iterations were made in our case, which allows for an efficient search over a
large hyperparameter space without the need for exhaustive search, which can be computationally expensive.

# nb o f t r e e s i n random f o r e s t
n e s t i m a t o r s = [ i n t ( x ) f o r x i n np . l i n s p a c e ( s t a r t =10, s top =500 , num=15) ]
# nb o f f e a t u r e s to c o n s i d e r at e v e r y s p l i t
ma x f e a t u r e s = [ ’ auto ’ , ’ s q r t ’ ]
# Maximum nb o f l e v e l s i n t r e e
max depth = [ i n t ( x ) f o r x i n np . l i n s p a c e ( s t a r t =10, s top =150 , num=15) ] + [ None ]
# Minimum nb o f samples r e q u i r e d to s p l i t a node
m i n s a m p l e s s p l i t = [ 2 , 5 , 10 ]

# Minimum nb o f samples r e q u i r e d at each l e a f node
m i n s a m p l e s l e a f = [ 1 , 2 , 4 ]
# Method o f s e l e c t i n g samples f o r t r a i n i n g each t r e e
b o o t s t r a p = [ True , F a l s e ]

pa ram gr i d = { ’ n e s t i m a t o r s ’ : n e s t i m a t o r s ,
’ ma x f e a t u r e s ’ : max f ea tu r e s ,
’ max depth ’ : max depth ,
’ m i n s a m p l e s s p l i t ’ : m i n s a m p l e s s p l i t ,
’ m i n s a m p l e s l e a f ’ : m i n s a m p l e s l e a f ,
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’ b o o t s t r a p ’ : b o o t s t r a p }

R F d e f a u l t = R a n d o m F o r e s t C l a s s i f i e r ( r andom sta te=randomstate )

RF RandomGrid = RandomizedSearchCV ( e s t i m a t o r = RF de fau l t ,
p a r a m d i s t r i b u t i o n s = param gr id ,
n i t e r = 50 ,
cv = 5 ,
v e r bo s e = 2 ,
n j o b s = −1)

RF RandomGrid . f i t ( X t r a i n , y t r a i n )

# Get the optimum found pa ramete r s
p r i n t ( RF RandomGrid . b e s t pa r ams )

The Randomized search picked the following hyperparameters as optimal:

• n estimators = 80.
• max features = ’sqrt’.
• max depth = 130.
• min samples split = 2.
• min samples leaf = 1.
• bootstrap = False.

21.2 Grid Search CV
GridSearchCV method works similarly, but with only one difference; it performs an exhaustive search by
evaluating the performance of the estimator with each possible combination of hyperparameters in the
chosen grid, making it a powerful tool as it ensures that the best combination of parameters is selected.
However, it can be computationally expensive and impractical for large hyperparameter spaces.
The strategy was to take few values around the ones picked by the previous phase and check if a better
combination is possible.
# The hype rpa ramete r s s e a r c h g r i d
pa ram gr i d = { ’ n e s t i m a t o r s ’ : [ 6 0 , 80 , 90 , 150 , 200 ] ,

’ ma x f e a t u r e s ’ : [ ’ s q r t ’ ] ,
’ max depth ’ : [ 120 , 130 , 140 ] ,
’ m i n s a m p l e s s p l i t ’ : [ 2 , 3 , 4 ] ,
’ m i n s a m p l e s l e a f ’ : [ 1 , 2 , 3 ] ,
’ b o o t s t r a p ’ : [ F a l s e ]}

The grid above is consisted of 135 different combinations, and with 5-folds cross validation, the total of
unique estimator fits is 675, which is computationally very expensive.
Finally, the picked hyperparameters values with GridSearchCV are:

• n estimators = 200.
• max features = ’sqrt’.
• max depth = 120.
• min samples split = 2.
• min samples leaf = 1.

Page 33 of 41



• bootstrap = False.

Estimator Accuracy (%) Training time (s) Improvement in accuracy (%)
Default RF 81.6 26 -

Best RandomizedSearch RF 84.22 34 3.19
Best GridSearch RF 84.76 73 3.87

Table 2: Random Forest Classifiers’ performances after hyperparameters tuning.

After tuning the RF model, we reached an accuracy of 84.76%, with an improvement of 3.87% which is
considered a very satisfying result. One can remark that the training time has increased as well. This is
due to the fact that n estimators parameter, which controls the number of decision trees in the forest, has
increased. Hence, it can be tuned further to compromise between performance, computational cost and
overfitting.

22 Feature Analysis
The goal of feature analysis is to acquire understandings on the effectiveness of the chosen features. We
took advantage of the fact that we have an RF classifier and used tree-based feature importance (mean
decrease impurity). In reality, in an RF, each decision tree is constructed on a random subset of the
features, which results in a diverse set of trees. The feature importance is then calculated based on how
much each feature reduces the impurity in the decision tree. And mean decrease impurity is a measure of
feature importance, which calculates the total reduction in impurity across all decision trees in the forest
that results from splitting on a particular feature.

Top Features Mean decrease in impurity
mean Long Term Fuel Trim Bank1 0.064013
max Long Term Fuel Trim Bank1 0.052928
min Long Term Fuel Trim Bank1 0.052457
median Long Term Fuel Trim Bank1 0.048648
mean Maximum indicated engine torque 0.021088
max Maximum indicated engine torque 0.020361
median Maximum indicated engine torque 0.019917
min Maximum indicated engine torque 0.018444
std Long Term Fuel Trim Bank1 0.016902
min Intake air pressure 0.014851

Table 3: The most important features.

The most important features were extracted (shown in Table 3 and Figure 26). All statistical features
except standard deviation of Long term fuel bank and Engine torque take the lead in terms of importance.

The Long Term Fuel Trim Bank is a long-term adjustment made by the engine control module (ECM)
to the fuel delivery system based on feedback from various sensors. It adjusts the fuel delivery system to
maintain the air/fuel ratio at the optimal level by adding or subtracting fuel as needed.
Hence, this parameter depends hugely on driving style (as well as other factors like vehicle condition and
fuel quality).

All the 130 features’ importance can be found in appendix 26.6.

Page 34 of 41



Figure 26: 15 most importance features.

23 Frame Size Analysis
One of the main hyperparameters of this time-series classification problem were sliding window’s frame size
w and overlap ratio r. Therefore, an experiment was conducted on both of them using the best found
classifier (RF) to grasp its effect, especially the model’s accuracy and training time. w was incremented
from 2 to 20 seconds, and r took 3 values (0%, 25%, and 50%).

Figure 27: Bar plot showing the outcome of frame size and overlap variation on estimator’s accuracy.

Looking at the consecutive frames overlapping percentages, one can conclude that the larger the percent-
age, the better the accuracy is. This can be linked to the fact that overlapping frames embed important
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information related to temporal dependencies between consecutive frames. On the other hand, more over-
lapping means more data points, hence a slightly larger training time (Figure 28). For a similar reason, the
wider the frame, the larger the training time. However, the accuracies don’t alter a lot with the increase
of frame length.
The best frame size in terms of accuracy was the 15 seconds frame with r = 50% (acc ≈ 88%,
training time = 71s).

Figure 28: Bar plot showing the outcome of frame size and overlap variation on estimator’s training time.

Finally, it was interesting to regroup the 5 statistical features (Mean, Standard deviation, Minimum, Max-
imum, and Median) and calculate their importance with the variation of the frame length.
Minimum and Maximum were not heavily affected by the increase of frame length. However, the Standard
deviation and the Median’s importance were affected with the length’s increase, the first one’s value grew
while the second’s importance decreased (Figure 29).

Figure 29: Box plot showing the effect of frame size variations on features.
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24 Deep Learning

Artificial Neural Networks (ANNs) lie at the core of Deep Learning algorithms. ANNs are modeled after
the structure and function of the human brain, with the nodes or artificial neurons representing biological
neurons that communicate with each other.
They are composed of node layers, including an input layer, one or more hidden layers, and an output layer.
Each artificial neuron is connected to others and has a weight and threshold associated with it. When an
individual node’s output surpasses the threshold value, it becomes active and sends data to the next layer
in the network. Otherwise, it does not pass any information to the next layer.

The number of hidden layers (also known as the depth of the network), as well as the number of neurons
per layer, are one of the hyperparameters of the network model. On the other hand, the number of neurons
in the input layer should be equal to the number of features, and the output neurons are equal to the
number of different classes in the dataset.

Figure 30: Fully connected neural network.

Let’s take a look at an example of a fully connected network. In Figure 30, the input x is affected by
an affine transformation Wh (∑n

j=1 wi.xj) followed by a non-linear transformation (known as activation
function), resulting in h. Similarly, the hidden output h is subject to 2 consecutive linear and non-linear
transformations, producing the final output ŷ.
This network can be represented mathematically, with f and g non-linear activation functions:

h = f(Wh.x + bh)

ŷ = g(Wy.h + by)

The activation function is a critical component of the neural network because it introduces non-linearity,
allowing the network to learn and model complex relationships between inputs and outputs. Without non-
linearity, a NN would be limited to modeling linear relationships.
The activation of the output layer would usually depend on the use case, whereas the hidden layers can
have activations like ReLU, sigmoid, hyperbolic tangent, soft(arg)max, etc.

To build and train the NNs, we used the Pytorch framework, which is an open source ML framework origi-
nally developed by Meta AI. It is based on multidimensional arrays called tensors, they similar to Numpy ’s.
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24.1 Training Phase
In this context, learning means finding which parameters (weights and biases) minimize a certain cost
function.
A working of a neural net is based on 2 principles:

1. Forward Pass: when the input data is fed in the forward direction through the network.

2. BackPropagation: it is the core algorithm behind how neural networks learn.

During forward propagation, the outputs are calculated based on the current weights and biases. Then a
loss function is used to calculate the error between the predicted and the actual output.

Then, the error is propagated back through the network in the Backpropagation, and the algorithm calcu-
lates the gradient of the loss function with respect to the weights and biases of each neuron. This gradient
represents the direction and magnitude of the change that needs to be made to each weight and bias to
minimize the error.
The weights and biases are then updated using the gradient descent algorithm, which makes adjustments
in the direction of the negative gradient of the loss function.

To train any NN using Pytorch, there are always these 5 fundamentals step:

1. output = model(input): does the forward pass through the network that generates the output.

2. J = loss(output, target): calculates the training loss (error between predicted and actual targets).

3. model.zero grad(): resets the gradient calculations, because we don’t want them to be accumulated
from before for the next pass.

4. J.backward(): does the backpropagation pass, computes ∇xJ for each variable x, and accumulates it
into the gradient of each x (x.grad← x.grad +∇xJ).

5. optimizer.step(): updates the model’s parameters (a step in gradient descent).

24.2 The Neural Network Model
After several trials, a deep neural network was constructed with the following characteristics:

• 4 layers of neurons, of which 2 are hidden.

• n = 130 neurons in the input layer (equal to the number of features).

• m = 10 neurons in the output layer (equal to the number of classes).

• h1 = 400 neurons in the first hidden layer.

• h2 = 200 neurons in the second hidden layer.

• ReLU or Rectified Linear Unit activation function for both hidden layers (appendix 26.8).

• Softmax activation function for the output layer, which is commonly used for multi-class classification
problems (appendix 26.8).
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Figure 31: The architecture of the used deep neural network.

For the criterion, CrossEntropyLoss was utilized to calculate the loss. In addition, for the choice of op-
timizer, Adam which is an adaptive optimizer. It was preferred over gradient descend optimizers because
the latter are proven not to be good with sparse data, and they have a high possibility to be stuck in local
minima.

Note that before feeding the training DS into the neural net, it was scaled to take values in [0, 1]. Also, we
used the method DataLoader from Pytorch to split the data into smaller batches. That allows the model
to process multiple inputs and their corresponding labels simultaneously during training. By processing a
small batch of data at a time, the model can update its parameters more frequently, which can lead to
faster convergence. Additionally, it grants for more efficient use of memory during training.

On the other hand, the training DS was further split into training and validation set. The validation set’s
role was critical during the training phase. In fact, the training error keeps going down during training,
whereas validation error goes down to a certain minimum then increases again. So the training will be
stopped when validation loss starts increasing. This regularization technique is used to prevent overfitting
and generalization loss.

The full training function can be found in the appendix 26.9.

24.3 Results and Analysis
At this stage, the frame length of the Sliding Window algorithm was fixed to 15 seconds, with an overlap
of 50%.

One of the hyperparameters is the batch size percentage with the respect to the training DS. So, a list of
8 percentages were tried to conclude which one is the better choice.
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Figure 32: The evolution of training set’s loss for different batch sizes.

Figure 32 represents how the loss converges during the training loop. Notice that the early stopping time
due to validation’ error increase differs from one batch size percentage to another.

Apparently, taking a batch size percentage of 0.8% of the training dataset achieves the highest accuracy
(94.7%). It took the network 154 seconds and 126 epochs to converge (1.2s/epoch).

Figure 33: Bar plot showing the accuracies and training time for several batch sizes.

We can notice in Figure 33 that when using a large batch size, the accuracy is relatively low (around 74%
for 5 and 10% sizes). Besides, for the lowest batch sizes, the accuracies are good, but the training times
are higher than the rest.
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Figure 34: Accuracy and loss evolution of the model with 0.8% batch size

Table 4 shows how well our model generalized, as it achieved an accuracy of 83.15% on an unseen test
dataset, which is considered a satisfying result.

Training set Validation set Test set
Loss 0.25 0.43 0.45

Accuracy (%) 90.54 84.03 83.15
Table 4: Results of the 4 layers DNN model, with window length of 15s.

25 Conclusion and perspectives
This project proposed several Machine Learning models ready to recognize the driver behind the wheel
based on data extracted from the vehicle’s CAN-bus. Mainly, two models came on top, the Random Forest
algorithm, a classical ML Ensemble algorithm, and a Deep Neural Network with two hidden layers. The
first one achieved an accuracy of 88% on an unseen testing set, whereas the second attained 83.15%.
These models can be applied to interpret driving data, extract patterns and classify it, to enable relevant
applications on board the commercial vehicles. Besides, it was emphasized on the importance of processing
the raw data, and extracting some features before feeding it into any ML algorithm.

For future work, it is worth diving deeper into Deep Learning and tackle Recurrent Neural Networks, as
researchers confirmed their impressive results with time-series problems. Also, the investigation of the use
of other time-series segmentation methods or not, combined with RNN can present some interesting results.
After that, it is necessary to try and test the models in a real car processors and enter an optimization
and improvement phase as a way to enable real time applications, like enabling the ADAS to correct and
’teach’ the driver more eco-friendly way of driving to decrease energy consumption.
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26 Appendices

26.1 Correlation Matrix - Dataset 1

Figure 35: Correlation matrix of all the calculated features.



26.2 Steps of Principal Components Analysis
In theory, the Principal Component Analysis can be broken down into five steps:

1. Standardization:
Feature scaling through standardization is a critical step prior to the execution of the PCA, since the
latter is very sensitive to the variances of the input variables. It is a requirement for the optimal
performance of many ML algorithms, and skipping this step will most likely lead to the domination of
some variables over the others, leading to biased results.
The standardization incorporates scaling of the features so that to have the same properties as a standard
normal distribution (mean equal to zero and standard deviation equal to one).
Mathematically, it can be done through the following formula:

xnew = x−mean

standard deviation

In python, the features columns are stored in an array, then it is standardized using the ‘StandardScaler’
function from ‘sklearn.preprocessing’. And a new data frame is reformed using this new scaled data.

X = d f f i n a l . l o c [ : , f e a t u r e s ] . v a l u e s
X = S t a n d a r d S c a l e r ( ) . f i t t r a n s f o r m (X)

2. Generating the covariance or correlation matrix for the whole dataset:
This matrix is the numerical representation of how much information is contained between two-dimensional
space (related to two features) at a time.

3. Calculating the eigenvectors:
After performing the eigen decomposition of the covariance matrix, the eigen vectors are obtained, which
represents the direction of variance. In other words, the vector with the highest eigenvalue will give the
direction of maximum variance and thus forming the first principal component (variable), and so on.

4. Transforming Data:
This step is accomplished by performing the dot product of the data with the chosen eigenvectors to
obtain the new data projections.

All of the above can be taken care of by importing ‘PCA’ from ‘sklearn.decomposition’ and implementing
the following code:

pca = PCA( n components = 3)
x = d f s t a n d a r d i z e d . l o c [ : , f e a t u r e s ] . v a l u e s
p r i n c i pa lComponen t s = pca . f i t t r a n s f o r m ( x )
p r i n c i p a l D f = pd . DataFrame ( data=pr inc ipa lComponent s ,

columns =[ ’ p r i n c i p a l component 1 ’ , ’ p r i n c i p a l component 2 ’ , ’ p r i n c i p a l
component 3 ’ ] ,

I ndex=pd . M u l t i I n d e x . f r o m t u p l e s ( d f s t a n d a r d i z e d . i nd ex . t o l i s t ( ) ,
names = [ ’T ’ , ’ evchange ’ , ’ Event ’ ] ) )



26.3 Ocslab Driving Dataset

# Variable name Description
1 Fuel consumption The instant value of fuel consumption
2 Accelerator Pedal value Accelerator pedal opening angle percentage
3 Throttle position signal Relative throttle position
4 Short Term Fuel Trim Bank1 Percentage of change in fuel injection over a short period of time
5 Intake air pressure Used to calculate air density and the engine’s air mass flow rate
6 Filtered Accelerator Pedal value ECU’s filtered accelerator pedal opening angle percentage as

determined by the accelerator position sensor
7 Absolute throttle position Actual throttle position
8 Engine soacking time Duration where a vehicle’s engine is at rest before being started
9 Inhibition of engine fuel cut off The fuel cut-off control system is responsive to a brake switch

signal and an engine speed signal having a value above a fuel
recovery threshold to decrease the value of a fuel cut-off
threshold to again perform the fuel cut-off even in the normal
fuel recovery range. This value represents the inhibition of
engine fuel cut off

10 Engine in fuel cut off The inhibition of engine fuel cut off, i.e. fuel cut-off threshold
11 Fuel Pressure The pressure in the fuel system, which is the actual applied

pressure by the injector
12 Long Term Fuel Trim Bank1 Percentage of change in fuel injection over a long period of

time, averages the short trims
13 Engine speed The number of revolutions the crankshaft makes per minute,

also known as RPM
14 Engine torque after correction The value after correcting the torque to which an engine is

adjusted before a gear disengagement
15 Torque of friction The torque caused by the frictional force that occurs when two

objects in contact move
16 Flywheel torque interventions The flywheel stores energy when torque is applied by the energy

source, and it releases stored energy when the energy source is
not applying torque to it. The value represent the flywheel
torque after torque interventions

17 Current spark timing The time to set the angle relative to piston position and
crankshaft angular velocity that a spark will occur in the
combustion chamber near the end of the compression stroke

18 Engine coolant temperature The temperature of the engine coolant of the internal
combustion engine

19 Engine Idle Target Speed The desired idle RPM in relation to the coolant temperature
20 Engine torque Represents the load an engine can handle to generate a certain

amount of power to rotate the engine on its axis
21 Calculated LOAD value Indicates a percentage of peak available torque
22 Min indicated engine torque Minimum Engine torque value
23 Miax indicated engine torque Maximum Engine torque value
24 Flywheel torque The flywheel’s torque
25 Torque scaling factor(standardization) Described as how flexible or how much force can be expressed in

a given gear when the driver scales the gear
26 Standard Torque Ratio Described as how flexible or how much force can be expressed in

a given gear



27 Requested spark retard angle from TCU The transmission control unit (TCU) controls modern electronic
automatic transmissions. This value computes the requested
spark retard angle from TCU

28 TCU requests engine torque limit (ETL) Monitors the request to engine torque limits (ETL) by TCU
29 TCU requested engine RPM increase Monitors the TCU requests related to the increasing of engine’s

RPM
30 Target engine speed used in lock-

up module
Monitors the lock-up valve, used to shut off the signal pressure
line of pneumatic actuators

31 Glow plug control request Monitors the request to check the glow plug
32 Activation of Air compressor Shows if the air compressor is in activation state
33 Torque converter speed A particular kind of fluid coupling that is used to transfer

rotating power from a prime mover
34 Current Gear The current selected gear
35 Engine coolant temperature.1 The temperature of the fluid inside the transmission
36 Wheel velocity front left-hand The speed of the front left-hand wheel
37 Wheel velocity rear right-hand The speed of the rear right-hand wheel
38 Wheel velocity front right-hand The speed of the front right-hand wheel
39 Wheel velocity rear left-hand The speed of the rear left-hand wheel
40 Torque converter turbine speed -

Unfiltered
A torque converter is a type of fluid coupling that is used to
transfer rotating power from a prime mover, such as an internal
turbine in this case

41 Clutch operation acknowledge Signals when a clutch operation happens
42 Converter clutch Activates the torque converter clutch to prevent slipping at

highway speeds
43 Gear Selection The current selected gear
44 Vehicle speed The current speed of the vehicle in m/s
45 Acceleration speed - Longitudinal The longitudinal acceleration of the vehicle in m/s2

46 Indication of brake switch ON/OFF Signals whether the brake indicator is on or off
47 Master cylinder pressure The pressure of the master cylinder, a control device that

converts non-hydraulic pressure into hydraulic one
48 Calculated road gradient The slope of the currently traveled road
49 Acceleration speed - Lateral The lateral acceleration of the vehicle in m/s2

50 Steering wheel speed The current steering wheel speed
51 Steering wheel angle The current steering wheel angle
52 Time(s) The relative time when the sample was taken (in seconds)
53 Class The driver identifier
54 PathOrder To differentiate between the outward leg (1) and the return leg

(2) of the round trip
Table 5: All variables present in the dataset [29].



26.4 Selected Features

Engine Related

Engine speed
Engine torque after correction
Engine coolant temperature

Engine torque
Minimum indicated engine torque
Maximum indicated engine torque

Transmission Related

Accelerator Pedal value
Throttle position signal

Filtered Accelerator Pedal value
Absolute throttle position

Torque scaling factor(standardization)
Standard Torque Ratio

Current Gear
Wheel velocity front left-hand
Wheel velocity rear right-hand
Wheel velocity front right-hand
Wheel velocity rear left-hand

Vehicle speed
Acceleration speed - Longitudinal

Acceleration speed - Lateral
Steering wheel speed
Steering wheel angle

Fuel Related
Intake air pressure
Fuel consumption

Short Term Fuel Trim Bank1
Long Term Fuel Trim Bank1

Table 6: Table showing all selected features.



26.5 K-folds cross validation on multiple classifiers

c l a s s i f i e r s = [ RandomForest 1 ,
Svm 0 ,
KNeighbors 0 ,
AB 0 ,
GB 0 ]

c l a s s i f i e r n a m e s = [ ”Random−F o r e s t ” ,
”SVM” ,
”20−Nearest −Ne ighbor s ” ,
” AdaBoost ” ,
” Grad i en t −Boos t ing ” ]

# nb o f f o l d s f o r c r o s s v a l i d a t i o n
k = 5
# The e v a l u a t i o n m e t r i c s
e v a l u a t i o n m e t r i c s = [ ” a c c u r a c y s c o r e ” ,

” p r e c i s i o n s c o r e ” ,
” r e c a l l s c o r e ” ,
” f 1 s c o r e ” ]

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# The d a t a s e t
t a r g e t = [ ’ C l a s s ’ ]
f e a t u r e s = df3 . drop ( [ ’ Time ( s ) ’ , ’ PathOrder ’ ]+ ta r g e t , a x i s =1) . columns . t o l i s t ( )
d f T ra i n , d f T e s t = t r a i n t e s t s p l i t ( df3 , t e s t s i z e =0.2 , s h u f f l e=True )

# Cros s v a l i d a t i o n on t r a i n i n g s e t ONLY
X = d f T r a i n . l o c [ : , f e a t u r e s ] . r e s e t i n d e x ( drop=True )
y = d f T r a i n . l o c [ : , t a r g e t ] . r e s e t i n d e x ( drop=True )

s c a l e r = MinMaxScaler ( )
k f = KFold ( n s p l i t s=k , s h u f f l e=True , r andom sta te=randomstate )

s c o r e s = {}
f o r i , c l f i n enumerate ( c l a s s i f i e r s ) :

s c o r e s [ c l a s s i f i e r n a m e s [ i ] ] = {}
f o r t r a i n i n d e x , t e s t i n d e x i n k f . s p l i t (X) :

X t r a i n , X t e s t = X. i l o c [ t r a i n i n d e x ] , X . i l o c [ t e s t i n d e x ]
y t r a i n , y t e s t = np . r a v e l ( y . i l o c [ t r a i n i n d e x ] ) ,

np . r a v e l ( y . i l o c [ t e s t i n d e x ] )

s c a l e r . f i t ( X t r a i n )
X t r a i n = s c a l e r . t r an s f o rm ( X t r a i n )
X t e s t = s c a l e r . t r an s f o rm ( X t e s t )

s t a r t = t ime . t ime ( )
c l f . f i t ( X t r a i n , y t r a i n )
s top = t ime . t ime ( )
y p r ed = c l f . p r e d i c t ( X t e s t )

f o r j , me t r i c i n enumerate ( e v a l u a t i o n m e t r i c s ) :
s c o r e = None
i f me t r i c == ’ a c c u r a c y s c o r e ’ :

s c o r e = a c c u r a c y s c o r e ( y t e s t , y p r ed )
e l i f me t r i c == ’ p r e c i s i o n s c o r e ’ :

s c o r e = p r e c i s i o n s c o r e ( y t e s t , y p red , ave rage=’ we ighted ’ )



e l i f me t r i c == ’ r e c a l l s c o r e ’ :
s c o r e = r e c a l l s c o r e ( y t e s t , y p red , ave rage=’ we ighted ’ )

e l i f me t r i c == ’ f 1 s c o r e ’ :
s c o r e = f 1 s c o r e ( y t e s t , y p red , ave rage=’ we ighted ’ )

i f me t r i c i n s c o r e s [ c l a s s i f i e r n a m e s [ i ] ] . key s ( ) :
s c o r e s [ c l a s s i f i e r n a m e s [ i ] ] [ me t r i c ] . append ( s c o r e )

e l s e :
s c o r e s [ c l a s s i f i e r n a m e s [ i ] ] [ me t r i c ] = [ s c o r e ]

i f ’ t r a i n i n g t i m e ’ i n s c o r e s [ c l a s s i f i e r n a m e s [ i ] ] . key s ( ) :
s c o r e s [ c l a s s i f i e r n a m e s [ i ] ] [ ’ t r a i n i n g t i m e ’ ] . append ( s top − s t a r t )

e l s e :
s c o r e s [ c l a s s i f i e r n a m e s [ i ] ] [ ’ t r a i n i n g t i m e ’ ] = [ s top − s t a r t ]



26.6 Features Importance
Here is the list of all 130 features used to classify driver from DS2.





26.7 DNN Model Class

c l a s s Model1 ( nn . Module ) :
d e f i n i t ( s e l f , n i npu t s , n ou tpu t s ) :

s upe r ( Model1 , s e l f ) . i n i t ( )

# i n p u t to f i r s t l a y e r
s e l f . l a y e r 1 = nn . L i n e a r ( n i npu t s , 400)

# i n i t we i gh t s
nn . i n i t . k a i m i n g u n i f o r m ( s e l f . l a y e r 1 . weight , n o n l i n e a r i t y=’ r e l u ’ )
# second l a y e r
s e l f . l a y e r 2 = nn . L i n e a r (400 , 200)
nn . i n i t . k a i m i n g u n i f o r m ( s e l f . l a y e r 2 . weight , n o n l i n e a r i t y=’ r e l u ’ )
# t h i r d l a y e r and output
s e l f . l a y e r 3 = nn . L i n e a r (200 , n ou tpu t s )
nn . i n i t . x a v i e r u n i f o r m ( s e l f . l a y e r 3 . we ight )
# a c t i v a t i o n
s e l f . r e l u = nn . ReLU ( )
s e l f . so f tmax = nn . Softmax ( dim=1)

de f f o rwa rd ( s e l f , x ) :
x = s e l f . l a y e r 1 ( x )
x = s e l f . r e l u ( x )
x = s e l f . l a y e r 2 ( x )
x = s e l f . r e l u ( x )
x = s e l f . l a y e r 3 ( x )
# x = s e l f . so f tmax ( x )
# not needed because we a r e u s i n g Cro s sEn t ropyLo s s ( so f tmax i s embedded

i n s i d e i t )
r e t u r n x



26.8 Activation Functions

26.8.1 Rectified Linear Unit

Figure 36: ReLU function.

ReLU(x) = max(0, x)

26.8.2 Softmax

Softmax is a mathematical function that converts a tensor of numbers into a tensor of probabilities, where
the probabilities of each value are proportional to the relative scale of each value in the tensor.

With z being the tensor of raw outputs from the NN, the ith entry in the softmax output vector softmax(z)
can be thought of as the predicted probability of the test input belonging to class i.

softmax(z)i = ezi∑N
j=1 ezj



26.9 Pytorch neural network’s training loop code

de f f i t ( model , t r a i n l o a d e r , op t im i z e r , c r i t e r i o n ) :
model . t r a i n ( )
t r a i n r u n n i n g l o s s = 0 .0
t r a i n r u n n i n g c o r r e c t = 0
coun t e r = 0
t o t a l = 0

f o r i , ( i npu t s , l a b e l s ) i n enumerate ( t r a i n l o a d e r ) :
c oun t e r += 1
data , t a r g e t = i n p u t s . to ( d e v i c e ) , l a b e l s . to ( d e v i c e )
t o t a l += t a r g e t . s i z e (0 )
o p t i m i z e r . z e r o g r a d ( )
ou tpu t s = model ( data )
l o s s = c r i t e r i o n ( outputs , t a r g e t )
t r a i n r u n n i n g l o s s += l o s s . i tem ( )

, p r ed s = to r ch . max( ou tpu t s . data , 1)
t r a i n r u n n i n g c o r r e c t += ( p r ed s == t a r g e t ) . sum ( ) . i tem ( )
l o s s . backward ( )
o p t i m i z e r . s t e p ( )

t r a i n l o s s = t r a i n r u n n i n g l o s s / coun t e r
t r a i n a c c u r a c y = 100 . ∗ t r a i n r u n n i n g c o r r e c t / t o t a l

r e t u r n t r a i n l o s s , t r a i n a c c u r a c y

de f v a l i d a t e ( model , t e s t d a t a l o a d e r , c r i t e r i o n ) :
model . e v a l ( )
v a l r u n n i n g l o s s = 0 .0
v a l r u n n i n g c o r r e c t = 0
coun t e r = 0
t o t a l = 0

wi th t o r ch . no grad ( ) :
f o r i , ( i npu t s , l a b e l s ) i n enumerate ( t e s t d a t a l o a d e r ) :

c oun t e r += 1
data , t a r g e t = i n p u t s . to ( d e v i c e ) , l a b e l s . to ( d e v i c e )
t o t a l += t a r g e t . s i z e (0 )
ou tpu t s = model ( data )
l o s s = c r i t e r i o n ( outputs , t a r g e t )

v a l r u n n i n g l o s s += l o s s . i tem ( )
, p r ed s = to r ch . max( ou tpu t s . data , 1)

v a l r u n n i n g c o r r e c t += ( p r ed s == t a r g e t ) . sum ( ) . i tem ( )

v a l l o s s = v a l r u n n i n g l o s s / coun t e r
v a l a c c u r a c y = 100 . ∗ v a l r u n n i n g c o r r e c t / t o t a l
r e t u r n v a l l o s s , v a l a c c u r a c y

de f t r a i n i n g l o o p ( model , da ta s e t , op t im i z e r , c r i t e r i o n , nb epochs , b a t c h s i z e ,
s t o p p i n g p a t i e n c e , v a l i d s e t p e r c e n t a g e =0.1) :
t r a i n l o s s , t r a i n a c c u r a c y = [ ] , [ ]
v a l l o s s , v a l a c c u r a c y = [ ] , [ ]



e a r l y s t o p p i n g = E a r l y S t o p p i n g ( p a t i e n c e=s t o p p i n g p a t i e n c e )
t r a i n d , v a l i d d = r a n d o m s p l i t ( da ta s e t ,

[ l e n ( d a t a s e t ) −
i n t ( v a l i d s e t p e r c e n t a g e ∗ l e n ( d a t a s e t ) ) ,

i n t ( v a l i d s e t p e r c e n t a g e ∗ l e n ( d a t a s e t ) ) ] )
t r a i n d a t a l o a d e r = DataLoader ( t r a i n d , b a t c h s i z e , s h u f f l e=True )
v a l d a t a l o a d e r = DataLoader ( v a l i d d , b a t c h s i z e=b a t c h s i z e )

s t a r t = t ime . t ime ( )
f o r epoch i n range ( nb epochs ) :

t r a i n e p o c h l o s s , t r a i n e p o c h a c c u r a c y = f i t ( model ,
t r a i n d a t a l o a d e r ,
op t im i z e r ,
c r i t e r i o n
)

v a l e p o c h l o s s , v a l e p o c h a c c u r a c y = v a l i d a t e ( model ,
v a l d a t a l o a d e r ,
c r i t e r i o n
)

t r a i n l o s s . append ( t r a i n e p o c h l o s s )
t r a i n a c c u r a c y . append ( t r a i n e p o c h a c c u r a c y )
v a l l o s s . append ( v a l e p o c h l o s s )
v a l a c c u r a c y . append ( v a l e p o c h a c c u r a c y )

p r i n t ( f ”Epoch [{ epoch+1}/{ nb epochs } ] −> Tra in Loss :
{ t r a i n e p o c h l o s s : . 4 f } , T ra in Acc : { t r a i n e p o c h a c c u r a c y : . 2 f } // Val
Loss : { v a l e p o c h l o s s : . 4 f } , Val Acc : { v a l e p o c h a c c u r a c y : . 2 f }” )

# i f the nb o f epoch s i n c e l a s t improve i n v a l l o s s i s b i g g e r t ha t
p a t i e n c e −> break

e a r l y s t o p p i n g ( v a l e p o c h l o s s )
i f e a r l y s t o p p i n g . b e s t s o f a r :

p r i n t ( ’ INFO : s a v i n g . . . ’ )
t o r ch . save ( model . s t a t e d i c t ( ) , ’ Saved/ NNmodel acc ’+s t r ( b a t c h s i z e ) )

i f e a r l y s t o p p i n g . e a r l y s t o p :
b reak

end = t ime . t ime ( )
t r a i n t i m e = end − s t a r t
p r i n t ( f ” T r a i n i n g t ime : { t r a i n t i m e : . 3 f } s econds ” )

r e t u r n t r a i n l o s s , t r a i n a c c u r a c y , v a l l o s s , v a l a c c u r a c y , t r a i n t i m e
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