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Abstract 

A stress test methodology aimed at increasing chances of discovering 
faults related to network traffic in distributed systems is presented. The 
technique uses as input a specified UML 2.0 model of a system, 
augmented with timing information, and yields stress test requirements 
composed of specific Control Flow Paths along with time values to trigger 
them. We propose different variants of our stress testing methodology to 
test networks and nodes of a system under test according to various 
heuristics. Using a real-world system specification, we design and 
implement a prototype distributed system and describe, for that particular 
system, how the stress test cases are derived and executed using our 
methodology. We report the results of applying our stress test 
methodology on the prototype system and discuss the usefulness of the 
technique. Results indicate that the technique is significantly more effective 
at detecting network traffic-related faults when compared to standard test 
cases based on an operational profile. Furthermore, a sophisticated stress 
test technique based on Genetic Algorithms is proposed to handle specific 
constraints in the context of Real-Time distributed systems. 
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Chapter 1  
 
INTRODUCTION 

1.1 Motivation and Goal 

Distributed Real-Time Systems (DRTS for short) are becoming more important to our everyday life. 
Examples include command and control systems, aircraft aviation systems, robotics, and nuclear power 
plan systems [3]. However as described in the literature, the development and testing of a DRTS is difficult 
and takes more time than the development and testing of a distributed system without real-time 
constraints or a non-distributed system, one which runs on a single computer.  

System testing has been the topic of a myriad of research in the last two decades or so. Most testing 
approaches target system functionality rather than performance. However, Weyuker and Vokolos point out 
in [4], that a working system more often encounters problems with performance degradation as opposed to 
system crashes or incorrect system responses. In other words, not enough emphasis is generally placed on 
performance testing. In hard real-time systems, where stringent deadlines must be met, this poses a serious 
problem. Because hard real-time systems are often safety critical systems, performance failures are 
intolerable. Deadlines that are not adhered to can in some applications lead to life-threatening risks. The 
risk of this occurring can be greatly reduced if enough performance testing is done before deploying the 
system. Performance degradation and consequent system failures due to this degradation usually arise in 
stressed conditions. For example, stressed conditions can be attained in a DRTS when many users are 
concurrently accessing a system or when large amounts of data are transferring through a network link.  

In a recent paper by Kuhn [5], sources of failures in the United States’ Public Switched Telephone Network 
(PSTN), as a very big DRTS, were investigated. It was reported that in the time period of 1992-1994, in 
terms of outage numbers, although only 6% of the outages were overloads, but they led to 44% of the 
PSTN’s service downtime in the respected time frame. In the system under study, overload was defined as 
the situation in which service demand exceeds the designed system capacity. So it is evident that although 
overload situations do not happen frequently, the failure consequences they result into are quite expensive.  

The motivation for our work can be stated as follows: because DRTS are by nature concurrent and are often 
real-time, there is a need for methodologies and tools for stress testing and debugging DRTS under stressed 
conditions, such as heavy user loads and intense network traffic. The systems should be tested under stress 
before being deployed in the field. In this work, our focus for stress testing is on the network traffic in 
DRTS, one of the fundamental factors affecting the behavior of DTRS. Distributed nodes of a DTRS 
regularly need to communicate with each other to perform some of the system’s functionalities. Network 
communications are, however, not always successful and timely. Problems such as congestion, 
transmission errors, or delays might occur in a network. But many real-time and safety-critical systems 
have hard deadlines for many of their operations, where catastrophic consequences may result from 
missing deadlines. Furthermore, a system might behave well with normal network traffic loads (in terms of 
either amount of data or number of requests), but the communication might turn to be poor and unreliable 
if many network messages or high loads of data are concurrently transmitted over a particular network or 
towards a particular node.  
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1.2 Approach 

Assuming that the UML design model of a DRTS, sequence diagrams annotated with timing information 
are provided, we propose a technique to derive test requirements to stress the robustness of a system to 
network traffic problems in a cost-effective manner. This is a difficult problem as, for a given DRTS where 
several concurrent processes are running on each distributed node and processes communicate frequently 
with each other, the size of the set of all possible network interaction interleavings is unbounded, where a 
network interaction interleaving is a possible sequence of network interactions among a subset of all 
processes on a subset of all nodes.   

The Unified Modeling Language (UML) [6-8] is increasingly used in the development of DRTS systems. 
Since 1997, UML has become the de facto standard for modeling object-oriented software and is used, in 
one way or another, by nearly 70 percent of IT industry [9]. The new version of UML, version 2.0 [8], was 
finalized by the OMG in August 2003. UML 2.0 offers an improved modeling language compared to UML 
1.x versions: enhanced architecture modeling, extensibility, support for component-based development, 
modeling of relationships and model management [9]. As we expect UML to be increasingly used for 
DTRS, it is therefore important to develop automatable UML model-driven, stress test techniques and this 
is the main motivation for the work reported here. 

Assuming that the UML design model of a DTRS is in the form of Sequence Diagrams (SD) annotated with 
timing information, and the systems’ network topology is given in a specific modeling format, we propose 
a technique to derive test requirement to stress the DTRS with respect to network traffic in a way that will 
likely reveal robustness problems. We introduce a systematic technique to automatically generate an 
interleaving that will stress the network traffic on a network or a node in a System Under Test (SUT) so as 
to analyze the system under strenuous but valid conditions. If any network traffic-related failure is 
observed, designers will be able to apply any necessary fixes to increase robustness before system delivery.  

1.3 Contributions 

The contributions of this work can be summarized as follows: 

• A faults taxonomy for DRTS (Chapter 3) 
• A control flow analysis technique based on UML 2.0 SDs (Chapter 6) 
• A resource usage analysis technique for network traffic usage in DRTS (Chapter 8) 
• A family of automated stress testing techniques (Chapter 9) aiming at increasing chances of 

discovering faults related to network traffic in DTRS. Based on a specific UML 2.0 system model, it 
yields stress test requirements composed of specific CFPs (Control Flow Paths) to be invoked and a 
schedule according to which to trigger each CFP. In addition to sequence diagrams. 

• More specifically, the work includes a specific technique based on Genetic Algorithms aimed at 
dealing with internal and external system events exhibiting complex arrival patterns. This is of the 
utmost importance for the testing of real-time systems (Chapter 10) 

1.4 Structure 

The remainder of this article is structured as follows. Relevant background information is given in Chapter 
2, where we discuss the related works and define the main terminology used throughout the paper. 
Chapter 3 presents a fault taxonomy for DRTS so that the types of faults we target are well defined. 
Chapter 4 presents an overview of the stress test methodology. The assumed input system models for the 
methodology are precisely described in Chapter 5. From Chapter 6 to Chapter 8, we describe in detail how 
a stress test model is built to support automation. Chapter 6 describes a technique for the control flow 
analysis of UML 2.0 sequence diagrams, a necessary first step. Chapter 7 discusses how sequential and 
conditional constraints among sequence diagrams (or their corresponding use cases) can be analyzed when 
generating stress test requirements. A resource usage analysis technique for network traffic usage is then 
presented in Chapter 8. Chapter 9 proposes the simpler version of our stress test technique which should be 



Carleton University TR SCE-05-13 September 2005 

 

 13 

applicable for a large proportion of DTRS. A more sophisticated version of the technique, which takes into 
account complex arrival patterns for internal and external system events, is presented in Chapter 10. This 
technique re-express our objectives as an optimization problem and uses Genetic Algorithms to derive test 
requirements. Chapter 11 discusses how the stress test methodology can be fully automated using a 
prototype tool we have developed to generate stress test requirements. This tool is carefully assessed by an 
experiment. A comprehensive case study is presented in Chapter 12 in order to assess the usefulness of our 
overall methodology on a realistic example. Finally, Chapter 13 concludes this article and discusses some of 
the future research directions. 
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Chapter 2  
 
BACKGROUND 

This section presents related works (Section 2.1), a detailed problem statement (Section 2.2), the basic 
terminology used in this article (Section 2.3), and a brief introduction to the UML profile for Schedulability, 
Performance, and Time (UML-SPT) [10] (Section 2.4). 

2.1 Related Works 

There has not been a great deal of work published on systematic generation of stress and load test suites for 
software systems. The works in [11-15] are notable exceptions. On a different note, there are reports that 
highlight the high cost of system outages and damages due to high loads and systems’ malfunction under 
stressed conditions. For example, Kuhn [5] investigated the sources of failures in the United States’ Public 
Switched Telephone Network (PSTN)-a very large distributed system. It was reported that in the time 
period of 1992-1994, in terms of outage numbers, although only 6% of the outages were overloads, they led 
to 44% of the PSTN’s service downtimes in the studied time frame.  

Authors in [13] propose a class of load test case generation algorithms for telecommunication systems 
which can be modeled by Markov chains. The black-box techniques proposed are based on system 
operational profiles. The Markov chain that represents a system’s behavior is first built. The operational 
profile of the software is then used to calculate the probabilities of the transitions in the Markov chain. The 
steady-state probability solution of the Markov chain is then used to guide the generation process of the 
test cases according to a number of criteria, in order to target specific types of faults. For instance, using 
probabilities in the Markov chain, it is possible to ensure that a transition in the chain is involved many 
times in a test case so as to target the degradation of the number of calls that can be accepted by the system. 
From a practical standpoint, targeting only systems whose behavior can be modeled by Markov chains can 
be considered a limitation of this work. 

Yang proposed a technique [11] to identify potentially load sensitive code regions to generate load test 
cases. The technique targets memory-related faults (e.g., incorrect memory allocation/de-allocation, 
incorrect dynamic memory usage) through load testing. The approach is to first identify statements in the 
module under test that are load sensitive, i.e., they involve the use of malloc() and free() statements (in C) 
and pointers referencing allocated memory. Then, data flow analysis is used to find all Definition-Use 
(DU)-pairs that trigger the load sensitive statements. Test cases are then built to execute paths for the DU-
pairs. 

Briand et al. [16] propose a methodology for the derivation of test cases that aims at maximizing the 
chances of deadline misses within a system. They show that task deadlines may be missed even though the 
associated tasks have been identified as schedulable through appropriate schedulability analysis. The 
authors note that although it is argued that schedulability analysis simulates the worst-case scenario of task 
executions, this is not always the case because of the assumptions made by schedulability theory. The 
authors develop a methodology that helps identify performance scenarios that can lead to performance 
failures in a system. It combines the use of external aperiodic events (ones that are part of the interface of 
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the software system under test, i.e., triggered by events from users, other software systems or sensors) and 
internally generated system events (events triggered by external events and hidden to the outside of the 
software system) with a Genetic Algorithm. 

Zhang et al. [12] describe a procedure, similar to ours, for automating stress test case generation in 
multimedia systems. The authors consider a multimedia system consisting of a group of servers and clients 
connected through a network as a SUT. Stringent timing constraints as well as synchronization constraints 
are present during the transmission of information from servers to clients and vice versa. The authors 
identify test cases that can lead to the saturation of one kind of resource, namely CPU usage of a node in 
the distributed multimedia system. The authors first model the flow and concurrency control of 
multimedia systems using Petri-nets [17] coupled with temporal constraints. Allen’s interval temporal logic 
[18] was used by the authors to model temporal relationships. For example, given two media objects, 
VideoA and VideoB, the representation: αVideoB = βVideoA + 4 (where αVideoB and βVideoA denote the 
begin time of VideoB and end time of VideoA respectively) is used to express the starting of VideoB four time 
units after the end of VideoA. In their model, Zhang and Cheung first identify a reachability graph of the 
Petri net representing the control flow of multimedia systems. This graph is quite similar to a finite state 
machine where the states are referred to as markings and the transitions correspond to the transitions in the 
Petri-net. Each marking on the reachability graph is composed of a tuple representing all the places on the 
Petri-net along with the number of tokens held in each. It is important to note that only reachable markings 
(that is ones that can be reached by an execution of the Petri-net) are included in the reachability graph. 
From there, the authors identify test coverage of their graph as a set of sequences that cover all the 
reachable markings. These sequences, or paths in the reachability graph, are referred to as firing sequences. 
Firing sequences are composed of a transition and a firing time, represented as a variable. From there, each 
sequence is formulated into a linear programming problem and solved, outputting the actual firing times 
that maximize resource utilization.  

The proposed technique can not be easily generalized to generate test cases for different stress testing 
strategies of a networking system. Some of the limitations of their technique are: 

• They assume constant resource utilization (called as weight by the authors) for each media object. 
While in most DRTS, the resource usage of each object (system component) varies with time.  

• Only instant stress testing (happening in one time instant) is supported. But a system may only 
exhibit failures if stress test is prolonged for a period of time. 

• The temporal relationships and control flow model of the system should be modeled using Petri-
nets [17] and Allen’s interval temporal logic [18]. Although these two notations have solid 
mathematical foundations, they are not widely used by software developers. It would be much 
better if the required temporal relationships and control flow information could be extracted from 
the UML model of a system. 

• The proposed technique can not be easily generalized to generate test cases for different stress 
testing strategies, i.e., testing networks vs. nodes, stress direction: towards a nod`e vs. from a node. 
This will be discussed in detail in our system model and methodology sections.  

2.2 Problem Statement (Initial) 

We first define the problem we tackle in a general way, without providing details on the modeling and 
formalisms which will be proposed later on in this paper.  

Assuming that the UML design model of a DRTS is given, the problem is to find a systematic 
technique which automatically generates a set of test requirements to stress the network traffic of 
the system nodes and network links such that the probability of exhibiting network traffic-related 
faults increases. The UML design model of the SUT is assumed to include at least the system’s 
sequence diagrams (annotated with start and end timing information of each message), class 
diagram(s) and a system network interconnectivity package diagram which will be introduced in 
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Section 5.5 and shows the interconnectivity of the system’s nodes and network links. There can be 
several concurrent processes running on each system node where processes communicate with 
other processes located on the other nodes.  

The above problem statement will be revisited in Section 9.1, where it will be detailed and rephrased using 
the modeling and formalisms proposed from Chapter 5 to Chapter 7. 

2.3 Terminology 

Here we define the basic terminology used throughout this paper. 

Performance Testing. Performance testing is defined as the testing activity which is conducted to evaluate the 
compliance of a system or component with specified performance requirements. By thorough performance 
testing, it is expected that the risks of performance failures in systems are reduced. If performance is 
defined in terms of response time, software systems must produce results within acceptable time intervals. 
For example, most users of desktop systems will be annoyed with response times longer than a few 
seconds. In hard real-time systems, the deadlines to accept and respond to an input are measured in small 
time units such as milliseconds [19]. In all of these applications, the inability to meet response time 
requirements is no less a bug than incorrect outputs or a system crash.  

Stress Testing. Stress testing is defined as the testing process by which a software system is put under heavy 
stress and demanding conditions in an attempt to increase the probability of exhibiting failures. A stress 
test pushes the SUT to its design limits and tries to cause failures under extreme but valid conditions. This 
kind of testing will reveal two kinds of faults: lack of fail-safe behavior and load-sensitive bugs. The stress 
test suites may increase simultaneous actions and cause resources to be used in unexpected way. This may 
reveal faults on rare conditions, in exception handlers, and in restart/recovery features of a software 
system [19]. 

Distributed system: A collection of autonomous, geographically-dispersed computing nodes (hardware or 
software) connected by some communication medium: one or more networks.  

Distributed node: A geographically-dispersed computing node, which is a part of a distributed system and is 
part of a network. 

Network: A network is the communication backbone for a set of nodes in a system. A network may be a 
subnet of another network or the supernet of several other networks. A more comprehensive definition of a 
network is given in Section 4.2.1.  

2.4 UML Profile for Schedulability, Performance, and Time 

The UML standard has been used in a large number of time-critical and resource-critical distributed 
systems [20-24]. Based on this experience, a consensus has emerged that, while a useful tool, UML is 
lacking some modeling notations in key areas that are of particular concern to distributed system designers 
and developers. In particular, it was noticed that the lack of a quantifiable notion of time and resources was 
an obstacle to its broader use in the distributed and embedded domain. To further standardize the use of 
UML in modeling complex distributed systems, the OMG (Object Management Group) adopted a new 
UML profile named “UML Profile for Schedulability, Performance and Time” (SPT) [10] (referred to as the 
UML-SPT). 

The UML-SPT profile proposes a framework for modeling real-time systems using UML. The profile was 
finalized on Sept. 2003 and is becoming popular in the research community [25-29] and the industry [30]. 
The profile provides a uniform framework, based on the notion of quality of service (QoS), for attaching 
quantitative information to UML models. Specifically, QoS information models, either directly or 
indirectly, the physical properties of the hardware and software environments of the application 
represented by the model. This framework is referred to as the General Resource Modeling framework (GRM) 
by the UML-SPT profile. The structure of the GRM framework is shown in Figure 1 [10]. 
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General Resource Modeling Framework

«sub-profile»
RTresourceModeling

«sub-profile»
RTconcurrencyModeling

«sub-profile»
RTtimeModeling

«import»

«import»

 
Figure 1-The structure of the GRM Framework of the UML-SPT profile [10]. 

According to the UML-SPT profile’s specification [10], sub-profiles are defined as profile packages 
dedicated to specific aspects and modeling analysis techniques. As shown in Figure 1, the RTtimeModeling 
sub-profile imports the RTresourceModeling sub-profile, since time can be considered as a resource in a 
system. The RTtimeModeling sub-profile provides means for representing time and time-related 
mechanisms that are appropriate for modeling real-time software systems. The time domain model is 
divided into the following separate but related groups of concepts: 

• Concepts for modeling time and time values, included in the TimeModel package. 
• Concepts for modeling events in time and time-related stimuli, included in the TimedEvents 

package. 
• Concepts for modeling timing mechanisms (clocks, timers), included in the TimingMechanisms 

package. 
• Concepts for modeling timing services, such as those found in real-time operating systems, 

included in the TimingServices package. 

As we will see in the faults taxonomy related to the time constraints in a distributed system (Section 3.1), 
we will mostly use the concepts for modeling events in time and time-related stimuli in the context of this 
work. Those concepts are included in the TimedEvents package of the RTtimeModeling sub-profile. The 
modeling of the TimedEvents package is shown in Section 4.1.3 of the UML-SPT profile [10]. 

As an example, part of the deployment architecture of a typical chemical reactor system is shown in Figure 
2, where a sensor controller node (nsc) is supposed to get the sensor data from sensors ns1 and ns2, and then 
to send the data to be updated in the control server (ncs). 

Reactor

LAN

ncs: ControlServer

Reactor
Expert

`

nrm:ReactorMonitoringns1:HeatSensor

ns2:HeatSensor

nsc :SensorController

 
Figure 2-Part of the deployment architecture of a chemical reactor system. 

The sequence diagram (SD) in Figure 3 shows the realization of the update process. The SD is using time 
modeling constructs in the TimeModel package of the UML-SPT profile and the UML 2.0 [8] notations. As a 
reminder, the graphical notations of UML 2.0 for synchronous, asynchronous, and reply messages are also 
indicated in Figure 3. 
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sd updateSensorData

nnnnnnnnnnnnnnnnnn

«RTstimulus»
{RTArrivalPattern="'periodic',(100,'ms')"
RTduration<(10,'ms')}

:SensorDataCollector
{node=nsc}

:Sensor
{node=ns1}

:Sensor
{node=ns2}

d[0]=get_data()

d[1]=get_data()

updateSensorData()

«RTstimulus»
{RTstart=(1,'ms'),
RTend=(2,'ms')}

get_data()

get_data()

:SensorDB
{node=ncs}

update_data(d)

update_ack=update_data(d)
«RTstimulus»
{RTstart=(6,'ms'),
RTend=(10,'ms')}

«RTstimulus»
{RTstart=(14,'ms'),
RTend=(15,'ms')}

synchronous

asynchronous

reply (from a call)

 
Figure 3-Example of time modeling using UML-SPT profile. 

The system is obviously a safety-critical one, where an inadequate response time of the system might have 
life-threatening consequences. In other words, the temperature of the system should be measured and 
checked according to the timing notations in Figure 3 and prompt corrective actions should be carried out 
if the temperature is higher than a pre-specified threshold.  
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Chapter 3  
 
A FAULT TAXONOMY FOR DISTRIBUTED SYSTEMS 

To operate successfully, most large distributed systems depend on software, hardware, and human 
operators and maintainers to function correctly. Failure of any one of these elements can disrupt or bring 
down an entire system.  

According to the terminology used in system dependability, a system may fail either because it does not 
comply with the specification, or because the specification did not adequately describe its function [31]. 
Three fundamental categories of threats exist in the dependability theory: failures, errors, and faults. A 
failure occurs when an error reaches the service interface and alters the service. An error is the part of the 
system state that may cause a subsequent failure. A fault is the adjudged or hypothesized cause of an error. 
A fault is active when it produces an error; otherwise it is dormant. Failures, errors, and faults are closely 
related. The chained causality relationship between these threats is shown by Avizienis et al. [31], as 
depicted in Figure 4.  

Fault Error Failure Fault
activation propagation causation

... ...

 
Figure 4-The fundamental chain of dependability threats. 

The arrows in this chain express a causality relationship between faults, errors and failures. From the users 
viewpoint, a malfunction in a system is observed via a failure, which itself has been caused by an error and 
that by a fault. Therefore in terms of system granularity, failures are in a higher level than errors and those 
are in a higher level than faults. For example in a typical web-based email system such as Yahoo, which 
most probably uses parallel/distributed web servers to serve huge number of clients at the same time, a 
typical failure from a user standpoint might be: “Yahoo! mail doesn’t let me log in”. This failure might be due 
to an error such as: “the user database can not be reached” in the system, where in turn, might be caused by a 
distributed fault like: “congestion in a database server’s request queue has resulted in an unavailability of the 
server”. 

Adopting the concept of dependability to our context, i.e., distributed systems, it would make sense to 
count for specific faults which occur specially in distributed systems as a different category of faults. The 
elementary fault classes were proposed by Avizienis et al. [31], which included classes like “domain” and 
“system boundary” of a fault. The larger fault classes are further categorized into subclasses. For example, 
the fault class of “domain” contains two subclasses of “hardware” and “software” fault subclasses. We 
generalize the fault category, given in [31], to incorporate the distributed faults as well. Our proposed 
additions are given in Figure 5, where the faults classes on the gray background are our proposed 
additions, while those with dotted border were given by Avizienis et al. in [31]. We have added two top-
most categories: ’nature` and ‘location of creation or occurrence`. 

As given in Figure 5, we consider four different categories for the nature of a fault: local, distributed , real-time 
and concurrency. Local faults are those which occur on a node in the system and basically do not have any 
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thing to do with the distribution of the system. Functional faults in a single process are examples of local 
faults. Distributed faults are those which occur due to the distribution nature of a system. We define two 
types of distributed faults: unavailability and traffic, which will be described in detail in Section 3.2. As 
their name indicate themselves, real-time and concurrency faults relate to the real-time constraints and 
concurrent character of a system. 

The “Location of creation or occurrence” fault class indicates the location where a fault has occurred. For 
the case of faults in distributed system, we assume two cases for this class: network and node. In other 
words, we assume that a fault (in a distributed system) may happen either in a network or in a node. This 
will be described in detail in Section 3.5. 

In this work, the system under test is a distributed system composed of several nodes and several 
concurrent processes running in each node. There can also be real-time constraints in the system. The idea 
for classification of faults by their “nature” in such a system is that, aside from the local system 
classifications (shown as boxes with dotted border in Figure 5), a fault may have a pure distributed, real-
time or concurrency cause.   

In the following sections, we first revisit the persistency of faults. Then, each of our proposed fault classes 
will be further discussed. We also give examples for each category of faults. This will clarify the stress 
testing methodology in Section 8.5 and will highlight the types of faults we want to tackle in this work.  

Network

Faults

Persistency

Domain

Phenomenological 
Cause

System Boundary

Phase of Creation 
or Occurrence

Intent

Nature

Permanent

Transient

Hardware

Natural

Software

Human-made

Internal

External

Developmental

Operational

Node

Accidental

Deliberate

Unavailability

Traffic

Malicious

Non-Malicious

Location of Creation 
or Occurrence

Data

Request

Proposed in this work

By Avizienis et al.

Testing focus of this work

Distributed

Concurrency

Real-Time

Local

 
Figure 5-Tree of Fault Classes generalized for Distributed Systems. 

3.1 Persistency of Faults 

Some studies have suggested that since software is not a physical entity and hence not subject to transient 
physical phenomena (as opposed to hardware), software faults are permanent in nature [32]. Some other 
studies classify software faults as both permanent and transient. Gray [33] classifies software faults into 
Bohrbugs and Heisenbugs. Bohrbugs are essentially permanent design faults and hence almost deterministic 
in nature, and they correspond to permanent faults as classified by Avizienis et al. in [31], shown in Figure 
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5. Bohrbugs can be identified easily and can be removed during the testing and debugging phase (or early 
deployment phase) of the software life cycle. Heisenbugs, on the other hand, belong to the class of 
temporary internal faults and are intermittent. Heisenbugs correspond to transient faults as classified by 
Avizienis et al. in [31], shown in Figure 5. Heisenbugs are essentially permanent faults whose conditions of 
activation occur rarely or are not easily reproducible. Hence these faults result in transient failures, i.e., 
failures which may not recur if the software is restarted or is run in normal load conditions. Some typical 
situations in which Heisenbugs might surface are high usage loads, improper or insufficient exception 
handling and interdependent timing of various events. It is for this reason that Heisenbugs are difficult to 
identify through testing. Hence a mature piece of software in the operational phase, released after its 
development and testing stage, is more likely to experience failures caused by Heisenbugs than due to 
Bohrbugs.  

Some studies on failure data have reported that a large proportion of software failures are transient in 
nature [33, 34], caused by phenomena such as overloads or timing and exception errors [35, 36]. For 
example, a study of failure data from a fault tolerant system, called Tandem, indicated that 70% of the 
failures were transient failures, caused by faults like race conditions and timing problems [37, 38]. In 
another recent paper by Kuhn [5], sources of failures in the United States’ Public Switched Telephone 
Network (PSTN), as a very big distributed system, were investigated. It was reported that in the time 
period of 1992-1994, although only 6% of the system outages were overloads, but they led to 44% of the 
PSTN’s service downtime in the respected time frame. In the system under study, overload was defined as 
the situation in which service demand exceeds the designed system capacity. So it is evident that although 
overloads happen not frequently, but the failure costs due to them can be expensive. 

Altogether, depending on the system under study, we might be able to list some of the situations in which 
Heisenbugs (transient) faults might happen: 

• Overloads 
• Race conditions on shared resources 
• Interdependent timing of various events 
• Improper or insufficient error handling 

The proposed technique in this work aims to cause Heisenbugs (transient) faults with network traffic 
overload type. 

3.2 Distributed Faults 

Since nodes are geographically distributed in a distributed system, there should be a communication 
medium connecting them. We identify faults pertaining to communication among nodes under the class of 
“distributed” faults, which it itself is under the class of “nature of faults”.  

An important point to mention here is that since both the SUT and the test system run in the application 
layer of the OSI (Open Systems Interconnection)’s 7-layer network architecture [39], we only consider faults 
which are of relevance to the application layer and not the lower OSI layers, such as bit transmissions 
errors which are handled and corrected by the Error Correcting Codes (ECC) in the data link layer. In the 
context of testing distributed systems, we categorize faults with distributed nature in two groups: 

• Distributed unavailability faults 
• Distributed traffic faults 

The reason why we do not call the above faults as “Network …” instead of “Distributed …” is that we 
would like to distinguish between the faults, for example, happening in nodes and network links. We 
discuss each of the above fault categories in the following sections. 
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3.2.1 Distributed Unavailability Faults 

Distributed unavailability faults relate to the availability (readiness for correct service) and reliability 
(continuity of correct service) attributes of a system. The specification of most distributed systems usually 
dictates that the system’s network links and nodes should be highly available and reliable. For example, in 
a safety-critical system like a distributed air traffic control, the flight and runway information should be 
updated frequently in the system’s central database. Failing to do so, which might be caused for example 
by a network unavailability fault between a radar and the controller, might result in disastrous 
consequences.  

Basically a distributed unavailability fault is said to have happened when a system component (either a 
network link or a node) is no longer available and can not provide service to other components in the 
system. For example, a distributed message from a source node may not reach the destination node because 
one of the network links in the path from the source to the destination node might have been exhibiting a 
distributed unavailability fault. Since there are essentially three parties (network, the source and the 
destination nodes) in every communication, therefore in our definition, this fault might happen in either a 
network or in a node, which can be described using the “Location of Creation or Occurrence” fault class, as 
shown in Figure 5. 

Network links between any two distributed nodes might become unavailable at any time during the 
system activity. As we will assume in the system model in Chapter 5, any arbitrary network link in the 
network path between any two nodes in the system might be unavailable while the other links are 
functioning well. The same thing might also be the case for a node availability fault, i.e., a particular node 
might fail to reply to the incoming requests while other nodes are functioning properly. Therefore, all 
different types and combinations of unavailability faults have to be accounted for if we want to test all 
possibilities of unavailability in a system. The reason why we would like to distinguish the unavailability 
fault in terms of its location of creation or occurrence is that the system’s overall behavior might be 
different when network link, the source or the destination nodes exhibits unavailability faults. A schematic 
notation of possible distributed unavailability faults in a simple distributed message scenario is shown in 
Figure 6. 

Network

n1 n2

Denotes the occurrence of  a 
distributed unavailability fault

o2.f()

v1=o2.f()

o1
{node=n1}

o2
{node=n2}

DUF1
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DUF1 DUF2DUF3

DUF

SD

 
Figure 6-Occurrences of Distributed Unavailability Faults (DUF). 

In the simple distributed message scenario of Figure 6, object o1 on node n1 invokes a remote procedure call 
f() from object o2 on node n2 and subsequently receives the return value. A distributed unavailability fault 
(DUF) might happen anywhere in this scenario. We have identified three of all possible DUFs as shown 
with DUFi‘s in Figure 6. Suppose DUF1 happens on the network connecting two nodes and just after the 
message o2.f() is sent from o1 to o2. DUF2 occurs in n2 (e.g. node n2 crashes) after message o2.f() has arrived in 
o2 and while o2 (node n2) is busy processing function f(). DUF3 is a DUF which takes place in n1 before 
receiving the reply message (v1=o2.f()). The time and location where a DUF happens might cause different 
failures and subsequent faults in a system. Therefore to achieve full coverage in terms of DUFs, all different 
times and locations of DUFs have to be tested in a system. 
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Distributed unavailability faults might happen due to a variety of reasons, such as: physical damage to a 
network cable, dead node, dead router/switch/hub in the network path, and network or application 
software malfunction. 

3.2.2 Distributed Traffic Faults 

A distributed traffic fault occurs when a system failure is because at least one of system components (either 
a network or a node) does not function correctly under heavy network traffic. The root cause for 
distributed traffic faults might be due to many network-related issues in the system, such as network 
congestion, buffer overflows, and processing delay in a software module. There have been many studies in 
the area of network traffic and researchers have used many analytical models. One of the most common 
models to represent traffic in networks is to use queuing theory [40]. Discussion on the basic reasons which 
cause distributed traffic faults is outside the scope of this paper. Among the main causes, we only consider 
two cases: either when large amounts of data (network packets) or high number of requests (messages) are 
sent over in a communication scenario between two nodes. For the location of a fault, just like the case of 
distributed unavailability fault, one can consider two possibilities where a distributed traffic fault might 
happen: a network or a node. Because of this distinction, the heuristic for a stress test strategy will be to 
enforce simultaneous traffic (either data or number of messages) to go through a network or towards/from 
a node. More details on this will be given in Section 8.5, where the stress testing strategy is presented. 

As an example of a scenario when a distributed traffic fault might happen, consider the network schematic 
shown in Figure 7. Let us suppose the nodes in NetworkA (n1, n2, n3) send messages to nodes in NetworkB (n4, 
n5, n6) simultaneously, where each message contains a large amount of data. All of these messages have to 
go through NetworkAB which connects NetworkA and NetworkB. If the total size of the simultaneous data sent 
over NetworkAB is larger than its capacity, there will probably be a delay or other network faults that can be 
referred to “distributed traffic faults” from our stress testing standpoint. This fault may cause an error and 
subsequently a failure in the system, which in turn might lead to other classes of faults according to the 
fundamental chain of dependability threats shown in Figure 4. Distributed database and multimedia 
servers are examples of systems where large amounts of data are usually exchanged between nodes and 
distributed traffic faults might occur. 
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Figure 7-An example scenario showing how a distributed traffic fault might happen. 

As discussed, in addition to amount of data transmitted over a network or from/to a node, we further 
assumed that high number of simultaneous messages might also be a potential cause of traffic faults. 
Considering the example scenario in Figure 7, assume each of the concurrent processes on the nodes n1, n2, 
and n3 (inside NetworkA) send messages to processes on nodes n4, n5, and n6 (inside NetworkB) all in a single 
time instant. Since there can be large number of concurrent processes on each node, so there might be 
scenarios where high number of distributed messages go over the network NetworkAB. This, subsequently, 
might cause a distributed traffic fault in the network and/or any of the nodes. Therefore, a different stress 
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test strategy will be to select a set of sequence diagrams and schedule them such that maximum numbers of 
messages go along a network, or from/to a node, on a single time instant. 

3.3 Real-Time Faults 

A real-time fault is said to have occurred if the root cause of a system failure is missing a real-time 
deadline. As discussed, safety-critical systems often have time constraints which they should react on time. 
As usually categorized in the literature, real-time deadlines (constraints) are of two types: hard and soft 
deadlines. Hard deadlines are constraints that absolutely must be met [41]. A missed hard deadline results 
in a system failure. A system with hard deadlines is called a hard real-time system. In hard real-time 
systems, late data is bad data. On the other hand, soft real-time systems are characterized by time constraints 
(soft deadlines) which can (a) be missed occasionally, (b) be missed by small time derivations, or (c) 
occasionally skipped altogether. Usually, these permissible variations are stochastically characterized. 
Another common definition for soft real-time systems is that they are constrained only by average time 
constraints. Examples include on-line databases and flight reservation systems. Therefore, in soft real-time 
systems, late data may still be good data, depending on some measure of the severity of the lateness. 

Several techniques have been proposed to maximize the chances of real-time faults. Briand, Labiche and 
Shousha’s work in [16] proposes a methodology for the derivation of test cases that aims at maximizing the 
chances of critical (hard) deadline misses within a system. A deadline missing can be interpreted as an 
occurrence of a real-time fault. Zhang and Cheung [12] describe a procedure for automating stress test case 
generation for multimedia systems. The authors considered a multimedia system consisting of a group of 
servers and clients connected through a network as a SUT. The goal of their stress test case methodology 
was to schedule the multimedia objects such that the CPU usage of a node is maximized in a single time 
instant. This high load of CPU usage might lead to potential violations of timing constraints in a 
multimedia system. Therefore, the technique in [12] can also be considered as a way to maximize the 
chances of real-time faults. 

3.4 Concurrency Faults  

A concurrency fault is said to have occurred if the root cause of a system failure is due to a fault in 
concurrency among processes. There might be, for example, a shared resource that is accessed by several 
processes in a system. The synchronization scheme and order in which a shared resource is accessed might 
lead to a concurrency fault. Some types of concurrency faults are: deadlock, livelock, starvation and data-
races.  

A deadlock is a situation where two or more processes cannot proceed because they are all waiting for the 
other to release some shared resource. Livelock happens when processes are blocked with reasons other 
than waiting for a shared resource, for example a busy waiting on a condition that can never become true 
[42].  Resource starvation is a more subtle form of a deadlock state. A process may have large resource 
requirements and may be overlooked repeatedly because it is easier for the resource management system to 
schedule other processes with smaller resource requirements [42]. Data-race is an anomaly of concurrent 
accesses by two or more threads to a shared variable when at least one is writing. Programs which contain 
data-races usually demonstrate unexpected and even non-deterministic behavior. The outcome might 
depend on specific execution order (a.k.a. threads’ interleaving). Rerunning the program may not always 
produce the same results. Thus, programs with data-races are hard to test and debug. 

Several techniques have been proposed to find concurrent faults, such as [43-46] which aim at finding data-
race related faults. For example, Ben-Asher et al. [44] propose a set of heuristics to increase the probability 
of manifesting data-race related faults. The goal is to increase the chance of exercising data-races in the 
program under test and thus increase the chance of manifesting concurrency faults that are data-race 
related. The proposed technique first orders global shared variables according to number of times they are 
accessed by different processes. This ordering is done using what the authors call cross-run monitoring. Then 
data-race based heuristics are used to change the runtime interleaving of threads so that the probability of 
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fault manifestation increases. One of the proposed heuristics in [44] is called barrier scheduling, in which 
barriers are installed before and after accessing a particular shared variable. A barrier causes the processes 
accessing the variable to wait just before accessing it. When a predefined number of processes are waiting, 
the heuristic then simultaneously resumes all the waiting processes to access the shared variable, for 
example using notifyAll() in Java. 

The existing techniques do not distinguish between local or distributed concurrent processes. However 
since a set of concurrent processes can run on distributed locations, the existing methods to find 
concurrency faults can also be potentially used in a distributed system, which is implicitly concurrent as 
well. 

3.5 Location of Creation or Occurrence 

We propose this new classification for faults in DRTS to specify location of creation or occurrence. We 
consider two possibilities for the location of a fault: network or node. Considering a distributed system to 
be a set of networks and nodes, a fault might occur in any of the nodes or networks.  

3.6 Chain of Distribution Faults 

As shown in the fundamental chain of dependability threats in Figure 4, a fault with a specific type may 
recursively lead to other faults with different types. For example, a distributed fault such as data traffic 
fault might lead to a real-time fault, where a process might miss its assigned deadline to perform a 
particular task. This chained causality can be rephrased as: when a process does not receive the data, it was 
waiting for, on time (by a specific deadline), it will not be able to perform its action on time. Therefore, 
when studying the root cause of faults in a system, it is important to order the faults according to the order 
they occur and cause the next one in the faults chain. By this criterion, the data traffic fault is the first fault 
in the chain and the real-time one is the second in the above example. 

3.7 Class of Faults Considered in this Work 

As shown by dashed boxes in Figure 5, the classes of faults targeted by the stress testing technique of this 
work are data and request traffic faults with distributed nature, and the location of faults can be either 
networks or nodes.  

Different variations of the proposed stress testing strategy will be given to accommodate different fault 
types. The system model is given in Chapter 5 and the stress testing methodology is proposed in Section 
8.5.   
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Chapter 4  
OVERVIEW OF THE STRESS TEST METHODOLOGY 

Section 4.1 presents the overview of our model-based stress test process. The overview of metamodels used 
in the stress test methodology is discussed in Section 4.2. 

4.1 Stress Test Process 

The overview of our model-based stress test methodology is shown using an activity diagram in Figure 8. 
Note that only the steps in gray background are addressed by the current paper. A UML model of a SUT, 
following specific but realistic requirements, is used in input. A test model (TM) is then built to facilitate 
subsequent automation steps. The TM and a set of stress test parameters (objectives) set by the user are 
then used by an optimization algorithm to derive stress test requirements. Test requirements can finally be 
used to specify test cases to stress test a SUT. The TM consists of three sub-models: a control flow analysis 
model (Chapter 6), inter-SD constraints (Chapter 7) and network traffic usage pattern (Chapter 8).  
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Test Cases 
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Figure 8- Overview of our model-based stress test methodology. 

As we will discuss in Section 5.3, triggering SDs may not be allowed in any time instance. These types of 
constraints are called arrival-patterns. If none of a SUT’s SDs has arrival-pattern constraints, we use a simple 
optimization algorithm (Chapter 9) to derive stress test requirements from a TM. Otherwise, if at least one 
of SDs has arrival pattern constraints, we show in Chapter 10 that a more sophisticated optimization 
algorithm is needed and present one based on Genetic Algorithms. 

Test requirements are the outputs of our technique, which can be used by a tester to derive test cases. A test 
driver can be utilized to feed the derived test cases to the SUT, monitor its behavior, check the output with 
test oracles and generate test verdicts. 

4.2 Metamodels in the Stress Test Methodology 

The overview of metamodels used in the stress test methodology is shown in Figure 9. The metamodels are 
grouped into three packages: network topology, input system UML model, and test model. Network 
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topology is a metamodel for network topology (distributed architecture) of a system under test (SUT). The 
metamodels packages are described next. 
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Figure 9- Metamodels in the Stress Test Methodology. 

4.2.1 Network Topology Metamodel 

The structure of the distributed architecture of a SUT as we need it to be described is shown in Figure 9-(a) 
as a metamodel. A distributed SUT consists of two or more distributed nodes and one or more networks. 
As described in terminology (Section 2.2), a node is a geographically-dispersed computing node, which is a 
part of a system. A node is part of a network in a system. A network is the communication backbone for a 
set of nodes in a system. A network may be subnet of another network, and at the same time it can be the 
supernet of several other networks. For example, a typical network topology is shown in Figure 10.  
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a subnet of Network2

Network2Network1

n1 n2 n4 n5n3

Network3
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n6 n7  
Figure 10-A network topology diagram. 

In the example of Figure 10, there are four networks in the system: System Network, Network1, Network2 and 
Network3. Each network has several nodes (ni) or networks as shown. For example, Network2 has two nodes 
(n4 and n5) and one network Network3, which itself has is the owning network of two other nodes (n6 and 
n7). It is assumed that there is at least one network in every distributed system and that is named as System 
Network which connects the highest level networks and nodes to each other.  

In order to traverse from a node to another in the system, there is a network path defined between each two 
nodes. A network path between two nodes is an ordered set denoting the unique path of networks between 
the sender and receiver nodes of a message extracted from the network topology. For example, the network 
path from n1 and n6 in Figure 10 is <Network1, SystemNetwork, Network2, Network3>. A function to derive the 
network path between two nodes will be described in Section 8.2.  A UML package-based notation, referred 
to as Network Deployment Diagram (NDD), will be used to model a network topology. 

4.2.2 Input System Metamodel 

Sequence diagrams model the behavior of a SUT. Class diagrams will be used to estimate the data size of 
message in SDs. A Network Deployment Diagram (NDD) will model the network topology of a SUT. A 
context diagram [47] will be used to provide the number of multiple invocations of a SD. A Modified 
Interaction Overview Diagram (MIOD) will model the constraints between SDs. More details will be 
discussed in Chapter 5.  

4.2.3 Test Metamodel 

The Test Metamodel (TM) is shown in is shown in Figure 9-(b). It consists of four sub-models: control flow 
analysis model, network traffic usage model, network interconnectivity tree and inter-SD constraints, 
which are described in the next subsections. 

4.2.3.1 Control Flow Analysis  

In UML 2.0 [48], SDs may have various program-like constructs such as conditions (using alt combined 
fragment operator), loops (using loop operator), and procedure calls (using interaction occurrence 
construct). As a result, a SD is composed of Control Flow Paths (CFP), defined as a sequence of messages in 
a SD. Furthermore, as we discussed in [49], asynchronous messages and parallel combined fragments entail 
concurrency inside SDs.  

In a SD of a DS, some messages are local (sent form an object to another on the same node), while others are 
distributed (sent from an object on one node to an object on another node). Furthermore, different CFPs can 
have different sequences of messages and each message can have different signatures and a different set of 
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parameters.  Therefore, the network traffic usage pattern of each CFP can be different from other CFPs. 
Thus, comprehensive model-based stress testing should take into account the different CFPs of a SD. 

As we will discuss in Chapter 6, synchronous and asynchronous messages should be handled differently in 
the control flow analysis of a SD. We will propose a CFM (Control Flow Model) for SDs, referred to as 
CCFG (Concurrent Control Flow Graph). OCL consistency-rules will be used to define the mapping 
between a SD and its equivalent CCFG (Concurrent Control Flow Graph). CCFGs will support 
asynchronous messages and concurrency in SD. Similar to the concept of Control Flow Paths (CFP), we will 
propose Concurrent Control Flow Paths (CCFP), which can be derived form a CCFG. To consider 
distributed messages, between two objects on two different nodes, in a SD, Distributed Concurrent Control 
Flow Paths (DCCFP) will be defined. The process to build a CFM will be discussed in Chapter 6. 

4.2.3.2 Resource Usage Analysis 

We define the resource usage analysis metamodel to enable resource usage analysis of messages in SDs. We 
only consider network traffic resource usage in this work. Quantifying network traffic usage is done by 
measuring the amount of traffic entailed by a message and assigning the value to the flow node (in CCFP) 
corresponding to a message. Therefore, the resource usage analysis is done at the message-level in this 
work.  

We consider four abstract classes for network traffic usage: type, duration, direction, and location. These 
classes will be discussed in further detail in Chapter 8. A technique to formally analyze network traffic 
usage of a system based on a given UML model will be proposed in Chapter 8. The resource model will be 
formalized in a way to facilitate the stress testing of network traffic in a SUT.  

4.2.3.3 Network Interconnectivity Tree  

A Network Interconnectivity Tree (NIT) is an equivalent data structure to the package-based representation 
of a network topology. A NIT is built from a NDD using the technique presented in Section 5.5.2. 

4.2.3.4 Inter-SD Constraints 

These constraints are derived from a given Modified Interaction Overview Diagram (MIOD), which models 
constraints among SDs of a SUT.  The constraints are used as part of the test model to represent the 
sequential and conditional constraints among SDs. We propose four elements to analyze such constraints in 
our methodology, which will be described in detail in Chapter 7. 

• Independent-SD Sets (ISDS) 
• Concurrent SD Flow Paths (CSDFP) 
• Concurrent Control Flow Paths Sequence (CCFPS) 
• Distributed  Concurrent Control Flow Paths Sequence (DCCFPS) 
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Chapter 5  
 
INPUT SYSTEM MODEL 

In this work, stress test input data is assumed to be UML 2.0 [8] design model of a SUT. As discussed in 
Chapter 1, UML has become the de-facto standard for modeling object-oriented software for nearly 70 
percent of IT industry since 1997 [9]. The new version, UML 2.0 [8], proposed by OMG in August 2003, 
offers an improved modeling language. As we expect UML to be increasingly used for DRTS, it is therefore 
important to develop automatable UML model-driven, stress test techniques. 

We describe in this chapter the modeling information required. The rationales for using the following five 
modeling diagrams by the methodology are described next: 

• Two standard UML 2.0 diagrams: sequence diagrams (Section 5.1), and class diagrams (Section 5.2)  
• A modified UML 2.0 diagram: modified interaction overview diagram (Section 5.3) 
• A context diagram [47] (Section 5.4) 
• A specialized UML 2.0 package structure, referred to as Network Deployment Diagram (NDD) 

(Section 5.5) 

Furthermore, two tagged-values (specialized from the UML-SPT tagged-values) for modeling hard and soft 
Real-Time constraints in UML behavior diagrams are described in Section 5.6. As UML 2.0 sequence 
diagrams are used as the main behavior model, an overview on SDs is presented in Section 5.7.  

5.1 Sequence Diagram 

The goal in this work is to systematically stress test a SUT and we need to find some particular test 
requirements, based on the behavior of the SUT, to feed into the SUT. Therefore the dynamic behavior of 
the SUT should be analyzed to derive such test requirements. According to the UML 2.0 specification [8], 
seven UML diagrams can be used to specify the behavior of a system. As shown in Appendix A of [8], they 
are Activity, Sequence, Collaboration (or called Communication in Section 14 of [8]), Interaction Overview, 
Timing, Use case and State machine diagrams. Among all those diagrams, only sequence and 
communication diagrams provide message-level details of a program, which are needed for the Control 
Flow Analysis (CFA) needed for stress testing. Furthermore, among the last two, SDs have been more 
popular than communication diagrams in modeling dynamic behavior of systems, as they provide a richer 
set of behavior modeling constructs (e.g. loops and conditions).  

SDs have been accepted as essential UML artifacts for modeling the behavioral aspects of systems [50, 51]. 
The diagrams are particularly well-suited for object-oriented software, where they represent the flow of 
control during object interactions [52]. A SD shows a set of interacting objects and the sequence of messages 
exchanged among them. The diagram may also contain additional information about the flow of control 
during the interaction, such as if-then conditions ("if c send message m") and iteration ("send message m 
multiple times") or state-dependent behavior [50]. SDs have been the basis for several approaches for testing 
of object-oriented software [8, 19, 51, 53-56]. Some of existing approaches test the interactions among 
collaborating objects using SDs. SDs are used to determine the interactions that must be exercised. For 
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example, it may be required to cover all relationships of the form "object X sends message m to object Y". 
Sequences of messages for example, all possible beginning-to-end message sequences in the diagram may 
also be considered for coverage. We choose SDs as the source of information for dynamic behavior of a 
SUT.  

According to the new features of SDs in UML 2.0, Section 14 of [8], SDs can call each other through a 
mechanism which is called InteractionOccurrence in the specification. Due to the conditional constructs in 
SDs, there can be multiple flows of control in a SD. Therefore, network-traffic stress conditions might 
happen in only subsets of the possible control flows of a SD. Thus, to derive network-aware stress test 
requirements, we will need to analyze control flow in SDs. We have presented a control flow analysis 
technique based on SDs in [2], which we will use in this work. An overview of this technique will be given 
in Chapter 6. 

Since each of the participating objects of a SD may be deployed on a different node, we need to model this 
information in SDs. We use a node tagged value to specify this information. An example is shown in Figure 
11. 

sd M

m1

o1
{node = n1}

o2
{node = n2}

o3
{node = n3}

m2

 
Figure 11-Modeling the deployment node of an object using node tagged value. 

5.1.1 Timing Information of Messages in SDs 

As mentioned in Chapter 1, real-time systems often have real-time constraints that have to be met in 
runtime or real-time faults will occur. It was also discussed in Chapter 3 that a fault can trigger other 
subsequent faults as well. For instance, a network traffic fault might trigger a real-time fault. Therefore, our 
overall heuristic in this work is to schedule the SD’s of a SUT such that all possible distributed messages 
with maximum data sizes on a particular network link or a node happen at the same time. As we will see in 
the next sections, this will maximize the chance of exhibiting network traffic faults and consequently any 
other faults dependent on them. 

In order to devise precise test requirements (from time point of view) that yield such a stress test scenario 
of network traffic in a SUT, we assume that the timing information of all messages in SDs is given. By 
timing information of a message, we basically mean the start and end times of a message. As discussed in 
Section 3.3, out of all messages in a typical DRTS, some might have hard and some have soft real-time 
constraints. There might be also messages that do not possess any real-time constraints. However, in order 
to give a scheduled stress test requirement that will cause stress on network traffic on a predicted time 
instant (or period), we require that all messages have precise or statistical timing information.  

The start and end times of messages with hard deadlines can be modeled in the UML model of a SUT using 
the UML-SPT profile notations [10]. As discussed in Section 3.3, messages with soft deadlines can be 
stochastically characterized. Another common definition for such messages is that they are constrained 
only by average time constraints. For the case of messages with no time constraints, runtime monitoring 
techniques (such as [57]) can be utilized to get a statistical view of the time length of such messages in 
runtime prior to the testing phase. Statistical distributions of start and end times of such messages can be 
derived by running the system before testing and the expected values of start and end times can be used by 
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the stress test technique in this paper. However, due to the statistical (and hence indeterministic) nature of 
the timing values, such timing information might not lead to precise stress scenarios. In this work, we do 
not go into details on the issue of timing information. We assume that a time measurement technique has 
been utilized for the messages in the SUT and such information is already available.  

5.2 Class Diagram 

The class diagram is at the heart of the object modeling process. The class diagram models the resources 
used to build and operate the system. It models each resource in terms of its structure, relationships and 
behavior [9].  

The stress testing technique in this paper will use the class diagram(s) of a system for the following two 
purposes: 

• To achieve full coverage criteria for polymorphism in control flow analysis of SDs, as explained in 
Section 5 of [2], and 

• To estimate the data size of a distributed message in a SD (either a call or a reply message), as 
explained in Section 8.1.1. 

5.3 Modified Interaction Overview Diagrams 

Executing any arbitrary sequence of use cases (UCs) (i.e., their corresponding SDs) in a SUT might not be 
always valid or possible. Business logic of a SUT might enforce a set of constraints on the sequence (order) 
of SDs and also certain conditions may have to be satisfied before a particular SD can be executed.  

Different types of such SD constraints might exist in different systems. We identify three of those types of 
constraints. 

• Sequential constraints [54]: Constraints which define a set of valid SD sequences, e.g., the Login SD 
of an ATM system should be executed before the Withdrawal SD.  

• Conditional constraints: Conditional constraints are related to sequential constraints and indicate 
the condition(s) that have to be satisfied before a sequence of SDs can be executed. For example, the 
Login SD should be executed “successfully” before the Withdrawal, Transfer and Deposit SDs, or the 
RenewLoan SD of a library system can be invoked up to “two times” for an instance of a loan. 

• Arrival-pattern constraints: These constraints relate to timing of SDs. The time instant when a SD 
can start running might be constrained in a system. Considering each SD alone, it might only be 
allowed to be executed in some particular time instants. For example in a replicated distributed 
database server system, where the data on the main server should be mirrored (copied) to the 
replicated servers, the policy may be to run the Mirror SD every hour and not on every transaction 
(maybe since the SD deals with enormous amounts of data). Another scenario in which a SD can 
have an arrival-pattern constraint is when the SD is triggered by an event and the event is periodic. 

Our approach in considering the above set of constraints when generating stress test requirements is as the 
following. We propose a test requirement generation technique, as an optimization problem, in Chapter 9 
which takes into account the first two types of constraints (sequential and conditional) between SDs. We 
refer to the technique as Time-Shifting Stress Test Technique. A more complex optimization algorithm, based 
on Genetic Algorithms, will be presented in Chapter 10 which will consider all three types of constraints 
(sequential and conditional and arrival-pattern), and will be referred to as Genetic Algorithm-based Stress 
Test Technique. 

The reasons why we intend to propose two optimization algorithms are: 

− In systems where only sequential and conditional constraints are to be considered, the 
technique of Chapter 9 can be used, which is expected to generate more accurate results, i.e., 
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test requirements, than the technique of Chapter 10. This is because the later technique is based 
on genetic algorithms, which do not always find the most optimum results. 

− As we will discuss, the technique of Chapter 9 is less complex, easier to comprehend, and in 
fact a simpler type of the one in Chapter 10. 

The approach in which the different SD constraint types are considered by the two optimization algorithms 
in this work is visually depicted in Figure 12. 

Sequential

Conditional

Constraint types

Arrival-pattern

Genetic Algorithm-based 
Stress Test Technique

(Section 10)

Time-Shifting Stress Test 
Technique
(Section 9)

considers

considers

considers

considers

considers

 
Figure 12-The approach in which the different SD constraint types are considered by the two optimization algorithms in this 

work. 

In order to analyze and take the above three types of constraints into account when conducting any type of 
testing on a SUT, the constraints should be modeled, thus allowing any test generation technique to use 
them to derive test cases that comply with such constraints. The arrival-pattern constraints apply to each 
SD and they can be modeled using UML-SPT profile, as explained in Section 2.4. 

Sequential and conditional constraints are between SDs. Therefore, we refer to them as inter-SD constraints. 
In the following, we first discuss the existing techniques and representations to model and formalize the 
inter-SD constraints and we will then choose the one which suits best our context. We also propose a 
method to derive all possible (allowed) SD sequences in Chapter 7. 

Arrival patterns apply to each SD, and hence are not inter-SD constraints. Arrival patterns can be modeled 
using the RTArrivalPattern tagged-value of the UML-SPT. Refer to the SD in Figure 3 for an example. 

5.3.1 Existing Representations to Model Inter-SD Constraints  

In this section, we present a brief review of the existing representations to model SD constraints, in both 
UML and non-UML contexts. We briefly discuss some of them and focus on the ones in the context of 
UML.  

Before UML became a standard, an OO-development method called Fusion [58] proposed the notion of life-
cycle model which bears some similarity in concepts to what we call SD sequential constraints now. Even 
recently, there have been works [59, 60] on Fusion, where Fusion calculus together with a notation called 
Synchronized Hyperedge Replacement (SHR) are compared and challenges of applying Fusion calculus to 
distributed systems are discussed. 

Use-Case Maps (UCMs) [61] are also one of the notation which started to evolve before UML, although it 
bears some similarities to UML activity diagrams, since its later design phases coincided with the UML’s. 
The UCM notation aims to link behavior and structure in an explicit and visual way. UCM paths are 
architectural entities that describe causal relationships between responsibilities which are bound to 
underlying organizational structure of components. UCM paths represent scenarios that intend to bridge the 
gap between requirements (use cases) and detailed design [61]. 
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Allen’s interval temporal logic [62] is also one of the models proposed for modeling temporal constraints 
among a group of objects. This temporal logic was used by Zhang and Cheung in [12] to model the 
temporal constraints among objects in multimedia presentations. Having modeled these temporal 
constraints, they presented a technique to stress test the CPU load of a multimedia system using linear 
programming optimization technique.  

Petri-nets [17] can also be used to model sequential constraints among SDs. For example, Zhang and 
Cheung [12] model the flow and concurrency control of multimedia objects using Petri-nets. The advantage 
of Petri-nets is that it a well-founded formal notation that has been widely used for the modeling of 
dynamic behavior. 

Item LibraryTitleUser Loan

Add User Add Title

Add Item

Monitor System

Borrow Loan Copy
Remove Item Remove Title

Collect Fine Renew Loan

Return Loan Copy

Remove User

 
Figure 13- Use Case Sequential Constraints for the Librarian actor (adopted from [54]). 

In the context of UML and SDs, there have also been techniques and representations to model and 
formalize constraints among SD, [54] and [63] for instance. When modeling the behavior of a system, a SD 
is usually modeled to realize a particular UML UC. Briand and Labiche [54] report that when planning test 
cases for UCs, all possible execution sequences for UCs have to identified. The authors present principles 
underlying the representation and generation of possible UC test sequences. In order to do that, they use a 
model to represent the sequential dependencies of UCs. Such sequential dependencies are represented by 
the means of an activity diagram, in which the vertices are UCs and the edges are sequential dependencies 
between UCs. An edge between two UCs (from a tail UC to a head UC) specifies that the tail UC must be 
executed in order for the head UC to be executed, but the tail UC may be executed without any execution 
of the head UC. In addition, specific situations require that several UCs be executed independently 
(without any sequential dependencies between them) for another UC to be executed, or after the execution 
of this other UC. This is modeled by join and fork synchronization bars in the activity diagram, respectively. 
As an example, the authors evaluated the technique on a library system. Based on [54], the UC sequential 
constraints for the Librarian actor (in a library system) is shown in Figure 13 (formal parameters of the UCs 
are not shown for clarity). The authors also discuss the dependencies in terms of actual parameter values 
between the use cases in a path. For instance, in a path like AddTitle.AddItem.RemoveItem.RemoveTitle in 
Figure 13, parameter isbn for UC AddItem must be identical to parameter isbn in AddTitle. The authors of 
[54] also propose an algorithm to derive all possible sequences of UCs to test. 
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Nebut et al. [63] propose a contract language for functional requirements expressed as parameterized use 
cases. They also provide a method, a formal model and a prototype tool to automatically derive both 
functional and robustness test cases from the parameterized use cases enhanced with contracts. In this 
technique, pre- and post-conditions are attached as UML notes to each use case, and are expressed with 
logical expressions. The sequential constraints among SDs can then be deduced from the set of contracts. 

OMG introduces a new UML diagram in the new 2.0 version: Interaction Overview Diagram (IOD), Section 
14.4 of [8]. IODs “define interactions through a variant of activity diagrams in a way that promotes 
overview of the control flow” [8]. IODs are specializations of Activity Diagrams (AD) that represent 
interactions. IODs focus on the overview of the flow of control where the nodes are Interactions or 
InteractionOccurrences (refer to Interactions as defined by UML 2.0 [8]). The lifelines and the messages (of 
each interaction diagram) do not usually appear at this overview level.  

5.3.2 Our Choice: IODs 

We surveyed some of the existing techniques and representations to model constraints among SD in the 
previous section. As mentioned in Section 2.1, one fundamental constraint is that the entire system 
modeling should be performed using UML. Therefore, we have to find ways to derive the valid orders of 
SDs’ execution in a system using its design UML model. IODs are the most suitable means in UML 2.0 to 
model the sequential and conditional constraints among SDs. 

In this section, we present a brief overview on IODs from the UML 2.0 specification [8]. The metamodel of 
IODs is not directly given in the UML 2.0 specification. However it is mentioned that IODs are 
specialization of activity diagrams that represent interactions [8]. IODs differ from ADs in some respects.  

1. In place of AD object nodes, IODs can only have either (inline) Interactions or Interaction 
Occurrences.  

2. Alternative CombinedFragments are represented by a decision node and a corresponding merge 
node. 

3. Parallel CombinedFragments are represented by a fork node and a corresponding join node. 
4. Loop Combined Fragments are represented by simple cycles. 
5. Branching and joining of branches must in IODs be properly nested. This is more restrictive than in 

ADs. 
6. IODs are framed by the same kind of frame that encloses other forms of interaction diagrams.  

All of the above constraints are adequate in our context1. It should be mentioned that we will require 
having only one IOD for a system, since we only need to know if any two SDs in a system have a 
dependency relationship or not. IODs are similar to activity diagrams, proposed by Briand and Labiche [54] 
for use case sequential constraints. However, the important additions in IODs are AD conditionals (Section 
12.3.11 of [8])  and loops (Section 12.3.28 of [8]).  
In the following sections, we rephrase the definition of dependent/independent SDs and an ISDS in the 
context of a MIOD and then discuss a method for the derivation of ISDSs from a MIOD. 
As an example, the IOD of an ATM system is depicted in Figure 14. The IOD is composed of interaction 
occurrences which refer to the corresponding SDs (Insert Card, Login, Display Menu, etc.). The flow of 
control between interaction occurrences is modeled using AD flows. The control can take on different paths 
as modeled by decision nodes. For example, if only login is successful, the interaction occurrence Display 
Menu is invoked. 

                                                             

1 As a reminder, what we mean by our context is the SD constraints to be modeled.  
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Figure 14-Interaction Overview Diagram (IOD) of a simplified ATM system. 

5.3.3 Modified Interaction Overview Diagrams 
To model which actor or sub-system invokes a particular SD, we slightly modify IODs to include activity 
partitions and refer to the modified IOD metamodel as Modified Interaction Overview Diagrams (MIOD). 
Activity partitions are modeling features which include AD swimlanes. In a MIOD, SDs are grouped into 
swimlanes, according to actors triggering each SD. For example, the MIOD of the IOD in Figure 14 is 
shown in Figure 15. 

AT
M

 M
ac

hi
ne

U
se

r

[login unsuccessful && 
num_retries<3]

[num_retries=3]

[login successful]

[choice==Withdraw]

[choice==Deposit]

[choice==Transfer]

[choice==Logout]

A

A

Login

ref

ref

Hold Card

Insert Card

ref

Display Menu

ref

ref

Withdraw

ref

Deposit

ref

Transfer

ref

Logout

ref

Eject Card

ref

Print 
Transactions

 
Figure 15- Modified Interaction Overview Diagram (MIOD) of a simplified ATM system. 

The differences of our MIOD modeling notation with the use-case sequential-constraints modeling done in 
[54] are: (1) the MIOD is a notation for system-wide sequential constraint modeling for SDs, while the 
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notation in [54] was per actor. (2) the MIOD takes into account the conditional constraints (defined in 
Section 5.3) among SDs, while the work in [54] did not explicitly support such constraints. 

In Chapter 7, we will discuss the SD constraints in more detail and we will see why modeling those 
constraints is needed and in the current work for the purpose of stress testing. We will then propose a way 
to derive the set of independent SDs in a SUT which will be used by our stress test methodology.  

5.4 Context Diagram 

In a DRTS, there are often cases that lead to multiple concurrent invocations of a SD. For example, there 
might be several sensors which, as actors, trigger a particular SD at the same time in a controller system. 
Having multiple concurrent invocations of a SD rather than once can potentially have a different effect on 
the amount of network traffic in the system. Such a case should be modeled and be provided to our test 
technique. 

To model concurrent invocations of SDs, we using the information provided in a Context Diagram [47]. The 
concept of context diagrams was proposed in the COMET (Concurrent Object Modeling and Architectural 
Design Method) framework [47]. For example, a context diagram is shown in Figure 16-(a), where a 
controller system is made of three sensors. On the other hand, a sensor is the actor which can trigger the SD 
UpdateData in this system, Figure 16-(b). Therefore, at one time instance, up to three concurrent instances of 
the SD can be executed. 

A Controller System
13

Sensor

SD UpdateData

:Database

Update()Sensor

(a)-Context diagram (b)-A sequence diagram which can be triggered 
by several instances of the actor Sensor  

Figure 16-A controller system made of several sensors. 

Alternatively, the number of concurrent instances of a SD may be modeled inside MIOD. We propose a 
modeling notation, referred to as multi-SD, similar to the concept of multi-objects in UML. The multi-SD 
construct is used in MIODs to model multiple instances of a SD. Furthermore, a tagged-value titled 
instances is used to model the number of concurrent instances. An example is shown in Figure 17-(a). SD 
UpdateData is a multi-SD, where three instances of which can be executed concurrently. SD1 and SD2 are 
arbitrary SDs which are modeled before and after SD UpdateData according to business logic of the system. 

SD1 UpdateData

instances=3

SD2

SD1

UpdateData

SD2UpdateData

UpdateData

(a)

(b)  
Figure 17-(a): Modeling concurrent instances of SDs inside MIOD. (b): Equivalent in meaning to (a). 
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Our test technique accepts both of the above two modeling approaches to model multiple instances of SDs.  
Number of concurrent invocations of a SD can be easily extracted if the multi-SD construct of MIODs is 
used. On the other hand, if a CCD is used to model such information, our technique needs to look and 
match the SDs actors with the actors in the CCD of a system to extract the information. 

It is good to note that the MIOD in Figure 17-(a) is equivalent in meaning to Figure 17-(b). In other words, a 
multi-SD can be replaced by a fork/join construct and multiple instances of the multi-SD in-between. The 
number of the SDs between fork and join are equal to the number modeled by the tagged-value instances. 

5.5 Network Deployment Diagram 

Since we are dealing with nodes and networks which can be connected in any arbitrary fashion to each 
other in a SUT and we further intend to use UML 2.0 models as the source for testing, we should find a 
proper notation in UML 2.0 to model networks/nodes interconnectivity and the system topology.  

In UML 2.0 [8], there has been a significant change in support for modeling application architecture, nodes 
and communication paths, compared to UML 1.x [9]. Modelers can model complicated deployment 
scenarios such as nested and generalized nodes. Network topology modeling has also enhanced. 
CommunicationPath, Section 10.3.2 of [8], generalized from standard UML’s “Association” is a new concept 
for modeling the communication path between distributed nodes of a system. As defined by the 
specifications [8]: “A communication path is an association between two nodes, through which nodes are 
able to exchange signals and messages.” For example, Figure 18 represents a simple network deployment 
of an online shopping system where client workstations, servers and printers are collaborating together. 

«client workstation»
PC

«application server»
OnlineShop

«web server»
OnlineShop.com

«database server»
OnlineShopDB

«print server»
OnlineShop Print

Printer

0..* 1 1 1 1 1

1..*
1

-primary 1

1

-backup2

1

 
Figure 18-A simple network deployment for an online shopping service. 

However, to the knowledge of the authors, modeling a hierarchical  set of networks and their inter-
connectivity is not directly stated in the UML 2.0 specification [8]. Suppose we want to model a system, 
composed of several networks with the interconnectivity scheme as shown in Figure 10.  

5.5.1 Using the Notation of Package Diagrams 

Interestingly, we can think of the system network as a package structure where the whole system network 
is the root (high level) package and other networks and nodes are the sub-packages in a hierarchical 
manner. Having made this assumption, we can use the notation of packages and sub-packages (or called 
nested packages in the specification) of the UML 2.0, Section 7.13 of [8], to model network interconnectivity. 
Our suggested modeling approach can be proposed by modeling the example topology of Figure 10 in 
Figure 19 using the notation of packages. In Figure 19, packages represent networks of the system and the 
solid lines between nodes and packages mean the connection of a node to a network. Nested relationships 
among the packages symbolize nested networks. For example, as Network3 is a subnet of Network2 in Figure 
10, therefore the package representation of Network3 is inside Network2 in Figure 19.  
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Figure 19-Using UML packages to model network interconnectivity of Figure 10. 

In order to model and quantify bandwidth (capacity) values of each network, we can define a bandwidth 
tagged value for the «network» stereotype in the above package notation. The format of the bandwidth 
tagged value is {bandwidth=(bw,u)} where bw is the bandwidth value in unit u, e.g. {bandwidth=(100,kbps)}, 
kbps: kilo bits per second. Furthermore, since the bandwidth of the network interface of a node connected to 
a network and also that of a switch/router/gateway connecting two different networks might be different 
than the two connected networks, we can also optionally model the bandwidth values of those model 
elements using bandwidth tagged value as well. Let us also make the assumption that if the bandwidth 
value of a node’s network interface (or a network) is not specified, its value is defined to be the value of the 
network the node is a member of (or the supernet of the network). The way to model bandwidth tagged 
values is shown by an example in Figure 20, which depicts the network interconnectivity of a nodes and 
networks in a distributed system running in a typical university network. The system is deployed in three 
buildings (Buildingi), where each building may have its own subnets in different floors. Each floor also has 
its own network and consists of one or more nodes. Each node (workstation) is represented as 
w(building_number). (floor_number). (node_number), such as w3.1.2. 
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{bandwidth=
(100,kbps)}

w1.1.1

w1.1.2

w1.1.3

«network»
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«network»
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w3.1.3

«network»
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w2.1.1

{bandwidth=(20,kbps)}
(network interface of w1.13)

{bandwidth=(200,kbps)}
(switch between UniversityNetwork 
and Building2 network)

 
Figure 20-Modeling network interconnectivity of a University Network. 

Therefore, we assume that the network interconnectivity model of the SUT is done using the above 
notation. As a more efficient representation which will be used by our testing technique, we propose a tree 
data structure for representing the interconnectivity, which will be an internal notation for our technique, 
i.e., the modelers and testers do not need to use this in their models. We refer to the new notation as 
Network Interconnectivity Tree (NIT), which is described next. 



Carleton University TR SCE-05-13 September 2005 

 

 40 

5.5.2 Network Interconnectivity Tree 

A Network Interconnectivity Tree (NIT) is an equivalent data structure to the package-based representation 
of a network interconnectivity mention above.  The root of the tree is always the whole system network 
while system networks and nodes are its children. In a NIT, networks and nodes are shown as rectangles 
and circles, respectively. For example, the NIT of the network interconnectivity model of the Figure 10 (or 
equivalently Figure 19) is shown in Figure 21. The rationale of having NIT is to enable the test technique to 
easily find the subset of nodes and networks for deriving stress test cases and also to find the network path 
between any two given nodes. For example, if a tester’s goal is to stress test only the network Network2 in 
the system shown in Figure 21, the test strategy will only look for nodes under Network2 in the NIT tree and 
will generate the test cases by considering only those nodes. 

Generating the NIT from a network topology diagram is an easy procedure. The root node will be the 
system’s overall network (System Network). Then, all the high-level subnets of the system will be the 
children of the root. This repeats for all the nested subnets in the system. We finally put the distributed 
nodes of the system as leaf nodes. The bandwidth values of different components, modeled by the 
bandwidth tagged value in the design UML model, can also be stored in NIT data structure’s elements 
(rectangles for networks and circles for nodes) and edges (representing switch/router between networks).   

Network2

System 
Network

Network1

Network3n1 n2 n3 n4 n5

n6 n7
 

Figure 21-Network Interconnectivity Tree (NIT) of the topology in Figure 10. 

5.6 Modeling Real-Time Constraints 

As discussed in Section 3.3, Real-Time (RT) constraints are of two types: soft and hard. Hard RT constraints 
are constraints that absolutely must be met. A missed hard deadline results in a system failure. Soft RT 
constraints are those which can be missed occasionally, i.e., the probability that they can be missed is 
usually limited by a threshold. 

Furthermore, as discussed in Section 2.4, the UML profile for Schedulability, Performance, and Time (UML-
SPT) [10] proposes comprehensive modeling constructs to model timing information. Although UML-SPT 
briefly mentions hard RT constraints (Section 2.2.3 of [10]), it doesn’t propose any stereotype or tagged 
value to distinguish between hard and soft RT constraints in UML models.  

On the other hand, explicit distinction of soft and hard RT constraints when modeling can be beneficial. 
This can help analysts, developers and testers to distinguish between the two types and perform necessary 
actions for each of them. For example, stress testing hard RT constraints is in a higher priority compared to 
the soft constraints. We will see in Chapter 9 how our stress testing technique deals with the two types of 
RT constraints. 

In order to model hard and soft RT constraints, we propose an extension to the RTaction stereotype of the 
UML-SPT referred to as HRT (Hard RT Constraints) and SRT (Soft RT Constraints). Furthermore, in order 
to model the statistical threshold probability up to which SRT constraints can be missed, we consider a 
tagged value referred to as missProb for SRT constraints. On a similar note, we consider a tagged value 
referred to as criticality for HRT constraints. Criticality is defined as the degree to which the consequences 
of missing a hard deadline are unacceptable. As we define, the closer to one the criticality of a HRT 
constraint, the more severe will be the consequences of missing it. For example, if missing a HRT constraint 
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may cause life-threatening situations, it would be better to set criticality=1. Conversely, if for example the 
cost of missing a HRT constraint is just an increase in the temperature of a water hydro plant (which will 
not immediately lead to catastrophic results), then this constraint would have a lesser value of criticality. 
Note that, with the above definitions, there is similarity in the concepts of HRT constraints with low 
criticality and SRT constraints. HRTaction and SRTaction stereotypes are presented in Table 1 and Table 2, 
which are similar to the representation used in the UML-SPT [10]. 

Stereotype Base Class Tags 
Message 
MessageSequence 
Action 

SRTaction 

ActionSequence 

RTduration 
RTmissProb 

Table 1-A stereotype to model SRT constraints. 

Stereotype Base Class Tags 
Message 
MessageSequence 
Action 

HRTaction 

ActionSequence 

RTduration 
RTcriticality 

Table 2-A stereotype to model HRT constraints. 

Table 1 and Table 2 define two new stereotypes, «SRTaction» and «HRTaction», which can be applied to 
any of the four UML modeling concepts listed (Message, MessageSequence, Action, and ActionSequence) or to 
their respective subclasses. Message corresponds to messages in SDs. A MessageSequence is an ordered 
sequence of SD messages. Action corresponds to actions in activity diagrams (AD). A ActionSequence is an 
ordered sequence of AD actions. For further details on these base classes, refer to [10]. The SRT» and 
«HRT» stereotypes have two associated tagged values each, which are defined in Table 3. 

Tag Type Multiplicity 
RTduration RTtimeValue [0..1] 
RTmissProb Real [0…1] [0..1] 
RTcriticality Real [0…1] [0..1] 

Table 3-Tagged values of SRT and HRT stereotypes. 

Table 3 defines the type of each tag. RTduration tagged values is an instance of the RTtimeValue data type 
(Section 4.2.2.4 of [10]). RTmissProb and RTcriticality are real value in the range of [0…1]. Each tag also has a 
multiplicity indicating how many individual values can be assigned to each tag. A lower bound of zero 
implies that the tagged value is optional.  

Furthermore, we divide the RT constraints into two levels: SD-level and MIOD-level. SD-level constraints 
are applied to Message and MessageSequence, while MIOD-level constraints are applied to Action, and 
ActionSequence (since MIOD is a subtype of activity diagrams). As this idea has been used in [10], though 
unnamed, these two levels provide enough flexibility in modeling RT constraints by annotations on either 
messages (in SD level) or on SDs (in MIOD level). Examples of a SD-level SRT constraint and a MIOD-level 
HRT constraint is shown in Figure 22. 

The tagged-values of SRT and HRT constraints can help our stress testing technique to order the constraints 
in terms of importance and test order. Such a technique will be proposed in Section 9.14. 

5.7 An Overview on UML 2.0 Sequence Diagrams 

The UML 2.0 [8] syntax of SDs is used in this work. Comparing to UML 1.x [6, 7], UML 2.0 have proposed a 
set of new features to SDs.  In the following we provide a brief definition of the new features and then we 
state the features that are supported in this work.  
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SD1

SD2

...

...

sd M

m1

r1

o1
{node = n1}

o2
{node = n2}

[condition]

[else]

alt

m3

o3
{node = n3}

m2

r2

(b) A SD-level SRT constraint (b) A MIOD-level HRT constraint

«SRTaction»
{RTduration<(1300,'ms'),
RTmissProb<0.5}

MIOD

«HRTaction»
{RTduration<(1000,'ms'),
RTcriticality=0.2}

 
Figure 22-Examples of SD- and MIOD-level SRT and HRT constraints. 

A glimpse of SD new features is shown in Table 4. Some of the new features are illustrated with an example 
in Figure 24. The SD metamodel showing the class diagram of SD features is shown in Figure 23. 

InteractionFragment

EventOccurrenceExecutionOccurrenceStateInvariant
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-{ordered}

*

Lifeline
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*

MessageEnd
-messageKind
-messageSort
-return_value

Message

GeneralOrdering

toBefore * toAfter *

1

1
*

sendEvent

receiveEvent
0..1       0..1

«enumeration»
MessageKind
complete
lost
found
unknown

«enumeration»
MessageSort
synchCall
synchSignal
asynchCall
asynchSignal

start
[0..1]                   1

finish

InteractionOperand

Continuation 

InteractionConstraint

0..1

1
-guard 0..1

-InteractionOperator

CombinedFragment

Gate

InteractionOccurrence

0..1

*

0..1

*

1

*

*

*

refers to

Constraint
1

*

Value 
Specification

Named 
Element

1
*

Interaction

-End1

*

-End2

*
signature

argument

0..1
*

[0..1]                   1

before 1 after 1

covered

startExec
finishExec

guard  0..1

0..1       0..1

«enumeration»
InteractionOperator
alt
opt
break
neg
loop
seq
strict
par
region
assert
ignore
consider

 
Figure 23-UML 2.0 Sequence Diagram Metamodel. 

• Interaction: An interaction is a sequence of messages passed between objects to accomplish a particular 
task. The rational behind defining interactions is to reuse them in other contexts as 
InteractionOccurrences. For example, SD seqname1 in Figure 24 is an interaction. 

• InteractionOccurrence: An InteractionOccurrence is a symbol that refers to an interaction that is used 
within another interaction or context. seqname1 and seqname2 are two interaction occurrences which 
refer to SDs seqname1 and seqname2. 

• EventOccurrence: EventOccurrences represents moments in time to which actions are associated. An 
EventOccurrence is the basic semantic unit of Interactions. The sequences of EventOccurrences are the 
meanings of interactions. EventOccurrences are ordered along a Lifeline. A message has two types of 
EventOccurrences: sendEvent and receiveEvent. The SendEvent is at the base of the message arrow 
where the message departs from the lifeline of the sending object, while ReceiveEvent is at the point of 
the message arrow where the arrow hits the lifeline of the receiving object. The ReceiveEvent of 
message m3 is pointed in Figure 24. 
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Concept New/Existing 
Object Lifeline Existing 
Stimulus (Message) Existing (but just called Message in 

the new version) 
Time observation and constraint Existing 
Activation Existing 
Interaction New 
InteractionOccurrence New 
EventOccurrence New 
CombinedFragment New 
InteractionOperator  New 
InteractionOperand New 
Duration observation and constraint New 

Table 4-New and existing features of the UML 2.0 SDs, compared to UML 1.x (taken from [64]). 

• CombinedFragment: A CombinedFragment consists of one or more InteractionOperands. A 
CombinedFragment has an InteractionOperator that defines the number of allowed 
InteractionOperands and also how the messages in the CombinedFragment will be treated. As an 
example, a CombinedFragment with alt InteractionOperator is shown in Figure 24. 

• InteractionOperand: An InteractionOperand describes a grouping mechanism inside combined 
fragments. Interaction operands are features similar to Interactions, except the fact that they are part of 
a CombinedFragment. As example, the alt CombinedFragment in Figure 24 has two interaction 
operands. 

• InteractionOperator: An InteractionOperator defines how to use the interaction operands within the 
context of the combined fragment. The following interaction operators are defined: alternatives (alt), 
option (opt), break (break), parallel (par), weak sequence (seq),  strict sequence (strict), negative (neg), 
critical region (region), ignore/consider (ignore/consider), assertion (assert), and loop (loop). Description 
of each of the interaction operators can be found in [65]. We briefly describe next the ones we intend to 
use in our MBCFA technique: 

• Alternatives (alt): Provides alternatives, only one of which will be taken. The 
InteractionOperands are evaluated on the basis of guards. An else guard is provided that 
evaluates to TRUE if and only if all guards of  the other InteractionOperands evaluate to FALSE. 

• Option (opt): Defines an optional interactions segment. The model for an opt combined fragment 
looks like an alt that offers only one interaction. 

• Break (break): Is a shorthand for an Alternative operator where one operand is given and the 
other assumed to be the rest of the enclosing InteractionFragment. In the course of executing an 
interaction, if the guard of the break is satisfied, then the containing interaction abandons its 
normal execution and instead performs the clause specified by the break fragment. 

• Parallel (par): Supports parallel execution of a set of InteractionOperands.  
• Loop (loop): Indicates that the interaction operand will be executed repeatedly and also includes 

a mechanism to stop the iteration.  

• Duration observation and constraint: UML 2.0 provides two types of constraints on the performance 
characteristics of interactions: duration and time. Furthermore, these features are enhanced by the 
UML-SPT profile [66]. 

A message in a SD is the basic form of communication in interactions. Communication can raise a signal, 
invoke an operation, and create or destroy an object instance. UML 2.0 no longer draws a distinction 
between message and stimulus as UML 1.x did. In the new version, a message can be one of the following 
two types: 

• Operation call: which expresses the invocation of an operation on the receiving object. An operation 
call must match the signatures of an operation on the target object (receiver of the message). 
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• Signal: which represents a message object sent out by one object and handled by the other object 
that is equipped to respond to it.  

o1 o2

m2()

o3

return

m3()

N

ReceiveEvent:
EventOccurrence

sd seqName1

[x>0]

[else]

alt

ref

ref

InteractionOperand 
separator

InteractionOperand

InteractionOccurrence

CombinedFragment

InteractionOperator

InteractionConstraint

seqName2

seqName3

 
Figure 24-An example illustrating the new features of the UML 2.0 SDs. 

UML also provides four varieties (or sorts as UML 2.0 calls them) for a message. Message sorts identify the 
sort of communication reflected by a message. The sorts of messages supported are defined in an 
enumeration called MessageSort (in Figure 328 of [65]) as: 
• SynchCall: synchronous call 
• AsynchCall: asynchronous call 
• SynchSignal: synchronous signal 
• AsynchSignal: asynchronous signal 

The notational representations of reply and asynchronous messages in UML 2.0 have changed compared to 
UML 1.x, as shown in Figure 25. 

synchronous message

reply message

synchronous message

asynchronous message

in UML 1.x in UML 2.0

asynchronous message

reply message

 
Figure 25-Notations for synchronous/asynchronous messages and replies in UML 1.x and 2.0. 

As another property for messages is the so-called message kind. UML 2.0 defines the following message 
kinds: 

• complete: sendEvent and receiveEvent are present 
• lost: sendEvent present and receiveEvent absent 
• found: sendEvent absent and receiveEvent present 
• unknown: sendEvent and receiveEvent absent (should not appear) 

The difference between message sort and kind properties is that message sort specifies the synchrony of a 
message, while message kind categorizes a message by on its message ends. 
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The SD metamodel is not shown in one place in UML 2.0 specification [65], rather divided in several small 
metamodel diagrams, since it is composed of many elements. By omitting unnecessary details, we show the 
complete metamodel generated from the specification in Figure 23. For space limitations, only some of the 
role names and multiplicities are shown in this figure. 
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Chapter 6  
 
CONTROL FLOW ANALYSIS OF SEQUENCE DIAGRAMS 

We presented a Control Flow Analysis (CFA) technique in [2] to analyze control flow in SDs. We presented 
Concurrent Control Flow Graph (CCFG) as a Control Flow Model (CFM) for SDs.  If we consider the UML 
2.0 SDs metamodel (Figure 23), asynchronous messages and par interaction operator entail intra-SD 
concurrency. However, such concurrency cannot be analyzed by conventional CFGs (Control Flow 
Graphs). Concurrency resulting from the above two modeling features has to be taken into account when 
analyzing the control flow in SDs. The impacts of the above two modeling features, leading to concurrency 
inside SDs, were discussed in [2].  

We review here some of the discussions in [2] which are used by the current work. More details on our 
control flow analysis technique can be found in [2]. 

6.1 Concurrent Control Flow Graph: a Control Flow Model for SDs 

We proposed CCFGs to analyze the concurrent control flow of SDs. A CCFG will be generated for each SD. 
In cases where a SD calls (refers to) another SD, there will be control flow edges connecting their 
corresponding CCFGs to form an Inter-SD CCFG. Inter-SD CCFG here is similar to the concept of inter-
procedural CFG [67]. 

As discussed in Section 4.3.2 of [2], we extended CCFG from the UML IntermediateActivities activity 
package. As an example, considering the SD in Figure 26, the corresponding CCFG is shown in Figure 
27.The procedure to map the SD to the CCFG is discussed in detail in [2]. 

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkk

sd AsynchronousRequestProcessing 

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkk

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkk

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkk

A-getAsynchProcessor ()

C-addToQueue()

E-Process()

B-AsyncProcessor

D-at=AsynchTicket

F-getProcessResult()

G-AsynchProcessResult

while (s!=FINISHED)
loop

H-getStatus()

I-s=Status

alt [at=NULL]

ref
N

c:Controller
{node=n1}

pf:ProcessorFactory
{node=n1}

apr:AsyncProcessor
{node=n2}

ap:AsyncProcess
{node=n3}

dummy:Class
{node=n1}

«RTaction»
{RTstart=(100,'ms')  
RTend=(200,'ms')}

«RTaction»
{RTstart=(300,'ms')  
RTend=(400,'ms')}

«RTaction»
{RTstart=(500,'ms')  
RTend=(600,'ms')}

«RTaction»
{RTstart=(800,'ms')  
RTend=(1000,'ms')}

«RTaction»
{RTstart=(800,'ms')  
RTend=(1200,'ms')}

«RTaction»
{RTstart=(1400,'ms')  
RTend=(1700,'ms')}

«RTaction»
{RTstart=(1700,'ms')  
RTend=(1900,'ms')}

«RTaction»
{RTstart=(1200,'ms')  
RTend=(1400,'ms')}

«RTaction»
{RTstart=(1500,'ms')  
RTend=(1600,'ms')}  

Figure 26-A SD with asynchronous messages. 
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getAsynchProcessor()

AsyncProcessor

addToQueue()

Process()

getStatus()

[s!=FINISHED]

[else]

AsynchTicket

s=Status

getProcessResult()

AsynchProcessResult

Call Node

Reply Node

A

B

C

D

E

F

G

H

I

Legend

[else]
[at=NULL]

CCFG(N)

...

 
Figure 27-CCFG of the SD in Figure 26. 

6.2 Concurrent Control Flow Paths 

The concept of Concurrent Control Flow Paths (CCFPs) is similar to the conventional Control Flow Paths 
(CFPs), except that they consider concurrent control flows as they are derived from CCFGs [2]. We 
presented a grammar in [2] to derive all different CCFPs of a CCFG. 

For example, by using such grammar, some of the CCFPs of the CCFG in Figure 27 can be derived as 
shown in Figure 28. The symbol ρ will be used in the rest of this article to refer to CCFPs. 
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Figure 28-CCFPs of the CCFG in Figure 27. 

Four CCFPs for the CCFG in Figure 27 are due to the decision node (corresponding to a loop) in the CCFG. 
According to the grammar of CCFPs (Equation 1 of [2]), a loop can either be bypassed (ε) – if possible, 
taken only once, a representative or average number, and a maximum number of times. These possibilities 
have derived the four CCFPs: ρ1, ρ2, ρ3 and ρ4. The loop is bypassed in ρ1, taken once in ρ2, repeated twice 
in ρ3, and a maximum number (m) of times in ρ4. Each CCFP is made of several message nodes of a CCFG. 
Each message node corresponds to a message in the corresponding SD of the CCFG. In the rest of this 
article, we will refer to CCFP messages and nodes interchangeably. 

6.3 Incorporating Distribution and Timing Information in CCFPs  

The discussions in [2] about CCFPs described generic CCFPs in a sense that they can be used to analyze 
control flow of SDs with distributed or non-distributed messages. In the current context, we consider SDs 
with distributed messages and we saw in Section 5.1 that the node on which a SD object is deployed can be 
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modeled using node stereotype. Since only distributed messages of a SD are of interest to our testing 
technique, therefore we need to incorporate the distribution data of messages inside CCFPs. As the 
sender/receiver objects and nodes of a message are already modeled in SDs, we can easily access those 
information from a CCFP, which is a set of messages.  

Furthermore, as discussed in 5.1.1, we assumed that timing information of messages in a SD are modeled 
using the RTstart and RTend tagged values of the UML-SPT profile [10].We can also easily access such 
information of each message in a CCFP. 

Following the above discussion, we can derive all the above information along with message signature and 
returns list of messages from SDs during the CFA phase. To facilitate our mathematical relations in the next 
sections, we consider the following format for the call and reply messages of each CCFG and CCFP. 

6.4 Formalizing Messages 

In order to precisely define how we perform traffic analysis of SDs, we formally define SD messages. 
Similar to the tabular representation of messages, proposed by UML 2.0 [48], each message annotated with 
timing information (using the UML-SPT profile  [48]) can be represented as a tuple: 

message=(sender, receiver,  methodOrSignalName, parameterList, returnList, startTime, endTime, msgType) 

where 
• sender denotes the sender of the message and is itself a tuple in the form sender=(object, class, node), 

where: 
o object is the object (instance) name of the sender.  
o class is the class name of the sender.  
o node is where the sender object is deployed. 

• receiver denotes the receiver of the message and is itself a tuple in the same form as sender. 
• methodOrSignalName is the name of the method or signal on the message.  
• parameterList is the list of parameters for call messages. parameterList is a sequence in the form 

parameterList=<( p1, C1, in/out), ..., ( pn, Cn, in/out)>, where pi is the i-th parameter with class type Ci 
and in/out determines the kind of parameter pi. For example if the message is m(o1:C1, o2:C2), then 
the ordered parameters set will be parameterList=<(o1, C1, in), (o2, C2, in)>. If the method call has no 
parameter, this set will be empty. 

• returnList is the list of return values on reply messages. It is empty in other types of messages. UML 
2.0 assumes that there may be several return values by a reply message. We show returnList in the 
form of a sequence returnList=<(var1=val1,C1), …, (varn=valn,Cn)>, where vali is the return values for 
variable vari with type Ci.  

• startTime is the start time of the message (modeled by UML-SPT profile’s RTstart tagged value). 
• endTime is the end time of the message (modeled by UML-SPT profile’s RTend tagged value). 

• msgType is a field to distinguish between signal, call and reply messages. Although the messageSort 
attribute1 of each message in the UML metamodel can be used to distinguish signal and call 
messages, the metamodel does not provide a built-in way to separate call and reply messages. 
Further explanations on this and an approach to distinguish between call and reply messages can 
be found in [49]. 

                                                             

1 The messageSort attribute of a message specifies the type of communication reflected by the message [48], 
and can  be any of these values: synchCall (synchronous call), synchSignal (synchronous signal), asynchCall, 
or asynchSignal 
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6.5 Distributed CCFP 

Distributed CCFP is a CCFP where CCFP messages (call or reply) are distributed. A CCFP message is 
distributed if its sender and receiver are located in two different nodes. Formally, using the definitions of 
call and reply node from Section 6.3 a CCFP message msg is distributed if: 

msg.sender.node ≠ msg.receiver.node 

where msg can be either a call or a reply message. In other words, a distributed CCFP message is one whose 
corresponding SD message goes to a different receiver node than its sender node. Similarly, Distributed 
CCFP (DCCFP) is a CCFP that only includes distributed CCFP messages. A DCCFP is built from a given 
CCFP ρ by removing all local messages and keeping the distributed ones. As an example, let us assume the 
CCFPs given in Figure 28. In order to derive their DCCFPs, we should first judge each messages as local or 
distributed. According to the corresponding SD (Figure 26), all the messages except the messages A and B 
are distributed. Therefore, in the CCFG of Figure 27, only control nodes A and B are local, and the rest are 
distributed. Hence, the DCCFPs corresponding to the CCFPs given in Figure 28 are shown in Figure 29. 
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Figure 29- DCCFPs of the CCFPs in Figure 28. 

6.6 Timed Inter-Node and Inter-Network Representations of DCCFPs 

In this section, we provide a timed inter-node (and inter-network) representation of DCCFPs. This 
representation can help to visualize the behavior of DCCFPs with respect to time over the system nodes 
and networks. This will help to better understand our discussions in the remainder of this article. 

UML 2.0 introduces a new interaction diagram called Timing Diagrams (Section 14.4 of [8]). As defined by 
UML 2.0: “Timing Diagrams are used to show interactions when a primary purpose of the diagram is to 
reason about time. Timing diagrams focus on conditions changing within and among lifelines along a 
linear time axis.” We use the basic concepts of UML 2.0 timing diagrams and propose a model for timed 
inter-node and inter-network representations of DCCFPs. These two representations of a DCCFP can be 
useful to represent a timeline view of the flow and occurrence of distributed messages by a DCCFP in node 
and network levels. These representations are 2-dimentioanl charts where the X-axis is a linear time axis 
and the Y-axis is the set of all nodes referenced at least once by the control nodes of a given DCCFP. 

For example, let us consider the SD of Figure 26 and DCCFP(ρ2) in Figure 29. Timed inter-node 
representation of DCCFP(ρ2) in shown in Figure 30, where the message ends correspond to the type of 
corresponding messages (synchronous/asynchronous call or reply) in the SD. Let us also assume that the 
start and end times of all control nodes (A…K) are given using UML-SPT profile stereotypes (Section 5.1.1) 
with the values as shown. In this representation, the X-axis represents time and the Y-axis lists the nodes of 
the DCCFP messages. 
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Figure 30-Timed inter-node representation of DCCFP(ρ2) in Figure 29. 
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Suppose the NIT of this system is as the one shown in Figure 31. The inter-network representation of the 
DCCFP(ρ2) can be derived using the node information in SD, the inter-node representation (Figure 30) and 
the system NIT. 

Network2

System 
Network

Network1

Network3n1 n2

n3

... ...

...

 
Figure 31-A simple system NIT. 

The inter-network representation of the DCCFP(ρ2) is drawn in Figure 32. Start and end networks of each 
message in this representation are derived by finding the networks where the message’s sender and 
receiver nodes are members. For example, the sender and receiver nodes of message (call node) C are nodes 
n1 and n2, which are members of Network1 and Network2, respectively. In addition to the traffic imposed on 
networks they start and end, messages like C have an implicit traffic on networks that are not their 
immediate parent in NIT, but are in the network path from their start to end nodes. For example, C entails 
an implicit traffic on SystemNetwork in addition to Network1 and Network2. Other cases like this can also be 
identified from NIT.  
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Figure 32-Timed inter-network representation of a DCCFP. 
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Chapter 7  
 
CONSIDERING INTER-SD CONSTRAINTS 

As discussed in Section 5.3, executing any arbitrary sequence of use cases (and thus their corresponding 
SDs) in a SUT might not be always valid or possible. This might be due to the constraints enforced by the 
business logic of a SUT on the sequence (order) of SDs and also the conditions that have to be satisfied 
before a particular SD can be executed. Modified Interaction Overview Diagrams (MIOD) were proposed in 
Section 5.3 to model sequential and conditional inter-SD constraints. We discussed how such constraints 
can be modeled by a MIOD. 

As we will discuss in Chapter 9, our stress test technique will identify the most data-centric messages of 
each SD and will try to either run SDs concurrently or will run a sequence of SDs which impose the 
maximum amount of network traffic. However, test requirements should comply with the inter-SD 
constraints. 

In the following sections, we propose two methods to consider inter-SD constraints in our stress testing 
context, assuming that a MIOD is given. The method in Section 7.1 will be used to derive the Independent-
SD Sets (ISDSs) in a SUT. An ISDS is a set of SDs, in which any two SDs are independent, thus the entire set 
can be run concurrently. In other words, there are no inter-SD sequential constraints between any two of 
the SDs in an ISDS to prevent from doing so. Our stress test technique in Chapter 9 will make use of ISDS 
by calculating the maximum traffic of each ISDS by adding the maximum traffic of its SDs. Then, among all 
ISDS of a MIOD, the ISDS with maximum traffic will be chosen as the ISDS which entails the maximum 
stress. Then after, the SDs of the chosen ISDS will be scheduled in a way to maximize the instant traffic in a 
particular time instance. 

The method proposed in Section 7.2 will be used to derive the Concurrent SD Flow Paths (CSDFP) and 
CCFP/DCCFP Sequences (CCFPS/DCCFPS). Similar to the concept of CCFP, a CSDFP is a path from a 
MIOD’s start node to a final node. The CSDFPs of a MIOD specify the allowed sequences of SDs in a 
system. According to this definition, any sequence of SD in a SUT which is not a CSDFP is not allowed to 
be executed.  

On the other hand, we defined CCFP and DCCFP in Chapter 6 and saw that each SD can have one or more 
such paths. We define CCFP/DCCFP Sequences (CCFPS/DCCFPS) as the sequences of CCFPs/DCCFPs 
which are built from a CSDFP. Further explanations are provided in Section 7.2. A variation of our stress 
test technique in Chapter 9 will make use of CSDFP by calculating the maximum traffic of each CSDFP. 
Then, among all CSDFPs of a MIOD, the CSDFP with maximum traffic will be chosen as the CSDFP which 
entails the maximum stress.  

7.1 Independent-SD Sets 

An Independent-SD Set (ISDS) is a set of SDs that can be executed concurrently, i.e. there are no sequential 
constraints between any two of the SDs in the set to prevent it.  
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Assuming that a MIOD is given, we propose a technique in this section to find all ISDSs of the MIOD. As 
an example, let us consider the MIOD of a library system as shown in Figure 33. This MIOD is the 
completed version1 of the activity diagram shown in [54]. For brevity, the SDs are labeled by capital letters 
from A to O. The MIOD is modeled using the use case diagram given in Appendix A of [54] and some 
typical business logic assumptions of the library system.  

TitleReservationUser

LibrarianBorrower

ItemUser Title LibraryLoan

Add User Add Title

Add Item

Monitor System

Borrow Loan Copy
Remove Item

Remove Title

Collect Fine Renew Loan

Return Loan Copy

[num_of_renewals<=2] 

Remove User

Search User Find Title

Make Reservation

Remove Reservation

A B

C

D

E F G

H

J KI

L M

N

O

 
Figure 33- The MIOD of a library system. 

7.1.1 Definitions 

We rephrase here the definition of dependent/independent SDs and an ISDS in the context of a MIOD. A 
set of SDs are said to be independent if there are no inter-SD constraints between any two of the SDs in a 
MIOD to prevent them from being executed concurrently. As discussed in Section 5.3, sequential and 
conditional constraints among SDs are modeled in a MIOD. An edge between two SDs (from a tail SD to a 
head SD) in a MIOD specifies that the tail SD must be executed in order for the head SD to be executed, but 
the tail SD may be executed without any execution of the head SD. In addition, specific situations require 
that several SDs be executed independently (without any sequential dependencies between them) for 
another SD to be executed. This is modeled by join and fork synchronization bars in a MIOD, respectively.  

Therefore, we can define a dependency relationship between any two SDs in a MIOD. Two SDs SD1 and 
SD2 are dependent if there is at least one path in the MIOD from one of them to the other one. For example 
SDs AddUser and ReturnLoanCopy are dependent in the MIOD of Figure 33. Conversely, two SDs are 
independent if there is no path in the MIOD from one of them to the other one. For example SDs AddUser 
and AddTitle are independent in the MIOD of Figure 33. Similarly, two sets of SDs are said to be 
independent if all the SDs of one of them are independent from all the SDs of the other one. 

In a MIOD, an Independent-SD Set (ISDS) is a maximal set of independent SDs. By maximal, we mean that no 
other SD can be added to the current set. For example, the set of SDs {AddUser, AddTitle} is a set of 

                                                             

1 The sequential constraints of the SDs (use cases) for the actor Borrower and the conditional constraint of 
the SD RenewLoan are added. 
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independent SDs in Figure 33, however it is not maximal according to our definition, since a SD like 
MonitorSystem can still be added to this set while the independence relationship still holds among all the 
SDs in the set. An ISDS, in this case, can be {AddUser, AddTitle, MonitorSystem}. In the following section, we 
discuss a method to systematically derive all the ISDSs of a MIOD. Note that there can be several ISDSs in a 
MIOD. 

7.1.2 Derivation of Independent-SD Sets 

According to the discussions in the previous section, ISDSs of a MIOD can be derived by examining SDs of 
a MIOD and deriving all possible maximal sets of SDs that are independent. We propose a graph-based 
algorithm here to derive ISDSs of a MIOD.  

Let us propose a graph notation referred to as Independent SD Graph (ISDG)=(N,E), where N is the set of 
SDs of a MIOD and there is an edge in E between two SDs if they are independent according to the 
definition given in the previous section. For example, the ISDG corresponding to the MIOD in Figure 33 is 
shown in Figure 34. 

 
Figure 34-The Independent SD Graph (ISDG) corresponding to the MIOD in Figure 33. The ISDS={A,B,G,H} is shown with 

dashed edges. 

Every strongly connected component of an ISDG is an ISDS. A strongly connected component of a graph is a 
maximal sub-graph of a graph such that for every pair of vertices u, v in the sub-graph, there is an edge 
between u and v [68]. For example, the strongly connected component {A,B,G,H} is shown with bold edges 
in the ISDG of Figure 34, which corresponds to a ISDS. 

When deriving Independent-SD Sets, the effect of multi-SDs (Section 5.4) will be as the following. After an 
ISDS is derived using the algorithm mentioned above, each SD of the ISDS is checked to see if it is a multi-
SD. If yes, the multi-SD is replaced with two parentheses similar to the technique we used in [2] to derive 
CCFPs of a SD.  The number of SDs between two parentheses is equal to the number modeled by the 
tagged-value instances annotated to the multi-SD. For example consider ISDS={A,B,C} derived from the 
MIOD in Figure 35. In this MIOD, SD A is a multi-SD where three concurrent instances of it can be 
executed. 

A
instances=3

MIOD

B C

 
Figure 35-A MIOD with a multi-SD construct. 
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Since SD A is a multi-SD, we modify the ISDS as the following. 

}C,B,

A

A
A

{ISDS}C,B,A{ISDS















=⇒=

 

The above ISDS transformation means that, if any SD is independent from a multi-SD, it will be 
independent from its multi instances, too. 

7.1.3 Algorithm Complexity 

The brute-force algorithm to build an ISDG would be to check all pairs of SDs of a MIOD and build an edge 
between them in the ISDG if the two SDs are independent. This will have the complexity of O(n2), where n 
is the number of SDs. 

Tarjan [69] has devised an O(n) algorithm for determining strongly connected components of a graph. 
Therefore consider the complexity to build an ISDG, O(n2), and the complexity to derive its strongly 
connected components, the overall complexity to derive ISDSs will be O(n2). 

7.2 Concurrent SD Flow Paths, CCFP and DCCFP Sequences 

To account for sequential and conditional inter-SD constraints in test cases, we propose Concurrent SD 
Flow Paths (CSDFP), CCFP and DCCFP Sequences (CCFPS and DCCFPS) in this section. 

7.2.1 Concurrent SD Flow Paths  

We discussed in Section 5.3 how to model the sequential and conditional constraints among SDs using a 
MIOD. Similar to the concept of CCFP, which was made from a CCFG, we define a Concurrent SD Flow Path 
(CSDFP) to be a sequence of SDs from a start to an end node of a MIOD. In other words, a CSDFP is a 
sequence of SDs that are allowed to be executed in a system (according to the constraints modeled in a 
MIOD).  

There is a hierarchical relationship between MIODs and CCFGs, and also CSDFPs and CCFPs. To better 
illustrate this relationship, consider the example given in Figure 36, where a MIOD (a) and the CCFG (b) of 
one of the SDs in the MIOD are shown. 

SD2

SD4

SD1

SD5

SD6

[exp]

[!exp]

mn2 mn3

mn1
[!exp]

mn4

[exp]

MIOD

CCFG(SD3)

SD3

mn2 mn3

mn1
[!exp]

mn4

[exp]

(a) (b)

Zoom

 
Figure 36-An example MIOD and the CCFG of one of its SDs. 
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The MIOD shows the system-level flow paths, where the flow paths are built from SDs, e.g., SD1 and SD2. 
In turn, whenever the control is on a SD, the CCFG of the SD determines which control flow should be 
followed. We have actually enlarged the CCFG of SD3 in Figure 36 to better represent the hierarchical 
relationship. 

In order to find CSDFPs of a MIOD, we use the same technique as we used in [2] to derive CCFPs of a SD. 
This is doable since both MIOD and CCFG are extensions of ADs. For example, the MIOD in Figure 36 has 
the following two CSDFPs: 

65
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=  

As another example, we list here some of the CSDFPs (out a total of 62) which can be derived from the 
MIOD in Figure 33: 
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7.2.2 Concurrent Control Flow Paths Sequence  

We defined CSDFP in the previous section. Similar to the concept of control flow paths, a system’s set of 
CSDFPs represent the possible sequences of SDs a system might follow in a typical execution. However, a 
SD usually contains more than one control flow paths, out of which, only one will execute in a particular 
run. We discussed CCFP and DCCFP in Chapter 6  as concepts to represent these possible execution paths 
of a SD. To incorporate CCFP and DCCFP in CSDFPs, we define two new concepts: CCFPS (Concurrent 
Control Flow Paths Sequence) and DCCFPS (Distributed CCFPS) to represent different sequences of scenarios a 
CSDFP might follow in different executions. A CCFPS can be derived from a CSDFP by substituting each 
SD by one of its CCFPs. Similarly, a DCCFPS can be derived from a CSDFP by substituting each SD by one 
of its DCCFPs. 

For example, let us consider the example in Figure 36. SD3 has two CCFPs as: 
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where mni is the message node corresponding to message mi (not shown) in SD3. Suppose DCCFP3,1 and 
DCCFP3,2 are the corresponding DCCFPs of the above two CCFPs. Similarly, assume that SD1, SD2, SD4, SD5 
and SD6 have the following sets of CCFPs. Let us also show the corresponding DCCFPs by DCCFPi,j. 
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We derived the CSDFPs of the MIOD in the previous section as: 
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By substituting each SD of CSDFP1 by one of their corresponding CCFPs, for example, the following 
CCFPSs can be derived: 
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Similarly, the following DCCFPS can be derived from CSDFP2: 
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As it can be realized from the definitions of CCFPS and DCCFPS, when the number of SDs and their CCFPs 
increase, number of CCFPS and DCCFPS can increase exponentially. Ways to cope with this combinatorial 
explosion problem must be investigated. One such approach is to use available inter-SD control and data 
flow information to eliminate impossible CCFPSs. 

7.2.3 Duration of a Concurrent Control Flow Path Sequence 

Some of our stress test requirement algorithms in Chapter 9 will need the duration (time length) of a 
CCFPS. We present Algorithm 1 to recursively calculate the duration of a CCFPS using the time length of 
the CCFPs in the sequence. 

 
Algorithm 1-Calculating the duration of a Concurrent Control Flow Path Sequence (CCFPS). 

Line 2 of Algorithm 1 is the stopping criterion of the recursion. It is when ccfps (the given CCFPS) is an 
atomic CCFPS (only made of one CCFP). In this case, the duration of ccfps is equal to the duration of its one 
and only CCFP, which is calculated by line 3. As time constraints are modeled in SDs using the UML-SPT 
profile, the time reference at the beginning of every SD (and hence its CCFPs) is set to zero (see Figure 26 as 
an example). Therefore, the duration of a CCFP is equal to the end time of its latest message. Lines 4-5 are 
executed if ccfps is a serial concatenation of several other CCFPSs. Since the CCFPSs execute serially in this 
case, the total duration is the summation of their individual durations. If ccfps is a concurrent combination 
of several other CCFPSs, lines 6-7 will be used. For a concurrent combination of CCFPSs, we assume that all 
of the CCFPSs start at the same time. Therefore, the duration will be the longest duration of the enclosed 
CCFPSs. 

For example, we calculate the time duration of CCFPS1 discussed in Section 7.2.2. For brevity, we use pi,j for 
CCFPi,j. Suppose the duration of each of the individual CCFPs of CCFPS1 are given as:CCFP1,3 (2800 ms), 

1. Function Duration(ccfps: CCFPS): integer 
2. if ccfps is atomic (only made of one CCFP) 
3. return ( )endTime.m

ccfpsm∈∀
max  

4. else if ccfps is the serial concatenation of several CCFPSs (i.e., 
nccfpsccfpsccfps L1= ) 

5. return Duration(ccfps1)+…+ Duration(ccfpsn) 

6. else if ccfps is the concurrent combination of several CCFPSs (i.e., 
















=

nccfps

ccfps
ccfps L

1 ) 

7. return max(Duration(ccfps1),…, Duration(ccfpsn)) 
8. End Function 



Carleton University TR SCE-05-13 September 2005 

 

 57 

CCFP2,2 (1300 ms), CCFP3,1 (1000 ms), and CCFP4,3 (1000 ms). To better illustrate how Algorithm 1 works, 
the call tree of the recursive algorithm Duration applied to CCFPS1 is shown in Figure 37. Since the CCFPS1 
is a serial concatenation of three CCFPSs itself, three recursive calls are made, whose results will be added 

upon return. One of these CCFPSs ( 
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ρ
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), is the concurrent combination of two CCFPs, therefore the 

maximum value of their durations are returned as the durations of this CCFPS and so on. 
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Figure 37-The call tree of the recursive algorithm Duration applied to CCFPS1. 

Note that the duration of a DCCFPS is equal to duration of its corresponding CCFPS, which is made by 
replacing all the DCCFPs with the corresponding CCFPs. This is because in order to run a DCCFP, the 
corresponding CCFP should be executed. As discussed in Section 6.5, a DCCFP is just a filtered CCFP 
where only distributed messages are selected. 
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Chapter 8  
 
NETWORK TRAFFIC USAGE ANALYSIS 

As we saw in the system model of this work (Figure 9), each node of the system can have several running 
processes. Different processes often need to communicate with other processes on other nodes of the 
system to perform a use case. In a typical collaboration between two distributed objects in a SD, the sender 
object calls an operation of the receiver object via a synchronous message (usually with parameters); the 
call request is handled (executed) by the receiver object, and finally the return values are returned to the 
sender object as a reply message. Distributed call and reply messages have to go over the network 
connection between the sender and receiver objects, and entail network traffic on the connecting networks. 
We assume two network traffic types: data and message. Data traffic is the amount of data transferred by 
distributed messages, which is dependent on the messages sizes. On the other hand, message traffic is the 
number of messages being transmitted, regardless of their sizes.  

In order to study and analyze network traffic usage in the current context and to devise network-aware 
stress test requirement in a SUT, this section aims to formalize the network traffic usage of each message 
and each DCCFP in a system. In order to do so, a method will be proposed in Section 8.1 to estimate data 
size of a distributed message (a message which goes from a node to a different one). Section 8.2 will 
provide formal definition of membership relationships between nodes and networks. Different attributes of 
network traffic in our formalism will be proposed in Section 8.3, which will include:  

• Traffic location: nodes vs. networks (Section 8.3.1) 
• Traffic direction (for nodes only): in, out, or bidirectional (Section 8.3.2) 
• Traffic type: data traffic vs. number of messages (Section 8.3.3)  
• Traffic duration: instant vs. interval (Section 8.3.4) – whether traffic  is measured in one single 

time instance or during a period of time. 
We will then discuss the effect of concurrent processes on network traffic in Section 8.4. Finally, a class of 
traffic functions for DCCFPs will be given in Section 8.5. The resource usage analysis technique presented 
in this section will be used in Chapter 9 and Chapter 10. Furthermore, the definitions and discussions, 
given in this section, might be useful in other works aiming at studying network traffic of a distributed 
system by CFA of SDs.  

8.1 Estimating the Data Size of a Distributed Message 

In order to measure and analyze the amount of traffic every distributed message entails on a network, we 
need to have a method to estimate the data size of a distributed message. The following representation was 
presented for messages of a DCCFP in Section 6.3: 

message=(sender, receiver, msgSort, methodOrSignalName, parameterList, returnList, startTime, endTime  
msgType) 

By looking at the above two forms, the most data-centric parts are parameterList and returnList, respectively, 
which actually go through a network. These two fields, i.e. parameterList and returnList, were 
definedameterList=<(p1,C1,[in|out]),...,(pn,Cn,[in|out])> and returnList=<(var1=val1,C1), …, (varn=valn,Cn)>, 
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respectively. Therefore, it can be said that the most data centric part of a message are essentially parameters 
pi and return values vali, respectively. Therefore, a simple solution to estimate data size of each message is 
to find a way to estimate the max (or average) data sizes for each class type Ci in both of sets parameterList 
and returnList.  

An intuitive way to estimate the data size of a set of classes will be to add up data sizes of all classes in the 
set. Let us define the data size of a class to be the total summation of sizes of its attributes in bytes. 
Therefore the total the size of the classes in a parameterList and returnList can be a rough estimate for the 
data sizes of call and reply messages. Formally, the Network Traffic Usage (NTU) functions for different 
types of messages are presented in Equation 1. 
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Equation 1- Network Traffic Usage (NTU) functions for different types of messages. 

A dash (-) in Equation 1 indicates that a field can take any arbitrary value (a “don’t care” field). Note the 
format of parameterList and returnList, as mentioned above. msg.parameterList (msg.returnList) is the ordered 
set of parameters (returns) for a call (reply) message. dataSize(Ci) is a function returning the data size of the 
class Ci. C.attributes denotes the set of attributes of class C. dataSize(ai) is the size of an attribute ai of class C, 
which can be calculated by its attribute type. If the attribute type is an atomic type, like int, long, bool, its 
size (in bytes) is dependent on the target programming language. For example, the data sizes of some 
primitive data types in Java are shown in Table 5 (adopted from [70]). In case an attribute ai of a class is 
itself an object with another class type, the size of that attribute, size(ai), will be the size of its class type and 
can be calculated recursively. 

Data Type Description Size 
byte Byte-length integer 1 Byte 
short Short integer 2 Bytes 
int Integer 4 Bytes 
long Long integer 8 Bytes 

Table 5-Data size of some of the primitive data types in Java (adopted from [70]). 

As an example, suppose a call message msg1 with parameterList=<(o1,A),(o2,B)>, where classes A and B are 
defined in the class diagram of Figure 38. Using the class specifications of A and B, we can estimate the size 
of the message msg1 as:  

size(msg1) = size(A) + size(B) = (8x(100+500)) + (8x(100+500)+8x400) = 12.8KB 

-field1 : long[100]
-field2 : long[500]

A

-new_field_b : long[400]

B

-new_field_c : long[200]

C

 
Figure 38-A class diagram showing three classes with data fields. 
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8.1.1 Effect of Inheritance 

While estimating the data size of a class (and the messages using it), one consideration would be to take 
into account the inheritance relationships, the particular class might be engaged in. This might affect the 
size of the messages making use of that particular class in their parameterList or returnList.  

For example, suppose the method signature of a method m of a receiver object to be m(o1,o2:A):A, which 
basically means that two parameters of class type A are passed to the method m and an object of the type A 
is returned. Class A is defined in the class diagram of Figure 38. Since B and C are both sub-classes of A, 
therefore an object of type B or C can also be the actual parameters of the method m at runtime, which in 
this case will cause the message to have difference data sizes, since classes B and C each have an extra local 
defined attribute. Therefore, the inheritance relationships of classes can be used to find the maximum 
possible data size of a class while estimating the data sizes. 

8.1.2 Messages with Indeterministic Sizes  

As mentioned in Section 8.1, the most data centric parts of a message (call or reply) are parameterList and 
returnList, respectively. In their formal representation, we assumed that these two lists are ordered sets of 
tuples of class types together with object values. We saw that the data sizes of such messages can be 
estimated using Equation 1.  

We assume, in this work, having parameter and return values with classes of fixed data size. However 
there might also be parameters or return values that are not types of classes whose sizes can be measured 
precisely. For example, an input parameter of a call message might be of type, say, String in C++. The size 
of such an object might change depending on the length of the string assigned to it. As another example, 
suppose a call message like store(data:BLOB) in a distributed database system. This message is a generic 
example of messages sent between distributed database servers in such system, which asks the receiver of 
the message to save a big pile of data of type BLOB (Binary Large OBject) in its own local database. 
Apparently, similar to the case of String class type, a data object of type BLOB may have variant sizes in 
different situations. Therefore, Equation 1 can not be applied to estimate data size of a message in those 
cases.  

One simple approach to estimate data size of messages having parameter or return lists with items of 
indeterministic data sizes is to measure sizes in a statistical fashion. Statistical distribution of the size of 
such messages can be derived by monitoring the message size in different runs, or by using information 
from data profiles, presented as part of an extended operational profile model [71]. Runtime monitoring 
techniques (such as [57]) can be utilized to monitor and derive such distributions. Then after, the expected 
value of the distribution can be used as the estimated data size of a message. 

8.2 Formal Node and Network Relationships 

To facilitate our discussions in the next sections, two formal node and network relationships are defined in 
this section. We saw earlier in Section 5.5 that a tree structure named NIT (Network Interconnectivity Tree) 
can be generated from UML network deployment diagrams, to represent the interconnection of the nodes 
and networks in a system. The NIT of a system is shown in Figure 39, where there are seven nodes 
(n1,…,n7) and four networks (including system network). 

We define two formal relationships here which are described next. 
• Node-network and network-network membership 
• Network path function 
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Network2

System 
Network

Network1

Network3n1 n2 n3 n4 n5

n6 n7

 
Figure 39-A Network Interconnectivity Tree (NIT) . 

8.2.1 Node-Network and Network-Network Memberships 

To formally specify if a node is a member of a network, we can define function member_of() as: 





=
otherwise ;

NITin   node ofr precesesso a is network  if
false

nodnet;true
)net,nod(isMemberOf  

Equation 2-Node-network membership function. 

Similarly, a membership function can be defined among networks as: 





=
otherwise ;

NITin  network  ofr precesesso a is network  if

false

netnet;true
)net,net(isMemberOf subersup

ersupsub
 

Equation 3-Network-network membership function. 

For example, the following relations hold in the NIT shown in Figure 39: 
• isMemberOf(n2, Network1)= true 
• isMemberOf(n3, Network3)= false 
• ∀ ni: isMemberOf(ni, SystemNetwork)= true 
• isMemberOf(n7, Network2)= true 
• isMemberOf(Network2, SystemNetwork)= true 

8.2.2 Network Path Function 

A network path function can be defined between any two nodes (the sender and the receiver of a typical 
distributed message) in a system. Given a sender (ns) and a receiver node (nr), the network path function is 
an ordered set of networks, which a message sent from ns will go through in order until it reaches nr. NIT 
can be used to derive network paths. For example assuming the NIT of Figure 39, the network path 
between n4 (as the sender node) and n6 (as the receiver node) will be: 

getNetworkPath(n4, n6)=<Network2, Network3> 

Derivation of this network path is shown schematically in Figure 40. 

Network2

System 
Network

Network1

Network3n1 n2 n3 n4 n5

n6 n7

ns

nr  
Figure 40-Derivation of network path between two nodes from NIT (getNetworkPath(ns, nr) function). 
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8.3 Network Traffic Usage Attributes 

In the current resource usage analysis, we consider four attributes for network traffic usage: 
• Traffic location: nodes vs. networks (Section 8.3.1) 
• Traffic direction (for nodes only): in, out, or bidirectional (Section 8.3.2) 
• Traffic type: data traffic vs. number of messages (Section 8.3.3)  
• Traffic duration: instant vs. interval (Section 8.3.4) 

8.3.1 Location: Nodes vs. Networks 

If the intermediate network nodes (such as routers and gateways) are left out from the system software 
point of view, network traffic can essentially go through two places in a system: nodes or networks. In a 
typical distributed message scenario, the message is initiated from the sender node. It then travels along the 
network path from the sender to receiver node. The network path (defined in Section 8.2.2) is made up of 
one or more networks in the system. Finally, the message arrives at the destination node, where it is 
supposed to be handled appropriately (depending on its type: call or reply). We define traffic location to be 
the locality of traffic flow in a system. Traffic location can be either a network or a node. 

Let us consider an example. A system made of four nodes and three networks is shown in Figure 41. 
Topological and NIT representations of the system’s network interconnectivity are shown in this figure. 
Nodes n1 and n2 are members of Network1. Nodes n3 and n4 are members of Network2. Network1 and Network2 

are connected through System Network.  

n1 n2

Network2

n3 n4

Topological representation 

Network2

System 
Network

Network1

n1 n2 n3 n4

NIT (Network Interconnectivity Tree)

System Network

Network1

 
Figure 41-A system made up of four nodes and three networks. 

Considering the system topology shown in Figure 41, suppose there are several processes running on each 
node and several SDs in the system. For simplicity, let us consider only three DCCFPs, which are extracted 
from SDs by the control flow analysis technique described in Chapter 6. To clarify the difference between 
traffic location in term of nodes or networks, the timed inter-node and inter-network representations 
(Section 6.6) of the three mentioned DCCFPs are shown in Figure 42-(a) and (b), respectively. 

As it can be seen in Figure 42-(a), DCCFP1 has two call and reply messages between nodes n1 and n2, which 
both are members of Network1 (according to the NIT in Figure 41). Therefore, traffic entailed by DCCFP1 
only goes through Network1, as shown in timed inter-network representation of DCCFP1 in Figure 42-(b). 
DCCFP3 has messages going across Network1 and Network2, which have to go via SystemNetwork. This is 
shown in representation of DCCFP3 in Figure 42-(b), where messages with gray lines represent “implicit 
traffic”, imposed by the original traffic imposed by the message. For example, the first call message of 
DCCFP3 goes from Network1 (time=1ms) to Network2 (time=3ms) and in addition to traffics made on 
Network1 and Network2, this message puts an implicit traffic on SystemNetwork. 
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Figure 42-Timed inter-node and inter-network representations of three DCCFPs. 

8.3.2 Direction (for nodes only): In, Out, Bidirectional 

As discussed above, traffic location can be either a network, or a sender/receiver node. In case of a node, 
we can think of three traffic measurements in terms of the traffic direction. In our definition, traffic direction 
of a node can be either in, out or bidirectional form. This is due to the fact that a node is an end point of 
traffic in the system. Since a network in the system only relays the traffic, i.e., it transmits the traffic to other 
networks/nodes, we therefore only consider the bidirectional traffic for networks. For simplicity, when we 
talk about traffic for networks in this report, we implicitly mean the bidirectional traffic for networks. 

For example, consider the timed inter-node network representation of DCCFP1 in Figure 42-(a). Node n1 
sends traffic on time intervals (1-2ms) and (8-11ms) (out traffic for n1), while it receives traffic on time 
intervals (4-7ms) and (12-13ms) (in traffic for n1). n1 is idle (not sending nor receiving any traffic) in other 
times. 

8.3.3 Type: Amount of Data vs. Number of Network Messages 

From a system-software point of view, network traffic has two types: 
1. The amount of data, and 
2. The number of distributed messages  

For example, consider a simple system made up of two nodes nA and nB. Node nA might rarely 
communicate with nB, but when sending a message, nA sends huge amounts of data to nB, while nB 
frequently sends queries to nA, and gets replies. However each request from nB to nA and the corresponding 
reply has a small data size going back and forth. Therefore, it is useful to analyze and measure network 
traffic according to both types.  

We discussed how to estimate the data size of a distributed message in Section 8.1. For the analysis of 
network traffic imposed by a distributed message in terms of number of messages, the analysis is straight 
forward and we can just count each distributed message (either call or reply) as one message over a 
network. To compare data traffic versus message traffic, let us consider the example in Figure 43.  

To compare data versus message traffic, let us look at the control flow path CCFP2 in CCFG(M) shown in 
Figure 43. Let us show the DCCFP of CCFP2 as DCCFP2. Note that, for simplicity, only the CCFG nodes 
inside CCFG(M) are shown for DCCFP2 in Figure 43 and not those belonging to CCFG(P) and CCFG(N). If 
we consider data traffic as the network traffic, we measure the amount of data (in bytes) sent on the 
network by DCCFP2. In the time interval shown in the SD M (Figure 43), DCCFP2 has one call message 
m2(op) and one reply message rv2=m2(op). Call message m2(op) is sent from node n1 to n2, where the 
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parameter of the message (op) can be of any data size. For simplicity let us assume that the size of message 
m2(op) is 10 KB and the size of returned message rv2=m2(op) is 50 KB (these can be calculated using the 
method in Section 8.1). With these assumptions, we can draw a network traffic diagram showing data 
traffic for DCCFP2 as shown in Figure 44. The x-axis is time in milliseconds and only the time interval 
shown in the SD M is considered.  

n1 n2

p1_1 p1_2 ... p2_1 p2_2 ...
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m1(p1,p2)

Network

jhhhhhhhhhhhhhhkjjjffff

...

m(p1,p2)

rv1=m1(p1,p2)

m2(op)

rv2=m2(op)

CCFG(M)

[cond == TRUE]

...

m1(p1,p2) m2(op)

CCFP1 CCFP2
jhhhhhhhhhhhhhhkjjjffff

...
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«RTstimulus»
{RTstart=(4,'ms')  
RTend=(5,'ms')}

«RTstimulus»
{RTstart=(1,'ms')  
RTend=(3,'ms')}

«RTstimulus»
{RTstart=(6,'ms')  
RTend=(7,'ms')}

sd M

[cond == TRUE ]

[else]

alt

N
ref

P
ref

sd N sd P

o1

{node=n1 ,process=p1_1}

o2

{node=n2 ,process=p2_1}
o3

{node=n2 ,process=p2_2}

[else]

...

rv2rv1

 
Figure 43-A typical system composed of two nodes and four processes. 
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Figure 44-Network traffic diagram (data traffic) of DCFP2 in Figure 43. 

On the other hand, if we consider number of distributed messages as the network traffic, the network 
traffic diagram of DCCFP2 will be as Figure 45 shows. Each call or reply message counts for one unit of 
distributed message in this analysis. 
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Figure 45-Network traffic diagram (number of distributed messages) of DCFP2 in Figure 43. 
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Each of the above two network traffic types (amount of data vs. number of messages) can be analyzed at 
different levels of granularity in a system: message-level (in a SD), DCCFP-level (in a SD), SD-level, 
process-level, node-level, or the entire system. Different levels of granularity can be extracted from the 
system metamodel as shown in Figure 9. An example of such analysis is given in Section 8.4. The 
granularity considered in this work is message-level, unless otherwise mentioned. 

8.3.4 Duration: Instant vs. Interval 

In the previous sections, we analyzed network traffic per each time instant. When analyzing traffic, we 
define two types of time analyses: instant and interval. Instant traffic is the amount of traffic measured in 
one time instant. In a similar way, one can analyze the network traffic over an interval of time. We refer to 
this type of traffic as interval traffic.  

We saw that a DCCFP might have different usage levels of network traffic in different time instants. 
Therefore we can add up instant duration traffic values over a given amount of time to get the traffic value 
over an interval. For example, data and message traffic diagrams of DCCFP2 were shown in Figure 44 and 
Figure 45, respectively. Those diagrams show the instant traffic of DCCFP2. Suppose we want to see how 
much data and message traffic DCCFP2 imposes during a given interval of time, say 10 ms. Considering 
Figure 44, it can be said that CCFP2 imposes 60 KB data traffic and two units of message traffic during the 
first 10 ms from its start time. 

As another example, suppose the data traffic into a node n is to be analyzed (in-data traffic). Note that the 
level of granularity in this case is a node. The node under study has many processes running on it and 
processes communicate with other nodes in the system. A typical in-data traffic diagram of n can be 
sketched as shown in Figure 46, which is actually derived by adding all message-level traffic values for all 
the messages sent to n. 

time (ms)

in
-d

at
a 

tr
af

fic
 (

K
B

)

3 ms

tinstantt interval -from t interval-to  
Figure 46-“In-data” traffic diagram of a node, highlighting difference between instant and interval (3ms) traffic. 

According to Figure 46, if one wants to find the time when maximum instant traffic happens in n, the 
answer would be time= tinstant. However, if the question is to find an interval of time (say 3 ms) when the 
maximum interval traffic happen in n, then the answer would be (tinterval -from, tinterval -to).  

8.4 Effect of Concurrent Processes 

According to the SUT model in Figure 9, several processes can run concurrently on a single node. Each of 
the processes might be in the process of running a method. Therefore, the network traffic caused by the 
node will be the sum of the traffics by all its concurrent processes. For example, the data traffic diagram of 
a node with two processes Process1 and Process2 over an interval of 10 milliseconds is shown in Figure 47. It 
is evident that a node’s total traffic in a single time instant is the sum of the traffic caused by each of its 
processes. 
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Figure 47-The data traffic diagram of a node with two processes. 

8.5 A Class of Traffic Functions for Distributed Concurrent Control Flow Paths 

As discussed in Chapter 6, each SD can have several DCCFPs, where each DCCFP is a path in a SD’s CCFG 
and includes only distributed call and reply messages. Different attributes of network traffic were also 
discussed in Section 8.3 which included: location, direction, type and duration.   

In this section, a class of functions is proposed to measure network traffic entailed by DCCFPs. The 
functions aim to take into account the traffic attributes mentioned earlier. First, the naming convention of 
the functions is given in Section 8.5.1. Formal definitions of the functions are then proposed in Section 8.5.2 
along with some examples on how the function values can be calculated. 

8.5.1 Naming Convention 

A tree structure denoting the traffic functions’ naming convention is shown in Figure 48. The root node of 
the tree has a null label. A function name is formed by traversing from the root to a leaf node and 
concatenating all the node labels in order. 

Traffic Direction

Traffic Location

Traffic Duration

Traffic Type
DT MT DT MT DT MT DT MT DT MT DT MT

Ins Int Ins InsInt Int

Net Nod

In Out

Net: Network
Nod: Node

Ins: Instant
Int: Interval

DT: Data Traffic
MT: Message Traffic

In
Out

Obj
Obj: Object

Bi: Bidirectional
Bi

DT MT DT MT

Ins Int

 
Figure 48-Naming convention for traffic usage functions. 

Four layers are shaded in the tree. They correspond to four traffic attributes discussed in Section 8.3. One 
addition made to the traffic location layer is that objects (obj) are also considered to be parts of the traffic 
location attribute. In this context, objects are processes on nodes of a distributed system. This 
generalization, by no means, violates our previous categorization of traffic location, given in Section 8.3.1. 
We believe that, in addition to network- and node-level traffic, it might be useful to analyze traffic at the 
object level as well. This adds more location granularity in traffic analysis and we believe that a distributed 
object or a node might behave differently (and exhibits faults) if we direct the traffic towards them in 
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different scenarios. The other three layers (direction, duration and type) fully conform to the discussions in 
Section 8.3. By counting the number of paths from the root node of the tree to leaf nodes, we would get 28 
paths (4 for networks, and 12 for node and object categories each). This means that we will define 28 
different traffic functions.  

In addition to the tree notation used above, the general form of a function can also be specified using the 
Backus-Nauer Form (BNF) [67] as shown in Equation 4. 

MTDTType
IntInsDuration

ObjNodLocationBiOutIn
Direction

ObjNodNetLocation
ationTyperectionDurLocationDimefunctionNa

|::
|::

else;null
},{ if;||

::

||::
::

=
=



 ∈

=

=
=

 

Equation 4-BNF to generate traffic usage function names. 

Equation 5 gives a BNF for the input parameters of a traffic function based on its name. 

),(::
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 if;),,(
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endstartinterval
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D

ObjDIntTmefunctionNaintervalobj
ObjDInsTmefunctionNatobj
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=

ρ
ρ
ρ
ρ
ρ
ρ

 

Equation 5-BNF to generate the input parameters of traffic usage functions. 

For example, consider the path specified by the dashed line in Figure 48. This path represents function 
NetInsDT. According to the syntax form for the input parameters of traffic functions (given in Equation 5), 
the input parameters of this function would be (ρ, network, t). The explanation of this function will be that it 
returns the instant (Ins) data traffic (DT) value of a given DCCFP (ρ) for a given network (network) at a 
given time (t). per::=(start,end) in Equation 5 means that, for functions with interval duration, the start and 
end times of an interval should be given as input. More detailed descriptions of the functions will be given 
and the ways to calculate their values will be discussed next. 

8.5.2 Functions 

In this section, traffic functions are listed using the naming convention given in Figure 48. The functions are 
grouped according to the top layer (traffic location) of the tree in Figure 48. Mathematical formulas to 
calculate some traffic functions will be given. The rest can be derived in similar fashion. In the following 
mathematical formulas, for brevity, msg.start and msg.end have been used instead of msg.startTime and 
msg.endTime. msg.s.n and msg.r.n have been used for msg.sender.node and msg.recevier.node. 

8.5.2.1 Traffic Location: Network 

1. NetInsDT: returns the value of instant data traffic, a given DCCFP entails on a given network from a 
given time instance t to t+1.  
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where s,  r and n are shorthand notations for sender, receiver and node fields of a message. size()returns 
the size of a message in bytes as described in Section 8.1. dur()returns the time duration of a message 
which can be calculated as: dur(m)=m.startTime–m.endTime. Since a message can span over several time 
units, our definition for the data traffic value of a message at a time unit is its total data size divided by 
its duration, which will give the message’s traffic per time unit. 

2. NetInsMT: returns the value of instant message traffic, a given DCCFP entails on a given network at a 
given time instant. 
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3. NetIntDT: returns the value of interval data traffic, a given DCCFP entails on a given network during a 
given time interval. NetIntDT can be calculated using NetInsDT. 
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4. NetIntMT: returns the value of interval message traffic, a given DCCFP entails on a given network 
during a given time interval. 
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8.5.2.2 Traffic Location: Node 

1. NodInInsDT: returns the value of instant data traffic, a given node receives by running a given DCCFP 
at a given time instant. “In” denotes that the traffic direction is towards the node as explained in 
Section 8.3.2. 
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2. NodInInsMT: returns the value of instant message traffic, a given node receives by running a given 
DCCFP at a given time instant.  
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3. NodInIntDT: returns the value of interval data traffic, a given node receives by running a given DCCFP 
during a given time interval.  

∑ =

=
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endintt

startintt
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.

.
),,(),,( ρρ  

4. NodInIntMT: returns the value of interval message traffic, a given node receives by running a given 
DCCFP during a given time interval.  
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5. NodOutInsDT: returns the value of instant data traffic, a given node sends by running a given DCCFP 
at a given time instant. “Out” denotes that the traffic direction is from the node as explained in Section 
8.3.2. 
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6. NodOutInsMT: returns the value of instant message traffic, a given node sends by running a given 
DCCFP at a given time instant.  
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7. NodOutIntDT: returns the value of interval data traffic, a given node sends by running a given DCCFP 
during a given time interval.  
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8. NodOutIntMT: returns the value of interval message traffic, a given node sends by running a given 
DCCFP during a given time interval.  
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9. NodBiInsDT: returns the value of instant data traffic, a given node “sends or receives” by running a 
given DCCFP at a given time instant.  
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10. NodBiInsMT: returns the value of instant message traffic, a given node “sends or receives” by running a 
given DCCFP at a given time instant.  

)nodn.r.msgnodn.s.msg(
end.msgtstart.msg

msg|msg

)t,nod,(NodBiInsMT

ii

ii

ii

=∨=
∧≤≤

∧∈∀

=

ρ

ρ  

11. NodBiIntDT: returns the value of interval data traffic, a given node “sends or receives” by running a 
given DCCFP during a given time interval.  
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12. NodBiIntMT: returns the value of interval message traffic, a given node “sends or receives” by running 
a given DCCFP during a given time interval.  
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8.5.2.3 Traffic Location: Object 

We only present the ObjInInsDT and ObjInInsMT functions next. The other functions for the object traffic 
location (ObjInIntDT, ObjInIntMT, ObjOutInsDT, ObjOutInsMT, ObjOutIntDT, ObjOutIntMT, ObjBiInsDT, 
ObjBiInsMT, ObjBiIntDT, and ObjBiIntMT) can be derived similar to the functions of the node traffic 
location. 

1. ObjInInsDT: returns the value of instant data traffic, a given object receives by running a given DCCFP 
at a given time instant.  
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where r and o are shorthand notations for receiver node and object fields of a message. 

2. ObjInInsMT: returns the value of instant message traffic, a given object receives by running a given 
DCCFP at a given time instant. 
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An Example 

An example is given here to show how a network traffic function can be calculated. Let a DCCFP 
ρ=<CM1,CM2,RM1,RM2> and the messages of ρ are as the following: 

CM1=((o1,O1,n1),(o2,O2,n2),t,<(p1:-),(p2:-)>,1,2) 
CM2=((o2,O2,n2),(o3,O3,n3),u,<(p3:-),(p4:-)>,3,5) 
RM1=((o3,O3,n3),(o2,O2,n2),<(x=u(-),-)>,8,9) 
RM2=((-,-,-,N),(o1,O1,n1),<(y=t(-),-)>,12,13) 

Let us suppose a SUT’s NIT to be the one shown in Figure 31. Also suppose that the sizes of the four 
messages of DTCCFP ρ have been calculated using the RUF in Equation 1 and are 90 (CM1), 80 (CM2), 30 
(RM1), and 50 (RM2) kilobytes. Using the above information, the following usage functions can be 
calculated. 
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Chapter 9  
 
TIME-SHIFTING STRESS TEST TECHNIQUE 

This section describes the first (and the simpler) stress test technique to stress test network traffic. The 
technique is an optimization technique which is based on shifting DCCFPs along time axis to find the time 
instance when maximum possible stress can occur.  

The chapter is structured as the following. The problem statement is revisited in Section 9.1, where we 
express the problem using the formalism given in Chapter 5-Chapter 8. Note that an initial problem 
statement was given in Section 2.2, where it was discussed in a general form, without prior knowledge of 
the modeling and formalism proposed in Chapter 5-Chapter 8. Test objectives are discussed in Section 9.2. 
Section 9.3 presents the heuristic of our stress test strategy. An example is presented in Section 9.4 to 
visualize the heuristic. Then after, different strategies of the proposed stress testing approach are discussed 
in Section 9.5, which closely match the different network traffic attributes discussed in Section 8.3. We 
discuss in Section 9.6 how we take into account the inter-SD constraints in the generation of stress test 
requirements. Section 9.7 formulates the stress test generation problem as an optimization problem. Section 
9.8 presents the high-level stress testing algorithm. Input and pre-processing steps of the high-level 
algorithm are discussed in Section 9.9. The general form of a stress test requirement (the output of the 
technique) is given in Section 9.10. Finally techniques to derive test requirements depending on different 
stress strategies are proposed in Section 9.11. The algorithm complexities are discussed in Section 9.12. A 
variation of the technique, referred to as Real-Time Constraint-Oriented Stress Test (RTCOST) is presented in 
Section 9.13, which aims at generating test requirements for a given Real-Time constraint. Section 9.14 
discusses how the derivation process of test elements can be automated. 

9.1 Problem Statement: Revisited 

Having formalized the input and test modeling needed for our stress test technique in Chapter 5-Chapter 8, 
we state the problem statement in a more precise manner in this section. The rephrased problem statement 
is as the following: 

Suppose the UML 2.0 model of a distributed SUT is given. As we discussed earlier, the model should 
include at least the SUT’s sequence diagrams, class diagrams (to be used for polymorphic CFA of SDs, 
Section 5 of [2], and data size estimation, Section 8.1), and the network deployment diagram(s) showing 
interconnectivity and the network hierarchy of the system (as discussed in Section 5.5). We also require 
the inter-SD constraints are given using a MIOD (Section 5.3). Suppose the CFA of system’s SDs is done 
using the techniques in Chapter 6. Inter-SD constraints are analyzed according to the techniques in 
Chapter 7 and SUT’s Independent-SD Sets (ISDSs), Section 7.1, and Set of SD Sequences (SSDS), Section 
7.2, are derived. The network traffic of the system is formalized as stated in Chapter 8. The problem is 
to find a schedule to run a subset of system DCCFPs which will put a given set of networks or nodes 
under stress according to a given stress test strategy (defined in terms of location, direction, type or 
duration) in order to maximize the chance of exhibiting network traffic faults (defined in Section 3.2.2). 
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9.2 Test Objectives 

The fundamental test objective is to perform a network-aware stress testing on a distributed system. The 
overall goal in our ongoing research is to propose stress test techniques for different aspects of a distributed 
system. In this work, we only consider the network traffic of such systems, and in particular we propose a 
stress test technique to maximize the chance of detecting distributed traffic faults (as described in Section 
3.2.2). Our objective would be to propose a systematic testing technique to automatically generate test 
requirements to stress test the network traffic of a system, based on a UML 2.0 design model of the system. 
The test requirements will essentially be a set of selected DCCFPs along with a schedule to execute them. 
The general form of stress test requirements is precisely specified in Section 9.10. 

9.3 Stress Test Heuristic 

As discussed in Chapter 5, we assumed that a system may have several nodes, where each node is running 
several concurrent processes. We also assumed that there can be several SDs running concurrently on the 
system nodes. In Chapter 6, each SD was assigned a corresponding CCFG, where each CCFG could have 
one or more CCFPs. A Distributed CCFP (DCCFP) was defined as a CCFP where only distributed messages 
are considered.  Depending on the UML 2.0 interaction constraints [8], executing a SD might follow 
different CCFPs in its CCFG. These different CCFPs will yield different DCCFPs. Different DCCFPs of a SD 
will cause different traffic on different networks and nodes of the system.  

Given a specific network or node to stress test, our heuristic is to choose a message (or a set of messages) in 
a particular DCCFP of a SD which imposes maximum traffic (either in terms of data or number of 
messages) on the given network or node. Let us refer to such messages as maximum stress messages. 
Intuitively, if none of the DCCFPs of a SD has any message going through a given network or to/from a 
given node, it means that this particular SD does not have any network traffic on the network or node and 
hence it will not be included in the output stress test schedule. Afterwards, using the start times of the 
maximum stress messages selected in each DCCFP, the selected set of DCCFPs can be scheduled in a way 
that the maximum stressing messages all can run concurrently.  We believe that this concurrent schedule of 
DCCFPs will cause a maximum possible traffic on a particular node or network, which in turn will increase 
the probability of exhibiting distributed traffic faults in the node or network under stress test. 

The heuristic can be visualized by an example. The example below is just to illustrate the heuristic and does 
not include a formal description of the test requirement derivation process. It will be given in Section 9.11. 
It should also be mentioned that the stress test has different strategies as discussed in Section 9.5.  

9.4 An Example to Visualize the Heuristic 

Suppose a typical SUT whose NIT is shown in Figure 49. According to the NIT, there are three nodes n1, n2 

and n3 and a network (SystemNetwork) in the system, where all nodes are connected to.  

System 
Network

n1 n2 n3
 

Figure 49-A simple system NIT. 

For simplicity, let us assume the system has several SDs which CFA has yielded four DCCFPs 
(DCCFP1,...,DCCFP4). The timed inter-node representations (described in Section 6.6) of DCCFPs are shown 
in Figure 50-(a), where each DCCFP includes several distributed messages. For example, among DCCFP1‘s 
messages, there is a call message starting in time t=1ms from node n2 to node n3 which lasts until time 
t=4ms and a return message from n2 to n1 from time=9 to time=10.  
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Figure 50-Heuristic to stress test instant data traffic on a network. 

In this example, let us suppose that we want to derive test requirements for what we call network instant 
data traffic (NetInstDT) stress for network SystemNetwork. To visualize the data traffic incurred by 
DCCFP1,...,DCCFP4 over the network SystemNetwork, NetInsDT(DCCFPi,SystemNetwork,t) is depicted in 
Figure 50-(b) for each DCCFP. Again for simplicity, the calculation steps of those functions are not shown. 

Next step of the heuristic is to find the maximum stress messages of each DCCFP. This is shown graphically 
in Figure 50-(b) by dashed lines around such messages. Recalling that the criterion to find these messages is 
that the given network is part of the path in a message’s sender to receiver. Furthermore, the size of such 
messages has the maximum value among all messages of a DCCFP. In our example, since all nodes (n1, …, 
n3)  are members of the system network, therefore all distributed messages go through this network. 

After finding maximum stress messages in each DCCFP, the next (and final) step in the derivation of stress 
test requirements is to use the start times of the maximum stress messages we have selected in each DCCFP 
to schedule the selected set of DCCFPs such that these maximum stress messages all run concurrently. This 
is illustrated in Figure 50-(c). As shown, DCCFP1, DCCFP2, DCCFP3, and DCCFP4 will be scheduled to start 
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running at times 0, 8, 6 and 9 ms (milliseconds) respectively. With this schedule, the highest data traffic 
stress in the system network will occur at time=9ms from the start of the test execution.  

9.5 Different Stress Testing Strategies 

As discussed in the fault taxonomy, Chapter 3, nodes or networks of a system may not be robust to faults 
with distributed nature. As we categorized in Section 3.2, one type of such faults was distributed traffic 
faults, which occur when a system failure is due to the fact that a network or a node does not function 
correctly under heavy traffic. 

As mentioned in Section 9.1, our stress test heuristic is to enforce heavy network workloads on system 
components to increase the probability of exhibiting a distributed traffic fault. We investigate different 
strategies for heavy network workloads: stress location (networks or nodes), traffic direction (in and out – 
only applies when testing nodes), stress type (data traffic or number of requests), and stress duration 
(instant versus interval stress) strategies. The reason why traffic direction (in and out) do not apply in our 
stress testing approach when testing networks is that networks, unlike nodes, are not the end points of 
traffic, i.e. any traffic entering a network goes out of it, therefore distinguishing in and out traffic in case of 
a network is unnecessary. Different stress testing strategies are discussed in following sections. 

9.5.1 Location: Nodes vs. Networks 

As discussed in faults taxonomy, Section 3.5, a distributed fault might happen in one of the following 
locations in a distributed messaging scenario between two nodes: 

o A network in the network path between two nodes 
o Sender or receiver node  

As discussed in Section 5.5, a network path between two nodes is the unique path extracted from the 
Network Interconnectivity Tree (NIT). As discussed in Section 8.3.1, network traffic was also analyzed in 
two strategies (nodes and networks) in terms of its location. 

The rational behind this classification of stress testing strategy is that either a network (in a network path) 
or one of the two end nodes becomes the cause of a failure when excessive traffic goes through it.  

9.5.2 Direction (only for nodes): In, Out, Bidirectional 

As discussed above, the stress test target can be either a network, sender or receiver node of a distributed 
message. In case of a node, we can think of two scenarios for stress testing in terms of traffic direction. 
Traffic can be maximized either towards a node or from a node. In other words, in one scenario, we might 
schedule all DCCFPs such that all distributed messages towards (arriving at) a node be sent all at once. 
While in the second scenario, all distributed messages from a node will be scheduled to be sent 
concurrently.  

The rationale for this distinction in stress test strategy is that a traffic fault might be revealed in the network 
component of a node if a large amount of traffic arrives from other nodes to the node all at once. 
Conversely, a network traffic fault might occur if large instantaneous traffic is originated from the node to 
other nodes in the system. The low level faults causing this malfunction might include: insufficient network 
buffer/frame sizes, high CPU load of the node and failing to process traffic on time. 

9.5.3 Type: Amount of Data vs. Number of Messages 

Dividing stress type in two categories: amount of data and number of messages corresponds to the 
distinction made for traffic types in Section 8.3.3. Networks or nodes of a system might exhibit faults when 
they are faced with big amounts of data or large number of message going through them (networks), from 
or towards them (nodes).  
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9.5.4 Duration: Instant vs. Interval 

In term of duration of the stress, we consider two approaches: instant and interval. These two approaches 
correspond to the distinction made for traffic duration in Section 8.3.4. We define an instant network stress 
test requirement to be a schedule of DCCFPs of a system’s SDs that imposes a traffic stress in a given unit 
of time. The used unit of time is assumed to be the smallest unit of time defined in a system, such as 
millisecond. This is mentioned in tagged values of messages in SDs. For example, an example of modeling 
time using the UML-SPT profile was shown in the SD in Figure 3, where the smallest unit of time among all 
tagged-values is ms (millisecond). An interval stress test requirement, on the other hand, is a set of SDs and 
their execution schedule that, when applied to the SUT, causes a stress in a network or a node during an 
interval of time.  

9.6 Taking into Account the Inter-SD Constraints 

As we discussed in Chapter 7, executing any arbitrary sequence of SDs in a SUT might not be always valid 
or allowed. This might be due to the constraints enforced by the business logic of a SUT on the sequence 
(order) of SDs and also the conditions that have to be satisfied before a particular SD can be executed. A 
Modified Interaction Overview Diagram (MIOD) was proposed in Section 5.3 to model sequential and 
conditional inter-SD constraints. 

The duration strategy of stress testing in our system model affects the way we should take into account the 
inter-SD constraints, because: 

o In case of instant stress testing, a set independent SDs, which entails the maximum stress 
should be triggered concurrently, and, 

o In case of interval stress testing, the objective is to trigger a sequence of SDs with maximum 
stress. 

The first type of stress test from duration point of view is instant stress (Section 9.5.4). We discussed in 
Section 9.5.4 that instant network stress is a schedule of DCCFPs that entail a maximum traffic stress in an 
instant time. One important consideration in generating such schedule is that the SDs that are to be 
executed altogether should not be dependent (Section 7.1). We proposed a method in Section 7.1 to derive 
so called Independent-SD Sets (ISDSs) in a SUT. As defined, an ISDS is a set of SDs that can be run 
concurrently, i.e., there are no inter-SD constraints between any two of the SDs in the set. 

The other type of stress test from duration point of view is interval stress. As defined, a interval stress test is 
a set of SDs and their execution schedule that, when applied to a SUT, causes maximum stress in a network 
or a node during an interval of time.  One important consideration in this case is to choose and schedule 
those sequences of SDs that are allowed in the SUT. A method was proposed in Section 7.2 to derive 
Concurrent SD Flow Paths (CSDFP). As defined, a CSDFP is a sequence of SDs that are allowed to be 
executed in a SUT (according to the constraints modeled in the MIOD). According to this definition, any 
sequence of SD in a SUT which is not a CSDFP is not allowed to be executed and hence can not be used in a 
stress test scenario.  

In our stress test mythology, we assume that the inter-SD constraints are given in a form of a MIOD. MIOD 
is then used to generate the SUT’s Independent-SD Sets (ISDS) and Concurrent SD Flow Paths (CSDFP). 
ISDSs and CSDFPs will be used in Section 9.11 by instant and interval stress test techniques to generate 
valid test requirements, respectively.  

If we consider the stress test generation problem as an optimization problem, ISDSs and CSDFPs will be the 
constraints of the optimization problem. We discuss in next section how the stress test generation problem 
can be formulated as an optimization problem. 
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9.7 Formulating the Stress Test Generation Problem as an Optimization Problem 

The stress test requirement generation problem can be formulated an optimization problem. The general 
formulated optimization problem, without taking into account the different testing strategies (Section 9.5), 
is presented in Figure 51. 

 
Figure 51-Formulating the Stress Test Generation Problem as an Optimization Problem. 

9.8 High-level Algorithm 

The high-level algorithm for the derivation of stress test requirements is given in Algorithm 2. Steps 1 and 2 
in Algorithm 2 are briefly described next. After that, the general form of a stress test requirement (as the 
output of the technique) is defined in Section 9.10. The last step of the high-level algorithm (Step 3) is 
described in Section 9.11. 

 
Algorithm 2-High level algorithm for derivation of stress test requirements  

9.9 Input and Building the Test Model 

We comprehensively described the system model of a SUT and the UML syntax to be used in Chapter 5. 
We also discussed how to build the test model from the given UML design model in Chapter 5-Chapter 7. 

Step 1. Input (Chapter 5): 
• Use the UML design model of the SUT as the input model. The UML design model should include: 

o Network Deployment Diagram (NDD): for deriving NIT (Section 5.5) 
o SDs: SD1,…, SDn (system has n SDs.). SDs should have timing information. RT constraints should be 

modeled as stated in Section 5.6. 
o Class diagram(s) (Section 5.2): to be used for polymorphism-dependent CFA (Section 5 of [2]) and also 

calculation of message sizes (Section 8.1)  
o Modified Interaction Overview Diagrams (MIOD): to model the inter-SD constraints (Section 5.3) 

• A list of test objectives where each objectives is a tuple of four fields: 
o A stress location: either a network or a node name 
o A stress direction (only for nodes): in, out or bidirectional  
o A stress type: data or number of messages: 
o A stress duration: instant or period  

Step 2. Building the Test Model-(Chapter 5-Chapter 7): 
• Build the system’s Network Interconnectivity Tree (NIT) based on the Network Deployment Diagram in the UML 

model (Section 5.5). 
• Control Flow Analysis of SDs: 

o Transform each of the system’s SDs into its corresponding CCFG (Chapter 6). 
o Derive CCFPs and then DCCFPs of each CCFG (Chapter 6).  

• Taking into consideration the  inter-SD constraints: 
o Derive Independent-SD Sets (ISDSs) (Section 7.1).  
o Derive Concurrent SD Flow Paths (CSDFP) (Section 7.2). 

Step 3. Derivation of Test Requirements (Section 9.11): 

• For each entry in the test objectives list, depending on the stress location and test direction, derive the test 
requirements using the following algorithms: 

o If the stress location is a network, use the algorithm in Section 9.11.2 
o If the stress location is a node:  

§ If test direction is “in”, use the algorithm in Section 9.11.3.1 . 
§ If test direction is “out”, use the algorithm in Section 9.11.3.2 . 
§ If test direction is “bidirectional”, use the algorithm in Section9.11.3.3. 

Objective: Maximize the traffic on a specified network or node (at a time instant or a period of time) 
Variables:  

− A subset of DCCFPs (one DCCFP from each SD) with maximum traffic on a specified network or node 
− Schedule to run the selected DCCFPs 

Constraints:  
− Inter-SD sequential and conditional constraints 
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The CFA procedures to convert the SUT‘s UML model into CCFGs and DCCFPs were presented in Chapter 
6. Those methods should be used to convert a given system model into a NIT and a set of DCCFPs, which 
will be used in Step 3 of Algorithm 2 to derive test requirements. 

We also discussed in Chapter 7 how to derive the Independent-SD Sets (ISDSs) and Concurrent SD Flow 
Paths (CSDFP) of a SUT. As discussed in Section 9.6, these two will be taken into account as inter-SD 
constraints in the generation of stress test requirements. 

9.10 Output Stress Test Requirements 

For each test element in the test objective list of Algorithm 2, a stress test requirement set will be generated 
by our technique. Assuming that a SUT has n SDs (SD1, …, SDn), a test requirement set will be a schedule of 
a selected set of SDs’ DCCFPs and is an ordered set in the form of: 

<(ρ1max, αρ1max), …, (ρnmax, αρnmax)> 

where i-th entry of the set is a tuple of ρimax and αρimax. ρimax is a DCCFP in the DCCFP set of SDi, 
DCCFP(SDi), that entails a stress traffic over the given system component (network or a node) with a given 
stress flavor (direction, type and duration). αρimax is the start time of DCCFP ρimax, i.e., the time to trigger 
ρimax, that together with all DCCFPs in the test requirement set, will maximize traffic over a given network 
or node. A stress test requirement set is the output of our methodology. Algorithms to derive test 
requirements for different stress test strategies will be given in the next section. Intuitively, if none of the 
DCCFPs of SDi has any message going through the given network or to/from the given node, it means that 
that SDi does not have any network traffic on the given network or node and hence it will not be included 
in the output stress test set. In such a case, the i-th entry of the test requirement set (corresponding to SDi) 
will be null. 

9.11 Derivation of Stress Test Requirements 

Various algorithms (corresponding to different stress test strategies) to derive stress test requirements are 
given in this section. We use a set of mathematical functions ,in our algorithms. First the naming 
convention of such functions will be given in Section 9.11.1. Algorithms will be then presented in Sections 
9.11.2 and 9.11.3. 

As an example of how stress test requirements can be generated using algorithms in this section (such as 
Algorithm 3 and Algorithm 4), refer to Section 12.4 where test requirements derivation process of our case 
study has been explained in detail. We consider different test elements with different stress test strategies 
in our case study. 

9.11.1 Naming Convention 

Naming convention of functions used in different stress test algorithms can be described using the tree in 
Figure 52. Note that these functions return maximum message(s) and DCCFP(s) of a given DCCFP and SD, 
respectively. In such a sense, these functions are different than the functions presented in Figure 48, which 
were intended to measure traffic entailed by a DCCFP. 

The root node of the tree in Figure 52 is StressTest, indicating that all functions return a value with a 
particular maximization criterion, which depends on the function name. A function name is made by 
traversing from the root to a leaf node and concatenating all the node titles in order. Five layers are shaded 
in the tree. Four top layers specify the four different stress test strategies mentioned in Section 9.5. The 
lowest layer (function’s output type) indicates the return type of the function whose name is generated by 
traversing from the root to a leaf node and concatenating all the node labels in order. As mentioned in 
Section 9.5.1, since we do not consider stress direction (“in”, “out” and “bidirectional”) for networks, the 
network sub-tree (nodes under Net) is not divided into two branches in the second layer. Since there are 32 
leaf nodes in Figure 52, there will be 32 different functions.  
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For example, consider the path specified by a dashed line in Figure 52. This path represents function 
MaxNetInsDTMsg. This function finds the message (Msg) in a given DCCFP that yields the maximum 
(Max) instant (Ins) data traffic (DT) on a given network (Net). 
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Figure 52-Naming conventions of functions used in various stress test algorithms. 

The general form of a function can also be given using the BNF in Equation 6. 
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Equation 6-BNF to generate stress test function names. 

The BNF in Equation 7 can be used to determine the input parameters of a function based on its name. 
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Equation 7-BNF for the list of input parameters of a stress test function. 

where input parameter ρij is a DCCFP in the CCFG of SDi. Input parameters network and node are given to 
be stress tested and interval is the time interval for which the interval stress test should be derived for. The 
functions and input parameters usage will be clear in the next sections, where algorithms for the derivation 
of test requirements complying with different test strategies will be given. 

There are four layers in the stress test strategies block in Figure 52. These four layers indicate the variations 
of stress test strategy we can apply on a system of nodes and networks. Counting the different paths from 
the root of the tree to the nodes of the lowest of these four layers (stress type), 16 different strategies can be 
considered. Similar to the naming convention of functions explained above, the BNF in Equation 8 specifies 
various stress test strategies. 
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Equation 8-BNF to generate various stress test strategies. 

Using the above naming convention for stress test strategies, example strategies are: StressNetInsDT, 
StressNetInsMT, StressNetPetDT, StressNetPetMT, and StressNodInInsDT. 

9.11.2 Test Requirements for a Network 

According to the naming tree in Figure 52, we consider four stress test strategies for a network: 
1. StressNetInsDT(net) 
2. StressNetInsMT(net) 
3. StressNetIntDT(net) 
4. StressIntMT(net) 

In the following, we discuss each of the above and give algorithms to derive stress test requirements for 
each stress test strategy. 
1. StressNetInsDT(net) 

To better understand this stress test strategy, a top-level UML activity diagram is shown in Figure 53, 
which depicts the flow of activities to generate stress test requirements of the stress test strategy 
StressNetInsDT(net).  
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Figure 53-Activity diagram of stress test strategy StressNetInsDT(net). 

To better clarify the idea, let us consider the hierarchical relationships between messages, DCCFPs, SDs, 
ISDSs and a MIOD; and see how the algorithm works in extracting hierarchical maximums. Such 
hierarchical relationships are illustrated using the concept of composition association in Figure 54–(a). A 
MIOD is composed of several ISDSs. An ISDS is a set of several SDs. A SD has several DCCFPs. And each 
DCCFP is composed of several messages.  

The dashed arrow beside the hierarchical relationships represents the direction of hierarchical maximum 
selection by the algorithm. To generate stress test requirements, the algorithm (in activity 1.1 of Figure 53) 
first finds the maximum traffic messages of each DCCFP. Using the maximum traffic message, the 
maximum traffic DCCFPs of each SD are then chosen (in activity 1.2). Then after, among all ISDSs of a 
MIOD, the ISDS with maximum traffic is chosen. If all the entitles in the hierarchical relationship are 
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consider as sets, the hierarchical maximum selection process can be shown using a Venn diagram1 in  Figure 
54–(b). All entities are sets of entities inside them, except messages (shown as msg) which are not sets. The 
hierarchical maximum selection process starts from messages and continues on to ISDSs in MIOD level. 
The detailed pseudo-code of the algorithm is then given in Algorithm 3. 
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Figure 54-(a): Hierarchical relationships between messages, DCCFPs, SDs, ISDSs and a MIOD. (b): Using a Venn diagram to 
represent how the hierarchical maximum selection process works. 

Here we describe the rationale behind Algorithm 3 and each of its steps. Our goal in this case is to derive 
stress test requirements with network stress location, data traffic type and instant stress duration. Step 1 
finds the DCCFP, for each SD, which entails the maximum stress on the given network. Step 1.1.1 finds the 
maximum stress message of each DCCFP first. Step 1.1.2 then finds the DCCFP with maximum message 
size (maximum of maximums) among all of DCCFPs of a SD.  

In order to consider the inter-SD constraints in finding maximum instant stress, Step 2 chooses an ISDS 
(Independent-SD Set) with maximum stress. In order to do so, Step 2.1 first calculates each ISDS’s 
MaxNetInsDT using the values calculated in Step 1. Using these values, Step 2.2 then finds the ISDS with 
maximum stress and labels this ISDS as ISDSmax. ISDSmax will be used is Step 3 when scheduling all 
DCCFPs to force the maximum stress. 

Step 3 is the final step of the algorithm which schedules the selected DCCFPs of SDs in ISDSmax to force the 
maximum stress on the given network. In order to schedule the selected SDs, Step 3.1 first calculates the 
latest start time among the selected DCCFPs of all SDs in ISDSmax. The latest start time is saved in 
DCCFPsLateStartTime. Step 3.2 generates the actual schedule by using the DCCFPsLateStartTime variable 
and shifting the start times of the selected DCCFPs (and their corresponding SDs) to enforce concurrent 
execution of the maximum stressing messages of such DCCFPs. This was shown earlier graphically in 
Figure 50-(c). The maximum stress will occur in DCCFPsLateStartTime time instance after starting the test. 

                                                             

1 A graphical representation in which sets are represented by closed areas. The closed regions may bear all 
kinds of relations to one another, such as be partially overlapped, be completely separated from one 
another, or be contained totally one within another. All members of a set are considered to lie within or be 
contained within the closed region representing the set. The diagram is used to facilitate the determination 
of whether several sets include or exclude the same members. 
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Algorithm 3-Derivation of instant stress test requirements for data traffic on a given network (StressNetInsDT). Stress traffic will 

occur in time=DCCFPsLatestStartTime. 

We gave the details of the algorithm for StressNetInsDT(net) strategy, where net is the input parameter to 
the algorithm. Algorithm 3 can be modified to give algorithms for the other instant network stress test 
strategy (StressNetInsMT) as described below. The algorithms for two other network stress test strategies 
(StressNetIntDT and StressNetIntMT) will be slightly different since they have to generate interval stress 
tests. 

2. StressNetInsMT(net) 

The following changes should be made in Algorithm 3: 

• Formulas in Step 1.1.1: 

1. Finding maximum stress DCCFP of each SD  

1.1. For each SDi   
1.1.1. For  each DCCFP ρij of SDi // Finding the maximum DT value, stress time and stress messages of each DCCFP 

Find the maximum DT value and time in ρij, using: 

( )),,(max),( tnetNetInsDTnetTValueMaxNetInsD ijtij ρρ =   

),,(),,(:|),( maxmax tnetTValueMaxNetInsDtnetTValueMaxNetInsDttnetTTimeMaxNetInsD ijijij ρρρ ≥∀=  

Find the set of messages in ρij, which put maximum traffic on network net, using: 
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)..,..(

.),(.,,),(
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nrmsgnsmsgPathgetNetworknet
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ii

iiji

iji

nij

∈
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where first condition ensures that the message putting maximum traffic is returned. dur(msg)  is the duration of a 
message  and can be calculated as  dur(msg)=msg.end-msg.start. The last two conditions make sure that only 
messages going through the given network net are compared to yield the maximum. s,  r and n are shorthand 
notations for sender, receiver and sender.node fields of a message. 

If no message in ρij satisfies the network_path condition, the function returns null. 
1.1.2. Among all of SDi‘s DCCFPs ρij, find the DCCFP with maximum stress value: 

)()(

:)(,
),(
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max

max
iji

iiji

ii TValueMaxNetInsDTValueMaxNetInsD

SDDCCFP
netSDTDCCFPMaxNetInsD

ρρ

ρρ
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≥

∈∀
=  

If no DCCFP in SDi is found with the above criteria, the function returns null.  
2. Choosing the ISDS (Independent-SD Set) with maximum stress: // Considering inter-SD constraints 

2.1. For each ISDSi  // Calculate each ISDS’s MaxNetInsDT 

( )∑
∈∀

=
iISDSSD

i netnetSDTDCCFPMaxNetInsDTValueMaxNetInsDISDSTValueMaxNetInsD ),,()(  

2.2. Among all ISDSs, find the ISDS with maximum )( iISDSTValueMaxNetInsD  and refer to it as ISDSmax   

3. Derivation of stress test requirements (scheduling SDs in the ISDS with maximum stress – found in Step 2):  

3.1. Calculate the latest start time among the selected DCCFPs ρimax of all SDs in ISDSmax : 

( )( )
( )





=

∈∀∈∀
startmessageestStartTimDCCFPsLate

netnetSDTDCCFPMaxNetInsDTMsgsMaxNetInsDmessageISDSSD ii

.minmax
,,max

 

3.2. For each SD in ISDSmax  
3.2.1. If ),(max netSDTDCFPMaxNetInsD ii =ρ is not null 

( )maxmax , iiiScheduleStressTest αρρ= where 
maxiαρ is 

maxiρ ’s start  time and is equal to:  

( )( )startnetTMsgsMaxNetInsDtStartTimeDCFPsLates ii .,min maxmax ραρ −=  

3.2.2. Else 

nullScheduleStressTest i =  
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( )),,(max),( tnetNetInsMTnetTValueMaxNetInsM ijtij ρρ =
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• Formula in Step 1.1.2: 
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• The statements in Steps 2 and 3 stay the same. Only the variable and function names with *DT* 
pattern should be changed to *MT* instead. 

3. StressNetIntDT(net)  

The algorithms for the two network stress test strategies StressNetIntDT and StressNetIntMT will be slightly 
different than the two mentioned before (StressNetInsDT and StressNetInsMT), since these two have to 
generate interval stress tests. The UML activity diagram of stress test strategy StressNetIntDT(net) is shown 
in Figure 55. The Pseudo-code of the algorithm is then given in Algorithm 4. 

StressNetIntDT(net)

2-Among all CSDFPs, 
choose the CSDFP with 
maximum unit traffic over 

network net

Stress Test 
Requirement=CSDFPmaxControl Flow 

Model (CFM)

Network Traffic 
Model (NTM)

Inter-SD 
Constraint Model 

(ISDCM)

Maximum unit traffic 
DCCFP of each SD

1-Find maximum unit 
traffic DCCFP of each 
SD over network net

net: Requested 
Network

 
Figure 55- Activity diagram of stress test strategy StressNetIntDT(net). 

Here we describe the rationale of the Algorithm 4. Our goal in this case is to derive stress test requirements 
with network stress location, data traffic type and instant stress duration. Step 1 of the Algorithm 3 finds 
the DCCFP, for each SD, which entails the maximum stress on the given network. Step 1.1.1 finds the 
maximum stress message of each DCCFP first. Step 1.1.2 then finds the DCCFP with maximum message 
size (maximum of maximums) among all of DCCFPs of a SD.  
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Algorithm 4-Derivation of interval stress test requirements for data traffic on a given network (StressNetIntDT). 

4. StressNetIntMT(net)  

In Algorithm 4, the name of the functions with pattern *DT* should be replaced with *MT*. 

9.11.3 Test Requirements for a Node 

Algorithm 3 and Algorithm 4 can be modified to provide algorithms for stress test strategies of nodes. We 
group node stress test strategies into three groups: in, out and bidirectional.  

9.11.3.1 Stress Direction: In 

Node stress test strategies with “in” stress direction can be extracted from the naming tree in Figure 52: 
1. StressNodInInsDT (nod) 
2. StressNodInInsMT(nod) 
3. StressNodInIntDT(nod) 
4. StressNodInIntMT(nod) 

Modifications to the Algorithm 3 and Algorithm 4 to devise algorithms for node test strategies with “in” 
stress direction are described in this section. 

1. StressNodInInsDT(nod) strategy 

In Algorithm 3, the name of the functions with pattern *Net* should be replaced with *NodIn*. 

2. StressNodInInsMT(nod) strategy 

In Algorithm 3, the name of the functions with pattern *Net*DT should be replaced with *NodIn*MT. 

1. Finding the DCCFP of each SD with maximum unit data traffic 

1.1. For each SDi   
1.1.1. For  each DCCFP ρij of SDi // Finding maximum stress message of each DCCFP 

Calculate Unit Data Traffic (UDT) of ρij, using: 

( )
)(Duration

)t,net,(NetInsDT
)net,(NetUDT
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t
ij

ij ρ

ρ
ρ

∑
=   

where )(Duration ijρ  is the time length of DCCFP ρij and can be calculated as: 
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ρ

∈∀
=  

where )(
ij

CCFP ρ  is the CCFP corresponding to DCCFP ρij. 

1.1.2. Among all DCCFPs ρij of SDi, find the one with maximum unit data traffic 
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If no DCCFP in SDi is found with the above criteria, the function returns null.  
2. Choosing a CSDFP (Concurrent SD Flow Path) with maximum stress: // Considering inter-SD constraints 

2.1. For each CSDFPi  // Calculate each CSDFP’s Unit Data Traffic (UDT) 

( )( )net,TMaxNetPerD,CSDFPSBuildDCCFPDuration

)t,net),net,SD(TDCCFPMaxNetPerD(NetInsDT
)net,CSDFP(NetUDT

i

CSDFPSD t
i

i

∑ ∑
∈∀ ∀=  

where Duration (presented in Section 7.2.3)  is a function that calculates the time length of a DCCFPS (DCCFP 
Sequence). BuildDCCFPS is function that builds a DCCFPS from the given CSDFPi   using the given criteria: 

)net,SD(TDCCFPMaxNetPerD:CSDFPSD i∈∀ . 

2.2. Among all CSDFPs, find the sequences with maximum )net,CSDFP(NetUDT i
 and return it as output (CSDFPmax)   
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3. StressNodInIntDT(nod) strategy 

In Algorithm 4, the name of the functions with pattern *Net* should be replaced with *NodIn*. 

4. StressNodInIntMT(nod) strategy 

In Algorithm 4, the name of the functions with pattern *Net*DT should be replaced with *NodIn*MT. 

9.11.3.2 Stress Direction: Out 

Node stress test strategies with “in” stress direction can be extracted from the naming tree in Figure 52: 
1. StressNodOutInsDT (nod) 
2. StressNodOutInsMT(nod) 
3. StressNodOutIntDT(nod) 
4. StressNodOutIntMT(nod) 

In the following, we discuss each of the above and give the details of the algorithms to derive stress test 
requirements.  

1. StressNodOutInsDT(nod) strategy 

In Algorithm 3, the name of the functions with pattern *Net* should be replaced with *NodOut*. 

2. StressNodOutInsMT(nod) strategy 

In Algorithm 3, the name of the functions with pattern *Net*DT should be replaced with *NodOut*MT. 

3. StressNodOutIntDT(nod) strategy 

In Algorithm 4, the name of the functions with pattern *Net* should be replaced with *NodOut*. 

4. StressNodOutIntMT(nod) strategy 

In Algorithm 4, the name of the functions with pattern *Net*DT should be replaced with *NodOut*MT. 

9.11.3.3 Stress Direction: Bidirectional 

Node stress test strategies with “bidirectional” stress direction can be extracted from the naming tree in 
Figure 52: 

1. StressNodBiInsDT (nod) 
2. StressNodBiInsMT(nod) 
3. StressNodBiIntDT(nod) 
4. StressNodBiIntMT(nod) 

In the following, we discuss each of the above and give the details of the algorithms to derive stress test 
requirements.  

1. StressNodBiInsDT(nod) strategy 

In Algorithm 3, the name of the functions with pattern *Net* should be replaced with *NodBi*. 

2. StressNodBiInsMT(nod) strategy 

In Algorithm 3, the name of the functions with pattern *Net*DT should be replaced with *NodBi*MT. 

3. StressNodBiIntDT(nod) strategy 

In Algorithm 4, the name of the functions with pattern *Net* should be replaced with *NodBi*. 

4. StressNodBiIntMT(nod) strategy 

In Algorithm 4, the name of the functions with pattern *Net*DT should be replaced with *NodBi*MT. 
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9.12 Algorithms Complexity 

The steps to calculate the complexities of Algorithm 3 and Algorithm 4 are shown in Figure 56 and Figure 
57 respectively,  where the calculations are performed in a bottom-up manner (from sub-steps, to steps, and 
then to the whole algorithm). The variables are defined in Table 6. 

Variable Description 
s Number of SDs 
m Average number of messages per each DCCFP 
p Average number of DCCFPs per each SD 
i Number of ISDSs 
y Average number of SDs per each ISDS 
t Average time duration of each DCCFP 
c Number of CSDFPs 

Table 6-Description of the variables used in calculating algorithms complexity. 

 
Figure 56-Calculating complexity of Algorithm 3. 

For example, as it has been shown in Figure 56, Step 1.1.1 of Algorithm 3 has the complexity of O(p(t+m). 
This is because there is a loop on all DCCFPs of a SD (p), and there are two loops (maximum functions) on 
all time instances (t) and messages (m) of each DCCFPs in Step 1.1.1.  

 
Figure 57-Calculating complexity of Algorithm 4. 

9.13 Real-Time Constraint-Oriented Stress Test 

The stress test methodology, discussed in the previous sections, finds the maximum possible traffic portion 
of every SD/DCCFP and schedules SDs in a way that the maximum possible stress happens in a time 
instances or during a time interval. Let us refer to such methodology as global stress test. Such stress test 
targets to find any network traffic fault in a SUT. In this way, a network traffic fault might be revealed in 
SUT’s network component, e.g., buffers, queues or in its business logic. For example, by applying a specific 
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stress test flavor, we might find out that the length of a network buffer of a server in a safety-critical system 
is not enough in stress conditions. Furthermore, different strategies of global stress test can usually enforce 
violations only in a subset of the RT constraints. This is because the test requirements generated by the 
global stress test methodology, i.e., Independent-SD Sets (ISDSs) or Concurrent SD Flow Paths (CSDFP), 
usually cover subsets of all RT constraints in a SUT. Therefore, some RT constraints might never be 
exercised by a global stress test.  

As an example, consider the MIOD in Figure 58, which has two MIOD-level HRT constraints. One of the 
constraints is on the duration of SD10 and the other one is bound to the length of SD5 and SD6 together 
(from the beginning of SD5 to the end of SD6). Let us refer to the former as HRTC1 and to the later as 
HRTC2. Suppose that the data and message traffic of messages in different SDs are such that, no matter 
which stress test flavor is applied to this SUT, SD6 (i.e., any of its DCCFPs) never gets chosen as part of the 
test requirement. This is possible since the data and message traffic values of messages in SD6 might be less 
than all messages in all other SDs. In such a situation, HRTC1 will never get a chance to be exercised 
(tested), since SD6 never gets executed by any of the stress test strategies. However, as it can be seen in the 
MIOD, HRTC1 has more criticality value than HRTC2, which means the former has more critical 
consequences if it happens to be missed in the field. 

SD2

SD4

SD1

SD5

SD6

[exp1]

[!exp1]

MIOD

SD3

SD7

SD8

SD10

SD9

[exp2]

[!exp2]

«HRT»
{duration<(2000,'ms'),
criticality=1}

«HRT»
{duration<(1000,'ms'),
criticality=0.5}

 
Figure 58-An example MIOD with two MIOD-level HRT constraints. 

To address the above issue, we propose a modified stress test technique, referred to as Real-Time Constraint-
Oriented Stress Test (RTCOST). Given a RT constraint, RTCOST derives stress test requirements which 
target the given constraint in particular, and maximize the chances of violating it. By using RTCOST, all RT 
constraints can be checked one by one to make sure they hold in most stressed conditions of a system. The 
concept of global stress test and RTCOST are briefly compared in Figure 59. 

Luckily, the RTCOST technique can be devised by minor modifications to the global stress test requirement 
generation algorithms, presented in Section 9.11. As we will discuss, the modifications are slightly different 
for SD-level and MIOD-level constraints. 

We present next algorithms for some of the RTCOST variations (strategies), grouped by the level of the 
given constraint (SD-level or MIOD-level). The rest of the RT constraint-oriented stress test strategies can 
be derived in a similar fashion. The strategies are prefixed by “SDRT” (for SD-level constraints) and 
“MIODRT” (for MIOD-level constraints); and are derived from their global-stress-test counterparts. 
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Global stress test targets

- A subset of the RT 
constraints (some constraints 
might never be exercised)

- SUT’s network component, 
e.g., buffers, queues

- SUT’s business logic

A RT constraint RT constraint-oriented 
stress test requirements

(b)(a)

1- is used to derive

2- targets

 
Figure 59-(a): Global stress test versus (b): RT constraint-oriented stress test. 

9.13.1 SD-Level RTCOST 

We present here the algorithm for SDRTStressNetInsDT(RTC) test flavor, where RTC is a given SD-level RT 
constraint. The algorithm can be derived from StressNetInsDT global stress test flavor (Section 9.11.2) and is 
shown in Algorithm 5. Algorithm for the other stress test strategies can be derived in a similar fashion, as 
were presented for the global stress test algorithms in Section 9.11. 

In Algorithm 5, Msgs(RTC), SD(RTC) and Nets(RTC) are utility functions and are defined as follows. 
Msgs(RTC) and SD(RTC) return the messages the RTC is connected to and the SD enclosing the RTC. These 
functions are easy to implement since RTC is a SD-level constraint. For example, considering the SD-level 
constraint RTC in Figure 60-(a), Msgs(RTC) and SD(RTC) will return the values: Msgs(RTC)={m1,m2,r2,r1} 
and SD(RTC)=M. 

sd M

m1

r1

«SRT»
{duration<(1300,'ms'),
missProb<(0.5)}

o1
{node = n1}

o2
{node = n2}

[guard]

alt

o3
{node = n3}

m2

r2

network1

network3n1 n2

n3

(b) System NIT

network2

(a) RTC: A SD-level RT constraint

RTC

 
Figure 60-An example of a SD-level RT constraint. 

Nets(RTC) returns the set of networks which messages of set Msgs(RTC) go through. For example 
considering the RT constraint in Figure 60-(a) and the system NIT in Figure 60-(b), Nets(RTC) will return 
{network1, network3}. The pseudo code of function Nets(RTC) is given in Algorithm 6. The output of this 
function is the union of all network paths of all messages bound by the given RT constraint. 

We now briefly discuss the rational of Algorithm 5. Only a RT constraint is given as the input to the 
algorithm and the algorithm is supposed to find, among networks in Nets(RTC), the network which 
receives the maximum instant data traffic. The reason why we limit the search domain to networks in 
Nets(RTC) is that the stress test strategy is RT-constraint oriented and we need to find a network stress 
situation targeting the given constraint. In Step 1.1.1.1 of the algorithm, we do a slightly modified search 
among DCCFPs of SD(RTC). Since for SD(RTC), we want the stress test to happen in the portion where 
RTC is located, we therefore assign the stress values only for DCCFPs covering messages in Msgs(RTC).  

Algorithm 5 can be also modified to account for network capacities while searching for netmax (network with 
maximum stress on RTC). The modifications should be made in Step 2 of the algorithm, so that the 
network, where the ratio of instant data traffic to its capacity is the highest, is chosen as netmax. 
Alternatively, all the networks in Nets(RTC) can be stress tested, if resources permit. 
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Algorithm 5-Derivation of RT constraint-oriented stress test requirements with network instant data traffic flavor targeted to a 

SD-level RT constraint RTC. 

1. For each network net in Nets(RTC) 
1.1. Find maximum stress DCCFP of each SD for net 

1.1.1. For each SDi  where SDi 
1.1.1.1. For  each DCCFP ρij of SDi  

If SDi <>SD(RTC) then 
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1.1.1.2. Among all DCCFPs, of SDi‘s, find the DCCFP with maximum stress value: 
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If no DCCFP in SDi is found with the above criteria, the function returns null.  
2. Choose the ISDS (Independent-SD Set) and network with maximum stress on RTC 

2.1. For each network net in Nets(RTC) 
2.1.1. For each ISDSi  such that 

iISDS)RTC(SD ∈  

( )∑
∈∀

=
iISDSSD

i net),net,SD(TDCCFPMaxNetInsDTValueMaxNetInsD)net,ISDS(TValueMaxNetInsD  

2.2. For each network net in Nets(RTC) 
2.2.1. For each ISDSi  such that 

iISDS)RTC(SD ∈  

Find the maximum )net,ISDS(TValueMaxNetInsD i
 and refer to it the selected ISDS and network as ISDSmax  

and netmax . 
3. Schedule SDs in the ISDS with maximum stress (ISDSmax ) in the same way as Step 3 of . 

4. Return all ( )maxmax , iiiScheduleStressTest αρρ=  and netmax .as outputs. 
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Algorithm 6-Pseudo code of function Nets(RTC). 

9.13.2 MIOD-Level RTCOST 

MIOD-level RT constraint-oriented stress test algorithms can be devised similarly as the SD-level RTCOST 
algorithms, since MIOD-level RT constraints are similar to SD-level constraints and the former ones are 
only one level higher than the later ones (Section 5.6). 

We present the algorithm for MIODRTStressNetInsDT(RTC) test flavor, where RTC is a given MIOD-level 
RT constraint. The algorithm can be derived from StressNetInsDT global stress test flavor (Section 9.11.2) 
and is shown in Algorithm 7. Algorithm for the other stress test strategies can be derived in similar ways, 
as were presented for the global stress test algorithms in Section 9.11. 

 
Algorithm 7-Derivation of RT constraint-oriented stress test requirements with network instant data traffic flavor targeted to a 

MIOD-level RT constraint RTC. 

5. For each network net in Nets(RTC) 
5.1. Find maximum stress DCCFP of each SD for net 

5.1.1. For each SDi  where SDi 
5.1.1.1. For  each DCCFP ρij of SDi  
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5.1.1.2. Among all DCCFPs, of SDi‘s, find the DCCFP with maximum stress value: 
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If no DCCFP in SDi is found with the above criteria, the function returns null.  
6. Choose the ISDS (Independent-SD Set) and network with maximum stress on RTC 

6.1. For each network net in Nets(RTC) 
6.1.1. For each ISDSi  such that 

iRTC ISDSSD ∈  and )RTC(SDsSDRTC ∈  

( )∑
∈∀

=
iISDSSD

i net),net,SD(TDCCFPMaxNetInsDTValueMaxNetInsD)net,ISDS(TValueMaxNetInsD  

6.2. For each network net in Nets(RTC) 
6.2.1. For each ISDSi  such that 

iRTC ISDSSD ∈  and )RTC(SDsSDRTC ∈  

Find the maximum )net,ISDS(TValueMaxNetInsD i
 and refer to it the selected ISDS and network as ISDSmax  

and netmax . 
7. Schedule SDs in the ISDS with maximum stress (ISDSmax ) in the same way as Step 3 of . 
8. Return all ( )maxmax , iiiScheduleStressTest αρρ=  and netmax .as outputs. 

Function Nets(rtc: a RT constraint):Set of networks 
1. Output=Empty set 

2. For each message m in Msgs(RTC) 
2.1. Find maximum stress DCCFP of each SD for net 
2.2. Output= Output ∪ getNetworkPath(m.sender.node, m.receiver.node) 

3. Return Output 
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Msgs(RTC) and Nets(RTC) are utility functions as described in Section 9.13.1. SDs(RTC) is similar to 
SD(RTC), described above, however it returns the set of SDs a RT constraint is bound to. For example, 
Considering the part of a MIOD in Figure 61, SDs(RTC) will return {SD1, SD2}. 

SD1

SD2

...

...

«SRT»
{duration<(1000,'ms'),
missProb<(0.2)}

RTC

 
Figure 61-An example of a MIOD-level RT constraint  (only part of the MIOD is shown). 

Since a MIOD-level RT constraint does not apply to individual messages in a SD, therefore we do not need 
a modified search among DCCFPs of SD(RTC), as done in Step 1.1.1.1 of Algorithm 5 
(SDRTStressNetInsDT). Two modifications made while deriving Algorithm 7 from StressNetInsDT (Section 
9.11.2) are: 

1. The loop in Step 1 to go over networks in Nets(RTC). 

2. Limiting ISDSs to only those which include at least one of the SDs in SDs(RTC) (Step 2.1.1 of 
Algorithm 7). 

9.13.3 The Feasibility of Full Automation 

We investigated the feasibility of a method to determine the order of different stress test strategies in terms 
of importance, given a RT constraint. However, finding such order of stress test strategies (such as 
NetInsDT, NetInsMT, NodInInstDT, or NodBiInstMT) is not possible, since different network/nodes might 
exhibit network traffic failures in different data/message traffic thresholds compared to others. The best 
practice is to apply all possible stress test strategies (they are only 16 according to Section 9.5) for a given 
RT constraint. 

9.14 Automating the Derivation Process of Test Elements  

We saw in Algorithm 2 that test elements are parts of the input to our stress testing technique, where the 
rest of the steps are done automatically. We discuss here if the test elements can also be derived 
automatically in the order of importance to be stress tested first. More importance, in this context, means if 
the failure of a RT constraint has more severity than another. This automated process can reduce the 
workload done by testers. Note that this automated process can be applied to both global stress test and the 
RT constraint-oriented stress test techniques. 

We discussed in Section 5.6 that RT constraints are modeled by two stereotypes: SRT (soft) and HRT (hard). 
SRT constraints have an upper bound probability (missProb) up to which they can be missed in a series of 
executions. Besides, we assumed that a criticality value is assigned to each HRT constraint. Criticality was 
defined as the degree to which the consequences of missing a hard deadline are unacceptable. The closer 
the criticality of a HRT constraint to one, the more severe will be the consequences of missing it. For 
example, if missing a HRT constraint may cause life-threatening situations, it would be better to assign 
criticality=1 for it. Conversely, if the cost of missing a HRT constraint is just an increase in the temperature 
of a water hydro plant (which will not immediately lead to catastrophic results), then this constraint should 
have a lesser value of criticality. Note that, with the above definitions, there is similarity in the concepts of 
HRT constraints with low criticality and SRT constraints. 

As an overview, we present the heuristics of our automated derivation process of test elements. Further 
details are given next.  
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1. HRT constraints should be verified before SRT constraints. In other words, system components 
(networks or nodes) associated with the HRT constraints should be stress tested before those 
components related with the SRT constraints. The association relationship will be described below. 

2. Among HRT constraints, the constraints with higher criticality should be verified first.  
3. Among SRT constraints, the constraints with lower missing probability (missProb) should be 

verified first.  
4. For each HRT or SRT constraint, the total instant/interval data/message traffic for each of its 

associated networks and nodes can be calculated and sorted in the descending order. The 
suggested order to generate test elements is in the order of sorted components. 

A RT constraint (hard or soft) is said to be associated with a system component (networks or nodes), if the 
network behavior of the component affects the duration of the constraint. We derive such associations of a 
constraint from MIOD or SD if the constraint is MIOD-level or SD-level, respectively. For example, 
consider the MIOD-level constraint SRTC1 and SD-level constraints HRTC1 and SRTC2, shown in Figure 
62.  

SD1

:o1
{node = n1}

:o2
{node = n2}

m1

«HRT»
{duration<(1000,'ms'),
criticality=1}

SD2

:o1
{node = n1}

:o2
{node = n2}

m1

«SRT»
{duration<(1300,'ms'),
missProb<(0.2)}

r2

:o3
{node = n3}

m2

r1

SD1

SD2

(a) Part of a MIOD with a MIOD-
level SRT constraint

(b) A SD-level HRT constraint 
attached to one message

(c) A SD-level SRT constraint 
attached to several messages

«SRT»
{duration<(3500,'ms'),
missProb<(0.5)}

network1

network2n1 n2

n3

(d) System NIT

HRTC1

SRTC1 SRTC2

 
Figure 62-Association of RT constraints in SD and MIOD levels. 

According to our definition of “association” between RT constraint and network/nodes, the set of 
associated network/nodes for constraints SRTC1, SRTC2  and HRTC1 is shown in Table 7. To derive the 
associated networks of a constraint, we use the networkPath function to find the list of networks connecting 
two nodes in a NIT. For example the associated networks of constraint SRTC2 are: network1 and network2, 
since the path from node n2 to n3 goes through these networks in the NIT of Figure 62-(d). 

RT constraint Associated nodes and networks 
SRTC1 n1, n2, n3, network1, network2 
SRTC2 n1, n2, n3, network1, network2 
HRTC1 n1, n2, network1 
Table 7-Associated nodes and networks of the RT constraints in Figure 62. 

Now, let us return back to the heuristic to automate the derivation process of test elements. To better 
illustrate the idea, the list of heuristic can be depicted graphically in Figure 63. 

Figure 63 shows the general procedure to derive the order of test elements. Suppose this SUT has m HRT 
constraints (HRTC1, …, HRTCm), n HRT constraints (HRTC1, …, HRTCm), x networks, y nodes and k SDs. 
The table shown in Figure 63-(a) suggests an order of constraints to test. For each constraint in this order, 
the order of elements to test  

the associated set of networks/nodes can be derived as discussed above. To realize the last heuristics, we 
use a matrix, referred to as SD-Network Usage Matrix (SDNUM), an example of which is shown in Figure 63-
(b). In a SDNUM, each row corresponds to a network or a node in the SUT. SDNUM rows are divided in to 
groups: networks and nodes. Columns correspond to SDs of the SUT, where the last column is the 
summation of all the values in a row, i.e.:  
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Figure 63-Heuristics to Automate the Process of Test Elements Derivation. 

Each element of a SDNUM, corresponding to a SD M and a component c (network or node), is equal to the 
value of a network traffic function which is entailed by executing SD M on the component c. Based on the 
discussions in Section 9.5, all stress functions can used. This idea can be formalized with the BNF shown in 
Figure 64.  

))nod,SD(rMTDCCFPMaxNodBiPe(NodBiUMT|))nod,SD(rDTDCCFPMaxNodBiPe(NodBiUDT::)nod,SD(tionNodPerFunc

))net,SD(TDCCFPMaxNetPerM(NetUMT|))net,SD(TDCCFPMaxNetPerD(NetUDT::)net,SD(tionNetPerFunc
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Figure 64-BNF for the elements of SD-Network Usage Matrix (SDNUM). 

For example, we show here how the test order of test elements corresponding to Figure 62 can be derived. 
We derived the set of associated network/nodes for constraints SRTC1, SRTC2 and HRTC1 of the example 
of Figure 62 in Table 7. Let us assume functions MaxNetInsDTValue and MaxNodBiInsDTValue are chosen 
for the test elements derivation process. Let us further assume that the values of these functions for each 
pair of SDs and components (networks or nodes) are calculated as shown in Figure 65-(b). Using these 
values and the automatic test elements derivation process strategy, stated above, the order of test elements 
is shown in Figure 65-(a). The only HRT constraint HRTC1 is ordered before the SRT constraints SRTC1, 
SRTC2. SRT constraints are ordered in ascending order of their missing probabilities. For each constraint, 
the set of its associated networks/nodes are ordered in the descending order of the corresponding total 
function value, extracted from the SDNUM in Figure 65-(b). 
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Figure 65-An example showing how the automated test element derivation heuristics works. 
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Chapter 10  
 
GENETIC ALGORITHM-BASED STRESS TEST TECHNIQUE 

As discussed in Section 5.3, we consider three types of SD constraints in the current work: 
• Sequential constraints: Constraints which define a set of valid SD sequences.  
• Conditional constraints: Conditional constraints are related to sequential constraints and indicate 

the condition(s) that have to be satisfied before a sequence of SDs can be executed.  
• Arrival-pattern constraints: These constraints relate to timing of SDs, that is when a SD can start 

running. Considering each SD alone, it might only be allowed to be executed in some particular 
time instants.  

Our approach in considering the above set of constraints when generating stress test requirements was as 
the following. We proposed a test requirement generation technique, as an optimization problem, in 
Chapter 9 which took into account the first two types of constraints (sequential and conditional). The test 
technique was referred to as Time-Shifting Stress Test Technique (TSSTT). A more complex optimization 
algorithm, based on genetic algorithms, will be presented in this section which will consider all three types 
of constraints (sequential and conditional and arrival-pattern). The ideas of the optimization algorithm in 
this section are based on the main concepts of the TSSTT. 

We first discuss in Section 10.1 the types of arrival patterns presented by the UML-SPT profile and that we 
consider in this section. In order to study the arrival patterns and their impact on our test techniques, the 
timing characteristics of arrival patterns are analyzed in Section 10.2. Along with such timing 
characteristics, the concept of Accepted Time Sets is introduced in Section 10.3. Section 10.4 provides a 
general overview of the formulated optimization problem, which basically adds the arrival-pattern group 
of constraints to the optimization problem, presented in Section 9.7. Section 10.5 describes the impacts of 
arrival patterns on various stress test strategies (Section 9.5).  

Based on such impacts, we separate instant and interval stress test strategies with arrival patterns, and 
address them separately. The derivation of instant stress test requirements while considering arrival 
patterns is presented in Sections 10.6-10.7. Our choice of the optimization methodology is described in 
Section 10.6. By optimization methodology, we mean the type of optimization technique used for the stress 
technique derivation technique presented in this section, such as traditional techniques including Linear 
Programming (LP), Dynamic Programming (DP) and Branch and Bound (BB) or evolutionary algorithms such 
as Genetic algorithms and Ant Colony. For reasons explained below, genetic algorithms will be chosen as the 
optimization technique type and the optimization problem will be formulated to be solvable by a genetic 
algorithm in Section 10.7. Section 10.8 presents a variation of the TSSTT to derive interval stress test 
requirements.  

10.1 Types of Arrival Patterns 

Arrival-Pattern constraints (APC) relate to timing of SDs, that is when a SD can start running. APCs can be 
modeled using the UML-SPT profile, as explained in Section 2.4. 
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As proposed in Section 4.2.2 of the UML-SPT profile [10], RTarrivalPattern tagged-values can be used to 
model the pattern in which a SD is triggered. Five arrival patterns are defined in [10] using the following 
BNF (Backus-Nauer Form) forms: 

§ <bounded> ::= ‘bounded’, <time-value>, <time-value> 

Describes a bounded inter-arrival pattern, where the left time value is the minimal interval between 
successive arrivals and the one on the right is the maximum; both values are expressed using the 
RTtimeValue type. RTtimeValue type is another tagged-value which is a general format in the UML-SPT 
profile [10] for expressing time value expressions, e.g. (20, ms). 

For example, (‘bounded’, (2, ms), (5, ms)) specifies a bounded pattern where the minimum and 
maximum time distances between successive arrivals are 2 ms and 5 ms, respectively. An event timing 
such as <0, 3, 7, 9, 15, 16>, where all times values are in ms, satisfies the arrival pattern. 

§ <bursty> ::= ‘bursty’, <time-value>, <integer> 

The BNF describes a bursty inter-arrival pattern, where the time value is the burst interval expressed 
using the RTtimeValue type and the integer identifies the maximum number of events that can occur 
during that interval. 

For example, (‘bursty’, (5, ms), 2) specifies a bursty inter-arrival pattern where there can be up to two 
arrivals in every 5 ms interval. The event timing <0, 4, 6, 7, 12, 14>, where all times values are in ms, 
satisfies the arrival pattern.  

§ <irregular> ::= ‘irregular’, <time-value> [, <time-value>]* 

Describes an irregular inter-arrival pattern, where the ordered list of time values (expressed using the 
RTtimeValue type) represents successive inter-arrival times. 

For example, (‘irregular’, (1, ms), (5, ms), (6, ms), (8, ms), (10, ms)) specifies a irregular pattern where the 
arrivals occur at specified time instances. 

§ <periodic> ::= ‘periodic’, <time-value> [, <time-value>] 

Describes periodic inter-arrival patterns, where the left time value defines the period and the optional 
second time value represents the maximal deviation (from the period value). Both values are expressed 
using the RTtimeValue type. 

For example, (‘periodic’, (6, ms), (1, ms)) specifies a periodic inter-arrival pattern, where the period and 
the deviation values are 6 and 1 ms.  

§ <unbounded> ::= ‘unbounded’, <PDF-string> 

Describes a pattern specified by a Probability Distribution Function (PDF) defined in RTtimeValue in 
Section 4.2.2 of [10]. The types of PDFs supported are: Bernoulli, binomial, exponential, gamma, 
geometric, histogram, normal (Gaussian), Poisson, and uniform. Different PDF types are explained 
below with the corresponding modeling BNFs, the mathematical PDF formulas and an example graph 
of the PDF. 

o The Bernoulli distribution has one parameter, a probability p: 

<bernoulliPDF> ::= ‘bernoulli’, <Real> 
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o The binomial distribution has two parameters: a probability p and the number of trials N (a 
positive integer): 

<binomialPDF> ::= ‘binomial’, <Real>, <Integer>1 
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o The exponential distribution has one parameter, the mean value λ: 

<exponentialPDF> ::= ‘exponential’, <Real> 
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o The gamma distribution has two parameters (a positive integer h and a mean λ): 

<gammaPDF> ::= ‘gamma’, <Integer>, <Real> 
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o The histogram distribution has an ordered collection of one or more pairs which identify the 
start of an interval and the probability that applies within that interval (starting from the 
leftmost interval) and one end-interval value for the upper boundary of the last interval: 

<histogramPDF> ::= ‘histogram’, {<Real>, <Real>}*, <Real> 
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An example: 

‘histogram’, {(0ms,0.1)}, {(1ms,0.3)}, {(3ms,0.4)), 
{(5ms,0.2)},7ms 

o The normal (Gauss) distribution has a mean value µ and a standard deviation value σ (greater 
than 0): 

                                                             
1 This is written in the UML-SPT as <binomialPDF> ::= “ ‘binomial’ ,” <Integer>1, in page 4-33 of 
[10]. We have altered the BNF to conform to the PDF’s mathematical definition. 

(h,λ)=(1,1) 

(h,λ)=(1,2) 
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<normalPDF> ::= ‘normal’, <Real>, <Real> 
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o The Poisson distribution has a mean value v: 

<poissonPDF> ::= ‘poisson’, <Real> 
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o The uniform distribution has two parameters designating the start a and end b of the sampling 
interval: 

<uniformPDF> ::= ‘uniform’, <Real>, <Real> 
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10.2 Analysis of Arrival Patterns 

In order to study the arrival patterns and their impact on our test techniques, their timing characteristics 
should be analyzed. Furthermore, given an arrival time, we should be able to determine if it satisfies an 
arrival pattern (AP). Satisfying an AP, in this context, implies that an arrival time is possible given the AP. 

The pseudo-code, shown in Figure 66, determines if a DCCFP arrival time satisfies an AP. The AP can be 
any of these {‘bounded’, ‘bursty’, ‘irregular’, ‘periodic’, ‘unbounded’}. The pseudo-code is described in detail 
next. 

 
Figure 66- Pseudo-code to check if the arrival pattern AP is satisfied by an arrival time. 

Function IsAPCSatisfied(arrivalTime, AP) 
AP∈{‘bounded’, ‘bursty’, ‘irregular’, ‘periodic’, ‘unbounded’} 
1 If (AP=‘bounded’ ) 
2 If arrivalTime is in one of the intervals of the bounded pattern: Return True 
3 Else: Return False 
4 If (AP=‘bursty’): Return Ture 
5 If (AP=‘irregular’) 
6 If arrivalTime is one of the time values in the AP list: Return True 
7 Else: Return False 
8 If (AP=‘periodic’) 
9 If there exists an arbitrary integer k such that arrivalTime∈[kp-d… kp+d], where p and d are the period and the 

derivation values of the AP: Return True 
10 Else: Return False 
11 If (AP=‘unbounded’), i.e., AP has a Probability Distribution Function (PDF): Return True 
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If AP is bounded , the function returns true if the arrival time is inside the time intervals specified by the 
bounded pattern. Such a pattern is identified by a minimal and a maximal interval time (MinIAT, MaxIAT). We 
assume that MinIAT and MaxIAT of a bounded arrival pattern can not be equal. This is because if the two 
values are equal, the arrival pattern will be a periodic one. For example, a bounded AP where 
MinIAT=MaxIAT=3ms, is indeed a periodic arrival pattern with period=3ms. Consider a bounded arrival 
pattern with MinIAT=4ms and MaxIAT=5ms. The gray eclipses in the timing diagram in Figure 67 depict 
the Accepted Time Intervals (ATI) of the arrival pattern. ATI here means the time intervals where an arrival 
pattern is satisfied.  

0    1     2    3     4    5    6     7    8     9   10   11  12  13   14  15   16  17   18  19  20  21  22   23  24  25   26  27  28  29   30

time (ms)

...

Accepted Time Interval (ATI)

Legend

 
Figure 67-Accepted Time Intervals (ATI) of a bounded arrival pattern (‘bounded’, (4, ms), (5, ms)), i.e.  MinIAT=4ms, MaxIAT=5ms. 

Note that the ATIs of a bounded AP denote all possible arrival times, regardless of specific previous arrival 
times in a single scenario. The curved arrows in Figure 67 denote how a ATI is derived from the previous 
one. For the AP discussed above, assuming that the arrival pattern starts from time=0, the first ATI is 
[4..5ms]. If an event arrives in time=4ms, according to the fact that MinIAT=4ms and MaxIAT=5ms, the next 
event can arrive in interval [8…9ms]. Similarly, if an event arrives in time=5ms, according to the fact that 
MinIAT=4ms and MaxIAT=5ms, the next event can arrive in interval [9...10ms]. In a similar fashion, the 
value in between 4 and 5 ms will cause next arrival time to be in the range of [8…10ms]. Therefore, the 
second ATI is [8…10ms]. The next ATIs are [12…15ms], [16…20ms], [20…25ms], [24…30ms] and so on.  

If the arrival pattern is bursty, the function in Figure 66 always returns true. This is because any arrival time 
satisfies a bursty arrival pattern. For example, consider the arrival pattern (‘bursty’, (5, ms), 2), which 
indicates that there can be up to two arrivals in every 5 ms interval. The gray eclipses in the timing diagram 
in Figure 68 depict the Accepted Time Intervals (ATI) of this arrival pattern. 
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Figure 68-Accepted Time Intervals (ATI) of the bursty arrival pattern (‘bursty’, (5, ms), 2). 

As it can be seen, given a bursty pattern, a single arrival can happen in any time instance, with the 
constraint that number of arrival in the bursty interval is less than the specified number. For example, up to 
two arrivals can occur in any of the ATI’s of the above pattern. Furthermore, since our aim is to schedule 
only one DCCFP of a SD execution in a specific time instance (to generate a stress test requirement), we can 
choose any time instance.  

If the arrival pattern is irregular, the function returns true (indicating that arrival pattern constraints are 
satisfied), if the arrival time is one of the elements in the irregular pattern’s set. For example, (‘irregular’, (1, 
ms), (5, ms), (6, ms), (8, ms), (10, ms)) specifies a bursty pattern where the arrival occurs at time instances 
specified. In this case, if the arrival time is 5 ms, for example, the arrival pattern constraint is satisfied. Since 
the accepted arrival times for an irregular arrival pattern are not intervals, and rather time instants, we 
refer to them as Accepted Time Points (ATP). An example is shown in Figure 69. 
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...

 
Figure 69-Accepted Time Point (ATP) of the irregular inter-arrival pattern (‘irregular’, (1, ms), (5, ms), (6, ms), (8, ms), (10, ms)). 
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For a periodic arrival pattern, the arrival pattern constraints are satisfied if the start time falls in an interval 
around periods within the given deviation interval. For example, Accepted Time Intervals (ATI) of the 
periodic inter-arrival pattern (‘periodic’, (5, ms), (1, ms)) are shown in Figure 70. Only arrival times in any of 
the ATIs are accepted. 

0    1     2    3     4    5    6     7    8     9   10   11  12  13   14  15   16  17   18  19  20  21  22   23  24  25   26  27  28  29   30

time (ms)

...

 
Figure 70-Accepted Time Intervals (ATI) of the periodic interarrival pattern (‘periodic’, (5, ms), (1, ms)). 

If the arrival pattern is unbounded , the function IsAPCSatisfied in Figure 66 always returns true. Unbounded 
arrival patterns correspond to a Probability Distribution Function (PDF). As discussed in Section 10.1, such 
PDFs specify the probability which an arrival occurs in a specific time instance. For example, the PDF of 
(‘poisson’, (5, ms)) arrival pattern is shown in Figure 71. 

time (ms)0    1     2    3     4    5    6     7    8     9   10   11  12   13

P(time)

0.1

0.2

 
Figure 71-Probability Distribution Function (PDF) of (‘poisson’, (5, ms)) arrival pattern. 

Assuming that a first arrival occurs in 4 ms, the second arrival time is based on the above PDF, which can 
be any time after 4 ms, since the probability decreases as time goes by, but it never becomes zero. Other 
unbounded arrival patterns have similar behaviors to the poisson PDF, as discussed above. Therefore, any 
single arrival time satisfies an unbounded arrival patterns. 

10.3 Accepted Time Sets 

To facilitate our discussions in the next sections, we define the concept of Accepted Time Set (ATS) for each 
SD. An ATS is the set of time instances or time intervals when a SD is allowed to be triggered, according to 
its arrival pattern. An ATS can be derived from the arrival pattern of each SD. The ATS metamodel in 
Figure 72-(a) defines the fundamental concepts. 
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Constraints:
context ATS:
     if self.ati->size()>0 then
          self.atp->size()=0
     else if self.atp->size()>0 then
          self.ati->size()=0
     else if self.ati->exists(i|i.endTime->isEmpty()) then
          self.ati->size()=1

 
Figure 72-(a): Accepted Time Set (ATS) metamodel. (b): Three instances of the metamodel. 
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Each SD has an ATS. An ATS is made of several Accepted Time Points (ATP), for irregular and periodic 
(with no deviation) arrival patterns, or several Accepted Time Intervals (ATI), for the other arrival patterns. 
This is because irregular and periodic (with no deviation) arrival patterns specify the time instances when a 
SD can be triggered. On the other hand, all the other arrival patterns deal with time intervals. The mutual 
exclusion between ATIs and ATPs is shown by the OCL constraints (the first two if conditions) in Figure 
72-(a). Each ATI has a start time and an end time of type RTtimeValue (from the UML-SPT), denoting the 
start and end times of an interval. ATP is of type RTtimeValue too. End time of an ATI can be null, which 
denotes an ATI which has no upper bound (described below in more detail). 

Three instances of the metamodel are shown in Figure 72-(b). ATSbounded is the ATS corresponding to the 
arrival pattern whose timing diagram was shown in Figure 67. ATSirregular corresponds to the arrival pattern 
in Figure 69. ATS unconstrained is an ATS for SDs which do not have any arrival pattern, i.e., can be triggered 
any time.  

Our convention to represent an unconstrained ATS is to leave the end time of its only interval as null. 
Alternatively, we can use ∞ as the end time of the interval. However, as we use the RTtimeValue type (from 
the UML-SPT’s for time, we choose the first option (leaving the end time of an interval as null) to represent 
an unconstrained ATS, as ∞ is not supported in the UML-SPT. Such an ATS has only one ATI which starts 
from time 0 until ∞ (never ends). This constraints has been formalized by the last (third) if condition in the 
OCL expression in Figure 72-(a). Note that there can be what we refer to as partly-constrained ATSs such as: 

( ) ( ){ },,ms)(,,ms)(,,ms)(ATS strainedpartly-con 530=  

where the corresponding SD can be triggered in all times, except interval [3…5ms]. In such an ATS, there 
are more than one ATI where each ATI’s end time is null. However, modeling arrival patterns which lead 
to partly-constrained ATSs is not currently possible using the UML-SPT. Since we assumed the UML-SPT 
as the modeling language to model arrival patterns in this work, therefore we assume that there will not be 
any SD with a partly-constrained ATS. 

Our GA-based algorithm in Section 10.7 will require intersection of two ATSs. Therefore, in order to find 
the intersection of two ATSs, we define an intersection operator (∩) for any pair of ATSs. As discussed 
above, ATSs are sets of time intervals/values. The formula to calculate the intersection of two ATSs is given 
in Equation 9. For brevity, startTime and endTime have been replaced by s and e.  
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Equation 9-Intersection of two ATSs. 

The membership operators (∈) between an ATI/ATP and an ATS denote if an ATI/ATP is a member of an 
ATS. For example, considering the ATP (1,ms) in Figure 72-(a), (1,ms)∈ATSirregular. 

The output of the formula is the union of three sets: common ATPs, common ATPs in ATIs, and common 
ATIs of the two ATSs. Common ATPs set is self-explanatory. Common ATPs in ATIs are the set of ATPs in 
one ATS for which there exists an ATI in the other ATS, such that the point is inside the interval. The 
formula uses a newly-defined in-range (∠) function between a point and a time interval as: 

atiatpendTime.atiatpstartTime.ati:ATIATP,atiatp ∠⇔≤≤∈∈∀  
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Common ATIs of two ATSs are the overlapping intervals in both ATSs. The rationale for finding 
overlapping (common) intervals of two ATSs is shown in Figure 73. 

startTime1                        endTime1

startTime2      endTime2

startTime1

endTime2

Overlapping interval

ati1

ati2

ats1

ats2

 
Figure 73- Rationale for finding overlapping (common) intervals of two ATSs. 

Note that the union of the above three sets is allowed in the current context from the set theory point of 
view, since as the metamodel in Figure 72-(a) shows, ATS is a hybrid set of two element types: ATI and 
ATP. Therefore, a set of type ATIs together with another set of type ATPs can be the operands of an union 
operators, yielding an ATS. Two examples, showing how intersections of two ATSs can be calculated using 
Equation 9, are illustrated in Figure 74. 

0    1     2    3     4    5    6     7    8     9   10   11  12  13   14  15   

time (ms)

time (ms)

0    1     2    3     4    5    6     7    8     9   10   11  12  13   14  15

0    1     2    3     4    5    6     7    8     9   10   11  12  13   14  15 

time (ms)

time (ms)

0    1     2    3     4    5    6     7    8     9   10   11  12  13   14  15   

time (ms)

0    1     2    3     4    5    6     7    8     9   10   11  12  13   14  15

0    1     2    3     4    5    6     7    8     9   10   11  12  13   14  15 

time (ms)

 
Figure 74-Two examples showing how intersections of two ATSs can be calculated. 

Based on the definition of intersection between two ATSs, the intersection of several ATSs can be defined 
as: 

( )( ) nn atsatsatsatsatsats ∩∩∩=∩∩∩ KK 2121
 

10.4 Formulating as an Optimization Problem 

The problem of generating stress test requirements can be formulated as an optimization problem. The 
general formulated optimization problem is presented in Figure 75. This formulation has the same objective 
and variables as the formulated optimization problem of Chapter 9 (Figure 51), however the one here has 
one more constraint: SD arrival patterns. 

∩ 

∩ 

∩ 
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Figure 75-Formulating the problem of generating stress test requirements as an optimization problem. 

10.5 Impact of Arrival Patterns on Stress Test Strategies 

We discussed 32 stress test strategies such as: instant stress test towards a node with maximum data 
(StressNodInInsDT) in Section 9.5. We discuss here the impact of arrival patterns on those strategies and 
determine which strategies have to be tackled differently when considering arrival pattern constraints for a 
SUT. 

Since arrival patterns enforce constraints on the start times of SDs (and hence DCCFPs), they will have 
impact on TSSTT test strategies, which assume non-constrained start times for DCCFPs. Being more 
specific, since TSSTT test strategies were grouped into two categories in term of time (duration): instant and 
interval test strategies, we expect that arrival patterns will impact differently the two groups of strategies. 
By using the illustrations in Figure 76, we discuss below the impacts of arrival patterns on the two groups 
of strategies in terms of duration. 

10.5.1 Impact on Instant Stress Test Strategies 

As we discussed in Section 9.5, instant stress test strategies search among all ISDSs and find the one with 
maximum instant stress. Then the SDs of the selected ISDS are scheduled to yield the maximum stress. As 
an example, consider Figure 76-(a), where an ISDS with three SDs (SD1, SD2, and SD3) has been chosen and 
the SDs can be freely scheduled since none of them have arrival pattern constraints. Conversely, consider 
Figure 76-(b) with the same SDs, but this time, the SDs have arrival pattern constraints, as shown by the 
ATIs. Due to time constraints from ATIs, SDs can not be scheduled freely in any arbitrary time instants. The 
heuristics to find maximum possible stress while respecting arrival patterns, in this case, will be to search 
among the ATI of every SD and find a time instant when the summation of traffic values entailed by 
DCCFPs from all the SDs is maximized. One of such possible schedules is shown in Figure 76-(b). 

We now discuss the extent to which the impacts of arrival patterns complicate the optimization technique 
of the instant stress test strategies. As discussed above, deriving instant stress test requirements while 
considering arrival patterns need global search for an optimum result all across the ATSs of SDs with 
arrival patterns. SDs without arrival patterns (with unconstrained ATSs) do not need to be searched for a 
start time, since they can be scheduled anywhere in the time axis. 

10.5.2 Impact on Interval Stress Test Strategies 

We now discuss the impact of arrival patterns on interval stress test strategies. Interval stress test strategies 
(Section 9.5) aim at increasing the chances of traffic faults by invoking a sequence of SDs, referred to as 
Concurrent SD Flow Paths (CSDFP), which entails the maximum possible interval stress. A CSDFP is a 
path in a MIOD. It is assumed that each SD of a CSDFP is allowed to be invoked after all previous SDs in 
the sequence (a path in the MIOD). As to the scheduling of a SD with arrival pattern in a CSDFP, we 
assume that as soon as all the previous SDs were executed (thus satisfying the sequential constraints of a 
SD), the SD can start its first execution according to its arrival pattern. For example, consider Figure 76-(d), 
where a CSDFP with five SDs have been chosen and two of the SDs (SD2 and SD5) have arrival patterns. 
The flow of SDs in the CSDFP is as follows: 

Objective: Maximize the traffic on a specified network or node (at a time instant or a period of time) 
Variables:  

− A subset of DCCFPs (one DCCFP from each SD) with maximum traffic on a specified network or node 
− Schedule to run the selected DCCFPs 

Constraints:  
− Inter-SD sequential and conditional constraints 
− SD arrival patterns 
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As the CSDFP indicates, SD5 can start as soon as SD4 is finished. This is shown in Figure 76-(c), where no SD 
has arrival patterns and SD5 can start immediately as soon as SD4 is finished. However, in the case when 
SD5 has an arrival pattern, it cannot start until the first time instant in its ATS to start. Considering the fact 
that the goal of the interval stress test strategies is to maximize interval stress (maximize possible stress in 
the shortest possible time of a CSDFP), the impact of arrival patterns on interval stress test strategies will be 
that the optimization technique can only schedule each SD in its earliest ATS. SDs with arrival patterns can 
no longer start immediately after all their previous SDs (in the MIOD) have been completed. 
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Figure 76-Impact of arrival patterns on instant (a)-(b) and interval (c)-(d) stress test strategies. 

We now discuss the extent to which the impacts of arrival patterns complicate the optimization technique 
of the interval stress test strategies. Considering arrival patterns, interval stress test strategies need to 
account for the ATSs of SDs with arrival patterns. For such SDs, the earliest time points in their ATSs are 
considered (to cause the most stressful situation). Therefore, no complicated global search is required in 
this case. The time length of CSDFPs will increase in such a case, compared to the case when none of the SD 
of a CSDFP has an arrival pattern (refer to Figure 76-(c) and Figure 76-(d) as an example). 

To provide more insights, we now discuss why and how the test requirements generated by the TSSTT 
(Chapter 9) might not comply with SD arrival pattern constraints. We consider an example to illustrate the 
idea. We described in Section 2.4 how SD arrival patterns can be modeled using the UML-SPT profile 
tagged-values. Figure 77-(a) depicts two (partial) SDs, each having an arrival pattern constraint. We 
described in Section 10.1 the types of arrival patterns as presented by the UML-SPT profile and we consider 
in this section. The arrival pattern of SD1 in Figure 77-(a) is irregular, and it has three arrival times (10, 25 
and 70 ms). SD2 is periodic, where period=15 ms and the maximal deviation of the period is 2 ms. 

Based on the arrival pattern information of Figure 77-(a), and assuming that the maximum duration of 
DCCFPs of SD1 and SD2 are 15 ms and 10 ms, respectively, a timing diagram as the one in Figure 77-(b) can 
be drawn to show the effect of SD arrival pattern constraints on scheduling SDs. Arrival times of SD1 are 
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fixed, as specified by its arrival pattern. However, there can be up to a 2 ms deviation in the arrival time of 
SD2. For example, assuming that SD2  starts in time=0, its next arrival times can be 13-17 ms, 28-32 ms and 
so on. 

Based on arrival pattern information, we define the concept of Valid and Invalid SD Schedule (VSDS and 
IVSDS). Given a set of arrival patterns, a VSDS is a schedule of SDs (their start times) in which the start 
time of each SD satisfies its arrival pattern. For example, if we show a schedule of SDs in a similar notation 
as output stress test requirements in Section 9.10, <(SD1, 10 ms), (SD2, 14ms)>1 will be a VSDS. On the other 
hand, if the start time of any SD in a SD schedule does not satisfy its arrival pattern, the schedule is referred 
to as an Invalid SD Schedule (IVSDS). For example, <(SD1, 0 ms), (SD2, 0ms)> will be an IVSDS, considering 
the arrival patterns in Figure 77. These two schedules are visualized in Figure 77-(c). 

(a) Modeling SD arrival pattern constraints
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Figure 77-SD arrival pattern constraints. 

Now let us discuss why the outputs of the technique in Chapter 9 might not comply with arrival pattern 
constraints. Suppose that the control flow analysis of SD1 and SD2 have yielded two DCCFPs for each: 
DCCFP1,1 and DCCFP1,2 for SD1, DCCFP2,1 and DCCFP2,2 for SD1. Using the network traffic formalism 
presented in Chapter 8, assume the instant network data traffic (NetInsDT) function values in Figure 78-(a) 
for these four DCCFPs, which are entailed on a SystemNetwork. By applying the TSSTT technique in to this 
example to derive stress test requirements, we will get the test requirements in Figure 78-(b). Recalling that 
the technique first finds the maximum stress messages of each DCCFP, it then finds the DCCFP of each SD 
with highest maximum stress value. The last step (Step 3 in Algorithm 3) is to schedule DCCFPs such that 
the maximum stress messages happen at the same time. Note that scheduling DCCFPs is actually 
scheduling the SDs corresponding to DCCFPs, and having control flow of each SD to follow an specific 
DCCFP.  

By applying the scheduling step of the technique in Chapter 9 to the example in Figure 78, we will get 
<(DCCFP1,2, 0 ms), (DCCFP2,2, 0ms)> as the stress test schedule, which is equivalent to <(SD1, 0 ms), (SD2, 
0ms)>. However, as discussed above, such a schedule is an Invalid SD Schedule (IVSDS). This means that 

                                                             

1 Meaning that SD1 and SD2 start at time=10 and 14 ms, respectively. 
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triggering SDs with such a schedule violates the SD arrival patterns and may not be allowed in a SUT. 
Therefore, we see that the outputs of the technique in Chapter 9 might not comply with arrival pattern 
constraints. 

10.5.3 How Arrival Patterns are Addressed by Stress Test Strategies 

As discussed above, the impacts of arrival patterns on instant and interval stress test strategies are 
different. As we discussed, no complicated global search is required for the case of interval stress test 
strategies, while considering arrival patterns in instant stress test strategies needs global search for an 
optimum result all across the ATSs of SDs with arrival patterns.  

We separate the two cases, i.e., instant and interval test requirements, and address them separately. 
Derivation of instant stress test requirements while considering arrival patterns is presented in Sections 
10.6-10.7. Section 10.8 presents a variation of the technique in Chapter 9 to derive interval stress test 
requirements while preserving arrival patterns. 
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Figure 78-An example stress test requirement which is an invalid schedule, considering SD arrival patterns. 

10.6 Choice of the Optimization Methodology: Genetic Algorithms 

A variety of methods exist for solving optimization problems. Perhaps the most common techniques are 
linear and global optimization techniques. In linear optimization, or linear programming (LP) as it is more 
commonly known, the objective/fitness function, as well as all constraints, are linear functions of the 
decision variables to be solved. Linear programming solutions are optimal as the search is performed on 
flat regions, namely at the intersections of the constraints. Global optimization solutions, also known as 
meta-heuristic solutions, continually search for better solutions by altering a set of current solutions [72]. 
The solutions lie on an uneven solution space, characterized by multiple peaks and valleys. These peaks 
and valleys can result in locally optimum solutions; one where no other solution in the vicinity have better 
solutions. Global optimization solutions aim at avoiding local optima solutions, reaching global ones 
instead. Stimulated annealing, tabu search and genetic algorithms are among the most common global 
optimization solutions. 

For the test requirement generation problem at hand, which is actually a scheduling problem, the number 
of SDs and DCCFPs are not fixed. As the number of SDs and DCCFPs increases and their arrival patterns 
change, the different combinations representing solutions can grow exponentially. As a result, linear 
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programming cannot be used, as they would lead to combinatorial explosion problem [73]. Furthermore, 
for the scheduling problem at hand, any change in the number of SDs and DCCFPs or the execution times 
may cause great changes in the solution. The solution space of the problem is thus uneven, characterized by 
multiple peaks and valleys. A global optimization technique is thus needed. 

Genetic Algorithms (GA) are based on concepts adopted from evolutionary theory [74]. GAs involve a 
search from a population of solutions rather than a single solution like SA. With each iteration of a GA, 
solutions with the highest fitness are recombined and mutated, and solutions with the lowest scores are 
eliminated. Tabu search (TS) is another global optimization technique which avoids cycles by penalizing 
moves that take the solutions to points previously visited in the solution space. 

In the Stimulated Annealing (SA) method, each point of the search space is compared to a state of some 
physical system, and a so called energy function (to be minimized) is interpreted as the internal energy of 
the system in that state. Therefore the goal is to bring the system, from an arbitrary initial state, to a state 
with the minimum possible energy. 

At each step, the SA heuristic considers some neighbors of the current state s, and probabilistically decides 
between moving the system to state s' or staying put in state s. The probabilities are chosen so that the 
system ultimately tends to move to states of lower energy. Typically this step is repeated until the system 
reaches a state which is good enough for the application, or until a given computation budget has been 
exhausted [72].  

According to the global optimization literature, GAs and SA are very similar. Some studies, such as [75] 
indicate that SA outperforms GAs, while others, such as Chardaire et al. [76] claim that GAs produce 
solutions equivalent to or superior to SA. Most researchers, however, seem to agree that because GAs 
maintain a population of possible solutions, they have a better chance of locating the global optimum 
compared to SA and TS which proceed one solution at a time [77, 78]. Furthermore, because SAs maintain 
only one solution at a time, good solutions may be discarded and never regained if cooling occurs too 
quickly. Similarly, TS may miss the optimum solutions. Alternatively, steady state GAs, one of the 
variations of GAs, accept newly generated solutions if they are fitter than previous solutions. Furthermore, 
GAs lend themselves to parallelism. Because they manipulate whole populations with both mutation and 
crossover operators, they can readily be implemented on multiple processors. SA, on the other hand, 
cannot easily run on multiple processors because only one solution is constantly manipulated [77]. Hence, 
we adopt GA as our optimization technique methodology. An overview on Genetic Algorithms is provided 
in Appendix A. 

10.7 Components of the Genetic Algorithm to Derive Instant Stress Test Requirements 

A GA is used to solve the optimization problem of finding DCCFPs and their seeding times such that the 
maximum instant traffic on a network or a node increases. To solve the optimization algorithm for deriving 
instant stress test requirements, this section describes the different components of the GA, tailoring them to 
the problem. We define chromosomes representation in Section 10.7.1. Constraints (in the context of a 
chromosome) are formulated in Section 10.7.2. Derivation of the initial GA population is discussed in 
Section 10.7.3. The objective (fitness) function is described in Section 10.7.4. GA operators (crossover and 
mutation) are finally presented in Section 10.7.5. 

10.7.1 Chromosome  

Chromosomes define a group of solutions to be optimized. The representation of chromosomes and their 
length have to be defined in a GA algorithm [74]. We discuss the chromosomes representation of our 
application in Section 10.7.1.1. The chromosomes’ length is described in Section 10.7.1.2. 



Carleton University TR SCE-05-13 September 2005 

 

 107 

10.7.1.1 Representation 

In our application, the values to be optimized, or the genes of a chromosome, are the selected DCCFPs of 
SDs and their start times. Thus, we need to encode both DCCFP identifiers and their arrival times in a 
chromosome. 

A gene can be depicted as a pair (ρi,selected, αρi,selected), where ρi,selected is a selected DCCFP of SDi, and αρi,selected is 
the start time of the DCCFP. Together, the pair represents a schedule of a specific DCCFP. If no DCCFP is 
selected from a SD (because the SD does not have a traffic over a particular network, for example), the gene 
is denoted as null. This representation is same as the general form of a stress test requirement (the output of 
the technique in Chapter 9).  

The formal metamodel of chromosomes and genes in our GA algorithm is shown in Figure 79-(a). 
Chromosome is composed of a sequence of Gene ordered in the same order as SDs (Recall that we assume 
SDs are indexed). The Initialization, Crossover and Mutation operators are all defined in chromosome, as well 
as the objective function, Evaluate. These functions will be defined in Section 10.7.5.  

Each Gene has an association to zero or one DCCFP, and has two attributes startTime and 
numOfMutipleSDInstances. dccfp is a selected DCCFP of a SD and startTime is the time value to trigger dccfp, 
and is of type RTtimeValue (defined in the UML-SPT). numOfMutipleSDInstances is the number of multiple 
instances of the SD corresponding to the gene which are allowed to be triggered concurrently ((Section 5.4). 
Each DCCFP belongs to a SD, whereas each SD can have several DCCFPs. Each SD can be a member of 
several ISDS. Each ISDS can have one or more SDs. 

+Initialize()
+Mutate()
+Crossover()
+Evaluate()

Chromosome

-startTime: RTtimeValue
-numOfMultipleSDInstances:Int

Gene

-End3

1

-End4

*

Chromosome 

Gene Gene

(a) (b)

{ordered}

1..* *

(DCCFP1,2, 1, 2ms) (DCCFP2,2, 6, 9ms)

ISDS

SD

DCCFP

-End31 -End4*

-End31 -End4*
sd

isds

dccfp
-End31

-End4

*
0...1

1

1..*

*

*

*

sd

dccfp

 
Figure 79-(a): Metamodel of chromosomes and genes in our GA algorithm. (b): Part of an instance of the metamodel. 

Part of an instance (considering chromosome and gene only) of the metamodel is depicted in Figure 79-(b). 
The instance relates to the example in Figure 78. The chromosome is composed of two genes, since there are 
two SDs in the SUT in Figure 78. DCCFP1,2 and DCCFP2,2 are selected DCCFPs of SD1 and SD2, respectively. 
The genes indicate that the DCCFPs’ start times are 2 ms and 9 ms, respectively. 

10.7.1.2 Length 

The length of chromosomes in our application is fixed and is equal to the number of SDs in a SUT. This is 
due to the fact that each gene of a chromosome corresponds to a SD, and we have fixed number of SDs. 
Note that the numbers of multiple instances of SDs are kept in each gene. Furthermore, as discussed in 
Section 10.7.1.1, if no DCCFP is selected from a SD (because the SD does not have traffic over a particular 
network, for example), the corresponding gene is presented as null. Therefore, the chromosome length will 
not be affected in such cases. 

10.7.2 Constraints 

Inter-SD and arrival pattern constraints should be satisfied when generating new chromosomes from 
parents, otherwise, GA backtracking procedures [74] should be used to backtrack from a newly generated 
chromosomes which violates the constraints. Backtracking, however, has its drawbacks: it is deemed 
expensive as well as time consuming. Some GA tools incorporate backtracking while others do not. To 
allow for generality, we assume no backtracking methodology is available. Therefore, we have to ensure 
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that the GA operators always produce chromosomes which satisfy the GA’s constraints. In order to do so, 
we formally rephrase inter-SD and arrival pattern constraints in the context of our GA in this section. 

10.7.2.1 Constraint #1: Inter-SD constraints 

We incorporated inter-SD constraints in ISDSs (Chapter 7). A set of DCCFPs are allowed to be executed in a 
SUT only if their corresponding SDs are members of an ISDS. As discussed in Section 10.7.1.1, each 
chromosome is a sequence of genes, where each gene is associated with zero or one DCCFP. Therefore, a 
chromosome satisfies Constraint #1 only if the SDs of DCCFPs corresponding to its genes are members of 
the same ISDS. In other words, each chromosome corresponds to one ISDS. We can formulate the above 
constraint as an OCL expression as presented in Figure 80, which relates to the metamodel in Figure 79-(a). 

 
Figure 80- Constraint #1 of the GA (an OCL expression). 

10.7.2.2 Constraint #2: Arrival pattern constraints  

Given a chromosome, the OCL function in Figure 81 can be used to determine if the chromosome (the 
scheduling of its genes) satisfies the Arrival Pattern Constraints (APC) of SDs. The function 
IsAPCSatisfied(c :Chromosome) returns true if all genes of the chromosome satisfy the APCs. The OCL 
function makes use of the function IsAPCSatisfied(startTime, AP), defined in Section 10.2. Suppose 
AP(g.dccfp.sd) returns the arrival pattern information of the SD associated with the gene g. 

 
Figure 81-Constraint #2 of the GA (an OCL function). 

10.7.3 Initial Population 

We discuss in this section the initial population size of our GA and how it is generated. Determining the 
population size of the GA is challenging [72]. A small population size will cause the GA to quickly 
converge on a local minimum because it insufficiently samples the parameter space. A large population, on 
the other hand, causes the GA to run longer in search for an optimal solution. Haupt and Haupt in [74] list 
a variety of works that suggests an adequate population size. The authors in [74] reveal that the work of De 
Jong [79] suggests a population size ranging from 50 to 100 chromosomes. Grefenstette et al. [80] 
recommend a range between 30 and 80, while Schaffer and his colleagues [81] suggest a lower population 
size: between 20 and 30.  

However as discussed in Section 10.7.2.1, each chromosome in our GA corresponds to an ISDS. If the 
number of chromosome in the initial population is less than number of ISDSs in a system, as we will 
discuss in Section 10.7.5.1, our crossover operator can not guarantee that all ISDSs are searched. Therefore, 
the population size we apply is max(2.numOfISDS,80). We choose 80 as it is consistent with most of these 
findings, and twice the number of ISDSs is because we initialize two chromosomes from each ISDS. In case 

1 IsAPCSatisfied(c:Chromosome) 
2 post:  
3 if c.gene->exits(g|not IsAPCSatisfied(g.startTime,AP(g.dccfp.sd)) 
4 result=false 
5 else  
6 result=true 

1 Chromosome.allInstances->forAll(c| 
2 ISDS.allInstances->exits(isds| 
3 c.gene->forAll(g| 
4 if (g.dccfp.size()<>0) 
5 isds.sd->includes(g.dccfp) 
6 ) 
7 ) 
8 ) 
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one of them disappears due to the crossover operator, the other has a chance to stay and play the role of a 
parent. 

The GA initial population generation process should ensure that both two constraints of Section 10.7.2 are 
met. The pseudo-code to generate the initial set of chromosomes is presented in Figure 82. As discussed in 
Section 10.7.2, each chromosome corresponds to an ISDS. Furthermore, our intention is to include all ISDSs 
in the initial population. Therefore, assuming that ISDSs of a SUT are indexed, line 1 of the pseudo-code 
chooses the next ISDS in the sequence and the initialization algorithm continues with the selected ISDS to 
create an initial chromosome. 

For each SD in the selected ISDS, lines 2-3 choose a random DCCFP and assign it to the corresponding gene 
(i.e. genei corresponds to SDi). Other genes of the chromosome (those not belonging to the selected ISDS) 
are set to null (lines 4-5).  An initial scheduling is done on genes in lines 6-13. The idea is to schedule the 
DCCFPs in such a way that the chances that DCCFPs’ schedules overlap are maximized. This is done by 
first calculating the intersection of ATSs for SDs in the selected ISDS (line 6), using the intersection operator 
described in Section 10.2. If the intersection set is not null (meaning that the ATSs have at least one 
overlapping time instance), a random time instance is selected from the intersection set (lines 7-8). All 
DCCFPs of the genes are then scheduled to this time instance (line 10). For each such gene, line 11 sets the 
value for the number of multiple instances of the corresponding SD. 

If the intersection set is null, it means that the ATSs do not have any overlapping time instance. In such a 
case, the DCCFP of every gene is scheduled differently, by scheduling it to a random time instance in the 
ATS corresponding to its SD (lines 15-16). Following the algorithm in Figure 82, we ensure the initial 
population of chromosomes comply with both constraints of Section 10.7.2. 

 
Figure 82-Pseudo-code to generate chromosomes of the GA’s initial population. 

In the case when the intersection of SD ATSs is null, one might wonder whether there care still any 
possibilities to run SDs concurrently to have a maximum stress. The answer to this question is twofold: 

• Although the ATS intersection of all SDs in the selected ISDS is null, a subset of SDs might still have a 
non-null ATS intersection. Triggering these SD concurrently can lead to traffic faults. For example, 
consider the timing diagram in Figure 83, where the ATS intersection of three SDs (SD1 …SD3) is null. 
Although there is no single time instant, when the three SDs can be triggered concurrently, a subset of 

Function CreateAChromosome: Chromosome 
c: Chromosome 
1 ISDS=next ISDS in the sequence of ISDSs 

// selecting genes (DCCFPs) 
2 For all SDi∈ISDS 
3 c. gene i.dccfp= a random DCCFP from SDi  
4 For all SDi∉ISDS 
5 c. gene i=null 

// initial scheduling of genes (DCCFPs) 
6 Intersection=ATS(SD1) ∩ ATS(SD2) ∩… ∩ATS(SDi), where SDi∈ISDS 
7 If Intersection≠φ 
8 Choose a random time instance tschedule in Intersection 
 // schedule all genes’ start time to tschedule 
9 For all c. genei ≠null {  
10 c. gene i.startTime= tschedule 
11 c. gene i. numOfMutipleSDInstances=SDi. numOfMutipleSDInstances 
12 } 
13 Else // Intersection=φ, SDs of ISDS do not have overlapping start times 
  // schedule each gene with a random time in the ATS of its SD 
14 For all c. genei ≠null {  
15 c. gene i.startTime= A random time instance ti in ATS(SDi)  
16 c. gene i. numOfMutipleSDInstances=SDi. numOfMutipleSDInstances 
17 } 
18 Return c 



Carleton University TR SCE-05-13 September 2005 

 

 110 

them (SD1 and SD2 for example) have non-null ATS intersections, which allow them to be triggered 
concurrently. This situation can be made possible in a chromosome by our mutation operator (Section 
10.7.5.2), since as we will discuss, our mutation operator will shift each of the SD in its ATSs and the 
GA will then assess the new resulted offspring. 

• Another situation when the data-centric messages of a set of SDs with null ATS intersection might be 
triggered is when the execution of a SD is long enough such that it spans over the ATS intersection of 
other SDs. For example, SD3 in Figure 83 has been triggered in one of its allowed times and it has 
continued until the ATS intersection of SD1 and SD2. In such a case, messages from all three SDs 
overlap (in time domain) and thus triggering high stress scenarios is possible. Similar to the previous 
item, this situation can also be made possible in a chromosome by our mutation operator. 

SD2

SD1

SD3

SD3

SD2

SD1

ATS of a SD

Execution of SDi SDi

time

time

time  
Figure 83-An example where the ATS intersection of all SDs is null, but they can overlap. 

10.7.4 Objective (Fitness) Function 

Optimization problems aim at searching for a solution within the search space of the problem such that an 
objective function is minimized or maximized [72]. In other words, the objective function can aim at either 
minimizing the value of chromosomes or maximizing them. The objective function of a GA measures the 
fitness of a chromosome. Recall from Section 10.4 that our optimization problem is defined as: What 
selection and what schedule of DCCFPs maximize the traffic on a specified network or node (at a time instant)?  

Recall from Section 10.2 that we only apply our GA-based technique to instant test objectives. Therefore, let 
us refer to the objective function in this section as Instant Stress Test Objective Function (ISTOF).The ISTOF 
should measure maximum instant traffic entailed by a schedule of DCCFPs, specified by a chromosome. 
Using the network formalism in Chapter 8, we define ISTOF in Equation 10.  

Note that what we define below as the ISTOF formula is only for the stress test objective: location=network, 
direction=none, and type=data traffic. Depending on other values for those parameters of a test objective, 
ISTOF should be measured differently by simply using other network traffic usage functions from the set of 
functions defined in Section 8.5. 

( )])dccfp.g(LengthstartTime.g)startTime.g([eSearchRang
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Equation 10- Instant Stress Test Objective Function (ISTOF). 

where the first line indicates that the input and output domains of ISTOF are chromosomes and real 
numbers. Genes(c) is the set of genes in chromosome c. Length(dccfp) is a function to calculate the time 
length of a DCCFP. Such calculation was presented in Chapter 9 (Algorithm 4.). net is the given network to 
stress test. NetInsDT is the network traffic usage function to measure the instant data traffic (Section 
8.5.2.1). The value of the NetInsDT function is multiplied by the gene’s numOfMultipleSDInstances value. 
This is so because, when multiple instances of a DCCFP are triggered at the same time, the entailed traffic 
by the all instances of the same DCCFPs at each time instant will be multiplied by the number of them.. 
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The heuristic of the above ISTOF formula is that it tries to find the maximum instant data traffic 
considering all genes of a chromosome. The search is done in a predetermined time range. The starting 
point of the search is the minimum startTime (the start time of the earliest DCCFP), and the ending point of 
the range is the end time of the latest DCCFP, which is calculated by taking maximum values among start 
times plus DCCFP lengths. 

To better illustrate the idea behind the ISTOF, let us discuss how the ISTOF of the chromosome in Figure 
79-(b) is calculated. The calculation process is shown in Figure 84. The chromosome is given as the input on 
the left side, where the timed-traffic representations of the genes have also been depicted. The search range 
is [2ms…20ms]. The ISTOF sums the NetInsDT values in this range and finds the maximum value. The 
output value of the ISTOF is 110 KB. 
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Figure 84-Computing the Instant Stress Test Objective Function (ISTOF) value of a chromosome. 

10.7.5 Operators 

Operators are the ways GAs explore a solution space [74]. Hence, they must be formulated in such a way 
that they efficiently and exhaustively explore the solution space. If the application of an operator yields a 
chromosome which violates at least one of the GA’s constraints, the operation is repeated to generate 
another chromosome. This is an alternative to GA backtracking and is done inside each operator, i.e., each 
operator generates temporary children first and checks if they do not violate any constraints (Section 
10.7.2). If the temporary children satisfy all the constraints, they are returned as the results of the operator. 
Otherwise, the operation is repeated. 

Formulating operators is rather a difficult task, as genetic operators must maintain allowability. In other 
words, genetic operators must be designed in such a way that if a constraint is not violated by the parents, 
it will not be violated by the children resulting from the operators [82]. Furthermore, operators should be 
formulated such that they explore the whole solution space. We define the crossover and mutation 
operators next. 

10.7.5.1 Crossover Operator 

Crossover operators aim at passing on desirable traits or genes from generation to generation [74]. Varieties 
of crossover operators exist, such as sexual, asexual and multi-parent [1]. The former uses two parents to 
pass traits to the two resulting children. Asexual crossover involves only one parent and produces one 
child that is a replica of the parent. Multi-parent crossover, as the name implies, combines the genetic 
makeup of three or more parents when producing offspring. Different GA applications call for different 
types of crossover operators. We employ the most common of these operators: sexual crossover. 

The general idea behind sexual crossover is to divide both parent chromosomes into two or more 
fragments and create two new children by mixing the fragments [74]. Pawlowsky dubs this n-point 
crossover. In n-point crossover, the two parent chromosomes are aligned and cut into n+1 fragments at the 
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same places. Once the division points are identified in the parents, two new children are created by 
alternating the genes of the parents [83]. 

In our application, since each gene corresponds to a SD, we consider the fragmentation policy to be on each 
gene, making the size of each fragment to be one gene. Therefore, assuming n is the number of genes, the 
resulting crossover operator (using Pawlosky’s terminology [84]) is (n-1)-point, and is defined 
nPointCrossover. In our application, the mixing of the fragments is additionally subject to a number of 
constraints (Section 10.7.2). A newly generated chromosome should satisfy the inter-SD and arrival pattern 
constraints. We ensure this by designing the GA operators in a way that they would never generate an 
offspring violating a constraint. Whether the alternation process of the nPointCrossover operator starts from 
the first gene of one parent or the other is determined by a 50% probability. 

To further introduce an element of randomness, we alternate the genes of the parents with a 50% 
probability, hence implementing a second crossover operator, nPointProbCrossover. In nPointCrossover, the 
resulting children have genes that alternate between the parents. In nPointProbCrossover, the same 
alternation pattern occurs as nPointCrossover, but instead of always inheriting a fragment from a parent, 
children inherit fragments from parents with a probability of 50%. This can be visualized as a coin flip. 
When alternating the genes of each parent, a coin is flipped. Every time the coin lands on heads, the gene is 
inherited from one parent by the child. Otherwise, the gene is inherited from the other parent.  

It is important to note that, for both crossover versions, if the set of genes (their corresponding SDs) do not 
belong to an ISDS, constraint #1 (Section 10.7.2.1) will be violated. In such a case, we do not commit the 
changes and search for a different chromosome (by applying the operator again). Regarding constraint #2 
(Section 10.7.2.2), note that since the parents are assumed to satisfy the arrival pattern constraint, and the 
crossover operators do not change the start times of genes’ DCCFPs, the child chromosomes will for sure 
satisfy such constraint. The start times of DCCFPs will be changed (mutated) by our mutation operator 
(described in the next section) and the arrival pattern constraint will be checked when applying that 
operator. 

An activity diagram for depicting the crossover operators is shown in Figure 85. Note that the crossover 
operator function in the diagram can be any of the two nPointCrossover or nPointProbCrossover operators 
(specified by the operator type, given as a parameter to the activity diagram). 

Crossover 
Operator 
Function

Child 1

Child 2

Add to the 
Population

Satisfies 
constraint 1

Satisfies 
constraint 1

No

Remove Parent 1

Remove Parent 2

Discard

Discard

No

Crossover Operator 

Parent 1

Parent 2

Crossover operator type 
{nPointCrossover, 

nPointProbCrossover}

 
Figure 85-Activity diagram of the crossover operators. 

 

Let us consider the example in Figure 86 to see how our two crossover operators work. The number of 
genes in each parent chromosome is five (assuming that there are five SDs in the SUT). Assume that SD 
numbering is the same as gene numbering and ISDS1={SD1, SD3, SD4, SD5}. Parent 1 has genes 
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corresponding to SDs in {SD1, SD4, SD5}⊂ ISDS1. Parent 2’s genes are DCCFPs in {SD1, SD3, SD4}⊂ISDS1. 
The results of applying nPointProbCrossover and nPointCrossover are shown in Figure 86.  

In nPointCrossover, the fragments of Parent 1 and Parent 2 are alternately interchanged. Using the same 
example for nPointProbCrossover, one possible outcome appears in Figure 86. The coin flips are assumed to 
land on heads, tails, tails, tails, and then heads for the five successive fragments for both children. All four 
generated children conform to constraint 1 (i.e., the SD corresponding to their genes belong to one ISDS ( 
ISDS1)). 

The advantages of nPointProbCrossover are twofold. It introduces further randomness to the crossover 
operation. By doing so, it allows further exploration of the solution space. Furthermore, nPointProbCrossover 
is a generalized version of nPointCrossover; if the coin flip for each fragment alternates between tails and 
heads (in that order), we obtain nPointCrossover. However, nPointProbCrossover has its disadvantages. If the 
result of all coin flips in a given operation is always tails or always heads, the resulting children are replicas 
of the parents, with no alteration occurring. This is never the case with nPointCrossover; resulting children 
are always genetically distinct from their parents.  

Parent 1 (p1,1, 3ms) null

Parent 2

null (p4,1, 4ms) (p5,2, 7ms)

(p1,2, 2ms) null (p3,4, 5ms) (p4,2, 6ms) null

(p1,1, 3ms) null null (p4,2, 6ms) (p5,2, 7ms)

(p1,2, 2ms) null (p3,4, 5ms) (p4,1, 4ms) null

Child 1

Child 2

(p1,2, 2ms) null null (p4,1, 4ms) null

(p1,1, 3ms) null (p3,4, 5ms) (p4,2, 6ms) (p5,2, 7ms)

Child 1

Child 2

nPointProbCrossovernPointCrossover

 
Figure 86-Two example uses of the crossover operators. 

Crossover rates are critical. A crossover rate is the percentage of chromosomes in a population being 
selected for a crossover operation. If the crossover rates are too high, desirable genes will not be able to 
accumulate within a single chromosome whereas if the rates are too low, the search space will not be fully 
explored [74]. De Jong [79] concluded that a desirable crossover rate should be about 60%. Grefenstette et 
al. [80] built on De Jong’s work and found that crossover rates should range between 45% and 95%. 
Consistent with the findings of De Jong and Grefenstette, we apply a crossover rate of 70%. 

10.7.5.2 Mutation Operator 

Mutation aims at altering the population to ensure that the genetic algorithm avoids being caught in local 
optima. The process of mutation proceeds as follows: a gene is randomly chosen for mutation, the gene is 
mutated, and the resulting chromosome is evaluated for its new fitness. We define two mutation operators 
that mutate a non-null gene (a gene with an already assigned DCCFP) in a chromosome by altering either: 
(1) its DCCFP or, (2) its start time. The mutation operators are referred to as DCCFPMutation and 
startTimeMutation, respectively. 

The idea behind the DCCFPMutation operator is to choose different DCCFPs of the SD, corresponding to a 
gene. The idea behind the startTimeMutation operator is to move DCCFP executions along time axis.  The 
aim of the operators is to find the optimal DCCFPs and start times at which instant traffic of the selected 
genes (DCCFPs) is maximized. This is done in such a way that the constraints on the chromosomes are met 
(Section 10.7.2).  

Since the mutation operators alter non-null genes only, the set of SDs corresponding to a chromosome will 
not be altered by them. Therefore, there is no way for the altered chromosome to violate constraint 1. 
However, start times are changed by the mutation operator startTimeMutation. Hence it should be made 
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sure that the arrival pattern constraint (constraint 2) is upheld. The output of the DCCFPMutation operator 
will always adhere to constraint 2, since the start times are unchanged by the operator.  

One way of making sure that a generated chromosome by the startTimeMutation operator satisfies the 
arrival pattern constraints is to set the new start times to a random value in the range of accepted arrival 
time values of a SD, i.e., Accepted Time Sets (ATS) – (Section 10.2). Therefore, we design the 
startTimeMutation operator in such a way that the altered start times are always among the accepted one. In 
other words, there will be no need to backtrack in this case. The above descriptions of the two mutation 
operators can be illustrated as two activity diagrams in Figure 87 and Figure 88. 

Mutation rates are critical. Mutation rate is the percentage of chromosomes in a population being selected 
for a mutation operation. Throughout the GA literature, various mutation rates have been used to 
transform chromosomes. If the rates are too high, too many good genes of a chromosome are mutated and 
the GA will stall in converging [74]. Back [85] enumerates some of the more common mutation rates used. 
The author states that De Jong [79] suggests a mutation rate of 0.001, Grefenstette [80] suggests a rate of 
0.01, while Schaffer et al. [81] formulated the expression length/. λ751  (where ? denotes the population 
size and length is the length of chromosomes) for the mutation rate. Mühlenbein [86] suggests a mutation 
rate defined by 1/length. Smith and Fogarty [87] show that, of the common mutation rates, those that take 
the length of the chromosome and population size into consideration perform significantly better than 
those that do not. Based on these findings, we apply the mutation rate suggested by Schaffer et al.: 

length/. λ751 . 

Choose a 
random gene

A randomly chosen gene g of  
chromosome c

DCCFPMutation Operator

A randomly chosen 
chromosome c

Replace g.dccfp with a 
randomly selected DCCFP 

from g.dccfp.sd 

DCCFP sets of SDs

New chromosome c

 
Figure 87-Activity diagram of the DCCFPMutation operator. 

Choose a 
random gene

A randomly chosen gene g 
of chromosome c

startTimeMutation Operator

A randomly chosen 
chromosome c

Replace g.startTime with a 
randomly selected start time from 

ATS(g.dccfp.sd)

DCCFP sets of SDs

New chromosome c♦

 
Figure 88-Activity diagram of the startTimeMutation operator. 

10.8 Interval Stress Test Strategies considering Arrival Patterns 

As discussed in Section 10.5, interval stress test strategies need to account for the ATSs of SDs with arrival 
patterns. For such SDs, the earliest time points in their ATSs are considered (to cause the most stressful 
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situation). Therefore, no complicated global search (such as the GA used for the instant stress strategies) is 
required in this case. The time length of CSDFPs will increase in such a case, compared to the case when 
none of the SD of a CSDFP has an arrival pattern (refer to Figure 76-(c) and Figure 76-(d) as an example). 
We present a modified version of Algorithm 4 in Sections 9.11.2 in Algorithm 8, referred to as 
APStressNetIntDT, which takes into account the arrival patterns. 

Where minAPDuration(aDCCFPS), in Step 2.1, is an extended version of the function Duration (presented in 
Section 7.2.3)  that calculates the minimum time length of a DCCFPS (DCCFP Sequence) given the arrival 
pattern of its SDs. Arrival pattern constraints are considered in this step, affecting the length of DCCFPSs, 
and hence helping the algorithm to find the DCCFPS with highest stress per time unit. BuildDCCFPS is 
function that builds a DCCFPS from the given CSDFPi using the given criteria: 

)net,SD(TDCCFPMaxNetPerD:CSDFPSD i∈∀ . The pseudo-code of minAPDuration() is shown in Algorithm 9 which 
is very similar to that of Duration(), presented in Section 7.2.3. The only difference is how the duration of an 
atomic CCFPS is calculated. The illustration in Figure 89 shows the impact of arrival patterns in the actual 
duration of a CCFP.  On the left-hand side of this figure, the duration of a CCFP has been calculated using 
Duration, since the CCFP’s corresponding SD does not have an arrival pattern. Conversely, the right-hand 
side of the figure shows the case when the corresponding SD of a CCFP has an arrival pattern. The ATIs of 
the arrival pattern are depicted.  In this case, the actual duration of the CCFP has been calculated using 
minAPDuration, which is the summation of the CCFP’s duration plus the minimum arrival time of the 
corresponding SD, based on its arrival pattern. 

 

Algorithm 8-Derivation of period stress test requirements for data traffic on a given network, considering arrival patterns 
(APStressNetIntDT). 

3. Find the DCCFP of each SD with maximum unit data traffic 

3.1. For each SDi   
3.1.1. For  each DCCFP ρij of SDi // Finding maximum stress message of each DCCFP 

Calculate Unit Data Traffic (UDT) of ρij, using:  

( )
)(Duration

)t,net,(NetInsDT
)net,(NetUDT

ij

t
ij

ij ρ

ρ
ρ

∑
=   

where )(Duration ijρ  is the time length of DCCFP ρij and can be calculated as: 

( )end.mmax)(Duration
)(CCFPmij

ijρ
ρ

∈∀
=  

where )(
ij

CCFP ρ  is the CCFP corresponding to DCCFP ρij. 

3.1.2. Among all DCCFPs ρij of SDi, find the one with maximum unit data traffic 

),(),(

:)(,
),(

maxmax

max
max netNetUDTnetNetUDT

SDDCCFP
netSDTDCCFPMaxNetPerD

ii

iiji
ii ρρ

ρρ
ρ

≥

∈∀
=  

If no DCCFP in SDi is found with the above criteria, the function returns null.  
4. Choose a CSDFP (Concurrent SD Flow Path) with maximum stress: // Inter-SD constraints are considered here  

4.1. For each CSDFPi  // Calculate each CSDFP’s Unit Data Traffic (UDT) 

( )( )netTMaxNetPerDCSDFPSBuildDCCFPionminAPDurat

tnetnetSDTDCCFPMaxNetPerDNetInsDT
netCSDFPNetUDT

i

CSDFPSD t
i

i

,,

),),,((
),(

∑ ∑
∈∀ ∀=  

where minAPDuration is an extended version of the function Duration (presented in Section 7.2.3)  that 
calculates the minimum time length of a DCCFPS (DCCFP Sequence) given the arrival pattern of its SDs. 
Arrival pattern constraints are considered in this step, affecting the length of DCCFPSs, and hence helping the 
algorithm to find the DCCFPS with highest stress per time unit. BuildDCCFPS is function that builds a 
DCCFPS from the given CSDFPi   using the given criteria: )net,SD(TDCCFPMaxNetPerD:CSDFPSD i∈∀ . 

4.2. Among all CSDFPs, find the sequences with maximum )net,CSDFP(NetUDT i
 and return it as output (CSDFPmax)   
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The idea is formulated in the calculation of the function earliestAT (arrival time) in Figure 90 which 
calculates the earliest arrival time of a SD given its arrival pattern.  If a SD does not have an arrival pattern, 
earliestAT returns 0, meaning that the SD can start immediately, given that its sequential/conditional SD 
constraints are satisfied. 

time (ms)

ccfp

ATIs of SDAP

minAPDuration(ccfp)

time (ms)

ccfp

Duration(ccfp)

Without arrival patterns With arrival patterns

earliestAT(SDAP)  
Figure 89-An illustration to show the impact of arrival patterns in the actual duration of a CCFP. 

 

 
Algorithm 9-Calculating the minimum duration of a Concurrent Control Flow Path Sequence (CCFPS), considering arrival 

patterns. 





= ∈∀

else;0

pattern arrivalan  has  if;)(min
)( )ATS(

SDatp
SDearliestAT SDatp  

Figure 90- Function returning the earliest arrival time of a SD based on its arrival pattern. 

For example, let us calculate the duration of the following CCFPS:  

4
3

2
1 ρ

ρ
ρ

ρ 







=CCFPS  

where each ρi is a CCFP of SDi. Assume the duration of each of the individual CCFPs is given as in Table 8. 
Also, the arrival patterns of SDi are also given in Table 8. The given arrival patterns can be analyzed using 
the discussions in Section 10.2 and 10.3 to get the Accepted Time Sets (ATS) of the SDs. The result of 
earliestAT(SD) for each SD is also shown. For example, since the AP of SD1 is bursty, its earliest arrival time 
can be 0ms. 

CCFP Duration 
(i.e. ( )endTime.m

CCFPSm∈∀
max ) 

 SD Arrival Pattern earliestAT(SD) 

CCFP1 2800 ms  SD1 (‘bursty’, (500, ms), 2) 0ms 
CCFP2 1300 ms  SD2 No arrival pattern 0ms 
CCFP3 1000 ms  SD3 (‘periodic’, (500, ms), (100, ms)) 400ms 
CCFP4 1000 ms  SD4 (‘bounded’, (500, ms), (600, 

ms)) 
500ms 

(a) (b) 

Table 8-(a): Durations of several CCFPs. (b): Arrival patterns of several SDs. 

9. Function minAPDuration(ccfps: CCFPS): integer 
10. if ccfps is atomic (only made of one CCFP) 
11. return ( ) ccfpsccfpSDearliestATendTimem ccfpsccfpsm

 of CCFPonly  the|)(.max =+
∈∀

 

12. else if ccfps is the serial concatenation of several CCFPSs (i.e., 
nccfpsccfpsccfps L1= ) 

13. return minAPDuration (ccfps1)+…+ minAPDuration (ccfpsn) 

14. else if ccfps is the concurrent combination of several CCFPSs (i.e., 
















=

nccfps

ccfps
ccfps L

1 ) 

15. return max(minAPDuration (ccfps1),…, minAPDuration (ccfpsn)) 
16. End Function 
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The call tree of the recursive algorithm minAPDuration applied to CCFPS is shown in Figure 91. Since the 
CCFPS1 is a serial concatenation of three CCFPSs itself, three recursive calls are made, whose results will be 

added upon return. One of these CCFPSs (









3

2

ρ
ρ ), is the concurrent combination of two CCFPs, therefore the 

maximum value of their durations are returned as the durations of this CCFPS and so on. For example 
minAPDuration(ρ3)=1000+400=1400ms. 























4

3

2
1 ρ

ρ
ρ

ρionminAPDurat

( )2ρionminAPDurat ( )3ρionminAPDurat

max

1400 ms1300 ms

1400 ms 1500 ms

5700 ms

2800 ms

( )1ρionminAPDurat ( )4ρionminAPDurat

+


















3

2

ρ
ρ

ionminAPDurat

+

 
Figure 91-Call tree of the recursive algorithm minAPDuration applied to a CCFPS. 
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Chapter 11  
 
TOOL SUPPORT 

To improve automation for the two stress test techniques (Time-Shifting Stress Test Technique (TSSTT) in 
Chapter 9, and Genetic Algorithm-based Stress Test Technique (GASTT) in Chapter 10), we implemented a 
prototype tool, referred to as GARUS (GA-based test Requirement tool for real-time distribUted Systems). Note 
that GARUS supports both GASTT and TSSTT. Although it is primarily implemented for GASTT, it can be 
used for TSTT as well. This is done by simply specifying that none of the SDs of a SUT have arrival 
patterns. This will be discussed in detail in Section 11.2. 

We used GAlib [1], an open source C++ library for GAs, in implementing GARUS. An overview on GAlib 
is presented in Section 11.1. Section 11.2 describes our tool. Section 11.3 reports how we validated test 
requirements generated by GARUS for a case study.  

11.1 GAlib 

The library used to implement our GA-based tool was GAlib [1]. GAlib was developed by Matthew Wall at 
the Massachusetts Institute of Technology. GAlib is a library of C++ objects. The library includes tools for 
implementing genetic algorithms to do optimization in any C++ program using any chromosome 
representation and any genetic operators. The library has been tested on multiple platforms, specifically 
DOS/Windows, MacOS and UNIX. It can also be used with parallel virtual machines to evolve populations 
in parallel on multiple CPUs. 

Figure 92 illustrates the basic 
GAlib class hierarchy. Only 
the major classes of the 
library are shown. For 
complete class listing, the 
reader is referred to [1].  

GAlib defines many options. 
It supports four types of 
genetic algorithms: simple, 
steady state, incremental and 
deme. The former three types 
are described in Appendix A. 
The deme genetic algorithm 
evolves multiple populations 
in parallel using a steady 
state algorithm. During each 
population, some individuals 
are migrated between the 
populations [1]. GAlib also 

GAScalingScheme

GANoScaling

GALinearScaling

GAPowerLawScaling

GASharing

GASigmaTruncationScaling

GASelectionScheme

GARankSelector

GARouletteWheelSelector

GATournamentSelector

GAUniformSelector

GASRSSelector

GADSSelector

GASUSSelector

GAGeneticAlgorithm

GASampleGA

GASteadyStateGA

GAIncrementalGA

GADemeGA

GAPopulation

GAStatistics

GAParameterList

GAGenome

GABinaryString GAList <T> GATree<T> GAArray<T>

GAListGenome<T> GATreeGenome<T>
GA1DArrayGenome<T>

GA2DArrayGenome<T>

GA3DArrayGenome<T>

GA1DBinaryStringGenome

GA2DBinaryStringGenome

GA3DBinaryStringGenome  
Figure 92-Basic GAlib class hierarchy (adopted from [1]). 
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supports various selection methods for choosing an individual for mutation and crossover. These include 
rank selection, roulette wheel, tournament, stochastic remainder sampling (SRS), stochastic uniform 
sampling (SUS) and deterministic sampling (DS).  

11.2 GARUS 

GARUS (GA-based test Requirement tool for real-time distribUted Systems) is our prototype tool for deriving 
stress test requirements. Section 11.2.1 presents the class diagram of GARUS. The overview activity 
diagram of GARUS is described in Section 11.2.2. The input/output file formats are presented in Section 
11.2.3 and Section 11.2.4, respectively. 

11.2.1 Class Diagram 

The simplified class diagram of GARUS is shown in Figure 93. The classes in the class diagram are grouped 
in two packages: TestModel and GA. The classes in the TestModel package store information about the test 
model of a SUT. The GA package includes the GA domain-specific classes, which solve the optimization 
problem and derive stress test requirements.  

One object of class TestModel and one object of class GASteadyState GA are instantiated in runtime for a 
SUT. The connection between the two packages (TestModel and GA) is via class DCCFP (in the TestModel 
package) and class GARUSGene (in the GA package). 

-End71 -End8*

ISDS

SD

DCCFP

-End71 -End8*

-End71 -End8*

-End71 -End8*

*     ISDSs

*     SDs

*     DCCFPs

*     NTUPs

GARUSGene

TestModel GA

+Initializer()
+Mutator()
+Evaluator()
+Comparator()
+nPointCrossover()
+nPointProbCrossover()

GARUSGenome

GAlib::GA1DArrayGenome

GAlib::GAGenome

-End7

1

-End8

*

UML-SPT::RTtimeValue

DCCFP
0..1

0..1     startTime

*  genes
[ordered]

time
1

NTUP

GARUS

GAlib::GASteadyStateGA

ga
-End71 -End8

*

genomes

+readTestModel()

TestModel

+initialize()
+evolve()

GAlib::GAGeneticAlgorithm

noAP

+getARandomArrivalTime()

AP

boundedAP

burstyAP

irregularAP

periodicAP

unboundedAP

arrivalPattern
1 

periodValue
deviationValue 

burstIntervalLength 
maxNumOfArrivals

minIAT
maxIAT
ATIs:List<ATI>

numOfPoints
points:List<unsigned int>

 
Figure 93-Simplified class diagram of GARUS. 

Abstract class AP in the TestModel package realizes the implementation of arrival patterns. Six subclasses 
are inherited from class AP, five of which correspond to the five types of arrival patterns (Section 10.1). 
Objects of type class noAP are associated with SDs, which have no arrival patterns. Due to the 
implementation details, this choice was selected instead of setting the arrivalPattern association of such SDs 
to null. Function getARandomArrivalTime() is used in the mutation operator of GARUS (Mutation() in class 
GARUSGenome) and, for each subclass of AP, it returns a random arrival time in the corresponding ATS 
(Section 10.3) according to the type of arrival pattern. 
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11.2.2 Activity Diagram 

The overview activity diagram of GARUS is presented in Figure 94. The test model of a SUT is given in an 
input file. GARUS reads the test model from the input file and creates an object named tm of type 
TestModel, initialized with the values from the input test model. Then, an object named ga of type 
GAlib::SteadyStateGA is created, such that tm is used in the creation of ga’s initial population (Section 10.7.3). 
Note that object ga has a collection of chromosomes of type GARUSGenome, and each object of type 
GARUSGenome has a ordered set of genes of type GARUSGene (refer to the class diagram in Figure 93). 
Furthermore, ga’s parameters (e.g. mutation rate) are set to the values as discussed in Section 10.7. 

GARUS then evolves ga using the overloaded GA mutator and crossover operators (Section 10.7.5). When 
the evolution of ga finishes, the tool’s task is done and the best individual of ga (accessible by 
ga.statistics().bestIndividual()) is saved in the output file, with a format explained in Section 
11.2.4. 

GARUS (GA-based test Requirement generator for real-time distribUted Systems)

Input File

Test Model of a 
SUT

Output File

Stress Test 
Requirements

Initialize an object of 
type 

GASteadyStateGA
Evolve ga

ga:GASteadyStateGA

Read the input file 
into an object of type 

TestModel

tm:TestModel

ga.statistics()
.bestIndividual()

 
Figure 94-Overview activity diagram of GARUS. 

11.2.3 Input File Format 

Input file provided to GARUS contains the test model (TM) of a SUT. As it was shown in Figure 8 
(overview of our model-based stress test methodology), a TM consists a CFM (including DCCFPs), inter-SD 
constraint (ISDSs) and network traffic usage patterns.  

Referring to Figure 8, stress test parameters are also considered be part of the input to our methodology. As 
discussed in Chapter 9, stress test parameters are in fact the type of stress test technique (e.g. 
StressTestNetInsDT and StressTestNodInIntMT) and a set of parameters specific to the technique (e.g. a node 
name and a period’s start/end times for the StressTestNodInIntMT stress test technique). Furthermore, as it 
was discussed in the algorithms and equations in Chapter 8, a test model can be filtered based on different 
attributes discussed in network traffic usage analysis (e.g. location, direction, and period).  

To simplify the implementation of GARUS, we assume that a TM has already been built from a given UML 
model and a set of test parameters by a test model generator. The TM is also assumed to be filtered by the 
given set of test parameters. For example, if test parameters are for a StressTestNetInsDT test strategy over a 
network net, all DCCFPs in the CFM and network usage pattern parts of a TM are assumed to have been 
filtered by that particular network. The input file is in a format to accommodate such filtered TM. The input 
file format consists of several blocks, each specifying different elements of a TM. GARUS input file format 
is shown using the BNF in Figure 95. 

The input file format can be best described using an example. An example input file is shown in Figure 96. 
Different blocks are separated with a gray highlight. The TM starts with a block of two ISDSs ISDS0 and 
ISDS1 (ISDSsBlock in Figure 95). For example, ISDS0 consists of three SDs: SD0, SD1, and SD2. 

The second block of the input file is SDs (SDsBlock in Figure 95). There are five SDs: SD0,…, SD4. Each SD 
line consists of a SD name, number of concurrent multiple instances allowed, followed by the number of its 
DCCFPs and their names. For example SD2 has two DCCFPs named p21 and p22. 



Carleton University TR SCE-05-13 September 2005 

 

 121 
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Figure 95-GARUS input file format. 

The third block is SD Arrival Pattern (AP) - 
(SDAPsBlock in Figure 95). Each line in this 
block consists of a SD name, followed by its AP 
type and a set of parameters specific to that AP 
type. For example, SD1 has a periodic arrival 
pattern. The period and deviation values of this 
periodic arrival pattern are 4 and 2 units of 
time. Note that units for all time values in an 
input file are assumed to be the same, and 
hence they are not specified. It is up to a user to 
interpret the unit of time. If the AP of a SD is 
bounded, the minimum and maximum inter-
arrival time (minIAT, maxIAT) are specified. In 
case when a SD has no arrival pattern 
(no_arrival_pattern keyword), or it is bursty or 
unbounded, no additional parameters need to 
be specified. This is because such APs do not 
impose any timing constraints in our stress test 
requirement generation technique. Refer to 
Sections 10.2 and 10.5 for further details. 

The last block in an input file is the 
DCCFPsBlock. The number of DCCFPs in a 
DCCFPsBlock, is equal to the sum of DCCFPs of all SDs, specified in the SDsBlock. For example, in the 
example input file in Figure 96, this total is equal to: 5 (SD0) + 3 (SD1) + 2 (SD2) + 1 (SD3) + 4 (SD4)=15. All 
15 DCCFPs have been listed, each following by its NTUP (Network Traffic Usage Pattern). The format for 
specifying NTUP of a DCCFP is described next. As discussed in Section 8.5, the NTUP of a DCCFP (with a 
fixed traffic location, direction and type) is a 2D function where the Y-axis is the traffic value and the X-axis 
is time. The non-zero values of a NTUP are specified in an input file. Each such value is specified by a pair 
consisting of the corresponding time and traffic values, and is referred to as a NTUPP (Network Traffic Usage 
Pattern Point). For example, NTUPPs of the NTUP in Figure 97 are: (1, 90), (3, 40), (4, 40), (8, 30), and (12, 

 
2 
ISDS0 3 SD0 SD1 SD2 
ISDS1 4 SD0 SD2 SD3 SD4 
5 
SD0 1 5 p01 p02 p03 p04 p05 
SD1 1 3 p11 p12 p13  
SD2 1 2 p21 p22  
SD3 1 1 p31  
SD4 1 4 p41 p42 p43 p44 
SD0 periodic 5 0 
SD1 periodic 4 2 
SD2 bounded 4 5 
SD3 no_arrival_pattern 
SD4 irregular 5 2 3 6 8 9 
p01 5 ( 2 10 ) ( 3 5 ) ( 6 7 ) ( 12 20 ) ( 15 9 ) 
p02 2 ( 1 5 ) ( 4 20 ) 
p03 3 ( 3 5 ) ( 5 10 ) ( 6 7 ) 
p04 2 ( 3 9 ) ( 6 35 ) 
p05 1 ( 5 40 ) 
p11 2 ( 4 4 ) ( 7 3.4 ) 
p12 3 ( 1 1 ) ( 2 9 ) ( 5 6 ) 
p13 5 ( 2 3 ) ( 5 4 ) ( 7 1 ) ( 9 6 ) ( 11 20 ) 
p21 1 ( 4 30 ) 
p22 4 ( 2 20 ) ( 3 10 ) ( 7 15 ) ( 9 30 ) 
p31 3 ( 3 3 ) ( 5 9 ) ( 7 20 ) 
p41 2 ( 4 20 ) ( 7 4 ) 
p42 6 ( 2 3 ) ( 5 6 ) ( 8 8 ) ( 10 1 ) ( 12 9 ) ( 15 10 ) 
p43 5 ( 4 2 ) ( 6 7 ) ( 10 5 ) ( 12 3 ) ( 15 2 ) 
p44 2 ( 4 32 ) ( 6 10 ) 
 

Figure 96-An example input file of GARUS. 
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50). For example, in the input file in Figure 96, p41 has two NTUPPs: (4, 20) and (7, 4). The “,” symbol 
between time and traffic values is eliminated in the input file to ease the parsing process. 

0    1    2    3     4    5    6     7    8     9   10   11  12  13   14 

NetInsDT(p,Network,t) 

t (ms)

100

K
B

90

40 40 30
50

 
Figure 97-An example NTUP of a DCCFP. 

11.2.4 Output File Format 

GARUS exports the stress test requirements to an output file, whose name is specified in the command line. 
If no output file name is given by the user, the output is simply printed on the screen. Furthermore, 
standard GAlib statistics are also exported to the output file. GAlib standard statistics include number of 
selections, crossovers, mutations, replacements and genome evaluations since initialization, as well as min, 
max, mean, and standard deviation of each generation. The main output is the stress test requirements, 
while GA statistics are just informative values for debugging purposes. The format of stress test 
requirements in an output file is shown in Figure 98-(a). An example set of stress test requirements is 
presented in Figure 98-(b), which is generated by GARUS for the input file in Figure 96.  

lueinteger vaan  timestress Max.
efloat valu aISTOF

start timeDCCFPSD

111

=
=

−−−−−−−−−−−−−−−−−−−−−−−−−−−

nSDsnSDsnSDs startTimeCFPNameSelectedDCSDName

startTimeCFPNameSelectedDCSDName
KKK

 

(a) 

 
SD DCCFP start time  
---- ---- ----------  
SD0 p04 10 
SD1 p12 14 
SD2 p21 12 
SD3 none 
SD4 none 
 
ISTOF=74 
Max stress time=16 

(b) 

Figure 98-(a): Stress test requirements format in GARUS output file. (b): An example. 

The first block of the output file is a stress test schedule which, if executed, entails maximum traffic. Each line 
in the first block of the output file corresponds to a SD of the SUT, and specifies a selected DCCFP with a 
start time to trigger. Refer to Section 9.10 for the formalized representation of a stress test requirement. For 
example, the example in Figure 98-(b) indicates that p04 of SD0, p12 of SD1, and p21 of SD2 should be 
triggered at start times 10, 14 and 12 unit of time, respectively. No DCCFPs have been specified to be 
triggered from SD3 and SD4. This is because a set of stress test requirements corresponds to an ISDS in a 
SUT, and as shown in Figure 96, the SUT has two ISDSs, where SD0, SD1 and SD2 are members of one of 
them. In other words, triggering all SDs SD0 …SD4 is not allowed in this SUT. Note that GARUS never 
schedules a DCCFP in a start time which is not allowed to be triggered, due to the arrival pattern of its 
corresponding SD. 

11.3 Validation of Test Requirements Generated by GARUS  

GARUS outputs the maximum traffic value and time by triggering SDs according to the given stress 
schedule. The maximum traffic value is in fact the objective function value of the GA’s best individual at 
the completion of the evolution process. The objective function was described in Section 10.7.4, and was 
referred to as Instant Stress Test Objective Function (ISTOF). The maximum traffic time is the time instant 
when the maximum traffic happens. For example the ISTOF value and the maximum traffic time for the 
SUT specified by the input file in Figure 96 are 74 (unit of traffic, e.g. KB) and 16 (unit of time, e.g. ms), 
respectively. 

A stress test 
schedule 
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Test requirements generated by GARUS can be validated in at least four ways: 

1. Satisfaction of ATSs by start times of DCCFPs in the generated stress test requirements: As explained in 
Section 10.7, each chromosome (including the final best chromosome) should satisfy this constraint, i.e., 
the start times of each DCCFP in the final best chromosome of the GA should be inside the Accepted 
Time Set (ATS) of its corresponding SD. 

2. Checking ISTOF values: As a heuristic, GAs do not guarantee to yield optimum results, and checking 
that the ISTOF value of the final best chromosome is the maximum possible traffic value among all 
interleavings is a NP-hard problem. It is, therefore, not possible to fully check the correctness of GA 
results. However, simple checks can be done to determine if, for example, GARUS has been able to 
choose the DCCFP with maximum traffic value among all DCCFPs in a SD. 

3. Repeatability of GA results across multiple runs: It is important to assess how stable and reliable the results 
of the GA will be. To do so, the GA is executed a large number of times and we assess the variability of 
the average or best chromosome’s fitness value. 

4. Convergence efficiency across generations towards a maximum: In order to assess the design of the selected 
mutation and cross-over operators, as well as the chosen chromosome representation, it is useful to 
look at the speed of convergence towards a maximum fitness plateau [88]. This can be measured, for 
example, in terms of number of generations required to reach the plateau. This can be easily computed 
as, for each generation, GAlib statistics provide min, max, mean, and standard deviation values. 

Using the above four metrics, we analyze the stress test requirements generated by GARUS using an 
example: the input file in Figure 96. To assess the variability of the GA’s outputs, it was run 1000 times. The 
variability in the objective function and start times as well as detailed information for the first five runs are 
reported in Table 9. The results from the entire 1000 runs are further discussed in Section 11.3.3, where we 
discuss the repeatability of our GA. As a time complexity indicator, the average execution time over all the 
runs, by running GARUS on an 863MHz Intel Pentium III processor with 512MB DRAM memory, was 
between 6 (minimum) and 10 seconds (maximum).  

Run # Generation # Mean Max 
(ISTOF) 

Min Deviation 

 

Best individual 

  

1 0 36.74 55 30 7.95  SD DCCFP start time 

 10 44.47 58 38 8.04  ---- ---- ---------- 

 20 52.46 61 41 8.44  SD0 p05 25 

 30 61.14 66 55 5.86  SD1 none  

 40 67.23 71 61 4.90  SD2 p22 21 

 50 71.43 79 70 4.21  SD3 p31 23 

 60 74.62 85 70 7.01  SD4 p42 2 

 70 82.03 88 72 8.95     

 80 90.00 90 90 0.00  ISTOF=90   

 90 90.00 90 90 0.00  Max stress time=30  

  100 90.00 90 90 0.00        

2 0 36.45 58 30 7.82  SD DCCFP start time 

 10 43.84 60 36 7.13  ---- ---- ---------- 

 20 51.23 65 41 6.97  SD0 p01 10 

 30 57.82 66 50 7.45  SD1 none  

 40 64.70 73 59 7.47  SD2 p21 8 

 50 72.52 76 62 7.44  SD3 p31 5 

 60 80.50 82 80 2.39  SD4 p44 8 

 70 81.34 84 80 3.78     

 80 83.78 86 80 5.58  ISTOF=92   
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 90 91.64 92 80 2.05  Max stress time=12  

  100 92.00 92 92 0.00        

3 0 36.93 49 30 7.98  SD DCCFP start time 

 10 45.36 50 39 7.94  ---- ---- ---------- 

 20 54.05 58 44 7.63  SD0 p04 15 

 30 62.35 68 52 6.93  SD1 none  

 40 70.01 72 65 3.46  SD2 p22 19 

 50 73.63 74 72 1.49  SD3 p31 14 

 60 75.00 75 75 0.00  SD4 p44 9 

 70 75.00 75 75 0.00     

 80 75.00 75 75 0.00  ISTOF=75   

 90 75.00 75 75 0.00  Max stress time=21  

  100 75.00 75 75 0.00        

4 0 37.03 53 30 8.04  SD DCCFP start time 

 10 45.37 58 37 8.94  ---- ---- ---------- 

 20 55.14 60 43 9.21  SD0 p05 15 

 30 66.63 69 52 7.08  SD1 none  

 40 73.29 78 70 4.22  SD2 p22 18 

 50 79.02 80 72 2.62  SD3 p31 13 

 60 80.00 80 80 0.00  SD4 p43 9 

 70 80.00 80 80 0.00     

 80 80.00 80 80 0.00  ISTOF=80   

 90 80.00 80 80 0.00  Max stress time=20  

  100 80.00 80 80 0.00        

5 0 37.54 55 30 8.44  SD DCCFP start time 

 10 45.60 58 39 7.50  ---- ---- ---------- 

 20 54.09 64 48 6.93  SD0 p05 5 

 30 61.67 66 52 6.32  SD1 none  

 40 68.42 69 65 2.52  SD2 p21 12 

 50 70.37 71 70 0.78  SD3 p31 11 

 60 71.14 72 70 0.99  SD4 p44 6 

 70 72.00 72 72 0.00     

 80 72.00 72 72 0.00  ISTOF=72   

 90 72.00 72 72 0.00  Max stress time=10  

  100 72.00 72 72 0.00        

 Table 9-Summary of GARUS results. 

11.3.1 Satisfaction of ATSs by Start Times of DCCFPs in the Generated Stress Test Requirements  

Our first validation check is whether the start times of the DCCFPs in the generated stress test requirements 
satisfy the ATSs of the corresponding SDs. In order to investigate this, we first derive the ATSs of the SDs 
in the test model of Figure 96. Consistent with discussions in Section 10.3, they are shown in Figure 99.  

For example, as SD0 has a periodic AP with period value=5 and zero deviation, its ATS comprises time 
instants 5, 10, 15 and so on. Since SD3 has no AP, therefore its ATS includes all the time instants from zero 
to infinity. As an example, the stress test schedule generated by run number 2 in Table 9 has been depicted 
in Figure 99. This stress test schedule includes p01 from SD0, no DCCFPs from SD1, p21 from SD2, p31 
from SD3, and p44 from SD4 to be triggered on time instances 10, none, 8, 5, and 8, respectively. The time 
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instant when the maximum traffic occurs (time=12) is depicted with a vertical bold line. The ISTOF value at 
this time is 92 units of network traffic. 

As it can be seen in Figure 99, the start times of all selected DCCFPs in the stress test schedule reside in the 
ATSs of the respective SDs. This is explained by the way the initial population of chromosomes is created 
(Section 10.7.3) and the allowability property of our mutation operator (Section 10.7.5.2). The start time of 
each DCCFP is always chosen from the ATS of its corresponding SD. This is achieved by building the ATS 
of each SD according to its type of AP when GARUS initializes a test model. Then, when a random start 
time is to be chosen for a DCCFP, method getARandomArrivalTime(), which is associated with a SD is 
invoked on an object from a subclass of the abstract class AP. Refer to Figure 93 for details. 

ATS of a SD

Execution of a 
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time...
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time
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p21
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Figure 99-ATSs of the SDs in the TM in Figure 96, and a stress test schedule generated by GARUS. 

11.3.2 Checking of ISTOF Values 

As a test to check if GARUS is able to choose the DCCFP with maximum traffic value among all DCCFPs of 
a SD, we artificially modify NTUPs of the DCCFPs in the test model of Figure 96 such that one DCCFP of 
each SD gets a much higher peak value in its NTUP. The modified values are shown in bold in Figure 100.  

For example, the NTUP value of p03 at 
time=5 was 10, whereas its new value is 
500. This value is an order of magnitude 
larger than all other NTUP values of other 
DCCFPs in SD0. We then run GARUS 
with this modified TM for a large number 
of times and see if the DCCFPs with high 
NTUP values are part of the output stress 
test schedule generated by GARUS. 

We executed GARUS 10 times with this 
TM, and the 10 schedules generated by 
GARUS had the format described in the 
following table, where x stands for values 
which changed across different runs. 

 
--DCCFPs 
p01 5 ( 2 10 ) ( 3 5 ) ( 6 7 ) ( 12 20 ) ( 15 9 ) 
p02 2 ( 1 5 ) ( 4 20 ) 
p03 3 ( 3 5 ) ( 5 500 ) ( 6 7 ) 
p04 2 ( 3 9 ) ( 6 35 ) 
p05 1 ( 5 40 ) 
p11 2 ( 4 4 ) ( 7 3.4 ) 
p12 3 ( 1 1 ) ( 2 900 ) ( 5 6 ) 
p13 5 ( 2 3 ) ( 5 4 ) ( 7 1 ) ( 9 6 ) ( 11 20 ) 
p21 1 ( 4 300 ) 
p22 4 ( 2 20 ) ( 3 10 ) ( 7 15 ) ( 9 30 ) 
p31 3 ( 3 3 ) ( 5 9 ) ( 7 700 ) 
p41 2 ( 4 20 ) ( 7 4 ) 
p42 6 ( 2 3 ) ( 5 6 ) ( 8 800 ) ( 10 1 ) ( 12 9 ) ( 15 10 ) 
p43 5 ( 4 2 ) ( 6 7 ) ( 10 5 ) ( 12 3 ) ( 15 2 ) 
p44 2 ( 4 32 ) ( 6 10 ) 
 

Figure 100-Modified DCCFPs of the test model in Figure 96. 
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SD DCCFP Start Time 

SD0 x x 

SD1 none  

SD2 p21 x 

SD3 p31 x 

SD4 p42 x 

   

ISTOF=1500 or 1520 

Max stress time=16 or 17 

As expected, DCCFPs p21, p31, and p42 were present in all 10 stress test schedules, thus suggesting that 
GARUS selects the correct DCFFPs. On the other hand, different DCCFPs from SD0 were reported in the 
output schedules. This can be explained as SD0’s ATS contains specific time points (5, 10, 15, and so on) 
and p03 (the modified DCCFP) will therefore not be able to have an effect on the maximum possible instant 
traffic (at time=16 or 17) since its modified NTUP point is at time=5.  

The reason why p12 (from SD1) is not selected in any of the outputs across different runs is that a set of 
DCCFPs are generated by GARUS as a stress test schedule only if the SDs corresponding to the DCCFPs 
belong to one ISDS. The set of SDs {SD0, SD1, SD2, SD3, SD4} does not belong to an ISDS. Furthermore, 
among all ISDSs (ISDS0={SD0, SD1, SD2} and ISDS1={SD0, SD2, SD3, SD4}) of the test model, the 
maximum instant traffic of ISDS1 has a larger value than that of ISDS0, thus not letting SD1 (and all of its 
DCCFPs) play a role in the output stress test schedules. 

11.3.3 Repeatability of GA Results across Multiple Runs 

To investigate the repeatability of GA results across multiple runs, Figure 101-(a) depicts the distributions 
of maximum ISTOF and stress time values for 1000 runs on the example. From the ISTOF distribution, we 
can see that the maximum fitness values for most of the runs are between 70 and 92 units of traffic. 
Descriptive statistics of the fitness values for the 1000 runs are shown in Table 10. Average and median 
values are very close, thus indicating that the distribution is almost symmetric. 

Min Max Average Median Standard 
Deviation 

65 112 81.66 81 7.05 

Table 10-Descriptive statistics of the maximum ISTOF values over 1000 runs. Values are in units of data traffic (e.g. KB). 

Such a variation in fitness values across runs is expected when using genetic algorithms on complex 
optimization problems. However, though the variation above is not negligible, one would expect based on 
Figure 101-(a) that with a few runs a chromosome with a fitness value close to the maximum would likely 
be identified. Since each run lasts a few seconds, perhaps a few minutes for very large examples, relying on 
multiple runs to generate a stress test requirement should not be a practical problem. 

Corresponding portions of max stress time values for one of the frequent maximum ISTOF values (75 units 
of traffic) have been highlighted in black in Figure 101-(b). As we can see, these maximum stress time 
values are scattered across the time scale (e.g., from 10 to over 20 units of time). This highlights that a single 
ISTOF value (maximum stress traffic) can happen in different time instances, thus suggesting the search 
landscape for the GA is rather complex for this type of problem. Thus, a strategy to further explore for 
comprehensive stress testing would be to try all (or a subset of) such test requirements in different time 
instances. Indeed, although the maximum ISTOF value in all such test requirements are the same, a SUT’s 
reaction to different test requirements might be different, since each test requirement triggers a different 
DCCFP (and hence set of messages) in a different stress time instance than others. This might lead to 
uncovering different RT faults in the SUT. 
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Figure 101-(a): Histogram of maximum ISTOF and stress time values for 1000 runs (b): Corresponding max stress time values for 
one of the frequent maximum ISTOF values. 

11.3.4 Convergence Efficiency across Generations 

Another interesting property of the GA to look at is the number of generations required to reach a stable 
maximum fitness plateau. The distribution of these generation numbers over 1000 runs is shown in Error! 
Reference source not found., where the x-axis is the generation number and the y-axis is the probability of 
achieving such plateau in a generation number. The minimum, maximum and average values are 20, 91, 
and 52, respectively. Therefore, we can state that, on the average, 52 generations of the GA are required to 
converge to the final result (stress test requirement). The variation around this average is limited and no 
more 100 generations will be required. This number is in line with the experiments reported in the GA 
literature [74] but is however likely to be dependent on the number and complexity of SDs as well as their 
ATSs. 
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Figure 102-Histogram of the generation numbers when a stable maximum fitness plateau is reached in 1000 runs of the example by 

GARUS. 

From the initial to the final populations, the maximum fitness values typically increase by about 80%, 
which can be considered a large improvement. So, though we cannot guarantee that a GA found the global 
maximum, we clearly generate test requirements that will significantly stress the system.  
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Chapter 12  
 
CASE STUDY 

A comprehensive case study is presented in this section. An overview of target systems of our stress test 
technique is described in Section 12.1. Section 12.2 discusses the requirements of a suitable target system as 
the case study. As discussed in Section 12.2, none of the systems in our survey meets the requirements. 
Therefore, we developed a prototype system introduced in Section 12.3, based on actual specifications. The 
system is referred to as SCAPS (A SCADA-based Power System). The UML design model of SCAPS is also 
given in Section 12.3. Derivation of network-aware stress test requirement and cases for SCAPS are 
explained in Section 12.4. Section 12.5 presents the stress test architecture used in our case study. Some 
descriptions of the stress test execution environment are given in Section 12.6. Test results are reported in 
Section 12.7, where we assess the effectiveness of our stress test technique at triggering network traffic-
related failures.  

12.1 An Overview of Target Systems 

Our stress test technique can be used to stress test systems which are distributed, hard real-time, and 
safety-critical. We present a brief introduction here on two important groups of such systems. 

1. Distributed Control Systems (DCS) 
2. Supervisory Control and Data Acquisition (SCADA) Systems 

Although some systems can fall in both the DCS and SCADA categories, it is more convenient to discuss 
them separately. 

12.1.1 Distributed Control Systems 

Distributed control systems (DCS) [89] are computer-based control systems where several sections of plant 
have their own processors, linked together to provide both information dissemination and manufacturing 
coordination. DCS systems are used in industrial and civil engineering applications to monitor and control 
distributed equipment with remote human intervention. 

DCS systems are generally, since the 1990s, digital, and normally consist of field instruments, connected via 
wiring to computer buses or electrical buses to multiplexer/demultiplexers, analog to digital converters, 
and Human-Machine Interface (HMI) or control consoles.  

DCS is a very broad umbrella that describes solutions across a large variety of industries, including: 
• Electrical power distribution grids and generation plants  
• Environmental control systems  
• Traffic signals  
• Water management systems  
• Refining and chemical plants 
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12.1.2 Supervisory Control and Data Acquisition Systems 

SCADA stands for Supervisory Control And Data Acquisition. As the name indicates, SCADA systems are 
not full control systems (like DCS), but they rather focus on the supervisory level. As such, it is a software 
package that is positioned on top of hardware to which it is interfaced, in general via Programmable Logic 
Controllers (PLCs), or other commercial hardware modules [90]. SCADA systems interact with their 
controlled environment via input/output (I/O) channels. 

SCADA systems are used not only in industrial processes, e.g., steel making [91], power generation 
(conventional and nuclear) and distribution [92-96], chemistry and oil [97], but also in facilities such as 
nuclear fusion [98, 99]. The size of such plants ranges from a few to several thousands I/O channels. 
However, SCADA systems evolve rapidly and are now penetrating the market of plants with a number of 
I/O channels of several 100 K. 

SCADA and DCS are related but they are different in important ways. DCS is process-oriented as it focuses 
at the control process (such as a chemical plant), and presents data to operators. On the other hand, 
SCADA is data-gathering oriented, where the control centre and operators are the main focus points. The 
remote equipment is merely there to collect the data--though it may also do some very complex process 
control. 

A DCS operator station is normally intimately connected with its I/O (through local wiring, field bus, 
networks, etc.). When the DCS operator wants to see information he usually makes a request directly to the 
field I/O and gets a response. Field events can directly interrupt the system and advise the operator.  

SCADA must operate reasonably when field communications have failed. The quality of the data shown to 
the operator is an important facet of SCADA system operation. SCADA systems often provide special event 
processing mechanisms to handle conditions that occur between data acquisition periods. A typical 
architecture of SCADA systems is shown in Figure 103. 

Dedicated Server

`

Client

`

Client

Controller Controller Controller Controller Controller

Ethernet

Data Server Data Server

...

 
Figure 103-A typical architecture of SCADA systems. 

12.1.3 Use of UML and OO Concepts in DCS and SCADA Systems 

As UML and OO-driven system development are getting more popular, recent DCS and SCADA systems 
are no exceptions. We survey here some of the recent works on DCS and SCADA systems which use UML 
and OO concepts in their design.  

Stojkovic and Vujosevic [100] report a prototype SCADA system for a smaller size electric power plant. 
They refer to their prototype as a fast, object-oriented and cost-effective approach, which has been 
developed with Microsoft VisualBasic, a rapid application development environment under Microsoft 
Windows. 
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To address the need for fast, reliable and RT DBMSs (DataBase Management System) in SCADA and DCS 
applications, Wakizono et al. [101] present and evaluate an OO DBMS for process control systems. The 
authors evaluate the time taken to perform a typical complex DBMS query. As their comparisons show, the 
query execution time in the OO DBMS is much faster in than a rational DBMS. This quick DBMS response 
can be useful in many RT applications. 

Thramboulidis [102] presents a UML-based Engineering Support System (ESS) for Industrial Process 
Measurement and Control Systems (IPMCSs)1, where an OO notation is proposed along with a network 
topology and an internetworking unit architecture to form the infrastructure that is necessary for the 
development of the new generation ESSs. 

Thramboulidis [103] presents CORFU (a Common Object-oriented Real-time Framework for the Unified 
development of distributed IPMCS applications). As reported, this framework can assist process and 
system engineers in the development, configuration, and operation of distributed IPMCSs. 

Brown et al. [104] present a concept for integrating the embedded programming methodology Giotto [105] 
and the object-oriented Attitude and Orbit Control System (AOCS) framework [106] to create an 
environment for the rapid development of distributed software for safety-critical embedded control 
systems with hard real-time requirements of the kind typically found in aerospace applications. 

Brand et al. [107] present a case study on how to use the ObjectVIEW toolkit [108] within the graphical 
language LabVIEW [108] to execute a UML design model prior to system implementation. As an example 
of this approach, the application layer of the control system of the PHELIX (Petawatt High Energy Laser for 
heavy Ion eXperiments) [109] facility is presented. 

12.1.4 Failures and Disasters due to Overload 

Reports such as [110], [111], [112], [113] indicate the high risk of failures due to network overload, while 
[114] actually report failures and disasters which have happened due to network overload. 

12.2 Choosing a Target System as Case Study 

There are various distributed, real-time prototype systems in academia (e.g. [115], [116], [117]) and also real 
systems in industry (e.g. [118], [119], [120], [121]), which are currently in use.  

12.2.1 Requirements of a Suitable System 

We group the requirements of a suitable system (to be selected as our case study) into two groups: (1) 
system’s functional features and behaviors, and (2) its model requirements. 

A suitable case study should have the following functional features and behaviors: 
• Requirement 1: It should be a distributed, hard real-time system, and preferably safety-critical, in 

which deadline misses can lead to catastrophic results. This reason is because our stress test 
technique tries to force the system to exhibit distributed traffic faults which will, in turn, lead to 
(hard) real-time faults. 

• Requirement 2: The system should be preferably data-intensive. What we mean by a data intensive, 
in this context, is a distributed system in which most (or at least some) of the messages exchanged 
among distributed nodes usually have large data sizes. The rationale for this requirement is again 
due to the nature of our stress test technique, which tries to find the most data intensive distributed 
messages and produce schedules so that such messages run concurrently.  

                                                             

1 Similar to DCS systems 
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• Requirement 3: It should be possible to run a system in the typical hardware/software platform of a 
research institute. We can replace the embedded components and special hardware with test stubs 
or component simulators, if necessary. 

Since our stress test technique needs a SUT’s design model, a suitable case study should also meet the 
following requirements in terms of its model: 

• Requirement 4: Design model or source code of the system should be available. The design model 
can be built by reverse engineering the source code. However reverse engineering of UML models 
of a system from its source codes is usually costly for large systems. 

• Requirement 5: The design model should be in UML 2.0, since our test technique needs it to be so. 
Since UML 2.0 has enhanced compared to its previous versions, models based on UML 1.x can also 
be accepted. 

12.2.2 None of the Systems in our survey Meets the Requirements 

None of the existing systems we are aware of met all of the above requirements. We provide a brief, 
structured summary below:  

• Requirement 1: Not all distributed systems, we surveyed, were hard RT, safety-critical such as 
QADPZ (Quite Advanced Distributed Parallel Zystem) [115]. 

• Requirement 2: Similarly, a good target system should be data intensive. None of the systems, under 
study, which met other requirements met this one, such as the RT distributed factory automation 
system [116] which was RT, but not data intensive. 

• Requirement 3: Most systems need special software/hardware platforms to run on, which can not 
easily be deployed and executed in an academic institute, like ours. We are even flexible is 
replacing the embedded components and special hardware with test stubs or component 
simulators, if possible. However, doing this for a complex system is not easily possible, for example 
COACH (Component Based Open Source Architecture for Distributed Telecom Applications) 
[118]. 

• Requirement 4: The systems models/source codes are not freely available or even not available at 
all. The can be either due to being sensitive and classified information, such as JITC (The Joint 
Interoperability Test Command) [119] and [117], or systems are very expensive, such as 
CitectSCADA [120] and ElipseSCADA [121].  

• Requirement 5: As a corollary of our discussion on requirement 4, no UML 2.0 model of the systems 
in our selection pool was accessible. 

12.3 Our Prototype System: A SCADA-based Power System 

Because none of the systems we surveyed meet the requirements (Section 12.2.1), we decided to analyze, 
design, and build a prototype system by using the ideas and concepts from existing distributed system 
technologies.  

Section 12.3.1 presents an overview on SCADA-based power systems. We designed and developed a 
SCADA-based power system, which is described in Section 12.3.2. In Section 12.3.3, we discuss how and 
why SCAPS meets our case study requirements (described in Section 12.2.1). We present the SCAP’s UML 
design model in Section 12.3.4. Relevant implementation issues are presented in Section 12.3.5. Section 
12.3.6 provides a brief description of SCAP’s hardware and configuration. SCAPE is then used as the SUT 
in Section 12.4 by our stress test technique. 

12.3.1 SCADA-based Power Systems 

SCADA for power systems was developed in the 1960’s and has been improving ever since. The 
architecture of power SCADA systems has changed from the mainframe-dominated, centralized 
computing systems to network-based distributed computing in the early 1990’s [117]. A new class of 
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SCADA systems that is called open distributed systems [122] has been designed based on this new 
architecture. Fundamental features of open distributed systems that distinguish it from the previous design 
are the use of industry-standard, local area network (LAN) and the distribution of functions among several 
computers or workstations on a LAN or WAN (Wide Area Network).  

SCADA systems have been used in both nuclear and hydro power generation plants [95, 123] and 
distribution grids [92-94, 96, 100]. As discussed in Section 12.2.2, most of the SCADA power systems 
require dedicated and special-purpose hardware to run and none of the systems are made public (even 
those made for research purposes in articles). However, the overview descriptions of the SCADA systems 
are usually available. Figure 104 shows a typical SCADA model of a power distribution system [93].  

WAN Internet

s/s 
TC

s/s 
TC

s/s 
TC

s/s 
TC

SEV

SEV

Firewall

c/c
CL c/c

CL

c/c
CL

SEV

s/s 
TC

c/c
CL

c/c
CL

SEV: Sever
TC: Tele-Control unit
c/c: Control Center
s/s: Substation
CL: Client  

Figure 104-Power systems SCADA model [93]. 

The model consists of TCs (Te1e-Control units) that sends data of power system to servers. SCADA 
applications execute in servers. Clients (CLs) are used by operators in control centers (c/c) inside or outside 
the WAN. Operators monitor and control the power system through the software installed on clients. Each 
TC sends data related to the component of the power system to servers through WAN. Multicast 
communication based on IP is applied to the communication between TC and servers, and all servers can 
receive data from every TC. The location of servers is transparent to clients. Critical functions of SCADA 
can be installed in servers that can be backed up. WAN-based SCADA connects to the Internet through a 
firewall. Communication model between tele-control units (TCs) and servers (SEVs) in a SCADA system 
[93] is shown in Figure 105. 
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Figure 105- Communication model between tele-control units and servers in a SCADA system [93]. 

Power systems usually have a hierarchical operational organization [94]. A typical operational organization 
of power systems is shown in Figure 106. This helps to make them a good candidate for our case study, as 
they fit well to our discussions on Network Deployment Diagram and Network Interconnectivity Tree 
(NIT) in Section 5.5. 

Central Load Dispatching Office 

Nuclear and Thermal Power Stations

Regional Load Dispatching Offices

Transformer Substations

Local Load Dispatching Office 

Hydroelectric Power Stations

Transformer Substations  

Figure 106-A typical operational organization for power systems [94]. 

12.3.2 SCAPS Specifications 

We intend to design a SCADA power system which controls the power distribution grid across a nation 
consisting of several provinces. Each province has several cities and regions. Each city and region has 
several local power distribution grids. There is one central server in each province which gathers the 
SCADA data from Tele-Control units (TCs) from all over the province, installed in local grids, and perform 
the following real-time data-intensive safety-critical functions as part of the Power Application Software 
installed on the SCAPS servers: 

• Overload monitoring and control: Using the data received from local TCs, each provincial server 
identifies the overload conditions on a local grid and cooperates with other provinces’ servers to 
reduce the load on overloaded local grids. If the grid stays overloaded for several seconds and the 
load does not get decreased, a system malfunction is to occur, such as hardware damage and 
regional black-out. 

• Detection of separated power system: Any separated (disconnected) grid should be identified 
immediately by the central server, and proper precautions should be made to balance the 
regional/provincial/national load due to this black-out so that the rest of the system stays stable. 
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• Power restoration after network failure: Presents emergency strategies to prevent network disruption 
just after a network fault and later presents strategies and switching operation of breakers and 
disconnectors to restore power while keeping network’s reliability. 

It should be noted that we only focus on the real-time data-intensive safety-critical functions of the SCAPS 
here. Therefore, our stress test technique will be more effective in revealing faults if it is applied to such 
functions (use-cases) of a SUT. The above three are typical functions performed by SCADA power systems 
[93, 122], and will be shown in a use case diagram (Section 12.3.4), where we present the partial UML 
model of SCAPS. Some of the non real-time, non safety-critical functions of these systems, which we do not 
consider in our system, are [93, 122]: 

• State estimation: Estimates most likely numerical data set to represent current network 
• Load forecasting: Anticipates hourly total loads (24 points) for 1-7 days ahead based on the weather 

forecast, type of day, etc. utilizing historical data about weather and load. 
• Power flow control: Supports operators to provide effective power flow control by evaluating 

network reliability for each several-minute time period for the next several hours, considering 
anticipated total load, network configuration, load flow, and contingencies. 

• Data maintenance: Enables operator to modify database of power apparatus and network topology 
by drawing single line diagrams on the control screen and defining parameters. 

• Economical load dispatching: Controls generator outputs economically according to demand 
considering the dynamic characteristics of boiler controller of thermal power generators while 
keeping ability to respond quickly to sudden load changes. 

• Unit commitment of generator: A suitable schedule for starting/stopping the generators for the next 
1-7 days is made using dynamic programming. 

12.3.3 SCAPS Meets the Case-Study Requirements 

To justify our decision, we discuss below how SCAPS meets all the requirements in Section 12.2.1: 
• Requirement 1: SCAPS is a distributed, hard real-time, and safety-critical, as discussed in Section 

12.2.1. 
• Requirement 2: TCs send large amounts of information about the status and load of each component 

in their distribution grid to the provincial servers. SCAPS is therefore data-intensive.  
• Requirement 3: We design and build a SCAPS prototype, using the architecture of existing similar 

systems (Section 12.3.1). We had, however, to account for the limitation of our research center’s 
hardware/software platforms when designing and implementing the system in such a way to 
preserve the realism of our case study. For example, we did not have access to dedicated power 
distribution hardware such as load meters and sensors and we used stubs to emulate their 
behavior.  

• Requirement 4: We develop the SCAPS UML model and source code, hence ensuring we have a 
complete set of development artifacts.  

• Requirement 5: Our SCAPS models make use of UML 2.0. 

12.3.4 Partial UML Model 

Consistent with the SCAPS specification in Section 12.3.2, its partial UML model is provided below. What 
we mean by a partial model is one which mostly includes the model elements required by our stress test 
approach, as discussed in Chapter 5. The UML model, presented in this section, consists of the following 
artifacts:  

• Use-Case diagram: Although this diagram is not needed by our testing technique, we present it to 
provide the reader with a better understanding on the overall functionality of the system. 

• Network deployment diagram 
• Class diagram 
• Sequence diagrams 
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• Modified Interaction Overview Diagram (MIOD) 

12.3.4.1 Use-Case Diagram 

The SCAPS use-case diagram is shown in Figure 107. 
Real-time data- intensive

safety-critical

Overload
Monitoring (OM)

«uses»

Detection of
Separated Power System (DSPS)

Power Restoration
after Network Failure (PRNF)

Gathering data
from local TCs

«uses»

*

*

*

*

*

*

*

*

ASA (Automatic
System
Agent)

Overload Control
(OC)

OM_ON

OM_QC

«uses»

DSPS_ON

DSPS_QC

«uses»

«uses»

«uses»

«uses»

«uses» TCs (Tele-
Control units)

* *

 
Figure 107- SCAPS use-case diagram. 

We design SCAPS to be used in Canada. To simplify the design and implementation, we consider only two 
Canadian provinces in the system, Ontario (ON) and Quebec (QC). For example, OM_ON stands for 
overload monitoring for the province of Ontario; and DSPS_QC stands for Detection of Separated Power 
System (DSPS) for the province of Quebec. 

12.3.4.2 Network Deployment Diagram 

The Network Deployment Diagram (NDD) of SCAPS is shown in Figure 108. 

«network»
Ontario

TC_YOW1

«network»
Canada

«network»
Quebec

«network»
Ottawa

«network»
Toronto

TC_YOW2

TC_YOW3

TC_YYZ1

TC_YYZ2

«network»
Montreal

TC_YMX1

TC_YMX2

«network»
Quebec City

TC_YQB1

TC_YQB2

SEV_ON SEV_QC

SEV_CA2SEV_CA1

 
Figure 108- SCAPS network deployment diagram. 

The networks for the provinces of Ontario and Quebec are shown in the NDD. Only two cities are 
considered in each of these two provinces. Three TCs (Tele-Control units) are considered for the city of 
Ottawa, while other cities have two TCs. There is one server (SEV_ON and SEV_QC) in each of the 
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provinces. There are two servers (SEV_CA1 and SEV_CA2) at the national level. SEV_CA1 is the main 
server. SEV_CA2 is the backup server, i.e., it starts to operate whenever the main server (SEV_CA1) fails. 

12.3.4.3 Class Diagram 

Part of the SCAPS class diagram which is required to demonstrate the case study is shown in Figure 109. 
The classes are grouped in two groups: entity and control classes [47, 124]. Entity classes are those which 
are used either as parameters (by inheriting from SetFuncParameter) or return values (by inheriting from 
QueryFuncResult) of the method of control classes. Control classes are those from which active control 
objects will be instantiated and are the participating objects in SDs. All entity classes are data-intensive (by 
inheriting from Data-Intensive). Furthermore, since there are two main groups of use-cases (overload and 
separated grid handlers), we group entity classes by two abstract classes GridData and LoadData. LoadStatus 
and GridStatus are the results of function query in class TC and queryONData and queryQCData in 
ProvController class. LoadPolicy and GridStructure are the parameters of set functions setNewLoadPolicy and 
setNewGridStructure in class TC, respectively. For brevity, usage dependencies among classes have not been 
shown in the class diagram, e.g. from ProvController to QueryFuncResult. 

Tele-Control (TC) unit objects will be instantiated from class TC. Objects of class ProvController and ASA 
will be deployed on provincial (SEV_ON and SEV_QC) and national servers (the main server SEV_CA1 and 
the backup SEV_CA2), respectively. 

LoadData

Data-Intensive

GridData

LoadPolicyLoadStatusGridStructure GridStatus

+query(in dataType, out output:QueryFuncResult)
+setNewLoadPolicy (in policy:LoadPolicy)
+setNewGridStructure(in gs:GridStructure)

TC

+analyzeOverload(in load:LoadStatus)
+balanceLoadON(in loadON:LoadStatus, in loadQC:LoadStatus)
+balanceLoadQC(in loadON:LoadStatus, in loadQC:LoadStatus)
+buildNewGridStructureON(in gsON:GridStatus, in gsQC:GridStatus, out gs:GridStructure)
+buildNewGridStructureQC(in gsON:GridStatus, in gsQC:GridStatus, out gs:GridStructure)

ASA

+queryONData(in dataType, out output:QueryFuncResult)
+queryQCData(in dataType, out output:QueryFuncResult)

ProvController

QueryFuncResult

SetFuncParameter

Entity Classes

Control Classes

-End1*

-End2*

-End1*

-End2*

gridStatus loadStatus

 
Figure 109-SCAPS partial class diagram. 

12.3.4.4 Sequence Diagrams  

To render the effort involved in our case study manageable, we simplified the design model and 
implementation of SCAPS by only accounting for a subset of use cases and by implementing stubs 
simulating some of the functionality of the system. In doing so, we tried to emulate as closely as possible 
the behavior of real SCADA-based power systems..  

More precisely, we designed the SDs in ways that the simplifications did not impact the types of faults 
(e.g., RT faults) targeted by our stress test technique. We incorporated enough messages and alternatives in 
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SDs to allow the generation of non-trivial stress test requirements. Since we designed SCAPS as a hard RT 
system, we therefore modeled the RT constraint using the UML SPT profile [10] to extend the SDs. 

Eight SDs are presented in Figure 110-Figure 115. They correspond to use-cases in the SCAPS use-case 
diagram (Figure 107). SDs OM_ON and OM_QC in Figure 110 correspond to the overload monitoring use 
case. For example, an object of type ASA (Automatic System Agent) sends a message to an object of type 
ProvController (provincial controller) in SD OM_ON to query Ontario’s load data. The result is returned and 
is stored in ASAloadON. The object of type ASA then analyzes the overload situation by analyzing the 
ASAloadON. 

sd OM_ON

analyzeOverload(:ASA.loadON)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

ref
queryONData(“load”)

sd OM_QC

analyzeOverload(:ASA.loadQC)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_QC}

(a) (b)

queryONData(“load”)

:ASA.loadON

ref
queryQCData(“load”)

queryQCData(“load”)

:ASA.loadQC
{RTstart=(0,'ms')  
RTend=(100,'ms')}

{RTstart=(400,'ms')  
RTend=(1200,'ms')}

{RTstart=(1200,'ms')  
RTend=(1300,'ms')}

{RTstart=(0,'ms')  
RTend=(100,'ms')}

{RTstart=(300,'ms')  
RTend=(900,'ms')}

{RTstart=(900,'ms')  
RTend=(1000,'ms')}

 
Figure 110- SDs OM_ON and OM_QC (Overload Monitoring). 

The two SDs in Figure 111 (queryONData(dataType)) and Figure 112 (queryQCData(dataType)) are utility SDs 
which are used by the other SDs using the InteractionOccurrence construct. As it was shown in the Network 
Deployment Diagram (NDD) of SCAPS (Figure 108), five TCs (Tele-Control units) were considered for the 
province of Ontario. Therefore, there is a parallel construct made up of five interactions in the SD of Figure 
111 which queries the load data from each of the five TCs. Reply messages in queryONData(dataType) and 
queryQCData(dataType) have been labeled based on the name of the sender object. For example, the reply 
message YOW1 is a reply to the load query from the TC deployed on the node YOW1 (one of the TCs in the 
city of Ottawa). The entire load data of each province is finally returned by an object of type ProvController 
to the caller. 

sd queryONData(dataType)

:ProvController
{node = SEV_ON}

:TC
{node = TC_YOW1}

:TC
{node = TC_YOW2}

:TC
{node = TC_YOW3}

:TC
{node = TC_YYZ1}

:TC
{node = TC_YYZ2}

par
query(dataType)

YOW1 query(dataType)

query(dataType)

query(dataType)

query(dataType)

YOW2

YOW3

YYZ1

YYZ2

queryONData(dataType)
{RTstart=(50,'ms')  
RTend=(250,'ms')}{RTstart=(0,'ms')  

RTend=(50,'ms')}

{RTstart=(0,'ms')  
RTend=(50,'ms')}

{RTstart=(0,'ms')  
RTend=(50,'ms')}

{RTstart=(0,'ms')  
RTend=(50,'ms')}

{RTstart=(0,'ms')  
RTend=(50,'ms')}

{RTstart=(50,'ms')  
RTend=(400,'ms')}

{RTstart=(50,'ms')  
RTend=(280,'ms')} {RTstart=(50,'ms')  

RTend=(150,'ms')}

{RTstart=(50,'ms')  
RTend=(200,'ms')}

 
Figure 111-SD queryONData(dataType). 
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sd queryQCData(dataType)

:ProvController
{node = SEV_QC}

:TC
{node = TC_YMX1}

:TC
{node = TC_YMX2}

:TC
{node = TC_YQB1}

:TC
{node = TC_YQB2}

par
query(dataType)

YMX1 query(dataType)

query(dataType)

query(dataType)

YMX2

YQB1

YQB2

queryQCData(dataType)

{RTstart=(0,'ms')  
RTend=(100,'ms')}

{RTstart=(0,'ms')  
RTend=(100,'ms')}

{RTstart=(0,'ms')  
RTend=(100,'ms')}

{RTstart=(0,'ms')  
RTend=(100,'ms')}

{RTstart=(100,'ms')  
RTend=(300,'ms')}

{RTstart=(100,'ms')  
RTend=(200,'ms')}

{RTstart=(100,'ms')  
RTend=(200,'ms')}

{RTstart=(100,'ms')  
RTend=(200,'ms')}

 

Figure 112-SD queryQCData(dataType). 

OC (Overload Control) SD (Figure 113) checks if there is overload situation in any of the two provinces 
(using overloadIn() as a condition). If such a case has occurred in any of the two provinces, a new power 
distribution load policy is generated by an object of type ASA and it is sent to the respective provincial 
controller (using setNewLoadPolicy()). 

Similar to the OM_ON and OM_QC SDs, DSPS_ON and DSPS_QC SDs (Figure 114) fetch grid connectivity 
data from the provincial controllers and check to see if there is any separated power system (using 
detectSeparatedPS()). 

Similar to the OC SD (Figure 113), PRNF (Power Restoration after Network Failure) SD (Figure 115) checks 
if there is any separated power system in any of the two provinces (using anySeparationIn()as a condition). 
If such a case has occurred in any of the two provinces, a new power grid structure is generated by an 
object of type ASA and it is sent to the respective provincial controller (setNewGridStructure()). 

:ProvController
{node = SEV_QC}

sd OC

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

par

[overloadIn(:ASA:loadON)]

[else]

alt

newLoadON=balanceLoadON (:ASA.loadON, :ASA.loadQC)

setNewLoadPolicy(newLoadON)

[overloadIn(:ASA:loadQC)]

[else]

alt

newLoadQC=balanceLoadQC (:ASA.loadON, :ASA.loadQC)

setNewLoadPolicy(newLoadQC)

keepOldLoadPolicy ()

keepOldLoadPolicy()

{RTstart=(0,'ms')  
RTend=(300,'ms')}

{RTstart=(300,'ms')  
RTend=(1000,'ms')}

{RTstart=(0,'ms')  
RTend=(50,'ms')}

{RTstart=(0,'ms')  
RTend=(200,'ms')}

{RTstart=(200,'ms')  
RTend=(800,'ms')}

{RTstart=(0,'ms')  
RTend=(50,'ms')}

 
Figure 113- SD OC (Overload Control). 
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sd DSPS_ON

detectSeparatedPS(:ASA.connectivityON)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

sd DSPS_QC

detectSeparatedPS(:ASA.connectivityQC)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_QC}

(a) (b)

ref
queryQCData(“connectivity”)

queryQCData(“connectivity”)

:ASA.connectivityQC

ref
queryONData(“connectivity”)

queryONData(“connectivity”)

:ASA.connectivityON

{RTstart=(0,'ms')  
RTend=(100,'ms')}

{RTstart=(600,'ms')  
RTend=(1100,'ms')}

{RTstart=(1100,'ms')  
RTend=(1300,'ms')}

{RTstart=(0,'ms')  
RTend=(100,'ms')}

{RTstart=(500,'ms')  
RTend=(900,'ms')}

{RTstart=(900,'ms')  
RTend=(1100,'ms')}

 
Figure 114-SD DSPS_ON and DSPS_QC (Detection of Separated Power System). 

:ProvController
{node = SEV_QC}

sd PRNF

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

par

[anySeparationIn(:ASA:connectivityON)]

[else]

alt

newGSON=buildNewGridStructureON(:ASA.connectivityON, :ASA.connectivityQC)

setNewGridStructure(newGSON)

[anySeparationIn(:ASA:connectivityQC)]

[else]

alt

newGSQC=buildNewGridStructureQC(:ASA.connectivityON, :ASA.connectivityQC)

setNewGridStructure(newGSQC)

{RTstart=(0,'ms')  
RTend=(300,'ms')}

{RTstart=(300,'ms')  
RTend=(1000,'ms')}

{RTstart=(0,'ms')  
RTend=(50,'ms')}

keepOldGridStructure()

keepOldGridStructure()

{RTstart=(0,'ms')  
RTend=(400,'ms')}

{RTstart=(400,'ms')  
RTend=(1000,'ms')}

{RTstart=(0,'ms')  
RTend=(50,'ms')}

 
Figure 115-SD PRNF (Power Restoration after Network Failure). 

12.3.4.5 Modified Interaction Overview Diagram 

The MIOD of SCAPS is shown in Figure 116. As denoted in the SCADA-based power systems literature 
(e.g. [92-94, 96, 100]), such systems have both soft and hard RT constraints. As discussed in Section 5.6, RT 
constraints can be either specified at the SD level (on messages execution times) or at the MIOD level (on 
SDs execution times). MIOD-level RT constraints are dependent on SD-level constraints, since a SD’s actual 
execution time is the sum of the messages execution times in one of its CCFPs, which executes in a 
particular run.  
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OM_ON OM_QC
DSPS_ON DSPS_QC

OC

[overloaded
status]

[normal load]

PRNF

[any separated TC]

[no separated TC]

[system shutdown] [system shutdown]

OM_STARTUP

«HRTaction»
{duration<(1000,'ms'),
criticality=1}

«HRTaction»
{duration<(1000,'ms'),
criticality=1}

«SRTaction»
{duration<(1300,'ms'),
missProb<(0.5)}

«SRTaction»
{duration<(1300,'ms'),
missProb<(0.2)}

SRTC1

SRTC2

HRTC1

HRTC2

 
Figure 116-SCAPS Modified Interaction Overview Diagram (MIOD). 

We consider four MIOD-level RT constraints for SCAPS. Figure 116 shows two MIOD-level Soft RT (SRT) 
and two Hard RT (HRT) constraints for SCAPS. We model them using the extended stereotypes 
(«SRTaction» and «HRTaction») from the UML-SPT profile, as proposed in Section 5.6. The constraints are 
labeled with numbers to make it easier to refer to them later, and are explained below. 

1. SRT constraints 
a. SRTC1: Overload monitoring (concurrent runs of OM_ON and OM_QC) should be done in 

less than 1300 ms, with an acceptable missing probability of 0.2 (20%). In other words, this 
constraint must not be missed in more than 20% of the runs. 

b. SRTC2: Detection of separated power systems (concurrent runs of DSPS_ON and 
DSPS_QC) should complete within less than 1300 ms from its start time. We set the 
acceptable missing probability of this SRT constraint to 0.5. 

2. HRT constraints 
a. HRTC1: As soon as an overload situation is detected, overload control policy (OC SD) 

should be executed in less than 1000 ms. We assign criticality1=1 to this constraint. As 
discussed in Section 5.6, criticality of a HRT constraint ranges between 0 (for a HRT 
constraint with no critical consequences) to 1 (for a constraint with highly critical 
consequences). 

b. HRTC2: As soon as a separated power system is detected, the power restoration policy 
(PRNF SD) should be executed in less than 1000 ms. We assign criticality=1 to this 
constraint. 

12.3.5 Implementation  

SCAPS was developed using Borland Delphi2, which is a well-known IDE (Integrated Development 
Environment) for RAD (Rapid Application Development). Delphi is an Object-Oriented (OO) graphical 
toolset for developing Windows applications in Pascal programming language. Delphi was selected as it 

                                                             

1 As defined by UML SPT profile [10], criticality determines the extent to which the consequences of 
missing a hard deadline are unacceptable. 
2 www.borland.com/delphi 
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enables rapid development of prototype applications without spending extensive time on programming 
details.  

We developed only one Delphi application for SCAPS. The application asks the user for the node on which 
it is to run, e.g., SEV_CA1, SEV_ON, and TC_YOW1. Afterwards, the business logic of the application 
changes accordingly. For example, if SEV_CA1 is chosen, the application switches to the national server 
node, waiting for connections from provincial nodes. When different copies of the application on different 
nodes have been deployed and all nodes connections are in line, the system then starts functioning. A 
screenshot of the main screen of SCAPS is shown in Figure 117, where the application is running as a 
SEV_CA1 node and has just accepted a connection from the TC_YOW1 node.  

 

Figure 117-A screenshot of the main screen of SCAPS. 

We had to account for the limitation of our research center’s hardware/software platforms when 
implementing the system in such a way to preserve the realism of our case study. The parts of the system 
for which we had to incorporate stubs to emulate their behavior were: (1) dedicated power distribution 
hardware such as load and connectivity meters and sensors, which are parts of the TC actors (refer to the 
SCAPS use-case diagram in Figure 107), and (2) complex functionalities of the power application software, 
such as the analyzeOverload function in the ASA class to decide whether a load overload situation has 
occurred, given an instance of the LoadPolicy class (refer to the SCAPS class diagram in Figure 109). 

As to the design of stubs for the dedicated power distribution hardware, there was no need to try to 
emulate similar data to what is done in real systems, because as we will see in Sections 12.4 and 12.7, 
testing SCAPS in this work is based on triggering specific DCCFPs in specific time instances. To enforce 
SCAPS to execute specific DCCFPs, we found it easier, in terms of implementation and controllability, to 
embed a test driver component inside SCAPS than manipulating data values so that specific edges of 
decision nodes are taken. The test driver was responsible for guiding the control flow in each conditional 
statement to follow a specific edge specified by a test case. In terms of returned values by stubs for the 
dedicated power distribution hardware, for example function query() of class TC, they only return a 
random large data object.  

The implementation of stubs for complex functionalities of the power application software was also similar 
to that of the dedicated power distribution hardware. The results generated by such functions were not 
really needed in our context to execute test cases. However, we had to make sure the durations of such 
functions were as close as possible to real world situations. We made realistic assumptions in such cases 
using the power systems literature [92-94, 96, 100], e.g., we assumed that function analyzeOverload of class 
ASA takes 100 ms to run (refer to the SDs OM_ON in Figure 110). As we had embedded a test driver 
component inside SCAPS, we could easily use it to make the control flow take specific paths inside each 
stubbed function. 

12.3.6 Hardware and Network Specifications 

The SEV_CA1 server application was deployed on a PC with Windows XP, Pentium 4 2.80 GHz CPU, with 
2 GB of RAM and a 3COM Gigabit LOM network card. The Quebec server SEV_QC and its regional tele-
control units were deployed on a PC with Windows 2000, 2 GHz CPU, 1 GB of RAM, and a 3COM Fast 
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Ethernet Controller network card. The Ontario server SEV_ON and its regional tele-control units were 
executed as different applications on a Dell PowerEdge 2600 server with Windows 2000, two Pentium 4 
2.8GHz CPUs, and an Intel PRO/1000 XT network card. The LAN was a 100 Mbps network. 

12.4 Derivation of Network-aware Stress Test Cases 

Using the given UML design model in Section 12.3.4, we first derive the test model required by our test 
technique (Sections 12.4.1-12.4.5). We then consider three stress test objectives in Section 12.4.7. Section 
12.4.8 and Section 12.4.9 describe how the stress test requirements and test cases corresponding to the 
chosen test objectives are derived, respectively. 

12.4.1 Network Interconnectivity Tree 

The Network Interconnectivity Tree (NIT) of SCAPS can be derived from the Network Deployment 
Diagram (NDD) in Figure 108. The NIT is shown in Figure 118. 

Quebec

Canada

Toronto Quebec City

TC_YYZ1

Ottawa

Ontario

TC_YYZ2TC_YOW1 TC_YOW3TC_YOW2

SEV_ON SEV_QC

TC_YMX1 TC_YMX2

Montreal

TC_YQB1 TC_YQB2

SEV_CA1 SEV_CA2

 

Figure 118- SCAPS Network Interconnectivity Tree (NIT) . 

12.4.2 Control Flow Analysis of SDs 

We presented a technique in Chapter 6 to perform control flow analysis on UML 2.0 SDs. We presented the 
concept of CCFG (Concurrent Control Flow Graph) as a CFM (Control Flow Model) for SDs. We apply the 
technique on the SDs of Section 12.3.4.4. CCFGs shown in Figure 119 to Figure 124 correspond to SDs in 
Figure 110 to Figure 115. CCFGs have been labeled by following the convention: CCFG(SD_name). 

Since SD OM_STARTUP does not have any distributed message and has only one CCFP, it will not be 
relevant to our stress testing technique. Hence, there is no need to derive its control flow information.  

CCFG(OM_ON)

CCFG(queryONData)

:ASA.loadON=queryONData(“load”)

query(dataType)

YOW1

query(dataType) query(dataType)

YOW3

query(dataType)query(dataType)

YOW2 YYZ1 YYZ2

A2 A3 A4 A5 A6

A7 A8 A9 A10 A11

analyzeOverload(:ASA.loadON)

A13

queryONData(“load”)

A1

A12

 
Figure 119-CCFG(OM_ON). 
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CCFG(OM_QC)

CCFG(queryQCData)

:ASA.loadQCFD=queryQCFDData(“load”)

query(dataType)

YMX1

query(dataType) query(dataType)query(dataType)

YMX2 YQB1 YQB2

B2 B3 B4 B5

B6 B7 B8 B9

B10

B11

analyzeOverload(:ASA.loadQCFD)

queryQCData(“load”)

A1

 
Figure 120-CCFG(OM_QC). 

CCFG(OC)

[overloadIn
(:ASA:loadON)]

setNewLoadPolicy(newLoadON) setNewLoadPolicy(newLoadQC)

[overloadIn
(:ASA:loadQC)]

[else] [else]

C1
C2

C3 C4

newLoadON=balanceLoadON
(:ASA.loadON, :ASA.loadQC)

newLoadQC=balanceLoadQC
(:ASA.loadON, :ASA.loadQC)

keepOldLoadPolicy()keepOldLoadPolicy()
C5 C6

 
Figure 121-CCFG(OC). 

CCFG (DSPS_ON)

CCFG (queryONData)

:ASA.connectivityON=queryONData(“connectivity”)

query(dataType)

YOW1

query(dataType) query(dataType)

YOW3

query(dataType)query(dataType)

YOW2 YYZ1 YYZ2

D2 D3 D4 D5 D6

D7 D8 D9 D10 D11

D13

queryONData(“connectivity”)

D1

D12

detectSeparatedPS(:ASA.connectivityON)

 
Figure 122-CCFG(DSPS_ON). 
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CCFG(DSPS_QC)

CCFG(queryQCData)

:ASA.connectivityQC=queryQCData(“connectivity”)

query(dataType)

YMX1

query(dataType) query(dataType)

YQB1

query(dataType)

YMX2 YQB2

E2 E3 E4 E5

E6 E7 E8 E9

E10

E11

queryQCData(“connectivity”)

E1

detectSeparatedPS(:ASA.connectivityQC)

 
Figure 123-CCFG(DSPS_QC). 

CCFG(PRNF)

[anySeparationIn
(:ASA:connectivityON)]

setNewGridStructure(newGSON) setNewGridStructure(newGSQC)

[anySeparationIn
(:ASA:connectivityQC)]

[else] [else]

F1 F2

F3 F4

newGSON =buildNewGridStructureON
(:ASA.connectivityON, :ASA.connectivityQC)

newGSQC=buildNewGridStructureQC
(:ASA.connectivityON, :ASA.connectivityQC)

keepOldGridStructure()keepOldGridStructure()
F5

F6

 
Figure 124-CCFG(PRNF). 

12.4.3 Derivation of Distributed Concurrent Control Flow Paths 

Using the technique presented in Chapter 6, we derive the CCFPs and DCCFPs of the CCFGs shown in 
Figure 119 to Figure 124. The CCFPs and DCCFPs are shown in Figure 125. To ease future references, we 
assign SDi and ρi,j indices to SDs and the DCCFPs of each SD, respectively. Let us assign ρ0,0 to the only 
CCFP of SD OM_STARTUP, which does not contain any distributed message.  
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Figure 125-CCFP and DCCFP sets of SDs in SCAPS. 

12.4.4 Derivation of Independent-SD Sets  

Using the method in Section 7.1 and the SCAPS MIOD (Figure 116), we derive SCAPS Independent-SD Sets 
(ISDSs). We need to first derive the Independent-SDs Graph (ISDG) corresponding to the MIOD. Using the 
algorithm presented in Section 7.1.2, the ISDG shown in Figure 126 is derived from the MIOD of Figure 
116. Note that we do not include SD OM_STARTUP in this ISDT, since it does not have any distributed 
messages. 

As discussed in the algorithm presented in Section 7.1.2, every strongly connected component of an ISDG is 
an ISDS. By finding the strongly connected component of the ISDG in Figure 126, the Independent SD Sets 
of SCAPS can be derived. SCAPS has seven ISDSs: 

}PRNF,OC{ISDS
}QC_DSPS,ON_DSPS,OC{ISDS}QC_DSPS,ON_DSPS,QC_OM{ISDS

}QC_DSPS,ON_DSPS,ON_OM{ISDS}PRNF,QC_OM,ON_OM{ISDS
}QC_DSPS,QC_OM,ON_OM{ISDS}ON_DSPS,QC_OM,ON_OM{ISDS

=
==
==
==

7

65

43

21

 

12.4.5 Derivation of Concurrent SD Flow Paths 

Using the method in Section 7.2 and the SCAPS MIOD (Figure 116), we derive SCAPS’ Concurrent SD Flow 
Paths (CSDFPs). As discussed in Section 7.2, in order to derive CSDFPs from a MIOD, we can have an 
approach similar to the one used in the CFA of SDs (Chapter 6) to derive the CCFPs of a CCFG. Any path 
from the start node to the final node of the SCAPS MIOD yields a CSDFP. 
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(a) 

 
 (b) 

 
 (c) 

 
 (d) 

Figure 126-(a):Independent-SDs Graph (ISDG) corresponding to the MIOD of Figure 116. (b), (c) and (d): Three of the strongly 
connected components of the ISDG (shown with dashed edges), yielding three ISDSs. 

Since there are loops in the SCAPS MIOD, the number of CSDFPs is infinite. The rationale for having loops 
in this MIOD is to execute overload monitoring and separated grid detection use cases repeatedly as long 
as the system is up and running. Referring to the SCAPS MIOD (Figure 116), the control flow may take 
different paths across multiple operation cycles of SCAPS. An operation cycle here denotes when SCAPS 
revisits the two decision nodes just after the start node in its MIOD and repeats the overload monitoring 
and separated grid detection scenarios. Therefore, depending on which path is taken in each cycle, different 
CSDFPs can be derived as modeled by the grammar in Figure 127.  
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Figure 127-A grammar to derive CSDFPs from SCAPS’ MIOD. 

In order to limit the number of CSDFPs for the purpose of deriving stress test requirements, we assume 
that the number of cycles to derive CSDFPs is given by the tester. Some of the CSDFPs which can be 
derived from the grammar in Figure 127 are: 
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Figure 128-Some of the CSDFPs of SCAPS derived from the grammar in Figure 127. 

There is only one cycle in the basic CSDFPs: CSDFP1, …, CSDFP4. CSDFP5 and CSDFP6 are two of the 
possible CSDFPs which can be derived assuming two cycles. Other CSDFPs can be derived by arbitrary 
concatenations of the basic CSDFPs. 

12.4.6 Data Size of Messages 

Note that, for brevity, we do not discuss the data structure of the entity data classes in SCAPS (Figure 109). 
But according to the literature on SCADA-based power systems [92-94, 96, 100], data items such as load 
status/policy and grid status/structure are usually data-intensive and can be implemented using large 
data structures such as arrays. As the exact (or statistical average) sizes of this data classes is needed by our 
stress test technique, we assume the values given in Table 11 as the mean data sizes of the entity data 
classes in Figure 109. These values are realistic size estimates of real grid and load values according to the 
literature on SCADA-based power systems [125]. For example, an instance of the load object of the power 
distribution grid of a city includes the load values of the different hubs and components of the grid. This 
value can vary depending on the size of the city as well as the complexity of the distribution grid. We 
assume the data size to be in the order of several mega-bytes, which is reasonable assumption based on 
what is reported in the specialized literature. 

Note that we assume the data sizes in Table 11 to be representative for instances of all TCs. However, as 
different TCs are deployed in different cities/regions, the load or grid status data can vary to a large extent. 
This can be easily accounted for by extending data sub-classes and calculating the corresponding data sizes. 

 
Data Class Mean Data Size 
LoadStatus 4 MB 
LoadPolicy 2 MB 
GridStatus 3 MB 
GridStructure 1 MB 

Table 11-Mean data sizes of the entity data classes of SCAPS. 

12.4.7 Stress Test Objective 

In order to derive test requirements, recall that our stress test technique requires the definition of test 
objectives according to the following template: 

• Stress location: either a network or a node name 
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• Stress direction (only for nodes): in, out or bidirectional. In our assumptions, only bidirectional stress 
direction is applicable to a network stress location. Since networks are not end points of 
communication, therefore “in” and “out” directions do not apply to them. 

• Stress type: data or number of messages 
• Stress duration: instant or interval (with period value) 

To stress test SCAPS, let us consider the following three examples of test objectives: 

(Canada, -, data, instant) 

(SEV_CA1, in, data traffic, interval) 

(SEV_ON, bidirectional, message traffic, instant) 

Note that the main criterion in choosing good test objectives is to look for vulnerable (to distributed faults) 
networks and nodes, given the hard real-time constraints in a system. As discussed in Section 12.3.4.5 and 
modeled in the SCPAS MIOD (Figure 116), there are two hard real-time constraints in SCAPS: (1) the 
power of any separated (disconnected) grid should be restored within 1000 ms, after detection, and (2) any 
overload case in the grid should be controlled by the central server in less than 1000 ms. Failure of SCAPS 
to meet any of these two requirements is unacceptable. Therefore, networks and nodes which are utilized 
by SDs and are in the hard real-time region of a MIOD should be stress tested first. We choose the above 
test objectives with this heuristic in mind. 

12.4.8 Derivation of Test Requirements 

We discuss here how the corresponding test requirements can be derived from the above three test 
objectives. 

12.4.8.1 Test Objective 1: (Canada, -, data traffic, instant) 

The stress test location in this element is network Canada. Stress type is “data traffic”, and stress duration is 
“instant”. We use the StressNetInsDT(net) stress test requirement generation technique, described in Section 
9.11.2. We present below the steps of the algorithm to derive test requirements. 

Step 1 

In this step, maximum stress DCCFP of each SD is chosen. In order to do so, we need to find the maximum 
data traffic (DT) value of each DCCFP first, whose goes over network Canada in NIT of Figure 118. We 
consider all the DCCFPs of SCAPS (Figure 125).  

For example, we show how the maximum DT value of the only DCCFP of SD OM_ON (SD1), which is ρ1,1, 
is calculated. Finding the MaxNetInsDTValue (Algorithm 3) requires the values of function NetInsDT. Using 
the timing information of the messages (Section 12.3.4.4) and their data sizes (Section 12.4.6), we can derive 
the values of NetInsDT(ρ1,1,”Canada”,t)  for all t. To better illustrate this, the timed-DT value representation 
of DCCFP ρ1,1  and the resulting NetInsDT(ρ1,1,”Canada”,t) values are shown in Figure 129. 

0      1       2      3      4       5       6       7      8      9     10     11     12 

(x100) t (ms)

call mesage

reply mesage

DT value (MB)
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A12

(x100) t (ms)

NetInsDT(p1,1,”Canada”,t) (MB)

1

2

3

0      1       2      3      4       5       6       7      8      9     10     11     12 

4

5

6

7

20/7= 2.8

duration=700 ms

Timed-DT value representation of DCCFP p1,1

over network ”Canada”

 
Figure 129-(a): The timed-DT value representation of DCCFP ρ1,1, (b): The resulting NetInsDT(ρ1,1,”Canada”,t)  function values. 
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Note that as Algorithm 3 points out, only those distributed message which go through the network Canada 
are considered in calculating NetInsDT(ρ1,1,”Canada”,t), and thus MaxNetInsDTValue(ρ1,1,”Canada”). We can 
now calculate the MaxNetInsDTValue as:  

( ) MBtCanadaNetInsDTCanadaTValueMaxNetInsD
t

8.2),"",(max)"",( 1,11,1 == ρρ  

We present another example by showing how MaxNetInsDTValue(ρ3,1,”Canada”) is calculated, where 









=

4

3
1,3 C

C
ρ . The timed-DT value representation of DCCFP ρ3,1  and the resulting NetInsDT(ρ3,1,”Canada”,t)  

function values are shown in Figure 130. 
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(x100) t (ms)

DT value (MB)

5

C3

(x100) t (ms)

NetInsDT(p3,1,”Canada”,t) (MB)
1

0      1       2      3      4       5       6       7      8      9     10     11     12 

C4
duration=600 ms

duration =700 ms 2/6=
.33

2/7=
.28 0.61

Timed-DT value representation of DCCFP p3,1

over network ”Canada”

 
Figure 130-The timed-DT value representation of DCCFP ρ3,1, (b): The resulting NetInsDT(ρ3,1,”Canada”,t) function values. 

As seen in CCFG(OC), Figure 121, Control flow nodes C3 and C4 correspond to messages 
setNewLoadPolicy(newLoadON) and setNewLoadPolicy(newLoadQC), in SD OC (Figure 113), respectively. 
Furthermore, as modeled in SD OC, the latter two messages are RT and their start and end time pairs are 
[300ms, 1000ms] and [200ms, 800ms], respectively. Therefore, as shown in the timed-DT value 
representation in Figure 130, data traffic due to C3 and C4 overlap each other in time interval [300ms, 
800ms]. Each of C3 and C4 DT values are 2 MB, since they have an object of type LoadPolicy as the 
parameter, and the data size of this class is 2 MB. The total DT during the interval [300ms, 1000ms], when 
C3 and C4 overlap, is 4 MB. Considering the NetInsDT(ρ3,1,”Canada”,t) values in Figure 130, it is obvious 
that: 

( ) MBtCanadaNetInsDTCanadaTValueMaxNetInsD
t

61.0),"",(max)"",( 1,31,3 == ρρ  

Maximum DT values of other DCCFPs can be found in a similar manner. These values are shown below.  

MBCanadaTValueMaxNetInsDMBCanadaTValueMaxNetInsD

MBCanadaTValueMaxNetInsDMBCanadaTValueMaxNetInsD
MBCanadaTValueMaxNetInsDMBCanadaTValueMaxNetInsD

CanadaTValueMaxNetInsDMBCanadaTValueMaxNetInsD
MBCanadaTValueMaxNetInsDMBCanadaTValueMaxNetInsD

0)"",(16.0)"",(

14.0)"",(3.0)"",(
3)"",(3)"",(

0)"",(33.0)"",(
28.0)"",(66.2)"",(

4,63,6

2,61,6

1,51,4

4,33,3

2,31,2

==
==
==
==
==

ρρ
ρρ
ρρ
ρρ
ρρ

 

By comparing the MaxNetInsDTValue’s of DCCPs, we now find the maximum stress DCCFP of each SD. All 
SDs, except OC and PRNF, have only one DCCFP, therefore their maximum stress DCCFP will be their 
only one DCCFP. 

1,51,4

1,21,1

)"",_()"",_(
)"",_()"",_(

ρρ
ρρ
==

==
CanadaQCDSPSTDCCFPMaxNetInsDCanadaONDSPSTDCCFPMaxNetInsD

CanadaQCOMTDCCFPMaxNetInsDCanadaONOMTDCCFPMaxNetInsD  

The maximum stress DCCFP of SDs OC and PRNF can be calculated as: 

1,61,3 )"",()"",( ρρ == CanadaPRNFTDCCFPMaxNetInsDCanadaOCTDCCFPMaxNetInsD  

Step 2 

According to Step 2 of Algorithm 3, we should now choose an ISDS (Independent-SD Set) which entails 
maximum instant stress on network Canada. We derived the Independent-SD Sets of SCAPS in Section 
12.4.4. Now, we have to find the MaxNetInsDT of every ISDS. For example, for 

}ON_DSPS,QC_OM,ON_OM{ISDS =1
, )( 1ISDSTValueMaxNetInsD  can be calculated as: 
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( )( )
( )( )
( )( )

( ) ( )
( )

MB...

"Canada",TValueMaxNetInsD

"Canada",TValueMaxNetInsD"Canada",TValueMaxNetInsD
"Canada","Canada",ON_DSPSTDCCFPMaxNetInsDTValueMaxNetInsD

"Canada","Canada",QC_OMTDCCFPMaxNetInsDTValueMaxNetInsD
"Canada","Canada",ON_OMTDCCFPMaxNetInsDTValueMaxNetInsD)ISDS(TValueMaxNetInsD

,

,,

4836282
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1

=++=

+

+=
+
+

=

ρ

ρρ

 

Similarly, the MaxNetInsDT of other ISDS’s can be calculated as: 

MB...)ISDS(TValueMaxNetInsDMB..)ISDS(TValueMaxNetInsD
MB..)ISDS(TValueMaxNetInsDMB..)ISDS(TValueMaxNetInsD

MB....)ISDS(TValueMaxNetInsDMB...)ISDS(TValueMaxNetInsD

903060663360
683362883382

753062824836282

76

54

32

=+==++=
=++==++=

=++==++=
 

We now need to choose the ISDS which has the maximum value of the above function. We refer to this 
ISDS as ISDSmax. As calculated above, it is evident that ISDS4 is ISDSmax. 

Step 3 

Step 3 of Algorithm 3 is to schedule the SDs of ISDSmax, chosen in the Step 2, so that all maximum stress 
messages execute at the same time. First, the latest start time among the selected DCCFPs of all SDs in 
ISDSmax should be calculated. 

( )( )
( )

( ) ( ) ( )

( )
( ) msms,ms,msmax

start.E,start.D,start.Amax

start.mmin,start.mmin,start.mminmax

start.mminmaxestStartTimDCCFPsLate

MessageSetmMessageSetmMessageSetm

"Canada","Canada",SDTDCCFPMaxNetInsDTMsgsMaxNetInsDm}ON_DSPS,QC_OM{ISDSSD imaxi

600500600500
101212

321

==
=






=




=

∈∀∈∀∈∀

∈∀=∈∀  

where: 
• ( )( )"","",_1 CanadaCanadaONOMTDCCFPMaxNetInsDTMsgsMaxNetInsDMessageSet =  

• ( )( )"Canada","Canada",ON_DSPSTDCCFPMaxNetInsDTMsgsMaxNetInsDMessageSet =2
 

• ( )( )"Canada","Canada",QC_DSPSTDCCFPMaxNetInsDTMsgsMaxNetInsDMessageSet =3
 

Now, we use DCCFPsLatestStartTime to schedule those SDs of ISDSmax, which have a DCCFP going through 
network Canada (Step 3.2 of Algorithm 3). As }QC_DSPS,ON_DSPS,ON_OM{ISDSmax = , we need to 
schedule SDs OM_ON, DSPS_ON and DSPS_QC. As presented in Step 3.2 of Algorithm 3, stress test 
schedule is an ordered set of tuples ( )maxmax , iiiSTS αρρ=  where 

maxiρ  is the maximum DCCP of SDi , 
calculated using ),(max netSDTDCFPMaxNetInsD ii =ρ , and 

maxiαρ is 
maxiρ ’s start  time and is equal to 

( )( )startnetTMsgsMaxNetInsDtStartTimeDCFPsLates ii .,min maxmax ραρ −= . If SDi is not a member of the selected ISDSmax 

or it does not have a DCCFP going through network Canada, its tuple in the stress test schedule will be null. 
Therefore, the stress test schedule for the current test objective will be: 

( ) ( ) ( ) >=< null,,,,,,null,null,,ScheduleStressTest ,,,,,,tTestElemen 1515141411111 αρραρραρρ  

where 
1,1αρ  and 

4,4αρ  can be calculated as: 

( )( )
msmsms

startCanadaTMsgsMaxNetInsDtStartTimeDCFPsLates

100500600

."",min 1,11,1

=−=

−= ραρ , 

( )( )
msmsms

startCanadaTMsgsMaxNetInsDtStartTimeDCFPsLates

0600600

."",min 1,41,4

=−=

−= ραρ  

and  

( )( )
msmsms

start."Canada",TMsgsMaxNetInsDmintStartTimeDCFPsLates ,,

100500600
1515

=−=

−= ραρ  
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Therefore: 

( ) ( ) ( ) >=< null,ms,,ms,,null,null,ms,ScheduleStressTest ,,,tTestElemen 1000100 1514111 ρρρ  

The stress test schedule indicates that in order to instant stress test network Canada in terms of data traffic, 
we have to execute DCCFPs 

1,1ρ of SD OM_ON, 
14,ρ  of SD DSPS_ON 

15,ρ  of SD DSPS_QC and in 

time=100ms, time=0ms and time=100ms, respectively. As discussed in Chapter 9, these are test 
requirements and we need to derive appropriate test cases for them.   

12.4.8.2 Test Objective 2: (SEV_CA1, in, data traffic, interval)  

The stress test location in this element is node SEV_CA1. Stress direction is “in”, stress type is “data traffic”, 
and stress duration is “interval”. 

We use the StressNodInIntDT(nod) stress test requirement generation technique, described in Chapter 9. We 
present below the steps of the algorithm to derive test requirements. 

Step 1 

Calculate Unit Data Traffic (UDT) of each DCCFP towards node SEV_CA1  using: 

( )
)(

),,(
),(

ij

t
ij

ij Duration

tnodNodInInsDT
nodNodInUDT

ρ

ρ
ρ

∑
=  

We will need the values of the function under sigma to calculate the UDT value of each DCCFP. As an 
example, we present here how to calculate the value of this function for ρ1,1. The values of function 

)t,CA_SEV,(NodInInsDT , 111ρ  in different time instances are derived from the Timed-DT value representation of 
the DCCFP towards node SEV_CA1 and are sketched below.  
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( )∑
t

ij )t,nod,(NodInInsDT ρ  yields 20 MB. Hence:  

( )
ms/MB.

)(Duration

)t,CA_SEV,(NodInInsDT
)"CA_SEV",(NodInUDT
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, 0160
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11 ≈==
∑

ρ

ρ
ρ

 

Calculating the Unit Data Traffic (UDT) of other DCCFP’s will yield us: 
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Now, using the above values, we find, among all DCCFPs of each SD, the one with maximum unit data 
traffic. 
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Note that we arbitrarily choose one of the DCCFPs of a SD, in case if they have equal NodInUDT values. 
Also, the output of the above function for a SD, which does not have any DT towards node SEV_CA1, is 
null. 

Step 2 

We calculate each CSDFP’s UDT value towards node SEV_CA1 using: 

( )( )nodrDTMaxNodInPeCSDFPSSelectCCFPDuration
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As discussed in Section 12.4.5, SCAPS has unlimited number of CSDFPs. We presented the primitive ones 
in Figure 128. Here we calculate the UDT value of the primitive CSDFPs and discuss how the UDT value of 
other CSDFPs can be computed. 

As an example, we show here how to calculate the value of this function for: 
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We describe here how we calculate the value of the function Duration in the expression above. To do so, we 
need to describe how a CCFPS is built from CSDFP2, with the criterion MaxNodInIntDT. Let us refer to this 
CCFPS as CCFPS2. In order to build a corresponding CCFPS, each of the SDs in CSDFP2, are replaced with 
the CCFP associated with maximum stress DCCFPs which are results of the MaxNodInIntDTDCCFP 
function. Therefore: 
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where CCFP(aDCCFP) returns the CCFP associated with a DCCFP. 

We now briefly show how the duration of the above CCFPS is calculated. Since as discussed in Section x, 
the Duration function is a recursive one, we represent the call tree of the recursive algorithm in Figure 131 
to better illustrate the idea. Note we assume duration of 500 ms for the only CCFP of SD OM_STARTUP, 
CCFP0=CCFP(ρ0,0). 
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Figure 131-The call tree of the recursive algorithm Duration applied to CCFPS2. 

The UDT values of the other primitive CSDFPs towards node SEV_CA1  can be calculated in a similar way.  
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The last step of the algorithm is to choose a CSDFP which has the highest UDT value among all CSDFPs. 
Therefore, we choose CSDFP1 as CSDFPmax for this test objective. Furthermore, the corresponding 
maximum stress DCCFPS is the test requirement for the current test objective. The corresponding DCCFPS 
is: 
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12.4.8.3 Test Objective 3: (SEV_ON, bidirectional, message traffic, instant) 

The stress test location in this element is node SEV_ON. Stress direction is “bidirectional”, stress type is 
“message traffic”, and stress duration is “instant”. 

We use the StressNodBiInsMT(nod) stress test requirement generation technique, described in Chapter 9. We 
present below the steps of the algorithm to derive test requirements. 

Step 1 

Maximum node bidirectional instant message traffic (MaxNodBiInsMT) values of all DCCFPs are calculated. 
These values are shown below.  
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As an example on how these values are calculated, we discuss )"_",( 1,1 ONSEVsMTValueMaxNodBiIn ρ . Timed-

MT representation of DCCFP ρ1,1  from or towards node SEV_ON and the value of function 
NodBiInsMT(ρ1,1  ,”SEV_ON”,t) are shown below. 
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Among DCCFPs of each SD, we now find the one with maximum stress value. 

1,6

1,4

1,3

1,1

)"_",(
)"_",_(

)"_",_(

)"_",(
)"_",_(

)"_",_(

ρ

ρ

ρ

ρ

=
=

=

=
=

=

ONSEVPRNFDCCFPMaxNodBiMT
nullONSEVQCDSPSDCCFPMaxNodBiMT

ONSEVONDSPSDCCFPMaxNodBiMT

ONSEVOCDCCFPMaxNodBiMT
nullONSEVQCOMDCCFPMaxNodBiMT

ONSEVONOMDCCFPMaxNodBiMT
 

Step 2 

We should now choose an ISDS (Independent-SD Set) which entails maximum bidirectional instant 
message stress on node SEV_ON. We derived the Independent-SD Sets of SCAPS in Section 12.4.4. We have 
to find the MaxNodBiInsMTValue of every ISDS. For example, for }ON_DSPS,QC_OM,ON_OM{ISDS =1

, 
)( 1ISDSsMTValueMaxNodBiIn  can be calculated as: 
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Similarly, the MaxNodBiInsMTValue of other ISDSs can be calculated as: 
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We now need to choose the ISDS which has the maximum value of the above function. We refer to this 
ISDS as ISDSmax. As calculated above, ISDS1 and ISDS4 have the highest value of 10 messages. We 
arbitrarily choose ISDS1 as ISDSmax. 

Step 3 

Step 3 of the algorithm is to schedule the SDs of ISDSmax, chosen in the Step 2, so that all maximum stress 
messages execute at the same time. First, the latest start time among the selected DCCFPs of all SDs in 
ISDSmax should be calculated. 
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Now, we use DCCFPsLatestStartTime to schedule those SDs of ISDSmax, which have a DCCFP with 
bidirectional message traffic to/from node SEV_ON (Step 3.2 of Algorithm x). As 

}ON_DSPS,QC_OM,ON_OM{ISDSmax = , we need to schedule SDs OM_ON, OM_QC and DSPS_ON. Stress 
test schedule is an ordered set of tuples ( )maxmax , iiiSTS αρρ=  where 

maxiρ  is the maximum DCCFP of SDi, 
calculated using ),(max nodSDsMTDCFPMaxNodBiIn ii =ρ , and 

maxiαρ is 
maxiρ ’s start  time and is equal to: 

( )( )startnodsMTMsgsMaxNodBiIntStartTimeDCFPsLates ii .,min maxmax ραρ −=  

If SDi is not a member of the selected ISDSmax or it does not have a DCCFP going through node “SEV_ON”, 
its tuple in the stress test schedule will be null. Therefore, the stress test schedule for the current test 
objective will be: 

( ) ( ) >=< nullnullnullnullScheduleStressTest tTestElemen ,,,,,,, 1,41,41,11,13 αρραρρ  

where 
1,1αρ  and 

4,4αρ  can be calculated as: 
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0100100

."_",min 1,11,1
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and  

( )( )
msmsms
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0100100

."_",min 1,41,4

=−=

−= ραρ  

Therefore: 

( ) ( ) >=< nullnullmsnullnullmsScheduleStressTest tTestElemen ,,0,,,,0, 1,41,13 ρρ  
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The stress test schedule indicates that in order to instant stress test node “SEV_ON” in terms of message 
traffic, we have to execute both DCCFPs 

1,1ρ of SD OM_ON and 
4,4ρ  of SD DSPS_ON in time=0ms.  

12.4.9 Derivation of Test Cases 

We derived three sets of test requirements for the three test objectives in the previous sections. We derive 
here the corresponding test cases. 

12.4.9.1 Test Objective 1 

For the test objective 1, we derived the following stress test requirement (schedule): 

( ) ( ) >=< nullnullmsnullnullmsScheduleStressTest tTestElemen ,,0,,,,100, 1,41,11 ρρ  

The stress test schedule indicates that in order to stress test network Canada in terms of data traffic in an 
instant time, we have to execute DCCFPs 

1,1ρ  of SD OM_ON and 
4,4ρ  of SD DSPS_ON in time=100ms and 

time=0ms, respectively. Since both SDs OM_ON and DSPS_ON have only one DCCFP (and CCFP) each, 
input values and conditions are not relevant to the design of test cases, only the schedule is. 

12.4.9.2 Test Objective 2 

The test requirement of this test objective was chosen in Section 12.4.8.2 to be the maximum stress DCCFPS 
of CSDFP1 as: 
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Since the current test objective is an interval one, and the maximum stress requirement has been selected as 
the above DCCFPS, it can be repeated as many times as desired to perform an interval stress test. In other 
words, the DCCFPSmax can be repeated an arbitrary k number of times. 
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Again, since ρ0,0 , ρ1,1 , ρ2,1, ρ4,1, and ρ5,1  are the only DCCPFs of their corresponding SDs, input values and 
conditions are not relevant to the design of test cases. We only need to make sure SDs OM_ON, OM_QC, 
DSPS_ON and DSPS_QC start at the same time to satisfy the current test requirement. 

12.4.9.3 Test Objective 3 

As the test requirement for the test objective 3, we derived the following stress test schedule: 

( ) ( ) >=< nullnullmsnullnullmsScheduleStressTest tTestElemen ,,0,,,,0, 1,41,13 ρρ  

The stress test schedule indicates that in order to instant stress test node SEV_ON in terms of message 
traffic, we must start executing both DCCFPs 

1,1ρ of SD OM_ON and 
4,4ρ  of SD DSPS_ON at time=0ms. 

Therefore, test case for this test requirement is simply to run SDs OM_ON and DSPS_ON at the same time. 

12.5 Stress Test Architecture 

An overview of the SCAPS stress test architecture is shown in Figure 132. The sequence of high-level steps 
to be performed by a tester to run a complete stress test procedure is shown. 
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SCAPS
main

Tester

(4) Stress test cases:
-certain inputs/
conditions

(6) Test results:
      -Message start/end times
     Test verdicts:
      -passed/failed RT constraints

SCAPS
UML Design Model

Test Driver

(5) Running stress 
test cases

Our 
methodology

(1) Test objectives

(2) UML model

(3) Stress test requirements:
-CSDFPs (for periodic tests)
-DCCFPs (for instant tests)
-DCCFP start times
(for instant tests)

SCAPS

(6)

 
Figure 132-Overview of SCAPS Stress Test Architecture. 

The steps are briefly explained below. 
(1) Tester feeds the test objectives to the methodology. For example, we considered three test objectives in 

our case study. 
(2) The methodology uses the SCAPS UML model as input. 
(3) The methodology uses the SCAPS UML model to generate test requirements for the given test 

objectives and returns the test requirements to the tester. Note that this step is completely automated. 
(4) Tester devises appropriate test case for the test requirements. Note that this step is currently done 

manually by the tester. Tester feeds the test cases into a test driver which is responsible for running the 
test cases.  

(5) The test driver runs the generated test cases by feeding them into the system. Note that we have made 
the test driver a component of the SCAPS system in our current implementation. Embedding the test 
driver inside SCAPS helped us simplify the actual test environment and test executions. It also enabled 
us to reduce the probe effects (due to monitoring) as much as possible. The probe effects resulting from 
the test driver were negligible since the test driver only feeds specific test cases and monitors the 
system. Feeding test cases consisted in setting the attributes of a test object to specific values and 
starting the system. The resulting probe effect in this case was then the time to set specific variables to 
specific values, which is in the range of several milliseconds, which are negligible when compared to 
the SCAPS message durations (several hundreds of milliseconds, as it can be seen in the SCAPS SDs in 
Figure 110-Figure 115). Monitoring SCAPS consisted in exporting the time duration of statements into a 
log file, which again had very negligible probe effects when compared to executing the statements of 
SCAPS’ main functionalities. Similar to the case when feeding test cases, the statements responsible for 
monitoring SCAPS have short execution times. We furthermore designed SCAPS to support a high 
level of controllability1. This included features such as: easy selection of any subset of test cases and 
flexibility in scheduling DCCFPs. 

(6) Test results are gathered from the system. They include: start/end times of distributed messages and 
test verdicts on real-time constraints, which specify whether each real-time constraint has been adhered 
to in a particular run. Test results are both logged in files and also displayed live in a text box to the 
tester. A high level of observability2 has been designed in the output interface of SCAPS to better assess 
the behavior of the system. For example, in order to make it more convenient for the tester to notice 
real-time faults due to network-aware stress testing, we have incorporated a built-in functionality in 
the SCAPS main module to monitor the time duration of each message and SD, and report any real-
time constraint violation. 

                                                             

1 Controllability is an important property of a control system and plays a crucial role in many control 
problems, such as stabilization of unstable systems by feedback, or optimal control [126]. 
2 Observability is a measure for how well internal states of a system can be inferred by knowledge of its 
external outputs.  
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12.6 Running Stress Test Cases 

As shown in the SCAPS stress test architecture in Figure 132, we developed a test driver module inside 
SCAPS to run test cases. In running the stress test cases, we adhered to the following general principles to 
make our test environment as real as possible: 

• Since we did not have access to a dedicated network infrastructure1 to run our prototype tool 
(SCAPS), we ran all the test cases in late day hours (after 8 PM) and on the weekends in order to 
mimic a dedicated network and minimize the effects of unpredictable network delays in our test 
results. In public networks (such as our institution’s network), the durations of different runs of a 
distributed data intensive function may be different, due to variable network traffic triggered by 
other activities in the network. 

• Since any distributed system behavior is to some extent indeterministic (multiple runs might 
exhibit different behavior), we run each test case several times and calculate the mean values of the 
data collected to account for random variation. 

12.7 Test Results 

Results of running the stress test cases, as derived in the previous sections, are reported and discussed in 
this section. Our fundamental approach to show the usefulness of our stress test technique in this work is 
to observe the system and analyze the RT-constraint violations due to specific schedules and subsets of 
DCCFPs, as generated by our technique. Results are then compared with what we refer to as Operation 
Profile-based Test Cases (OPTC), which act as the baseline of comparison descried in Sections 12.7.2-12.7.4. 
We discuss in Section 12.7.1 how we derive OPTCs. 

In the presentation of the test results, we compare the statistical start and end times of distributed messages 
and also determine if a stress test case causes a RT-constraint violation which is not observed while running 
OPTCs. This will help us assess whether our methodology is useful in terms of increasing the chances of 
exhibiting network traffic faults which lead to RT failures. 

Note that, in the test results reported in this section, we analyze and discuss the MIOD-level soft and hard 
RT constraints described in Section 12.3.4.5. SD-level constraints can be defined in a similar way and the 
corresponding test results can also be analyzed. 

12.7.1 Baseline of Comparisons 

We define here what baseline of comparison we use to assess the effectiveness of our stress test case. We 
consider Operation Profile-based Test Cases (OPTC) which are derived from the operational profile [71] of 
a SUT. The operational profile of a system is defined as the expected workload of the system once it is 
operational in the field. In other words, OPTCs actually test a SUT in terms of its expected behavior in the 
field. 

To derive OPTCs for SCAPS, we present an operational profile, which takes into account the system’s 
business logic in the context of SCADA-based power systems. Using the SCAPS MIOD (Figure 116) and 
CCFGs (Figure 119 to Figure 124), we model the operational profile to be the probabilities in which the true 
and false edges of conditions are taken. More precisely, we focus on the decision nodes in the CCFGs of 
SDs OC and PRNF, Figure 121 and Figure 124, respectively. These two CCFGs are the only CCFGs of 
SCAPS where the control flow might actually change. 

The two decision nodes in CCFG(OC) check for overload status in load data of provinces of Ontario and 
Quebec. In case of overload status in any of the provinces, a new load policy is generated and is sent to the 

                                                             
1 What we mean by a dedicated network is a network which has been designed and devoted to a particular 
safety-critical system (such as SCAPS) so that no other system is using the network. This is usually done to 
avoid unpredictable network delays due to indeterministic network traffic and also for security reasons. 
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respective provincial server. Otherwise, a message is sent to keep the old policy. As power systems are 
designed in such a way to minimize the chances of overload, we assume the probabilities that the Ontario 
and Quebec grids experience overload are %1 and %2, respectively. Thus the probabilities that the control 
flow in decision nodes CCFG(OC) will follow the overload paths will be the same.  

The above control flow path probabilities can be expressed as the operational profile of SCAPS shown in 
Table 12, where probabilities of per SD per province are shown and have been mapped to paths after 
decision nodes. 

SD CCFG Function-Province  Path after Decision Node in 
CCFG 

Probability 

Ontario overload %1 Overload monitoring-
Ontario Ontario normal load %99 

Quebec overload %2 

OC CCFG(OC) 

Overload monitoring- 
Quebec Quebec normal load %98 

Separated power system (SPS) 
in Ontario 

%0.5 Detecting separated power 
system -Ontario 

No SPS in Ontario %99.5 
Separated power system in 
Quebec  

%0.25 

PRNF CCFG(PRNF) 

Detecting separated power 
system - Quebec 

No SPS in Quebec  %99.75 

Table 12-An operational profile for SCAPS. 

For example, Figure 133 shows a part of CCFG(OC) with decision node outgoing edges annotated with 
probabilities. The probability of an edge after a decision node in a CCFG denotes the probability with 
which the control flow takes one of the subpaths started with this edge. 

CCFG(OC)

[else] [else]

... ...

... ...

Ontario overload (%1)

[overloadIn
(:ASA:loadON)]

[overloadIn
(:ASA:loadQC)]

Ontario normal load (%99)

Quebec overload (%2)

Quebec normal load (%98)

 
Figure 133-Part of CCFG(OC), annotated with probabilities of paths after decision nodes. 

Using the operational profile in Table 12, we can derive the probabilities of different DCCFPs in OC and 
PRNF. When probabilities of taking edges after decision nodes are given, the probability of any DCCFP can 
be calculated. For example DCCFP ρ3,1 of SD OC corresponds to taking “Ontario overload” and “Quebec 
overload” edges of the decision node in CCFG(OC), Figure 133. Using the operational profile in Table 12, 
the probability to choose this DCCFP will be then %1x%2=%0.02. Using a similar approach, the 
probabilities of taking other DCCFPs of SDs OC and PRNF have been calculated and are shown in Table 13. 

SD DCCFP Probability 
ρ3,1 %0.02 
ρ3,2 %0.98 
ρ3,3 %1.98 

OC 

ρ3,4 %9702 
ρ6,1 %0.00125 
ρ6,2 ~%0.0049 
ρ6,3 ~%0.0024 

PRNF 

ρ6,4 %0.9925 
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Table 13-Probabilities of taking DCCFPs of SDs OC and PRNF according to the operational profile given in Table 12. 

Now we discuss how a set of OPTCs can be derived from the SCAPS operational profile. To derive OPTCs, 
we first derive Operation Profile-based Test Requirements (OPTR). An OPTC is the set of inputs/conditions to 
a SUT that trigger a OPTR. An OPTR here means any concurrent SD flow path (CSDFP) in the SCAPS 
MIOD and any corresponding control flow path (CCFP) for each SD in the chosen CSDFP. In other words, 
an OPTR corresponds to a DCCFPS (Section 7.2.2). The main constraint in choosing an OPTR is to take into 
account the probabilities given in the operational profile. The higher the probability of a flow path after a 
decision node, the more likely the CCFPs containing that path will be selected. For example, assume that 
the following CSDFP of SCAPS is selected. 





































PRNF
QC_DSPS
ON_DSPS

OC
QC_OM
ON_OM

STARTUP_OM  

The set of probabilities given in the operational profile (Table 12) can be used to select CCFPs for each of 
the SD in the above CSDFP. DCCFPs probabilities (Table 13) can then be used to randomly select a DCCFP 
for each SD in a selected CSDFP.  

12.7.2 Test Objective 1 

The test requirements corresponding to the test objective 1 (Section 12.4.8.1) is to trigger DCCFP ρ1,1 from 
SD OM_ON and ρ4,4 from SD DSPS_ON. Referring to the SCAPS MIOD (Figure 116), we can see that SRTC1 
and SRTC2  are visited by triggering these two DCCFPs. Therefore, we can say that test objective 1 is 
associated with SRTC1 and SRTC2 (Figure 116), and thus we report here how the duration1 of the soft RT 
constraint SRTC1  is affected when running test cases corresponding to test objective 1. Our experiments 
showed that SRTC2 has a similar behavior.  

In order to determine if stress testing makes a difference in the durations of SRTC1 when compared the 
results with OPT test cases, we measured the executions of 500 randomly selected OPT test cases. We then 
ran 500 test cases corresponding to test objective 1 and collected the duration of SRTC1 across all these 
runs. The comparison between Operational Profile Test (OPT) and Stress Test (ST) cases is depicted by the 
two execution time distributions in Figure 134. The x-axis is the test type and the y-axis is execution time. 
The quantiles and the histograms of the two distributions are depicted.  
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Figure 134-Execution times distributions of test suites corresponding to SRT constraint SRTC1 by running operational profile test 

(OPT) and stress test (ST) cases corresponding to test objective 1. 

                                                             
1 By “duration” of a RT constraint, we mean the time difference between the arrival times of the start and 
end events of a RT constraint.  
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Level Min. 10% 25% Median 75% 90% Max. 
OPT 953 1029 1059 1094 1125 1156 1241 
ST 1276 1305 1317 1329 1344 1358 1382 

Table 14-Quantiles of the distribution in Figure 134. 

Due to the indeterminism of distributed environments, the duration of distributed messages can be 
different across different executions, hence the variance in the distributions of Figure 134. However, all 
OPT test executions satisfy SRTC1 whereas SRTC1 is violated in almost 96.4% (482/500) of stress test cases.  

12.7.3 Test Objective 2 

As derived in Section 12.4.9.2, the stress test requirement corresponding to test objective 2 was: 
k
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By examining the corresponding SDs of each of the DCCFPs of this DCCFPS with the RT constraints in the 
SCAPS MIOD (Figure 116), we can see that only SRTC1 and SRTC2 are visited when executing test 
objective 2. Therefore, we monitor the duration of these two constraints when executing OPTCs and stress 
test executions. The comparison of time distributions for SRTC1 is shown in Figure 135. 
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Figure 135- Execution times distributions for constraint SRTC1 by running operational profile test (OPT) and stress test (ST) cases 

corresponding to test objective 2 . 

As it can be seen, there is a difference in the SRTC1 time distributions between OPT and ST test cases 
corresponding to test objective 2. However, none of the time distributions indicate a RT constraint 
violation, as they are both below the 1,300 ms deadline. This result can be easily explained as the test case 
for test objective 2 is just a typical DCCFPS of the system, which is executed when neither overloaded 
situation nor a separated power grid is found and SCAPS continues (in a loop) to monitor the national 
power grid. Recall that, during the preliminary testing of SCAPS, we made sure that all RT constraints held 
in typical execution scenarios. 

However, as the ST distribution shows significantly higher values (e.g., average) that the OPT distribution, 
we can conclude that stress testing has been successful in running the system under stress conditions. 
However, this was not enough to trigger a network-traffic or RT fault. This result suggests that not all stress 
test strategies may expose network-traffic or RT faults in a SUT, under specific settings for RT constraint 
values and network infrastructure (capacity, buffer sizes, etc.). 
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12.7.4 Test Objective 3 

As derived in Section 12.4.9.3, the stress test requirement corresponding to test objective 3 was: 

( ) ( ) >=< nullnullmsnullnullmsScheduleStressTest tTestElemen ,,0,,,,0, 1,41,13 ρρ  

By examining the corresponding SDs of each of the DCCFPs of this DCCFPS and the RT constraints in the 
SCAPS MIOD (Figure 116), we can determine that only SRTC1 and SRTC2 are visited when executing test 
objective 3. Therefore, we monitor the duration of these two constraints while executing OPT and ST test 
cases. The comparison is shown in Figure 136 and we can see, once again, that SRTC1  is violated in most of 
ST test executions. 
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Figure 136- Execution times distributions of test suites corresponding to SRT constraint SRTC1 by running operational profile 

tests (OPT) and stress tests (ST) corresponding to test objective 3. 

12.7.5 Conclusions 

In this chapter, using the specification of a real-world power distribution system, we designed and 
implemented a system and described how the stress test cases were derived and executed using our 
methodology. We also reported the results of applying our stress test methodology on this system and 
discussed its effectiveness in detecting violations of real-time constraints when compared to test cases 
based on an operational profile. The results are promising as they suggest that our stress test cases can help 
significantly increase the probability of exhibiting network traffic-related faults in distributed systems. 
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Chapter 13  
 
CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

13.1 Conclusions 

A model-driven, stress test methodology aimed at increasing chances of discovering faults related to 
network traffic in distributed systems was presented. The technique uses as input a UML 2.0 model of a 
system, augmented with timing information. We specified an adequate and realistic input test model which 
includes (1) a Network Deployment Diagram (following the UML package notation) that describes the 
distributed architecture in terms of system nodes and networks and (2) a Modified Interaction Overview 
Diagram (following the UML 2.0 interaction overview diagram notation) that describes execution 
constraints between sequence diagrams. Our stress testing technique relies on a careful identification of 
control flow paths in UML 2.0 Sequence Diagrams and the network traffic they entail. This data is used to 
generate stress test requirements composed of specific control flow paths (in Sequence Diagrams) along 
with time values indicating when those paths have to be triggered so as to stress the network the to the 
maximum extent possible. To do so, we resort to optimization algorithms. In the most complex case, when 
external system events follow complex arrival patterns, we make use of a specifically tailored Genetic 
Algorithm, which has shown promising initial results. . 

Using the specification of a real-world distributed system, we designed and implemented a system and 
described how the stress test cases were derived and executed using our methodology. We furthermore 
reported the results of applying our stress test methodology on this system and discussed its effectiveness 
in detecting violations of a hard real-time constraint when compared to test cases based on an operational 
profile. Our first results are promising as they suggest that our generated stress test cases significantly 
increase the probability of exhibiting network traffic-related faults in distributed systems.  

13.2 Open Questions 

The open questions we are now working on are: (1) How can we account for data flow and parameters in 
the SD sequential constraint modeling?, (2) How can we account for the variation in the data traffic value of 
a distributed message during its execution?. We also need to perform further, larger scale investigations of 
the Genetic Algorithm-based stress test technique in terms of its capacity to reveal distributed faults. 

13.3 Future Research Directions 

Our stress test methodology can be generalized to other distributed-type faults, such as distributed 
unavailability of networks and nodes, and other resources such as CPU, memory, and database usage. 
Stress testing a distributed system with respect to distributed unavailability fault (Section 3.2.1) is to cause 
scenarios in which the maximum stress on a system occurs when a node (or a network) becomes 
unavailable. CPU or memory-aware stress testing will put a SUT under maximum possible usage of CPU 
or memory and will increase the chances of exhibiting resource usage faults related to CPU or memory. 
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The UML Testing Profile [127] defines a language for designing, visualizing, specifying, analyzing, 
constructing and documenting the artifacts of test systems. It is a test modeling language that can be used 
with all major object and component technologies and applied to testing systems in various application 
domains. The UML Testing Profile (UML-TP) can be used in an integrated manner with UML to handle a 
system's test artifacts [127]. Specifying the generated stress test requirements and the stress test process of 
our methodology with the UML-TP would lead to having all software artifacts, from analysis and design to 
specifying testing test suites, modeled with UML. This would facilitate traceability between analysis, 
design, and testing artifacts and since UML-TP has paved the way for possible tools to execute test cases 
modeled in the UML-TP, test automation could potentially be improved. 

UML models can be statically verified to make sure that behavior models do not lead to RT faults by 
checking if there is any possible scenario in which a RT fault can occur under stress conditions in terms of 
different types of resources, e.g. network traffic, CPU and memory. The verification can be applied on a 
system’s design model before it has been implemented. The overall procedure for the verification is to find 
the maximum possible stress conditions of behavior models and check if, for example, the maximum 
possible traffic exceeds the network bandwidth. Resource usage information can either be modeled by 
modelers using resource usage modeling constructs proposed by the UML-SPT, or can be predicted from 
models [128]. 

Performance bottlenecks of a DRTS can be pinpointed using PERT (Program Evaluation and Review 
Technique) technique. Given the time duration of each use case in a system and also their sequential 
constrains (using a MIOD), the PERT technique can be used to find the critical paths in a MIOD, i.e., 
performance bottlenecks. 

It would also be important to develop a Stress-Test based Performance Engineering (STPE) approach which 
can assist testers and system analysts in fixing distribution-related faults. Following STPE, the designer 
would use stress test results to evaluate the performance throughout of a SUT, analyze missed real-time 
constraints, and provide guidelines to enhance performance and robustness of the system in terms of real-
time constraints. 

Risk assessment/fault analysis of distributed-type faults, the investigation of QoS faults and 
implementation of a test model generator from UML models are also worthwhile future research 
directions. A QoS fault is said to have occurred when a system component does not function in its required 
QoS requirement. We also intend to stress test more complex distributed systems using our methodology 
and perform more empirical investigations of its effectiveness. 
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APPENDIX A- GENETIC ALGORITHMS OVERVIEW 

In [1, 129-131], the authors describe GAs as a means of solving complex optimization problems that are 
often NP-hard1 [131] in limited amounts of time. Optimization problems are those that try to reach the best 
solution given the measurement of the goodness of solutions. GAs are based on concepts adopted from 
genetic and evolutionary theories. GAs are comprised of several components: a representation of the 
solutions, referred to as the chromosomes, fitness of each chromosome, referred to as the objective (fitness) 
function, the genetic operations of crossover and mutation which generate new offspring, and selection 
operations which choose offspring fit for survival. 

A chromosome models the problem solutions. Each element within a chromosome is known as a gene. The 
collection of chromosomes used by the GA is called a population. Figure 137 illustrates these concepts in 
terms of representation of the Red/Green/Blue (RGB) makeup of a population of three pixels on a screen. 
The chromosome in the figure is composed of three genes. Each gene represents the red, green or blue 
components of a pixel on a screen. Hence, the chromosome depicts one pixel’s RGB makeup. The 
population portrays the makeup of three pixels on the screen. 

1 1 0 1 1 0 1

0 1 1

1 1 0

Gene

Population 

Chromosome 

R R   G    B R   G    B

 
Figure 137-GA chromosome terminology. 

The quality of a chromosome is its fitness. Fitness defines which chromosomes are closer to the optimal 
solution. If the optimal solution for the population of Figure 137 is a pixel with only a red component (i.e. a 
chromosome with RGB values 100), the first and the last chromosomes of the population would be deemed 
fitter than the second one.  

Both crossover and mutation operators are needed to explore the problem search space. Crossover 
operators generate offspring from two parents based on the merits of each parent, as demonstrated in 
Figure 138 through single point crossover2.  

1 0 1

0 1 1

R   G    B

Parent 1

Parent 2

Crossover operator

1 1 1

0 0 1

R   G    B

Child 1

Child 2  
Figure 138-Illustration of crossover operator (single point crossover). 

Taking the G gene of a chromosome as a division point common to both parents, the parents alternate 
genes with respect to the division point in creating the children. Parent 1 contributes the RB components of 

                                                             

1 In computational complexity theory, NP-hard (Non-deterministic Polynomial-time hard) refers to the 
class of decision problems that contains all problems H such that for every decision problem L in NP there 
exists a polynomial-time many-to-one reduction to H, written L =  H. Informally this class can be described 
as containing the decision problems that are at least as hard as any problem in NP. This intuition is 
supported by the fact that if we can find an algorithm A that solves one of these problems H in polynomial 
time then we can construct a polynomial time algorithm for any problem L in NP by first performing the 
reduction from L to H and then running the algorithm A [132]. 
2 Single-point crossover is on type of crossover operators. There are other types such as multi-point 
crossover. 
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Child 1, allowing Parent 2 to contribute the G component. Similarly, Parent 2 contributes the RB 
components of Child 2, while Parent 1 contributes its G component. Hence, GAs use the notion of survival 
of the fittest by passing superior traits from one generation to the next. 

Mutation operators mutate, or alter, a single chromosome. Mutation aids the GA in avoiding local minima. 
In the example in Figure 139, the red gene is mutated, resulting in a chromosome with RGB values 010. 

1 1 0

Original chromosome

Mutation operator 0 1 0

Mutated chromosome

R   G    B R   G    B

 
Figure 139-Illustration of mutation operator. 

The process of selecting determines which individuals among the original populations, mutated and child 
chromosomes will survive, hence retaining a constant population size.  

An initial population of individuals (usually random) is first given to a GA. Working with the population, 
the GA then selects and performs various crossover and mutation operations, creating new chromosomes. 
The fitness of the new chromosomes (using the objective function) is compared to others in the population. 
Fitter individuals are retained while less fit ones are removed. The process of crossover, mutation, fitness 
comparison and replacement continues until a termination criterion is reached. In most cases, the 
termination criterion is a particular number of runs or generations of the algorithm [1]. By adopting the GA 
process concept from [74], we can draw an activity diagram for the process as shown in Figure 140. 

Genetic Algorithm

Definitions

Chromosome 
Representation

Initial Population
(usually random)

Evaluate Fitness

Choose Parents

Reproduce

Mutate

Test Coverage

Objective (Fitness) 
Function

[Coverage 
achieved]

[Coverage not 
achieved]

Optimal Result

 
Figure 140-Activity diagram of the most general form of genetic algorithms (concept from [74]). 

A variety of replacement methodologies are defined for GAs, such as simple, steady state and incremental. 
Each replacement methodology specifies how much of the population should be replaced with each run or 
generation of the algorithm. The simple GA creates an entirely new population of chromosomes with each 
generation of the algorithm. The steady state algorithm, on the other hand, uses overlapping populations, 
leaving it up to the user to determine the number of chromosomes to replace in each generation. Each 
generation, the steady state GA produces, are stored in a temporary location. These are then added to the 
population and the worst individuals are removed such that the population such that the population size 
remains constant. In incremental genetic algorithms, only one or two offspring chromosomes are 
generated. These are integrated into the population in one of the following ways: replacing the parent, 
replacing a random individual in the population, or replacing an individual that is similar to the offspring. 

 

 

 

 


