
Carleton University TR SCE-05-13 September 2005

 1

Traffic-aware Stress Testing of Distributed Real-
Time Systems based on UML Models

Vahid Garousi, Lionel Briand and Yvan Labiche

Software Quality Engineering Laboratory (SQUALL)
www.sce.carleton.ca/squall

Department of Systems and Computer Engineering, Carleton University
1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada

{vahid|briand|labiche}@sce.carleton.ca

Abstract

A stress test methodology aimed at increasing chances of discovering
faults related to network traffic in distributed systems is presented. The
technique uses as input a specified UML 2.0 model of a system,
augmented with timing information, and yields stress test requirements
composed of specific Control Flow Paths along with time values to trigger
them. We propose different variants of our stress testing methodology to
test networks and nodes of a system under test according to various
heuristics. Using a real-world system specification, we design and
implement a prototype distributed system and describe, for that particular
system, how the stress test cases are derived and executed using our
methodology. We report the results of applying our stress test
methodology on the prototype system and discuss the usefulness of the
technique. Results indicate that the technique is significantly more effective
at detecting network traffic-related faults when compared to standard test
cases based on an operational profile. Furthermore, a sophisticated stress
test technique based on Genetic Algorithms is proposed to handle specific
constraints in the context of Real-Time distributed systems.

Keywords:

Stress testing, performance testing, model-based testing, distributed
systems, real-time systems, UML, network traffic, genetic algorithms

Carleton University TR SCE-05-13 September 2005

 2

Table of Contents

TABLE OF CONTENTS...2
LIST OF FIGURES..6
LIST OF ACRONYMS..9
CHAPTER 1 INTRODUCTION... 11

1.1 MOTIVATION AND GOAL.. 11
1.2 APPROACH .. 12
1.3 CONTRIBUTIONS ... 12
1.4 STRUCTURE .. 12

CHAPTER 2 BACKGROUND ... 14
2.1 RELATED WORKS ... 14
2.2 PROBLEM STATEMENT (INITIAL) ... 15
2.3 TERMINOLOGY ... 16
2.4 UML PROFILE FOR SCHEDULABILITY, PERFORMANCE, AND TIME ... 16

CHAPTER 3 A FAULT TAXONOMY FOR DISTRIBUTED SYSTEMS ... 19
3.1 PERSISTENCY OF FAULTS ... 20
3.2 DISTRIBUTED FAULTS .. 21

3.2.1 Distributed Unavailability Faults... 22
3.2.2 Distributed Traffic Faults.. 23

3.3 REAL-TIME FAULTS ... 24
3.4 CONCURRENCY FAULTS ... 24
3.5 LOCATION OF CREATION OR OCCURRENCE .. 25
3.6 CHAIN OF DISTRIBUTION FAULTS ... 25
3.7 CLASS OF FAULTS CONSIDERED IN THIS WORK.. 25

CHAPTER 4 OVERVIEW OF THE STRESS TEST METHODOLOGY .. 26
4.1 STRESS TEST PROCESS ... 26
4.2 METAMODELS IN THE STRESS TEST METHODOLOGY... 26

4.2.1 Network Topology Metamodel .. 27
4.2.2 Input System Metamodel.. 28
4.2.3 Test Metamodel.. 28

4.2.3.1 Control Flow Analysis .. 28
4.2.3.2 Resource Usage Analysis ... 29
4.2.3.3 Network Interconnectivity Tree .. 29
4.2.3.4 Inter-SD Constraints... 29

CHAPTER 5 INPUT SYSTEM MODEL .. 30
5.1 SEQUENCE DIAGRAM ... 30

5.1.1 Timing Information of Messages in SDs .. 31
5.2 CLASS DIAGRAM .. 32
5.3 MODIFIED INTERACTION OVERVIEW DIAGRAMS ... 32

5.3.1 Existing Representations to Model Inter-SD Constraints... 33
5.3.2 Our Choice: IODs.. 35
5.3.3 Modified Interaction Overview Diagrams ... 36

5.4 CONTEXT DIAGRAM ... 37
5.5 NETWORK DEPLOYMENT DIAGRAM.. 38

5.5.1 Using the Notation of Package Diagrams.. 38
5.5.2 Network Interconnectivity Tree... 40

5.6 MODELING REAL-TIME CONSTRAINTS ... 40
5.7 AN OVERVIEW ON UML 2.0 SEQUENCE DIAGRAMS .. 41

Carleton University TR SCE-05-13 September 2005

 3

CHAPTER 6 CONTROL FLOW ANALYSIS OF SEQUENCE DIAGRAMS .. 46
6.1 CONCURRENT CONTROL FLOW GRAPH: A CONTROL FLOW MODEL FOR SDS.. 46
6.2 CONCURRENT CONTROL FLOW PATHS ... 47
6.3 INCORPORATING DISTRIBUTION AND TIMING INFORMATION IN CCFPS... 47
6.4 FORMALIZING MESSAGES .. 48
6.5 DISTRIBUTED CCFP... 49
6.6 TIMED INTER-NODE AND INTER-NETWORK REPRESENTATIONS OF DCCFPS .. 49

CHAPTER 7 CONSIDERING INTER-SD CONSTRAINTS .. 51
7.1 INDEPENDENT-SD SETS ... 51

7.1.1 Definitions.. 52
7.1.2 Derivation of Independent-SD Sets... 53
7.1.3 Algorithm Complexity.. 54

7.2 CONCURRENT SD FLOW PATHS, CCFP AND DCCFP SEQUENCES .. 54
7.2.1 Concurrent SD Flow Paths ... 54
7.2.2 Concurrent Control Flow Paths Sequence... 55
7.2.3 Duration of a Concurrent Control Flow Path Sequence... 56

CHAPTER 8 NETWORK TRAFFIC USAGE ANALYSIS... 58
8.1 ESTIMATING THE DATA SIZE OF A DISTRIBUTED MESSAGE .. 58

8.1.1 Effect of Inheritance... 60
8.1.2 Messages with Indeterministic Sizes... 60

8.2 FORMAL NODE AND NETWORK RELATIONSHIPS .. 60
8.2.1 Node-Network and Network-Network Memberships... 61
8.2.2 Network Path Function.. 61

8.3 NETWORK TRAFFIC USAGE ATTRIBUTES.. 62
8.3.1 Location: Nodes vs. Networks... 62
8.3.2 Direction (for nodes only): In, Out, Bidirectional... 63
8.3.3 Type: Amount of Data vs. Number of Network Messages... 63
8.3.4 Duration: Instant vs. Interval.. 65

8.4 EFFECT OF CONCURRENT PROCESSES ... 65
8.5 A CLASS OF TRAFFIC FUNCTIONS FOR DISTRIBUTED CONCURRENT CONTROL FLOW PATHS 66

8.5.1 Naming Convention ... 66
8.5.2 Functions.. 67

8.5.2.1 Traffic Location: Network .. 67
8.5.2.2 Traffic Location: Node... 68
8.5.2.3 Traffic Location: Object ... 70

CHAPTER 9 TIME-SHIFTING STRESS TEST TECHNIQUE .. 71
9.1 PROBLEM STATEMENT: REVISITED ... 71
9.2 TEST OBJECTIVES ... 72
9.3 STRESS TEST HEURISTIC.. 72
9.4 AN EXAMPLE TO VISUALIZE THE HEURISTIC.. 72
9.5 DIFFERENT STRESS TESTING STRATEGIES .. 74

9.5.1 Location: Nodes vs. Networks... 74
9.5.2 Direction (only for nodes): In, Out, Bidirectional... 74
9.5.3 Type: Amount of Data vs. Number of Messages.. 74
9.5.4 Duration: Instant vs. Interval.. 75

9.6 TAKING INTO ACCOUNT THE INTER-SD CONSTRAINTS ... 75
9.7 FORMULATING THE STRESS TEST GENERATION PROBLEM AS AN OPTIMIZATION PROBLEM 76
9.8 HIGH-LEVEL ALGORITHM .. 76
9.9 INPUT AND BUILDING THE TEST MODEL... 76
9.10 OUTPUT STRESS TEST REQUIREMENTS ... 77
9.11 DERIVATION OF STRESS TEST REQUIREMENTS .. 77

9.11.1 Naming Convention... 77

Carleton University TR SCE-05-13 September 2005

 4

9.11.2 Test Requirements for a Network.. 79
9.11.3 Test Requirements for a Node... 83

9.11.3.1 Stress Direction: In... 83
9.11.3.2 Stress Direction: Out .. 84
9.11.3.3 Stress Direction: Bidirectional .. 84

9.12 ALGORITHMS COMPLEXITY ... 85
9.13 REAL-TIME CONSTRAINT-ORIENTED STRESS TEST ... 85

9.13.1 SD-Level RTCOST ... 87
9.13.2 MIOD-Level RTCOST ... 89
9.13.3 The Feasibility of Full Automation... 90

9.14 AUTOMATING THE DERIVATION PROCESS OF TEST ELEMENTS ... 90
CHAPTER 10 GENETIC ALGORITHM-BASED STRESS TEST TECHNIQUE... 94

10.1 TYPES OF ARRIVAL PATTERNS .. 94
10.2 ANALYSIS OF ARRIVAL PATTERNS.. 97
10.3 ACCEPTED TIME SETS .. 99
10.4 FORMULATING AS AN OPTIMIZATION PROBLEM .. 101
10.5 IMPACT OF ARRIVAL PATTERNS ON STRESS TEST STRATEGIES .. 102

10.5.1 Impact on Instant Stress Test Strategies... 102
10.5.2 Impact on Interval Stress Test Strategies... 102
10.5.3 How Arrival Patterns are Addressed by Stress Test Strategies.. 105

10.6 CHOICE OF THE OPTIMIZATION METHODOLOGY: GENETIC ALGORITHMS .. 105
10.7 COMPONENTS OF THE GENETIC ALGORITHM TO DERIVE INSTANT STRESS TEST REQUIREMENTS...................... 106

10.7.1 Chromosome... 106
10.7.1.1 Representation ... 107
10.7.1.2 Length ... 107

10.7.2 Constraints ... 107
10.7.2.1 Constraint #1: Inter-SD constraints ... 108
10.7.2.2 Constraint #2: Arrival pattern constraints .. 108

10.7.3 Initial Population... 108
10.7.4 Objective (Fitness) Function... 110
10.7.5 Operators.. 111

10.7.5.1 Crossover Operator .. 111
10.7.5.2 Mutation Operator.. 113

10.8 INTERVAL STRESS TEST STRATEGIES CONSIDERING ARRIVAL PATTERNS .. 114
CHAPTER 11 TOOL SUPPORT ... 118

11.1 GALIB... 118
11.2 GARUS .. 119

11.2.1 Class Diagram... 119
11.2.2 Activity Diagram.. 120
11.2.3 Input File Format... 120
11.2.4 Output File Format.. 122

11.3 VALIDATION OF TEST REQUIREMENTS GENERATED BY GARUS.. 122
11.3.1 Satisfaction of ATSs by Start Times of DCCFPs in the Generated Stress Test Requirements 124
11.3.2 Checking of ISTOF Values.. 125
11.3.3 Repeatability of GA Results across Multiple Runs.. 126
11.3.4 Convergence Efficiency across Generations... 127

CHAPTER 12 CASE STUDY.. 128
12.1 AN OVERVIEW OF TARGET SYSTEMS.. 128

12.1.1 Distributed Control Systems.. 128
12.1.2 Supervisory Control and Data Acquisition Systems.. 129
12.1.3 Use of UML and OO Concepts in DCS and SCADA Systems .. 129
12.1.4 Failures and Disasters due to Overload .. 130

12.2 CHOOSING A TARGET SYSTEM AS CASE STUDY... 130

Carleton University TR SCE-05-13 September 2005

 5

12.2.1 Requirements of a Suitable System... 130
12.2.2 None of the Systems in our survey Meets the Requirements... 131

12.3 OUR PROTOTYPE SYSTEM: A SCADA-BASED POWER SYSTEM .. 131
12.3.1 SCADA-based Power Systems .. 131
12.3.2 SCAPS Specifications.. 133
12.3.3 SCAPS Meets the Case-Study Requirements.. 134
12.3.4 Partial UML Model ... 134

12.3.4.1 Use-Case Diagram ... 135
12.3.4.2 Network Deployment Diagram ... 135
12.3.4.3 Class Diagram.. 136
12.3.4.4 Sequence Diagrams .. 136
12.3.4.5 Modified Interaction Overview Diagram ... 139

12.3.5 Implementation... 140
12.3.6 Hardware and Network Specifications... 141

12.4 DERIVATION OF NETWORK-AWARE STRESS TEST CASES .. 142
12.4.1 Network Interconnectivity Tree... 142
12.4.2 Control Flow Analysis of SDs... 142
12.4.3 Derivation of Distributed Concurrent Control Flow Paths.. 144
12.4.4 Derivation of Independent-SD Sets... 145
12.4.5 Derivation of Concurrent SD Flow Paths.. 145
12.4.6 Data Size of Messages... 147
12.4.7 Stress Test Objective.. 147
12.4.8 Derivation of Test Requirements .. 148

12.4.8.1 Test Objective 1: (Canada, -, data traffic, instant) .. 148
12.4.8.2 Test Objective 2: (SEV_CA1, in, data traffic, interval) .. 151
12.4.8.3 Test Objective 3: (SEV_ON, bidirectional, message traffic, instant) ... 154

12.4.9 Derivation of Test Cases ... 156
12.4.9.1 Test Objective 1 ... 156
12.4.9.2 Test Objective 2... 156
12.4.9.3 Test Objective 3... 156

12.5 STRESS TEST ARCHITECTURE .. 156
12.6 RUNNING STRESS TEST CASES .. 158
12.7 TEST RESULTS .. 158

12.7.1 Baseline of Comparisons... 158
12.7.2 Test Objective 1.. 160
12.7.3 Test Objective 2.. 161
12.7.4 Test Objective 3.. 162
12.7.5 Conclusions.. 162

CHAPTER 13 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS.. 163
13.1 CONCLUSIONS .. 163
13.2 OPEN QUESTIONS ... 163
13.3 FUTURE RESEARCH DIRECTIONS ... 163

ACKNOWLEDGMENTS ... 165
REFERENCES .. 165
APPENDIX A- GENETIC ALGORITHMS OVERVIEW ... 173

Carleton University TR SCE-05-13 September 2005

 6

List of Figures
Figure 1-The structure of the GRM Framework of the UML-SPT profile [10].. 17
Figure 2-Part of the deployment architecture of a chemical reactor system. ... 17
Figure 3-Example of time modeling using UML-SPT profile... 18
Figure 4-The fundamental chain of dependability threats.. 19
Figure 5-Tree of Fault Classes generalized for Distributed Systems. ... 20
Figure 6-Occurrences of Distributed Unavailability Faults (DUF).. 22
Figure 7-An example scenario showing how a distributed traffic fault might happen... 23
Figure 8- Overview of our model-based stress test methodology. ... 26
Figure 9- Metamodels in the Stress Test Methodology... 27
Figure 10-A network topology diagram... 28
Figure 11-Modeling the deployment node of an object using node tagged value... 31
Figure 12-The approach in which the different SD constraint types are considered by the two optimization algorithms
in this work... 33
Figure 13- Use Case Sequential Constraints for the Librarian actor (adopted from [54])... 34
Figure 14-Interaction Overview Diagram (IOD) of a simplified ATM system. .. 36
Figure 15- Modified Interaction Overview Diagram (MIOD) of a simplified ATM system... 36
Figure 16-A controller system made of several sensors. .. 37
Figure 17-(a): Modeling concurrent instances of SDs inside MIOD. (b): Equivalent in meaning to (a). 37
Figure 18-A simple network deployment for an online shopping service.. 38
Figure 19-Using UML packages to model network interconnectivity of Figure 10. .. 39
Figure 20-Modeling network interconnectivity of a University Network.. 39
Figure 21-Network Interconnectivity Tree (NIT) of the topology in Figure 10. ... 40
Figure 22-Examples of SD- and MIOD-level SRT and HRT constraints. ... 42
Figure 23-UML 2.0 Sequence Diagram Metamodel... 42
Figure 24-An example illustrating the new features of the UML 2.0 SDs... 44
Figure 25-Notations for synchronous/asynchronous messages and replies in UML 1.x and 2.0.................................... 44
Figure 26-A SD with asynchronous messages... 46
Figure 27-CCFG of the SD in Figure 26... 47
Figure 28-CCFPs of the CCFG in Figure 27.. 47
Figure 29- DCCFPs of the CCFPs in Figure 28... 49
Figure 30-Timed inter-node representation of DCCFP(ρ2) in Figure 29... 49
Figure 31-A simple system NIT. ... 50
Figure 32-Timed inter-network representation of a DCCFP... 50
Figure 33- The MIOD of a library system. .. 52
Figure 34-The Independent SD Graph (ISDG) corresponding to the MIOD in Figure 33. The ISDS={A,B,G,H} is
shown with dashed edges. ... 53
Figure 35-A MIOD with a multi-SD construct. ... 53
Figure 36-An example MIOD and the CCFG of one of its SDs. .. 54
Figure 37-The call tree of the recursive algorithm Duration applied to CCFPS1.. 57
Figure 38-A class diagram showing three classes with data fields. .. 59
Figure 39-A Network Interconnectivity Tree (NIT)... 61
Figure 40-Derivation of network path between two nodes from NIT (getNetworkPath(ns, nr) function)........................ 61
Figure 41-A system made up of four nodes and three networks... 62
Figure 42-Timed inter-node and inter-network representations of three DCCFPs.. 63
Figure 43-A typical system composed of two nodes and four processes. .. 64
Figure 44-Network traffic diagram (data traffic) of DCFP2 in Figure 43.. 64
Figure 45-Network traffic diagram (number of distributed messages) of DCFP2 in Figure 43...................................... 64
Figure 46-“In-data” traffic diagram of a node, highlighting difference between instant and interval (3ms) traffic. ... 65
Figure 47-The data traffic diagram of a node with two processes. ... 66
Figure 48-Naming convention for traffic usage functions.. 66
Figure 49-A simple system NIT. ... 72
Figure 50-Heuristic to stress test instant data traffic on a network... 73
Figure 51-Formulating the Stress Test Generation Problem as an Optimization Problem... 76
Figure 52-Naming conventions of functions used in various stress test algorithms... 78

Carleton University TR SCE-05-13 September 2005

 7

Figure 53-Activity diagram of stress test strategy StressNetInsDT(net).. 79
Figure 54-(a): Hierarchical relationships between messages, DCCFPs, SDs, ISDSs and a MIOD. (b): Using a Venn
diagram to represent how the hierarchical maximum selection process works.. 80
Figure 55- Activity diagram of stress test strategy StressNetIntDT(net)... 82
Figure 56-Calculating complexity of Algorithm 3. ... 85
Figure 57-Calculating complexity of Algorithm 4. ... 85
Figure 58-An example MIOD with two MIOD-level HRT constraints. ... 86
Figure 59-(a): Global stress test versus (b): RT constraint-oriented stress test. .. 87
Figure 60-An example of a SD-level RT constraint. ... 87
Figure 61-An example of a MIOD-level RT constraint (only part of the MIOD is shown).. 90
Figure 62-Association of RT constraints in SD and MIOD levels. .. 91
Figure 63-Heuristics to Automate the Process of Test Elements Derivation.. 92
Figure 64-BNF for the elements of SD-Network Usage Matrix (SDNUM)... 92
Figure 65-An example showing how the automated test element derivation heuristics works. 93
Figure 66- Pseudo-code to check if the arrival pattern AP is satisfied by an arrival time. ... 97
Figure 67-Accepted Time Intervals (ATI) of a bounded arrival pattern (‘bounded’, (4, ms), (5, ms)), i.e. MinIAT=4ms,
MaxIAT=5ms. .. 98
Figure 68-Accepted Time Intervals (ATI) of the bursty arrival pattern (‘bursty’, (5, ms), 2).. 98
Figure 69-Accepted Time Point (ATP) of the irregular inter-arrival pattern (‘irregular’, (1, ms), (5, ms), (6, ms), (8,
ms), (10, ms)). .. 98
Figure 70-Accepted Time Intervals (ATI) of the periodic interarrival pattern (‘periodic’, (5, ms), (1, ms)). 99
Figure 71-Probability Distribution Function (PDF) of (‘poisson’, (5, ms)) arrival pattern... 99
Figure 72-(a): Accepted Time Set (ATS) metamodel. (b): Three instances of the metamodel... 99
Figure 73- Rationale for finding overlapping (common) intervals of two ATSs... 101
Figure 74-Two examples showing how intersections of two ATSs can be calculated.. 101
Figure 75-Formulating the problem of generating stress test requirements as an optimization problem.................... 102
Figure 76-Impact of arrival patterns on instant (a)-(b) and interval (c)-(d) stress test strategies................................ 103
Figure 77-SD arrival pattern constraints. ... 104
Figure 78-An example stress test requirement which is an invalid schedule, considering SD arrival patterns........... 105
Figure 79-(a): Metamodel of chromosomes and genes in our GA algorithm. (b): Part of an instance of the metamodel.
... 107
Figure 80- Constraint #1 of the GA (an OCL expression).. 108
Figure 81-Constraint #2 of the GA (an OCL function)... 108
Figure 82-Pseudo-code to generate chromosomes of the GA’s initial population... 109
Figure 83-An example where the ATS intersection of all SDs is null, but they can overlap.. 110
Figure 84-Computing the Instant Stress Test Objective Function (ISTOF) value of a chromosome. 111
Figure 85-Activity diagram of the crossover operators.. 112
Figure 86-Two example uses of the crossover operators. .. 113
Figure 87-Activity diagram of the DCCFPMutation operator... 114
Figure 88-Activity diagram of the startTimeMutation operator. ... 114
Figure 89-An illustration to show the impact of arrival patterns in the actual duration of a CCFP............................ 116
Figure 90- Function returning the earliest arrival time of a SD based on its arrival pattern....................................... 116
Figure 91-Call tree of the recursive algorithm minAPDuration applied to a CCFPS... 117
Figure 93-Simplified class diagram of GARUS... 119
Figure 94-Overview activity diagram of GARUS.. 120
Figure 95-GARUS input file format. .. 121
Figure 97-An example NTUP of a DCCFP... 122
Figure 98-(a): Stress test requirements format in GARUS output file. (b): An example.. 122
Figure 99-ATSs of the SDs in the TM in Figure 96, and a stress test schedule generated by GARUS......................... 125
Figure 101-(a): Histogram of maximum ISTOF and stress time values for 1000 runs (b): Corresponding max stress
time values for one of the frequent maximum ISTOF values. ... 127
Figure 102-Histogram of the generation numbers when a stable maximum fitness plateau is reached in 1000 runs of
the example by GARUS... 127
Figure 103-A typical architecture of SCADA systems. ... 129
Figure 104-Power systems SCADA model [93].. 132
Figure 105- Communication model between tele-control units and servers in a SCADA system [93]......................... 133

Carleton University TR SCE-05-13 September 2005

 8

Figure 106-A typical operational organization for power systems [94]... 133
Figure 107- SCAPS use-case diagram... 135
Figure 108- SCAPS network deployment diagram.. 135
Figure 109-SCAPS partial class diagram.. 136
Figure 110- SDs OM_ON and OM_QC (Overload Monitoring). .. 137
Figure 111-SD queryONData(dataType). ... 137
Figure 112-SD queryQCData(dataType). ... 138
Figure 113- SD OC (Overload Control).. 138
Figure 114-SD DSPS_ON and DSPS_QC (Detection of Separated Power System). ... 139
Figure 115-SD PRNF (Power Restoration after Network Failure). .. 139
Figure 116-SCAPS Modified Interaction Overview Diagram (MIOD)... 140
Figure 117-A screenshot of the main screen of SCAPS.. 141
Figure 118- SCAPS Network Interconnectivity Tree (NIT). ... 142
Figure 119-CCFG(OM_ON). ... 142
Figure 120-CCFG(OM_QC). ... 143
Figure 121-CCFG(OC)... 143
Figure 122-CCFG(DSPS_ON)... 143
Figure 123-CCFG(DSPS_QC)... 144
Figure 124-CCFG(PRNF). ... 144
Figure 125-CCFP and DCCFP sets of SDs in SCAPS... 145
Figure 126-(a):Independent-SDs Graph (ISDG) corresponding to the MIOD of Figure 116. (b), (c) and (d): Three of
the strongly connected components of the ISDG (shown with dashed edges), yielding three ISDSs............................. 146
Figure 127-A grammar to derive CSDFPs from SCAPS’ MIOD... 146
Figure 128-Some of the CSDFPs of SCAPS derived from the grammar in Figure 127... 147
Figure 129-(a): The timed-DT value representation of DCCFP ρ1,1, (b): The resulting NetInsDT(ρ1,1,”Canada”,t)
function values. .. 148
Figure 130-The timed-DT value representation of DCCFP ρ3,1, (b): The resulting NetInsDT(ρ3,1,”Canada”,t) function
values.. 149
Figure 131-The call tree of the recursive algorithm Duration applied to CCFPS2.. 153
Figure 132-Overview of SCAPS Stress Test Architecture. ... 157
Figure 133-Part of CCFG(OC), annotated with probabilities of paths after decision nodes.. 159
Figure 134-Execution times distributions of test suites corresponding to SRT constraint SRTC1 by running
operational profile test (OPT) and stress test (ST) cases corresponding to test objective 1.. 160
Figure 135- Execution times distributions for constraint SRTC1 by running operational profile test (OPT) and stress
test (ST) cases corresponding to test objective 2... 161
Figure 136- Execution times distributions of test suites corresponding to SRT constraint SRTC1 by running
operational profile tests (OPT) and stress tests (ST) corresponding to test objective 3... 162
Figure 137-GA chromosome terminology. .. 173
Figure 138-Illustration of crossover operator (single point crossover). ... 173
Figure 139-Illustration of mutation operator.. 174
Figure 140-Activity diagram of the most general form of genetic algorithms (concept from [74]).............................. 174

Carleton University TR SCE-05-13 September 2005

 9

List of Acronyms
AD Activity Diagram

AOCS Attitude and Orbit Control System

AP Arrival Pattern

APC Arrival-Pattern Constraint

BLOB Binary Large OBject

BNF Backus-Nauer Form

CCFG Concurrent Control Flow Graph

CCFP Concurrent Control Flow Path

CCFPS Concurrent Control Flow Path Sequence

CFA Control Flow Analysis

CFG Control Flow Graph

CFM Control Flow Model

CFP Control Flow Path

CPU Central Processing Unit

CSDFP Concurrent SD Flow Paths

DBMS DataBase Management System

DCCFP Distributed Concurrent Control Flow Path

DCCFPS Distributed Concurrent Control Flow Path Sequence

DCS Distributed control system

DRTS Distributed Real-Time Systems

DT Data Traffic

DUF Distributed Unavailability Fault

ECC Error Correcting Codes

GARUS GA-based test Requirement tool for distribUted Systems

GASTT Genetic Algorithm-based Stress Test Technique

GRM General Resource Modeling

HMI Human-Machine Interface

HRT Hard Real-Time

IDE Integrated Development Environment

IOD Interaction Overview Diagram

IVSDS Invalid SD Schedule

IPMCS Industrial Process Measurement and Control System

ISDS Independent-SD Sets

ISTOF Instant Stress Test Objective Function

LAN Local Area Network

MIOD Modified Interaction Overview Diagram

Carleton University TR SCE-05-13 September 2005

 10

MT Message Traffic

NDD Network Deployment Diagram

NIT Network Interconnectivity Tree

NRI Network Resources Index

OCL Object Constraint Language

OMG Object Management Group

OO Object-Oriented

OPTC Operation Profile-based Test Case

OPTR Operation Profile-based Test Requirement

OSI Open Systems Interconnection

PDF Probability Distribution Function

PLC Programmable Logic Controller

PRI Performance Requirements Index

PSTN Public Switched Telephone Network

RAD Rapid Application Development

RT Real-Time

RTCOST Real-Time Constraint-Oriented Stress Test

SCADA Supervisory Control and Data Acquisition

SCAPS A SCADA-based Power System

SD Sequence Diagram

SDNUM SD-Network Usage Matrix

SHR Synchronized Hyperedge Replacement

SPE Software Performance Engineering

SRT Soft Real-Time

STPE Stress-Test Performance Engineering

SUT System Under Test

TC Te1e-Control unit

TM Test Model

TSSTT Time-Shifting Stress Test Technique

UC Use Case

UCM Use-Case Map

UML Unified Modeling Language

UML-SPT UML profile for Schedulability, Performance, and Time

VSDS Valid SD Schedule

WAN Wide Area Network

Carleton University TR SCE-05-13 September 2005

 11

Chapter 1

INTRODUCTION

1.1 Motivation and Goal

Distributed Real-Time Systems (DRTS for short) are becoming more important to our everyday life.
Examples include command and control systems, aircraft aviation systems, robotics, and nuclear power
plan systems [3]. However as described in the literature, the development and testing of a DRTS is difficult
and takes more time than the development and testing of a distributed system without real-time
constraints or a non-distributed system, one which runs on a single computer.

System testing has been the topic of a myriad of research in the last two decades or so. Most testing
approaches target system functionality rather than performance. However, Weyuker and Vokolos point out
in [4], that a working system more often encounters problems with performance degradation as opposed to
system crashes or incorrect system responses. In other words, not enough emphasis is generally placed on
performance testing. In hard real-time systems, where stringent deadlines must be met, this poses a serious
problem. Because hard real-time systems are often safety critical systems, performance failures are
intolerable. Deadlines that are not adhered to can in some applications lead to life-threatening risks. The
risk of this occurring can be greatly reduced if enough performance testing is done before deploying the
system. Performance degradation and consequent system failures due to this degradation usually arise in
stressed conditions. For example, stressed conditions can be attained in a DRTS when many users are
concurrently accessing a system or when large amounts of data are transferring through a network link.

In a recent paper by Kuhn [5], sources of failures in the United States’ Public Switched Telephone Network
(PSTN), as a very big DRTS, were investigated. It was reported that in the time period of 1992-1994, in
terms of outage numbers, although only 6% of the outages were overloads, but they led to 44% of the
PSTN’s service downtime in the respected time frame. In the system under study, overload was defined as
the situation in which service demand exceeds the designed system capacity. So it is evident that although
overload situations do not happen frequently, the failure consequences they result into are quite expensive.

The motivation for our work can be stated as follows: because DRTS are by nature concurrent and are often
real-time, there is a need for methodologies and tools for stress testing and debugging DRTS under stressed
conditions, such as heavy user loads and intense network traffic. The systems should be tested under stress
before being deployed in the field. In this work, our focus for stress testing is on the network traffic in
DRTS, one of the fundamental factors affecting the behavior of DTRS. Distributed nodes of a DTRS
regularly need to communicate with each other to perform some of the system’s functionalities. Network
communications are, however, not always successful and timely. Problems such as congestion,
transmission errors, or delays might occur in a network. But many real-time and safety-critical systems
have hard deadlines for many of their operations, where catastrophic consequences may result from
missing deadlines. Furthermore, a system might behave well with normal network traffic loads (in terms of
either amount of data or number of requests), but the communication might turn to be poor and unreliable
if many network messages or high loads of data are concurrently transmitted over a particular network or
towards a particular node.

Carleton University TR SCE-05-13 September 2005

 12

1.2 Approach

Assuming that the UML design model of a DRTS, sequence diagrams annotated with timing information
are provided, we propose a technique to derive test requirements to stress the robustness of a system to
network traffic problems in a cost-effective manner. This is a difficult problem as, for a given DRTS where
several concurrent processes are running on each distributed node and processes communicate frequently
with each other, the size of the set of all possible network interaction interleavings is unbounded, where a
network interaction interleaving is a possible sequence of network interactions among a subset of all
processes on a subset of all nodes.

The Unified Modeling Language (UML) [6-8] is increasingly used in the development of DRTS systems.
Since 1997, UML has become the de facto standard for modeling object-oriented software and is used, in
one way or another, by nearly 70 percent of IT industry [9]. The new version of UML, version 2.0 [8], was
finalized by the OMG in August 2003. UML 2.0 offers an improved modeling language compared to UML
1.x versions: enhanced architecture modeling, extensibility, support for component-based development,
modeling of relationships and model management [9]. As we expect UML to be increasingly used for
DTRS, it is therefore important to develop automatable UML model-driven, stress test techniques and this
is the main motivation for the work reported here.

Assuming that the UML design model of a DTRS is in the form of Sequence Diagrams (SD) annotated with
timing information, and the systems’ network topology is given in a specific modeling format, we propose
a technique to derive test requirement to stress the DTRS with respect to network traffic in a way that will
likely reveal robustness problems. We introduce a systematic technique to automatically generate an
interleaving that will stress the network traffic on a network or a node in a System Under Test (SUT) so as
to analyze the system under strenuous but valid conditions. If any network traffic-related failure is
observed, designers will be able to apply any necessary fixes to increase robustness before system delivery.

1.3 Contributions

The contributions of this work can be summarized as follows:

• A faults taxonomy for DRTS (Chapter 3)
• A control flow analysis technique based on UML 2.0 SDs (Chapter 6)
• A resource usage analysis technique for network traffic usage in DRTS (Chapter 8)
• A family of automated stress testing techniques (Chapter 9) aiming at increasing chances of

discovering faults related to network traffic in DTRS. Based on a specific UML 2.0 system model, it
yields stress test requirements composed of specific CFPs (Control Flow Paths) to be invoked and a
schedule according to which to trigger each CFP. In addition to sequence diagrams.

• More specifically, the work includes a specific technique based on Genetic Algorithms aimed at
dealing with internal and external system events exhibiting complex arrival patterns. This is of the
utmost importance for the testing of real-time systems (Chapter 10)

1.4 Structure

The remainder of this article is structured as follows. Relevant background information is given in Chapter
2, where we discuss the related works and define the main terminology used throughout the paper.
Chapter 3 presents a fault taxonomy for DRTS so that the types of faults we target are well defined.
Chapter 4 presents an overview of the stress test methodology. The assumed input system models for the
methodology are precisely described in Chapter 5. From Chapter 6 to Chapter 8, we describe in detail how
a stress test model is built to support automation. Chapter 6 describes a technique for the control flow
analysis of UML 2.0 sequence diagrams, a necessary first step. Chapter 7 discusses how sequential and
conditional constraints among sequence diagrams (or their corresponding use cases) can be analyzed when
generating stress test requirements. A resource usage analysis technique for network traffic usage is then
presented in Chapter 8. Chapter 9 proposes the simpler version of our stress test technique which should be

Carleton University TR SCE-05-13 September 2005

 13

applicable for a large proportion of DTRS. A more sophisticated version of the technique, which takes into
account complex arrival patterns for internal and external system events, is presented in Chapter 10. This
technique re-express our objectives as an optimization problem and uses Genetic Algorithms to derive test
requirements. Chapter 11 discusses how the stress test methodology can be fully automated using a
prototype tool we have developed to generate stress test requirements. This tool is carefully assessed by an
experiment. A comprehensive case study is presented in Chapter 12 in order to assess the usefulness of our
overall methodology on a realistic example. Finally, Chapter 13 concludes this article and discusses some of
the future research directions.

Carleton University TR SCE-05-13 September 2005

 14

Chapter 2

BACKGROUND

This section presents related works (Section 2.1), a detailed problem statement (Section 2.2), the basic
terminology used in this article (Section 2.3), and a brief introduction to the UML profile for Schedulability,
Performance, and Time (UML-SPT) [10] (Section 2.4).

2.1 Related Works

There has not been a great deal of work published on systematic generation of stress and load test suites for
software systems. The works in [11-15] are notable exceptions. On a different note, there are reports that
highlight the high cost of system outages and damages due to high loads and systems’ malfunction under
stressed conditions. For example, Kuhn [5] investigated the sources of failures in the United States’ Public
Switched Telephone Network (PSTN)-a very large distributed system. It was reported that in the time
period of 1992-1994, in terms of outage numbers, although only 6% of the outages were overloads, they led
to 44% of the PSTN’s service downtimes in the studied time frame.

Authors in [13] propose a class of load test case generation algorithms for telecommunication systems
which can be modeled by Markov chains. The black-box techniques proposed are based on system
operational profiles. The Markov chain that represents a system’s behavior is first built. The operational
profile of the software is then used to calculate the probabilities of the transitions in the Markov chain. The
steady-state probability solution of the Markov chain is then used to guide the generation process of the
test cases according to a number of criteria, in order to target specific types of faults. For instance, using
probabilities in the Markov chain, it is possible to ensure that a transition in the chain is involved many
times in a test case so as to target the degradation of the number of calls that can be accepted by the system.
From a practical standpoint, targeting only systems whose behavior can be modeled by Markov chains can
be considered a limitation of this work.

Yang proposed a technique [11] to identify potentially load sensitive code regions to generate load test
cases. The technique targets memory-related faults (e.g., incorrect memory allocation/de-allocation,
incorrect dynamic memory usage) through load testing. The approach is to first identify statements in the
module under test that are load sensitive, i.e., they involve the use of malloc() and free() statements (in C)
and pointers referencing allocated memory. Then, data flow analysis is used to find all Definition-Use
(DU)-pairs that trigger the load sensitive statements. Test cases are then built to execute paths for the DU-
pairs.

Briand et al. [16] propose a methodology for the derivation of test cases that aims at maximizing the
chances of deadline misses within a system. They show that task deadlines may be missed even though the
associated tasks have been identified as schedulable through appropriate schedulability analysis. The
authors note that although it is argued that schedulability analysis simulates the worst-case scenario of task
executions, this is not always the case because of the assumptions made by schedulability theory. The
authors develop a methodology that helps identify performance scenarios that can lead to performance
failures in a system. It combines the use of external aperiodic events (ones that are part of the interface of

Carleton University TR SCE-05-13 September 2005

 15

the software system under test, i.e., triggered by events from users, other software systems or sensors) and
internally generated system events (events triggered by external events and hidden to the outside of the
software system) with a Genetic Algorithm.

Zhang et al. [12] describe a procedure, similar to ours, for automating stress test case generation in
multimedia systems. The authors consider a multimedia system consisting of a group of servers and clients
connected through a network as a SUT. Stringent timing constraints as well as synchronization constraints
are present during the transmission of information from servers to clients and vice versa. The authors
identify test cases that can lead to the saturation of one kind of resource, namely CPU usage of a node in
the distributed multimedia system. The authors first model the flow and concurrency control of
multimedia systems using Petri-nets [17] coupled with temporal constraints. Allen’s interval temporal logic
[18] was used by the authors to model temporal relationships. For example, given two media objects,
VideoA and VideoB, the representation: αVideoB = βVideoA + 4 (where αVideoB and βVideoA denote the
begin time of VideoB and end time of VideoA respectively) is used to express the starting of VideoB four time
units after the end of VideoA. In their model, Zhang and Cheung first identify a reachability graph of the
Petri net representing the control flow of multimedia systems. This graph is quite similar to a finite state
machine where the states are referred to as markings and the transitions correspond to the transitions in the
Petri-net. Each marking on the reachability graph is composed of a tuple representing all the places on the
Petri-net along with the number of tokens held in each. It is important to note that only reachable markings
(that is ones that can be reached by an execution of the Petri-net) are included in the reachability graph.
From there, the authors identify test coverage of their graph as a set of sequences that cover all the
reachable markings. These sequences, or paths in the reachability graph, are referred to as firing sequences.
Firing sequences are composed of a transition and a firing time, represented as a variable. From there, each
sequence is formulated into a linear programming problem and solved, outputting the actual firing times
that maximize resource utilization.

The proposed technique can not be easily generalized to generate test cases for different stress testing
strategies of a networking system. Some of the limitations of their technique are:

• They assume constant resource utilization (called as weight by the authors) for each media object.
While in most DRTS, the resource usage of each object (system component) varies with time.

• Only instant stress testing (happening in one time instant) is supported. But a system may only
exhibit failures if stress test is prolonged for a period of time.

• The temporal relationships and control flow model of the system should be modeled using Petri-
nets [17] and Allen’s interval temporal logic [18]. Although these two notations have solid
mathematical foundations, they are not widely used by software developers. It would be much
better if the required temporal relationships and control flow information could be extracted from
the UML model of a system.

• The proposed technique can not be easily generalized to generate test cases for different stress
testing strategies, i.e., testing networks vs. nodes, stress direction: towards a nod`e vs. from a node.
This will be discussed in detail in our system model and methodology sections.

2.2 Problem Statement (Initial)

We first define the problem we tackle in a general way, without providing details on the modeling and
formalisms which will be proposed later on in this paper.

Assuming that the UML design model of a DRTS is given, the problem is to find a systematic
technique which automatically generates a set of test requirements to stress the network traffic of
the system nodes and network links such that the probability of exhibiting network traffic-related
faults increases. The UML design model of the SUT is assumed to include at least the system’s
sequence diagrams (annotated with start and end timing information of each message), class
diagram(s) and a system network interconnectivity package diagram which will be introduced in

Carleton University TR SCE-05-13 September 2005

 16

Section 5.5 and shows the interconnectivity of the system’s nodes and network links. There can be
several concurrent processes running on each system node where processes communicate with
other processes located on the other nodes.

The above problem statement will be revisited in Section 9.1, where it will be detailed and rephrased using
the modeling and formalisms proposed from Chapter 5 to Chapter 7.

2.3 Terminology

Here we define the basic terminology used throughout this paper.

Performance Testing. Performance testing is defined as the testing activity which is conducted to evaluate the
compliance of a system or component with specified performance requirements. By thorough performance
testing, it is expected that the risks of performance failures in systems are reduced. If performance is
defined in terms of response time, software systems must produce results within acceptable time intervals.
For example, most users of desktop systems will be annoyed with response times longer than a few
seconds. In hard real-time systems, the deadlines to accept and respond to an input are measured in small
time units such as milliseconds [19]. In all of these applications, the inability to meet response time
requirements is no less a bug than incorrect outputs or a system crash.

Stress Testing. Stress testing is defined as the testing process by which a software system is put under heavy
stress and demanding conditions in an attempt to increase the probability of exhibiting failures. A stress
test pushes the SUT to its design limits and tries to cause failures under extreme but valid conditions. This
kind of testing will reveal two kinds of faults: lack of fail-safe behavior and load-sensitive bugs. The stress
test suites may increase simultaneous actions and cause resources to be used in unexpected way. This may
reveal faults on rare conditions, in exception handlers, and in restart/recovery features of a software
system [19].

Distributed system: A collection of autonomous, geographically-dispersed computing nodes (hardware or
software) connected by some communication medium: one or more networks.

Distributed node: A geographically-dispersed computing node, which is a part of a distributed system and is
part of a network.

Network: A network is the communication backbone for a set of nodes in a system. A network may be a
subnet of another network or the supernet of several other networks. A more comprehensive definition of a
network is given in Section 4.2.1.

2.4 UML Profile for Schedulability, Performance, and Time

The UML standard has been used in a large number of time-critical and resource-critical distributed
systems [20-24]. Based on this experience, a consensus has emerged that, while a useful tool, UML is
lacking some modeling notations in key areas that are of particular concern to distributed system designers
and developers. In particular, it was noticed that the lack of a quantifiable notion of time and resources was
an obstacle to its broader use in the distributed and embedded domain. To further standardize the use of
UML in modeling complex distributed systems, the OMG (Object Management Group) adopted a new
UML profile named “UML Profile for Schedulability, Performance and Time” (SPT) [10] (referred to as the
UML-SPT).

The UML-SPT profile proposes a framework for modeling real-time systems using UML. The profile was
finalized on Sept. 2003 and is becoming popular in the research community [25-29] and the industry [30].
The profile provides a uniform framework, based on the notion of quality of service (QoS), for attaching
quantitative information to UML models. Specifically, QoS information models, either directly or
indirectly, the physical properties of the hardware and software environments of the application
represented by the model. This framework is referred to as the General Resource Modeling framework (GRM)
by the UML-SPT profile. The structure of the GRM framework is shown in Figure 1 [10].

Carleton University TR SCE-05-13 September 2005

 17

General Resource Modeling Framework

«sub-profile»
RTresourceModeling

«sub-profile»
RTconcurrencyModeling

«sub-profile»
RTtimeModeling

«import»

«import»

Figure 1-The structure of the GRM Framework of the UML-SPT profile [10].

According to the UML-SPT profile’s specification [10], sub-profiles are defined as profile packages
dedicated to specific aspects and modeling analysis techniques. As shown in Figure 1, the RTtimeModeling
sub-profile imports the RTresourceModeling sub-profile, since time can be considered as a resource in a
system. The RTtimeModeling sub-profile provides means for representing time and time-related
mechanisms that are appropriate for modeling real-time software systems. The time domain model is
divided into the following separate but related groups of concepts:

• Concepts for modeling time and time values, included in the TimeModel package.
• Concepts for modeling events in time and time-related stimuli, included in the TimedEvents

package.
• Concepts for modeling timing mechanisms (clocks, timers), included in the TimingMechanisms

package.
• Concepts for modeling timing services, such as those found in real-time operating systems,

included in the TimingServices package.

As we will see in the faults taxonomy related to the time constraints in a distributed system (Section 3.1),
we will mostly use the concepts for modeling events in time and time-related stimuli in the context of this
work. Those concepts are included in the TimedEvents package of the RTtimeModeling sub-profile. The
modeling of the TimedEvents package is shown in Section 4.1.3 of the UML-SPT profile [10].

As an example, part of the deployment architecture of a typical chemical reactor system is shown in Figure
2, where a sensor controller node (nsc) is supposed to get the sensor data from sensors ns1 and ns2, and then
to send the data to be updated in the control server (ncs).

Reactor

LAN

ncs: ControlServer

Reactor
Expert

`

nrm:ReactorMonitoringns1:HeatSensor

ns2:HeatSensor

nsc :SensorController

Figure 2-Part of the deployment architecture of a chemical reactor system.

The sequence diagram (SD) in Figure 3 shows the realization of the update process. The SD is using time
modeling constructs in the TimeModel package of the UML-SPT profile and the UML 2.0 [8] notations. As a
reminder, the graphical notations of UML 2.0 for synchronous, asynchronous, and reply messages are also
indicated in Figure 3.

Carleton University TR SCE-05-13 September 2005

 18

sd updateSensorData

nnnnnnnnnnnnnnnnnn

«RTstimulus»
{RTArrivalPattern="'periodic',(100,'ms')"
RTduration<(10,'ms')}

:SensorDataCollector
{node=nsc}

:Sensor
{node=ns1}

:Sensor
{node=ns2}

d[0]=get_data()

d[1]=get_data()

updateSensorData()

«RTstimulus»
{RTstart=(1,'ms'),
RTend=(2,'ms')}

get_data()

get_data()

:SensorDB
{node=ncs}

update_data(d)

update_ack=update_data(d)
«RTstimulus»
{RTstart=(6,'ms'),
RTend=(10,'ms')}

«RTstimulus»
{RTstart=(14,'ms'),
RTend=(15,'ms')}

synchronous

asynchronous

reply (from a call)

Figure 3-Example of time modeling using UML-SPT profile.

The system is obviously a safety-critical one, where an inadequate response time of the system might have
life-threatening consequences. In other words, the temperature of the system should be measured and
checked according to the timing notations in Figure 3 and prompt corrective actions should be carried out
if the temperature is higher than a pre-specified threshold.

Carleton University TR SCE-05-13 September 2005

 19

Chapter 3

A FAULT TAXONOMY FOR DISTRIBUTED SYSTEMS

To operate successfully, most large distributed systems depend on software, hardware, and human
operators and maintainers to function correctly. Failure of any one of these elements can disrupt or bring
down an entire system.

According to the terminology used in system dependability, a system may fail either because it does not
comply with the specification, or because the specification did not adequately describe its function [31].
Three fundamental categories of threats exist in the dependability theory: failures, errors, and faults. A
failure occurs when an error reaches the service interface and alters the service. An error is the part of the
system state that may cause a subsequent failure. A fault is the adjudged or hypothesized cause of an error.
A fault is active when it produces an error; otherwise it is dormant. Failures, errors, and faults are closely
related. The chained causality relationship between these threats is shown by Avizienis et al. [31], as
depicted in Figure 4.

Fault Error Failure Fault
activation propagation causation

... ...

Figure 4-The fundamental chain of dependability threats.

The arrows in this chain express a causality relationship between faults, errors and failures. From the users
viewpoint, a malfunction in a system is observed via a failure, which itself has been caused by an error and
that by a fault. Therefore in terms of system granularity, failures are in a higher level than errors and those
are in a higher level than faults. For example in a typical web-based email system such as Yahoo, which
most probably uses parallel/distributed web servers to serve huge number of clients at the same time, a
typical failure from a user standpoint might be: “Yahoo! mail doesn’t let me log in”. This failure might be due
to an error such as: “the user database can not be reached” in the system, where in turn, might be caused by a
distributed fault like: “congestion in a database server’s request queue has resulted in an unavailability of the
server”.

Adopting the concept of dependability to our context, i.e., distributed systems, it would make sense to
count for specific faults which occur specially in distributed systems as a different category of faults. The
elementary fault classes were proposed by Avizienis et al. [31], which included classes like “domain” and
“system boundary” of a fault. The larger fault classes are further categorized into subclasses. For example,
the fault class of “domain” contains two subclasses of “hardware” and “software” fault subclasses. We
generalize the fault category, given in [31], to incorporate the distributed faults as well. Our proposed
additions are given in Figure 5, where the faults classes on the gray background are our proposed
additions, while those with dotted border were given by Avizienis et al. in [31]. We have added two top-
most categories: ’nature` and ‘location of creation or occurrence`.

As given in Figure 5, we consider four different categories for the nature of a fault: local, distributed , real-time
and concurrency. Local faults are those which occur on a node in the system and basically do not have any

Carleton University TR SCE-05-13 September 2005

 20

thing to do with the distribution of the system. Functional faults in a single process are examples of local
faults. Distributed faults are those which occur due to the distribution nature of a system. We define two
types of distributed faults: unavailability and traffic, which will be described in detail in Section 3.2. As
their name indicate themselves, real-time and concurrency faults relate to the real-time constraints and
concurrent character of a system.

The “Location of creation or occurrence” fault class indicates the location where a fault has occurred. For
the case of faults in distributed system, we assume two cases for this class: network and node. In other
words, we assume that a fault (in a distributed system) may happen either in a network or in a node. This
will be described in detail in Section 3.5.

In this work, the system under test is a distributed system composed of several nodes and several
concurrent processes running in each node. There can also be real-time constraints in the system. The idea
for classification of faults by their “nature” in such a system is that, aside from the local system
classifications (shown as boxes with dotted border in Figure 5), a fault may have a pure distributed, real-
time or concurrency cause.

In the following sections, we first revisit the persistency of faults. Then, each of our proposed fault classes
will be further discussed. We also give examples for each category of faults. This will clarify the stress
testing methodology in Section 8.5 and will highlight the types of faults we want to tackle in this work.

Network

Faults

Persistency

Domain

Phenomenological
Cause

System Boundary

Phase of Creation
or Occurrence

Intent

Nature

Permanent

Transient

Hardware

Natural

Software

Human-made

Internal

External

Developmental

Operational

Node

Accidental

Deliberate

Unavailability

Traffic

Malicious

Non-Malicious

Location of Creation
or Occurrence

Data

Request

Proposed in this work

By Avizienis et al.

Testing focus of this work

Distributed

Concurrency

Real-Time

Local

Figure 5-Tree of Fault Classes generalized for Distributed Systems.

3.1 Persistency of Faults

Some studies have suggested that since software is not a physical entity and hence not subject to transient
physical phenomena (as opposed to hardware), software faults are permanent in nature [32]. Some other
studies classify software faults as both permanent and transient. Gray [33] classifies software faults into
Bohrbugs and Heisenbugs. Bohrbugs are essentially permanent design faults and hence almost deterministic
in nature, and they correspond to permanent faults as classified by Avizienis et al. in [31], shown in Figure

Carleton University TR SCE-05-13 September 2005

 21

5. Bohrbugs can be identified easily and can be removed during the testing and debugging phase (or early
deployment phase) of the software life cycle. Heisenbugs, on the other hand, belong to the class of
temporary internal faults and are intermittent. Heisenbugs correspond to transient faults as classified by
Avizienis et al. in [31], shown in Figure 5. Heisenbugs are essentially permanent faults whose conditions of
activation occur rarely or are not easily reproducible. Hence these faults result in transient failures, i.e.,
failures which may not recur if the software is restarted or is run in normal load conditions. Some typical
situations in which Heisenbugs might surface are high usage loads, improper or insufficient exception
handling and interdependent timing of various events. It is for this reason that Heisenbugs are difficult to
identify through testing. Hence a mature piece of software in the operational phase, released after its
development and testing stage, is more likely to experience failures caused by Heisenbugs than due to
Bohrbugs.

Some studies on failure data have reported that a large proportion of software failures are transient in
nature [33, 34], caused by phenomena such as overloads or timing and exception errors [35, 36]. For
example, a study of failure data from a fault tolerant system, called Tandem, indicated that 70% of the
failures were transient failures, caused by faults like race conditions and timing problems [37, 38]. In
another recent paper by Kuhn [5], sources of failures in the United States’ Public Switched Telephone
Network (PSTN), as a very big distributed system, were investigated. It was reported that in the time
period of 1992-1994, although only 6% of the system outages were overloads, but they led to 44% of the
PSTN’s service downtime in the respected time frame. In the system under study, overload was defined as
the situation in which service demand exceeds the designed system capacity. So it is evident that although
overloads happen not frequently, but the failure costs due to them can be expensive.

Altogether, depending on the system under study, we might be able to list some of the situations in which
Heisenbugs (transient) faults might happen:

• Overloads
• Race conditions on shared resources
• Interdependent timing of various events
• Improper or insufficient error handling

The proposed technique in this work aims to cause Heisenbugs (transient) faults with network traffic
overload type.

3.2 Distributed Faults

Since nodes are geographically distributed in a distributed system, there should be a communication
medium connecting them. We identify faults pertaining to communication among nodes under the class of
“distributed” faults, which it itself is under the class of “nature of faults”.

An important point to mention here is that since both the SUT and the test system run in the application
layer of the OSI (Open Systems Interconnection)’s 7-layer network architecture [39], we only consider faults
which are of relevance to the application layer and not the lower OSI layers, such as bit transmissions
errors which are handled and corrected by the Error Correcting Codes (ECC) in the data link layer. In the
context of testing distributed systems, we categorize faults with distributed nature in two groups:

• Distributed unavailability faults
• Distributed traffic faults

The reason why we do not call the above faults as “Network …” instead of “Distributed …” is that we
would like to distinguish between the faults, for example, happening in nodes and network links. We
discuss each of the above fault categories in the following sections.

Carleton University TR SCE-05-13 September 2005

 22

3.2.1 Distributed Unavailability Faults

Distributed unavailability faults relate to the availability (readiness for correct service) and reliability
(continuity of correct service) attributes of a system. The specification of most distributed systems usually
dictates that the system’s network links and nodes should be highly available and reliable. For example, in
a safety-critical system like a distributed air traffic control, the flight and runway information should be
updated frequently in the system’s central database. Failing to do so, which might be caused for example
by a network unavailability fault between a radar and the controller, might result in disastrous
consequences.

Basically a distributed unavailability fault is said to have happened when a system component (either a
network link or a node) is no longer available and can not provide service to other components in the
system. For example, a distributed message from a source node may not reach the destination node because
one of the network links in the path from the source to the destination node might have been exhibiting a
distributed unavailability fault. Since there are essentially three parties (network, the source and the
destination nodes) in every communication, therefore in our definition, this fault might happen in either a
network or in a node, which can be described using the “Location of Creation or Occurrence” fault class, as
shown in Figure 5.

Network links between any two distributed nodes might become unavailable at any time during the
system activity. As we will assume in the system model in Chapter 5, any arbitrary network link in the
network path between any two nodes in the system might be unavailable while the other links are
functioning well. The same thing might also be the case for a node availability fault, i.e., a particular node
might fail to reply to the incoming requests while other nodes are functioning properly. Therefore, all
different types and combinations of unavailability faults have to be accounted for if we want to test all
possibilities of unavailability in a system. The reason why we would like to distinguish the unavailability
fault in terms of its location of creation or occurrence is that the system’s overall behavior might be
different when network link, the source or the destination nodes exhibits unavailability faults. A schematic
notation of possible distributed unavailability faults in a simple distributed message scenario is shown in
Figure 6.

Network

n1 n2

Denotes the occurrence of a
distributed unavailability fault

o2.f()

v1=o2.f()

o1
{node=n1}

o2
{node=n2}

DUF1

DUF2DUF3

DUF1 DUF2DUF3

DUF

SD

Figure 6-Occurrences of Distributed Unavailability Faults (DUF).

In the simple distributed message scenario of Figure 6, object o1 on node n1 invokes a remote procedure call
f() from object o2 on node n2 and subsequently receives the return value. A distributed unavailability fault
(DUF) might happen anywhere in this scenario. We have identified three of all possible DUFs as shown
with DUFi‘s in Figure 6. Suppose DUF1 happens on the network connecting two nodes and just after the
message o2.f() is sent from o1 to o2. DUF2 occurs in n2 (e.g. node n2 crashes) after message o2.f() has arrived in
o2 and while o2 (node n2) is busy processing function f(). DUF3 is a DUF which takes place in n1 before
receiving the reply message (v1=o2.f()). The time and location where a DUF happens might cause different
failures and subsequent faults in a system. Therefore to achieve full coverage in terms of DUFs, all different
times and locations of DUFs have to be tested in a system.

Carleton University TR SCE-05-13 September 2005

 23

Distributed unavailability faults might happen due to a variety of reasons, such as: physical damage to a
network cable, dead node, dead router/switch/hub in the network path, and network or application
software malfunction.

3.2.2 Distributed Traffic Faults

A distributed traffic fault occurs when a system failure is because at least one of system components (either
a network or a node) does not function correctly under heavy network traffic. The root cause for
distributed traffic faults might be due to many network-related issues in the system, such as network
congestion, buffer overflows, and processing delay in a software module. There have been many studies in
the area of network traffic and researchers have used many analytical models. One of the most common
models to represent traffic in networks is to use queuing theory [40]. Discussion on the basic reasons which
cause distributed traffic faults is outside the scope of this paper. Among the main causes, we only consider
two cases: either when large amounts of data (network packets) or high number of requests (messages) are
sent over in a communication scenario between two nodes. For the location of a fault, just like the case of
distributed unavailability fault, one can consider two possibilities where a distributed traffic fault might
happen: a network or a node. Because of this distinction, the heuristic for a stress test strategy will be to
enforce simultaneous traffic (either data or number of messages) to go through a network or towards/from
a node. More details on this will be given in Section 8.5, where the stress testing strategy is presented.

As an example of a scenario when a distributed traffic fault might happen, consider the network schematic
shown in Figure 7. Let us suppose the nodes in NetworkA (n1, n2, n3) send messages to nodes in NetworkB (n4,
n5, n6) simultaneously, where each message contains a large amount of data. All of these messages have to
go through NetworkAB which connects NetworkA and NetworkB. If the total size of the simultaneous data sent
over NetworkAB is larger than its capacity, there will probably be a delay or other network faults that can be
referred to “distributed traffic faults” from our stress testing standpoint. This fault may cause an error and
subsequently a failure in the system, which in turn might lead to other classes of faults according to the
fundamental chain of dependability threats shown in Figure 4. Distributed database and multimedia
servers are examples of systems where large amounts of data are usually exchanged between nodes and
distributed traffic faults might occur.

NetworkA

n1 n2

Denotes a message from
node i to node j at time t

n3

NetworkB

n4 n5 n6

i,j,t

1,
4,

t

2,
5,

t

3,
6,

t

NetworkAB

Figure 7-An example scenario showing how a distributed traffic fault might happen.

As discussed, in addition to amount of data transmitted over a network or from/to a node, we further
assumed that high number of simultaneous messages might also be a potential cause of traffic faults.
Considering the example scenario in Figure 7, assume each of the concurrent processes on the nodes n1, n2,
and n3 (inside NetworkA) send messages to processes on nodes n4, n5, and n6 (inside NetworkB) all in a single
time instant. Since there can be large number of concurrent processes on each node, so there might be
scenarios where high number of distributed messages go over the network NetworkAB. This, subsequently,
might cause a distributed traffic fault in the network and/or any of the nodes. Therefore, a different stress

Carleton University TR SCE-05-13 September 2005

 24

test strategy will be to select a set of sequence diagrams and schedule them such that maximum numbers of
messages go along a network, or from/to a node, on a single time instant.

3.3 Real-Time Faults

A real-time fault is said to have occurred if the root cause of a system failure is missing a real-time
deadline. As discussed, safety-critical systems often have time constraints which they should react on time.
As usually categorized in the literature, real-time deadlines (constraints) are of two types: hard and soft
deadlines. Hard deadlines are constraints that absolutely must be met [41]. A missed hard deadline results
in a system failure. A system with hard deadlines is called a hard real-time system. In hard real-time
systems, late data is bad data. On the other hand, soft real-time systems are characterized by time constraints
(soft deadlines) which can (a) be missed occasionally, (b) be missed by small time derivations, or (c)
occasionally skipped altogether. Usually, these permissible variations are stochastically characterized.
Another common definition for soft real-time systems is that they are constrained only by average time
constraints. Examples include on-line databases and flight reservation systems. Therefore, in soft real-time
systems, late data may still be good data, depending on some measure of the severity of the lateness.

Several techniques have been proposed to maximize the chances of real-time faults. Briand, Labiche and
Shousha’s work in [16] proposes a methodology for the derivation of test cases that aims at maximizing the
chances of critical (hard) deadline misses within a system. A deadline missing can be interpreted as an
occurrence of a real-time fault. Zhang and Cheung [12] describe a procedure for automating stress test case
generation for multimedia systems. The authors considered a multimedia system consisting of a group of
servers and clients connected through a network as a SUT. The goal of their stress test case methodology
was to schedule the multimedia objects such that the CPU usage of a node is maximized in a single time
instant. This high load of CPU usage might lead to potential violations of timing constraints in a
multimedia system. Therefore, the technique in [12] can also be considered as a way to maximize the
chances of real-time faults.

3.4 Concurrency Faults

A concurrency fault is said to have occurred if the root cause of a system failure is due to a fault in
concurrency among processes. There might be, for example, a shared resource that is accessed by several
processes in a system. The synchronization scheme and order in which a shared resource is accessed might
lead to a concurrency fault. Some types of concurrency faults are: deadlock, livelock, starvation and data-
races.

A deadlock is a situation where two or more processes cannot proceed because they are all waiting for the
other to release some shared resource. Livelock happens when processes are blocked with reasons other
than waiting for a shared resource, for example a busy waiting on a condition that can never become true
[42]. Resource starvation is a more subtle form of a deadlock state. A process may have large resource
requirements and may be overlooked repeatedly because it is easier for the resource management system to
schedule other processes with smaller resource requirements [42]. Data-race is an anomaly of concurrent
accesses by two or more threads to a shared variable when at least one is writing. Programs which contain
data-races usually demonstrate unexpected and even non-deterministic behavior. The outcome might
depend on specific execution order (a.k.a. threads’ interleaving). Rerunning the program may not always
produce the same results. Thus, programs with data-races are hard to test and debug.

Several techniques have been proposed to find concurrent faults, such as [43-46] which aim at finding data-
race related faults. For example, Ben-Asher et al. [44] propose a set of heuristics to increase the probability
of manifesting data-race related faults. The goal is to increase the chance of exercising data-races in the
program under test and thus increase the chance of manifesting concurrency faults that are data-race
related. The proposed technique first orders global shared variables according to number of times they are
accessed by different processes. This ordering is done using what the authors call cross-run monitoring. Then
data-race based heuristics are used to change the runtime interleaving of threads so that the probability of

Carleton University TR SCE-05-13 September 2005

 25

fault manifestation increases. One of the proposed heuristics in [44] is called barrier scheduling, in which
barriers are installed before and after accessing a particular shared variable. A barrier causes the processes
accessing the variable to wait just before accessing it. When a predefined number of processes are waiting,
the heuristic then simultaneously resumes all the waiting processes to access the shared variable, for
example using notifyAll() in Java.

The existing techniques do not distinguish between local or distributed concurrent processes. However
since a set of concurrent processes can run on distributed locations, the existing methods to find
concurrency faults can also be potentially used in a distributed system, which is implicitly concurrent as
well.

3.5 Location of Creation or Occurrence

We propose this new classification for faults in DRTS to specify location of creation or occurrence. We
consider two possibilities for the location of a fault: network or node. Considering a distributed system to
be a set of networks and nodes, a fault might occur in any of the nodes or networks.

3.6 Chain of Distribution Faults

As shown in the fundamental chain of dependability threats in Figure 4, a fault with a specific type may
recursively lead to other faults with different types. For example, a distributed fault such as data traffic
fault might lead to a real-time fault, where a process might miss its assigned deadline to perform a
particular task. This chained causality can be rephrased as: when a process does not receive the data, it was
waiting for, on time (by a specific deadline), it will not be able to perform its action on time. Therefore,
when studying the root cause of faults in a system, it is important to order the faults according to the order
they occur and cause the next one in the faults chain. By this criterion, the data traffic fault is the first fault
in the chain and the real-time one is the second in the above example.

3.7 Class of Faults Considered in this Work

As shown by dashed boxes in Figure 5, the classes of faults targeted by the stress testing technique of this
work are data and request traffic faults with distributed nature, and the location of faults can be either
networks or nodes.

Different variations of the proposed stress testing strategy will be given to accommodate different fault
types. The system model is given in Chapter 5 and the stress testing methodology is proposed in Section
8.5.

Carleton University TR SCE-05-13 September 2005

 26

Chapter 4
OVERVIEW OF THE STRESS TEST METHODOLOGY

Section 4.1 presents the overview of our model-based stress test process. The overview of metamodels used
in the stress test methodology is discussed in Section 4.2.

4.1 Stress Test Process

The overview of our model-based stress test methodology is shown using an activity diagram in Figure 8.
Note that only the steps in gray background are addressed by the current paper. A UML model of a SUT,
following specific but realistic requirements, is used in input. A test model (TM) is then built to facilitate
subsequent automation steps. The TM and a set of stress test parameters (objectives) set by the user are
then used by an optimization algorithm to derive stress test requirements. Test requirements can finally be
used to specify test cases to stress test a SUT. The TM consists of three sub-models: a control flow analysis
model (Chapter 6), inter-SD constraints (Chapter 7) and network traffic usage pattern (Chapter 8).

Control Flow Model
(CFM) (Section 6)

Network Traffic Usage
Pattern (Section 8)

Test Cases
(TC)Test Oracles

Network Deployment
Diagram (NDD)

Sequence Diagrams (SD)

Class Diagrams (CD) Test Model (TM) Stress Test
Requirements

Design UML Model
(Section 5)

INPUT

OUTPUT

Modified Interaction
Overview Diagrams

(MIOD)

Inter-SD Constraints
(Section 7)

Test Model
Generator

Test DriverSUT

Simple Optimization
Algorithm (Section 9)

Tester

Modeler

Discussed in this work

Stress Test
Parameters

Context Diagrams GA-based Optimization
Algorithm (Section 10)At least one of SUT

SDs has arrival
pattern constraints

None of SUT SDs
have arrival pattern

constraints

Stress Test
Parameters

Figure 8- Overview of our model-based stress test methodology.

As we will discuss in Section 5.3, triggering SDs may not be allowed in any time instance. These types of
constraints are called arrival-patterns. If none of a SUT’s SDs has arrival-pattern constraints, we use a simple
optimization algorithm (Chapter 9) to derive stress test requirements from a TM. Otherwise, if at least one
of SDs has arrival pattern constraints, we show in Chapter 10 that a more sophisticated optimization
algorithm is needed and present one based on Genetic Algorithms.

Test requirements are the outputs of our technique, which can be used by a tester to derive test cases. A test
driver can be utilized to feed the derived test cases to the SUT, monitor its behavior, check the output with
test oracles and generate test verdicts.

4.2 Metamodels in the Stress Test Methodology

The overview of metamodels used in the stress test methodology is shown in Figure 9. The metamodels are
grouped into three packages: network topology, input system UML model, and test model. Network

Carleton University TR SCE-05-13 September 2005

 27

topology is a metamodel for network topology (distributed architecture) of a system under test (SUT). The
metamodels packages are described next.

1

1

1

1

Distributed Node

Object

1

Network Path

1

1

1

1

1..*

«metamodel»
Network Topology

Network

connected to *
*

m
em

be
r

of

1..*

*

1..* *

UML 2.0 Diagram
«metamodel»

Input System UML Model

«metamodel»
Control Flow Analysis

1..*

Class
1

«metamodel»
Resource Usage Analysis

«metamodel»
Test Model

1

1

1..*
subnet

supernet

1

corresponds

Distributed System
(SUT)

Resource Usage

Network Traffic Usage

InstantMessage

Data Period

DurationType

1

1

In

Out

Direction

Node

Network

Location

Bidirectional

Modified Interaction
Overview Diagrams

Network
Deployment

Diagram

«metamodel»
Inter-SD Constraints

Independent-SD Sets
(ISDS)

Concurrent SD Flow
Paths (CSDFP)

Concurrent Control Flow
Paths Sequence (CCFPS)

Distributed Concurrent Control
Flow Paths Sequence (DCCFPS)

1

1

1

1

1

1

1

Concurrent Control
Flow Graph (CCFG)

Distributed
Concurrent Control
Flow Path (DCCFP)

Control Flow Node

Distributed Control
Flow Node

Message

Concurrent Control
Flow Path (CCFP)

Sequence Diagram (SD)

«metamodel»
Network Interconnectivity Tree

NetworkNode

Tree Node
1

childrenparent

(a) (b)

(c)

Context
Diagrams

Package
Diagram

Class
Diagram

Activity
Diagrams

Figure 9- Metamodels in the Stress Test Methodology.

4.2.1 Network Topology Metamodel

The structure of the distributed architecture of a SUT as we need it to be described is shown in Figure 9-(a)
as a metamodel. A distributed SUT consists of two or more distributed nodes and one or more networks.
As described in terminology (Section 2.2), a node is a geographically-dispersed computing node, which is a
part of a system. A node is part of a network in a system. A network is the communication backbone for a
set of nodes in a system. A network may be subnet of another network, and at the same time it can be the
supernet of several other networks. For example, a typical network topology is shown in Figure 10.

Carleton University TR SCE-05-13 September 2005

 28

a subnet of Network2

Network2Network1

n1 n2 n4 n5n3

Network3

System Network

n6 n7
Figure 10-A network topology diagram.

In the example of Figure 10, there are four networks in the system: System Network, Network1, Network2 and
Network3. Each network has several nodes (ni) or networks as shown. For example, Network2 has two nodes
(n4 and n5) and one network Network3, which itself has is the owning network of two other nodes (n6 and
n7). It is assumed that there is at least one network in every distributed system and that is named as System
Network which connects the highest level networks and nodes to each other.

In order to traverse from a node to another in the system, there is a network path defined between each two
nodes. A network path between two nodes is an ordered set denoting the unique path of networks between
the sender and receiver nodes of a message extracted from the network topology. For example, the network
path from n1 and n6 in Figure 10 is <Network1, SystemNetwork, Network2, Network3>. A function to derive the
network path between two nodes will be described in Section 8.2. A UML package-based notation, referred
to as Network Deployment Diagram (NDD), will be used to model a network topology.

4.2.2 Input System Metamodel

Sequence diagrams model the behavior of a SUT. Class diagrams will be used to estimate the data size of
message in SDs. A Network Deployment Diagram (NDD) will model the network topology of a SUT. A
context diagram [47] will be used to provide the number of multiple invocations of a SD. A Modified
Interaction Overview Diagram (MIOD) will model the constraints between SDs. More details will be
discussed in Chapter 5.

4.2.3 Test Metamodel

The Test Metamodel (TM) is shown in is shown in Figure 9-(b). It consists of four sub-models: control flow
analysis model, network traffic usage model, network interconnectivity tree and inter-SD constraints,
which are described in the next subsections.

4.2.3.1 Control Flow Analysis

In UML 2.0 [48], SDs may have various program-like constructs such as conditions (using alt combined
fragment operator), loops (using loop operator), and procedure calls (using interaction occurrence
construct). As a result, a SD is composed of Control Flow Paths (CFP), defined as a sequence of messages in
a SD. Furthermore, as we discussed in [49], asynchronous messages and parallel combined fragments entail
concurrency inside SDs.

In a SD of a DS, some messages are local (sent form an object to another on the same node), while others are
distributed (sent from an object on one node to an object on another node). Furthermore, different CFPs can
have different sequences of messages and each message can have different signatures and a different set of

Carleton University TR SCE-05-13 September 2005

 29

parameters. Therefore, the network traffic usage pattern of each CFP can be different from other CFPs.
Thus, comprehensive model-based stress testing should take into account the different CFPs of a SD.

As we will discuss in Chapter 6, synchronous and asynchronous messages should be handled differently in
the control flow analysis of a SD. We will propose a CFM (Control Flow Model) for SDs, referred to as
CCFG (Concurrent Control Flow Graph). OCL consistency-rules will be used to define the mapping
between a SD and its equivalent CCFG (Concurrent Control Flow Graph). CCFGs will support
asynchronous messages and concurrency in SD. Similar to the concept of Control Flow Paths (CFP), we will
propose Concurrent Control Flow Paths (CCFP), which can be derived form a CCFG. To consider
distributed messages, between two objects on two different nodes, in a SD, Distributed Concurrent Control
Flow Paths (DCCFP) will be defined. The process to build a CFM will be discussed in Chapter 6.

4.2.3.2 Resource Usage Analysis

We define the resource usage analysis metamodel to enable resource usage analysis of messages in SDs. We
only consider network traffic resource usage in this work. Quantifying network traffic usage is done by
measuring the amount of traffic entailed by a message and assigning the value to the flow node (in CCFP)
corresponding to a message. Therefore, the resource usage analysis is done at the message-level in this
work.

We consider four abstract classes for network traffic usage: type, duration, direction, and location. These
classes will be discussed in further detail in Chapter 8. A technique to formally analyze network traffic
usage of a system based on a given UML model will be proposed in Chapter 8. The resource model will be
formalized in a way to facilitate the stress testing of network traffic in a SUT.

4.2.3.3 Network Interconnectivity Tree

A Network Interconnectivity Tree (NIT) is an equivalent data structure to the package-based representation
of a network topology. A NIT is built from a NDD using the technique presented in Section 5.5.2.

4.2.3.4 Inter-SD Constraints

These constraints are derived from a given Modified Interaction Overview Diagram (MIOD), which models
constraints among SDs of a SUT. The constraints are used as part of the test model to represent the
sequential and conditional constraints among SDs. We propose four elements to analyze such constraints in
our methodology, which will be described in detail in Chapter 7.

• Independent-SD Sets (ISDS)
• Concurrent SD Flow Paths (CSDFP)
• Concurrent Control Flow Paths Sequence (CCFPS)
• Distributed Concurrent Control Flow Paths Sequence (DCCFPS)

Carleton University TR SCE-05-13 September 2005

 30

Chapter 5

INPUT SYSTEM MODEL

In this work, stress test input data is assumed to be UML 2.0 [8] design model of a SUT. As discussed in
Chapter 1, UML has become the de-facto standard for modeling object-oriented software for nearly 70
percent of IT industry since 1997 [9]. The new version, UML 2.0 [8], proposed by OMG in August 2003,
offers an improved modeling language. As we expect UML to be increasingly used for DRTS, it is therefore
important to develop automatable UML model-driven, stress test techniques.

We describe in this chapter the modeling information required. The rationales for using the following five
modeling diagrams by the methodology are described next:

• Two standard UML 2.0 diagrams: sequence diagrams (Section 5.1), and class diagrams (Section 5.2)
• A modified UML 2.0 diagram: modified interaction overview diagram (Section 5.3)
• A context diagram [47] (Section 5.4)
• A specialized UML 2.0 package structure, referred to as Network Deployment Diagram (NDD)

(Section 5.5)

Furthermore, two tagged-values (specialized from the UML-SPT tagged-values) for modeling hard and soft
Real-Time constraints in UML behavior diagrams are described in Section 5.6. As UML 2.0 sequence
diagrams are used as the main behavior model, an overview on SDs is presented in Section 5.7.

5.1 Sequence Diagram

The goal in this work is to systematically stress test a SUT and we need to find some particular test
requirements, based on the behavior of the SUT, to feed into the SUT. Therefore the dynamic behavior of
the SUT should be analyzed to derive such test requirements. According to the UML 2.0 specification [8],
seven UML diagrams can be used to specify the behavior of a system. As shown in Appendix A of [8], they
are Activity, Sequence, Collaboration (or called Communication in Section 14 of [8]), Interaction Overview,
Timing, Use case and State machine diagrams. Among all those diagrams, only sequence and
communication diagrams provide message-level details of a program, which are needed for the Control
Flow Analysis (CFA) needed for stress testing. Furthermore, among the last two, SDs have been more
popular than communication diagrams in modeling dynamic behavior of systems, as they provide a richer
set of behavior modeling constructs (e.g. loops and conditions).

SDs have been accepted as essential UML artifacts for modeling the behavioral aspects of systems [50, 51].
The diagrams are particularly well-suited for object-oriented software, where they represent the flow of
control during object interactions [52]. A SD shows a set of interacting objects and the sequence of messages
exchanged among them. The diagram may also contain additional information about the flow of control
during the interaction, such as if-then conditions ("if c send message m") and iteration ("send message m
multiple times") or state-dependent behavior [50]. SDs have been the basis for several approaches for testing
of object-oriented software [8, 19, 51, 53-56]. Some of existing approaches test the interactions among
collaborating objects using SDs. SDs are used to determine the interactions that must be exercised. For

Carleton University TR SCE-05-13 September 2005

 31

example, it may be required to cover all relationships of the form "object X sends message m to object Y".
Sequences of messages for example, all possible beginning-to-end message sequences in the diagram may
also be considered for coverage. We choose SDs as the source of information for dynamic behavior of a
SUT.

According to the new features of SDs in UML 2.0, Section 14 of [8], SDs can call each other through a
mechanism which is called InteractionOccurrence in the specification. Due to the conditional constructs in
SDs, there can be multiple flows of control in a SD. Therefore, network-traffic stress conditions might
happen in only subsets of the possible control flows of a SD. Thus, to derive network-aware stress test
requirements, we will need to analyze control flow in SDs. We have presented a control flow analysis
technique based on SDs in [2], which we will use in this work. An overview of this technique will be given
in Chapter 6.

Since each of the participating objects of a SD may be deployed on a different node, we need to model this
information in SDs. We use a node tagged value to specify this information. An example is shown in Figure
11.

sd M

m1

o1
{node = n1}

o2
{node = n2}

o3
{node = n3}

m2

Figure 11-Modeling the deployment node of an object using node tagged value.

5.1.1 Timing Information of Messages in SDs

As mentioned in Chapter 1, real-time systems often have real-time constraints that have to be met in
runtime or real-time faults will occur. It was also discussed in Chapter 3 that a fault can trigger other
subsequent faults as well. For instance, a network traffic fault might trigger a real-time fault. Therefore, our
overall heuristic in this work is to schedule the SD’s of a SUT such that all possible distributed messages
with maximum data sizes on a particular network link or a node happen at the same time. As we will see in
the next sections, this will maximize the chance of exhibiting network traffic faults and consequently any
other faults dependent on them.

In order to devise precise test requirements (from time point of view) that yield such a stress test scenario
of network traffic in a SUT, we assume that the timing information of all messages in SDs is given. By
timing information of a message, we basically mean the start and end times of a message. As discussed in
Section 3.3, out of all messages in a typical DRTS, some might have hard and some have soft real-time
constraints. There might be also messages that do not possess any real-time constraints. However, in order
to give a scheduled stress test requirement that will cause stress on network traffic on a predicted time
instant (or period), we require that all messages have precise or statistical timing information.

The start and end times of messages with hard deadlines can be modeled in the UML model of a SUT using
the UML-SPT profile notations [10]. As discussed in Section 3.3, messages with soft deadlines can be
stochastically characterized. Another common definition for such messages is that they are constrained
only by average time constraints. For the case of messages with no time constraints, runtime monitoring
techniques (such as [57]) can be utilized to get a statistical view of the time length of such messages in
runtime prior to the testing phase. Statistical distributions of start and end times of such messages can be
derived by running the system before testing and the expected values of start and end times can be used by

Carleton University TR SCE-05-13 September 2005

 32

the stress test technique in this paper. However, due to the statistical (and hence indeterministic) nature of
the timing values, such timing information might not lead to precise stress scenarios. In this work, we do
not go into details on the issue of timing information. We assume that a time measurement technique has
been utilized for the messages in the SUT and such information is already available.

5.2 Class Diagram

The class diagram is at the heart of the object modeling process. The class diagram models the resources
used to build and operate the system. It models each resource in terms of its structure, relationships and
behavior [9].

The stress testing technique in this paper will use the class diagram(s) of a system for the following two
purposes:

• To achieve full coverage criteria for polymorphism in control flow analysis of SDs, as explained in
Section 5 of [2], and

• To estimate the data size of a distributed message in a SD (either a call or a reply message), as
explained in Section 8.1.1.

5.3 Modified Interaction Overview Diagrams

Executing any arbitrary sequence of use cases (UCs) (i.e., their corresponding SDs) in a SUT might not be
always valid or possible. Business logic of a SUT might enforce a set of constraints on the sequence (order)
of SDs and also certain conditions may have to be satisfied before a particular SD can be executed.

Different types of such SD constraints might exist in different systems. We identify three of those types of
constraints.

• Sequential constraints [54]: Constraints which define a set of valid SD sequences, e.g., the Login SD
of an ATM system should be executed before the Withdrawal SD.

• Conditional constraints: Conditional constraints are related to sequential constraints and indicate
the condition(s) that have to be satisfied before a sequence of SDs can be executed. For example, the
Login SD should be executed “successfully” before the Withdrawal, Transfer and Deposit SDs, or the
RenewLoan SD of a library system can be invoked up to “two times” for an instance of a loan.

• Arrival-pattern constraints: These constraints relate to timing of SDs. The time instant when a SD
can start running might be constrained in a system. Considering each SD alone, it might only be
allowed to be executed in some particular time instants. For example in a replicated distributed
database server system, where the data on the main server should be mirrored (copied) to the
replicated servers, the policy may be to run the Mirror SD every hour and not on every transaction
(maybe since the SD deals with enormous amounts of data). Another scenario in which a SD can
have an arrival-pattern constraint is when the SD is triggered by an event and the event is periodic.

Our approach in considering the above set of constraints when generating stress test requirements is as the
following. We propose a test requirement generation technique, as an optimization problem, in Chapter 9
which takes into account the first two types of constraints (sequential and conditional) between SDs. We
refer to the technique as Time-Shifting Stress Test Technique. A more complex optimization algorithm, based
on Genetic Algorithms, will be presented in Chapter 10 which will consider all three types of constraints
(sequential and conditional and arrival-pattern), and will be referred to as Genetic Algorithm-based Stress
Test Technique.

The reasons why we intend to propose two optimization algorithms are:

− In systems where only sequential and conditional constraints are to be considered, the
technique of Chapter 9 can be used, which is expected to generate more accurate results, i.e.,

Carleton University TR SCE-05-13 September 2005

 33

test requirements, than the technique of Chapter 10. This is because the later technique is based
on genetic algorithms, which do not always find the most optimum results.

− As we will discuss, the technique of Chapter 9 is less complex, easier to comprehend, and in
fact a simpler type of the one in Chapter 10.

The approach in which the different SD constraint types are considered by the two optimization algorithms
in this work is visually depicted in Figure 12.

Sequential

Conditional

Constraint types

Arrival-pattern

Genetic Algorithm-based
Stress Test Technique

(Section 10)

Time-Shifting Stress Test
Technique
(Section 9)

considers

considers

considers

considers

considers

Figure 12-The approach in which the different SD constraint types are considered by the two optimization algorithms in this

work.

In order to analyze and take the above three types of constraints into account when conducting any type of
testing on a SUT, the constraints should be modeled, thus allowing any test generation technique to use
them to derive test cases that comply with such constraints. The arrival-pattern constraints apply to each
SD and they can be modeled using UML-SPT profile, as explained in Section 2.4.

Sequential and conditional constraints are between SDs. Therefore, we refer to them as inter-SD constraints.
In the following, we first discuss the existing techniques and representations to model and formalize the
inter-SD constraints and we will then choose the one which suits best our context. We also propose a
method to derive all possible (allowed) SD sequences in Chapter 7.

Arrival patterns apply to each SD, and hence are not inter-SD constraints. Arrival patterns can be modeled
using the RTArrivalPattern tagged-value of the UML-SPT. Refer to the SD in Figure 3 for an example.

5.3.1 Existing Representations to Model Inter-SD Constraints

In this section, we present a brief review of the existing representations to model SD constraints, in both
UML and non-UML contexts. We briefly discuss some of them and focus on the ones in the context of
UML.

Before UML became a standard, an OO-development method called Fusion [58] proposed the notion of life-
cycle model which bears some similarity in concepts to what we call SD sequential constraints now. Even
recently, there have been works [59, 60] on Fusion, where Fusion calculus together with a notation called
Synchronized Hyperedge Replacement (SHR) are compared and challenges of applying Fusion calculus to
distributed systems are discussed.

Use-Case Maps (UCMs) [61] are also one of the notation which started to evolve before UML, although it
bears some similarities to UML activity diagrams, since its later design phases coincided with the UML’s.
The UCM notation aims to link behavior and structure in an explicit and visual way. UCM paths are
architectural entities that describe causal relationships between responsibilities which are bound to
underlying organizational structure of components. UCM paths represent scenarios that intend to bridge the
gap between requirements (use cases) and detailed design [61].

Carleton University TR SCE-05-13 September 2005

 34

Allen’s interval temporal logic [62] is also one of the models proposed for modeling temporal constraints
among a group of objects. This temporal logic was used by Zhang and Cheung in [12] to model the
temporal constraints among objects in multimedia presentations. Having modeled these temporal
constraints, they presented a technique to stress test the CPU load of a multimedia system using linear
programming optimization technique.

Petri-nets [17] can also be used to model sequential constraints among SDs. For example, Zhang and
Cheung [12] model the flow and concurrency control of multimedia objects using Petri-nets. The advantage
of Petri-nets is that it a well-founded formal notation that has been widely used for the modeling of
dynamic behavior.

Item LibraryTitleUser Loan

Add User Add Title

Add Item

Monitor System

Borrow Loan Copy
Remove Item Remove Title

Collect Fine Renew Loan

Return Loan Copy

Remove User

Figure 13- Use Case Sequential Constraints for the Librarian actor (adopted from [54]).

In the context of UML and SDs, there have also been techniques and representations to model and
formalize constraints among SD, [54] and [63] for instance. When modeling the behavior of a system, a SD
is usually modeled to realize a particular UML UC. Briand and Labiche [54] report that when planning test
cases for UCs, all possible execution sequences for UCs have to identified. The authors present principles
underlying the representation and generation of possible UC test sequences. In order to do that, they use a
model to represent the sequential dependencies of UCs. Such sequential dependencies are represented by
the means of an activity diagram, in which the vertices are UCs and the edges are sequential dependencies
between UCs. An edge between two UCs (from a tail UC to a head UC) specifies that the tail UC must be
executed in order for the head UC to be executed, but the tail UC may be executed without any execution
of the head UC. In addition, specific situations require that several UCs be executed independently
(without any sequential dependencies between them) for another UC to be executed, or after the execution
of this other UC. This is modeled by join and fork synchronization bars in the activity diagram, respectively.
As an example, the authors evaluated the technique on a library system. Based on [54], the UC sequential
constraints for the Librarian actor (in a library system) is shown in Figure 13 (formal parameters of the UCs
are not shown for clarity). The authors also discuss the dependencies in terms of actual parameter values
between the use cases in a path. For instance, in a path like AddTitle.AddItem.RemoveItem.RemoveTitle in
Figure 13, parameter isbn for UC AddItem must be identical to parameter isbn in AddTitle. The authors of
[54] also propose an algorithm to derive all possible sequences of UCs to test.

Carleton University TR SCE-05-13 September 2005

 35

Nebut et al. [63] propose a contract language for functional requirements expressed as parameterized use
cases. They also provide a method, a formal model and a prototype tool to automatically derive both
functional and robustness test cases from the parameterized use cases enhanced with contracts. In this
technique, pre- and post-conditions are attached as UML notes to each use case, and are expressed with
logical expressions. The sequential constraints among SDs can then be deduced from the set of contracts.

OMG introduces a new UML diagram in the new 2.0 version: Interaction Overview Diagram (IOD), Section
14.4 of [8]. IODs “define interactions through a variant of activity diagrams in a way that promotes
overview of the control flow” [8]. IODs are specializations of Activity Diagrams (AD) that represent
interactions. IODs focus on the overview of the flow of control where the nodes are Interactions or
InteractionOccurrences (refer to Interactions as defined by UML 2.0 [8]). The lifelines and the messages (of
each interaction diagram) do not usually appear at this overview level.

5.3.2 Our Choice: IODs

We surveyed some of the existing techniques and representations to model constraints among SD in the
previous section. As mentioned in Section 2.1, one fundamental constraint is that the entire system
modeling should be performed using UML. Therefore, we have to find ways to derive the valid orders of
SDs’ execution in a system using its design UML model. IODs are the most suitable means in UML 2.0 to
model the sequential and conditional constraints among SDs.

In this section, we present a brief overview on IODs from the UML 2.0 specification [8]. The metamodel of
IODs is not directly given in the UML 2.0 specification. However it is mentioned that IODs are
specialization of activity diagrams that represent interactions [8]. IODs differ from ADs in some respects.

1. In place of AD object nodes, IODs can only have either (inline) Interactions or Interaction
Occurrences.

2. Alternative CombinedFragments are represented by a decision node and a corresponding merge
node.

3. Parallel CombinedFragments are represented by a fork node and a corresponding join node.
4. Loop Combined Fragments are represented by simple cycles.
5. Branching and joining of branches must in IODs be properly nested. This is more restrictive than in

ADs.
6. IODs are framed by the same kind of frame that encloses other forms of interaction diagrams.

All of the above constraints are adequate in our context1. It should be mentioned that we will require
having only one IOD for a system, since we only need to know if any two SDs in a system have a
dependency relationship or not. IODs are similar to activity diagrams, proposed by Briand and Labiche [54]
for use case sequential constraints. However, the important additions in IODs are AD conditionals (Section
12.3.11 of [8]) and loops (Section 12.3.28 of [8]).
In the following sections, we rephrase the definition of dependent/independent SDs and an ISDS in the
context of a MIOD and then discuss a method for the derivation of ISDSs from a MIOD.
As an example, the IOD of an ATM system is depicted in Figure 14. The IOD is composed of interaction
occurrences which refer to the corresponding SDs (Insert Card, Login, Display Menu, etc.). The flow of
control between interaction occurrences is modeled using AD flows. The control can take on different paths
as modeled by decision nodes. For example, if only login is successful, the interaction occurrence Display
Menu is invoked.

1 As a reminder, what we mean by our context is the SD constraints to be modeled.

Carleton University TR SCE-05-13 September 2005

 36

Login

ref

[login unsuccessful &&
num_retries<3]

[num_retries=3]ref

Hold Card

Insert Card

ref

[login successful]

Display Menu

ref

ref

Withdraw

ref

Deposit

ref

Transfer

ref

Logout

ref

Eject Card

ref

Print
Transactions

[choice==Withdraw] [choice==Deposit] [choice==Transfer]

[choice==Logout]

A

A

Figure 14-Interaction Overview Diagram (IOD) of a simplified ATM system.

5.3.3 Modified Interaction Overview Diagrams
To model which actor or sub-system invokes a particular SD, we slightly modify IODs to include activity
partitions and refer to the modified IOD metamodel as Modified Interaction Overview Diagrams (MIOD).
Activity partitions are modeling features which include AD swimlanes. In a MIOD, SDs are grouped into
swimlanes, according to actors triggering each SD. For example, the MIOD of the IOD in Figure 14 is
shown in Figure 15.

AT
M

 M
ac

hi
ne

U
se

r

[login unsuccessful &&
num_retries<3]

[num_retries=3]

[login successful]

[choice==Withdraw]

[choice==Deposit]

[choice==Transfer]

[choice==Logout]

A

A

Login

ref

ref

Hold Card

Insert Card

ref

Display Menu

ref

ref

Withdraw

ref

Deposit

ref

Transfer

ref

Logout

ref

Eject Card

ref

Print
Transactions

Figure 15- Modified Interaction Overview Diagram (MIOD) of a simplified ATM system.

The differences of our MIOD modeling notation with the use-case sequential-constraints modeling done in
[54] are: (1) the MIOD is a notation for system-wide sequential constraint modeling for SDs, while the

Carleton University TR SCE-05-13 September 2005

 37

notation in [54] was per actor. (2) the MIOD takes into account the conditional constraints (defined in
Section 5.3) among SDs, while the work in [54] did not explicitly support such constraints.

In Chapter 7, we will discuss the SD constraints in more detail and we will see why modeling those
constraints is needed and in the current work for the purpose of stress testing. We will then propose a way
to derive the set of independent SDs in a SUT which will be used by our stress test methodology.

5.4 Context Diagram

In a DRTS, there are often cases that lead to multiple concurrent invocations of a SD. For example, there
might be several sensors which, as actors, trigger a particular SD at the same time in a controller system.
Having multiple concurrent invocations of a SD rather than once can potentially have a different effect on
the amount of network traffic in the system. Such a case should be modeled and be provided to our test
technique.

To model concurrent invocations of SDs, we using the information provided in a Context Diagram [47]. The
concept of context diagrams was proposed in the COMET (Concurrent Object Modeling and Architectural
Design Method) framework [47]. For example, a context diagram is shown in Figure 16-(a), where a
controller system is made of three sensors. On the other hand, a sensor is the actor which can trigger the SD
UpdateData in this system, Figure 16-(b). Therefore, at one time instance, up to three concurrent instances of
the SD can be executed.

A Controller System
13

Sensor

SD UpdateData

:Database

Update()Sensor

(a)-Context diagram (b)-A sequence diagram which can be triggered
by several instances of the actor Sensor

Figure 16-A controller system made of several sensors.

Alternatively, the number of concurrent instances of a SD may be modeled inside MIOD. We propose a
modeling notation, referred to as multi-SD, similar to the concept of multi-objects in UML. The multi-SD
construct is used in MIODs to model multiple instances of a SD. Furthermore, a tagged-value titled
instances is used to model the number of concurrent instances. An example is shown in Figure 17-(a). SD
UpdateData is a multi-SD, where three instances of which can be executed concurrently. SD1 and SD2 are
arbitrary SDs which are modeled before and after SD UpdateData according to business logic of the system.

SD1 UpdateData

instances=3

SD2

SD1

UpdateData

SD2UpdateData

UpdateData

(a)

(b)
Figure 17-(a): Modeling concurrent instances of SDs inside MIOD. (b): Equivalent in meaning to (a).

Carleton University TR SCE-05-13 September 2005

 38

Our test technique accepts both of the above two modeling approaches to model multiple instances of SDs.
Number of concurrent invocations of a SD can be easily extracted if the multi-SD construct of MIODs is
used. On the other hand, if a CCD is used to model such information, our technique needs to look and
match the SDs actors with the actors in the CCD of a system to extract the information.

It is good to note that the MIOD in Figure 17-(a) is equivalent in meaning to Figure 17-(b). In other words, a
multi-SD can be replaced by a fork/join construct and multiple instances of the multi-SD in-between. The
number of the SDs between fork and join are equal to the number modeled by the tagged-value instances.

5.5 Network Deployment Diagram

Since we are dealing with nodes and networks which can be connected in any arbitrary fashion to each
other in a SUT and we further intend to use UML 2.0 models as the source for testing, we should find a
proper notation in UML 2.0 to model networks/nodes interconnectivity and the system topology.

In UML 2.0 [8], there has been a significant change in support for modeling application architecture, nodes
and communication paths, compared to UML 1.x [9]. Modelers can model complicated deployment
scenarios such as nested and generalized nodes. Network topology modeling has also enhanced.
CommunicationPath, Section 10.3.2 of [8], generalized from standard UML’s “Association” is a new concept
for modeling the communication path between distributed nodes of a system. As defined by the
specifications [8]: “A communication path is an association between two nodes, through which nodes are
able to exchange signals and messages.” For example, Figure 18 represents a simple network deployment
of an online shopping system where client workstations, servers and printers are collaborating together.

«client workstation»
PC

«application server»
OnlineShop

«web server»
OnlineShop.com

«database server»
OnlineShopDB

«print server»
OnlineShop Print

Printer

0..* 1 1 1 1 1

1..*
1

-primary 1

1

-backup2

1

Figure 18-A simple network deployment for an online shopping service.

However, to the knowledge of the authors, modeling a hierarchical set of networks and their inter-
connectivity is not directly stated in the UML 2.0 specification [8]. Suppose we want to model a system,
composed of several networks with the interconnectivity scheme as shown in Figure 10.

5.5.1 Using the Notation of Package Diagrams

Interestingly, we can think of the system network as a package structure where the whole system network
is the root (high level) package and other networks and nodes are the sub-packages in a hierarchical
manner. Having made this assumption, we can use the notation of packages and sub-packages (or called
nested packages in the specification) of the UML 2.0, Section 7.13 of [8], to model network interconnectivity.
Our suggested modeling approach can be proposed by modeling the example topology of Figure 10 in
Figure 19 using the notation of packages. In Figure 19, packages represent networks of the system and the
solid lines between nodes and packages mean the connection of a node to a network. Nested relationships
among the packages symbolize nested networks. For example, as Network3 is a subnet of Network2 in Figure
10, therefore the package representation of Network3 is inside Network2 in Figure 19.

Carleton University TR SCE-05-13 September 2005

 39

«network»
Network1

n1

n2

n3

«network»
Network2

n4

n5

«network»
Network3

n6

n7

network link between
SystemNetwork and Network1

«network»
System Network

Figure 19-Using UML packages to model network interconnectivity of Figure 10.

In order to model and quantify bandwidth (capacity) values of each network, we can define a bandwidth
tagged value for the «network» stereotype in the above package notation. The format of the bandwidth
tagged value is {bandwidth=(bw,u)} where bw is the bandwidth value in unit u, e.g. {bandwidth=(100,kbps)},
kbps: kilo bits per second. Furthermore, since the bandwidth of the network interface of a node connected to
a network and also that of a switch/router/gateway connecting two different networks might be different
than the two connected networks, we can also optionally model the bandwidth values of those model
elements using bandwidth tagged value as well. Let us also make the assumption that if the bandwidth
value of a node’s network interface (or a network) is not specified, its value is defined to be the value of the
network the node is a member of (or the supernet of the network). The way to model bandwidth tagged
values is shown by an example in Figure 20, which depicts the network interconnectivity of a nodes and
networks in a distributed system running in a typical university network. The system is deployed in three
buildings (Buildingi), where each building may have its own subnets in different floors. Each floor also has
its own network and consists of one or more nodes. Each node (workstation) is represented as
w(building_number). (floor_number). (node_number), such as w3.1.2.

«network»
Building1

{bandwidth=
(100,kbps)}

w1.1.1

w1.1.2

w1.1.3

«network»
Building2

{bandwidth=(50,kbps)}

«network»
Floor2

w2.2.1

w2.2.2

«network»
University Network

{bandwidth=(100,kbps)}

«network»
Building3

{bandwidth=
(100,kbps)}

w3.1.1

w3.1.2

w3.1.3

«network»
Floor1

w2.1.1

{bandwidth=(20,kbps)}
(network interface of w1.13)

{bandwidth=(200,kbps)}
(switch between UniversityNetwork
and Building2 network)

Figure 20-Modeling network interconnectivity of a University Network.

Therefore, we assume that the network interconnectivity model of the SUT is done using the above
notation. As a more efficient representation which will be used by our testing technique, we propose a tree
data structure for representing the interconnectivity, which will be an internal notation for our technique,
i.e., the modelers and testers do not need to use this in their models. We refer to the new notation as
Network Interconnectivity Tree (NIT), which is described next.

Carleton University TR SCE-05-13 September 2005

 40

5.5.2 Network Interconnectivity Tree

A Network Interconnectivity Tree (NIT) is an equivalent data structure to the package-based representation
of a network interconnectivity mention above. The root of the tree is always the whole system network
while system networks and nodes are its children. In a NIT, networks and nodes are shown as rectangles
and circles, respectively. For example, the NIT of the network interconnectivity model of the Figure 10 (or
equivalently Figure 19) is shown in Figure 21. The rationale of having NIT is to enable the test technique to
easily find the subset of nodes and networks for deriving stress test cases and also to find the network path
between any two given nodes. For example, if a tester’s goal is to stress test only the network Network2 in
the system shown in Figure 21, the test strategy will only look for nodes under Network2 in the NIT tree and
will generate the test cases by considering only those nodes.

Generating the NIT from a network topology diagram is an easy procedure. The root node will be the
system’s overall network (System Network). Then, all the high-level subnets of the system will be the
children of the root. This repeats for all the nested subnets in the system. We finally put the distributed
nodes of the system as leaf nodes. The bandwidth values of different components, modeled by the
bandwidth tagged value in the design UML model, can also be stored in NIT data structure’s elements
(rectangles for networks and circles for nodes) and edges (representing switch/router between networks).

Network2

System
Network

Network1

Network3n1 n2 n3 n4 n5

n6 n7

Figure 21-Network Interconnectivity Tree (NIT) of the topology in Figure 10.

5.6 Modeling Real-Time Constraints

As discussed in Section 3.3, Real-Time (RT) constraints are of two types: soft and hard. Hard RT constraints
are constraints that absolutely must be met. A missed hard deadline results in a system failure. Soft RT
constraints are those which can be missed occasionally, i.e., the probability that they can be missed is
usually limited by a threshold.

Furthermore, as discussed in Section 2.4, the UML profile for Schedulability, Performance, and Time (UML-
SPT) [10] proposes comprehensive modeling constructs to model timing information. Although UML-SPT
briefly mentions hard RT constraints (Section 2.2.3 of [10]), it doesn’t propose any stereotype or tagged
value to distinguish between hard and soft RT constraints in UML models.

On the other hand, explicit distinction of soft and hard RT constraints when modeling can be beneficial.
This can help analysts, developers and testers to distinguish between the two types and perform necessary
actions for each of them. For example, stress testing hard RT constraints is in a higher priority compared to
the soft constraints. We will see in Chapter 9 how our stress testing technique deals with the two types of
RT constraints.

In order to model hard and soft RT constraints, we propose an extension to the RTaction stereotype of the
UML-SPT referred to as HRT (Hard RT Constraints) and SRT (Soft RT Constraints). Furthermore, in order
to model the statistical threshold probability up to which SRT constraints can be missed, we consider a
tagged value referred to as missProb for SRT constraints. On a similar note, we consider a tagged value
referred to as criticality for HRT constraints. Criticality is defined as the degree to which the consequences
of missing a hard deadline are unacceptable. As we define, the closer to one the criticality of a HRT
constraint, the more severe will be the consequences of missing it. For example, if missing a HRT constraint

Carleton University TR SCE-05-13 September 2005

 41

may cause life-threatening situations, it would be better to set criticality=1. Conversely, if for example the
cost of missing a HRT constraint is just an increase in the temperature of a water hydro plant (which will
not immediately lead to catastrophic results), then this constraint would have a lesser value of criticality.
Note that, with the above definitions, there is similarity in the concepts of HRT constraints with low
criticality and SRT constraints. HRTaction and SRTaction stereotypes are presented in Table 1 and Table 2,
which are similar to the representation used in the UML-SPT [10].

Stereotype Base Class Tags
Message
MessageSequence
Action

SRTaction

ActionSequence

RTduration
RTmissProb

Table 1-A stereotype to model SRT constraints.

Stereotype Base Class Tags
Message
MessageSequence
Action

HRTaction

ActionSequence

RTduration
RTcriticality

Table 2-A stereotype to model HRT constraints.

Table 1 and Table 2 define two new stereotypes, «SRTaction» and «HRTaction», which can be applied to
any of the four UML modeling concepts listed (Message, MessageSequence, Action, and ActionSequence) or to
their respective subclasses. Message corresponds to messages in SDs. A MessageSequence is an ordered
sequence of SD messages. Action corresponds to actions in activity diagrams (AD). A ActionSequence is an
ordered sequence of AD actions. For further details on these base classes, refer to [10]. The SRT» and
«HRT» stereotypes have two associated tagged values each, which are defined in Table 3.

Tag Type Multiplicity
RTduration RTtimeValue [0..1]
RTmissProb Real [0…1] [0..1]
RTcriticality Real [0…1] [0..1]

Table 3-Tagged values of SRT and HRT stereotypes.

Table 3 defines the type of each tag. RTduration tagged values is an instance of the RTtimeValue data type
(Section 4.2.2.4 of [10]). RTmissProb and RTcriticality are real value in the range of [0…1]. Each tag also has a
multiplicity indicating how many individual values can be assigned to each tag. A lower bound of zero
implies that the tagged value is optional.

Furthermore, we divide the RT constraints into two levels: SD-level and MIOD-level. SD-level constraints
are applied to Message and MessageSequence, while MIOD-level constraints are applied to Action, and
ActionSequence (since MIOD is a subtype of activity diagrams). As this idea has been used in [10], though
unnamed, these two levels provide enough flexibility in modeling RT constraints by annotations on either
messages (in SD level) or on SDs (in MIOD level). Examples of a SD-level SRT constraint and a MIOD-level
HRT constraint is shown in Figure 22.

The tagged-values of SRT and HRT constraints can help our stress testing technique to order the constraints
in terms of importance and test order. Such a technique will be proposed in Section 9.14.

5.7 An Overview on UML 2.0 Sequence Diagrams

The UML 2.0 [8] syntax of SDs is used in this work. Comparing to UML 1.x [6, 7], UML 2.0 have proposed a
set of new features to SDs. In the following we provide a brief definition of the new features and then we
state the features that are supported in this work.

Carleton University TR SCE-05-13 September 2005

 42

SD1

SD2

...

...

sd M

m1

r1

o1
{node = n1}

o2
{node = n2}

[condition]

[else]

alt

m3

o3
{node = n3}

m2

r2

(b) A SD-level SRT constraint (b) A MIOD-level HRT constraint

«SRTaction»
{RTduration<(1300,'ms'),
RTmissProb<0.5}

MIOD

«HRTaction»
{RTduration<(1000,'ms'),
RTcriticality=0.2}

Figure 22-Examples of SD- and MIOD-level SRT and HRT constraints.

A glimpse of SD new features is shown in Table 4. Some of the new features are illustrated with an example
in Figure 24. The SD metamodel showing the class diagram of SD features is shown in Figure 23.

InteractionFragment

EventOccurrenceExecutionOccurrenceStateInvariant

0..1

-{ordered}

*

Lifeline

1

*

MessageEnd
-messageKind
-messageSort
-return_value

Message

GeneralOrdering

toBefore * toAfter *

1

1
*

sendEvent

receiveEvent
0..1 0..1

«enumeration»
MessageKind
complete
lost
found
unknown

«enumeration»
MessageSort
synchCall
synchSignal
asynchCall
asynchSignal

start
[0..1] 1

finish

InteractionOperand

Continuation

InteractionConstraint

0..1

1
-guard 0..1

-InteractionOperator

CombinedFragment

Gate

InteractionOccurrence

0..1

*

0..1

*

1

*

*

*

refers to

Constraint
1

*

Value
Specification

Named
Element

1
*

Interaction

-End1

*

-End2

*
signature

argument

0..1
*

[0..1] 1

before 1 after 1

covered

startExec
finishExec

guard 0..1

0..1 0..1

«enumeration»
InteractionOperator
alt
opt
break
neg
loop
seq
strict
par
region
assert
ignore
consider

Figure 23-UML 2.0 Sequence Diagram Metamodel.

• Interaction: An interaction is a sequence of messages passed between objects to accomplish a particular
task. The rational behind defining interactions is to reuse them in other contexts as
InteractionOccurrences. For example, SD seqname1 in Figure 24 is an interaction.

• InteractionOccurrence: An InteractionOccurrence is a symbol that refers to an interaction that is used
within another interaction or context. seqname1 and seqname2 are two interaction occurrences which
refer to SDs seqname1 and seqname2.

• EventOccurrence: EventOccurrences represents moments in time to which actions are associated. An
EventOccurrence is the basic semantic unit of Interactions. The sequences of EventOccurrences are the
meanings of interactions. EventOccurrences are ordered along a Lifeline. A message has two types of
EventOccurrences: sendEvent and receiveEvent. The SendEvent is at the base of the message arrow
where the message departs from the lifeline of the sending object, while ReceiveEvent is at the point of
the message arrow where the arrow hits the lifeline of the receiving object. The ReceiveEvent of
message m3 is pointed in Figure 24.

Carleton University TR SCE-05-13 September 2005

 43

Concept New/Existing
Object Lifeline Existing
Stimulus (Message) Existing (but just called Message in

the new version)
Time observation and constraint Existing
Activation Existing
Interaction New
InteractionOccurrence New
EventOccurrence New
CombinedFragment New
InteractionOperator New
InteractionOperand New
Duration observation and constraint New

Table 4-New and existing features of the UML 2.0 SDs, compared to UML 1.x (taken from [64]).

• CombinedFragment: A CombinedFragment consists of one or more InteractionOperands. A
CombinedFragment has an InteractionOperator that defines the number of allowed
InteractionOperands and also how the messages in the CombinedFragment will be treated. As an
example, a CombinedFragment with alt InteractionOperator is shown in Figure 24.

• InteractionOperand: An InteractionOperand describes a grouping mechanism inside combined
fragments. Interaction operands are features similar to Interactions, except the fact that they are part of
a CombinedFragment. As example, the alt CombinedFragment in Figure 24 has two interaction
operands.

• InteractionOperator: An InteractionOperator defines how to use the interaction operands within the
context of the combined fragment. The following interaction operators are defined: alternatives (alt),
option (opt), break (break), parallel (par), weak sequence (seq), strict sequence (strict), negative (neg),
critical region (region), ignore/consider (ignore/consider), assertion (assert), and loop (loop). Description
of each of the interaction operators can be found in [65]. We briefly describe next the ones we intend to
use in our MBCFA technique:

• Alternatives (alt): Provides alternatives, only one of which will be taken. The
InteractionOperands are evaluated on the basis of guards. An else guard is provided that
evaluates to TRUE if and only if all guards of the other InteractionOperands evaluate to FALSE.

• Option (opt): Defines an optional interactions segment. The model for an opt combined fragment
looks like an alt that offers only one interaction.

• Break (break): Is a shorthand for an Alternative operator where one operand is given and the
other assumed to be the rest of the enclosing InteractionFragment. In the course of executing an
interaction, if the guard of the break is satisfied, then the containing interaction abandons its
normal execution and instead performs the clause specified by the break fragment.

• Parallel (par): Supports parallel execution of a set of InteractionOperands.
• Loop (loop): Indicates that the interaction operand will be executed repeatedly and also includes

a mechanism to stop the iteration.

• Duration observation and constraint: UML 2.0 provides two types of constraints on the performance
characteristics of interactions: duration and time. Furthermore, these features are enhanced by the
UML-SPT profile [66].

A message in a SD is the basic form of communication in interactions. Communication can raise a signal,
invoke an operation, and create or destroy an object instance. UML 2.0 no longer draws a distinction
between message and stimulus as UML 1.x did. In the new version, a message can be one of the following
two types:

• Operation call: which expresses the invocation of an operation on the receiving object. An operation
call must match the signatures of an operation on the target object (receiver of the message).

Carleton University TR SCE-05-13 September 2005

 44

• Signal: which represents a message object sent out by one object and handled by the other object
that is equipped to respond to it.

o1 o2

m2()

o3

return

m3()

N

ReceiveEvent:
EventOccurrence

sd seqName1

[x>0]

[else]

alt

ref

ref

InteractionOperand
separator

InteractionOperand

InteractionOccurrence

CombinedFragment

InteractionOperator

InteractionConstraint

seqName2

seqName3

Figure 24-An example illustrating the new features of the UML 2.0 SDs.

UML also provides four varieties (or sorts as UML 2.0 calls them) for a message. Message sorts identify the
sort of communication reflected by a message. The sorts of messages supported are defined in an
enumeration called MessageSort (in Figure 328 of [65]) as:
• SynchCall: synchronous call
• AsynchCall: asynchronous call
• SynchSignal: synchronous signal
• AsynchSignal: asynchronous signal

The notational representations of reply and asynchronous messages in UML 2.0 have changed compared to
UML 1.x, as shown in Figure 25.

synchronous message

reply message

synchronous message

asynchronous message

in UML 1.x in UML 2.0

asynchronous message

reply message

Figure 25-Notations for synchronous/asynchronous messages and replies in UML 1.x and 2.0.

As another property for messages is the so-called message kind. UML 2.0 defines the following message
kinds:

• complete: sendEvent and receiveEvent are present
• lost: sendEvent present and receiveEvent absent
• found: sendEvent absent and receiveEvent present
• unknown: sendEvent and receiveEvent absent (should not appear)

The difference between message sort and kind properties is that message sort specifies the synchrony of a
message, while message kind categorizes a message by on its message ends.

Carleton University TR SCE-05-13 September 2005

 45

The SD metamodel is not shown in one place in UML 2.0 specification [65], rather divided in several small
metamodel diagrams, since it is composed of many elements. By omitting unnecessary details, we show the
complete metamodel generated from the specification in Figure 23. For space limitations, only some of the
role names and multiplicities are shown in this figure.

Carleton University TR SCE-05-13 September 2005

 46

Chapter 6

CONTROL FLOW ANALYSIS OF SEQUENCE DIAGRAMS

We presented a Control Flow Analysis (CFA) technique in [2] to analyze control flow in SDs. We presented
Concurrent Control Flow Graph (CCFG) as a Control Flow Model (CFM) for SDs. If we consider the UML
2.0 SDs metamodel (Figure 23), asynchronous messages and par interaction operator entail intra-SD
concurrency. However, such concurrency cannot be analyzed by conventional CFGs (Control Flow
Graphs). Concurrency resulting from the above two modeling features has to be taken into account when
analyzing the control flow in SDs. The impacts of the above two modeling features, leading to concurrency
inside SDs, were discussed in [2].

We review here some of the discussions in [2] which are used by the current work. More details on our
control flow analysis technique can be found in [2].

6.1 Concurrent Control Flow Graph: a Control Flow Model for SDs

We proposed CCFGs to analyze the concurrent control flow of SDs. A CCFG will be generated for each SD.
In cases where a SD calls (refers to) another SD, there will be control flow edges connecting their
corresponding CCFGs to form an Inter-SD CCFG. Inter-SD CCFG here is similar to the concept of inter-
procedural CFG [67].

As discussed in Section 4.3.2 of [2], we extended CCFG from the UML IntermediateActivities activity
package. As an example, considering the SD in Figure 26, the corresponding CCFG is shown in Figure
27.The procedure to map the SD to the CCFG is discussed in detail in [2].

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkk

sd AsynchronousRequestProcessing

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkk

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkk

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkk

A-getAsynchProcessor ()

C-addToQueue()

E-Process()

B-AsyncProcessor

D-at=AsynchTicket

F-getProcessResult()

G-AsynchProcessResult

while (s!=FINISHED)
loop

H-getStatus()

I-s=Status

alt [at=NULL]

ref
N

c:Controller
{node=n1}

pf:ProcessorFactory
{node=n1}

apr:AsyncProcessor
{node=n2}

ap:AsyncProcess
{node=n3}

dummy:Class
{node=n1}

«RTaction»
{RTstart=(100,'ms')
RTend=(200,'ms')}

«RTaction»
{RTstart=(300,'ms')
RTend=(400,'ms')}

«RTaction»
{RTstart=(500,'ms')
RTend=(600,'ms')}

«RTaction»
{RTstart=(800,'ms')
RTend=(1000,'ms')}

«RTaction»
{RTstart=(800,'ms')
RTend=(1200,'ms')}

«RTaction»
{RTstart=(1400,'ms')
RTend=(1700,'ms')}

«RTaction»
{RTstart=(1700,'ms')
RTend=(1900,'ms')}

«RTaction»
{RTstart=(1200,'ms')
RTend=(1400,'ms')}

«RTaction»
{RTstart=(1500,'ms')
RTend=(1600,'ms')}

Figure 26-A SD with asynchronous messages.

Carleton University TR SCE-05-13 September 2005

 47

getAsynchProcessor()

AsyncProcessor

addToQueue()

Process()

getStatus()

[s!=FINISHED]

[else]

AsynchTicket

s=Status

getProcessResult()

AsynchProcessResult

Call Node

Reply Node

A

B

C

D

E

F

G

H

I

Legend

[else]
[at=NULL]

CCFG(N)

...

Figure 27-CCFG of the SD in Figure 26.

6.2 Concurrent Control Flow Paths

The concept of Concurrent Control Flow Paths (CCFPs) is similar to the conventional Control Flow Paths
(CFPs), except that they consider concurrent control flows as they are derived from CCFGs [2]. We
presented a grammar in [2] to derive all different CCFPs of a CCFG.

For example, by using such grammar, some of the CCFPs of the CCFG in Figure 27 can be derived as
shown in Figure 28. The symbol ρ will be used in the rest of this article to refer to CCFPs.

=

=

=

=

FGHI

)JK(
DEABC

FGHI

)JK(
DEABC

FGHI

JK
DEABC

FGHI

DEABC

3

4

2

3

21

ρρ

ρρ

Figure 28-CCFPs of the CCFG in Figure 27.

Four CCFPs for the CCFG in Figure 27 are due to the decision node (corresponding to a loop) in the CCFG.
According to the grammar of CCFPs (Equation 1 of [2]), a loop can either be bypassed (ε) – if possible,
taken only once, a representative or average number, and a maximum number of times. These possibilities
have derived the four CCFPs: ρ1, ρ2, ρ3 and ρ4. The loop is bypassed in ρ1, taken once in ρ2, repeated twice
in ρ3, and a maximum number (m) of times in ρ4. Each CCFP is made of several message nodes of a CCFG.
Each message node corresponds to a message in the corresponding SD of the CCFG. In the rest of this
article, we will refer to CCFP messages and nodes interchangeably.

6.3 Incorporating Distribution and Timing Information in CCFPs

The discussions in [2] about CCFPs described generic CCFPs in a sense that they can be used to analyze
control flow of SDs with distributed or non-distributed messages. In the current context, we consider SDs
with distributed messages and we saw in Section 5.1 that the node on which a SD object is deployed can be

Carleton University TR SCE-05-13 September 2005

 48

modeled using node stereotype. Since only distributed messages of a SD are of interest to our testing
technique, therefore we need to incorporate the distribution data of messages inside CCFPs. As the
sender/receiver objects and nodes of a message are already modeled in SDs, we can easily access those
information from a CCFP, which is a set of messages.

Furthermore, as discussed in 5.1.1, we assumed that timing information of messages in a SD are modeled
using the RTstart and RTend tagged values of the UML-SPT profile [10].We can also easily access such
information of each message in a CCFP.

Following the above discussion, we can derive all the above information along with message signature and
returns list of messages from SDs during the CFA phase. To facilitate our mathematical relations in the next
sections, we consider the following format for the call and reply messages of each CCFG and CCFP.

6.4 Formalizing Messages

In order to precisely define how we perform traffic analysis of SDs, we formally define SD messages.
Similar to the tabular representation of messages, proposed by UML 2.0 [48], each message annotated with
timing information (using the UML-SPT profile [48]) can be represented as a tuple:

message=(sender, receiver, methodOrSignalName, parameterList, returnList, startTime, endTime, msgType)

where
• sender denotes the sender of the message and is itself a tuple in the form sender=(object, class, node),

where:
o object is the object (instance) name of the sender.
o class is the class name of the sender.
o node is where the sender object is deployed.

• receiver denotes the receiver of the message and is itself a tuple in the same form as sender.
• methodOrSignalName is the name of the method or signal on the message.
• parameterList is the list of parameters for call messages. parameterList is a sequence in the form

parameterList=<(p1, C1, in/out), ..., (pn, Cn, in/out)>, where pi is the i-th parameter with class type Ci
and in/out determines the kind of parameter pi. For example if the message is m(o1:C1, o2:C2), then
the ordered parameters set will be parameterList=<(o1, C1, in), (o2, C2, in)>. If the method call has no
parameter, this set will be empty.

• returnList is the list of return values on reply messages. It is empty in other types of messages. UML
2.0 assumes that there may be several return values by a reply message. We show returnList in the
form of a sequence returnList=<(var1=val1,C1), …, (varn=valn,Cn)>, where vali is the return values for
variable vari with type Ci.

• startTime is the start time of the message (modeled by UML-SPT profile’s RTstart tagged value).
• endTime is the end time of the message (modeled by UML-SPT profile’s RTend tagged value).

• msgType is a field to distinguish between signal, call and reply messages. Although the messageSort
attribute1 of each message in the UML metamodel can be used to distinguish signal and call
messages, the metamodel does not provide a built-in way to separate call and reply messages.
Further explanations on this and an approach to distinguish between call and reply messages can
be found in [49].

1 The messageSort attribute of a message specifies the type of communication reflected by the message [48],
and can be any of these values: synchCall (synchronous call), synchSignal (synchronous signal), asynchCall,
or asynchSignal

Carleton University TR SCE-05-13 September 2005

 49

6.5 Distributed CCFP

Distributed CCFP is a CCFP where CCFP messages (call or reply) are distributed. A CCFP message is
distributed if its sender and receiver are located in two different nodes. Formally, using the definitions of
call and reply node from Section 6.3 a CCFP message msg is distributed if:

msg.sender.node ≠ msg.receiver.node

where msg can be either a call or a reply message. In other words, a distributed CCFP message is one whose
corresponding SD message goes to a different receiver node than its sender node. Similarly, Distributed
CCFP (DCCFP) is a CCFP that only includes distributed CCFP messages. A DCCFP is built from a given
CCFP ρ by removing all local messages and keeping the distributed ones. As an example, let us assume the
CCFPs given in Figure 28. In order to derive their DCCFPs, we should first judge each messages as local or
distributed. According to the corresponding SD (Figure 26), all the messages except the messages A and B
are distributed. Therefore, in the CCFG of Figure 27, only control nodes A and B are local, and the rest are
distributed. Hence, the DCCFPs corresponding to the CCFPs given in Figure 28 are shown in Figure 29.

=

=

=

=

FGHI

)JK(
DEC)(DCCFP,

FGHI

)JK(
DEC)(DCCFP

FGHI

JK
DEC)(DCCFP,

FGHI

DEC)(DCCFP

3

4

2

3

21

ρρ

ρρ

Figure 29- DCCFPs of the CCFPs in Figure 28.

6.6 Timed Inter-Node and Inter-Network Representations of DCCFPs

In this section, we provide a timed inter-node (and inter-network) representation of DCCFPs. This
representation can help to visualize the behavior of DCCFPs with respect to time over the system nodes
and networks. This will help to better understand our discussions in the remainder of this article.

UML 2.0 introduces a new interaction diagram called Timing Diagrams (Section 14.4 of [8]). As defined by
UML 2.0: “Timing Diagrams are used to show interactions when a primary purpose of the diagram is to
reason about time. Timing diagrams focus on conditions changing within and among lifelines along a
linear time axis.” We use the basic concepts of UML 2.0 timing diagrams and propose a model for timed
inter-node and inter-network representations of DCCFPs. These two representations of a DCCFP can be
useful to represent a timeline view of the flow and occurrence of distributed messages by a DCCFP in node
and network levels. These representations are 2-dimentioanl charts where the X-axis is a linear time axis
and the Y-axis is the set of all nodes referenced at least once by the control nodes of a given DCCFP.

For example, let us consider the SD of Figure 26 and DCCFP(ρ2) in Figure 29. Timed inter-node
representation of DCCFP(ρ2) in shown in Figure 30, where the message ends correspond to the type of
corresponding messages (synchronous/asynchronous call or reply) in the SD. Let us also assume that the
start and end times of all control nodes (A…K) are given using UML-SPT profile stereotypes (Section 5.1.1)
with the values as shown. In this representation, the X-axis represents time and the Y-axis lists the nodes of
the DCCFP messages.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time (x100 ms)

n1

n2

n3

C Dno
de

s E

F G
H I

Figure 30-Timed inter-node representation of DCCFP(ρ2) in Figure 29.

Carleton University TR SCE-05-13 September 2005

 50

Suppose the NIT of this system is as the one shown in Figure 31. The inter-network representation of the
DCCFP(ρ2) can be derived using the node information in SD, the inter-node representation (Figure 30) and
the system NIT.

Network2

System
Network

Network1

Network3n1 n2

n3

... ...

...

Figure 31-A simple system NIT.

The inter-network representation of the DCCFP(ρ2) is drawn in Figure 32. Start and end networks of each
message in this representation are derived by finding the networks where the message’s sender and
receiver nodes are members. For example, the sender and receiver nodes of message (call node) C are nodes
n1 and n2, which are members of Network1 and Network2, respectively. In addition to the traffic imposed on
networks they start and end, messages like C have an implicit traffic on networks that are not their
immediate parent in NIT, but are in the network path from their start to end nodes. For example, C entails
an implicit traffic on SystemNetwork in addition to Network1 and Network2. Other cases like this can also be
identified from NIT.

System Network

ne
tw

or
ks

Network2

Network1

time (x100 ms)

implicit traffic

Network3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C D

E H I

F

FC

G

G

Figure 32-Timed inter-network representation of a DCCFP.

Carleton University TR SCE-05-13 September 2005

 51

Chapter 7

CONSIDERING INTER-SD CONSTRAINTS

As discussed in Section 5.3, executing any arbitrary sequence of use cases (and thus their corresponding
SDs) in a SUT might not be always valid or possible. This might be due to the constraints enforced by the
business logic of a SUT on the sequence (order) of SDs and also the conditions that have to be satisfied
before a particular SD can be executed. Modified Interaction Overview Diagrams (MIOD) were proposed in
Section 5.3 to model sequential and conditional inter-SD constraints. We discussed how such constraints
can be modeled by a MIOD.

As we will discuss in Chapter 9, our stress test technique will identify the most data-centric messages of
each SD and will try to either run SDs concurrently or will run a sequence of SDs which impose the
maximum amount of network traffic. However, test requirements should comply with the inter-SD
constraints.

In the following sections, we propose two methods to consider inter-SD constraints in our stress testing
context, assuming that a MIOD is given. The method in Section 7.1 will be used to derive the Independent-
SD Sets (ISDSs) in a SUT. An ISDS is a set of SDs, in which any two SDs are independent, thus the entire set
can be run concurrently. In other words, there are no inter-SD sequential constraints between any two of
the SDs in an ISDS to prevent from doing so. Our stress test technique in Chapter 9 will make use of ISDS
by calculating the maximum traffic of each ISDS by adding the maximum traffic of its SDs. Then, among all
ISDS of a MIOD, the ISDS with maximum traffic will be chosen as the ISDS which entails the maximum
stress. Then after, the SDs of the chosen ISDS will be scheduled in a way to maximize the instant traffic in a
particular time instance.

The method proposed in Section 7.2 will be used to derive the Concurrent SD Flow Paths (CSDFP) and
CCFP/DCCFP Sequences (CCFPS/DCCFPS). Similar to the concept of CCFP, a CSDFP is a path from a
MIOD’s start node to a final node. The CSDFPs of a MIOD specify the allowed sequences of SDs in a
system. According to this definition, any sequence of SD in a SUT which is not a CSDFP is not allowed to
be executed.

On the other hand, we defined CCFP and DCCFP in Chapter 6 and saw that each SD can have one or more
such paths. We define CCFP/DCCFP Sequences (CCFPS/DCCFPS) as the sequences of CCFPs/DCCFPs
which are built from a CSDFP. Further explanations are provided in Section 7.2. A variation of our stress
test technique in Chapter 9 will make use of CSDFP by calculating the maximum traffic of each CSDFP.
Then, among all CSDFPs of a MIOD, the CSDFP with maximum traffic will be chosen as the CSDFP which
entails the maximum stress.

7.1 Independent-SD Sets

An Independent-SD Set (ISDS) is a set of SDs that can be executed concurrently, i.e. there are no sequential
constraints between any two of the SDs in the set to prevent it.

Carleton University TR SCE-05-13 September 2005

 52

Assuming that a MIOD is given, we propose a technique in this section to find all ISDSs of the MIOD. As
an example, let us consider the MIOD of a library system as shown in Figure 33. This MIOD is the
completed version1 of the activity diagram shown in [54]. For brevity, the SDs are labeled by capital letters
from A to O. The MIOD is modeled using the use case diagram given in Appendix A of [54] and some
typical business logic assumptions of the library system.

TitleReservationUser

LibrarianBorrower

ItemUser Title LibraryLoan

Add User Add Title

Add Item

Monitor System

Borrow Loan Copy
Remove Item

Remove Title

Collect Fine Renew Loan

Return Loan Copy

[num_of_renewals<=2]

Remove User

Search User Find Title

Make Reservation

Remove Reservation

A B

C

D

E F G

H

J KI

L M

N

O

Figure 33- The MIOD of a library system.

7.1.1 Definitions

We rephrase here the definition of dependent/independent SDs and an ISDS in the context of a MIOD. A
set of SDs are said to be independent if there are no inter-SD constraints between any two of the SDs in a
MIOD to prevent them from being executed concurrently. As discussed in Section 5.3, sequential and
conditional constraints among SDs are modeled in a MIOD. An edge between two SDs (from a tail SD to a
head SD) in a MIOD specifies that the tail SD must be executed in order for the head SD to be executed, but
the tail SD may be executed without any execution of the head SD. In addition, specific situations require
that several SDs be executed independently (without any sequential dependencies between them) for
another SD to be executed. This is modeled by join and fork synchronization bars in a MIOD, respectively.

Therefore, we can define a dependency relationship between any two SDs in a MIOD. Two SDs SD1 and
SD2 are dependent if there is at least one path in the MIOD from one of them to the other one. For example
SDs AddUser and ReturnLoanCopy are dependent in the MIOD of Figure 33. Conversely, two SDs are
independent if there is no path in the MIOD from one of them to the other one. For example SDs AddUser
and AddTitle are independent in the MIOD of Figure 33. Similarly, two sets of SDs are said to be
independent if all the SDs of one of them are independent from all the SDs of the other one.

In a MIOD, an Independent-SD Set (ISDS) is a maximal set of independent SDs. By maximal, we mean that no
other SD can be added to the current set. For example, the set of SDs {AddUser, AddTitle} is a set of

1 The sequential constraints of the SDs (use cases) for the actor Borrower and the conditional constraint of
the SD RenewLoan are added.

Carleton University TR SCE-05-13 September 2005

 53

independent SDs in Figure 33, however it is not maximal according to our definition, since a SD like
MonitorSystem can still be added to this set while the independence relationship still holds among all the
SDs in the set. An ISDS, in this case, can be {AddUser, AddTitle, MonitorSystem}. In the following section, we
discuss a method to systematically derive all the ISDSs of a MIOD. Note that there can be several ISDSs in a
MIOD.

7.1.2 Derivation of Independent-SD Sets

According to the discussions in the previous section, ISDSs of a MIOD can be derived by examining SDs of
a MIOD and deriving all possible maximal sets of SDs that are independent. We propose a graph-based
algorithm here to derive ISDSs of a MIOD.

Let us propose a graph notation referred to as Independent SD Graph (ISDG)=(N,E), where N is the set of
SDs of a MIOD and there is an edge in E between two SDs if they are independent according to the
definition given in the previous section. For example, the ISDG corresponding to the MIOD in Figure 33 is
shown in Figure 34.

Figure 34-The Independent SD Graph (ISDG) corresponding to the MIOD in Figure 33. The ISDS={A,B,G,H} is shown with

dashed edges.

Every strongly connected component of an ISDG is an ISDS. A strongly connected component of a graph is a
maximal sub-graph of a graph such that for every pair of vertices u, v in the sub-graph, there is an edge
between u and v [68]. For example, the strongly connected component {A,B,G,H} is shown with bold edges
in the ISDG of Figure 34, which corresponds to a ISDS.

When deriving Independent-SD Sets, the effect of multi-SDs (Section 5.4) will be as the following. After an
ISDS is derived using the algorithm mentioned above, each SD of the ISDS is checked to see if it is a multi-
SD. If yes, the multi-SD is replaced with two parentheses similar to the technique we used in [2] to derive
CCFPs of a SD. The number of SDs between two parentheses is equal to the number modeled by the
tagged-value instances annotated to the multi-SD. For example consider ISDS={A,B,C} derived from the
MIOD in Figure 35. In this MIOD, SD A is a multi-SD where three concurrent instances of it can be
executed.

A
instances=3

MIOD

B C

Figure 35-A MIOD with a multi-SD construct.

Carleton University TR SCE-05-13 September 2005

 54

Since SD A is a multi-SD, we modify the ISDS as the following.

}C,B,

A

A
A

{ISDS}C,B,A{ISDS

=⇒=

The above ISDS transformation means that, if any SD is independent from a multi-SD, it will be
independent from its multi instances, too.

7.1.3 Algorithm Complexity

The brute-force algorithm to build an ISDG would be to check all pairs of SDs of a MIOD and build an edge
between them in the ISDG if the two SDs are independent. This will have the complexity of O(n2), where n
is the number of SDs.

Tarjan [69] has devised an O(n) algorithm for determining strongly connected components of a graph.
Therefore consider the complexity to build an ISDG, O(n2), and the complexity to derive its strongly
connected components, the overall complexity to derive ISDSs will be O(n2).

7.2 Concurrent SD Flow Paths, CCFP and DCCFP Sequences

To account for sequential and conditional inter-SD constraints in test cases, we propose Concurrent SD
Flow Paths (CSDFP), CCFP and DCCFP Sequences (CCFPS and DCCFPS) in this section.

7.2.1 Concurrent SD Flow Paths

We discussed in Section 5.3 how to model the sequential and conditional constraints among SDs using a
MIOD. Similar to the concept of CCFP, which was made from a CCFG, we define a Concurrent SD Flow Path
(CSDFP) to be a sequence of SDs from a start to an end node of a MIOD. In other words, a CSDFP is a
sequence of SDs that are allowed to be executed in a system (according to the constraints modeled in a
MIOD).

There is a hierarchical relationship between MIODs and CCFGs, and also CSDFPs and CCFPs. To better
illustrate this relationship, consider the example given in Figure 36, where a MIOD (a) and the CCFG (b) of
one of the SDs in the MIOD are shown.

SD2

SD4

SD1

SD5

SD6

[exp]

[!exp]

mn2 mn3

mn1
[!exp]

mn4

[exp]

MIOD

CCFG(SD3)

SD3

mn2 mn3

mn1
[!exp]

mn4

[exp]

(a) (b)

Zoom

Figure 36-An example MIOD and the CCFG of one of its SDs.

Carleton University TR SCE-05-13 September 2005

 55

The MIOD shows the system-level flow paths, where the flow paths are built from SDs, e.g., SD1 and SD2.
In turn, whenever the control is on a SD, the CCFG of the SD determines which control flow should be
followed. We have actually enlarged the CCFG of SD3 in Figure 36 to better represent the hierarchical
relationship.

In order to find CSDFPs of a MIOD, we use the same technique as we used in [2] to derive CCFPs of a SD.
This is doable since both MIOD and CCFG are extensions of ADs. For example, the MIOD in Figure 36 has
the following two CSDFPs:

65
3

2
12

4
3

2
11

SDSD
SD
SD

SDCSDFP

SD
SD
SD

SDCSDFP

=

=

As another example, we list here some of the CSDFPs (out a total of 62) which can be derived from the
MIOD in Figure 33:

FKCSDFPEOCSDFPFHJKCSDFPGCSDFP

ILO
FH

E
CSDFPCILMLMLNO

FB

EA
CSDFPCDO

FB

EA
CSDFPCD

FB

EA
CSDFP

====

=

=

=

=

8765

4321

7.2.2 Concurrent Control Flow Paths Sequence

We defined CSDFP in the previous section. Similar to the concept of control flow paths, a system’s set of
CSDFPs represent the possible sequences of SDs a system might follow in a typical execution. However, a
SD usually contains more than one control flow paths, out of which, only one will execute in a particular
run. We discussed CCFP and DCCFP in Chapter 6 as concepts to represent these possible execution paths
of a SD. To incorporate CCFP and DCCFP in CSDFPs, we define two new concepts: CCFPS (Concurrent
Control Flow Paths Sequence) and DCCFPS (Distributed CCFPS) to represent different sequences of scenarios a
CSDFP might follow in different executions. A CCFPS can be derived from a CSDFP by substituting each
SD by one of its CCFPs. Similarly, a DCCFPS can be derived from a CSDFP by substituting each SD by one
of its DCCFPs.

For example, let us consider the example in Figure 36. SD3 has two CCFPs as:

=

=

4

3

2

23

113

mn

mn
mn

CCFP

mmCCFP

,

,

where mni is the message node corresponding to message mi (not shown) in SD3. Suppose DCCFP3,1 and
DCCFP3,2 are the corresponding DCCFPs of the above two CCFPs. Similarly, assume that SD1, SD2, SD4, SD5
and SD6 have the following sets of CCFPs. Let us also show the corresponding DCCFPs by DCCFPi,j.

}CCFP,CCFP,CCFP,CCFP{)SD(CCFP

}CCFP{)SD(CCFP

}CCFP,CCFP,CCFP{)SD(CCFP

}CCFP,CCFP{)SD(CCFP

}CCFP,CCFP,CCFP{)SD(CCFP

,,,,

,

,,,

,,

,,,

46362616

15

312414

2212

312111

6

5

44

2

1

=

=

=

=

=

We derived the CSDFPs of the MIOD in the previous section as:

65
3

2
12

4
3

2
11

SDSD
SD
SD

SDCSDFP

SD
SD
SD

SDCSDFP

=

=

Carleton University TR SCE-05-13 September 2005

 56

By substituting each SD of CSDFP1 by one of their corresponding CCFPs, for example, the following
CCFPSs can be derived:

14
13

22
213

24
23

12
112

34
13

22
311

,
,

,
,

,
,

,
,

,
,

,
,

CCFP
CCFP

CCFP
CCFPCCFPS

CCFP
CCFP

CCFP
CCFPCCFPS

CCFP
CCFP

CCFP
CCFPCCFPS

=

=

=

Similarly, the following DCCFPS can be derived from CSDFP2:

2615
23

22
112

4615
13

22
311

,,
,

,
,

,,
,

,
,

DCCFPDCCFP
DCCFP

DCCFP
DCCFPDCCFPS

DCCFPDCCFP
DCCFP

DCCFP
DCCFPDCCFPS

=

=

As it can be realized from the definitions of CCFPS and DCCFPS, when the number of SDs and their CCFPs
increase, number of CCFPS and DCCFPS can increase exponentially. Ways to cope with this combinatorial
explosion problem must be investigated. One such approach is to use available inter-SD control and data
flow information to eliminate impossible CCFPSs.

7.2.3 Duration of a Concurrent Control Flow Path Sequence

Some of our stress test requirement algorithms in Chapter 9 will need the duration (time length) of a
CCFPS. We present Algorithm 1 to recursively calculate the duration of a CCFPS using the time length of
the CCFPs in the sequence.

Algorithm 1-Calculating the duration of a Concurrent Control Flow Path Sequence (CCFPS).

Line 2 of Algorithm 1 is the stopping criterion of the recursion. It is when ccfps (the given CCFPS) is an
atomic CCFPS (only made of one CCFP). In this case, the duration of ccfps is equal to the duration of its one
and only CCFP, which is calculated by line 3. As time constraints are modeled in SDs using the UML-SPT
profile, the time reference at the beginning of every SD (and hence its CCFPs) is set to zero (see Figure 26 as
an example). Therefore, the duration of a CCFP is equal to the end time of its latest message. Lines 4-5 are
executed if ccfps is a serial concatenation of several other CCFPSs. Since the CCFPSs execute serially in this
case, the total duration is the summation of their individual durations. If ccfps is a concurrent combination
of several other CCFPSs, lines 6-7 will be used. For a concurrent combination of CCFPSs, we assume that all
of the CCFPSs start at the same time. Therefore, the duration will be the longest duration of the enclosed
CCFPSs.

For example, we calculate the time duration of CCFPS1 discussed in Section 7.2.2. For brevity, we use pi,j for
CCFPi,j. Suppose the duration of each of the individual CCFPs of CCFPS1 are given as:CCFP1,3 (2800 ms),

1. Function Duration(ccfps: CCFPS): integer
2. if ccfps is atomic (only made of one CCFP)
3. return ()endTime.m

ccfpsm∈∀
max

4. else if ccfps is the serial concatenation of several CCFPSs (i.e.,
nccfpsccfpsccfps L1=)

5. return Duration(ccfps1)+…+ Duration(ccfpsn)

6. else if ccfps is the concurrent combination of several CCFPSs (i.e.,

=

nccfps

ccfps
ccfps L

1)

7. return max(Duration(ccfps1),…, Duration(ccfpsn))
8. End Function

Carleton University TR SCE-05-13 September 2005

 57

CCFP2,2 (1300 ms), CCFP3,1 (1000 ms), and CCFP4,3 (1000 ms). To better illustrate how Algorithm 1 works,
the call tree of the recursive algorithm Duration applied to CCFPS1 is shown in Figure 37. Since the CCFPS1
is a serial concatenation of three CCFPSs itself, three recursive calls are made, whose results will be added

upon return. One of these CCFPSs (

13

22

,

,

ρ
ρ

), is the concurrent combination of two CCFPs, therefore the

maximum value of their durations are returned as the durations of this CCFPS and so on.

34

13

22
31 ,

,

,
,Duration ρ

ρ
ρ

ρ

()22,Duration ρ ()13,Duration ρ

max

1000 ms1300 ms

1300 ms 1000 ms

5100 ms

2800 ms

()31,Duration ρ ()34,Duration ρ

+

13

22

,

,Duration
ρ
ρ

+

Figure 37-The call tree of the recursive algorithm Duration applied to CCFPS1.

Note that the duration of a DCCFPS is equal to duration of its corresponding CCFPS, which is made by
replacing all the DCCFPs with the corresponding CCFPs. This is because in order to run a DCCFP, the
corresponding CCFP should be executed. As discussed in Section 6.5, a DCCFP is just a filtered CCFP
where only distributed messages are selected.

Carleton University TR SCE-05-13 September 2005

 58

Chapter 8

NETWORK TRAFFIC USAGE ANALYSIS

As we saw in the system model of this work (Figure 9), each node of the system can have several running
processes. Different processes often need to communicate with other processes on other nodes of the
system to perform a use case. In a typical collaboration between two distributed objects in a SD, the sender
object calls an operation of the receiver object via a synchronous message (usually with parameters); the
call request is handled (executed) by the receiver object, and finally the return values are returned to the
sender object as a reply message. Distributed call and reply messages have to go over the network
connection between the sender and receiver objects, and entail network traffic on the connecting networks.
We assume two network traffic types: data and message. Data traffic is the amount of data transferred by
distributed messages, which is dependent on the messages sizes. On the other hand, message traffic is the
number of messages being transmitted, regardless of their sizes.

In order to study and analyze network traffic usage in the current context and to devise network-aware
stress test requirement in a SUT, this section aims to formalize the network traffic usage of each message
and each DCCFP in a system. In order to do so, a method will be proposed in Section 8.1 to estimate data
size of a distributed message (a message which goes from a node to a different one). Section 8.2 will
provide formal definition of membership relationships between nodes and networks. Different attributes of
network traffic in our formalism will be proposed in Section 8.3, which will include:

• Traffic location: nodes vs. networks (Section 8.3.1)
• Traffic direction (for nodes only): in, out, or bidirectional (Section 8.3.2)
• Traffic type: data traffic vs. number of messages (Section 8.3.3)
• Traffic duration: instant vs. interval (Section 8.3.4) – whether traffic is measured in one single

time instance or during a period of time.
We will then discuss the effect of concurrent processes on network traffic in Section 8.4. Finally, a class of
traffic functions for DCCFPs will be given in Section 8.5. The resource usage analysis technique presented
in this section will be used in Chapter 9 and Chapter 10. Furthermore, the definitions and discussions,
given in this section, might be useful in other works aiming at studying network traffic of a distributed
system by CFA of SDs.

8.1 Estimating the Data Size of a Distributed Message

In order to measure and analyze the amount of traffic every distributed message entails on a network, we
need to have a method to estimate the data size of a distributed message. The following representation was
presented for messages of a DCCFP in Section 6.3:

message=(sender, receiver, msgSort, methodOrSignalName, parameterList, returnList, startTime, endTime
msgType)

By looking at the above two forms, the most data-centric parts are parameterList and returnList, respectively,
which actually go through a network. These two fields, i.e. parameterList and returnList, were
definedameterList=<(p1,C1,[in|out]),...,(pn,Cn,[in|out])> and returnList=<(var1=val1,C1), …, (varn=valn,Cn)>,

Carleton University TR SCE-05-13 September 2005

 59

respectively. Therefore, it can be said that the most data centric part of a message are essentially parameters
pi and return values vali, respectively. Therefore, a simple solution to estimate data size of each message is
to find a way to estimate the max (or average) data sizes for each class type Ci in both of sets parameterList
and returnList.

An intuitive way to estimate the data size of a set of classes will be to add up data sizes of all classes in the
set. Let us define the data size of a class to be the total summation of sizes of its attributes in bytes.
Therefore the total the size of the classes in a parameterList and returnList can be a rough estimate for the
data sizes of call and reply messages. Formally, the Network Traffic Usage (NTU) functions for different
types of messages are presented in Equation 1.

∑
∑

∑

∈

∈−

∈−

=∈∀

=

=

=

=
=
=

=∈∀

→

attributesCa i

returnListmsgCC i

istparameterLmsgCC i

i

ii

ii

adataSizeCdataSizeamclassDiagrC

CdataSizemsgDTReply

CdataSizemsgCallDT

meOrSignalNamsg.methoddataSizemsgSignalDT

ReplymsgTypemsgmsgDTReply
Call''msgTypemsgmsgCallDT

 Signal''msgTypemsgmsgSignalDT
msgNTUMessagemsg

RealMessageNTU

.

.),|(

.),|(

)()(:

)()(

)()(

)()(

''. if;)(
. if;)(
. if;)(

)(:

:

Equation 1- Network Traffic Usage (NTU) functions for different types of messages.

A dash (-) in Equation 1 indicates that a field can take any arbitrary value (a “don’t care” field). Note the
format of parameterList and returnList, as mentioned above. msg.parameterList (msg.returnList) is the ordered
set of parameters (returns) for a call (reply) message. dataSize(Ci) is a function returning the data size of the
class Ci. C.attributes denotes the set of attributes of class C. dataSize(ai) is the size of an attribute ai of class C,
which can be calculated by its attribute type. If the attribute type is an atomic type, like int, long, bool, its
size (in bytes) is dependent on the target programming language. For example, the data sizes of some
primitive data types in Java are shown in Table 5 (adopted from [70]). In case an attribute ai of a class is
itself an object with another class type, the size of that attribute, size(ai), will be the size of its class type and
can be calculated recursively.

Data Type Description Size
byte Byte-length integer 1 Byte
short Short integer 2 Bytes
int Integer 4 Bytes
long Long integer 8 Bytes

Table 5-Data size of some of the primitive data types in Java (adopted from [70]).

As an example, suppose a call message msg1 with parameterList=<(o1,A),(o2,B)>, where classes A and B are
defined in the class diagram of Figure 38. Using the class specifications of A and B, we can estimate the size
of the message msg1 as:

size(msg1) = size(A) + size(B) = (8x(100+500)) + (8x(100+500)+8x400) = 12.8KB

-field1 : long[100]
-field2 : long[500]

A

-new_field_b : long[400]

B

-new_field_c : long[200]

C

Figure 38-A class diagram showing three classes with data fields.

Carleton University TR SCE-05-13 September 2005

 60

8.1.1 Effect of Inheritance

While estimating the data size of a class (and the messages using it), one consideration would be to take
into account the inheritance relationships, the particular class might be engaged in. This might affect the
size of the messages making use of that particular class in their parameterList or returnList.

For example, suppose the method signature of a method m of a receiver object to be m(o1,o2:A):A, which
basically means that two parameters of class type A are passed to the method m and an object of the type A
is returned. Class A is defined in the class diagram of Figure 38. Since B and C are both sub-classes of A,
therefore an object of type B or C can also be the actual parameters of the method m at runtime, which in
this case will cause the message to have difference data sizes, since classes B and C each have an extra local
defined attribute. Therefore, the inheritance relationships of classes can be used to find the maximum
possible data size of a class while estimating the data sizes.

8.1.2 Messages with Indeterministic Sizes

As mentioned in Section 8.1, the most data centric parts of a message (call or reply) are parameterList and
returnList, respectively. In their formal representation, we assumed that these two lists are ordered sets of
tuples of class types together with object values. We saw that the data sizes of such messages can be
estimated using Equation 1.

We assume, in this work, having parameter and return values with classes of fixed data size. However
there might also be parameters or return values that are not types of classes whose sizes can be measured
precisely. For example, an input parameter of a call message might be of type, say, String in C++. The size
of such an object might change depending on the length of the string assigned to it. As another example,
suppose a call message like store(data:BLOB) in a distributed database system. This message is a generic
example of messages sent between distributed database servers in such system, which asks the receiver of
the message to save a big pile of data of type BLOB (Binary Large OBject) in its own local database.
Apparently, similar to the case of String class type, a data object of type BLOB may have variant sizes in
different situations. Therefore, Equation 1 can not be applied to estimate data size of a message in those
cases.

One simple approach to estimate data size of messages having parameter or return lists with items of
indeterministic data sizes is to measure sizes in a statistical fashion. Statistical distribution of the size of
such messages can be derived by monitoring the message size in different runs, or by using information
from data profiles, presented as part of an extended operational profile model [71]. Runtime monitoring
techniques (such as [57]) can be utilized to monitor and derive such distributions. Then after, the expected
value of the distribution can be used as the estimated data size of a message.

8.2 Formal Node and Network Relationships

To facilitate our discussions in the next sections, two formal node and network relationships are defined in
this section. We saw earlier in Section 5.5 that a tree structure named NIT (Network Interconnectivity Tree)
can be generated from UML network deployment diagrams, to represent the interconnection of the nodes
and networks in a system. The NIT of a system is shown in Figure 39, where there are seven nodes
(n1,…,n7) and four networks (including system network).

We define two formal relationships here which are described next.
• Node-network and network-network membership
• Network path function

Carleton University TR SCE-05-13 September 2005

 61

Network2

System
Network

Network1

Network3n1 n2 n3 n4 n5

n6 n7

Figure 39-A Network Interconnectivity Tree (NIT) .

8.2.1 Node-Network and Network-Network Memberships

To formally specify if a node is a member of a network, we can define function member_of() as:

=
otherwise ;

NITin node ofr precesesso a is network if
false

nodnet;true
)net,nod(isMemberOf

Equation 2-Node-network membership function.

Similarly, a membership function can be defined among networks as:

=
otherwise ;

NITin network ofr precesesso a is network if

false

netnet;true
)net,net(isMemberOf subersup

ersupsub

Equation 3-Network-network membership function.

For example, the following relations hold in the NIT shown in Figure 39:
• isMemberOf(n2, Network1)= true
• isMemberOf(n3, Network3)= false
• ∀ ni: isMemberOf(ni, SystemNetwork)= true
• isMemberOf(n7, Network2)= true
• isMemberOf(Network2, SystemNetwork)= true

8.2.2 Network Path Function

A network path function can be defined between any two nodes (the sender and the receiver of a typical
distributed message) in a system. Given a sender (ns) and a receiver node (nr), the network path function is
an ordered set of networks, which a message sent from ns will go through in order until it reaches nr. NIT
can be used to derive network paths. For example assuming the NIT of Figure 39, the network path
between n4 (as the sender node) and n6 (as the receiver node) will be:

getNetworkPath(n4, n6)=<Network2, Network3>

Derivation of this network path is shown schematically in Figure 40.

Network2

System
Network

Network1

Network3n1 n2 n3 n4 n5

n6 n7

ns

nr
Figure 40-Derivation of network path between two nodes from NIT (getNetworkPath(ns, nr) function).

Carleton University TR SCE-05-13 September 2005

 62

8.3 Network Traffic Usage Attributes

In the current resource usage analysis, we consider four attributes for network traffic usage:
• Traffic location: nodes vs. networks (Section 8.3.1)
• Traffic direction (for nodes only): in, out, or bidirectional (Section 8.3.2)
• Traffic type: data traffic vs. number of messages (Section 8.3.3)
• Traffic duration: instant vs. interval (Section 8.3.4)

8.3.1 Location: Nodes vs. Networks

If the intermediate network nodes (such as routers and gateways) are left out from the system software
point of view, network traffic can essentially go through two places in a system: nodes or networks. In a
typical distributed message scenario, the message is initiated from the sender node. It then travels along the
network path from the sender to receiver node. The network path (defined in Section 8.2.2) is made up of
one or more networks in the system. Finally, the message arrives at the destination node, where it is
supposed to be handled appropriately (depending on its type: call or reply). We define traffic location to be
the locality of traffic flow in a system. Traffic location can be either a network or a node.

Let us consider an example. A system made of four nodes and three networks is shown in Figure 41.
Topological and NIT representations of the system’s network interconnectivity are shown in this figure.
Nodes n1 and n2 are members of Network1. Nodes n3 and n4 are members of Network2. Network1 and Network2

are connected through System Network.

n1 n2

Network2

n3 n4

Topological representation

Network2

System
Network

Network1

n1 n2 n3 n4

NIT (Network Interconnectivity Tree)

System Network

Network1

Figure 41-A system made up of four nodes and three networks.

Considering the system topology shown in Figure 41, suppose there are several processes running on each
node and several SDs in the system. For simplicity, let us consider only three DCCFPs, which are extracted
from SDs by the control flow analysis technique described in Chapter 6. To clarify the difference between
traffic location in term of nodes or networks, the timed inter-node and inter-network representations
(Section 6.6) of the three mentioned DCCFPs are shown in Figure 42-(a) and (b), respectively.

As it can be seen in Figure 42-(a), DCCFP1 has two call and reply messages between nodes n1 and n2, which
both are members of Network1 (according to the NIT in Figure 41). Therefore, traffic entailed by DCCFP1
only goes through Network1, as shown in timed inter-network representation of DCCFP1 in Figure 42-(b).
DCCFP3 has messages going across Network1 and Network2, which have to go via SystemNetwork. This is
shown in representation of DCCFP3 in Figure 42-(b), where messages with gray lines represent “implicit
traffic”, imposed by the original traffic imposed by the message. For example, the first call message of
DCCFP3 goes from Network1 (time=1ms) to Network2 (time=3ms) and in addition to traffics made on
Network1 and Network2, this message puts an implicit traffic on SystemNetwork.

Carleton University TR SCE-05-13 September 2005

 63

DCCFP3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n1

n2

n3

DCCFP1

time (ms)

n1

n2

no
d

es

DCCFP2

n3

n4

n4 System Network

ne
tw

or
ks

Network2

Network1

Network1

DCCFP3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

DCCFP1

time (ms)

DCCFP2

Network2

(a) Timed Inter-Node Representation of DCCFPs (b) Timed Inter-Network Representation of DCCFPs
implicit traffic

Figure 42-Timed inter-node and inter-network representations of three DCCFPs.

8.3.2 Direction (for nodes only): In, Out, Bidirectional

As discussed above, traffic location can be either a network, or a sender/receiver node. In case of a node,
we can think of three traffic measurements in terms of the traffic direction. In our definition, traffic direction
of a node can be either in, out or bidirectional form. This is due to the fact that a node is an end point of
traffic in the system. Since a network in the system only relays the traffic, i.e., it transmits the traffic to other
networks/nodes, we therefore only consider the bidirectional traffic for networks. For simplicity, when we
talk about traffic for networks in this report, we implicitly mean the bidirectional traffic for networks.

For example, consider the timed inter-node network representation of DCCFP1 in Figure 42-(a). Node n1
sends traffic on time intervals (1-2ms) and (8-11ms) (out traffic for n1), while it receives traffic on time
intervals (4-7ms) and (12-13ms) (in traffic for n1). n1 is idle (not sending nor receiving any traffic) in other
times.

8.3.3 Type: Amount of Data vs. Number of Network Messages

From a system-software point of view, network traffic has two types:
1. The amount of data, and
2. The number of distributed messages

For example, consider a simple system made up of two nodes nA and nB. Node nA might rarely
communicate with nB, but when sending a message, nA sends huge amounts of data to nB, while nB
frequently sends queries to nA, and gets replies. However each request from nB to nA and the corresponding
reply has a small data size going back and forth. Therefore, it is useful to analyze and measure network
traffic according to both types.

We discussed how to estimate the data size of a distributed message in Section 8.1. For the analysis of
network traffic imposed by a distributed message in terms of number of messages, the analysis is straight
forward and we can just count each distributed message (either call or reply) as one message over a
network. To compare data traffic versus message traffic, let us consider the example in Figure 43.

To compare data versus message traffic, let us look at the control flow path CCFP2 in CCFG(M) shown in
Figure 43. Let us show the DCCFP of CCFP2 as DCCFP2. Note that, for simplicity, only the CCFG nodes
inside CCFG(M) are shown for DCCFP2 in Figure 43 and not those belonging to CCFG(P) and CCFG(N). If
we consider data traffic as the network traffic, we measure the amount of data (in bytes) sent on the
network by DCCFP2. In the time interval shown in the SD M (Figure 43), DCCFP2 has one call message
m2(op) and one reply message rv2=m2(op). Call message m2(op) is sent from node n1 to n2, where the

Carleton University TR SCE-05-13 September 2005

 64

parameter of the message (op) can be of any data size. For simplicity let us assume that the size of message
m2(op) is 10 KB and the size of returned message rv2=m2(op) is 50 KB (these can be calculated using the
method in Section 8.1). With these assumptions, we can draw a network traffic diagram showing data
traffic for DCCFP2 as shown in Figure 44. The x-axis is time in milliseconds and only the time interval
shown in the SD M is considered.

n1 n2

p1_1 p1_2 ... p2_1 p2_2 ...

hhhhhhhhhhhhhhhhhhh

...

m1(p1,p2)

Network

jhhhhhhhhhhhhhhkjjjffff

...

m(p1,p2)

rv1=m1(p1,p2)

m2(op)

rv2=m2(op)

CCFG(M)

[cond == TRUE]

...

m1(p1,p2) m2(op)

CCFP1 CCFP2
jhhhhhhhhhhhhhhkjjjffff

...

m2(op)

«RTstimulus»
{RTstart=(1,'ms')
RTend=(2,'ms')}

«RTstimulus»
{RTstart=(4,'ms')
RTend=(5,'ms')}

«RTstimulus»
{RTstart=(1,'ms')
RTend=(3,'ms')}

«RTstimulus»
{RTstart=(6,'ms')
RTend=(7,'ms')}

sd M

[cond == TRUE]

[else]

alt

N
ref

P
ref

sd N sd P

o1

{node=n1 ,process=p1_1}

o2

{node=n2 ,process=p2_1}
o3

{node=n2 ,process=p2_2}

[else]

...

rv2rv1

Figure 43-A typical system composed of two nodes and four processes.

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8

time (ms)

to
ta

l n
et

w
o

rk
 tr

af
fi

c
(d

at
a

tr
af

fi
c)

 -
 in

 K
B

Figure 44-Network traffic diagram (data traffic) of DCFP2 in Figure 43.

On the other hand, if we consider number of distributed messages as the network traffic, the network
traffic diagram of DCCFP2 will be as Figure 45 shows. Each call or reply message counts for one unit of
distributed message in this analysis.

0

1

2

0 1 2 3 4 5 6 7 8

time (ms)

to
ta

l n
et

w
o

rk
 tr

af
fi

c
(#

 o
f

m
es

sa
ge

s)

Figure 45-Network traffic diagram (number of distributed messages) of DCFP2 in Figure 43.

Carleton University TR SCE-05-13 September 2005

 65

Each of the above two network traffic types (amount of data vs. number of messages) can be analyzed at
different levels of granularity in a system: message-level (in a SD), DCCFP-level (in a SD), SD-level,
process-level, node-level, or the entire system. Different levels of granularity can be extracted from the
system metamodel as shown in Figure 9. An example of such analysis is given in Section 8.4. The
granularity considered in this work is message-level, unless otherwise mentioned.

8.3.4 Duration: Instant vs. Interval

In the previous sections, we analyzed network traffic per each time instant. When analyzing traffic, we
define two types of time analyses: instant and interval. Instant traffic is the amount of traffic measured in
one time instant. In a similar way, one can analyze the network traffic over an interval of time. We refer to
this type of traffic as interval traffic.

We saw that a DCCFP might have different usage levels of network traffic in different time instants.
Therefore we can add up instant duration traffic values over a given amount of time to get the traffic value
over an interval. For example, data and message traffic diagrams of DCCFP2 were shown in Figure 44 and
Figure 45, respectively. Those diagrams show the instant traffic of DCCFP2. Suppose we want to see how
much data and message traffic DCCFP2 imposes during a given interval of time, say 10 ms. Considering
Figure 44, it can be said that CCFP2 imposes 60 KB data traffic and two units of message traffic during the
first 10 ms from its start time.

As another example, suppose the data traffic into a node n is to be analyzed (in-data traffic). Note that the
level of granularity in this case is a node. The node under study has many processes running on it and
processes communicate with other nodes in the system. A typical in-data traffic diagram of n can be
sketched as shown in Figure 46, which is actually derived by adding all message-level traffic values for all
the messages sent to n.

time (ms)

in
-d

at
a

tr
af

fic
 (

K
B

)

3 ms

tinstantt interval -from t interval-to
Figure 46-“In-data” traffic diagram of a node, highlighting difference between instant and interval (3ms) traffic.

According to Figure 46, if one wants to find the time when maximum instant traffic happens in n, the
answer would be time= tinstant. However, if the question is to find an interval of time (say 3 ms) when the
maximum interval traffic happen in n, then the answer would be (tinterval -from, tinterval -to).

8.4 Effect of Concurrent Processes

According to the SUT model in Figure 9, several processes can run concurrently on a single node. Each of
the processes might be in the process of running a method. Therefore, the network traffic caused by the
node will be the sum of the traffics by all its concurrent processes. For example, the data traffic diagram of
a node with two processes Process1 and Process2 over an interval of 10 milliseconds is shown in Figure 47. It
is evident that a node’s total traffic in a single time instant is the sum of the traffic caused by each of its
processes.

Carleton University TR SCE-05-13 September 2005

 66

0

5

10

0
1
2
3
4
5
6
7
8
9

10
11
12

n
et

w
o

rk
 d

at
a

tr
af

fi
c

(K
B

)

t ime (ms)

Process1

Process2

Node

Figure 47-The data traffic diagram of a node with two processes.

8.5 A Class of Traffic Functions for Distributed Concurrent Control Flow Paths

As discussed in Chapter 6, each SD can have several DCCFPs, where each DCCFP is a path in a SD’s CCFG
and includes only distributed call and reply messages. Different attributes of network traffic were also
discussed in Section 8.3 which included: location, direction, type and duration.

In this section, a class of functions is proposed to measure network traffic entailed by DCCFPs. The
functions aim to take into account the traffic attributes mentioned earlier. First, the naming convention of
the functions is given in Section 8.5.1. Formal definitions of the functions are then proposed in Section 8.5.2
along with some examples on how the function values can be calculated.

8.5.1 Naming Convention

A tree structure denoting the traffic functions’ naming convention is shown in Figure 48. The root node of
the tree has a null label. A function name is formed by traversing from the root to a leaf node and
concatenating all the node labels in order.

Traffic Direction

Traffic Location

Traffic Duration

Traffic Type
DT MT DT MT DT MT DT MT DT MT DT MT

Ins Int Ins InsInt Int

Net Nod

In Out

Net: Network
Nod: Node

Ins: Instant
Int: Interval

DT: Data Traffic
MT: Message Traffic

In
Out

Obj
Obj: Object

Bi: Bidirectional
Bi

DT MT DT MT

Ins Int

Figure 48-Naming convention for traffic usage functions.

Four layers are shaded in the tree. They correspond to four traffic attributes discussed in Section 8.3. One
addition made to the traffic location layer is that objects (obj) are also considered to be parts of the traffic
location attribute. In this context, objects are processes on nodes of a distributed system. This
generalization, by no means, violates our previous categorization of traffic location, given in Section 8.3.1.
We believe that, in addition to network- and node-level traffic, it might be useful to analyze traffic at the
object level as well. This adds more location granularity in traffic analysis and we believe that a distributed
object or a node might behave differently (and exhibits faults) if we direct the traffic towards them in

Carleton University TR SCE-05-13 September 2005

 67

different scenarios. The other three layers (direction, duration and type) fully conform to the discussions in
Section 8.3. By counting the number of paths from the root node of the tree to leaf nodes, we would get 28
paths (4 for networks, and 12 for node and object categories each). This means that we will define 28
different traffic functions.

In addition to the tree notation used above, the general form of a function can also be specified using the
Backus-Nauer Form (BNF) [67] as shown in Equation 4.

MTDTType
IntInsDuration

ObjNodLocationBiOutIn
Direction

ObjNodNetLocation
ationTyperectionDurLocationDimefunctionNa

|::
|::

else;null
},{ if;||

::

||::
::

=
=

 ∈

=

=
=

Equation 4-BNF to generate traffic usage function names.

Equation 5 gives a BNF for the input parameters of a traffic function based on its name.

),(::
Type; *::
Direction; *::

 if;),,(
 if;),,(
 if;),,(
 if;),,(
 if;),,(
 if;),,(

::)(

endstartinterval
T
D

ObjDIntTmefunctionNaintervalobj
ObjDInsTmefunctionNatobj
NodDIntTmefunctionNaintervalnod
NodDInsTmefunctionNatnod
NetIntTmefunctionNaintervalnet
NetInsTmefunctionNatnet

mefunctionNaetersinputParam

=
=
=

==
==
==
==
==
==

=

ρ
ρ
ρ
ρ
ρ
ρ

Equation 5-BNF to generate the input parameters of traffic usage functions.

For example, consider the path specified by the dashed line in Figure 48. This path represents function
NetInsDT. According to the syntax form for the input parameters of traffic functions (given in Equation 5),
the input parameters of this function would be (ρ, network, t). The explanation of this function will be that it
returns the instant (Ins) data traffic (DT) value of a given DCCFP (ρ) for a given network (network) at a
given time (t). per::=(start,end) in Equation 5 means that, for functions with interval duration, the start and
end times of an interval should be given as input. More detailed descriptions of the functions will be given
and the ways to calculate their values will be discussed next.

8.5.2 Functions

In this section, traffic functions are listed using the naming convention given in Figure 48. The functions are
grouped according to the top layer (traffic location) of the tree in Figure 48. Mathematical formulas to
calculate some traffic functions will be given. The rest can be derived in similar fashion. In the following
mathematical formulas, for brevity, msg.start and msg.end have been used instead of msg.startTime and
msg.endTime. msg.s.n and msg.r.n have been used for msg.sender.node and msg.recevier.node.

8.5.2.1 Traffic Location: Network

1. NetInsDT: returns the value of instant data traffic, a given DCCFP entails on a given network from a
given time instance t to t+1.

Carleton University TR SCE-05-13 September 2005

 68

∈
∧≤≤

∧∈∃

=

∑

otherwise;0

)n.r.msg,n.s.msg(PathgetNetworknet
end.msgtstart.msg

msg|msg;)msg(dur/)msg(size

)t,net,(NetInsDT
ii

ii

ii
msg

ii
i

ρ

ρ

where s, r and n are shorthand notations for sender, receiver and node fields of a message. size()returns
the size of a message in bytes as described in Section 8.1. dur()returns the time duration of a message
which can be calculated as: dur(m)=m.startTime–m.endTime. Since a message can span over several time
units, our definition for the data traffic value of a message at a time unit is its total data size divided by
its duration, which will give the message’s traffic per time unit.

2. NetInsMT: returns the value of instant message traffic, a given DCCFP entails on a given network at a
given time instant.

)n.r.msg,n.s.msg(PathgetNetworknet
end.msgtstart.msg

msg|msg

)t,net,(NetInsMT

ii

ii

ii

∈
∧≤≤

∧∈∀

=

ρ

ρ

3. NetIntDT: returns the value of interval data traffic, a given DCCFP entails on a given network during a
given time interval. NetIntDT can be calculated using NetInsDT.

∑ =

=
=

endintt

startintt
tnetNetInsDTintnetNetIntDT

.

.
),,(),,(ρρ

4. NetIntMT: returns the value of interval message traffic, a given DCCFP entails on a given network
during a given time interval.

∑ =

=
=

endintt

startintt
tnetNetInsMTintnetNetIntMT

.

.
),,(),,(ρρ

8.5.2.2 Traffic Location: Node

1. NodInInsDT: returns the value of instant data traffic, a given node receives by running a given DCCFP
at a given time instant. “In” denotes that the traffic direction is towards the node as explained in
Section 8.3.2.

=
∧≤≤

∧∈∃

=

∑

otherwise;0

nodn.r.msg
end.msgtstart.msg

msg|msg;)msg(dur/)msg(size

)t,nod,(NodInInsDT
i

ii

ii
msg

ii
i

ρ

ρ

2. NodInInsMT: returns the value of instant message traffic, a given node receives by running a given
DCCFP at a given time instant.

nodn.r.msg
end.msgtstart.msg

msg|msg

)t,nod,(NodInInsMT

i

ii

ii

=
∧≤≤

∧∈∀

=

ρ

ρ

3. NodInIntDT: returns the value of interval data traffic, a given node receives by running a given DCCFP
during a given time interval.

∑ =

=
=

endintt

startintt
tnodNodInInsDTintnodNodInIntDT

.

.
),,(),,(ρρ

4. NodInIntMT: returns the value of interval message traffic, a given node receives by running a given
DCCFP during a given time interval.

Carleton University TR SCE-05-13 September 2005

 69

∑ =

=
=

endintt

startintt
tnodNodInInsMTintnodNodInIntMT

.

.
),,(),,(ρρ

5. NodOutInsDT: returns the value of instant data traffic, a given node sends by running a given DCCFP
at a given time instant. “Out” denotes that the traffic direction is from the node as explained in Section
8.3.2.

=
∧≤≤

∧∈∃

=

∑

otherwise;0

nodn.s.msg
end.msgtstart.msg

msg|msg;)msg(dur/)msg(size

)t,nod,(TNodOutInsD
i

ii

ii
msg

ii
i

ρ

ρ

6. NodOutInsMT: returns the value of instant message traffic, a given node sends by running a given
DCCFP at a given time instant.

nodn.s.msg
end.msgtstart.msg

msg|msg

)t,nod,(TNodOutInsM

i

ii

ii

=
∧≤≤

∧∈∀

=

ρ

ρ

7. NodOutIntDT: returns the value of interval data traffic, a given node sends by running a given DCCFP
during a given time interval.

∑ =

=
=

endintt

startintt
tnodTNodOutInsDintnodTNodOutIntD

.

.
),,(),,(ρρ

8. NodOutIntMT: returns the value of interval message traffic, a given node sends by running a given
DCCFP during a given time interval.

∑ =

=
=

endintt

startintt
tnodTNodOutInsMintnodTNodOutIntM

.

.
),,(),,(ρρ

9. NodBiInsDT: returns the value of instant data traffic, a given node “sends or receives” by running a
given DCCFP at a given time instant.

=∨=
∧≤≤

∧∈∃

=

∑

otherwise;0

)nodn.r.msgnodn.s.msg(
end.msgtstart.msg

msg|msg;)msg(dur/)msg(size

)t,nod,(NodBiInsDT
ii

ii

ii
msg

ii
i

ρ

ρ

10. NodBiInsMT: returns the value of instant message traffic, a given node “sends or receives” by running a
given DCCFP at a given time instant.

)nodn.r.msgnodn.s.msg(
end.msgtstart.msg

msg|msg

)t,nod,(NodBiInsMT

ii

ii

ii

=∨=
∧≤≤

∧∈∀

=

ρ

ρ

11. NodBiIntDT: returns the value of interval data traffic, a given node “sends or receives” by running a
given DCCFP during a given time interval.

∑ =

=
=

endintt

startintt
tnodNodBiInsDTintnodNodBiIntDT

.

.
),,(),,(ρρ

12. NodBiIntMT: returns the value of interval message traffic, a given node “sends or receives” by running
a given DCCFP during a given time interval.

∑ =

=
=

endintt

startintt
tnodNodBiInsMTintnodNodBiIntMT

.

.
),,(),,(ρρ

Carleton University TR SCE-05-13 September 2005

 70

8.5.2.3 Traffic Location: Object

We only present the ObjInInsDT and ObjInInsMT functions next. The other functions for the object traffic
location (ObjInIntDT, ObjInIntMT, ObjOutInsDT, ObjOutInsMT, ObjOutIntDT, ObjOutIntMT, ObjBiInsDT,
ObjBiInsMT, ObjBiIntDT, and ObjBiIntMT) can be derived similar to the functions of the node traffic
location.

1. ObjInInsDT: returns the value of instant data traffic, a given object receives by running a given DCCFP
at a given time instant.

=
∧≤≤

∧∈∃

=

∑

otherwise;0

objo.r.msg
end.msgtstart.msg

msg|msg;)msg(dur/)msg(size

)t,obj,(ObjInInsDT
i

ii

ii
msg

ii
i

ρ

ρ

where r and o are shorthand notations for receiver node and object fields of a message.

2. ObjInInsMT: returns the value of instant message traffic, a given object receives by running a given
DCCFP at a given time instant.

objo.r.msg

end.msgtstart.msg
msg|msg

)t,obj,(ObjInInsMT

i

ii

ii

=

∧≤≤
∧∈∀

=
ρ

ρ

An Example

An example is given here to show how a network traffic function can be calculated. Let a DCCFP
ρ=<CM1,CM2,RM1,RM2> and the messages of ρ are as the following:

CM1=((o1,O1,n1),(o2,O2,n2),t,<(p1:-),(p2:-)>,1,2)
CM2=((o2,O2,n2),(o3,O3,n3),u,<(p3:-),(p4:-)>,3,5)
RM1=((o3,O3,n3),(o2,O2,n2),<(x=u(-),-)>,8,9)
RM2=((-,-,-,N),(o1,O1,n1),<(y=t(-),-)>,12,13)

Let us suppose a SUT’s NIT to be the one shown in Figure 31. Also suppose that the sizes of the four
messages of DTCCFP ρ have been calculated using the RUF in Equation 1 and are 90 (CM1), 80 (CM2), 30
(RM1), and 50 (RM2) kilobytes. Using the above information, the following usage functions can be
calculated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

NetInsDT(p,Network,t)

t (ms)

100

K
B

90

40 40 30
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

NetInsMT(p,Network,t)

t (ms)

1

#

KB
NetworkNetInsDTNetworkNetInsDT

tNetworkNetInsDT

NetworkNetIntDT

t

1103040400
)8,,()2,,(

),,(

))9,2(,,(
8

2

=++++=
++=

= ∑ =

L
L ρρ

ρ

ρ

Carleton University TR SCE-05-13 September 2005

 71

Chapter 9

TIME-SHIFTING STRESS TEST TECHNIQUE

This section describes the first (and the simpler) stress test technique to stress test network traffic. The
technique is an optimization technique which is based on shifting DCCFPs along time axis to find the time
instance when maximum possible stress can occur.

The chapter is structured as the following. The problem statement is revisited in Section 9.1, where we
express the problem using the formalism given in Chapter 5-Chapter 8. Note that an initial problem
statement was given in Section 2.2, where it was discussed in a general form, without prior knowledge of
the modeling and formalism proposed in Chapter 5-Chapter 8. Test objectives are discussed in Section 9.2.
Section 9.3 presents the heuristic of our stress test strategy. An example is presented in Section 9.4 to
visualize the heuristic. Then after, different strategies of the proposed stress testing approach are discussed
in Section 9.5, which closely match the different network traffic attributes discussed in Section 8.3. We
discuss in Section 9.6 how we take into account the inter-SD constraints in the generation of stress test
requirements. Section 9.7 formulates the stress test generation problem as an optimization problem. Section
9.8 presents the high-level stress testing algorithm. Input and pre-processing steps of the high-level
algorithm are discussed in Section 9.9. The general form of a stress test requirement (the output of the
technique) is given in Section 9.10. Finally techniques to derive test requirements depending on different
stress strategies are proposed in Section 9.11. The algorithm complexities are discussed in Section 9.12. A
variation of the technique, referred to as Real-Time Constraint-Oriented Stress Test (RTCOST) is presented in
Section 9.13, which aims at generating test requirements for a given Real-Time constraint. Section 9.14
discusses how the derivation process of test elements can be automated.

9.1 Problem Statement: Revisited

Having formalized the input and test modeling needed for our stress test technique in Chapter 5-Chapter 8,
we state the problem statement in a more precise manner in this section. The rephrased problem statement
is as the following:

Suppose the UML 2.0 model of a distributed SUT is given. As we discussed earlier, the model should
include at least the SUT’s sequence diagrams, class diagrams (to be used for polymorphic CFA of SDs,
Section 5 of [2], and data size estimation, Section 8.1), and the network deployment diagram(s) showing
interconnectivity and the network hierarchy of the system (as discussed in Section 5.5). We also require
the inter-SD constraints are given using a MIOD (Section 5.3). Suppose the CFA of system’s SDs is done
using the techniques in Chapter 6. Inter-SD constraints are analyzed according to the techniques in
Chapter 7 and SUT’s Independent-SD Sets (ISDSs), Section 7.1, and Set of SD Sequences (SSDS), Section
7.2, are derived. The network traffic of the system is formalized as stated in Chapter 8. The problem is
to find a schedule to run a subset of system DCCFPs which will put a given set of networks or nodes
under stress according to a given stress test strategy (defined in terms of location, direction, type or
duration) in order to maximize the chance of exhibiting network traffic faults (defined in Section 3.2.2).

Carleton University TR SCE-05-13 September 2005

 72

9.2 Test Objectives

The fundamental test objective is to perform a network-aware stress testing on a distributed system. The
overall goal in our ongoing research is to propose stress test techniques for different aspects of a distributed
system. In this work, we only consider the network traffic of such systems, and in particular we propose a
stress test technique to maximize the chance of detecting distributed traffic faults (as described in Section
3.2.2). Our objective would be to propose a systematic testing technique to automatically generate test
requirements to stress test the network traffic of a system, based on a UML 2.0 design model of the system.
The test requirements will essentially be a set of selected DCCFPs along with a schedule to execute them.
The general form of stress test requirements is precisely specified in Section 9.10.

9.3 Stress Test Heuristic

As discussed in Chapter 5, we assumed that a system may have several nodes, where each node is running
several concurrent processes. We also assumed that there can be several SDs running concurrently on the
system nodes. In Chapter 6, each SD was assigned a corresponding CCFG, where each CCFG could have
one or more CCFPs. A Distributed CCFP (DCCFP) was defined as a CCFP where only distributed messages
are considered. Depending on the UML 2.0 interaction constraints [8], executing a SD might follow
different CCFPs in its CCFG. These different CCFPs will yield different DCCFPs. Different DCCFPs of a SD
will cause different traffic on different networks and nodes of the system.

Given a specific network or node to stress test, our heuristic is to choose a message (or a set of messages) in
a particular DCCFP of a SD which imposes maximum traffic (either in terms of data or number of
messages) on the given network or node. Let us refer to such messages as maximum stress messages.
Intuitively, if none of the DCCFPs of a SD has any message going through a given network or to/from a
given node, it means that this particular SD does not have any network traffic on the network or node and
hence it will not be included in the output stress test schedule. Afterwards, using the start times of the
maximum stress messages selected in each DCCFP, the selected set of DCCFPs can be scheduled in a way
that the maximum stressing messages all can run concurrently. We believe that this concurrent schedule of
DCCFPs will cause a maximum possible traffic on a particular node or network, which in turn will increase
the probability of exhibiting distributed traffic faults in the node or network under stress test.

The heuristic can be visualized by an example. The example below is just to illustrate the heuristic and does
not include a formal description of the test requirement derivation process. It will be given in Section 9.11.
It should also be mentioned that the stress test has different strategies as discussed in Section 9.5.

9.4 An Example to Visualize the Heuristic

Suppose a typical SUT whose NIT is shown in Figure 49. According to the NIT, there are three nodes n1, n2

and n3 and a network (SystemNetwork) in the system, where all nodes are connected to.

System
Network

n1 n2 n3

Figure 49-A simple system NIT.

For simplicity, let us assume the system has several SDs which CFA has yielded four DCCFPs
(DCCFP1,...,DCCFP4). The timed inter-node representations (described in Section 6.6) of DCCFPs are shown
in Figure 50-(a), where each DCCFP includes several distributed messages. For example, among DCCFP1‘s
messages, there is a call message starting in time t=1ms from node n2 to node n3 which lasts until time
t=4ms and a return message from n2 to n1 from time=9 to time=10.

Carleton University TR SCE-05-13 September 2005

 73

0
35

0

70

00
30 30 30 0

60
0

40
0

80

DCCFP1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n1

n2

n3

DCCFP4

time (ms)

n1

n2

no
de

s DCCFP3

n2

n3

DCCFP2

n1

n2

n3

NetInsDT(DCCFP1, SystemNetwork, t)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

NetInsDT(DCCFP4, SystemNetwork, t)

NetInsDT(DCCFP3, SystemNetwork, t)

NetInsDT(DCCFP2, SystemNetwork, t)

D
T

 (
in

 K
B

)

0
65 65 65

00

90 90

0 20 0 0
30 30 30

0 0 0 0 00 0 0
60 60 60

0 0 0 0

70

0
45

0 0

80 80

0 0
60 60 60

0

70 70

time (ms)

maximum stress message
for each DCCFP

0
35

0

70

0
30 30 30 0

60
0

40
0

80

NetInsDT(DCCFP1, SystemNetwork, t)

NetInsDT(DCCFP4, SystemNetwork, t)

NetInsDT(DCCFP3, SystemNetwork, t)

NetInsDT(DCCFP2, SystemNetwork, t)

D
T

 (i
n

K
B

)

0

65 65 65

0

90 90

0 20 0 0
30 30 30

0 0 0 00 0 0
60 60 60

0 0 0 0

70

0
45

0

80 80

0 0
60 60 60

0

70 70

time (ms)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time instance when
traffic is maximized.

(b) Deriving NetInsDT(DCCFPi, SystemNetwork, t)
functions and finding maximum stress messages(a) Timed inter-node representation of DCCFPs

(c) Deriving instant stress schedule

call mesage

reply mesage

Figure 50-Heuristic to stress test instant data traffic on a network.

In this example, let us suppose that we want to derive test requirements for what we call network instant
data traffic (NetInstDT) stress for network SystemNetwork. To visualize the data traffic incurred by
DCCFP1,...,DCCFP4 over the network SystemNetwork, NetInsDT(DCCFPi,SystemNetwork,t) is depicted in
Figure 50-(b) for each DCCFP. Again for simplicity, the calculation steps of those functions are not shown.

Next step of the heuristic is to find the maximum stress messages of each DCCFP. This is shown graphically
in Figure 50-(b) by dashed lines around such messages. Recalling that the criterion to find these messages is
that the given network is part of the path in a message’s sender to receiver. Furthermore, the size of such
messages has the maximum value among all messages of a DCCFP. In our example, since all nodes (n1, …,
n3) are members of the system network, therefore all distributed messages go through this network.

After finding maximum stress messages in each DCCFP, the next (and final) step in the derivation of stress
test requirements is to use the start times of the maximum stress messages we have selected in each DCCFP
to schedule the selected set of DCCFPs such that these maximum stress messages all run concurrently. This
is illustrated in Figure 50-(c). As shown, DCCFP1, DCCFP2, DCCFP3, and DCCFP4 will be scheduled to start

Carleton University TR SCE-05-13 September 2005

 74

running at times 0, 8, 6 and 9 ms (milliseconds) respectively. With this schedule, the highest data traffic
stress in the system network will occur at time=9ms from the start of the test execution.

9.5 Different Stress Testing Strategies

As discussed in the fault taxonomy, Chapter 3, nodes or networks of a system may not be robust to faults
with distributed nature. As we categorized in Section 3.2, one type of such faults was distributed traffic
faults, which occur when a system failure is due to the fact that a network or a node does not function
correctly under heavy traffic.

As mentioned in Section 9.1, our stress test heuristic is to enforce heavy network workloads on system
components to increase the probability of exhibiting a distributed traffic fault. We investigate different
strategies for heavy network workloads: stress location (networks or nodes), traffic direction (in and out –
only applies when testing nodes), stress type (data traffic or number of requests), and stress duration
(instant versus interval stress) strategies. The reason why traffic direction (in and out) do not apply in our
stress testing approach when testing networks is that networks, unlike nodes, are not the end points of
traffic, i.e. any traffic entering a network goes out of it, therefore distinguishing in and out traffic in case of
a network is unnecessary. Different stress testing strategies are discussed in following sections.

9.5.1 Location: Nodes vs. Networks

As discussed in faults taxonomy, Section 3.5, a distributed fault might happen in one of the following
locations in a distributed messaging scenario between two nodes:

o A network in the network path between two nodes
o Sender or receiver node

As discussed in Section 5.5, a network path between two nodes is the unique path extracted from the
Network Interconnectivity Tree (NIT). As discussed in Section 8.3.1, network traffic was also analyzed in
two strategies (nodes and networks) in terms of its location.

The rational behind this classification of stress testing strategy is that either a network (in a network path)
or one of the two end nodes becomes the cause of a failure when excessive traffic goes through it.

9.5.2 Direction (only for nodes): In, Out, Bidirectional

As discussed above, the stress test target can be either a network, sender or receiver node of a distributed
message. In case of a node, we can think of two scenarios for stress testing in terms of traffic direction.
Traffic can be maximized either towards a node or from a node. In other words, in one scenario, we might
schedule all DCCFPs such that all distributed messages towards (arriving at) a node be sent all at once.
While in the second scenario, all distributed messages from a node will be scheduled to be sent
concurrently.

The rationale for this distinction in stress test strategy is that a traffic fault might be revealed in the network
component of a node if a large amount of traffic arrives from other nodes to the node all at once.
Conversely, a network traffic fault might occur if large instantaneous traffic is originated from the node to
other nodes in the system. The low level faults causing this malfunction might include: insufficient network
buffer/frame sizes, high CPU load of the node and failing to process traffic on time.

9.5.3 Type: Amount of Data vs. Number of Messages

Dividing stress type in two categories: amount of data and number of messages corresponds to the
distinction made for traffic types in Section 8.3.3. Networks or nodes of a system might exhibit faults when
they are faced with big amounts of data or large number of message going through them (networks), from
or towards them (nodes).

Carleton University TR SCE-05-13 September 2005

 75

9.5.4 Duration: Instant vs. Interval

In term of duration of the stress, we consider two approaches: instant and interval. These two approaches
correspond to the distinction made for traffic duration in Section 8.3.4. We define an instant network stress
test requirement to be a schedule of DCCFPs of a system’s SDs that imposes a traffic stress in a given unit
of time. The used unit of time is assumed to be the smallest unit of time defined in a system, such as
millisecond. This is mentioned in tagged values of messages in SDs. For example, an example of modeling
time using the UML-SPT profile was shown in the SD in Figure 3, where the smallest unit of time among all
tagged-values is ms (millisecond). An interval stress test requirement, on the other hand, is a set of SDs and
their execution schedule that, when applied to the SUT, causes a stress in a network or a node during an
interval of time.

9.6 Taking into Account the Inter-SD Constraints

As we discussed in Chapter 7, executing any arbitrary sequence of SDs in a SUT might not be always valid
or allowed. This might be due to the constraints enforced by the business logic of a SUT on the sequence
(order) of SDs and also the conditions that have to be satisfied before a particular SD can be executed. A
Modified Interaction Overview Diagram (MIOD) was proposed in Section 5.3 to model sequential and
conditional inter-SD constraints.

The duration strategy of stress testing in our system model affects the way we should take into account the
inter-SD constraints, because:

o In case of instant stress testing, a set independent SDs, which entails the maximum stress
should be triggered concurrently, and,

o In case of interval stress testing, the objective is to trigger a sequence of SDs with maximum
stress.

The first type of stress test from duration point of view is instant stress (Section 9.5.4). We discussed in
Section 9.5.4 that instant network stress is a schedule of DCCFPs that entail a maximum traffic stress in an
instant time. One important consideration in generating such schedule is that the SDs that are to be
executed altogether should not be dependent (Section 7.1). We proposed a method in Section 7.1 to derive
so called Independent-SD Sets (ISDSs) in a SUT. As defined, an ISDS is a set of SDs that can be run
concurrently, i.e., there are no inter-SD constraints between any two of the SDs in the set.

The other type of stress test from duration point of view is interval stress. As defined, a interval stress test is
a set of SDs and their execution schedule that, when applied to a SUT, causes maximum stress in a network
or a node during an interval of time. One important consideration in this case is to choose and schedule
those sequences of SDs that are allowed in the SUT. A method was proposed in Section 7.2 to derive
Concurrent SD Flow Paths (CSDFP). As defined, a CSDFP is a sequence of SDs that are allowed to be
executed in a SUT (according to the constraints modeled in the MIOD). According to this definition, any
sequence of SD in a SUT which is not a CSDFP is not allowed to be executed and hence can not be used in a
stress test scenario.

In our stress test mythology, we assume that the inter-SD constraints are given in a form of a MIOD. MIOD
is then used to generate the SUT’s Independent-SD Sets (ISDS) and Concurrent SD Flow Paths (CSDFP).
ISDSs and CSDFPs will be used in Section 9.11 by instant and interval stress test techniques to generate
valid test requirements, respectively.

If we consider the stress test generation problem as an optimization problem, ISDSs and CSDFPs will be the
constraints of the optimization problem. We discuss in next section how the stress test generation problem
can be formulated as an optimization problem.

Carleton University TR SCE-05-13 September 2005

 76

9.7 Formulating the Stress Test Generation Problem as an Optimization Problem

The stress test requirement generation problem can be formulated an optimization problem. The general
formulated optimization problem, without taking into account the different testing strategies (Section 9.5),
is presented in Figure 51.

Figure 51-Formulating the Stress Test Generation Problem as an Optimization Problem.

9.8 High-level Algorithm

The high-level algorithm for the derivation of stress test requirements is given in Algorithm 2. Steps 1 and 2
in Algorithm 2 are briefly described next. After that, the general form of a stress test requirement (as the
output of the technique) is defined in Section 9.10. The last step of the high-level algorithm (Step 3) is
described in Section 9.11.

Algorithm 2-High level algorithm for derivation of stress test requirements

9.9 Input and Building the Test Model

We comprehensively described the system model of a SUT and the UML syntax to be used in Chapter 5.
We also discussed how to build the test model from the given UML design model in Chapter 5-Chapter 7.

Step 1. Input (Chapter 5):
• Use the UML design model of the SUT as the input model. The UML design model should include:

o Network Deployment Diagram (NDD): for deriving NIT (Section 5.5)
o SDs: SD1,…, SDn (system has n SDs.). SDs should have timing information. RT constraints should be

modeled as stated in Section 5.6.
o Class diagram(s) (Section 5.2): to be used for polymorphism-dependent CFA (Section 5 of [2]) and also

calculation of message sizes (Section 8.1)
o Modified Interaction Overview Diagrams (MIOD): to model the inter-SD constraints (Section 5.3)

• A list of test objectives where each objectives is a tuple of four fields:
o A stress location: either a network or a node name
o A stress direction (only for nodes): in, out or bidirectional
o A stress type: data or number of messages:
o A stress duration: instant or period

Step 2. Building the Test Model-(Chapter 5-Chapter 7):
• Build the system’s Network Interconnectivity Tree (NIT) based on the Network Deployment Diagram in the UML

model (Section 5.5).
• Control Flow Analysis of SDs:

o Transform each of the system’s SDs into its corresponding CCFG (Chapter 6).
o Derive CCFPs and then DCCFPs of each CCFG (Chapter 6).

• Taking into consideration the inter-SD constraints:
o Derive Independent-SD Sets (ISDSs) (Section 7.1).
o Derive Concurrent SD Flow Paths (CSDFP) (Section 7.2).

Step 3. Derivation of Test Requirements (Section 9.11):

• For each entry in the test objectives list, depending on the stress location and test direction, derive the test
requirements using the following algorithms:

o If the stress location is a network, use the algorithm in Section 9.11.2
o If the stress location is a node:

§ If test direction is “in”, use the algorithm in Section 9.11.3.1 .
§ If test direction is “out”, use the algorithm in Section 9.11.3.2 .
§ If test direction is “bidirectional”, use the algorithm in Section9.11.3.3.

Objective: Maximize the traffic on a specified network or node (at a time instant or a period of time)
Variables:

− A subset of DCCFPs (one DCCFP from each SD) with maximum traffic on a specified network or node
− Schedule to run the selected DCCFPs

Constraints:
− Inter-SD sequential and conditional constraints

Carleton University TR SCE-05-13 September 2005

 77

The CFA procedures to convert the SUT‘s UML model into CCFGs and DCCFPs were presented in Chapter
6. Those methods should be used to convert a given system model into a NIT and a set of DCCFPs, which
will be used in Step 3 of Algorithm 2 to derive test requirements.

We also discussed in Chapter 7 how to derive the Independent-SD Sets (ISDSs) and Concurrent SD Flow
Paths (CSDFP) of a SUT. As discussed in Section 9.6, these two will be taken into account as inter-SD
constraints in the generation of stress test requirements.

9.10 Output Stress Test Requirements

For each test element in the test objective list of Algorithm 2, a stress test requirement set will be generated
by our technique. Assuming that a SUT has n SDs (SD1, …, SDn), a test requirement set will be a schedule of
a selected set of SDs’ DCCFPs and is an ordered set in the form of:

<(ρ1max, αρ1max), …, (ρnmax, αρnmax)>

where i-th entry of the set is a tuple of ρimax and αρimax. ρimax is a DCCFP in the DCCFP set of SDi,
DCCFP(SDi), that entails a stress traffic over the given system component (network or a node) with a given
stress flavor (direction, type and duration). αρimax is the start time of DCCFP ρimax, i.e., the time to trigger
ρimax, that together with all DCCFPs in the test requirement set, will maximize traffic over a given network
or node. A stress test requirement set is the output of our methodology. Algorithms to derive test
requirements for different stress test strategies will be given in the next section. Intuitively, if none of the
DCCFPs of SDi has any message going through the given network or to/from the given node, it means that
that SDi does not have any network traffic on the given network or node and hence it will not be included
in the output stress test set. In such a case, the i-th entry of the test requirement set (corresponding to SDi)
will be null.

9.11 Derivation of Stress Test Requirements

Various algorithms (corresponding to different stress test strategies) to derive stress test requirements are
given in this section. We use a set of mathematical functions ,in our algorithms. First the naming
convention of such functions will be given in Section 9.11.1. Algorithms will be then presented in Sections
9.11.2 and 9.11.3.

As an example of how stress test requirements can be generated using algorithms in this section (such as
Algorithm 3 and Algorithm 4), refer to Section 12.4 where test requirements derivation process of our case
study has been explained in detail. We consider different test elements with different stress test strategies
in our case study.

9.11.1 Naming Convention

Naming convention of functions used in different stress test algorithms can be described using the tree in
Figure 52. Note that these functions return maximum message(s) and DCCFP(s) of a given DCCFP and SD,
respectively. In such a sense, these functions are different than the functions presented in Figure 48, which
were intended to measure traffic entailed by a DCCFP.

The root node of the tree in Figure 52 is StressTest, indicating that all functions return a value with a
particular maximization criterion, which depends on the function name. A function name is made by
traversing from the root to a leaf node and concatenating all the node titles in order. Five layers are shaded
in the tree. Four top layers specify the four different stress test strategies mentioned in Section 9.5. The
lowest layer (function’s output type) indicates the return type of the function whose name is generated by
traversing from the root to a leaf node and concatenating all the node labels in order. As mentioned in
Section 9.5.1, since we do not consider stress direction (“in”, “out” and “bidirectional”) for networks, the
network sub-tree (nodes under Net) is not divided into two branches in the second layer. Since there are 32
leaf nodes in Figure 52, there will be 32 different functions.

Carleton University TR SCE-05-13 September 2005

 78

For example, consider the path specified by a dashed line in Figure 52. This path represents function
MaxNetInsDTMsg. This function finds the message (Msg) in a given DCCFP that yields the maximum
(Max) instant (Ins) data traffic (DT) on a given network (Net).

Stress Direction

Stress Location

Stress Duration

Stress Type

Function’s Output Type

StressTest

DT

M
sg

D
C

C
FP

MT

M
sg

D
C

C
FP

DT

M
sg

D
C

C
FP

MT

M
sg

D
C

C
FP

DT

M
sg

D
C

C
FP

MT

M
sg

D
C

C
FP

DT

M
sg

D
C

C
FP

MT

M
sg

D
C

C
FP

DT

M
sg

D
C

C
FP

MT

M
sg

D
C

C
FP

DT

M
sg

D
C

C
FP

MT

M
sg

D
C

C
FP

Ins Int Ins InsInt Int

Msg: Message
DCCFP

Net Nod

In Out

Net: Network
Nod: Node

Ins: Instant
Int: Interval

DT: Data Traffic
MT: Message Traffic

S
tre

ss
 T

es
t F

la
vo

rs

DT

M
sg

D
C

C
FP

MT

M
sg

D
C

C
FP

DT

M
sg

D
C

C
FP

MT

M
sg

D
C

C
FP

Ins Int

Bi

Figure 52-Naming conventions of functions used in various stress test algorithms.

The general form of a function can also be given using the BNF in Equation 6.

DCFGMsgOutput
MTDTType

PerInsDuration

NodLocationBiOutIn
Direction

NodNetLocation
utputationTypeOrectionDurLocationDiStressTestmefunctionNa

|::
|::

|::

else;null
 if;||

::

|::
::

=
=

=

 ==

=

=
=

Equation 6-BNF to generate stress test function names.

The BNF in Equation 7 can be used to determine the input parameters of a function based on its name.

==
==
==
==

=

DCFP*MaxNodmefunctionNa)node,SD(
Msg*MaxNodmefunctionNa;)node,(

DCFP*MaxNetmefunctionNa)network,SD(
Msg*MaxNetmefunctionNa;)network,(

::)mefunctionNa(etersinputParam

i

ij

i

ij

 if;
 if
 if;
 if

ρ

ρ

Equation 7-BNF for the list of input parameters of a stress test function.

where input parameter ρij is a DCCFP in the CCFG of SDi. Input parameters network and node are given to
be stress tested and interval is the time interval for which the interval stress test should be derived for. The
functions and input parameters usage will be clear in the next sections, where algorithms for the derivation
of test requirements complying with different test strategies will be given.

There are four layers in the stress test strategies block in Figure 52. These four layers indicate the variations
of stress test strategy we can apply on a system of nodes and networks. Counting the different paths from
the root of the tree to the nodes of the lowest of these four layers (stress type), 16 different strategies can be
considered. Similar to the naming convention of functions explained above, the BNF in Equation 8 specifies
various stress test strategies.

Carleton University TR SCE-05-13 September 2005

 79

MTDTType
PerInsDuration

NodLocationBiOutIn
Direction

NodNetLocation
nTypeionDuratiotionDirectStressLocameStrategyNastressTest

|::
|::

else;null
 if;||

::

|::
::

=
=

 ==

=

=
=

Equation 8-BNF to generate various stress test strategies.

Using the above naming convention for stress test strategies, example strategies are: StressNetInsDT,
StressNetInsMT, StressNetPetDT, StressNetPetMT, and StressNodInInsDT.

9.11.2 Test Requirements for a Network

According to the naming tree in Figure 52, we consider four stress test strategies for a network:
1. StressNetInsDT(net)
2. StressNetInsMT(net)
3. StressNetIntDT(net)
4. StressIntMT(net)

In the following, we discuss each of the above and give algorithms to derive stress test requirements for
each stress test strategy.
1. StressNetInsDT(net)

To better understand this stress test strategy, a top-level UML activity diagram is shown in Figure 53,
which depicts the flow of activities to generate stress test requirements of the stress test strategy
StressNetInsDT(net).

StressNetInsDT(net)

1-Find maximum traffic DCCFP of each SD

1.1-Find the
maximum traffic
value, time and

messages of each
DCCFP over network

net

2-Among all ISDSs,
choose the ISDS with
maximum traffic over

network net

3-Schedule the SDs in
ISDSmax so that all their

maximum stress
messages happen at

the same time

ISDSmax

Stress Test
Requirements

Control Flow
Model (CFM)

Network Traffic
Model (NTM)

Inter-SD
Constraint Model

(ISDCM)
1.2-Among all of

DCCFPs of a SD,
find the DCCFP with

maximum traffic
value over network

net

Maximum traffic value,
time and messages of

each DCCFP

Maximum
traffic

DCCFP of
each SD

net: Requested
Network

Figure 53-Activity diagram of stress test strategy StressNetInsDT(net).

To better clarify the idea, let us consider the hierarchical relationships between messages, DCCFPs, SDs,
ISDSs and a MIOD; and see how the algorithm works in extracting hierarchical maximums. Such
hierarchical relationships are illustrated using the concept of composition association in Figure 54–(a). A
MIOD is composed of several ISDSs. An ISDS is a set of several SDs. A SD has several DCCFPs. And each
DCCFP is composed of several messages.

The dashed arrow beside the hierarchical relationships represents the direction of hierarchical maximum
selection by the algorithm. To generate stress test requirements, the algorithm (in activity 1.1 of Figure 53)
first finds the maximum traffic messages of each DCCFP. Using the maximum traffic message, the
maximum traffic DCCFPs of each SD are then chosen (in activity 1.2). Then after, among all ISDSs of a
MIOD, the ISDS with maximum traffic is chosen. If all the entitles in the hierarchical relationship are

Carleton University TR SCE-05-13 September 2005

 80

consider as sets, the hierarchical maximum selection process can be shown using a Venn diagram1 in Figure
54–(b). All entities are sets of entities inside them, except messages (shown as msg) which are not sets. The
hierarchical maximum selection process starts from messages and continues on to ISDSs in MIOD level.
The detailed pseudo-code of the algorithm is then given in Algorithm 3.

Message

-End1 1
-End2 *

DCCFP

SD

ISDS

MIOD

-End1 1
-End2 *

-End1 1
-End2 *

-End1 1
-End2 *

Direction of
hierarchical
maximum
selection

(a)

MIOD

ISDS i

SDmax

msgmax

SDi

ISDSmax

DCCFPmax

msgiDCCFPi

...
...

...

...

Direction of hierarchical
maximum selection

(b)

Figure 54-(a): Hierarchical relationships between messages, DCCFPs, SDs, ISDSs and a MIOD. (b): Using a Venn diagram to
represent how the hierarchical maximum selection process works.

Here we describe the rationale behind Algorithm 3 and each of its steps. Our goal in this case is to derive
stress test requirements with network stress location, data traffic type and instant stress duration. Step 1
finds the DCCFP, for each SD, which entails the maximum stress on the given network. Step 1.1.1 finds the
maximum stress message of each DCCFP first. Step 1.1.2 then finds the DCCFP with maximum message
size (maximum of maximums) among all of DCCFPs of a SD.

In order to consider the inter-SD constraints in finding maximum instant stress, Step 2 chooses an ISDS
(Independent-SD Set) with maximum stress. In order to do so, Step 2.1 first calculates each ISDS’s
MaxNetInsDT using the values calculated in Step 1. Using these values, Step 2.2 then finds the ISDS with
maximum stress and labels this ISDS as ISDSmax. ISDSmax will be used is Step 3 when scheduling all
DCCFPs to force the maximum stress.

Step 3 is the final step of the algorithm which schedules the selected DCCFPs of SDs in ISDSmax to force the
maximum stress on the given network. In order to schedule the selected SDs, Step 3.1 first calculates the
latest start time among the selected DCCFPs of all SDs in ISDSmax. The latest start time is saved in
DCCFPsLateStartTime. Step 3.2 generates the actual schedule by using the DCCFPsLateStartTime variable
and shifting the start times of the selected DCCFPs (and their corresponding SDs) to enforce concurrent
execution of the maximum stressing messages of such DCCFPs. This was shown earlier graphically in
Figure 50-(c). The maximum stress will occur in DCCFPsLateStartTime time instance after starting the test.

1 A graphical representation in which sets are represented by closed areas. The closed regions may bear all
kinds of relations to one another, such as be partially overlapped, be completely separated from one
another, or be contained totally one within another. All members of a set are considered to lie within or be
contained within the closed region representing the set. The diagram is used to facilitate the determination
of whether several sets include or exclude the same members.

Carleton University TR SCE-05-13 September 2005

 81

Algorithm 3-Derivation of instant stress test requirements for data traffic on a given network (StressNetInsDT). Stress traffic will

occur in time=DCCFPsLatestStartTime.

We gave the details of the algorithm for StressNetInsDT(net) strategy, where net is the input parameter to
the algorithm. Algorithm 3 can be modified to give algorithms for the other instant network stress test
strategy (StressNetInsMT) as described below. The algorithms for two other network stress test strategies
(StressNetIntDT and StressNetIntMT) will be slightly different since they have to generate interval stress
tests.

2. StressNetInsMT(net)

The following changes should be made in Algorithm 3:

• Formulas in Step 1.1.1:

1. Finding maximum stress DCCFP of each SD

1.1. For each SDi
1.1.1. For each DCCFP ρij of SDi // Finding the maximum DT value, stress time and stress messages of each DCCFP

Find the maximum DT value and time in ρij, using:

()),,(max),(tnetNetInsDTnetTValueMaxNetInsD ijtij ρρ =

),,(),,(:|),(maxmax tnetTValueMaxNetInsDtnetTValueMaxNetInsDttnetTTimeMaxNetInsD ijijij ρρρ ≥∀=

Find the set of messages in ρij, which put maximum traffic on network net, using:

()
)..,..(

.),(.,,),(

maxmax

maxmax

max

max1max

nrmsgnsmsgPathgetNetworknet

endmsgnetTTimeMaxNetInsDstartmsg

msg

msgmsgnetTMsgsMaxNetInsD

ii

iiji

iji

nij

∈

∧≤≤

∧∈

= ρ

ρ

ρ K

where first condition ensures that the message putting maximum traffic is returned. dur(msg) is the duration of a
message and can be calculated as dur(msg)=msg.end-msg.start. The last two conditions make sure that only
messages going through the given network net are compared to yield the maximum. s, r and n are shorthand
notations for sender, receiver and sender.node fields of a message.

If no message in ρij satisfies the network_path condition, the function returns null.
1.1.2. Among all of SDi‘s DCCFPs ρij, find the DCCFP with maximum stress value:

)()(

:)(,
),(

max

max

max
iji

iiji

ii TValueMaxNetInsDTValueMaxNetInsD

SDDCCFP
netSDTDCCFPMaxNetInsD

ρρ

ρρ
ρ

≥

∈∀
=

If no DCCFP in SDi is found with the above criteria, the function returns null.
2. Choosing the ISDS (Independent-SD Set) with maximum stress: // Considering inter-SD constraints

2.1. For each ISDSi // Calculate each ISDS’s MaxNetInsDT

()∑
∈∀

=
iISDSSD

i netnetSDTDCCFPMaxNetInsDTValueMaxNetInsDISDSTValueMaxNetInsD),,()(

2.2. Among all ISDSs, find the ISDS with maximum)(iISDSTValueMaxNetInsD and refer to it as ISDSmax

3. Derivation of stress test requirements (scheduling SDs in the ISDS with maximum stress – found in Step 2):

3.1. Calculate the latest start time among the selected DCCFPs ρimax of all SDs in ISDSmax :

()()
()

=

∈∀∈∀
startmessageestStartTimDCCFPsLate

netnetSDTDCCFPMaxNetInsDTMsgsMaxNetInsDmessageISDSSD ii

.minmax
,,max

3.2. For each SD in ISDSmax
3.2.1. If),(max netSDTDCFPMaxNetInsD ii =ρ is not null

()maxmax , iiiScheduleStressTest αρρ= where
maxiαρ is

maxiρ ’s start time and is equal to:

()()startnetTMsgsMaxNetInsDtStartTimeDCFPsLates ii .,min maxmax ραρ −=

3.2.2. Else

nullScheduleStressTest i =

Carleton University TR SCE-05-13 September 2005

 82

()),,(max),(tnetNetInsMTnetTValueMaxNetInsM ijtij ρρ =

),,(),,(:|),(maxmax tnetTValueMaxNetInsMtnetTValueMaxNetInsMttnetTTimeMaxNetInsM ijijij ρρρ ≥∀=

()
)..,..(

.),(.,,),(

maxmax

maxmax

max

max1max

nrmsgnsmsgPathgetNetworknet

endmsgnetTTimeMaxNetInsMstartmsg

msg

msgmsgnetTMsgsMaxNetInsM

ii

iiji

iji

nij

∈

∧≤≤

∧∈

= ρ

ρ

ρ K

• Formula in Step 1.1.2:

)()(

:)(,
),(

max

max

max
iji

iiji

ii TValueMaxNetInsMTValueMaxNetInsM

SDDCCFP
netSDTDCCFPMaxNetInsM

ρρ

ρρ
ρ

≥

∈∀
=

• The statements in Steps 2 and 3 stay the same. Only the variable and function names with *DT*
pattern should be changed to *MT* instead.

3. StressNetIntDT(net)

The algorithms for the two network stress test strategies StressNetIntDT and StressNetIntMT will be slightly
different than the two mentioned before (StressNetInsDT and StressNetInsMT), since these two have to
generate interval stress tests. The UML activity diagram of stress test strategy StressNetIntDT(net) is shown
in Figure 55. The Pseudo-code of the algorithm is then given in Algorithm 4.

StressNetIntDT(net)

2-Among all CSDFPs,
choose the CSDFP with
maximum unit traffic over

network net

Stress Test
Requirement=CSDFPmaxControl Flow

Model (CFM)

Network Traffic
Model (NTM)

Inter-SD
Constraint Model

(ISDCM)

Maximum unit traffic
DCCFP of each SD

1-Find maximum unit
traffic DCCFP of each
SD over network net

net: Requested
Network

Figure 55- Activity diagram of stress test strategy StressNetIntDT(net).

Here we describe the rationale of the Algorithm 4. Our goal in this case is to derive stress test requirements
with network stress location, data traffic type and instant stress duration. Step 1 of the Algorithm 3 finds
the DCCFP, for each SD, which entails the maximum stress on the given network. Step 1.1.1 finds the
maximum stress message of each DCCFP first. Step 1.1.2 then finds the DCCFP with maximum message
size (maximum of maximums) among all of DCCFPs of a SD.

Carleton University TR SCE-05-13 September 2005

 83

Algorithm 4-Derivation of interval stress test requirements for data traffic on a given network (StressNetIntDT).

4. StressNetIntMT(net)

In Algorithm 4, the name of the functions with pattern *DT* should be replaced with *MT*.

9.11.3 Test Requirements for a Node

Algorithm 3 and Algorithm 4 can be modified to provide algorithms for stress test strategies of nodes. We
group node stress test strategies into three groups: in, out and bidirectional.

9.11.3.1 Stress Direction: In

Node stress test strategies with “in” stress direction can be extracted from the naming tree in Figure 52:
1. StressNodInInsDT (nod)
2. StressNodInInsMT(nod)
3. StressNodInIntDT(nod)
4. StressNodInIntMT(nod)

Modifications to the Algorithm 3 and Algorithm 4 to devise algorithms for node test strategies with “in”
stress direction are described in this section.

1. StressNodInInsDT(nod) strategy

In Algorithm 3, the name of the functions with pattern *Net* should be replaced with *NodIn*.

2. StressNodInInsMT(nod) strategy

In Algorithm 3, the name of the functions with pattern *Net*DT should be replaced with *NodIn*MT.

1. Finding the DCCFP of each SD with maximum unit data traffic

1.1. For each SDi
1.1.1. For each DCCFP ρij of SDi // Finding maximum stress message of each DCCFP

Calculate Unit Data Traffic (UDT) of ρij, using:

()
)(Duration

)t,net,(NetInsDT
)net,(NetUDT

ij

t
ij

ij ρ

ρ
ρ

∑
=

where)(Duration ijρ is the time length of DCCFP ρij and can be calculated as:

()end.mmax)(Duration
)(CCFPmij

ijρ
ρ

∈∀
=

where)(
ij

CCFP ρ is the CCFP corresponding to DCCFP ρij.

1.1.2. Among all DCCFPs ρij of SDi, find the one with maximum unit data traffic

),(),(

:)(,
),(

maxmax

max
max netNetUDTnetNetUDT

SDDCCFP
netSDTDCCFPMaxNetPerD

ii

iiji
ii ρρ

ρρ
ρ

≥

∈∀
=

If no DCCFP in SDi is found with the above criteria, the function returns null.
2. Choosing a CSDFP (Concurrent SD Flow Path) with maximum stress: // Considering inter-SD constraints

2.1. For each CSDFPi // Calculate each CSDFP’s Unit Data Traffic (UDT)

()()net,TMaxNetPerD,CSDFPSBuildDCCFPDuration

)t,net),net,SD(TDCCFPMaxNetPerD(NetInsDT
)net,CSDFP(NetUDT

i

CSDFPSD t
i

i

∑ ∑
∈∀ ∀=

where Duration (presented in Section 7.2.3) is a function that calculates the time length of a DCCFPS (DCCFP
Sequence). BuildDCCFPS is function that builds a DCCFPS from the given CSDFPi using the given criteria:

)net,SD(TDCCFPMaxNetPerD:CSDFPSD i∈∀ .

2.2. Among all CSDFPs, find the sequences with maximum)net,CSDFP(NetUDT i
 and return it as output (CSDFPmax)

Carleton University TR SCE-05-13 September 2005

 84

3. StressNodInIntDT(nod) strategy

In Algorithm 4, the name of the functions with pattern *Net* should be replaced with *NodIn*.

4. StressNodInIntMT(nod) strategy

In Algorithm 4, the name of the functions with pattern *Net*DT should be replaced with *NodIn*MT.

9.11.3.2 Stress Direction: Out

Node stress test strategies with “in” stress direction can be extracted from the naming tree in Figure 52:
1. StressNodOutInsDT (nod)
2. StressNodOutInsMT(nod)
3. StressNodOutIntDT(nod)
4. StressNodOutIntMT(nod)

In the following, we discuss each of the above and give the details of the algorithms to derive stress test
requirements.

1. StressNodOutInsDT(nod) strategy

In Algorithm 3, the name of the functions with pattern *Net* should be replaced with *NodOut*.

2. StressNodOutInsMT(nod) strategy

In Algorithm 3, the name of the functions with pattern *Net*DT should be replaced with *NodOut*MT.

3. StressNodOutIntDT(nod) strategy

In Algorithm 4, the name of the functions with pattern *Net* should be replaced with *NodOut*.

4. StressNodOutIntMT(nod) strategy

In Algorithm 4, the name of the functions with pattern *Net*DT should be replaced with *NodOut*MT.

9.11.3.3 Stress Direction: Bidirectional

Node stress test strategies with “bidirectional” stress direction can be extracted from the naming tree in
Figure 52:

1. StressNodBiInsDT (nod)
2. StressNodBiInsMT(nod)
3. StressNodBiIntDT(nod)
4. StressNodBiIntMT(nod)

In the following, we discuss each of the above and give the details of the algorithms to derive stress test
requirements.

1. StressNodBiInsDT(nod) strategy

In Algorithm 3, the name of the functions with pattern *Net* should be replaced with *NodBi*.

2. StressNodBiInsMT(nod) strategy

In Algorithm 3, the name of the functions with pattern *Net*DT should be replaced with *NodBi*MT.

3. StressNodBiIntDT(nod) strategy

In Algorithm 4, the name of the functions with pattern *Net* should be replaced with *NodBi*.

4. StressNodBiIntMT(nod) strategy

In Algorithm 4, the name of the functions with pattern *Net*DT should be replaced with *NodBi*MT.

Carleton University TR SCE-05-13 September 2005

 85

9.12 Algorithms Complexity

The steps to calculate the complexities of Algorithm 3 and Algorithm 4 are shown in Figure 56 and Figure
57 respectively, where the calculations are performed in a bottom-up manner (from sub-steps, to steps, and
then to the whole algorithm). The variables are defined in Table 6.

Variable Description
s Number of SDs
m Average number of messages per each DCCFP
p Average number of DCCFPs per each SD
i Number of ISDSs
y Average number of SDs per each ISDS
t Average time duration of each DCCFP
c Number of CSDFPs

Table 6-Description of the variables used in calculating algorithms complexity.

Figure 56-Calculating complexity of Algorithm 3.

For example, as it has been shown in Figure 56, Step 1.1.1 of Algorithm 3 has the complexity of O(p(t+m).
This is because there is a loop on all DCCFPs of a SD (p), and there are two loops (maximum functions) on
all time instances (t) and messages (m) of each DCCFPs in Step 1.1.1.

Figure 57-Calculating complexity of Algorithm 4.

9.13 Real-Time Constraint-Oriented Stress Test

The stress test methodology, discussed in the previous sections, finds the maximum possible traffic portion
of every SD/DCCFP and schedules SDs in a way that the maximum possible stress happens in a time
instances or during a time interval. Let us refer to such methodology as global stress test. Such stress test
targets to find any network traffic fault in a SUT. In this way, a network traffic fault might be revealed in
SUT’s network component, e.g., buffers, queues or in its business logic. For example, by applying a specific

1.

1.1. O(s)
1.1.1. O(p(t+m))

1.1.2. O(p)

2.

2.1. O(i)
2.2. O(i)

3.
3.1. O(y)

3.2. O(y)

1.

1.1. O(s)
1.1.1. O(t+m)
1.1.2. O(p)

2.

2.1. O(c)
2.2. O(c)

O(sp(t+m))

O(c)

O(csp(t+m))

O(sp(t+m))

O(i)

O(y)

O(sp(t+m)+i+y)

Carleton University TR SCE-05-13 September 2005

 86

stress test flavor, we might find out that the length of a network buffer of a server in a safety-critical system
is not enough in stress conditions. Furthermore, different strategies of global stress test can usually enforce
violations only in a subset of the RT constraints. This is because the test requirements generated by the
global stress test methodology, i.e., Independent-SD Sets (ISDSs) or Concurrent SD Flow Paths (CSDFP),
usually cover subsets of all RT constraints in a SUT. Therefore, some RT constraints might never be
exercised by a global stress test.

As an example, consider the MIOD in Figure 58, which has two MIOD-level HRT constraints. One of the
constraints is on the duration of SD10 and the other one is bound to the length of SD5 and SD6 together
(from the beginning of SD5 to the end of SD6). Let us refer to the former as HRTC1 and to the later as
HRTC2. Suppose that the data and message traffic of messages in different SDs are such that, no matter
which stress test flavor is applied to this SUT, SD6 (i.e., any of its DCCFPs) never gets chosen as part of the
test requirement. This is possible since the data and message traffic values of messages in SD6 might be less
than all messages in all other SDs. In such a situation, HRTC1 will never get a chance to be exercised
(tested), since SD6 never gets executed by any of the stress test strategies. However, as it can be seen in the
MIOD, HRTC1 has more criticality value than HRTC2, which means the former has more critical
consequences if it happens to be missed in the field.

SD2

SD4

SD1

SD5

SD6

[exp1]

[!exp1]

MIOD

SD3

SD7

SD8

SD10

SD9

[exp2]

[!exp2]

«HRT»
{duration<(2000,'ms'),
criticality=1}

«HRT»
{duration<(1000,'ms'),
criticality=0.5}

Figure 58-An example MIOD with two MIOD-level HRT constraints.

To address the above issue, we propose a modified stress test technique, referred to as Real-Time Constraint-
Oriented Stress Test (RTCOST). Given a RT constraint, RTCOST derives stress test requirements which
target the given constraint in particular, and maximize the chances of violating it. By using RTCOST, all RT
constraints can be checked one by one to make sure they hold in most stressed conditions of a system. The
concept of global stress test and RTCOST are briefly compared in Figure 59.

Luckily, the RTCOST technique can be devised by minor modifications to the global stress test requirement
generation algorithms, presented in Section 9.11. As we will discuss, the modifications are slightly different
for SD-level and MIOD-level constraints.

We present next algorithms for some of the RTCOST variations (strategies), grouped by the level of the
given constraint (SD-level or MIOD-level). The rest of the RT constraint-oriented stress test strategies can
be derived in a similar fashion. The strategies are prefixed by “SDRT” (for SD-level constraints) and
“MIODRT” (for MIOD-level constraints); and are derived from their global-stress-test counterparts.

Carleton University TR SCE-05-13 September 2005

 87

Global stress test targets

- A subset of the RT
constraints (some constraints
might never be exercised)

- SUT’s network component,
e.g., buffers, queues

- SUT’s business logic

A RT constraint RT constraint-oriented
stress test requirements

(b)(a)

1- is used to derive

2- targets

Figure 59-(a): Global stress test versus (b): RT constraint-oriented stress test.

9.13.1 SD-Level RTCOST

We present here the algorithm for SDRTStressNetInsDT(RTC) test flavor, where RTC is a given SD-level RT
constraint. The algorithm can be derived from StressNetInsDT global stress test flavor (Section 9.11.2) and is
shown in Algorithm 5. Algorithm for the other stress test strategies can be derived in a similar fashion, as
were presented for the global stress test algorithms in Section 9.11.

In Algorithm 5, Msgs(RTC), SD(RTC) and Nets(RTC) are utility functions and are defined as follows.
Msgs(RTC) and SD(RTC) return the messages the RTC is connected to and the SD enclosing the RTC. These
functions are easy to implement since RTC is a SD-level constraint. For example, considering the SD-level
constraint RTC in Figure 60-(a), Msgs(RTC) and SD(RTC) will return the values: Msgs(RTC)={m1,m2,r2,r1}
and SD(RTC)=M.

sd M

m1

r1

«SRT»
{duration<(1300,'ms'),
missProb<(0.5)}

o1
{node = n1}

o2
{node = n2}

[guard]

alt

o3
{node = n3}

m2

r2

network1

network3n1 n2

n3

(b) System NIT

network2

(a) RTC: A SD-level RT constraint

RTC

Figure 60-An example of a SD-level RT constraint.

Nets(RTC) returns the set of networks which messages of set Msgs(RTC) go through. For example
considering the RT constraint in Figure 60-(a) and the system NIT in Figure 60-(b), Nets(RTC) will return
{network1, network3}. The pseudo code of function Nets(RTC) is given in Algorithm 6. The output of this
function is the union of all network paths of all messages bound by the given RT constraint.

We now briefly discuss the rational of Algorithm 5. Only a RT constraint is given as the input to the
algorithm and the algorithm is supposed to find, among networks in Nets(RTC), the network which
receives the maximum instant data traffic. The reason why we limit the search domain to networks in
Nets(RTC) is that the stress test strategy is RT-constraint oriented and we need to find a network stress
situation targeting the given constraint. In Step 1.1.1.1 of the algorithm, we do a slightly modified search
among DCCFPs of SD(RTC). Since for SD(RTC), we want the stress test to happen in the portion where
RTC is located, we therefore assign the stress values only for DCCFPs covering messages in Msgs(RTC).

Algorithm 5 can be also modified to account for network capacities while searching for netmax (network with
maximum stress on RTC). The modifications should be made in Step 2 of the algorithm, so that the
network, where the ratio of instant data traffic to its capacity is the highest, is chosen as netmax.
Alternatively, all the networks in Nets(RTC) can be stress tested, if resources permit.

Carleton University TR SCE-05-13 September 2005

 88

Algorithm 5-Derivation of RT constraint-oriented stress test requirements with network instant data traffic flavor targeted to a

SD-level RT constraint RTC.

1. For each network net in Nets(RTC)
1.1. Find maximum stress DCCFP of each SD for net

1.1.1. For each SDi where SDi
1.1.1.1. For each DCCFP ρij of SDi

If SDi <>SD(RTC) then

()),,(max),(tnetNetInsDTnetTValueMaxNetInsD ij
t

ij ρρ =

),,(),,(:|),(maxmax tnetTValueMaxNetInsDtnetTValueMaxNetInsDttnetTTimeMaxNetInsD ijijij ρρρ ≥∀=

()
)..,..(

.),(.,,),(

maxmax

maxmax

max

max1max

nrmsgnsmsgPathgetNetworknet

endmsgnetTTimeMaxNetInsDstartmsg

msg

msgmsgnetTMsgsMaxNetInsD

ii

iiji

iji

nij

∈

∧≤≤

∧∈

= ρ

ρ

ρ K

Else If SDi =SD(RTC
If

ij)RTC(Msgs ρ∈ then

 ≤≤=

∈∈
)end.m(maxt)start.m(min|)t,net,(NetInsDTmax)net,(TValueMaxNetInsD

)RTC(Msgsm)RTC(Msgsmijtij ρρ

)end.m(maxt)start.m(min

)t,net,(TValueMaxNetInsD)t,net,(TValueMaxNetInsD:t
t)net,(TTimeMaxNetInsD

)RTC(Msgsm)RTC(Msgsm

ijmaxij

maxij

∈∈
≤≤

∧≥∀
=

ρρ
ρ

()
)n.r.msg,n.s.msg(PathgetNetworknet

end.msg)net,(TTimeMaxNetInsDstart.msg

)RTC(Msgsmsg

msg,,msg)net,(TMsgsMaxNetInsD

imaximax

imaxijimax

imax

nmaxmaxij

∈

∧≤≤

∧∈

= ρρ K1

Else

0=)net,(TValueMaxNetInsD ijρ

null)net,(TTimeMaxNetInsD ij =ρ

null)net,(TMsgsMaxNetInsD ij =ρ

1.1.1.2. Among all DCCFPs, of SDi‘s, find the DCCFP with maximum stress value:

)()(

:)(,
),(

max

max

max
iji

iiji

ii TValueMaxNetInsDTValueMaxNetInsD

SDDCCFP
netSDTDCCFPMaxNetInsD

ρρ

ρρ
ρ

≥

∈∀
=

If no DCCFP in SDi is found with the above criteria, the function returns null.
2. Choose the ISDS (Independent-SD Set) and network with maximum stress on RTC

2.1. For each network net in Nets(RTC)
2.1.1. For each ISDSi such that

iISDS)RTC(SD ∈

()∑
∈∀

=
iISDSSD

i net),net,SD(TDCCFPMaxNetInsDTValueMaxNetInsD)net,ISDS(TValueMaxNetInsD

2.2. For each network net in Nets(RTC)
2.2.1. For each ISDSi such that

iISDS)RTC(SD ∈

Find the maximum)net,ISDS(TValueMaxNetInsD i
 and refer to it the selected ISDS and network as ISDSmax

and netmax .
3. Schedule SDs in the ISDS with maximum stress (ISDSmax) in the same way as Step 3 of .

4. Return all ()maxmax , iiiScheduleStressTest αρρ= and netmax .as outputs.

Carleton University TR SCE-05-13 September 2005

 89

Algorithm 6-Pseudo code of function Nets(RTC).

9.13.2 MIOD-Level RTCOST

MIOD-level RT constraint-oriented stress test algorithms can be devised similarly as the SD-level RTCOST
algorithms, since MIOD-level RT constraints are similar to SD-level constraints and the former ones are
only one level higher than the later ones (Section 5.6).

We present the algorithm for MIODRTStressNetInsDT(RTC) test flavor, where RTC is a given MIOD-level
RT constraint. The algorithm can be derived from StressNetInsDT global stress test flavor (Section 9.11.2)
and is shown in Algorithm 7. Algorithm for the other stress test strategies can be derived in similar ways,
as were presented for the global stress test algorithms in Section 9.11.

Algorithm 7-Derivation of RT constraint-oriented stress test requirements with network instant data traffic flavor targeted to a

MIOD-level RT constraint RTC.

5. For each network net in Nets(RTC)
5.1. Find maximum stress DCCFP of each SD for net

5.1.1. For each SDi where SDi
5.1.1.1. For each DCCFP ρij of SDi

()),,(max),(tnetNetInsDTnetTValueMaxNetInsD ij
t

ij ρρ =

),,(),,(:|),(maxmax tnetTValueMaxNetInsDtnetTValueMaxNetInsDttnetTTimeMaxNetInsD ijijij ρρρ ≥∀=

()
)..,..(

.),(.,,),(

maxmax

maxmax

max

max1max

nrmsgnsmsgPathgetNetworknet

endmsgnetTTimeMaxNetInsDstartmsg

msg

msgmsgnetTMsgsMaxNetInsD

ii

iiji

iji

nij

∈

∧≤≤

∧∈

= ρ

ρ

ρ K

5.1.1.2. Among all DCCFPs, of SDi‘s, find the DCCFP with maximum stress value:

)()(

:)(,
),(

max

max

max
iji

iiji

ii TValueMaxNetInsDTValueMaxNetInsD

SDDCCFP
netSDTDCCFPMaxNetInsD

ρρ

ρρ
ρ

≥

∈∀
=

If no DCCFP in SDi is found with the above criteria, the function returns null.
6. Choose the ISDS (Independent-SD Set) and network with maximum stress on RTC

6.1. For each network net in Nets(RTC)
6.1.1. For each ISDSi such that

iRTC ISDSSD ∈ and)RTC(SDsSDRTC ∈

()∑
∈∀

=
iISDSSD

i net),net,SD(TDCCFPMaxNetInsDTValueMaxNetInsD)net,ISDS(TValueMaxNetInsD

6.2. For each network net in Nets(RTC)
6.2.1. For each ISDSi such that

iRTC ISDSSD ∈ and)RTC(SDsSDRTC ∈

Find the maximum)net,ISDS(TValueMaxNetInsD i
 and refer to it the selected ISDS and network as ISDSmax

and netmax .
7. Schedule SDs in the ISDS with maximum stress (ISDSmax) in the same way as Step 3 of .
8. Return all ()maxmax , iiiScheduleStressTest αρρ= and netmax .as outputs.

Function Nets(rtc: a RT constraint):Set of networks
1. Output=Empty set

2. For each message m in Msgs(RTC)
2.1. Find maximum stress DCCFP of each SD for net
2.2. Output= Output ∪ getNetworkPath(m.sender.node, m.receiver.node)

3. Return Output

Carleton University TR SCE-05-13 September 2005

 90

Msgs(RTC) and Nets(RTC) are utility functions as described in Section 9.13.1. SDs(RTC) is similar to
SD(RTC), described above, however it returns the set of SDs a RT constraint is bound to. For example,
Considering the part of a MIOD in Figure 61, SDs(RTC) will return {SD1, SD2}.

SD1

SD2

...

...

«SRT»
{duration<(1000,'ms'),
missProb<(0.2)}

RTC

Figure 61-An example of a MIOD-level RT constraint (only part of the MIOD is shown).

Since a MIOD-level RT constraint does not apply to individual messages in a SD, therefore we do not need
a modified search among DCCFPs of SD(RTC), as done in Step 1.1.1.1 of Algorithm 5
(SDRTStressNetInsDT). Two modifications made while deriving Algorithm 7 from StressNetInsDT (Section
9.11.2) are:

1. The loop in Step 1 to go over networks in Nets(RTC).

2. Limiting ISDSs to only those which include at least one of the SDs in SDs(RTC) (Step 2.1.1 of
Algorithm 7).

9.13.3 The Feasibility of Full Automation

We investigated the feasibility of a method to determine the order of different stress test strategies in terms
of importance, given a RT constraint. However, finding such order of stress test strategies (such as
NetInsDT, NetInsMT, NodInInstDT, or NodBiInstMT) is not possible, since different network/nodes might
exhibit network traffic failures in different data/message traffic thresholds compared to others. The best
practice is to apply all possible stress test strategies (they are only 16 according to Section 9.5) for a given
RT constraint.

9.14 Automating the Derivation Process of Test Elements

We saw in Algorithm 2 that test elements are parts of the input to our stress testing technique, where the
rest of the steps are done automatically. We discuss here if the test elements can also be derived
automatically in the order of importance to be stress tested first. More importance, in this context, means if
the failure of a RT constraint has more severity than another. This automated process can reduce the
workload done by testers. Note that this automated process can be applied to both global stress test and the
RT constraint-oriented stress test techniques.

We discussed in Section 5.6 that RT constraints are modeled by two stereotypes: SRT (soft) and HRT (hard).
SRT constraints have an upper bound probability (missProb) up to which they can be missed in a series of
executions. Besides, we assumed that a criticality value is assigned to each HRT constraint. Criticality was
defined as the degree to which the consequences of missing a hard deadline are unacceptable. The closer
the criticality of a HRT constraint to one, the more severe will be the consequences of missing it. For
example, if missing a HRT constraint may cause life-threatening situations, it would be better to assign
criticality=1 for it. Conversely, if the cost of missing a HRT constraint is just an increase in the temperature
of a water hydro plant (which will not immediately lead to catastrophic results), then this constraint should
have a lesser value of criticality. Note that, with the above definitions, there is similarity in the concepts of
HRT constraints with low criticality and SRT constraints.

As an overview, we present the heuristics of our automated derivation process of test elements. Further
details are given next.

Carleton University TR SCE-05-13 September 2005

 91

1. HRT constraints should be verified before SRT constraints. In other words, system components
(networks or nodes) associated with the HRT constraints should be stress tested before those
components related with the SRT constraints. The association relationship will be described below.

2. Among HRT constraints, the constraints with higher criticality should be verified first.
3. Among SRT constraints, the constraints with lower missing probability (missProb) should be

verified first.
4. For each HRT or SRT constraint, the total instant/interval data/message traffic for each of its

associated networks and nodes can be calculated and sorted in the descending order. The
suggested order to generate test elements is in the order of sorted components.

A RT constraint (hard or soft) is said to be associated with a system component (networks or nodes), if the
network behavior of the component affects the duration of the constraint. We derive such associations of a
constraint from MIOD or SD if the constraint is MIOD-level or SD-level, respectively. For example,
consider the MIOD-level constraint SRTC1 and SD-level constraints HRTC1 and SRTC2, shown in Figure
62.

SD1

:o1
{node = n1}

:o2
{node = n2}

m1

«HRT»
{duration<(1000,'ms'),
criticality=1}

SD2

:o1
{node = n1}

:o2
{node = n2}

m1

«SRT»
{duration<(1300,'ms'),
missProb<(0.2)}

r2

:o3
{node = n3}

m2

r1

SD1

SD2

(a) Part of a MIOD with a MIOD-
level SRT constraint

(b) A SD-level HRT constraint
attached to one message

(c) A SD-level SRT constraint
attached to several messages

«SRT»
{duration<(3500,'ms'),
missProb<(0.5)}

network1

network2n1 n2

n3

(d) System NIT

HRTC1

SRTC1 SRTC2

Figure 62-Association of RT constraints in SD and MIOD levels.

According to our definition of “association” between RT constraint and network/nodes, the set of
associated network/nodes for constraints SRTC1, SRTC2 and HRTC1 is shown in Table 7. To derive the
associated networks of a constraint, we use the networkPath function to find the list of networks connecting
two nodes in a NIT. For example the associated networks of constraint SRTC2 are: network1 and network2,
since the path from node n2 to n3 goes through these networks in the NIT of Figure 62-(d).

RT constraint Associated nodes and networks
SRTC1 n1, n2, n3, network1, network2
SRTC2 n1, n2, n3, network1, network2
HRTC1 n1, n2, network1
Table 7-Associated nodes and networks of the RT constraints in Figure 62.

Now, let us return back to the heuristic to automate the derivation process of test elements. To better
illustrate the idea, the list of heuristic can be depicted graphically in Figure 63.

Figure 63 shows the general procedure to derive the order of test elements. Suppose this SUT has m HRT
constraints (HRTC1, …, HRTCm), n HRT constraints (HRTC1, …, HRTCm), x networks, y nodes and k SDs.
The table shown in Figure 63-(a) suggests an order of constraints to test. For each constraint in this order,
the order of elements to test

the associated set of networks/nodes can be derived as discussed above. To realize the last heuristics, we
use a matrix, referred to as SD-Network Usage Matrix (SDNUM), an example of which is shown in Figure 63-
(b). In a SDNUM, each row corresponds to a network or a node in the SUT. SDNUM rows are divided in to
groups: networks and nodes. Columns correspond to SDs of the SUT, where the last column is the
summation of all the values in a row, i.e.:

Carleton University TR SCE-05-13 September 2005

 92

∑

∑

=

=

=

=

k

j
jii

k

j
jii

ndvndt

ntvntt

1
,

1
,

SRT

Constraints

HRT

Constraints

HRTC1

HRTC2

HRTCm

...

nod3 net6 net2

Associated networks/nodes of each
constraint, sorted in descending order

according to a specific network traffic flavor

...
...

...

...

Te
st

 o
rd

er

Te
st

 o
rd

er

Test order

SRTC1

SRTC2

SRTCn

...

nod5net4 net5...
...

...

...

Te
st

 o
rd

er

net1

net2

nod1

...

ntv1,1

netx

nod2

nody

SD1 SD2 SD3 SDk Total...
ntv1,2 ntv1,3 ntv1,k ntt1

ntv2,1 ntv2,2 ntv2,3 ntv2,k ntt2

ntvx,1 ntvx,2 ntvx,3 ntvx,k nttx

ndv1,1 ndv1,2 ndv1,3 ndv1,k ndt1

ndv2,1 ndv2,2 ndv2,3 ndv2,k ndt2

ndvy,1 ndvy,2 ndvy,3 ndvy,k ndty

......

...N
et

w
or

ks
N

od
es

SDs

(a) Order of test elements (b) SD Network Usage Matrix

criticality1

criticality2

criticalitym

missProb1

missProb2

missProbn

D
es

ce
nd

in
g

As
ce

nd
in

g

Figure 63-Heuristics to Automate the Process of Test Elements Derivation.

Each element of a SDNUM, corresponding to a SD M and a component c (network or node), is equal to the
value of a network traffic function which is entailed by executing SD M on the component c. Based on the
discussions in Section 9.5, all stress functions can used. This idea can be formalized with the BNF shown in
Figure 64.

))nod,SD(rMTDCCFPMaxNodBiPe(NodBiUMT|))nod,SD(rDTDCCFPMaxNodBiPe(NodBiUDT::)nod,SD(tionNodPerFunc

))net,SD(TDCCFPMaxNetPerM(NetUMT|))net,SD(TDCCFPMaxNetPerD(NetUDT::)net,SD(tionNetPerFunc

))nod,SD(TDCCFPMaxNetInsM(sMTValueMaxNodBiIn|))nod,SD(sDTDCCFPMaxNodBiIn(sDTValueMaxNodBiIn::)nod,SD(tionNodInsFunc

))net,SD(TDCCFPMaxNetInsM(TValueMaxNetInsM|))net,SD(TDCCFPMaxNetInsD(TValueMaxNetInsD::)net,SD(tionNetInsFunc

)nod,SD(tionNodPerFunc|)nod,SD(tionNodInsFunc::ndv

)net,SD(tionNetPerFunc|)net,SD(tionNetInsFunc::ntv

ijijij

ijijij

ijijij

ijijij

ijijj,i

ijijj,i

=

=

=

=

=

=

Figure 64-BNF for the elements of SD-Network Usage Matrix (SDNUM).

For example, we show here how the test order of test elements corresponding to Figure 62 can be derived.
We derived the set of associated network/nodes for constraints SRTC1, SRTC2 and HRTC1 of the example
of Figure 62 in Table 7. Let us assume functions MaxNetInsDTValue and MaxNodBiInsDTValue are chosen
for the test elements derivation process. Let us further assume that the values of these functions for each
pair of SDs and components (networks or nodes) are calculated as shown in Figure 65-(b). Using these
values and the automatic test elements derivation process strategy, stated above, the order of test elements
is shown in Figure 65-(a). The only HRT constraint HRTC1 is ordered before the SRT constraints SRTC1,
SRTC2. SRT constraints are ordered in ascending order of their missing probabilities. For each constraint,
the set of its associated networks/nodes are ordered in the descending order of the corresponding total
function value, extracted from the SDNUM in Figure 65-(b).

Carleton University TR SCE-05-13 September 2005

 93

HRT Constraints

network1

network2

n1

10

n2

n3

SD1 SD2 Total

20

null 35

30

35

10 20

10 35

30

45

null 35 35

(b) SDNUM with functions MaxNetInsDTValue and
MaxNodBiInsDTValue

SRT Constraints

HRTC1 n1 (30)n2 (45) network1 (30)

T
es

t o
rd

er

SRTC2

SRTC1

1

0.2

0.5

Test order

n2 network2 n3 n1 network1

n2 network2 n3 n1 network1

(a) Order of test elements

Figure 65-An example showing how the automated test element derivation heuristics works.

Carleton University TR SCE-05-13 September 2005

 94

Chapter 10

GENETIC ALGORITHM-BASED STRESS TEST TECHNIQUE

As discussed in Section 5.3, we consider three types of SD constraints in the current work:
• Sequential constraints: Constraints which define a set of valid SD sequences.
• Conditional constraints: Conditional constraints are related to sequential constraints and indicate

the condition(s) that have to be satisfied before a sequence of SDs can be executed.
• Arrival-pattern constraints: These constraints relate to timing of SDs, that is when a SD can start

running. Considering each SD alone, it might only be allowed to be executed in some particular
time instants.

Our approach in considering the above set of constraints when generating stress test requirements was as
the following. We proposed a test requirement generation technique, as an optimization problem, in
Chapter 9 which took into account the first two types of constraints (sequential and conditional). The test
technique was referred to as Time-Shifting Stress Test Technique (TSSTT). A more complex optimization
algorithm, based on genetic algorithms, will be presented in this section which will consider all three types
of constraints (sequential and conditional and arrival-pattern). The ideas of the optimization algorithm in
this section are based on the main concepts of the TSSTT.

We first discuss in Section 10.1 the types of arrival patterns presented by the UML-SPT profile and that we
consider in this section. In order to study the arrival patterns and their impact on our test techniques, the
timing characteristics of arrival patterns are analyzed in Section 10.2. Along with such timing
characteristics, the concept of Accepted Time Sets is introduced in Section 10.3. Section 10.4 provides a
general overview of the formulated optimization problem, which basically adds the arrival-pattern group
of constraints to the optimization problem, presented in Section 9.7. Section 10.5 describes the impacts of
arrival patterns on various stress test strategies (Section 9.5).

Based on such impacts, we separate instant and interval stress test strategies with arrival patterns, and
address them separately. The derivation of instant stress test requirements while considering arrival
patterns is presented in Sections 10.6-10.7. Our choice of the optimization methodology is described in
Section 10.6. By optimization methodology, we mean the type of optimization technique used for the stress
technique derivation technique presented in this section, such as traditional techniques including Linear
Programming (LP), Dynamic Programming (DP) and Branch and Bound (BB) or evolutionary algorithms such
as Genetic algorithms and Ant Colony. For reasons explained below, genetic algorithms will be chosen as the
optimization technique type and the optimization problem will be formulated to be solvable by a genetic
algorithm in Section 10.7. Section 10.8 presents a variation of the TSSTT to derive interval stress test
requirements.

10.1 Types of Arrival Patterns

Arrival-Pattern constraints (APC) relate to timing of SDs, that is when a SD can start running. APCs can be
modeled using the UML-SPT profile, as explained in Section 2.4.

Carleton University TR SCE-05-13 September 2005

 95

As proposed in Section 4.2.2 of the UML-SPT profile [10], RTarrivalPattern tagged-values can be used to
model the pattern in which a SD is triggered. Five arrival patterns are defined in [10] using the following
BNF (Backus-Nauer Form) forms:

§ <bounded> ::= ‘bounded’, <time-value>, <time-value>

Describes a bounded inter-arrival pattern, where the left time value is the minimal interval between
successive arrivals and the one on the right is the maximum; both values are expressed using the
RTtimeValue type. RTtimeValue type is another tagged-value which is a general format in the UML-SPT
profile [10] for expressing time value expressions, e.g. (20, ms).

For example, (‘bounded’, (2, ms), (5, ms)) specifies a bounded pattern where the minimum and
maximum time distances between successive arrivals are 2 ms and 5 ms, respectively. An event timing
such as <0, 3, 7, 9, 15, 16>, where all times values are in ms, satisfies the arrival pattern.

§ <bursty> ::= ‘bursty’, <time-value>, <integer>

The BNF describes a bursty inter-arrival pattern, where the time value is the burst interval expressed
using the RTtimeValue type and the integer identifies the maximum number of events that can occur
during that interval.

For example, (‘bursty’, (5, ms), 2) specifies a bursty inter-arrival pattern where there can be up to two
arrivals in every 5 ms interval. The event timing <0, 4, 6, 7, 12, 14>, where all times values are in ms,
satisfies the arrival pattern.

§ <irregular> ::= ‘irregular’, <time-value> [, <time-value>]*

Describes an irregular inter-arrival pattern, where the ordered list of time values (expressed using the
RTtimeValue type) represents successive inter-arrival times.

For example, (‘irregular’, (1, ms), (5, ms), (6, ms), (8, ms), (10, ms)) specifies a irregular pattern where the
arrivals occur at specified time instances.

§ <periodic> ::= ‘periodic’, <time-value> [, <time-value>]

Describes periodic inter-arrival patterns, where the left time value defines the period and the optional
second time value represents the maximal deviation (from the period value). Both values are expressed
using the RTtimeValue type.

For example, (‘periodic’, (6, ms), (1, ms)) specifies a periodic inter-arrival pattern, where the period and
the deviation values are 6 and 1 ms.

§ <unbounded> ::= ‘unbounded’, <PDF-string>

Describes a pattern specified by a Probability Distribution Function (PDF) defined in RTtimeValue in
Section 4.2.2 of [10]. The types of PDFs supported are: Bernoulli, binomial, exponential, gamma,
geometric, histogram, normal (Gaussian), Poisson, and uniform. Different PDF types are explained
below with the corresponding modeling BNFs, the mathematical PDF formulas and an example graph
of the PDF.

o The Bernoulli distribution has one parameter, a probability p:

<bernoulliPDF> ::= ‘bernoulli’, <Real>

 0 1

P(x) for p=0.6

x

40
60

0.2

0.4

0.6

=
=−

=
1for
0for 1

np
np

)n(P

Carleton University TR SCE-05-13 September 2005

 96

o The binomial distribution has two parameters: a probability p and the number of trials N (a
positive integer):

<binomialPDF> ::= ‘binomial’, <Real>, <Integer>1

P(x)

x0 10 20
40

80
100

80

40
20 10 0 0

nNn
p)p(p

n
N

)N|n(P −−

= 1

o The exponential distribution has one parameter, the mean value λ:

<exponentialPDF> ::= ‘exponential’, <Real>

P(x)

x

xe)x(P λλ −=

o The gamma distribution has two parameters (a positive integer h and a mean λ):

<gammaPDF> ::= ‘gamma’, <Integer>, <Real>

P(x)

x

x
h

e
)!h(

)x(
)x(P λλλ −

−

−
=

1

1

o The histogram distribution has an ordered collection of one or more pairs which identify the
start of an interval and the probability that applies within that interval (starting from the
leftmost interval) and one end-interval value for the upper boundary of the last interval:

<histogramPDF> ::= ‘histogram’, {<Real>, <Real>}*, <Real>

0 1 2 3 4 5 6 7

P(x)

0.8

x10
30 30 40 40

20 20
0

0.2

0.4

0.6

An example:

‘histogram’, {(0ms,0.1)}, {(1ms,0.3)}, {(3ms,0.4)),
{(5ms,0.2)},7ms

o The normal (Gauss) distribution has a mean value µ and a standard deviation value σ (greater
than 0):

1 This is written in the UML-SPT as <binomialPDF> ::= “ ‘binomial’ ,” <Integer>1, in page 4-33 of
[10]. We have altered the BNF to conform to the PDF’s mathematical definition.

(h,λ)=(1,1)

(h,λ)=(1,2)

Carleton University TR SCE-05-13 September 2005

 97

<normalPDF> ::= ‘normal’, <Real>, <Real>

P(x)

x

2

2

2

2
1 σ

µ

πσ

)x(

e)x(P
−−

=

o The Poisson distribution has a mean value v:

<poissonPDF> ::= ‘poisson’, <Real>

P(x)

x0 10 20
40

80
100

85

50
35 25 15 5

3z

!n
ev

)n(P
vn

v

−

=

o The uniform distribution has two parameters designating the start a and end b of the sampling
interval:

<uniformPDF> ::= ‘uniform’, <Real>, <Real>

P(x)

x
a b

>

<<
−

<

=

bx

bxa
ab

ax

)x(P

for 0

for
1

for 0

10.2 Analysis of Arrival Patterns

In order to study the arrival patterns and their impact on our test techniques, their timing characteristics
should be analyzed. Furthermore, given an arrival time, we should be able to determine if it satisfies an
arrival pattern (AP). Satisfying an AP, in this context, implies that an arrival time is possible given the AP.

The pseudo-code, shown in Figure 66, determines if a DCCFP arrival time satisfies an AP. The AP can be
any of these {‘bounded’, ‘bursty’, ‘irregular’, ‘periodic’, ‘unbounded’}. The pseudo-code is described in detail
next.

Figure 66- Pseudo-code to check if the arrival pattern AP is satisfied by an arrival time.

Function IsAPCSatisfied(arrivalTime, AP)
AP∈{‘bounded’, ‘bursty’, ‘irregular’, ‘periodic’, ‘unbounded’}
1 If (AP=‘bounded’)
2 If arrivalTime is in one of the intervals of the bounded pattern: Return True
3 Else: Return False
4 If (AP=‘bursty’): Return Ture
5 If (AP=‘irregular’)
6 If arrivalTime is one of the time values in the AP list: Return True
7 Else: Return False
8 If (AP=‘periodic’)
9 If there exists an arbitrary integer k such that arrivalTime∈[kp-d… kp+d], where p and d are the period and the

derivation values of the AP: Return True
10 Else: Return False
11 If (AP=‘unbounded’), i.e., AP has a Probability Distribution Function (PDF): Return True

Carleton University TR SCE-05-13 September 2005

 98

If AP is bounded , the function returns true if the arrival time is inside the time intervals specified by the
bounded pattern. Such a pattern is identified by a minimal and a maximal interval time (MinIAT, MaxIAT). We
assume that MinIAT and MaxIAT of a bounded arrival pattern can not be equal. This is because if the two
values are equal, the arrival pattern will be a periodic one. For example, a bounded AP where
MinIAT=MaxIAT=3ms, is indeed a periodic arrival pattern with period=3ms. Consider a bounded arrival
pattern with MinIAT=4ms and MaxIAT=5ms. The gray eclipses in the timing diagram in Figure 67 depict
the Accepted Time Intervals (ATI) of the arrival pattern. ATI here means the time intervals where an arrival
pattern is satisfied.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time (ms)

...

Accepted Time Interval (ATI)

Legend

Figure 67-Accepted Time Intervals (ATI) of a bounded arrival pattern (‘bounded’, (4, ms), (5, ms)), i.e. MinIAT=4ms, MaxIAT=5ms.

Note that the ATIs of a bounded AP denote all possible arrival times, regardless of specific previous arrival
times in a single scenario. The curved arrows in Figure 67 denote how a ATI is derived from the previous
one. For the AP discussed above, assuming that the arrival pattern starts from time=0, the first ATI is
[4..5ms]. If an event arrives in time=4ms, according to the fact that MinIAT=4ms and MaxIAT=5ms, the next
event can arrive in interval [8…9ms]. Similarly, if an event arrives in time=5ms, according to the fact that
MinIAT=4ms and MaxIAT=5ms, the next event can arrive in interval [9...10ms]. In a similar fashion, the
value in between 4 and 5 ms will cause next arrival time to be in the range of [8…10ms]. Therefore, the
second ATI is [8…10ms]. The next ATIs are [12…15ms], [16…20ms], [20…25ms], [24…30ms] and so on.

If the arrival pattern is bursty, the function in Figure 66 always returns true. This is because any arrival time
satisfies a bursty arrival pattern. For example, consider the arrival pattern (‘bursty’, (5, ms), 2), which
indicates that there can be up to two arrivals in every 5 ms interval. The gray eclipses in the timing diagram
in Figure 68 depict the Accepted Time Intervals (ATI) of this arrival pattern.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time (ms)

...

Figure 68-Accepted Time Intervals (ATI) of the bursty arrival pattern (‘bursty’, (5, ms), 2).

As it can be seen, given a bursty pattern, a single arrival can happen in any time instance, with the
constraint that number of arrival in the bursty interval is less than the specified number. For example, up to
two arrivals can occur in any of the ATI’s of the above pattern. Furthermore, since our aim is to schedule
only one DCCFP of a SD execution in a specific time instance (to generate a stress test requirement), we can
choose any time instance.

If the arrival pattern is irregular, the function returns true (indicating that arrival pattern constraints are
satisfied), if the arrival time is one of the elements in the irregular pattern’s set. For example, (‘irregular’, (1,
ms), (5, ms), (6, ms), (8, ms), (10, ms)) specifies a bursty pattern where the arrival occurs at time instances
specified. In this case, if the arrival time is 5 ms, for example, the arrival pattern constraint is satisfied. Since
the accepted arrival times for an irregular arrival pattern are not intervals, and rather time instants, we
refer to them as Accepted Time Points (ATP). An example is shown in Figure 69.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

...

Figure 69-Accepted Time Point (ATP) of the irregular inter-arrival pattern (‘irregular’, (1, ms), (5, ms), (6, ms), (8, ms), (10, ms)).

Carleton University TR SCE-05-13 September 2005

 99

For a periodic arrival pattern, the arrival pattern constraints are satisfied if the start time falls in an interval
around periods within the given deviation interval. For example, Accepted Time Intervals (ATI) of the
periodic inter-arrival pattern (‘periodic’, (5, ms), (1, ms)) are shown in Figure 70. Only arrival times in any of
the ATIs are accepted.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time (ms)

...

Figure 70-Accepted Time Intervals (ATI) of the periodic interarrival pattern (‘periodic’, (5, ms), (1, ms)).

If the arrival pattern is unbounded , the function IsAPCSatisfied in Figure 66 always returns true. Unbounded
arrival patterns correspond to a Probability Distribution Function (PDF). As discussed in Section 10.1, such
PDFs specify the probability which an arrival occurs in a specific time instance. For example, the PDF of
(‘poisson’, (5, ms)) arrival pattern is shown in Figure 71.

time (ms)0 1 2 3 4 5 6 7 8 9 10 11 12 13

P(time)

0.1

0.2

Figure 71-Probability Distribution Function (PDF) of (‘poisson’, (5, ms)) arrival pattern.

Assuming that a first arrival occurs in 4 ms, the second arrival time is based on the above PDF, which can
be any time after 4 ms, since the probability decreases as time goes by, but it never becomes zero. Other
unbounded arrival patterns have similar behaviors to the poisson PDF, as discussed above. Therefore, any
single arrival time satisfies an unbounded arrival patterns.

10.3 Accepted Time Sets

To facilitate our discussions in the next sections, we define the concept of Accepted Time Set (ATS) for each
SD. An ATS is the set of time instances or time intervals when a SD is allowed to be triggered, according to
its arrival pattern. An ATS can be derived from the arrival pattern of each SD. The ATS metamodel in
Figure 72-(a) defines the fundamental concepts.

ATS

SD

1*

ATI ATP

-End3

1

-End4*

-End3

1
-End4*

UML-SPT::
RTtimeValue

*

*

1

*

* *

0..1*

startTime

endTime

(a) (b)

ATS: Accepted Time Set
ATI: Accepted Time Interval
ATP: Accepted Time Point

()

()

=

=

=

4434421

321

K

44 344 21

876876

ATI

nedunconstrai

ATP

irregular

ATI

endTimestartTime

bounded

null,,ms)(ATS

,ms)(,,ms)(,,ms)(,,ms)(,,ms)(ATS

,,ms)(,,ms)(,,ms)(,,ms)(ATS

0

108651

10854

Constraints:
context ATS:
 if self.ati->size()>0 then
 self.atp->size()=0
 else if self.atp->size()>0 then
 self.ati->size()=0
 else if self.ati->exists(i|i.endTime->isEmpty()) then
 self.ati->size()=1

Figure 72-(a): Accepted Time Set (ATS) metamodel. (b): Three instances of the metamodel.

Carleton University TR SCE-05-13 September 2005

 100

Each SD has an ATS. An ATS is made of several Accepted Time Points (ATP), for irregular and periodic
(with no deviation) arrival patterns, or several Accepted Time Intervals (ATI), for the other arrival patterns.
This is because irregular and periodic (with no deviation) arrival patterns specify the time instances when a
SD can be triggered. On the other hand, all the other arrival patterns deal with time intervals. The mutual
exclusion between ATIs and ATPs is shown by the OCL constraints (the first two if conditions) in Figure
72-(a). Each ATI has a start time and an end time of type RTtimeValue (from the UML-SPT), denoting the
start and end times of an interval. ATP is of type RTtimeValue too. End time of an ATI can be null, which
denotes an ATI which has no upper bound (described below in more detail).

Three instances of the metamodel are shown in Figure 72-(b). ATSbounded is the ATS corresponding to the
arrival pattern whose timing diagram was shown in Figure 67. ATSirregular corresponds to the arrival pattern
in Figure 69. ATS unconstrained is an ATS for SDs which do not have any arrival pattern, i.e., can be triggered
any time.

Our convention to represent an unconstrained ATS is to leave the end time of its only interval as null.
Alternatively, we can use ∞ as the end time of the interval. However, as we use the RTtimeValue type (from
the UML-SPT’s for time, we choose the first option (leaving the end time of an interval as null) to represent
an unconstrained ATS, as ∞ is not supported in the UML-SPT. Such an ATS has only one ATI which starts
from time 0 until ∞ (never ends). This constraints has been formalized by the last (third) if condition in the
OCL expression in Figure 72-(a). Note that there can be what we refer to as partly-constrained ATSs such as:

() (){ },,ms)(,,ms)(,,ms)(ATS strainedpartly-con 530=

where the corresponding SD can be triggered in all times, except interval [3…5ms]. In such an ATS, there
are more than one ATI where each ATI’s end time is null. However, modeling arrival patterns which lead
to partly-constrained ATSs is not currently possible using the UML-SPT. Since we assumed the UML-SPT
as the modeling language to model arrival patterns in this work, therefore we assume that there will not be
any SD with a partly-constrained ATS.

Our GA-based algorithm in Section 10.7 will require intersection of two ATSs. Therefore, in order to find
the intersection of two ATSs, we define an intersection operator (∩) for any pair of ATSs. As discussed
above, ATSs are sets of time intervals/values. The formula to calculate the intersection of two ATSs is given
in Equation 9. For brevity, startTime and endTime have been replaced by s and e.

{ }

() ()(){ }

() ()()
444444444444444444 8444444444444444444 76

444444444444444444 8444444444444444444 76

4444444 84444444 76

ATIsCommon

2121

212112122211

ATIsin ATPsCommon

12112122

ATPsCommon

2121

21

minmax

 ATSs

=∧=
>∧<∨>∧<∈∈∃

∪

∠∧∈∈∃∨∠∧∈∈∃∧∈∪

∈∧∈∧∈=∩

∀

)e.ati,e.ati(e.ati)s.ati,s.ati(startTime.ati
s.atie.atie.atis.atis.atie.atie.atis.ati:atsati,atsati|ati

atiatpatsatp:atsatiatiatpatsatp:atsatiATPatp|atp

atsatpatsatpATPatp|atpatsats

:ats,ats

Equation 9-Intersection of two ATSs.

The membership operators (∈) between an ATI/ATP and an ATS denote if an ATI/ATP is a member of an
ATS. For example, considering the ATP (1,ms) in Figure 72-(a), (1,ms)∈ATSirregular.

The output of the formula is the union of three sets: common ATPs, common ATPs in ATIs, and common
ATIs of the two ATSs. Common ATPs set is self-explanatory. Common ATPs in ATIs are the set of ATPs in
one ATS for which there exists an ATI in the other ATS, such that the point is inside the interval. The
formula uses a newly-defined in-range (∠) function between a point and a time interval as:

atiatpendTime.atiatpstartTime.ati:ATIATP,atiatp ∠⇔≤≤∈∈∀

Carleton University TR SCE-05-13 September 2005

 101

Common ATIs of two ATSs are the overlapping intervals in both ATSs. The rationale for finding
overlapping (common) intervals of two ATSs is shown in Figure 73.

startTime1 endTime1

startTime2 endTime2

startTime1

endTime2

Overlapping interval

ati1

ati2

ats1

ats2

Figure 73- Rationale for finding overlapping (common) intervals of two ATSs.

Note that the union of the above three sets is allowed in the current context from the set theory point of
view, since as the metamodel in Figure 72-(a) shows, ATS is a hybrid set of two element types: ATI and
ATP. Therefore, a set of type ATIs together with another set of type ATPs can be the operands of an union
operators, yielding an ATS. Two examples, showing how intersections of two ATSs can be calculated using
Equation 9, are illustrated in Figure 74.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

time (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

time (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

Figure 74-Two examples showing how intersections of two ATSs can be calculated.

Based on the definition of intersection between two ATSs, the intersection of several ATSs can be defined
as:

()() nn atsatsatsatsatsats ∩∩∩=∩∩∩ KK 2121

10.4 Formulating as an Optimization Problem

The problem of generating stress test requirements can be formulated as an optimization problem. The
general formulated optimization problem is presented in Figure 75. This formulation has the same objective
and variables as the formulated optimization problem of Chapter 9 (Figure 51), however the one here has
one more constraint: SD arrival patterns.

∩

∩

∩

Carleton University TR SCE-05-13 September 2005

 102

Figure 75-Formulating the problem of generating stress test requirements as an optimization problem.

10.5 Impact of Arrival Patterns on Stress Test Strategies

We discussed 32 stress test strategies such as: instant stress test towards a node with maximum data
(StressNodInInsDT) in Section 9.5. We discuss here the impact of arrival patterns on those strategies and
determine which strategies have to be tackled differently when considering arrival pattern constraints for a
SUT.

Since arrival patterns enforce constraints on the start times of SDs (and hence DCCFPs), they will have
impact on TSSTT test strategies, which assume non-constrained start times for DCCFPs. Being more
specific, since TSSTT test strategies were grouped into two categories in term of time (duration): instant and
interval test strategies, we expect that arrival patterns will impact differently the two groups of strategies.
By using the illustrations in Figure 76, we discuss below the impacts of arrival patterns on the two groups
of strategies in terms of duration.

10.5.1 Impact on Instant Stress Test Strategies

As we discussed in Section 9.5, instant stress test strategies search among all ISDSs and find the one with
maximum instant stress. Then the SDs of the selected ISDS are scheduled to yield the maximum stress. As
an example, consider Figure 76-(a), where an ISDS with three SDs (SD1, SD2, and SD3) has been chosen and
the SDs can be freely scheduled since none of them have arrival pattern constraints. Conversely, consider
Figure 76-(b) with the same SDs, but this time, the SDs have arrival pattern constraints, as shown by the
ATIs. Due to time constraints from ATIs, SDs can not be scheduled freely in any arbitrary time instants. The
heuristics to find maximum possible stress while respecting arrival patterns, in this case, will be to search
among the ATI of every SD and find a time instant when the summation of traffic values entailed by
DCCFPs from all the SDs is maximized. One of such possible schedules is shown in Figure 76-(b).

We now discuss the extent to which the impacts of arrival patterns complicate the optimization technique
of the instant stress test strategies. As discussed above, deriving instant stress test requirements while
considering arrival patterns need global search for an optimum result all across the ATSs of SDs with
arrival patterns. SDs without arrival patterns (with unconstrained ATSs) do not need to be searched for a
start time, since they can be scheduled anywhere in the time axis.

10.5.2 Impact on Interval Stress Test Strategies

We now discuss the impact of arrival patterns on interval stress test strategies. Interval stress test strategies
(Section 9.5) aim at increasing the chances of traffic faults by invoking a sequence of SDs, referred to as
Concurrent SD Flow Paths (CSDFP), which entails the maximum possible interval stress. A CSDFP is a
path in a MIOD. It is assumed that each SD of a CSDFP is allowed to be invoked after all previous SDs in
the sequence (a path in the MIOD). As to the scheduling of a SD with arrival pattern in a CSDFP, we
assume that as soon as all the previous SDs were executed (thus satisfying the sequential constraints of a
SD), the SD can start its first execution according to its arrival pattern. For example, consider Figure 76-(d),
where a CSDFP with five SDs have been chosen and two of the SDs (SD2 and SD5) have arrival patterns.
The flow of SDs in the CSDFP is as follows:

Objective: Maximize the traffic on a specified network or node (at a time instant or a period of time)
Variables:

− A subset of DCCFPs (one DCCFP from each SD) with maximum traffic on a specified network or node
− Schedule to run the selected DCCFPs

Constraints:
− Inter-SD sequential and conditional constraints
− SD arrival patterns

Carleton University TR SCE-05-13 September 2005

 103

54
3

2
1 SDSD

SD

SD
SD

=ρ

As the CSDFP indicates, SD5 can start as soon as SD4 is finished. This is shown in Figure 76-(c), where no SD
has arrival patterns and SD5 can start immediately as soon as SD4 is finished. However, in the case when
SD5 has an arrival pattern, it cannot start until the first time instant in its ATS to start. Considering the fact
that the goal of the interval stress test strategies is to maximize interval stress (maximize possible stress in
the shortest possible time of a CSDFP), the impact of arrival patterns on interval stress test strategies will be
that the optimization technique can only schedule each SD in its earliest ATS. SDs with arrival patterns can
no longer start immediately after all their previous SDs (in the MIOD) have been completed.

time (ms)

SD3

SD2

SD1

ISDSi={SD1,SD2,SD3}

Without arrival patterns

(a)

time (ms)

SD3

SD2

SD1

ATIs of SD2

ATIs of SD1

ATIs of SD3

ISDS i={SD1,SD2,SD3}

With arrival patterns

(b)

time (ms)

SD3

SD2

SD1

SD4

SD5

Time length of the CSDFP

Without arrival patterns

(c)

time (ms)

SD3

SD2

SD1

SD4

SD5

Start time for arrival
pattern of SD5

ATIs of SD5

Time length of the CSDFP
ATIs of SD2

Start time for arrival
pattern of SD2

With arrival patterns

(d)

Figure 76-Impact of arrival patterns on instant (a)-(b) and interval (c)-(d) stress test strategies.

We now discuss the extent to which the impacts of arrival patterns complicate the optimization technique
of the interval stress test strategies. Considering arrival patterns, interval stress test strategies need to
account for the ATSs of SDs with arrival patterns. For such SDs, the earliest time points in their ATSs are
considered (to cause the most stressful situation). Therefore, no complicated global search is required in
this case. The time length of CSDFPs will increase in such a case, compared to the case when none of the SD
of a CSDFP has an arrival pattern (refer to Figure 76-(c) and Figure 76-(d) as an example).

To provide more insights, we now discuss why and how the test requirements generated by the TSSTT
(Chapter 9) might not comply with SD arrival pattern constraints. We consider an example to illustrate the
idea. We described in Section 2.4 how SD arrival patterns can be modeled using the UML-SPT profile
tagged-values. Figure 77-(a) depicts two (partial) SDs, each having an arrival pattern constraint. We
described in Section 10.1 the types of arrival patterns as presented by the UML-SPT profile and we consider
in this section. The arrival pattern of SD1 in Figure 77-(a) is irregular, and it has three arrival times (10, 25
and 70 ms). SD2 is periodic, where period=15 ms and the maximal deviation of the period is 2 ms.

Based on the arrival pattern information of Figure 77-(a), and assuming that the maximum duration of
DCCFPs of SD1 and SD2 are 15 ms and 10 ms, respectively, a timing diagram as the one in Figure 77-(b) can
be drawn to show the effect of SD arrival pattern constraints on scheduling SDs. Arrival times of SD1 are

Carleton University TR SCE-05-13 September 2005

 104

fixed, as specified by its arrival pattern. However, there can be up to a 2 ms deviation in the arrival time of
SD2. For example, assuming that SD2 starts in time=0, its next arrival times can be 13-17 ms, 28-32 ms and
so on.

Based on arrival pattern information, we define the concept of Valid and Invalid SD Schedule (VSDS and
IVSDS). Given a set of arrival patterns, a VSDS is a schedule of SDs (their start times) in which the start
time of each SD satisfies its arrival pattern. For example, if we show a schedule of SDs in a similar notation
as output stress test requirements in Section 9.10, <(SD1, 10 ms), (SD2, 14ms)>1 will be a VSDS. On the other
hand, if the start time of any SD in a SD schedule does not satisfy its arrival pattern, the schedule is referred
to as an Invalid SD Schedule (IVSDS). For example, <(SD1, 0 ms), (SD2, 0ms)> will be an IVSDS, considering
the arrival patterns in Figure 77. These two schedules are visualized in Figure 77-(c).

(a) Modeling SD arrival pattern constraints

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
time (ms)

SD1

SD2

«RTstimulus»
{RTarrivalPattern=
'irregular',(10,'ms'),(25,'ms'),(70,'ms')}

m1

SD1

«RTstimulus»
{RTarrivalPattern=
'periodic',(15,'ms'),(2,'ms')}

m2

SD2

31

13 17

43 60 75

7025

15

10

91 104 120 137

28 32 43 57 58 62 73 77 88 92 113 117 118 122 133 137

(c) Examples of Valid/Invalid SD schedules

SD1

SD2

A valid SD schedule

SD1

SD2

10 14 time(ms)

(b) Timing diagram showing the effect of SD arrival pattern constraints on scheduling SDs

0 time(ms)

An invalid SD schedule

Figure 77-SD arrival pattern constraints.

Now let us discuss why the outputs of the technique in Chapter 9 might not comply with arrival pattern
constraints. Suppose that the control flow analysis of SD1 and SD2 have yielded two DCCFPs for each:
DCCFP1,1 and DCCFP1,2 for SD1, DCCFP2,1 and DCCFP2,2 for SD1. Using the network traffic formalism
presented in Chapter 8, assume the instant network data traffic (NetInsDT) function values in Figure 78-(a)
for these four DCCFPs, which are entailed on a SystemNetwork. By applying the TSSTT technique in to this
example to derive stress test requirements, we will get the test requirements in Figure 78-(b). Recalling that
the technique first finds the maximum stress messages of each DCCFP, it then finds the DCCFP of each SD
with highest maximum stress value. The last step (Step 3 in Algorithm 3) is to schedule DCCFPs such that
the maximum stress messages happen at the same time. Note that scheduling DCCFPs is actually
scheduling the SDs corresponding to DCCFPs, and having control flow of each SD to follow an specific
DCCFP.

By applying the scheduling step of the technique in Chapter 9 to the example in Figure 78, we will get
<(DCCFP1,2, 0 ms), (DCCFP2,2, 0ms)> as the stress test schedule, which is equivalent to <(SD1, 0 ms), (SD2,
0ms)>. However, as discussed above, such a schedule is an Invalid SD Schedule (IVSDS). This means that

1 Meaning that SD1 and SD2 start at time=10 and 14 ms, respectively.

Carleton University TR SCE-05-13 September 2005

 105

triggering SDs with such a schedule violates the SD arrival patterns and may not be allowed in a SUT.
Therefore, we see that the outputs of the technique in Chapter 9 might not comply with arrival pattern
constraints.

10.5.3 How Arrival Patterns are Addressed by Stress Test Strategies

As discussed above, the impacts of arrival patterns on instant and interval stress test strategies are
different. As we discussed, no complicated global search is required for the case of interval stress test
strategies, while considering arrival patterns in instant stress test strategies needs global search for an
optimum result all across the ATSs of SDs with arrival patterns.

We separate the two cases, i.e., instant and interval test requirements, and address them separately.
Derivation of instant stress test requirements while considering arrival patterns is presented in Sections
10.6-10.7. Section 10.8 presents a variation of the technique in Chapter 9 to derive interval stress test
requirements while preserving arrival patterns.

0
35

0

70

00

80 80 80
0 20 0

40
0

30

NetInsDT(DCCFP1,1, SystemNetwork, t)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

NetInsDT(DCCFP2,2, SystemNetwork, t)

NetInsDT(DCCFP2,1, SystemNetwork, t)

NetInsDT(DCCFP1,2, SystemNetwork, t)

D
T

 (K
B

)

0
40 40 40 40

0

90 90

0 20 0 0
30 30 30

0 0 0 0 00 0 0
60 60 60

0 0
30

0

0 0 0 0 00

80 80

0
40 40 40

0 20 20

time (ms)

(a) NetInsDT(DCCFPi, SystemNetwork, t) functions

Stress Test
Derivation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

NetInsDT(DCCFP2,2, SystemNetwork, t)

0 0 0 0 00

80 80

0
40 40 40

0 20 20

time (ms)

NetInsDT(DCCFP1,2, SystemNetwork, t)

0
40 40 40 40

0

90 90

0 20 0 0
30 30 30

Maximum stress messages
of each DCCFP

(b) Deriving stress test requirement schedule without
considering SD arrival patterns

D
T

 (
K

B
)

Figure 78-An example stress test requirement which is an invalid schedule, considering SD arrival patterns.

10.6 Choice of the Optimization Methodology: Genetic Algorithms

A variety of methods exist for solving optimization problems. Perhaps the most common techniques are
linear and global optimization techniques. In linear optimization, or linear programming (LP) as it is more
commonly known, the objective/fitness function, as well as all constraints, are linear functions of the
decision variables to be solved. Linear programming solutions are optimal as the search is performed on
flat regions, namely at the intersections of the constraints. Global optimization solutions, also known as
meta-heuristic solutions, continually search for better solutions by altering a set of current solutions [72].
The solutions lie on an uneven solution space, characterized by multiple peaks and valleys. These peaks
and valleys can result in locally optimum solutions; one where no other solution in the vicinity have better
solutions. Global optimization solutions aim at avoiding local optima solutions, reaching global ones
instead. Stimulated annealing, tabu search and genetic algorithms are among the most common global
optimization solutions.

For the test requirement generation problem at hand, which is actually a scheduling problem, the number
of SDs and DCCFPs are not fixed. As the number of SDs and DCCFPs increases and their arrival patterns
change, the different combinations representing solutions can grow exponentially. As a result, linear

Carleton University TR SCE-05-13 September 2005

 106

programming cannot be used, as they would lead to combinatorial explosion problem [73]. Furthermore,
for the scheduling problem at hand, any change in the number of SDs and DCCFPs or the execution times
may cause great changes in the solution. The solution space of the problem is thus uneven, characterized by
multiple peaks and valleys. A global optimization technique is thus needed.

Genetic Algorithms (GA) are based on concepts adopted from evolutionary theory [74]. GAs involve a
search from a population of solutions rather than a single solution like SA. With each iteration of a GA,
solutions with the highest fitness are recombined and mutated, and solutions with the lowest scores are
eliminated. Tabu search (TS) is another global optimization technique which avoids cycles by penalizing
moves that take the solutions to points previously visited in the solution space.

In the Stimulated Annealing (SA) method, each point of the search space is compared to a state of some
physical system, and a so called energy function (to be minimized) is interpreted as the internal energy of
the system in that state. Therefore the goal is to bring the system, from an arbitrary initial state, to a state
with the minimum possible energy.

At each step, the SA heuristic considers some neighbors of the current state s, and probabilistically decides
between moving the system to state s' or staying put in state s. The probabilities are chosen so that the
system ultimately tends to move to states of lower energy. Typically this step is repeated until the system
reaches a state which is good enough for the application, or until a given computation budget has been
exhausted [72].

According to the global optimization literature, GAs and SA are very similar. Some studies, such as [75]
indicate that SA outperforms GAs, while others, such as Chardaire et al. [76] claim that GAs produce
solutions equivalent to or superior to SA. Most researchers, however, seem to agree that because GAs
maintain a population of possible solutions, they have a better chance of locating the global optimum
compared to SA and TS which proceed one solution at a time [77, 78]. Furthermore, because SAs maintain
only one solution at a time, good solutions may be discarded and never regained if cooling occurs too
quickly. Similarly, TS may miss the optimum solutions. Alternatively, steady state GAs, one of the
variations of GAs, accept newly generated solutions if they are fitter than previous solutions. Furthermore,
GAs lend themselves to parallelism. Because they manipulate whole populations with both mutation and
crossover operators, they can readily be implemented on multiple processors. SA, on the other hand,
cannot easily run on multiple processors because only one solution is constantly manipulated [77]. Hence,
we adopt GA as our optimization technique methodology. An overview on Genetic Algorithms is provided
in Appendix A.

10.7 Components of the Genetic Algorithm to Derive Instant Stress Test Requirements

A GA is used to solve the optimization problem of finding DCCFPs and their seeding times such that the
maximum instant traffic on a network or a node increases. To solve the optimization algorithm for deriving
instant stress test requirements, this section describes the different components of the GA, tailoring them to
the problem. We define chromosomes representation in Section 10.7.1. Constraints (in the context of a
chromosome) are formulated in Section 10.7.2. Derivation of the initial GA population is discussed in
Section 10.7.3. The objective (fitness) function is described in Section 10.7.4. GA operators (crossover and
mutation) are finally presented in Section 10.7.5.

10.7.1 Chromosome

Chromosomes define a group of solutions to be optimized. The representation of chromosomes and their
length have to be defined in a GA algorithm [74]. We discuss the chromosomes representation of our
application in Section 10.7.1.1. The chromosomes’ length is described in Section 10.7.1.2.

Carleton University TR SCE-05-13 September 2005

 107

10.7.1.1 Representation

In our application, the values to be optimized, or the genes of a chromosome, are the selected DCCFPs of
SDs and their start times. Thus, we need to encode both DCCFP identifiers and their arrival times in a
chromosome.

A gene can be depicted as a pair (ρi,selected, αρi,selected), where ρi,selected is a selected DCCFP of SDi, and αρi,selected is
the start time of the DCCFP. Together, the pair represents a schedule of a specific DCCFP. If no DCCFP is
selected from a SD (because the SD does not have a traffic over a particular network, for example), the gene
is denoted as null. This representation is same as the general form of a stress test requirement (the output of
the technique in Chapter 9).

The formal metamodel of chromosomes and genes in our GA algorithm is shown in Figure 79-(a).
Chromosome is composed of a sequence of Gene ordered in the same order as SDs (Recall that we assume
SDs are indexed). The Initialization, Crossover and Mutation operators are all defined in chromosome, as well
as the objective function, Evaluate. These functions will be defined in Section 10.7.5.

Each Gene has an association to zero or one DCCFP, and has two attributes startTime and
numOfMutipleSDInstances. dccfp is a selected DCCFP of a SD and startTime is the time value to trigger dccfp,
and is of type RTtimeValue (defined in the UML-SPT). numOfMutipleSDInstances is the number of multiple
instances of the SD corresponding to the gene which are allowed to be triggered concurrently ((Section 5.4).
Each DCCFP belongs to a SD, whereas each SD can have several DCCFPs. Each SD can be a member of
several ISDS. Each ISDS can have one or more SDs.

+Initialize()
+Mutate()
+Crossover()
+Evaluate()

Chromosome

-startTime: RTtimeValue
-numOfMultipleSDInstances:Int

Gene

-End3

1

-End4

*

Chromosome

Gene Gene

(a) (b)

{ordered}

1..* *

(DCCFP1,2, 1, 2ms) (DCCFP2,2, 6, 9ms)

ISDS

SD

DCCFP

-End31 -End4*

-End31 -End4*
sd

isds

dccfp
-End31

-End4

*
0...1

1

1..*

*

*

*

sd

dccfp

Figure 79-(a): Metamodel of chromosomes and genes in our GA algorithm. (b): Part of an instance of the metamodel.

Part of an instance (considering chromosome and gene only) of the metamodel is depicted in Figure 79-(b).
The instance relates to the example in Figure 78. The chromosome is composed of two genes, since there are
two SDs in the SUT in Figure 78. DCCFP1,2 and DCCFP2,2 are selected DCCFPs of SD1 and SD2, respectively.
The genes indicate that the DCCFPs’ start times are 2 ms and 9 ms, respectively.

10.7.1.2 Length

The length of chromosomes in our application is fixed and is equal to the number of SDs in a SUT. This is
due to the fact that each gene of a chromosome corresponds to a SD, and we have fixed number of SDs.
Note that the numbers of multiple instances of SDs are kept in each gene. Furthermore, as discussed in
Section 10.7.1.1, if no DCCFP is selected from a SD (because the SD does not have traffic over a particular
network, for example), the corresponding gene is presented as null. Therefore, the chromosome length will
not be affected in such cases.

10.7.2 Constraints

Inter-SD and arrival pattern constraints should be satisfied when generating new chromosomes from
parents, otherwise, GA backtracking procedures [74] should be used to backtrack from a newly generated
chromosomes which violates the constraints. Backtracking, however, has its drawbacks: it is deemed
expensive as well as time consuming. Some GA tools incorporate backtracking while others do not. To
allow for generality, we assume no backtracking methodology is available. Therefore, we have to ensure

Carleton University TR SCE-05-13 September 2005

 108

that the GA operators always produce chromosomes which satisfy the GA’s constraints. In order to do so,
we formally rephrase inter-SD and arrival pattern constraints in the context of our GA in this section.

10.7.2.1 Constraint #1: Inter-SD constraints

We incorporated inter-SD constraints in ISDSs (Chapter 7). A set of DCCFPs are allowed to be executed in a
SUT only if their corresponding SDs are members of an ISDS. As discussed in Section 10.7.1.1, each
chromosome is a sequence of genes, where each gene is associated with zero or one DCCFP. Therefore, a
chromosome satisfies Constraint #1 only if the SDs of DCCFPs corresponding to its genes are members of
the same ISDS. In other words, each chromosome corresponds to one ISDS. We can formulate the above
constraint as an OCL expression as presented in Figure 80, which relates to the metamodel in Figure 79-(a).

Figure 80- Constraint #1 of the GA (an OCL expression).

10.7.2.2 Constraint #2: Arrival pattern constraints

Given a chromosome, the OCL function in Figure 81 can be used to determine if the chromosome (the
scheduling of its genes) satisfies the Arrival Pattern Constraints (APC) of SDs. The function
IsAPCSatisfied(c :Chromosome) returns true if all genes of the chromosome satisfy the APCs. The OCL
function makes use of the function IsAPCSatisfied(startTime, AP), defined in Section 10.2. Suppose
AP(g.dccfp.sd) returns the arrival pattern information of the SD associated with the gene g.

Figure 81-Constraint #2 of the GA (an OCL function).

10.7.3 Initial Population

We discuss in this section the initial population size of our GA and how it is generated. Determining the
population size of the GA is challenging [72]. A small population size will cause the GA to quickly
converge on a local minimum because it insufficiently samples the parameter space. A large population, on
the other hand, causes the GA to run longer in search for an optimal solution. Haupt and Haupt in [74] list
a variety of works that suggests an adequate population size. The authors in [74] reveal that the work of De
Jong [79] suggests a population size ranging from 50 to 100 chromosomes. Grefenstette et al. [80]
recommend a range between 30 and 80, while Schaffer and his colleagues [81] suggest a lower population
size: between 20 and 30.

However as discussed in Section 10.7.2.1, each chromosome in our GA corresponds to an ISDS. If the
number of chromosome in the initial population is less than number of ISDSs in a system, as we will
discuss in Section 10.7.5.1, our crossover operator can not guarantee that all ISDSs are searched. Therefore,
the population size we apply is max(2.numOfISDS,80). We choose 80 as it is consistent with most of these
findings, and twice the number of ISDSs is because we initialize two chromosomes from each ISDS. In case

1 IsAPCSatisfied(c:Chromosome)
2 post:
3 if c.gene->exits(g|not IsAPCSatisfied(g.startTime,AP(g.dccfp.sd))
4 result=false
5 else
6 result=true

1 Chromosome.allInstances->forAll(c|
2 ISDS.allInstances->exits(isds|
3 c.gene->forAll(g|
4 if (g.dccfp.size()<>0)
5 isds.sd->includes(g.dccfp)
6)
7)
8)

Carleton University TR SCE-05-13 September 2005

 109

one of them disappears due to the crossover operator, the other has a chance to stay and play the role of a
parent.

The GA initial population generation process should ensure that both two constraints of Section 10.7.2 are
met. The pseudo-code to generate the initial set of chromosomes is presented in Figure 82. As discussed in
Section 10.7.2, each chromosome corresponds to an ISDS. Furthermore, our intention is to include all ISDSs
in the initial population. Therefore, assuming that ISDSs of a SUT are indexed, line 1 of the pseudo-code
chooses the next ISDS in the sequence and the initialization algorithm continues with the selected ISDS to
create an initial chromosome.

For each SD in the selected ISDS, lines 2-3 choose a random DCCFP and assign it to the corresponding gene
(i.e. genei corresponds to SDi). Other genes of the chromosome (those not belonging to the selected ISDS)
are set to null (lines 4-5). An initial scheduling is done on genes in lines 6-13. The idea is to schedule the
DCCFPs in such a way that the chances that DCCFPs’ schedules overlap are maximized. This is done by
first calculating the intersection of ATSs for SDs in the selected ISDS (line 6), using the intersection operator
described in Section 10.2. If the intersection set is not null (meaning that the ATSs have at least one
overlapping time instance), a random time instance is selected from the intersection set (lines 7-8). All
DCCFPs of the genes are then scheduled to this time instance (line 10). For each such gene, line 11 sets the
value for the number of multiple instances of the corresponding SD.

If the intersection set is null, it means that the ATSs do not have any overlapping time instance. In such a
case, the DCCFP of every gene is scheduled differently, by scheduling it to a random time instance in the
ATS corresponding to its SD (lines 15-16). Following the algorithm in Figure 82, we ensure the initial
population of chromosomes comply with both constraints of Section 10.7.2.

Figure 82-Pseudo-code to generate chromosomes of the GA’s initial population.

In the case when the intersection of SD ATSs is null, one might wonder whether there care still any
possibilities to run SDs concurrently to have a maximum stress. The answer to this question is twofold:

• Although the ATS intersection of all SDs in the selected ISDS is null, a subset of SDs might still have a
non-null ATS intersection. Triggering these SD concurrently can lead to traffic faults. For example,
consider the timing diagram in Figure 83, where the ATS intersection of three SDs (SD1 …SD3) is null.
Although there is no single time instant, when the three SDs can be triggered concurrently, a subset of

Function CreateAChromosome: Chromosome
c: Chromosome
1 ISDS=next ISDS in the sequence of ISDSs

// selecting genes (DCCFPs)
2 For all SDi∈ISDS
3 c. gene i.dccfp= a random DCCFP from SDi
4 For all SDi∉ISDS
5 c. gene i=null

// initial scheduling of genes (DCCFPs)
6 Intersection=ATS(SD1) ∩ ATS(SD2) ∩… ∩ATS(SDi), where SDi∈ISDS
7 If Intersection≠φ
8 Choose a random time instance tschedule in Intersection
 // schedule all genes’ start time to tschedule
9 For all c. genei ≠null {
10 c. gene i.startTime= tschedule
11 c. gene i. numOfMutipleSDInstances=SDi. numOfMutipleSDInstances
12 }
13 Else // Intersection=φ, SDs of ISDS do not have overlapping start times
 // schedule each gene with a random time in the ATS of its SD
14 For all c. genei ≠null {
15 c. gene i.startTime= A random time instance ti in ATS(SDi)
16 c. gene i. numOfMutipleSDInstances=SDi. numOfMutipleSDInstances
17 }
18 Return c

Carleton University TR SCE-05-13 September 2005

 110

them (SD1 and SD2 for example) have non-null ATS intersections, which allow them to be triggered
concurrently. This situation can be made possible in a chromosome by our mutation operator (Section
10.7.5.2), since as we will discuss, our mutation operator will shift each of the SD in its ATSs and the
GA will then assess the new resulted offspring.

• Another situation when the data-centric messages of a set of SDs with null ATS intersection might be
triggered is when the execution of a SD is long enough such that it spans over the ATS intersection of
other SDs. For example, SD3 in Figure 83 has been triggered in one of its allowed times and it has
continued until the ATS intersection of SD1 and SD2. In such a case, messages from all three SDs
overlap (in time domain) and thus triggering high stress scenarios is possible. Similar to the previous
item, this situation can also be made possible in a chromosome by our mutation operator.

SD2

SD1

SD3

SD3

SD2

SD1

ATS of a SD

Execution of SDi SDi

time

time

time
Figure 83-An example where the ATS intersection of all SDs is null, but they can overlap.

10.7.4 Objective (Fitness) Function

Optimization problems aim at searching for a solution within the search space of the problem such that an
objective function is minimized or maximized [72]. In other words, the objective function can aim at either
minimizing the value of chromosomes or maximizing them. The objective function of a GA measures the
fitness of a chromosome. Recall from Section 10.4 that our optimization problem is defined as: What
selection and what schedule of DCCFPs maximize the traffic on a specified network or node (at a time instant)?

Recall from Section 10.2 that we only apply our GA-based technique to instant test objectives. Therefore, let
us refer to the objective function in this section as Instant Stress Test Objective Function (ISTOF).The ISTOF
should measure maximum instant traffic entailed by a schedule of DCCFPs, specified by a chromosome.
Using the network formalism in Chapter 8, we define ISTOF in Equation 10.

Note that what we define below as the ISTOF formula is only for the stress test objective: location=network,
direction=none, and type=data traffic. Depending on other values for those parameters of a test objective,
ISTOF should be measured differently by simply using other network traffic usage functions from the set of
functions defined in Section 8.5.

()])dccfp.g(LengthstartTime.g)startTime.g([eSearchRang

cestantipleSDInsg.numOfMul).t,net,dccfp.g(NetInstDT)c(ISTOF:Chromosomec

alReChromosome:ISTOF

)c(Genesg)c(Genesg

)c(Genesg
eSearchRangt

+=

=∈∀

→

∈∈

∈
∈ ∑

maxmin

max

K

Equation 10- Instant Stress Test Objective Function (ISTOF).

where the first line indicates that the input and output domains of ISTOF are chromosomes and real
numbers. Genes(c) is the set of genes in chromosome c. Length(dccfp) is a function to calculate the time
length of a DCCFP. Such calculation was presented in Chapter 9 (Algorithm 4.). net is the given network to
stress test. NetInsDT is the network traffic usage function to measure the instant data traffic (Section
8.5.2.1). The value of the NetInsDT function is multiplied by the gene’s numOfMultipleSDInstances value.
This is so because, when multiple instances of a DCCFP are triggered at the same time, the entailed traffic
by the all instances of the same DCCFPs at each time instant will be multiplied by the number of them..

Carleton University TR SCE-05-13 September 2005

 111

The heuristic of the above ISTOF formula is that it tries to find the maximum instant data traffic
considering all genes of a chromosome. The search is done in a predetermined time range. The starting
point of the search is the minimum startTime (the start time of the earliest DCCFP), and the ending point of
the range is the end time of the latest DCCFP, which is calculated by taking maximum values among start
times plus DCCFP lengths.

To better illustrate the idea behind the ISTOF, let us discuss how the ISTOF of the chromosome in Figure
79-(b) is calculated. The calculation process is shown in Figure 84. The chromosome is given as the input on
the left side, where the timed-traffic representations of the genes have also been depicted. The search range
is [2ms…20ms]. The ISTOF sums the NetInsDT values in this range and finds the maximum value. The
output value of the ISTOF is 110 KB.

NetInsDT(DCCFP2,2, SystemNetwork, t)

0

80 80

0
40 40 40

0 20 20

NetInsDT(DCCFP1,2, SystemNetwork, t)

0
40 40 40 40

0

90 90

0 20 0 0
30 30 30

D
T

 (i
n

K
B

)

t (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
T

 (i
n

K
B

)

Search range

ISTOF

0

80 80 80
40 20 20 0

D
T

 (i
n

K
B

)

t (ms)

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

90 90

0 20 0 0
30

110110

Objective function value

A chromosome

A Real value: 110

Gene Gene

(DCCFP1,2, 2ms) (DCCFP2,2, 9ms)

Figure 84-Computing the Instant Stress Test Objective Function (ISTOF) value of a chromosome.

10.7.5 Operators

Operators are the ways GAs explore a solution space [74]. Hence, they must be formulated in such a way
that they efficiently and exhaustively explore the solution space. If the application of an operator yields a
chromosome which violates at least one of the GA’s constraints, the operation is repeated to generate
another chromosome. This is an alternative to GA backtracking and is done inside each operator, i.e., each
operator generates temporary children first and checks if they do not violate any constraints (Section
10.7.2). If the temporary children satisfy all the constraints, they are returned as the results of the operator.
Otherwise, the operation is repeated.

Formulating operators is rather a difficult task, as genetic operators must maintain allowability. In other
words, genetic operators must be designed in such a way that if a constraint is not violated by the parents,
it will not be violated by the children resulting from the operators [82]. Furthermore, operators should be
formulated such that they explore the whole solution space. We define the crossover and mutation
operators next.

10.7.5.1 Crossover Operator

Crossover operators aim at passing on desirable traits or genes from generation to generation [74]. Varieties
of crossover operators exist, such as sexual, asexual and multi-parent [1]. The former uses two parents to
pass traits to the two resulting children. Asexual crossover involves only one parent and produces one
child that is a replica of the parent. Multi-parent crossover, as the name implies, combines the genetic
makeup of three or more parents when producing offspring. Different GA applications call for different
types of crossover operators. We employ the most common of these operators: sexual crossover.

The general idea behind sexual crossover is to divide both parent chromosomes into two or more
fragments and create two new children by mixing the fragments [74]. Pawlowsky dubs this n-point
crossover. In n-point crossover, the two parent chromosomes are aligned and cut into n+1 fragments at the

Carleton University TR SCE-05-13 September 2005

 112

same places. Once the division points are identified in the parents, two new children are created by
alternating the genes of the parents [83].

In our application, since each gene corresponds to a SD, we consider the fragmentation policy to be on each
gene, making the size of each fragment to be one gene. Therefore, assuming n is the number of genes, the
resulting crossover operator (using Pawlosky’s terminology [84]) is (n-1)-point, and is defined
nPointCrossover. In our application, the mixing of the fragments is additionally subject to a number of
constraints (Section 10.7.2). A newly generated chromosome should satisfy the inter-SD and arrival pattern
constraints. We ensure this by designing the GA operators in a way that they would never generate an
offspring violating a constraint. Whether the alternation process of the nPointCrossover operator starts from
the first gene of one parent or the other is determined by a 50% probability.

To further introduce an element of randomness, we alternate the genes of the parents with a 50%
probability, hence implementing a second crossover operator, nPointProbCrossover. In nPointCrossover, the
resulting children have genes that alternate between the parents. In nPointProbCrossover, the same
alternation pattern occurs as nPointCrossover, but instead of always inheriting a fragment from a parent,
children inherit fragments from parents with a probability of 50%. This can be visualized as a coin flip.
When alternating the genes of each parent, a coin is flipped. Every time the coin lands on heads, the gene is
inherited from one parent by the child. Otherwise, the gene is inherited from the other parent.

It is important to note that, for both crossover versions, if the set of genes (their corresponding SDs) do not
belong to an ISDS, constraint #1 (Section 10.7.2.1) will be violated. In such a case, we do not commit the
changes and search for a different chromosome (by applying the operator again). Regarding constraint #2
(Section 10.7.2.2), note that since the parents are assumed to satisfy the arrival pattern constraint, and the
crossover operators do not change the start times of genes’ DCCFPs, the child chromosomes will for sure
satisfy such constraint. The start times of DCCFPs will be changed (mutated) by our mutation operator
(described in the next section) and the arrival pattern constraint will be checked when applying that
operator.

An activity diagram for depicting the crossover operators is shown in Figure 85. Note that the crossover
operator function in the diagram can be any of the two nPointCrossover or nPointProbCrossover operators
(specified by the operator type, given as a parameter to the activity diagram).

Crossover
Operator
Function

Child 1

Child 2

Add to the
Population

Satisfies
constraint 1

Satisfies
constraint 1

No

Remove Parent 1

Remove Parent 2

Discard

Discard

No

Crossover Operator

Parent 1

Parent 2

Crossover operator type
{nPointCrossover,

nPointProbCrossover}

Figure 85-Activity diagram of the crossover operators.

Let us consider the example in Figure 86 to see how our two crossover operators work. The number of
genes in each parent chromosome is five (assuming that there are five SDs in the SUT). Assume that SD
numbering is the same as gene numbering and ISDS1={SD1, SD3, SD4, SD5}. Parent 1 has genes

Carleton University TR SCE-05-13 September 2005

 113

corresponding to SDs in {SD1, SD4, SD5}⊂ ISDS1. Parent 2’s genes are DCCFPs in {SD1, SD3, SD4}⊂ISDS1.
The results of applying nPointProbCrossover and nPointCrossover are shown in Figure 86.

In nPointCrossover, the fragments of Parent 1 and Parent 2 are alternately interchanged. Using the same
example for nPointProbCrossover, one possible outcome appears in Figure 86. The coin flips are assumed to
land on heads, tails, tails, tails, and then heads for the five successive fragments for both children. All four
generated children conform to constraint 1 (i.e., the SD corresponding to their genes belong to one ISDS (
ISDS1)).

The advantages of nPointProbCrossover are twofold. It introduces further randomness to the crossover
operation. By doing so, it allows further exploration of the solution space. Furthermore, nPointProbCrossover
is a generalized version of nPointCrossover; if the coin flip for each fragment alternates between tails and
heads (in that order), we obtain nPointCrossover. However, nPointProbCrossover has its disadvantages. If the
result of all coin flips in a given operation is always tails or always heads, the resulting children are replicas
of the parents, with no alteration occurring. This is never the case with nPointCrossover; resulting children
are always genetically distinct from their parents.

Parent 1 (p1,1, 3ms) null

Parent 2

null (p4,1, 4ms) (p5,2, 7ms)

(p1,2, 2ms) null (p3,4, 5ms) (p4,2, 6ms) null

(p1,1, 3ms) null null (p4,2, 6ms) (p5,2, 7ms)

(p1,2, 2ms) null (p3,4, 5ms) (p4,1, 4ms) null

Child 1

Child 2

(p1,2, 2ms) null null (p4,1, 4ms) null

(p1,1, 3ms) null (p3,4, 5ms) (p4,2, 6ms) (p5,2, 7ms)

Child 1

Child 2

nPointProbCrossovernPointCrossover

Figure 86-Two example uses of the crossover operators.

Crossover rates are critical. A crossover rate is the percentage of chromosomes in a population being
selected for a crossover operation. If the crossover rates are too high, desirable genes will not be able to
accumulate within a single chromosome whereas if the rates are too low, the search space will not be fully
explored [74]. De Jong [79] concluded that a desirable crossover rate should be about 60%. Grefenstette et
al. [80] built on De Jong’s work and found that crossover rates should range between 45% and 95%.
Consistent with the findings of De Jong and Grefenstette, we apply a crossover rate of 70%.

10.7.5.2 Mutation Operator

Mutation aims at altering the population to ensure that the genetic algorithm avoids being caught in local
optima. The process of mutation proceeds as follows: a gene is randomly chosen for mutation, the gene is
mutated, and the resulting chromosome is evaluated for its new fitness. We define two mutation operators
that mutate a non-null gene (a gene with an already assigned DCCFP) in a chromosome by altering either:
(1) its DCCFP or, (2) its start time. The mutation operators are referred to as DCCFPMutation and
startTimeMutation, respectively.

The idea behind the DCCFPMutation operator is to choose different DCCFPs of the SD, corresponding to a
gene. The idea behind the startTimeMutation operator is to move DCCFP executions along time axis. The
aim of the operators is to find the optimal DCCFPs and start times at which instant traffic of the selected
genes (DCCFPs) is maximized. This is done in such a way that the constraints on the chromosomes are met
(Section 10.7.2).

Since the mutation operators alter non-null genes only, the set of SDs corresponding to a chromosome will
not be altered by them. Therefore, there is no way for the altered chromosome to violate constraint 1.
However, start times are changed by the mutation operator startTimeMutation. Hence it should be made

Carleton University TR SCE-05-13 September 2005

 114

sure that the arrival pattern constraint (constraint 2) is upheld. The output of the DCCFPMutation operator
will always adhere to constraint 2, since the start times are unchanged by the operator.

One way of making sure that a generated chromosome by the startTimeMutation operator satisfies the
arrival pattern constraints is to set the new start times to a random value in the range of accepted arrival
time values of a SD, i.e., Accepted Time Sets (ATS) – (Section 10.2). Therefore, we design the
startTimeMutation operator in such a way that the altered start times are always among the accepted one. In
other words, there will be no need to backtrack in this case. The above descriptions of the two mutation
operators can be illustrated as two activity diagrams in Figure 87 and Figure 88.

Mutation rates are critical. Mutation rate is the percentage of chromosomes in a population being selected
for a mutation operation. Throughout the GA literature, various mutation rates have been used to
transform chromosomes. If the rates are too high, too many good genes of a chromosome are mutated and
the GA will stall in converging [74]. Back [85] enumerates some of the more common mutation rates used.
The author states that De Jong [79] suggests a mutation rate of 0.001, Grefenstette [80] suggests a rate of
0.01, while Schaffer et al. [81] formulated the expression length/. λ751 (where ? denotes the population
size and length is the length of chromosomes) for the mutation rate. Mühlenbein [86] suggests a mutation
rate defined by 1/length. Smith and Fogarty [87] show that, of the common mutation rates, those that take
the length of the chromosome and population size into consideration perform significantly better than
those that do not. Based on these findings, we apply the mutation rate suggested by Schaffer et al.:

length/. λ751 .

Choose a
random gene

A randomly chosen gene g of
chromosome c

DCCFPMutation Operator

A randomly chosen
chromosome c

Replace g.dccfp with a
randomly selected DCCFP

from g.dccfp.sd

DCCFP sets of SDs

New chromosome c

Figure 87-Activity diagram of the DCCFPMutation operator.

Choose a
random gene

A randomly chosen gene g
of chromosome c

startTimeMutation Operator

A randomly chosen
chromosome c

Replace g.startTime with a
randomly selected start time from

ATS(g.dccfp.sd)

DCCFP sets of SDs

New chromosome c♦

Figure 88-Activity diagram of the startTimeMutation operator.

10.8 Interval Stress Test Strategies considering Arrival Patterns

As discussed in Section 10.5, interval stress test strategies need to account for the ATSs of SDs with arrival
patterns. For such SDs, the earliest time points in their ATSs are considered (to cause the most stressful

Carleton University TR SCE-05-13 September 2005

 115

situation). Therefore, no complicated global search (such as the GA used for the instant stress strategies) is
required in this case. The time length of CSDFPs will increase in such a case, compared to the case when
none of the SD of a CSDFP has an arrival pattern (refer to Figure 76-(c) and Figure 76-(d) as an example).
We present a modified version of Algorithm 4 in Sections 9.11.2 in Algorithm 8, referred to as
APStressNetIntDT, which takes into account the arrival patterns.

Where minAPDuration(aDCCFPS), in Step 2.1, is an extended version of the function Duration (presented in
Section 7.2.3) that calculates the minimum time length of a DCCFPS (DCCFP Sequence) given the arrival
pattern of its SDs. Arrival pattern constraints are considered in this step, affecting the length of DCCFPSs,
and hence helping the algorithm to find the DCCFPS with highest stress per time unit. BuildDCCFPS is
function that builds a DCCFPS from the given CSDFPi using the given criteria:

)net,SD(TDCCFPMaxNetPerD:CSDFPSD i∈∀ . The pseudo-code of minAPDuration() is shown in Algorithm 9 which
is very similar to that of Duration(), presented in Section 7.2.3. The only difference is how the duration of an
atomic CCFPS is calculated. The illustration in Figure 89 shows the impact of arrival patterns in the actual
duration of a CCFP. On the left-hand side of this figure, the duration of a CCFP has been calculated using
Duration, since the CCFP’s corresponding SD does not have an arrival pattern. Conversely, the right-hand
side of the figure shows the case when the corresponding SD of a CCFP has an arrival pattern. The ATIs of
the arrival pattern are depicted. In this case, the actual duration of the CCFP has been calculated using
minAPDuration, which is the summation of the CCFP’s duration plus the minimum arrival time of the
corresponding SD, based on its arrival pattern.

Algorithm 8-Derivation of period stress test requirements for data traffic on a given network, considering arrival patterns
(APStressNetIntDT).

3. Find the DCCFP of each SD with maximum unit data traffic

3.1. For each SDi
3.1.1. For each DCCFP ρij of SDi // Finding maximum stress message of each DCCFP

Calculate Unit Data Traffic (UDT) of ρij, using:

()
)(Duration

)t,net,(NetInsDT
)net,(NetUDT

ij

t
ij

ij ρ

ρ
ρ

∑
=

where)(Duration ijρ is the time length of DCCFP ρij and can be calculated as:

()end.mmax)(Duration
)(CCFPmij

ijρ
ρ

∈∀
=

where)(
ij

CCFP ρ is the CCFP corresponding to DCCFP ρij.

3.1.2. Among all DCCFPs ρij of SDi, find the one with maximum unit data traffic

),(),(

:)(,
),(

maxmax

max
max netNetUDTnetNetUDT

SDDCCFP
netSDTDCCFPMaxNetPerD

ii

iiji
ii ρρ

ρρ
ρ

≥

∈∀
=

If no DCCFP in SDi is found with the above criteria, the function returns null.
4. Choose a CSDFP (Concurrent SD Flow Path) with maximum stress: // Inter-SD constraints are considered here

4.1. For each CSDFPi // Calculate each CSDFP’s Unit Data Traffic (UDT)

()()netTMaxNetPerDCSDFPSBuildDCCFPionminAPDurat

tnetnetSDTDCCFPMaxNetPerDNetInsDT
netCSDFPNetUDT

i

CSDFPSD t
i

i

,,

),),,((
),(

∑ ∑
∈∀ ∀=

where minAPDuration is an extended version of the function Duration (presented in Section 7.2.3) that
calculates the minimum time length of a DCCFPS (DCCFP Sequence) given the arrival pattern of its SDs.
Arrival pattern constraints are considered in this step, affecting the length of DCCFPSs, and hence helping the
algorithm to find the DCCFPS with highest stress per time unit. BuildDCCFPS is function that builds a
DCCFPS from the given CSDFPi using the given criteria:)net,SD(TDCCFPMaxNetPerD:CSDFPSD i∈∀ .

4.2. Among all CSDFPs, find the sequences with maximum)net,CSDFP(NetUDT i
 and return it as output (CSDFPmax)

Carleton University TR SCE-05-13 September 2005

 116

The idea is formulated in the calculation of the function earliestAT (arrival time) in Figure 90 which
calculates the earliest arrival time of a SD given its arrival pattern. If a SD does not have an arrival pattern,
earliestAT returns 0, meaning that the SD can start immediately, given that its sequential/conditional SD
constraints are satisfied.

time (ms)

ccfp

ATIs of SDAP

minAPDuration(ccfp)

time (ms)

ccfp

Duration(ccfp)

Without arrival patterns With arrival patterns

earliestAT(SDAP)
Figure 89-An illustration to show the impact of arrival patterns in the actual duration of a CCFP.

Algorithm 9-Calculating the minimum duration of a Concurrent Control Flow Path Sequence (CCFPS), considering arrival

patterns.

= ∈∀

else;0

pattern arrivalan has if;)(min
)()ATS(

SDatp
SDearliestAT SDatp

Figure 90- Function returning the earliest arrival time of a SD based on its arrival pattern.

For example, let us calculate the duration of the following CCFPS:

4
3

2
1 ρ

ρ
ρ

ρ

=CCFPS

where each ρi is a CCFP of SDi. Assume the duration of each of the individual CCFPs is given as in Table 8.
Also, the arrival patterns of SDi are also given in Table 8. The given arrival patterns can be analyzed using
the discussions in Section 10.2 and 10.3 to get the Accepted Time Sets (ATS) of the SDs. The result of
earliestAT(SD) for each SD is also shown. For example, since the AP of SD1 is bursty, its earliest arrival time
can be 0ms.

CCFP Duration
(i.e. ()endTime.m

CCFPSm∈∀
max)

 SD Arrival Pattern earliestAT(SD)

CCFP1 2800 ms SD1 (‘bursty’, (500, ms), 2) 0ms
CCFP2 1300 ms SD2 No arrival pattern 0ms
CCFP3 1000 ms SD3 (‘periodic’, (500, ms), (100, ms)) 400ms
CCFP4 1000 ms SD4 (‘bounded’, (500, ms), (600,

ms))
500ms

(a) (b)

Table 8-(a): Durations of several CCFPs. (b): Arrival patterns of several SDs.

9. Function minAPDuration(ccfps: CCFPS): integer
10. if ccfps is atomic (only made of one CCFP)
11. return () ccfpsccfpSDearliestATendTimem ccfpsccfpsm

 of CCFPonly the|)(.max =+
∈∀

12. else if ccfps is the serial concatenation of several CCFPSs (i.e.,
nccfpsccfpsccfps L1=)

13. return minAPDuration (ccfps1)+…+ minAPDuration (ccfpsn)

14. else if ccfps is the concurrent combination of several CCFPSs (i.e.,

=

nccfps

ccfps
ccfps L

1)

15. return max(minAPDuration (ccfps1),…, minAPDuration (ccfpsn))
16. End Function

Carleton University TR SCE-05-13 September 2005

 117

The call tree of the recursive algorithm minAPDuration applied to CCFPS is shown in Figure 91. Since the
CCFPS1 is a serial concatenation of three CCFPSs itself, three recursive calls are made, whose results will be

added upon return. One of these CCFPSs (

3

2

ρ
ρ), is the concurrent combination of two CCFPs, therefore the

maximum value of their durations are returned as the durations of this CCFPS and so on. For example
minAPDuration(ρ3)=1000+400=1400ms.

4

3

2
1 ρ

ρ
ρ

ρionminAPDurat

()2ρionminAPDurat ()3ρionminAPDurat

max

1400 ms1300 ms

1400 ms 1500 ms

5700 ms

2800 ms

()1ρionminAPDurat ()4ρionminAPDurat

+

3

2

ρ
ρ

ionminAPDurat

+

Figure 91-Call tree of the recursive algorithm minAPDuration applied to a CCFPS.

Carleton University TR SCE-05-13 September 2005

 118

Chapter 11

TOOL SUPPORT

To improve automation for the two stress test techniques (Time-Shifting Stress Test Technique (TSSTT) in
Chapter 9, and Genetic Algorithm-based Stress Test Technique (GASTT) in Chapter 10), we implemented a
prototype tool, referred to as GARUS (GA-based test Requirement tool for real-time distribUted Systems). Note
that GARUS supports both GASTT and TSSTT. Although it is primarily implemented for GASTT, it can be
used for TSTT as well. This is done by simply specifying that none of the SDs of a SUT have arrival
patterns. This will be discussed in detail in Section 11.2.

We used GAlib [1], an open source C++ library for GAs, in implementing GARUS. An overview on GAlib
is presented in Section 11.1. Section 11.2 describes our tool. Section 11.3 reports how we validated test
requirements generated by GARUS for a case study.

11.1 GAlib

The library used to implement our GA-based tool was GAlib [1]. GAlib was developed by Matthew Wall at
the Massachusetts Institute of Technology. GAlib is a library of C++ objects. The library includes tools for
implementing genetic algorithms to do optimization in any C++ program using any chromosome
representation and any genetic operators. The library has been tested on multiple platforms, specifically
DOS/Windows, MacOS and UNIX. It can also be used with parallel virtual machines to evolve populations
in parallel on multiple CPUs.

Figure 92 illustrates the basic
GAlib class hierarchy. Only
the major classes of the
library are shown. For
complete class listing, the
reader is referred to [1].

GAlib defines many options.
It supports four types of
genetic algorithms: simple,
steady state, incremental and
deme. The former three types
are described in Appendix A.
The deme genetic algorithm
evolves multiple populations
in parallel using a steady
state algorithm. During each
population, some individuals
are migrated between the
populations [1]. GAlib also

GAScalingScheme

GANoScaling

GALinearScaling

GAPowerLawScaling

GASharing

GASigmaTruncationScaling

GASelectionScheme

GARankSelector

GARouletteWheelSelector

GATournamentSelector

GAUniformSelector

GASRSSelector

GADSSelector

GASUSSelector

GAGeneticAlgorithm

GASampleGA

GASteadyStateGA

GAIncrementalGA

GADemeGA

GAPopulation

GAStatistics

GAParameterList

GAGenome

GABinaryString GAList <T> GATree<T> GAArray<T>

GAListGenome<T> GATreeGenome<T>
GA1DArrayGenome<T>

GA2DArrayGenome<T>

GA3DArrayGenome<T>

GA1DBinaryStringGenome

GA2DBinaryStringGenome

GA3DBinaryStringGenome
Figure 92-Basic GAlib class hierarchy (adopted from [1]).

Carleton University TR SCE-05-13 September 2005

 119

supports various selection methods for choosing an individual for mutation and crossover. These include
rank selection, roulette wheel, tournament, stochastic remainder sampling (SRS), stochastic uniform
sampling (SUS) and deterministic sampling (DS).

11.2 GARUS

GARUS (GA-based test Requirement tool for real-time distribUted Systems) is our prototype tool for deriving
stress test requirements. Section 11.2.1 presents the class diagram of GARUS. The overview activity
diagram of GARUS is described in Section 11.2.2. The input/output file formats are presented in Section
11.2.3 and Section 11.2.4, respectively.

11.2.1 Class Diagram

The simplified class diagram of GARUS is shown in Figure 93. The classes in the class diagram are grouped
in two packages: TestModel and GA. The classes in the TestModel package store information about the test
model of a SUT. The GA package includes the GA domain-specific classes, which solve the optimization
problem and derive stress test requirements.

One object of class TestModel and one object of class GASteadyState GA are instantiated in runtime for a
SUT. The connection between the two packages (TestModel and GA) is via class DCCFP (in the TestModel
package) and class GARUSGene (in the GA package).

-End71 -End8*

ISDS

SD

DCCFP

-End71 -End8*

-End71 -End8*

-End71 -End8*

* ISDSs

* SDs

* DCCFPs

* NTUPs

GARUSGene

TestModel GA

+Initializer()
+Mutator()
+Evaluator()
+Comparator()
+nPointCrossover()
+nPointProbCrossover()

GARUSGenome

GAlib::GA1DArrayGenome

GAlib::GAGenome

-End7

1

-End8

*

UML-SPT::RTtimeValue

DCCFP
0..1

0..1 startTime

* genes
[ordered]

time
1

NTUP

GARUS

GAlib::GASteadyStateGA

ga
-End71 -End8

*

genomes

+readTestModel()

TestModel

+initialize()
+evolve()

GAlib::GAGeneticAlgorithm

noAP

+getARandomArrivalTime()

AP

boundedAP

burstyAP

irregularAP

periodicAP

unboundedAP

arrivalPattern
1

periodValue
deviationValue

burstIntervalLength
maxNumOfArrivals

minIAT
maxIAT
ATIs:List<ATI>

numOfPoints
points:List<unsigned int>

Figure 93-Simplified class diagram of GARUS.

Abstract class AP in the TestModel package realizes the implementation of arrival patterns. Six subclasses
are inherited from class AP, five of which correspond to the five types of arrival patterns (Section 10.1).
Objects of type class noAP are associated with SDs, which have no arrival patterns. Due to the
implementation details, this choice was selected instead of setting the arrivalPattern association of such SDs
to null. Function getARandomArrivalTime() is used in the mutation operator of GARUS (Mutation() in class
GARUSGenome) and, for each subclass of AP, it returns a random arrival time in the corresponding ATS
(Section 10.3) according to the type of arrival pattern.

Carleton University TR SCE-05-13 September 2005

 120

11.2.2 Activity Diagram

The overview activity diagram of GARUS is presented in Figure 94. The test model of a SUT is given in an
input file. GARUS reads the test model from the input file and creates an object named tm of type
TestModel, initialized with the values from the input test model. Then, an object named ga of type
GAlib::SteadyStateGA is created, such that tm is used in the creation of ga’s initial population (Section 10.7.3).
Note that object ga has a collection of chromosomes of type GARUSGenome, and each object of type
GARUSGenome has a ordered set of genes of type GARUSGene (refer to the class diagram in Figure 93).
Furthermore, ga’s parameters (e.g. mutation rate) are set to the values as discussed in Section 10.7.

GARUS then evolves ga using the overloaded GA mutator and crossover operators (Section 10.7.5). When
the evolution of ga finishes, the tool’s task is done and the best individual of ga (accessible by
ga.statistics().bestIndividual()) is saved in the output file, with a format explained in Section
11.2.4.

GARUS (GA-based test Requirement generator for real-time distribUted Systems)

Input File

Test Model of a
SUT

Output File

Stress Test
Requirements

Initialize an object of
type

GASteadyStateGA
Evolve ga

ga:GASteadyStateGA

Read the input file
into an object of type

TestModel

tm:TestModel

ga.statistics()
.bestIndividual()

Figure 94-Overview activity diagram of GARUS.

11.2.3 Input File Format

Input file provided to GARUS contains the test model (TM) of a SUT. As it was shown in Figure 8
(overview of our model-based stress test methodology), a TM consists a CFM (including DCCFPs), inter-SD
constraint (ISDSs) and network traffic usage patterns.

Referring to Figure 8, stress test parameters are also considered be part of the input to our methodology. As
discussed in Chapter 9, stress test parameters are in fact the type of stress test technique (e.g.
StressTestNetInsDT and StressTestNodInIntMT) and a set of parameters specific to the technique (e.g. a node
name and a period’s start/end times for the StressTestNodInIntMT stress test technique). Furthermore, as it
was discussed in the algorithms and equations in Chapter 8, a test model can be filtered based on different
attributes discussed in network traffic usage analysis (e.g. location, direction, and period).

To simplify the implementation of GARUS, we assume that a TM has already been built from a given UML
model and a set of test parameters by a test model generator. The TM is also assumed to be filtered by the
given set of test parameters. For example, if test parameters are for a StressTestNetInsDT test strategy over a
network net, all DCCFPs in the CFM and network usage pattern parts of a TM are assumed to have been
filtered by that particular network. The input file is in a format to accommodate such filtered TM. The input
file format consists of several blocks, each specifying different elements of a TM. GARUS input file format
is shown using the BNF in Figure 95.

The input file format can be best described using an example. An example input file is shown in Figure 96.
Different blocks are separated with a gray highlight. The TM starts with a block of two ISDSs ISDS0 and
ISDS1 (ISDSsBlock in Figure 95). For example, ISDS0 consists of three SDs: SD0, SD1, and SD2.

The second block of the input file is SDs (SDsBlock in Figure 95). There are five SDs: SD0,…, SD4. Each SD
line consists of a SD name, number of concurrent multiple instances allowed, followed by the number of its
DCCFPs and their names. For example SD2 has two DCCFPs named p21 and p22.

Carleton University TR SCE-05-13 September 2005

 121

) value(time::NTUPP

NTUPPNTUPPCCFPnNTUPPsInDDCCFPName::DCCFP

DCCFPDCCFP::kDCCFPsBloc

irregularAPTypeAPointAPointintsInAPnArrivalPo

boundedAPTypemaxIATminIAT
periodicAPTypealuedeviationVeperiodValu

unbounded,bursty,pattern_arrival_noAPType

::rsAPParamete

unbounded|bursty|irregular|bounded|periodic|pattern_arrival_no::APType

rsAPParameteAPTypeSDName::SDAP

SDAPSDAP::SDAPsBlock

DCCFPNameDCCFPNameDnDCCFPsInScestannsnMultipleISDName::SD

SDSDnSDs::SDsBlock

SDNameSDNamenSDsInISDSISDSName::ISDS

ISDSISDSnISDSs::ISDSsBlock

kDCCFPsBlocSDAPsBlockSDsBlockISDSsBlock::ormatinputFileF

iii

CCFPnNTUPPsInDiii

DnDCCFPsInSnDCCFPs

nDCCFPs

iintsInAPnArrivalPoi

iii

iii

i

i

i

iiii

nSDs

DnDCCFPsInSiiii

nSDs

nSDsInISDSiii

nISDSs

i

iSD
i

i

i

i

=

=

∑

=

=
=
=
∈∈

=

=
=

=

=
=

=
=

=

∀

=

K

4444 34444 21 K

K

K

K

K

K

K

1

1

1

1

1

1

1

1

 if;

 if;
 if;

 }{ if;

Figure 95-GARUS input file format.

The third block is SD Arrival Pattern (AP) -
(SDAPsBlock in Figure 95). Each line in this
block consists of a SD name, followed by its AP
type and a set of parameters specific to that AP
type. For example, SD1 has a periodic arrival
pattern. The period and deviation values of this
periodic arrival pattern are 4 and 2 units of
time. Note that units for all time values in an
input file are assumed to be the same, and
hence they are not specified. It is up to a user to
interpret the unit of time. If the AP of a SD is
bounded, the minimum and maximum inter-
arrival time (minIAT, maxIAT) are specified. In
case when a SD has no arrival pattern
(no_arrival_pattern keyword), or it is bursty or
unbounded, no additional parameters need to
be specified. This is because such APs do not
impose any timing constraints in our stress test
requirement generation technique. Refer to
Sections 10.2 and 10.5 for further details.

The last block in an input file is the
DCCFPsBlock. The number of DCCFPs in a
DCCFPsBlock, is equal to the sum of DCCFPs of all SDs, specified in the SDsBlock. For example, in the
example input file in Figure 96, this total is equal to: 5 (SD0) + 3 (SD1) + 2 (SD2) + 1 (SD3) + 4 (SD4)=15. All
15 DCCFPs have been listed, each following by its NTUP (Network Traffic Usage Pattern). The format for
specifying NTUP of a DCCFP is described next. As discussed in Section 8.5, the NTUP of a DCCFP (with a
fixed traffic location, direction and type) is a 2D function where the Y-axis is the traffic value and the X-axis
is time. The non-zero values of a NTUP are specified in an input file. Each such value is specified by a pair
consisting of the corresponding time and traffic values, and is referred to as a NTUPP (Network Traffic Usage
Pattern Point). For example, NTUPPs of the NTUP in Figure 97 are: (1, 90), (3, 40), (4, 40), (8, 30), and (12,

2
ISDS0 3 SD0 SD1 SD2
ISDS1 4 SD0 SD2 SD3 SD4
5
SD0 1 5 p01 p02 p03 p04 p05
SD1 1 3 p11 p12 p13
SD2 1 2 p21 p22
SD3 1 1 p31
SD4 1 4 p41 p42 p43 p44
SD0 periodic 5 0
SD1 periodic 4 2
SD2 bounded 4 5
SD3 no_arrival_pattern
SD4 irregular 5 2 3 6 8 9
p01 5 (2 10) (3 5) (6 7) (12 20) (15 9)
p02 2 (1 5) (4 20)
p03 3 (3 5) (5 10) (6 7)
p04 2 (3 9) (6 35)
p05 1 (5 40)
p11 2 (4 4) (7 3.4)
p12 3 (1 1) (2 9) (5 6)
p13 5 (2 3) (5 4) (7 1) (9 6) (11 20)
p21 1 (4 30)
p22 4 (2 20) (3 10) (7 15) (9 30)
p31 3 (3 3) (5 9) (7 20)
p41 2 (4 20) (7 4)
p42 6 (2 3) (5 6) (8 8) (10 1) (12 9) (15 10)
p43 5 (4 2) (6 7) (10 5) (12 3) (15 2)
p44 2 (4 32) (6 10)

Figure 96-An example input file of GARUS.

Carleton University TR SCE-05-13 September 2005

 122

50). For example, in the input file in Figure 96, p41 has two NTUPPs: (4, 20) and (7, 4). The “,” symbol
between time and traffic values is eliminated in the input file to ease the parsing process.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

NetInsDT(p,Network,t)

t (ms)

100

K
B

90

40 40 30
50

Figure 97-An example NTUP of a DCCFP.

11.2.4 Output File Format

GARUS exports the stress test requirements to an output file, whose name is specified in the command line.
If no output file name is given by the user, the output is simply printed on the screen. Furthermore,
standard GAlib statistics are also exported to the output file. GAlib standard statistics include number of
selections, crossovers, mutations, replacements and genome evaluations since initialization, as well as min,
max, mean, and standard deviation of each generation. The main output is the stress test requirements,
while GA statistics are just informative values for debugging purposes. The format of stress test
requirements in an output file is shown in Figure 98-(a). An example set of stress test requirements is
presented in Figure 98-(b), which is generated by GARUS for the input file in Figure 96.

lueinteger vaan timestress Max.
efloat valu aISTOF

start timeDCCFPSD

111

=
=

−−−−−−−−−−−−−−−−−−−−−−−−−−−

nSDsnSDsnSDs startTimeCFPNameSelectedDCSDName

startTimeCFPNameSelectedDCSDName
KKK

(a)

SD DCCFP start time
---- ---- ----------
SD0 p04 10
SD1 p12 14
SD2 p21 12
SD3 none
SD4 none

ISTOF=74
Max stress time=16

(b)

Figure 98-(a): Stress test requirements format in GARUS output file. (b): An example.

The first block of the output file is a stress test schedule which, if executed, entails maximum traffic. Each line
in the first block of the output file corresponds to a SD of the SUT, and specifies a selected DCCFP with a
start time to trigger. Refer to Section 9.10 for the formalized representation of a stress test requirement. For
example, the example in Figure 98-(b) indicates that p04 of SD0, p12 of SD1, and p21 of SD2 should be
triggered at start times 10, 14 and 12 unit of time, respectively. No DCCFPs have been specified to be
triggered from SD3 and SD4. This is because a set of stress test requirements corresponds to an ISDS in a
SUT, and as shown in Figure 96, the SUT has two ISDSs, where SD0, SD1 and SD2 are members of one of
them. In other words, triggering all SDs SD0 …SD4 is not allowed in this SUT. Note that GARUS never
schedules a DCCFP in a start time which is not allowed to be triggered, due to the arrival pattern of its
corresponding SD.

11.3 Validation of Test Requirements Generated by GARUS

GARUS outputs the maximum traffic value and time by triggering SDs according to the given stress
schedule. The maximum traffic value is in fact the objective function value of the GA’s best individual at
the completion of the evolution process. The objective function was described in Section 10.7.4, and was
referred to as Instant Stress Test Objective Function (ISTOF). The maximum traffic time is the time instant
when the maximum traffic happens. For example the ISTOF value and the maximum traffic time for the
SUT specified by the input file in Figure 96 are 74 (unit of traffic, e.g. KB) and 16 (unit of time, e.g. ms),
respectively.

A stress test
schedule

Carleton University TR SCE-05-13 September 2005

 123

Test requirements generated by GARUS can be validated in at least four ways:

1. Satisfaction of ATSs by start times of DCCFPs in the generated stress test requirements: As explained in
Section 10.7, each chromosome (including the final best chromosome) should satisfy this constraint, i.e.,
the start times of each DCCFP in the final best chromosome of the GA should be inside the Accepted
Time Set (ATS) of its corresponding SD.

2. Checking ISTOF values: As a heuristic, GAs do not guarantee to yield optimum results, and checking
that the ISTOF value of the final best chromosome is the maximum possible traffic value among all
interleavings is a NP-hard problem. It is, therefore, not possible to fully check the correctness of GA
results. However, simple checks can be done to determine if, for example, GARUS has been able to
choose the DCCFP with maximum traffic value among all DCCFPs in a SD.

3. Repeatability of GA results across multiple runs: It is important to assess how stable and reliable the results
of the GA will be. To do so, the GA is executed a large number of times and we assess the variability of
the average or best chromosome’s fitness value.

4. Convergence efficiency across generations towards a maximum: In order to assess the design of the selected
mutation and cross-over operators, as well as the chosen chromosome representation, it is useful to
look at the speed of convergence towards a maximum fitness plateau [88]. This can be measured, for
example, in terms of number of generations required to reach the plateau. This can be easily computed
as, for each generation, GAlib statistics provide min, max, mean, and standard deviation values.

Using the above four metrics, we analyze the stress test requirements generated by GARUS using an
example: the input file in Figure 96. To assess the variability of the GA’s outputs, it was run 1000 times. The
variability in the objective function and start times as well as detailed information for the first five runs are
reported in Table 9. The results from the entire 1000 runs are further discussed in Section 11.3.3, where we
discuss the repeatability of our GA. As a time complexity indicator, the average execution time over all the
runs, by running GARUS on an 863MHz Intel Pentium III processor with 512MB DRAM memory, was
between 6 (minimum) and 10 seconds (maximum).

Run # Generation # Mean Max
(ISTOF)

Min Deviation

Best individual

1 0 36.74 55 30 7.95 SD DCCFP start time

 10 44.47 58 38 8.04 ---- ---- ----------

 20 52.46 61 41 8.44 SD0 p05 25

 30 61.14 66 55 5.86 SD1 none

 40 67.23 71 61 4.90 SD2 p22 21

 50 71.43 79 70 4.21 SD3 p31 23

 60 74.62 85 70 7.01 SD4 p42 2

 70 82.03 88 72 8.95

 80 90.00 90 90 0.00 ISTOF=90

 90 90.00 90 90 0.00 Max stress time=30

 100 90.00 90 90 0.00

2 0 36.45 58 30 7.82 SD DCCFP start time

 10 43.84 60 36 7.13 ---- ---- ----------

 20 51.23 65 41 6.97 SD0 p01 10

 30 57.82 66 50 7.45 SD1 none

 40 64.70 73 59 7.47 SD2 p21 8

 50 72.52 76 62 7.44 SD3 p31 5

 60 80.50 82 80 2.39 SD4 p44 8

 70 81.34 84 80 3.78

 80 83.78 86 80 5.58 ISTOF=92

Carleton University TR SCE-05-13 September 2005

 124

 90 91.64 92 80 2.05 Max stress time=12

 100 92.00 92 92 0.00

3 0 36.93 49 30 7.98 SD DCCFP start time

 10 45.36 50 39 7.94 ---- ---- ----------

 20 54.05 58 44 7.63 SD0 p04 15

 30 62.35 68 52 6.93 SD1 none

 40 70.01 72 65 3.46 SD2 p22 19

 50 73.63 74 72 1.49 SD3 p31 14

 60 75.00 75 75 0.00 SD4 p44 9

 70 75.00 75 75 0.00

 80 75.00 75 75 0.00 ISTOF=75

 90 75.00 75 75 0.00 Max stress time=21

 100 75.00 75 75 0.00

4 0 37.03 53 30 8.04 SD DCCFP start time

 10 45.37 58 37 8.94 ---- ---- ----------

 20 55.14 60 43 9.21 SD0 p05 15

 30 66.63 69 52 7.08 SD1 none

 40 73.29 78 70 4.22 SD2 p22 18

 50 79.02 80 72 2.62 SD3 p31 13

 60 80.00 80 80 0.00 SD4 p43 9

 70 80.00 80 80 0.00

 80 80.00 80 80 0.00 ISTOF=80

 90 80.00 80 80 0.00 Max stress time=20

 100 80.00 80 80 0.00

5 0 37.54 55 30 8.44 SD DCCFP start time

 10 45.60 58 39 7.50 ---- ---- ----------

 20 54.09 64 48 6.93 SD0 p05 5

 30 61.67 66 52 6.32 SD1 none

 40 68.42 69 65 2.52 SD2 p21 12

 50 70.37 71 70 0.78 SD3 p31 11

 60 71.14 72 70 0.99 SD4 p44 6

 70 72.00 72 72 0.00

 80 72.00 72 72 0.00 ISTOF=72

 90 72.00 72 72 0.00 Max stress time=10

 100 72.00 72 72 0.00

 Table 9-Summary of GARUS results.

11.3.1 Satisfaction of ATSs by Start Times of DCCFPs in the Generated Stress Test Requirements

Our first validation check is whether the start times of the DCCFPs in the generated stress test requirements
satisfy the ATSs of the corresponding SDs. In order to investigate this, we first derive the ATSs of the SDs
in the test model of Figure 96. Consistent with discussions in Section 10.3, they are shown in Figure 99.

For example, as SD0 has a periodic AP with period value=5 and zero deviation, its ATS comprises time
instants 5, 10, 15 and so on. Since SD3 has no AP, therefore its ATS includes all the time instants from zero
to infinity. As an example, the stress test schedule generated by run number 2 in Table 9 has been depicted
in Figure 99. This stress test schedule includes p01 from SD0, no DCCFPs from SD1, p21 from SD2, p31
from SD3, and p44 from SD4 to be triggered on time instances 10, none, 8, 5, and 8, respectively. The time

Carleton University TR SCE-05-13 September 2005

 125

instant when the maximum traffic occurs (time=12) is depicted with a vertical bold line. The ISTOF value at
this time is 92 units of network traffic.

As it can be seen in Figure 99, the start times of all selected DCCFPs in the stress test schedule reside in the
ATSs of the respective SDs. This is explained by the way the initial population of chromosomes is created
(Section 10.7.3) and the allowability property of our mutation operator (Section 10.7.5.2). The start time of
each DCCFP is always chosen from the ATS of its corresponding SD. This is achieved by building the ATS
of each SD according to its type of AP when GARUS initializes a test model. Then, when a random start
time is to be chosen for a DCCFP, method getARandomArrivalTime(), which is associated with a SD is
invoked on an object from a subclass of the abstract class AP. Refer to Figure 93 for details.

ATS of a SD

Execution of a
DCCFP DCCFPName

SD2

SD1

SD3

SD0

SD4

time...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time...

...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time...

Legend

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time

p01

p21

p31

p44

maximum instant traffic
Figure 99-ATSs of the SDs in the TM in Figure 96, and a stress test schedule generated by GARUS.

11.3.2 Checking of ISTOF Values

As a test to check if GARUS is able to choose the DCCFP with maximum traffic value among all DCCFPs of
a SD, we artificially modify NTUPs of the DCCFPs in the test model of Figure 96 such that one DCCFP of
each SD gets a much higher peak value in its NTUP. The modified values are shown in bold in Figure 100.

For example, the NTUP value of p03 at
time=5 was 10, whereas its new value is
500. This value is an order of magnitude
larger than all other NTUP values of other
DCCFPs in SD0. We then run GARUS
with this modified TM for a large number
of times and see if the DCCFPs with high
NTUP values are part of the output stress
test schedule generated by GARUS.

We executed GARUS 10 times with this
TM, and the 10 schedules generated by
GARUS had the format described in the
following table, where x stands for values
which changed across different runs.

--DCCFPs
p01 5 (2 10) (3 5) (6 7) (12 20) (15 9)
p02 2 (1 5) (4 20)
p03 3 (3 5) (5 500) (6 7)
p04 2 (3 9) (6 35)
p05 1 (5 40)
p11 2 (4 4) (7 3.4)
p12 3 (1 1) (2 900) (5 6)
p13 5 (2 3) (5 4) (7 1) (9 6) (11 20)
p21 1 (4 300)
p22 4 (2 20) (3 10) (7 15) (9 30)
p31 3 (3 3) (5 9) (7 700)
p41 2 (4 20) (7 4)
p42 6 (2 3) (5 6) (8 800) (10 1) (12 9) (15 10)
p43 5 (4 2) (6 7) (10 5) (12 3) (15 2)
p44 2 (4 32) (6 10)

Figure 100-Modified DCCFPs of the test model in Figure 96.

Carleton University TR SCE-05-13 September 2005

 126

SD DCCFP Start Time

SD0 x x

SD1 none

SD2 p21 x

SD3 p31 x

SD4 p42 x

ISTOF=1500 or 1520

Max stress time=16 or 17

As expected, DCCFPs p21, p31, and p42 were present in all 10 stress test schedules, thus suggesting that
GARUS selects the correct DCFFPs. On the other hand, different DCCFPs from SD0 were reported in the
output schedules. This can be explained as SD0’s ATS contains specific time points (5, 10, 15, and so on)
and p03 (the modified DCCFP) will therefore not be able to have an effect on the maximum possible instant
traffic (at time=16 or 17) since its modified NTUP point is at time=5.

The reason why p12 (from SD1) is not selected in any of the outputs across different runs is that a set of
DCCFPs are generated by GARUS as a stress test schedule only if the SDs corresponding to the DCCFPs
belong to one ISDS. The set of SDs {SD0, SD1, SD2, SD3, SD4} does not belong to an ISDS. Furthermore,
among all ISDSs (ISDS0={SD0, SD1, SD2} and ISDS1={SD0, SD2, SD3, SD4}) of the test model, the
maximum instant traffic of ISDS1 has a larger value than that of ISDS0, thus not letting SD1 (and all of its
DCCFPs) play a role in the output stress test schedules.

11.3.3 Repeatability of GA Results across Multiple Runs

To investigate the repeatability of GA results across multiple runs, Figure 101-(a) depicts the distributions
of maximum ISTOF and stress time values for 1000 runs on the example. From the ISTOF distribution, we
can see that the maximum fitness values for most of the runs are between 70 and 92 units of traffic.
Descriptive statistics of the fitness values for the 1000 runs are shown in Table 10. Average and median
values are very close, thus indicating that the distribution is almost symmetric.

Min Max Average Median Standard
Deviation

65 112 81.66 81 7.05

Table 10-Descriptive statistics of the maximum ISTOF values over 1000 runs. Values are in units of data traffic (e.g. KB).

Such a variation in fitness values across runs is expected when using genetic algorithms on complex
optimization problems. However, though the variation above is not negligible, one would expect based on
Figure 101-(a) that with a few runs a chromosome with a fitness value close to the maximum would likely
be identified. Since each run lasts a few seconds, perhaps a few minutes for very large examples, relying on
multiple runs to generate a stress test requirement should not be a practical problem.

Corresponding portions of max stress time values for one of the frequent maximum ISTOF values (75 units
of traffic) have been highlighted in black in Figure 101-(b). As we can see, these maximum stress time
values are scattered across the time scale (e.g., from 10 to over 20 units of time). This highlights that a single
ISTOF value (maximum stress traffic) can happen in different time instances, thus suggesting the search
landscape for the GA is rather complex for this type of problem. Thus, a strategy to further explore for
comprehensive stress testing would be to try all (or a subset of) such test requirements in different time
instances. Indeed, although the maximum ISTOF value in all such test requirements are the same, a SUT’s
reaction to different test requirements might be different, since each test requirement triggers a different
DCCFP (and hence set of messages) in a different stress time instance than others. This might lead to
uncovering different RT faults in the SUT.

Carleton University TR SCE-05-13 September 2005

 127

ISTOF Max stress time ISTOF Max stress time

70

80

90

100

110

10

20

70

80

90

100

110

10

20

(a) (b)

Figure 101-(a): Histogram of maximum ISTOF and stress time values for 1000 runs (b): Corresponding max stress time values for
one of the frequent maximum ISTOF values.

11.3.4 Convergence Efficiency across Generations

Another interesting property of the GA to look at is the number of generations required to reach a stable
maximum fitness plateau. The distribution of these generation numbers over 1000 runs is shown in Error!
Reference source not found., where the x-axis is the generation number and the y-axis is the probability of
achieving such plateau in a generation number. The minimum, maximum and average values are 20, 91,
and 52, respectively. Therefore, we can state that, on the average, 52 generations of the GA are required to
converge to the final result (stress test requirement). The variation around this average is limited and no
more 100 generations will be required. This number is in line with the experiments reported in the GA
literature [74] but is however likely to be dependent on the number and complexity of SDs as well as their
ATSs.

0

0.01

0.02

0.03

0.04

0.05

0.06

20 31 41 51 61 71 89

Generation number

P
ro

b
ab

ili
ty

 o
f

ac
h

ei
vi

n
g

 a
 m

ax
im

u
m

fi

tn
es

s
p

la
te

au

Figure 102-Histogram of the generation numbers when a stable maximum fitness plateau is reached in 1000 runs of the example by

GARUS.

From the initial to the final populations, the maximum fitness values typically increase by about 80%,
which can be considered a large improvement. So, though we cannot guarantee that a GA found the global
maximum, we clearly generate test requirements that will significantly stress the system.

Carleton University TR SCE-05-13 September 2005

 128

Chapter 12

CASE STUDY

A comprehensive case study is presented in this section. An overview of target systems of our stress test
technique is described in Section 12.1. Section 12.2 discusses the requirements of a suitable target system as
the case study. As discussed in Section 12.2, none of the systems in our survey meets the requirements.
Therefore, we developed a prototype system introduced in Section 12.3, based on actual specifications. The
system is referred to as SCAPS (A SCADA-based Power System). The UML design model of SCAPS is also
given in Section 12.3. Derivation of network-aware stress test requirement and cases for SCAPS are
explained in Section 12.4. Section 12.5 presents the stress test architecture used in our case study. Some
descriptions of the stress test execution environment are given in Section 12.6. Test results are reported in
Section 12.7, where we assess the effectiveness of our stress test technique at triggering network traffic-
related failures.

12.1 An Overview of Target Systems

Our stress test technique can be used to stress test systems which are distributed, hard real-time, and
safety-critical. We present a brief introduction here on two important groups of such systems.

1. Distributed Control Systems (DCS)
2. Supervisory Control and Data Acquisition (SCADA) Systems

Although some systems can fall in both the DCS and SCADA categories, it is more convenient to discuss
them separately.

12.1.1 Distributed Control Systems

Distributed control systems (DCS) [89] are computer-based control systems where several sections of plant
have their own processors, linked together to provide both information dissemination and manufacturing
coordination. DCS systems are used in industrial and civil engineering applications to monitor and control
distributed equipment with remote human intervention.

DCS systems are generally, since the 1990s, digital, and normally consist of field instruments, connected via
wiring to computer buses or electrical buses to multiplexer/demultiplexers, analog to digital converters,
and Human-Machine Interface (HMI) or control consoles.

DCS is a very broad umbrella that describes solutions across a large variety of industries, including:
• Electrical power distribution grids and generation plants
• Environmental control systems
• Traffic signals
• Water management systems
• Refining and chemical plants

Carleton University TR SCE-05-13 September 2005

 129

12.1.2 Supervisory Control and Data Acquisition Systems

SCADA stands for Supervisory Control And Data Acquisition. As the name indicates, SCADA systems are
not full control systems (like DCS), but they rather focus on the supervisory level. As such, it is a software
package that is positioned on top of hardware to which it is interfaced, in general via Programmable Logic
Controllers (PLCs), or other commercial hardware modules [90]. SCADA systems interact with their
controlled environment via input/output (I/O) channels.

SCADA systems are used not only in industrial processes, e.g., steel making [91], power generation
(conventional and nuclear) and distribution [92-96], chemistry and oil [97], but also in facilities such as
nuclear fusion [98, 99]. The size of such plants ranges from a few to several thousands I/O channels.
However, SCADA systems evolve rapidly and are now penetrating the market of plants with a number of
I/O channels of several 100 K.

SCADA and DCS are related but they are different in important ways. DCS is process-oriented as it focuses
at the control process (such as a chemical plant), and presents data to operators. On the other hand,
SCADA is data-gathering oriented, where the control centre and operators are the main focus points. The
remote equipment is merely there to collect the data--though it may also do some very complex process
control.

A DCS operator station is normally intimately connected with its I/O (through local wiring, field bus,
networks, etc.). When the DCS operator wants to see information he usually makes a request directly to the
field I/O and gets a response. Field events can directly interrupt the system and advise the operator.

SCADA must operate reasonably when field communications have failed. The quality of the data shown to
the operator is an important facet of SCADA system operation. SCADA systems often provide special event
processing mechanisms to handle conditions that occur between data acquisition periods. A typical
architecture of SCADA systems is shown in Figure 103.

Dedicated Server

`

Client

`

Client

Controller Controller Controller Controller Controller

Ethernet

Data Server Data Server

...

Figure 103-A typical architecture of SCADA systems.

12.1.3 Use of UML and OO Concepts in DCS and SCADA Systems

As UML and OO-driven system development are getting more popular, recent DCS and SCADA systems
are no exceptions. We survey here some of the recent works on DCS and SCADA systems which use UML
and OO concepts in their design.

Stojkovic and Vujosevic [100] report a prototype SCADA system for a smaller size electric power plant.
They refer to their prototype as a fast, object-oriented and cost-effective approach, which has been
developed with Microsoft VisualBasic, a rapid application development environment under Microsoft
Windows.

Carleton University TR SCE-05-13 September 2005

 130

To address the need for fast, reliable and RT DBMSs (DataBase Management System) in SCADA and DCS
applications, Wakizono et al. [101] present and evaluate an OO DBMS for process control systems. The
authors evaluate the time taken to perform a typical complex DBMS query. As their comparisons show, the
query execution time in the OO DBMS is much faster in than a rational DBMS. This quick DBMS response
can be useful in many RT applications.

Thramboulidis [102] presents a UML-based Engineering Support System (ESS) for Industrial Process
Measurement and Control Systems (IPMCSs)1, where an OO notation is proposed along with a network
topology and an internetworking unit architecture to form the infrastructure that is necessary for the
development of the new generation ESSs.

Thramboulidis [103] presents CORFU (a Common Object-oriented Real-time Framework for the Unified
development of distributed IPMCS applications). As reported, this framework can assist process and
system engineers in the development, configuration, and operation of distributed IPMCSs.

Brown et al. [104] present a concept for integrating the embedded programming methodology Giotto [105]
and the object-oriented Attitude and Orbit Control System (AOCS) framework [106] to create an
environment for the rapid development of distributed software for safety-critical embedded control
systems with hard real-time requirements of the kind typically found in aerospace applications.

Brand et al. [107] present a case study on how to use the ObjectVIEW toolkit [108] within the graphical
language LabVIEW [108] to execute a UML design model prior to system implementation. As an example
of this approach, the application layer of the control system of the PHELIX (Petawatt High Energy Laser for
heavy Ion eXperiments) [109] facility is presented.

12.1.4 Failures and Disasters due to Overload

Reports such as [110], [111], [112], [113] indicate the high risk of failures due to network overload, while
[114] actually report failures and disasters which have happened due to network overload.

12.2 Choosing a Target System as Case Study

There are various distributed, real-time prototype systems in academia (e.g. [115], [116], [117]) and also real
systems in industry (e.g. [118], [119], [120], [121]), which are currently in use.

12.2.1 Requirements of a Suitable System

We group the requirements of a suitable system (to be selected as our case study) into two groups: (1)
system’s functional features and behaviors, and (2) its model requirements.

A suitable case study should have the following functional features and behaviors:
• Requirement 1: It should be a distributed, hard real-time system, and preferably safety-critical, in

which deadline misses can lead to catastrophic results. This reason is because our stress test
technique tries to force the system to exhibit distributed traffic faults which will, in turn, lead to
(hard) real-time faults.

• Requirement 2: The system should be preferably data-intensive. What we mean by a data intensive,
in this context, is a distributed system in which most (or at least some) of the messages exchanged
among distributed nodes usually have large data sizes. The rationale for this requirement is again
due to the nature of our stress test technique, which tries to find the most data intensive distributed
messages and produce schedules so that such messages run concurrently.

1 Similar to DCS systems

Carleton University TR SCE-05-13 September 2005

 131

• Requirement 3: It should be possible to run a system in the typical hardware/software platform of a
research institute. We can replace the embedded components and special hardware with test stubs
or component simulators, if necessary.

Since our stress test technique needs a SUT’s design model, a suitable case study should also meet the
following requirements in terms of its model:

• Requirement 4: Design model or source code of the system should be available. The design model
can be built by reverse engineering the source code. However reverse engineering of UML models
of a system from its source codes is usually costly for large systems.

• Requirement 5: The design model should be in UML 2.0, since our test technique needs it to be so.
Since UML 2.0 has enhanced compared to its previous versions, models based on UML 1.x can also
be accepted.

12.2.2 None of the Systems in our survey Meets the Requirements

None of the existing systems we are aware of met all of the above requirements. We provide a brief,
structured summary below:

• Requirement 1: Not all distributed systems, we surveyed, were hard RT, safety-critical such as
QADPZ (Quite Advanced Distributed Parallel Zystem) [115].

• Requirement 2: Similarly, a good target system should be data intensive. None of the systems, under
study, which met other requirements met this one, such as the RT distributed factory automation
system [116] which was RT, but not data intensive.

• Requirement 3: Most systems need special software/hardware platforms to run on, which can not
easily be deployed and executed in an academic institute, like ours. We are even flexible is
replacing the embedded components and special hardware with test stubs or component
simulators, if possible. However, doing this for a complex system is not easily possible, for example
COACH (Component Based Open Source Architecture for Distributed Telecom Applications)
[118].

• Requirement 4: The systems models/source codes are not freely available or even not available at
all. The can be either due to being sensitive and classified information, such as JITC (The Joint
Interoperability Test Command) [119] and [117], or systems are very expensive, such as
CitectSCADA [120] and ElipseSCADA [121].

• Requirement 5: As a corollary of our discussion on requirement 4, no UML 2.0 model of the systems
in our selection pool was accessible.

12.3 Our Prototype System: A SCADA-based Power System

Because none of the systems we surveyed meet the requirements (Section 12.2.1), we decided to analyze,
design, and build a prototype system by using the ideas and concepts from existing distributed system
technologies.

Section 12.3.1 presents an overview on SCADA-based power systems. We designed and developed a
SCADA-based power system, which is described in Section 12.3.2. In Section 12.3.3, we discuss how and
why SCAPS meets our case study requirements (described in Section 12.2.1). We present the SCAP’s UML
design model in Section 12.3.4. Relevant implementation issues are presented in Section 12.3.5. Section
12.3.6 provides a brief description of SCAP’s hardware and configuration. SCAPE is then used as the SUT
in Section 12.4 by our stress test technique.

12.3.1 SCADA-based Power Systems

SCADA for power systems was developed in the 1960’s and has been improving ever since. The
architecture of power SCADA systems has changed from the mainframe-dominated, centralized
computing systems to network-based distributed computing in the early 1990’s [117]. A new class of

Carleton University TR SCE-05-13 September 2005

 132

SCADA systems that is called open distributed systems [122] has been designed based on this new
architecture. Fundamental features of open distributed systems that distinguish it from the previous design
are the use of industry-standard, local area network (LAN) and the distribution of functions among several
computers or workstations on a LAN or WAN (Wide Area Network).

SCADA systems have been used in both nuclear and hydro power generation plants [95, 123] and
distribution grids [92-94, 96, 100]. As discussed in Section 12.2.2, most of the SCADA power systems
require dedicated and special-purpose hardware to run and none of the systems are made public (even
those made for research purposes in articles). However, the overview descriptions of the SCADA systems
are usually available. Figure 104 shows a typical SCADA model of a power distribution system [93].

WAN Internet

s/s
TC

s/s
TC

s/s
TC

s/s
TC

SEV

SEV

Firewall

c/c
CL c/c

CL

c/c
CL

SEV

s/s
TC

c/c
CL

c/c
CL

SEV: Sever
TC: Tele-Control unit
c/c: Control Center
s/s: Substation
CL: Client

Figure 104-Power systems SCADA model [93].

The model consists of TCs (Te1e-Control units) that sends data of power system to servers. SCADA
applications execute in servers. Clients (CLs) are used by operators in control centers (c/c) inside or outside
the WAN. Operators monitor and control the power system through the software installed on clients. Each
TC sends data related to the component of the power system to servers through WAN. Multicast
communication based on IP is applied to the communication between TC and servers, and all servers can
receive data from every TC. The location of servers is transparent to clients. Critical functions of SCADA
can be installed in servers that can be backed up. WAN-based SCADA connects to the Internet through a
firewall. Communication model between tele-control units (TCs) and servers (SEVs) in a SCADA system
[93] is shown in Figure 105.

Carleton University TR SCE-05-13 September 2005

 133

System Network

Subnet 2

Subnet 2_1

Subnet 2_n

Subnet 1

SEVs/s
TC

s/s
TC

s/s
TC

s/s
TC

…

SEV: Sever
TC: Tele-Control unit
TCM: Tele-Control Master unit
s/s: Substation

SEV

TCM

SEV

TCM

s/s
TC

s/s
TC

s/s
TC

Figure 105- Communication model between tele-control units and servers in a SCADA system [93].

Power systems usually have a hierarchical operational organization [94]. A typical operational organization
of power systems is shown in Figure 106. This helps to make them a good candidate for our case study, as
they fit well to our discussions on Network Deployment Diagram and Network Interconnectivity Tree
(NIT) in Section 5.5.

Central Load Dispatching Office

Nuclear and Thermal Power Stations

Regional Load Dispatching Offices

Transformer Substations

Local Load Dispatching Office

Hydroelectric Power Stations

Transformer Substations

Figure 106-A typical operational organization for power systems [94].

12.3.2 SCAPS Specifications

We intend to design a SCADA power system which controls the power distribution grid across a nation
consisting of several provinces. Each province has several cities and regions. Each city and region has
several local power distribution grids. There is one central server in each province which gathers the
SCADA data from Tele-Control units (TCs) from all over the province, installed in local grids, and perform
the following real-time data-intensive safety-critical functions as part of the Power Application Software
installed on the SCAPS servers:

• Overload monitoring and control: Using the data received from local TCs, each provincial server
identifies the overload conditions on a local grid and cooperates with other provinces’ servers to
reduce the load on overloaded local grids. If the grid stays overloaded for several seconds and the
load does not get decreased, a system malfunction is to occur, such as hardware damage and
regional black-out.

• Detection of separated power system: Any separated (disconnected) grid should be identified
immediately by the central server, and proper precautions should be made to balance the
regional/provincial/national load due to this black-out so that the rest of the system stays stable.

Carleton University TR SCE-05-13 September 2005

 134

• Power restoration after network failure: Presents emergency strategies to prevent network disruption
just after a network fault and later presents strategies and switching operation of breakers and
disconnectors to restore power while keeping network’s reliability.

It should be noted that we only focus on the real-time data-intensive safety-critical functions of the SCAPS
here. Therefore, our stress test technique will be more effective in revealing faults if it is applied to such
functions (use-cases) of a SUT. The above three are typical functions performed by SCADA power systems
[93, 122], and will be shown in a use case diagram (Section 12.3.4), where we present the partial UML
model of SCAPS. Some of the non real-time, non safety-critical functions of these systems, which we do not
consider in our system, are [93, 122]:

• State estimation: Estimates most likely numerical data set to represent current network
• Load forecasting: Anticipates hourly total loads (24 points) for 1-7 days ahead based on the weather

forecast, type of day, etc. utilizing historical data about weather and load.
• Power flow control: Supports operators to provide effective power flow control by evaluating

network reliability for each several-minute time period for the next several hours, considering
anticipated total load, network configuration, load flow, and contingencies.

• Data maintenance: Enables operator to modify database of power apparatus and network topology
by drawing single line diagrams on the control screen and defining parameters.

• Economical load dispatching: Controls generator outputs economically according to demand
considering the dynamic characteristics of boiler controller of thermal power generators while
keeping ability to respond quickly to sudden load changes.

• Unit commitment of generator: A suitable schedule for starting/stopping the generators for the next
1-7 days is made using dynamic programming.

12.3.3 SCAPS Meets the Case-Study Requirements

To justify our decision, we discuss below how SCAPS meets all the requirements in Section 12.2.1:
• Requirement 1: SCAPS is a distributed, hard real-time, and safety-critical, as discussed in Section

12.2.1.
• Requirement 2: TCs send large amounts of information about the status and load of each component

in their distribution grid to the provincial servers. SCAPS is therefore data-intensive.
• Requirement 3: We design and build a SCAPS prototype, using the architecture of existing similar

systems (Section 12.3.1). We had, however, to account for the limitation of our research center’s
hardware/software platforms when designing and implementing the system in such a way to
preserve the realism of our case study. For example, we did not have access to dedicated power
distribution hardware such as load meters and sensors and we used stubs to emulate their
behavior.

• Requirement 4: We develop the SCAPS UML model and source code, hence ensuring we have a
complete set of development artifacts.

• Requirement 5: Our SCAPS models make use of UML 2.0.

12.3.4 Partial UML Model

Consistent with the SCAPS specification in Section 12.3.2, its partial UML model is provided below. What
we mean by a partial model is one which mostly includes the model elements required by our stress test
approach, as discussed in Chapter 5. The UML model, presented in this section, consists of the following
artifacts:

• Use-Case diagram: Although this diagram is not needed by our testing technique, we present it to
provide the reader with a better understanding on the overall functionality of the system.

• Network deployment diagram
• Class diagram
• Sequence diagrams

Carleton University TR SCE-05-13 September 2005

 135

• Modified Interaction Overview Diagram (MIOD)

12.3.4.1 Use-Case Diagram

The SCAPS use-case diagram is shown in Figure 107.
Real-time data- intensive

safety-critical

Overload
Monitoring (OM)

«uses»

Detection of
Separated Power System (DSPS)

Power Restoration
after Network Failure (PRNF)

Gathering data
from local TCs

«uses»

*

*

*

*

*

*

*

*

ASA (Automatic
System
Agent)

Overload Control
(OC)

OM_ON

OM_QC

«uses»

DSPS_ON

DSPS_QC

«uses»

«uses»

«uses»

«uses»

«uses» TCs (Tele-
Control units)

* *

Figure 107- SCAPS use-case diagram.

We design SCAPS to be used in Canada. To simplify the design and implementation, we consider only two
Canadian provinces in the system, Ontario (ON) and Quebec (QC). For example, OM_ON stands for
overload monitoring for the province of Ontario; and DSPS_QC stands for Detection of Separated Power
System (DSPS) for the province of Quebec.

12.3.4.2 Network Deployment Diagram

The Network Deployment Diagram (NDD) of SCAPS is shown in Figure 108.

«network»
Ontario

TC_YOW1

«network»
Canada

«network»
Quebec

«network»
Ottawa

«network»
Toronto

TC_YOW2

TC_YOW3

TC_YYZ1

TC_YYZ2

«network»
Montreal

TC_YMX1

TC_YMX2

«network»
Quebec City

TC_YQB1

TC_YQB2

SEV_ON SEV_QC

SEV_CA2SEV_CA1

Figure 108- SCAPS network deployment diagram.

The networks for the provinces of Ontario and Quebec are shown in the NDD. Only two cities are
considered in each of these two provinces. Three TCs (Tele-Control units) are considered for the city of
Ottawa, while other cities have two TCs. There is one server (SEV_ON and SEV_QC) in each of the

Carleton University TR SCE-05-13 September 2005

 136

provinces. There are two servers (SEV_CA1 and SEV_CA2) at the national level. SEV_CA1 is the main
server. SEV_CA2 is the backup server, i.e., it starts to operate whenever the main server (SEV_CA1) fails.

12.3.4.3 Class Diagram

Part of the SCAPS class diagram which is required to demonstrate the case study is shown in Figure 109.
The classes are grouped in two groups: entity and control classes [47, 124]. Entity classes are those which
are used either as parameters (by inheriting from SetFuncParameter) or return values (by inheriting from
QueryFuncResult) of the method of control classes. Control classes are those from which active control
objects will be instantiated and are the participating objects in SDs. All entity classes are data-intensive (by
inheriting from Data-Intensive). Furthermore, since there are two main groups of use-cases (overload and
separated grid handlers), we group entity classes by two abstract classes GridData and LoadData. LoadStatus
and GridStatus are the results of function query in class TC and queryONData and queryQCData in
ProvController class. LoadPolicy and GridStructure are the parameters of set functions setNewLoadPolicy and
setNewGridStructure in class TC, respectively. For brevity, usage dependencies among classes have not been
shown in the class diagram, e.g. from ProvController to QueryFuncResult.

Tele-Control (TC) unit objects will be instantiated from class TC. Objects of class ProvController and ASA
will be deployed on provincial (SEV_ON and SEV_QC) and national servers (the main server SEV_CA1 and
the backup SEV_CA2), respectively.

LoadData

Data-Intensive

GridData

LoadPolicyLoadStatusGridStructure GridStatus

+query(in dataType, out output:QueryFuncResult)
+setNewLoadPolicy (in policy:LoadPolicy)
+setNewGridStructure(in gs:GridStructure)

TC

+analyzeOverload(in load:LoadStatus)
+balanceLoadON(in loadON:LoadStatus, in loadQC:LoadStatus)
+balanceLoadQC(in loadON:LoadStatus, in loadQC:LoadStatus)
+buildNewGridStructureON(in gsON:GridStatus, in gsQC:GridStatus, out gs:GridStructure)
+buildNewGridStructureQC(in gsON:GridStatus, in gsQC:GridStatus, out gs:GridStructure)

ASA

+queryONData(in dataType, out output:QueryFuncResult)
+queryQCData(in dataType, out output:QueryFuncResult)

ProvController

QueryFuncResult

SetFuncParameter

Entity Classes

Control Classes

-End1*

-End2*

-End1*

-End2*

gridStatus loadStatus

Figure 109-SCAPS partial class diagram.

12.3.4.4 Sequence Diagrams

To render the effort involved in our case study manageable, we simplified the design model and
implementation of SCAPS by only accounting for a subset of use cases and by implementing stubs
simulating some of the functionality of the system. In doing so, we tried to emulate as closely as possible
the behavior of real SCADA-based power systems..

More precisely, we designed the SDs in ways that the simplifications did not impact the types of faults
(e.g., RT faults) targeted by our stress test technique. We incorporated enough messages and alternatives in

Carleton University TR SCE-05-13 September 2005

 137

SDs to allow the generation of non-trivial stress test requirements. Since we designed SCAPS as a hard RT
system, we therefore modeled the RT constraint using the UML SPT profile [10] to extend the SDs.

Eight SDs are presented in Figure 110-Figure 115. They correspond to use-cases in the SCAPS use-case
diagram (Figure 107). SDs OM_ON and OM_QC in Figure 110 correspond to the overload monitoring use
case. For example, an object of type ASA (Automatic System Agent) sends a message to an object of type
ProvController (provincial controller) in SD OM_ON to query Ontario’s load data. The result is returned and
is stored in ASAloadON. The object of type ASA then analyzes the overload situation by analyzing the
ASAloadON.

sd OM_ON

analyzeOverload(:ASA.loadON)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

ref
queryONData(“load”)

sd OM_QC

analyzeOverload(:ASA.loadQC)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_QC}

(a) (b)

queryONData(“load”)

:ASA.loadON

ref
queryQCData(“load”)

queryQCData(“load”)

:ASA.loadQC
{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(400,'ms')
RTend=(1200,'ms')}

{RTstart=(1200,'ms')
RTend=(1300,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(300,'ms')
RTend=(900,'ms')}

{RTstart=(900,'ms')
RTend=(1000,'ms')}

Figure 110- SDs OM_ON and OM_QC (Overload Monitoring).

The two SDs in Figure 111 (queryONData(dataType)) and Figure 112 (queryQCData(dataType)) are utility SDs
which are used by the other SDs using the InteractionOccurrence construct. As it was shown in the Network
Deployment Diagram (NDD) of SCAPS (Figure 108), five TCs (Tele-Control units) were considered for the
province of Ontario. Therefore, there is a parallel construct made up of five interactions in the SD of Figure
111 which queries the load data from each of the five TCs. Reply messages in queryONData(dataType) and
queryQCData(dataType) have been labeled based on the name of the sender object. For example, the reply
message YOW1 is a reply to the load query from the TC deployed on the node YOW1 (one of the TCs in the
city of Ottawa). The entire load data of each province is finally returned by an object of type ProvController
to the caller.

sd queryONData(dataType)

:ProvController
{node = SEV_ON}

:TC
{node = TC_YOW1}

:TC
{node = TC_YOW2}

:TC
{node = TC_YOW3}

:TC
{node = TC_YYZ1}

:TC
{node = TC_YYZ2}

par
query(dataType)

YOW1 query(dataType)

query(dataType)

query(dataType)

query(dataType)

YOW2

YOW3

YYZ1

YYZ2

queryONData(dataType)
{RTstart=(50,'ms')
RTend=(250,'ms')}{RTstart=(0,'ms')

RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(50,'ms')
RTend=(400,'ms')}

{RTstart=(50,'ms')
RTend=(280,'ms')} {RTstart=(50,'ms')

RTend=(150,'ms')}

{RTstart=(50,'ms')
RTend=(200,'ms')}

Figure 111-SD queryONData(dataType).

Carleton University TR SCE-05-13 September 2005

 138

sd queryQCData(dataType)

:ProvController
{node = SEV_QC}

:TC
{node = TC_YMX1}

:TC
{node = TC_YMX2}

:TC
{node = TC_YQB1}

:TC
{node = TC_YQB2}

par
query(dataType)

YMX1 query(dataType)

query(dataType)

query(dataType)

YMX2

YQB1

YQB2

queryQCData(dataType)

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(100,'ms')
RTend=(300,'ms')}

{RTstart=(100,'ms')
RTend=(200,'ms')}

{RTstart=(100,'ms')
RTend=(200,'ms')}

{RTstart=(100,'ms')
RTend=(200,'ms')}

Figure 112-SD queryQCData(dataType).

OC (Overload Control) SD (Figure 113) checks if there is overload situation in any of the two provinces
(using overloadIn() as a condition). If such a case has occurred in any of the two provinces, a new power
distribution load policy is generated by an object of type ASA and it is sent to the respective provincial
controller (using setNewLoadPolicy()).

Similar to the OM_ON and OM_QC SDs, DSPS_ON and DSPS_QC SDs (Figure 114) fetch grid connectivity
data from the provincial controllers and check to see if there is any separated power system (using
detectSeparatedPS()).

Similar to the OC SD (Figure 113), PRNF (Power Restoration after Network Failure) SD (Figure 115) checks
if there is any separated power system in any of the two provinces (using anySeparationIn()as a condition).
If such a case has occurred in any of the two provinces, a new power grid structure is generated by an
object of type ASA and it is sent to the respective provincial controller (setNewGridStructure()).

:ProvController
{node = SEV_QC}

sd OC

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

par

[overloadIn(:ASA:loadON)]

[else]

alt

newLoadON=balanceLoadON (:ASA.loadON, :ASA.loadQC)

setNewLoadPolicy(newLoadON)

[overloadIn(:ASA:loadQC)]

[else]

alt

newLoadQC=balanceLoadQC (:ASA.loadON, :ASA.loadQC)

setNewLoadPolicy(newLoadQC)

keepOldLoadPolicy ()

keepOldLoadPolicy()

{RTstart=(0,'ms')
RTend=(300,'ms')}

{RTstart=(300,'ms')
RTend=(1000,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(200,'ms')}

{RTstart=(200,'ms')
RTend=(800,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

Figure 113- SD OC (Overload Control).

Carleton University TR SCE-05-13 September 2005

 139

sd DSPS_ON

detectSeparatedPS(:ASA.connectivityON)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

sd DSPS_QC

detectSeparatedPS(:ASA.connectivityQC)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_QC}

(a) (b)

ref
queryQCData(“connectivity”)

queryQCData(“connectivity”)

:ASA.connectivityQC

ref
queryONData(“connectivity”)

queryONData(“connectivity”)

:ASA.connectivityON

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(600,'ms')
RTend=(1100,'ms')}

{RTstart=(1100,'ms')
RTend=(1300,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(500,'ms')
RTend=(900,'ms')}

{RTstart=(900,'ms')
RTend=(1100,'ms')}

Figure 114-SD DSPS_ON and DSPS_QC (Detection of Separated Power System).

:ProvController
{node = SEV_QC}

sd PRNF

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

par

[anySeparationIn(:ASA:connectivityON)]

[else]

alt

newGSON=buildNewGridStructureON(:ASA.connectivityON, :ASA.connectivityQC)

setNewGridStructure(newGSON)

[anySeparationIn(:ASA:connectivityQC)]

[else]

alt

newGSQC=buildNewGridStructureQC(:ASA.connectivityON, :ASA.connectivityQC)

setNewGridStructure(newGSQC)

{RTstart=(0,'ms')
RTend=(300,'ms')}

{RTstart=(300,'ms')
RTend=(1000,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

keepOldGridStructure()

keepOldGridStructure()

{RTstart=(0,'ms')
RTend=(400,'ms')}

{RTstart=(400,'ms')
RTend=(1000,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

Figure 115-SD PRNF (Power Restoration after Network Failure).

12.3.4.5 Modified Interaction Overview Diagram

The MIOD of SCAPS is shown in Figure 116. As denoted in the SCADA-based power systems literature
(e.g. [92-94, 96, 100]), such systems have both soft and hard RT constraints. As discussed in Section 5.6, RT
constraints can be either specified at the SD level (on messages execution times) or at the MIOD level (on
SDs execution times). MIOD-level RT constraints are dependent on SD-level constraints, since a SD’s actual
execution time is the sum of the messages execution times in one of its CCFPs, which executes in a
particular run.

Carleton University TR SCE-05-13 September 2005

 140

OM_ON OM_QC
DSPS_ON DSPS_QC

OC

[overloaded
status]

[normal load]

PRNF

[any separated TC]

[no separated TC]

[system shutdown] [system shutdown]

OM_STARTUP

«HRTaction»
{duration<(1000,'ms'),
criticality=1}

«HRTaction»
{duration<(1000,'ms'),
criticality=1}

«SRTaction»
{duration<(1300,'ms'),
missProb<(0.5)}

«SRTaction»
{duration<(1300,'ms'),
missProb<(0.2)}

SRTC1

SRTC2

HRTC1

HRTC2

Figure 116-SCAPS Modified Interaction Overview Diagram (MIOD).

We consider four MIOD-level RT constraints for SCAPS. Figure 116 shows two MIOD-level Soft RT (SRT)
and two Hard RT (HRT) constraints for SCAPS. We model them using the extended stereotypes
(«SRTaction» and «HRTaction») from the UML-SPT profile, as proposed in Section 5.6. The constraints are
labeled with numbers to make it easier to refer to them later, and are explained below.

1. SRT constraints
a. SRTC1: Overload monitoring (concurrent runs of OM_ON and OM_QC) should be done in

less than 1300 ms, with an acceptable missing probability of 0.2 (20%). In other words, this
constraint must not be missed in more than 20% of the runs.

b. SRTC2: Detection of separated power systems (concurrent runs of DSPS_ON and
DSPS_QC) should complete within less than 1300 ms from its start time. We set the
acceptable missing probability of this SRT constraint to 0.5.

2. HRT constraints
a. HRTC1: As soon as an overload situation is detected, overload control policy (OC SD)

should be executed in less than 1000 ms. We assign criticality1=1 to this constraint. As
discussed in Section 5.6, criticality of a HRT constraint ranges between 0 (for a HRT
constraint with no critical consequences) to 1 (for a constraint with highly critical
consequences).

b. HRTC2: As soon as a separated power system is detected, the power restoration policy
(PRNF SD) should be executed in less than 1000 ms. We assign criticality=1 to this
constraint.

12.3.5 Implementation

SCAPS was developed using Borland Delphi2, which is a well-known IDE (Integrated Development
Environment) for RAD (Rapid Application Development). Delphi is an Object-Oriented (OO) graphical
toolset for developing Windows applications in Pascal programming language. Delphi was selected as it

1 As defined by UML SPT profile [10], criticality determines the extent to which the consequences of
missing a hard deadline are unacceptable.
2 www.borland.com/delphi

Carleton University TR SCE-05-13 September 2005

 141

enables rapid development of prototype applications without spending extensive time on programming
details.

We developed only one Delphi application for SCAPS. The application asks the user for the node on which
it is to run, e.g., SEV_CA1, SEV_ON, and TC_YOW1. Afterwards, the business logic of the application
changes accordingly. For example, if SEV_CA1 is chosen, the application switches to the national server
node, waiting for connections from provincial nodes. When different copies of the application on different
nodes have been deployed and all nodes connections are in line, the system then starts functioning. A
screenshot of the main screen of SCAPS is shown in Figure 117, where the application is running as a
SEV_CA1 node and has just accepted a connection from the TC_YOW1 node.

Figure 117-A screenshot of the main screen of SCAPS.

We had to account for the limitation of our research center’s hardware/software platforms when
implementing the system in such a way to preserve the realism of our case study. The parts of the system
for which we had to incorporate stubs to emulate their behavior were: (1) dedicated power distribution
hardware such as load and connectivity meters and sensors, which are parts of the TC actors (refer to the
SCAPS use-case diagram in Figure 107), and (2) complex functionalities of the power application software,
such as the analyzeOverload function in the ASA class to decide whether a load overload situation has
occurred, given an instance of the LoadPolicy class (refer to the SCAPS class diagram in Figure 109).

As to the design of stubs for the dedicated power distribution hardware, there was no need to try to
emulate similar data to what is done in real systems, because as we will see in Sections 12.4 and 12.7,
testing SCAPS in this work is based on triggering specific DCCFPs in specific time instances. To enforce
SCAPS to execute specific DCCFPs, we found it easier, in terms of implementation and controllability, to
embed a test driver component inside SCAPS than manipulating data values so that specific edges of
decision nodes are taken. The test driver was responsible for guiding the control flow in each conditional
statement to follow a specific edge specified by a test case. In terms of returned values by stubs for the
dedicated power distribution hardware, for example function query() of class TC, they only return a
random large data object.

The implementation of stubs for complex functionalities of the power application software was also similar
to that of the dedicated power distribution hardware. The results generated by such functions were not
really needed in our context to execute test cases. However, we had to make sure the durations of such
functions were as close as possible to real world situations. We made realistic assumptions in such cases
using the power systems literature [92-94, 96, 100], e.g., we assumed that function analyzeOverload of class
ASA takes 100 ms to run (refer to the SDs OM_ON in Figure 110). As we had embedded a test driver
component inside SCAPS, we could easily use it to make the control flow take specific paths inside each
stubbed function.

12.3.6 Hardware and Network Specifications

The SEV_CA1 server application was deployed on a PC with Windows XP, Pentium 4 2.80 GHz CPU, with
2 GB of RAM and a 3COM Gigabit LOM network card. The Quebec server SEV_QC and its regional tele-
control units were deployed on a PC with Windows 2000, 2 GHz CPU, 1 GB of RAM, and a 3COM Fast

Carleton University TR SCE-05-13 September 2005

 142

Ethernet Controller network card. The Ontario server SEV_ON and its regional tele-control units were
executed as different applications on a Dell PowerEdge 2600 server with Windows 2000, two Pentium 4
2.8GHz CPUs, and an Intel PRO/1000 XT network card. The LAN was a 100 Mbps network.

12.4 Derivation of Network-aware Stress Test Cases

Using the given UML design model in Section 12.3.4, we first derive the test model required by our test
technique (Sections 12.4.1-12.4.5). We then consider three stress test objectives in Section 12.4.7. Section
12.4.8 and Section 12.4.9 describe how the stress test requirements and test cases corresponding to the
chosen test objectives are derived, respectively.

12.4.1 Network Interconnectivity Tree

The Network Interconnectivity Tree (NIT) of SCAPS can be derived from the Network Deployment
Diagram (NDD) in Figure 108. The NIT is shown in Figure 118.

Quebec

Canada

Toronto Quebec City

TC_YYZ1

Ottawa

Ontario

TC_YYZ2TC_YOW1 TC_YOW3TC_YOW2

SEV_ON SEV_QC

TC_YMX1 TC_YMX2

Montreal

TC_YQB1 TC_YQB2

SEV_CA1 SEV_CA2

Figure 118- SCAPS Network Interconnectivity Tree (NIT) .

12.4.2 Control Flow Analysis of SDs

We presented a technique in Chapter 6 to perform control flow analysis on UML 2.0 SDs. We presented the
concept of CCFG (Concurrent Control Flow Graph) as a CFM (Control Flow Model) for SDs. We apply the
technique on the SDs of Section 12.3.4.4. CCFGs shown in Figure 119 to Figure 124 correspond to SDs in
Figure 110 to Figure 115. CCFGs have been labeled by following the convention: CCFG(SD_name).

Since SD OM_STARTUP does not have any distributed message and has only one CCFP, it will not be
relevant to our stress testing technique. Hence, there is no need to derive its control flow information.

CCFG(OM_ON)

CCFG(queryONData)

:ASA.loadON=queryONData(“load”)

query(dataType)

YOW1

query(dataType) query(dataType)

YOW3

query(dataType)query(dataType)

YOW2 YYZ1 YYZ2

A2 A3 A4 A5 A6

A7 A8 A9 A10 A11

analyzeOverload(:ASA.loadON)

A13

queryONData(“load”)

A1

A12

Figure 119-CCFG(OM_ON).

Carleton University TR SCE-05-13 September 2005

 143

CCFG(OM_QC)

CCFG(queryQCData)

:ASA.loadQCFD=queryQCFDData(“load”)

query(dataType)

YMX1

query(dataType) query(dataType)query(dataType)

YMX2 YQB1 YQB2

B2 B3 B4 B5

B6 B7 B8 B9

B10

B11

analyzeOverload(:ASA.loadQCFD)

queryQCData(“load”)

A1

Figure 120-CCFG(OM_QC).

CCFG(OC)

[overloadIn
(:ASA:loadON)]

setNewLoadPolicy(newLoadON) setNewLoadPolicy(newLoadQC)

[overloadIn
(:ASA:loadQC)]

[else] [else]

C1
C2

C3 C4

newLoadON=balanceLoadON
(:ASA.loadON, :ASA.loadQC)

newLoadQC=balanceLoadQC
(:ASA.loadON, :ASA.loadQC)

keepOldLoadPolicy()keepOldLoadPolicy()
C5 C6

Figure 121-CCFG(OC).

CCFG (DSPS_ON)

CCFG (queryONData)

:ASA.connectivityON=queryONData(“connectivity”)

query(dataType)

YOW1

query(dataType) query(dataType)

YOW3

query(dataType)query(dataType)

YOW2 YYZ1 YYZ2

D2 D3 D4 D5 D6

D7 D8 D9 D10 D11

D13

queryONData(“connectivity”)

D1

D12

detectSeparatedPS(:ASA.connectivityON)

Figure 122-CCFG(DSPS_ON).

Carleton University TR SCE-05-13 September 2005

 144

CCFG(DSPS_QC)

CCFG(queryQCData)

:ASA.connectivityQC=queryQCData(“connectivity”)

query(dataType)

YMX1

query(dataType) query(dataType)

YQB1

query(dataType)

YMX2 YQB2

E2 E3 E4 E5

E6 E7 E8 E9

E10

E11

queryQCData(“connectivity”)

E1

detectSeparatedPS(:ASA.connectivityQC)

Figure 123-CCFG(DSPS_QC).

CCFG(PRNF)

[anySeparationIn
(:ASA:connectivityON)]

setNewGridStructure(newGSON) setNewGridStructure(newGSQC)

[anySeparationIn
(:ASA:connectivityQC)]

[else] [else]

F1 F2

F3 F4

newGSON =buildNewGridStructureON
(:ASA.connectivityON, :ASA.connectivityQC)

newGSQC=buildNewGridStructureQC
(:ASA.connectivityON, :ASA.connectivityQC)

keepOldGridStructure()keepOldGridStructure()
F5

F6

Figure 124-CCFG(PRNF).

12.4.3 Derivation of Distributed Concurrent Control Flow Paths

Using the technique presented in Chapter 6, we derive the CCFPs and DCCFPs of the CCFGs shown in
Figure 119 to Figure 124. The CCFPs and DCCFPs are shown in Figure 125. To ease future references, we
assign SDi and ρi,j indices to SDs and the DCCFPs of each SD, respectively. Let us assign ρ0,0 to the only
CCFP of SD OM_STARTUP, which does not contain any distributed message.

Carleton University TR SCE-05-13 September 2005

 145

{
{ { { {

{ { { {

=⇒

=

=⇒

=

=⇒

=

=⇒

=

=⇒

=

=⇒

=

4,63,62,61,6

6

1,5

5

1,4

4

4,33,32,31,3

3

1,2

2

1,1

1

6

5

4

5

6

3

4

3

6

5

42

31

10

95

84

73

62

11110

95

84

73

62

1

12

116

105

94

83

72

11312

116

105

94

83

72

1

6

5

4

5

6

3

4

3

6

5

42

31

10

95

84

73

62

11110

95

84

73

62

1

12

116

105

94

83

72

11312

116

105

94

83

72

1

,,,)(,)(

)_()_(

)_()_(

,,,)(,)(

)_()_(

)_()_(

ρρρρ

ρ

ρ

ρρρρ

ρ

ρ

F

F

F

F

F

F

F

F
PRNFDCCFP

F

F

FF

FF
PRNFCCFP

E

EE
EE
EE

EE

EQCDSPSDCCFPEE

EE
EE
EE

EE

EQCDSPSCCFP

D

DD
DD
DD

DD
DD

DONDSPSDCCFPDD

DD
DD
DD

DD
DD

DONDSPSCCFP

C

C

C
C

C

C

C
C

OCDCCFP
C

C

CC
CC

OCCCFP

B

BB

BB
BB

BB

BQCOMDCCFPBB

BB

BB
BB

BB

BQCOMCCFP

A

AA
AA
AA

AA
AA

AONOMDCCFPAA

AA
AA
AA

AA
AA

AONOMCCFP

SD

SD

SD

SD

SD

SD

321

44 344 21

43421

44 344 21

43421

4434421

43421

44 344 21

43421

Figure 125-CCFP and DCCFP sets of SDs in SCAPS.

12.4.4 Derivation of Independent-SD Sets

Using the method in Section 7.1 and the SCAPS MIOD (Figure 116), we derive SCAPS Independent-SD Sets
(ISDSs). We need to first derive the Independent-SDs Graph (ISDG) corresponding to the MIOD. Using the
algorithm presented in Section 7.1.2, the ISDG shown in Figure 126 is derived from the MIOD of Figure
116. Note that we do not include SD OM_STARTUP in this ISDT, since it does not have any distributed
messages.

As discussed in the algorithm presented in Section 7.1.2, every strongly connected component of an ISDG is
an ISDS. By finding the strongly connected component of the ISDG in Figure 126, the Independent SD Sets
of SCAPS can be derived. SCAPS has seven ISDSs:

}PRNF,OC{ISDS
}QC_DSPS,ON_DSPS,OC{ISDS}QC_DSPS,ON_DSPS,QC_OM{ISDS

}QC_DSPS,ON_DSPS,ON_OM{ISDS}PRNF,QC_OM,ON_OM{ISDS
}QC_DSPS,QC_OM,ON_OM{ISDS}ON_DSPS,QC_OM,ON_OM{ISDS

=
==
==
==

7

65

43

21

12.4.5 Derivation of Concurrent SD Flow Paths

Using the method in Section 7.2 and the SCAPS MIOD (Figure 116), we derive SCAPS’ Concurrent SD Flow
Paths (CSDFPs). As discussed in Section 7.2, in order to derive CSDFPs from a MIOD, we can have an
approach similar to the one used in the CFA of SDs (Chapter 6) to derive the CCFPs of a CCFG. Any path
from the start node to the final node of the SCAPS MIOD yields a CSDFP.

Carleton University TR SCE-05-13 September 2005

 146

(a)

 (b)

 (c)

 (d)

Figure 126-(a):Independent-SDs Graph (ISDG) corresponding to the MIOD of Figure 116. (b), (c) and (d): Three of the strongly
connected components of the ISDG (shown with dashed edges), yielding three ISDSs.

Since there are loops in the SCAPS MIOD, the number of CSDFPs is infinite. The rationale for having loops
in this MIOD is to execute overload monitoring and separated grid detection use cases repeatedly as long
as the system is up and running. Referring to the SCAPS MIOD (Figure 116), the control flow may take
different paths across multiple operation cycles of SCAPS. An operation cycle here denotes when SCAPS
revisits the two decision nodes just after the start node in its MIOD and repeats the overload monitoring
and separated grid detection scenarios. Therefore, depending on which path is taken in each cycle, different
CSDFPs can be derived as modeled by the grammar in Figure 127.

ε|

_
_

_
_

_
|

_
_

_
_

_

|

_
_

_
_

_
|

_
_

_
_

_

CSDFP
PRNF

QCDSPS
ONDSPS

OC
QCOM
ONOM

STARTUPOM
CSDFP

PRNF
QCDSPS
ONDSPS

QCOM
ONOM

STARTUPOM

CSDFP

QCDSPS
ONDSPS

OC
QCOM
ONOM

STARTUPOM
CSDFP

QCDSPS
ONDSPS

QCOM
ONOM

STARTUPOM
CSDFP

=

Figure 127-A grammar to derive CSDFPs from SCAPS’ MIOD.

In order to limit the number of CSDFPs for the purpose of deriving stress test requirements, we assume
that the number of cycles to derive CSDFPs is given by the tester. Some of the CSDFPs which can be
derived from the grammar in Figure 127 are:

Carleton University TR SCE-05-13 September 2005

 147

=

=

=

=

=

=

PRNF
QC_DSPS
ON_DSPS

QC_OM
ON_OM

STARTUP_OM

QC_DSPS
ON_DSPS

OC
QC_OM
ON_OM

STARTUP_OM
CSDFP

QC_DSPS
ON_DSPS

OC
QC_OM
ON_OM

STARTUP_OM

PRNF
QC_DSPS
ON_DSPS

OC
QC_OM
ON_OM

STARTUP_OM
CSDFP

PRNF
QC_DSPS
ON_DSPS

OC
QC_OM
ON_OM

STARTUP_OM
CSDFP

PRNF
QC_DSPS
ON_DSPS

QC_OM
ON_OM

STARTUP_OM
CSDFP

QC_DSPS
ON_DSPS

OC
QC_OM
ON_OM

STARTUP_OM
CSDFP

QC_DSPS
ON_DSPS

QC_OM
ON_OM

STARTUP_OM
CSDFP

6

5

43

21

Figure 128-Some of the CSDFPs of SCAPS derived from the grammar in Figure 127.

There is only one cycle in the basic CSDFPs: CSDFP1, …, CSDFP4. CSDFP5 and CSDFP6 are two of the
possible CSDFPs which can be derived assuming two cycles. Other CSDFPs can be derived by arbitrary
concatenations of the basic CSDFPs.

12.4.6 Data Size of Messages

Note that, for brevity, we do not discuss the data structure of the entity data classes in SCAPS (Figure 109).
But according to the literature on SCADA-based power systems [92-94, 96, 100], data items such as load
status/policy and grid status/structure are usually data-intensive and can be implemented using large
data structures such as arrays. As the exact (or statistical average) sizes of this data classes is needed by our
stress test technique, we assume the values given in Table 11 as the mean data sizes of the entity data
classes in Figure 109. These values are realistic size estimates of real grid and load values according to the
literature on SCADA-based power systems [125]. For example, an instance of the load object of the power
distribution grid of a city includes the load values of the different hubs and components of the grid. This
value can vary depending on the size of the city as well as the complexity of the distribution grid. We
assume the data size to be in the order of several mega-bytes, which is reasonable assumption based on
what is reported in the specialized literature.

Note that we assume the data sizes in Table 11 to be representative for instances of all TCs. However, as
different TCs are deployed in different cities/regions, the load or grid status data can vary to a large extent.
This can be easily accounted for by extending data sub-classes and calculating the corresponding data sizes.

Data Class Mean Data Size
LoadStatus 4 MB
LoadPolicy 2 MB
GridStatus 3 MB
GridStructure 1 MB

Table 11-Mean data sizes of the entity data classes of SCAPS.

12.4.7 Stress Test Objective

In order to derive test requirements, recall that our stress test technique requires the definition of test
objectives according to the following template:

• Stress location: either a network or a node name

Carleton University TR SCE-05-13 September 2005

 148

• Stress direction (only for nodes): in, out or bidirectional. In our assumptions, only bidirectional stress
direction is applicable to a network stress location. Since networks are not end points of
communication, therefore “in” and “out” directions do not apply to them.

• Stress type: data or number of messages
• Stress duration: instant or interval (with period value)

To stress test SCAPS, let us consider the following three examples of test objectives:

(Canada, -, data, instant)

(SEV_CA1, in, data traffic, interval)

(SEV_ON, bidirectional, message traffic, instant)

Note that the main criterion in choosing good test objectives is to look for vulnerable (to distributed faults)
networks and nodes, given the hard real-time constraints in a system. As discussed in Section 12.3.4.5 and
modeled in the SCPAS MIOD (Figure 116), there are two hard real-time constraints in SCAPS: (1) the
power of any separated (disconnected) grid should be restored within 1000 ms, after detection, and (2) any
overload case in the grid should be controlled by the central server in less than 1000 ms. Failure of SCAPS
to meet any of these two requirements is unacceptable. Therefore, networks and nodes which are utilized
by SDs and are in the hard real-time region of a MIOD should be stress tested first. We choose the above
test objectives with this heuristic in mind.

12.4.8 Derivation of Test Requirements

We discuss here how the corresponding test requirements can be derived from the above three test
objectives.

12.4.8.1 Test Objective 1: (Canada, -, data traffic, instant)

The stress test location in this element is network Canada. Stress type is “data traffic”, and stress duration is
“instant”. We use the StressNetInsDT(net) stress test requirement generation technique, described in Section
9.11.2. We present below the steps of the algorithm to derive test requirements.

Step 1

In this step, maximum stress DCCFP of each SD is chosen. In order to do so, we need to find the maximum
data traffic (DT) value of each DCCFP first, whose goes over network Canada in NIT of Figure 118. We
consider all the DCCFPs of SCAPS (Figure 125).

For example, we show how the maximum DT value of the only DCCFP of SD OM_ON (SD1), which is ρ1,1,
is calculated. Finding the MaxNetInsDTValue (Algorithm 3) requires the values of function NetInsDT. Using
the timing information of the messages (Section 12.3.4.4) and their data sizes (Section 12.4.6), we can derive
the values of NetInsDT(ρ1,1,”Canada”,t) for all t. To better illustrate this, the timed-DT value representation
of DCCFP ρ1,1 and the resulting NetInsDT(ρ1,1,”Canada”,t) values are shown in Figure 129.

0 1 2 3 4 5 6 7 8 9 10 11 12

(x100) t (ms)

call mesage

reply mesage

DT value (MB)

10

20

30

A1

A12

(x100) t (ms)

NetInsDT(p1,1,”Canada”,t) (MB)

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12

4

5

6

7

20/7= 2.8

duration=700 ms

Timed-DT value representation of DCCFP p1,1

over network ”Canada”

Figure 129-(a): The timed-DT value representation of DCCFP ρ1,1, (b): The resulting NetInsDT(ρ1,1,”Canada”,t) function values.

Carleton University TR SCE-05-13 September 2005

 149

Note that as Algorithm 3 points out, only those distributed message which go through the network Canada
are considered in calculating NetInsDT(ρ1,1,”Canada”,t), and thus MaxNetInsDTValue(ρ1,1,”Canada”). We can
now calculate the MaxNetInsDTValue as:

() MBtCanadaNetInsDTCanadaTValueMaxNetInsD
t

8.2),"",(max)"",(1,11,1 == ρρ

We present another example by showing how MaxNetInsDTValue(ρ3,1,”Canada”) is calculated, where

=

4

3
1,3 C

C
ρ . The timed-DT value representation of DCCFP ρ3,1 and the resulting NetInsDT(ρ3,1,”Canada”,t)

function values are shown in Figure 130.

0 1 2 3 4 5 6 7 8 9 10 11 12

(x100) t (ms)

DT value (MB)

5

C3

(x100) t (ms)

NetInsDT(p3,1,”Canada”,t) (MB)
1

0 1 2 3 4 5 6 7 8 9 10 11 12

C4
duration=600 ms

duration =700 ms 2/6=
.33

2/7=
.28 0.61

Timed-DT value representation of DCCFP p3,1

over network ”Canada”

Figure 130-The timed-DT value representation of DCCFP ρ3,1, (b): The resulting NetInsDT(ρ3,1,”Canada”,t) function values.

As seen in CCFG(OC), Figure 121, Control flow nodes C3 and C4 correspond to messages
setNewLoadPolicy(newLoadON) and setNewLoadPolicy(newLoadQC), in SD OC (Figure 113), respectively.
Furthermore, as modeled in SD OC, the latter two messages are RT and their start and end time pairs are
[300ms, 1000ms] and [200ms, 800ms], respectively. Therefore, as shown in the timed-DT value
representation in Figure 130, data traffic due to C3 and C4 overlap each other in time interval [300ms,
800ms]. Each of C3 and C4 DT values are 2 MB, since they have an object of type LoadPolicy as the
parameter, and the data size of this class is 2 MB. The total DT during the interval [300ms, 1000ms], when
C3 and C4 overlap, is 4 MB. Considering the NetInsDT(ρ3,1,”Canada”,t) values in Figure 130, it is obvious
that:

() MBtCanadaNetInsDTCanadaTValueMaxNetInsD
t

61.0),"",(max)"",(1,31,3 == ρρ

Maximum DT values of other DCCFPs can be found in a similar manner. These values are shown below.

MBCanadaTValueMaxNetInsDMBCanadaTValueMaxNetInsD

MBCanadaTValueMaxNetInsDMBCanadaTValueMaxNetInsD
MBCanadaTValueMaxNetInsDMBCanadaTValueMaxNetInsD

CanadaTValueMaxNetInsDMBCanadaTValueMaxNetInsD
MBCanadaTValueMaxNetInsDMBCanadaTValueMaxNetInsD

0)"",(16.0)"",(

14.0)"",(3.0)"",(
3)"",(3)"",(

0)"",(33.0)"",(
28.0)"",(66.2)"",(

4,63,6

2,61,6

1,51,4

4,33,3

2,31,2

==
==
==
==
==

ρρ
ρρ
ρρ
ρρ
ρρ

By comparing the MaxNetInsDTValue’s of DCCPs, we now find the maximum stress DCCFP of each SD. All
SDs, except OC and PRNF, have only one DCCFP, therefore their maximum stress DCCFP will be their
only one DCCFP.

1,51,4

1,21,1

)"",_()"",_(
)"",_()"",_(

ρρ
ρρ
==

==
CanadaQCDSPSTDCCFPMaxNetInsDCanadaONDSPSTDCCFPMaxNetInsD

CanadaQCOMTDCCFPMaxNetInsDCanadaONOMTDCCFPMaxNetInsD

The maximum stress DCCFP of SDs OC and PRNF can be calculated as:

1,61,3)"",()"",(ρρ == CanadaPRNFTDCCFPMaxNetInsDCanadaOCTDCCFPMaxNetInsD

Step 2

According to Step 2 of Algorithm 3, we should now choose an ISDS (Independent-SD Set) which entails
maximum instant stress on network Canada. We derived the Independent-SD Sets of SCAPS in Section
12.4.4. Now, we have to find the MaxNetInsDT of every ISDS. For example, for

}ON_DSPS,QC_OM,ON_OM{ISDS =1
,)(1ISDSTValueMaxNetInsD can be calculated as:

Carleton University TR SCE-05-13 September 2005

 150

()()
()()
()()

() ()
()

MB...

"Canada",TValueMaxNetInsD

"Canada",TValueMaxNetInsD"Canada",TValueMaxNetInsD
"Canada","Canada",ON_DSPSTDCCFPMaxNetInsDTValueMaxNetInsD

"Canada","Canada",QC_OMTDCCFPMaxNetInsDTValueMaxNetInsD
"Canada","Canada",ON_OMTDCCFPMaxNetInsDTValueMaxNetInsD)ISDS(TValueMaxNetInsD

,

,,

4836282
14

1211

1

=++=

+

+=
+
+

=

ρ

ρρ

Similarly, the MaxNetInsDT of other ISDS’s can be calculated as:

MB...)ISDS(TValueMaxNetInsDMB..)ISDS(TValueMaxNetInsD
MB..)ISDS(TValueMaxNetInsDMB..)ISDS(TValueMaxNetInsD

MB....)ISDS(TValueMaxNetInsDMB...)ISDS(TValueMaxNetInsD

903060663360
683362883382

753062824836282

76

54

32

=+==++=
=++==++=

=++==++=

We now need to choose the ISDS which has the maximum value of the above function. We refer to this
ISDS as ISDSmax. As calculated above, it is evident that ISDS4 is ISDSmax.

Step 3

Step 3 of Algorithm 3 is to schedule the SDs of ISDSmax, chosen in the Step 2, so that all maximum stress
messages execute at the same time. First, the latest start time among the selected DCCFPs of all SDs in
ISDSmax should be calculated.

()()
()

() () ()

()
() msms,ms,msmax

start.E,start.D,start.Amax

start.mmin,start.mmin,start.mminmax

start.mminmaxestStartTimDCCFPsLate

MessageSetmMessageSetmMessageSetm

"Canada","Canada",SDTDCCFPMaxNetInsDTMsgsMaxNetInsDm}ON_DSPS,QC_OM{ISDSSD imaxi

600500600500
101212

321

==
=

=

=

∈∀∈∀∈∀

∈∀=∈∀

where:
• ()()"","",_1 CanadaCanadaONOMTDCCFPMaxNetInsDTMsgsMaxNetInsDMessageSet =

• ()()"Canada","Canada",ON_DSPSTDCCFPMaxNetInsDTMsgsMaxNetInsDMessageSet =2

• ()()"Canada","Canada",QC_DSPSTDCCFPMaxNetInsDTMsgsMaxNetInsDMessageSet =3

Now, we use DCCFPsLatestStartTime to schedule those SDs of ISDSmax, which have a DCCFP going through
network Canada (Step 3.2 of Algorithm 3). As }QC_DSPS,ON_DSPS,ON_OM{ISDSmax = , we need to
schedule SDs OM_ON, DSPS_ON and DSPS_QC. As presented in Step 3.2 of Algorithm 3, stress test
schedule is an ordered set of tuples ()maxmax , iiiSTS αρρ= where

maxiρ is the maximum DCCP of SDi ,
calculated using),(max netSDTDCFPMaxNetInsD ii =ρ , and

maxiαρ is
maxiρ ’s start time and is equal to

()()startnetTMsgsMaxNetInsDtStartTimeDCFPsLates ii .,min maxmax ραρ −= . If SDi is not a member of the selected ISDSmax

or it does not have a DCCFP going through network Canada, its tuple in the stress test schedule will be null.
Therefore, the stress test schedule for the current test objective will be:

() () () >=< null,,,,,,null,null,,ScheduleStressTest ,,,,,,tTestElemen 1515141411111 αρραρραρρ

where
1,1αρ and

4,4αρ can be calculated as:

()()
msmsms

startCanadaTMsgsMaxNetInsDtStartTimeDCFPsLates

100500600

."",min 1,11,1

=−=

−= ραρ ,

()()
msmsms

startCanadaTMsgsMaxNetInsDtStartTimeDCFPsLates

0600600

."",min 1,41,4

=−=

−= ραρ

and

()()
msmsms

start."Canada",TMsgsMaxNetInsDmintStartTimeDCFPsLates ,,

100500600
1515

=−=

−= ραρ

Carleton University TR SCE-05-13 September 2005

 151

Therefore:

() () () >=< null,ms,,ms,,null,null,ms,ScheduleStressTest ,,,tTestElemen 1000100 1514111 ρρρ

The stress test schedule indicates that in order to instant stress test network Canada in terms of data traffic,
we have to execute DCCFPs

1,1ρ of SD OM_ON,
14,ρ of SD DSPS_ON

15,ρ of SD DSPS_QC and in

time=100ms, time=0ms and time=100ms, respectively. As discussed in Chapter 9, these are test
requirements and we need to derive appropriate test cases for them.

12.4.8.2 Test Objective 2: (SEV_CA1, in, data traffic, interval)

The stress test location in this element is node SEV_CA1. Stress direction is “in”, stress type is “data traffic”,
and stress duration is “interval”.

We use the StressNodInIntDT(nod) stress test requirement generation technique, described in Chapter 9. We
present below the steps of the algorithm to derive test requirements.

Step 1

Calculate Unit Data Traffic (UDT) of each DCCFP towards node SEV_CA1 using:

()
)(

),,(
),(

ij

t
ij

ij Duration

tnodNodInInsDT
nodNodInUDT

ρ

ρ
ρ

∑
=

We will need the values of the function under sigma to calculate the UDT value of each DCCFP. As an
example, we present here how to calculate the value of this function for ρ1,1. The values of function

)t,CA_SEV,(NodInInsDT , 111ρ in different time instances are derived from the Timed-DT value representation of
the DCCFP towards node SEV_CA1 and are sketched below.

0 1 2 3 4 5 6 7 8 9 10 11 12

(x100) t (ms)

call mesage

reply mesage

DT value (MB)

10

20

30

A12

(x100) t (ms)

NetInInsDT(p1,1,”SEV_CA1”,t) (MB)

0.01

0.02

0.03

0 1 2 3 4 5 6 7 8 9 10 11 12

0.04

0.05

0.06

0.07

20/700=0.028

duration=700 ms

Timed-DT value representation of DCCFP p1,1

towards node ”SEV_CA1”

()∑
t

ij)t,nod,(NodInInsDT ρ yields 20 MB. Hence:

()
ms/MB.

)(Duration

)t,CA_SEV,(NodInInsDT
)"CA_SEV",(NodInUDT

,

t
,

, 0160
1200

20
1

1
11

11

11 ≈==
∑

ρ

ρ
ρ

Calculating the Unit Data Traffic (UDT) of other DCCFP’s will yield us:

Carleton University TR SCE-05-13 September 2005

 152

msMBCASEVNodInUDT

msMBCASEVNodInUDT

msMBCASEVNodInUDT

msMBCASEVNodInUDT

msMBCASEVNodInUDT

msMBCASEVNodInUDT

msMBCASEVNodInUDT

msMBCASEVNodInUDT

msMBCASEVNodInUDT

msMBCASEVNodInUDT

msMBCASEVNodInUDT

/0
50
0

)"1_",(

/0
1000

0
)"1_",(

/0
1000

0)"1_",(

/0
1000

0)"1_",(

/0.0109
1100

12
)"1_",(

/0115.0
1300

15)"1_",(

/0
50
0

)"1_",(

/0
800
0

)"1_",(

/0
1000

0)"1_",(

/0
1000

0)"1_",(

/016.0
1000

16
)"1_",(

4,6

3,6

2,6

1,6

1,5

1,4

4,3

3,3

2,3

1,3

1,2

≈=

≈=

≈=

≈=

≈=

≈=

≈=

≈=

≈=

≈=

≈=

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

Now, using the above values, we find, among all DCCFPs of each SD, the one with maximum unit data
traffic.

nullCASEVPRNFrDTDCCFPMaxNodInPe

CASEVQCDSPSrDTDCCFPMaxNodInPe

CASEVONDSPSrDTDCCFPMaxNodInPe
nullCASEVOCrDTDCCFPMaxNodInPe

CASEVQCOMrDTDCCFPMaxNodInPe

CASEVONOMrDTDCCFPMaxNodInPe

=

=

=
=

=

=

)"1_",(

)"1_",_(

)"1_",_(
)"1_",(

)"1_",_(

)"1_",_(

1,5

1,4

1,2

1,1

ρ

ρ

ρ

ρ

Note that we arbitrarily choose one of the DCCFPs of a SD, in case if they have equal NodInUDT values.
Also, the output of the above function for a SD, which does not have any DT towards node SEV_CA1, is
null.

Step 2

We calculate each CSDFP’s UDT value towards node SEV_CA1 using:

()()nodrDTMaxNodInPeCSDFPSSelectCCFPDuration

tnodnodSDrDTDCCFPMaxNodInPeNodInInsDT

nodCSDFPNodInUDT
i

CSDFPSD t
i

i

,,

),),,((

),(
∑ ∑
∈∀ ∀=

As discussed in Section 12.4.5, SCAPS has unlimited number of CSDFPs. We presented the primitive ones
in Figure 128. Here we calculate the UDT value of the primitive CSDFPs and discuss how the UDT value of
other CSDFPs can be computed.

As an example, we show here how to calculate the value of this function for:

=

QCDSPS
ONDSPS

OC
QCOM
ONOM

STARTUPOM
CSDFP

_
_

_
_

_

2

.

()()

()()

()() ms/MB
"CA_SEV",rDTMaxNodInPe,CSDFPSSelectCCFPDuration

)t,"CA_SEV",(NodInInsDT)t,"CA_SEV",(NodInInsDT

)t,"CA_SEV",(NodInInsDT)t,"CA_SEV",(NodInInsDT

)t,"CA_SEV",(NodInInsDT

"CA_SEV",rDTMaxNodInPe,CSDFPSSelectCCFPDuration

)t,"CA_SEV"),"CA_SEV",OC(rDTDCCFPMaxNodInPe(NodInInsDT

)t,"CA_SEV"),"CA_SEV",QC_DSPS(rDTDCCFPMaxNodInPe(NodInInsDT

)t,"CA_SEV"),"CA_SEV",ON_DSPS(rDTDCCFPMaxNodInPe(NodInInsDT

)t,"CA_SEV"),"CA_SEV",QC_OM(rDTDCCFPMaxNodInPe(NodInInsDT

)t,"CA_SEV"),"CA_SEV",ON_OM(rDTDCCFPMaxNodInPe(NodInInsDT

)t,"CA_SEV"),"CA_SEV",STARTUP_OM(rDTDCCFPMaxNodInPe(NodInInsDT

"CA_SEV",rDTMaxNodInPe,CSDFPSSelectCCFPDuration

)t,"CA_SEV"),"CA_SEV",SD(rDTDCCFPMaxNodInPe(NodInInsDT

)"CA_SEV",CSDFP(NodInUDT

t t
,,

t t
,,

t
,

t

t

t

t

t

t

CSDFPSD t

0.0225
2800

1215016200
1

11

11

10

1

11

11

11

11

11

11

1

11

1

2

1514

1312

11

2

2
2

2

≈
+++++

=

+

++

++

=

+

+

+

+

+

=

=

∑ ∑
∑ ∑

∑

∑
∑
∑
∑

∑

∑

∑ ∑

∀ ∀

∀ ∀

∀

∀

∀

∀

∀

∀

∀

∈∀ ∀

ρρ

ρρ

ρ

Carleton University TR SCE-05-13 September 2005

 153

We describe here how we calculate the value of the function Duration in the expression above. To do so, we
need to describe how a CCFPS is built from CSDFP2, with the criterion MaxNodInIntDT. Let us refer to this
CCFPS as CCFPS2. In order to build a corresponding CCFPS, each of the SDs in CSDFP2, are replaced with
the CCFP associated with maximum stress DCCFPs which are results of the MaxNodInIntDTDCCFP
function. Therefore:

()

=

=

)(
)(

)(
)(
)(

)(

)"1_",_(
)"1_",_(

)"1_",(
)"1_",_(
)"1_",_(

)"1_",_(

"1_",,

1,5

1,4

1,3
1,2

1,1
0,0

2

ρ
ρ

ρ
ρ
ρ

ρ

CCFP
CCFP

CCFP
CCFP
CCFP

CCFP

CASEVQCDSPSrDTDCCFPMaxNodInPe
CASEVONDSPSrDTDCCFPMaxNodInPe

CASEVOCrDTDCCFPMaxNodInPe
CASEVQCOMrDTDCCFPMaxNodInPe
CASEVONOMrDTDCCFPMaxNodInPe

CASEVSTARTUPOMrDTDCCFPMaxNodInPe

CASEVrDTMaxNodInPeCSDFPSSelectCCFP

where CCFP(aDCCFP) returns the CCFP associated with a DCCFP.

We now briefly show how the duration of the above CCFPS is calculated. Since as discussed in Section x,
the Duration function is a recursive one, we represent the call tree of the recursive algorithm in Figure 131
to better illustrate the idea. Note we assume duration of 500 ms for the only CCFP of SD OM_STARTUP,
CCFP0=CCFP(ρ0,0).

1,5

1,4

1,3
1,2

1,1
0,0

ρ
ρ

ρ
ρ

ρ
ρ

Duration

1,3

1,2

1,1
0,0 ρ

ρ
ρ

ρDuration

1,5

1,4

ρ
ρ

Duration

1,2

1,1

ρ
ρ

Duration
()1,3ρDuration ()1,4ρDuration ()1,5ρDuration

()1,1ρDuration ()1,2ρDuration

max

max

max

+

1000 ms1300 ms

1300 ms
1000 ms 1300 ms 1100 ms

1300 ms

2800 ms

2800 ms

()0,0ρDuration
500 ms

Figure 131-The call tree of the recursive algorithm Duration applied to CCFPS2.

The UDT values of the other primitive CSDFPs towards node SEV_CA1 can be calculated in a similar way.

msMBCASEVCSDFPNodInUDT

msMBCASEVCSDFPNodInUDT

msMBCASEVCSDFPNodInUDT

/0.0225
2800

0121501620
)"1_",(

/0.0225
2800

012151620
)"1_",(

/0.035
1800

12151620
)"1_",(

4

3

1

≈+++++=

≈++++=

≈+++=

The last step of the algorithm is to choose a CSDFP which has the highest UDT value among all CSDFPs.
Therefore, we choose CSDFP1 as CSDFPmax for this test objective. Furthermore, the corresponding
maximum stress DCCFPS is the test requirement for the current test objective. The corresponding DCCFPS
is:

Carleton University TR SCE-05-13 September 2005

 154

()

=

)(
)(

)(
)(
)(

)(
"1_",,

1,5

1,4

1,3
1,2

1,1
0,0

2

ρ
ρ

ρ
ρ
ρ

ρ

CCFP
CCFP

CCFP
CCFP
CCFP

CCFP
CASEVrDTMaxNodInPeCSDFPSSelectCCFP

12.4.8.3 Test Objective 3: (SEV_ON, bidirectional, message traffic, instant)

The stress test location in this element is node SEV_ON. Stress direction is “bidirectional”, stress type is
“message traffic”, and stress duration is “instant”.

We use the StressNodBiInsMT(nod) stress test requirement generation technique, described in Chapter 9. We
present below the steps of the algorithm to derive test requirements.

Step 1

Maximum node bidirectional instant message traffic (MaxNodBiInsMT) values of all DCCFPs are calculated.
These values are shown below.

1)"_",(

1)"_",(

1)"_",(

1)"_",(

0)"_",(

5)"_",(

1)"_",(

1)"_",(

1)"_",(

1)"_",(

0)"_",(

5)"_",(

4,6

3,6

2,6

1,6

1,5

1,4

4,3

3,3

2,3

1,3

1,2

1,1

=

=

=

=

=

=

=

=

=

=

=

=

ONSEVsMTValueMaxNodBiIn

ONSEVsMTValueMaxNodBiIn

ONSEVsMTValueMaxNodBiIn

ONSEVsMTValueMaxNodBiIn

ONSEVsMTValueMaxNodBiIn

ONSEVsMTValueMaxNodBiIn

ONSEVsMTValueMaxNodBiIn

ONSEVsMTValueMaxNodBiIn

ONSEVsMTValueMaxNodBiIn

ONSEVsMTValueMaxNodBiIn

ONSEVsMTValueMaxNodBiIn

ONSEVsMTValueMaxNodBiIn

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

As an example on how these values are calculated, we discuss)"_",(1,1 ONSEVsMTValueMaxNodBiIn ρ . Timed-

MT representation of DCCFP ρ1,1 from or towards node SEV_ON and the value of function
NodBiInsMT(ρ1,1 ,”SEV_ON”,t) are shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12

(x100) t (ms)

call mesage

reply mesage

MT

A12

(x100) t (ms)

NodBiInsMT(p1,1,”SEV_ON”,t)

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12

4

5

6

7
Timed-MT representation of DCCFP p1,1

from or towards node ”SEV_ON”

A1 A2
A3
A4
A5
A6

A7
A8
A9

A10
A11

Among DCCFPs of each SD, we now find the one with maximum stress value.

1,6

1,4

1,3

1,1

)"_",(
)"_",_(

)"_",_(

)"_",(
)"_",_(

)"_",_(

ρ

ρ

ρ

ρ

=
=

=

=
=

=

ONSEVPRNFDCCFPMaxNodBiMT
nullONSEVQCDSPSDCCFPMaxNodBiMT

ONSEVONDSPSDCCFPMaxNodBiMT

ONSEVOCDCCFPMaxNodBiMT
nullONSEVQCOMDCCFPMaxNodBiMT

ONSEVONOMDCCFPMaxNodBiMT

Step 2

We should now choose an ISDS (Independent-SD Set) which entails maximum bidirectional instant
message stress on node SEV_ON. We derived the Independent-SD Sets of SCAPS in Section 12.4.4. We have
to find the MaxNodBiInsMTValue of every ISDS. For example, for }ON_DSPS,QC_OM,ON_OM{ISDS =1

,
)(1ISDSsMTValueMaxNodBiIn can be calculated as:

Carleton University TR SCE-05-13 September 2005

 155

()()
()()
()()

()
()
()

10505
14

12

11

1

=++=

+

+

=
+
+
=

"ON_SEV",sMTValueMaxNodBiIn

"ON_SEV",sMTValueMaxNodBiIn

"ON_SEV",sMTValueMaxNodBiIn
"ON_SEV","ON_SEV",ON_DSPSTDCCFPMaxNetInsDsMTValueMaxNodBiIn

"ON_SEV","ON_SEV",QC_OMTDCCFPMaxNetInsDsMTValueMaxNodBiIn
"ON_SEV","ON_SEV",ON_OMTDCCFPMaxNetInsDsMTValueMaxNodBiIn)ISDS(sMTValueMaxNodBiIn

,

,

,

ρ

ρ

ρ

Similarly, the MaxNodBiInsMTValue of other ISDSs can be calculated as:

2116051
505010055

71155005

76

54

32

=+==++=
=++==++=

=++==++=

)ISDS(sMTValueMaxNodBiIn)ISDS(sMTValueMaxNodBiIn
)ISDS(sMTValueMaxNodBiIn)ISDS(sMTValueMaxNodBiIn
)ISDS(sMTValueMaxNodBiIn)ISDS(sMTValueMaxNodBiIn

We now need to choose the ISDS which has the maximum value of the above function. We refer to this
ISDS as ISDSmax. As calculated above, ISDS1 and ISDS4 have the highest value of 10 messages. We
arbitrarily choose ISDS1 as ISDSmax.

Step 3

Step 3 of the algorithm is to schedule the SDs of ISDSmax, chosen in the Step 2, so that all maximum stress
messages execute at the same time. First, the latest start time among the selected DCCFPs of all SDs in
ISDSmax should be calculated.

()()
()

()
()

()
()

()
()

() () msms,null,msmaxstart.D,null,start.Amax

start.mmin,start.mmin,start.mminmax

start.mminmaxestStartTimDCCFPsLate

"ON_SEV",sMTMsgsMaxNodBiInm"ON_SEV",sMTMsgsMaxNodBiInm"ON_SEV",sMTMsgsMaxNodBiInm

"ON_SEV","ON_SEV",SDsMTDCCFPMaxNodBiInsMTMsgsMaxNodBiInm}ON_DSPS,ON_OM{ISDSSD

,,,

imaxi

10010010022

141211

===

=

=

∈∀∈∀∈∀

∈∀=∈∀

ρρρ

Now, we use DCCFPsLatestStartTime to schedule those SDs of ISDSmax, which have a DCCFP with
bidirectional message traffic to/from node SEV_ON (Step 3.2 of Algorithm x). As

}ON_DSPS,QC_OM,ON_OM{ISDSmax = , we need to schedule SDs OM_ON, OM_QC and DSPS_ON. Stress
test schedule is an ordered set of tuples ()maxmax , iiiSTS αρρ= where

maxiρ is the maximum DCCFP of SDi,
calculated using),(max nodSDsMTDCFPMaxNodBiIn ii =ρ , and

maxiαρ is
maxiρ ’s start time and is equal to:

()()startnodsMTMsgsMaxNodBiIntStartTimeDCFPsLates ii .,min maxmax ραρ −=

If SDi is not a member of the selected ISDSmax or it does not have a DCCFP going through node “SEV_ON”,
its tuple in the stress test schedule will be null. Therefore, the stress test schedule for the current test
objective will be:

() () >=< nullnullnullnullScheduleStressTest tTestElemen ,,,,,,, 1,41,41,11,13 αρραρρ

where
1,1αρ and

4,4αρ can be calculated as:

()()
msmsms

startONSEVsMTMsgsMaxNodBiIntStartTimeDCFPsLates

0100100

."_",min 1,11,1

=−=

−= ραρ

and

()()
msmsms

startONSEVsMTMsgsMaxNodBiIntStartTimeDCFPsLates

0100100

."_",min 1,41,4

=−=

−= ραρ

Therefore:

() () >=< nullnullmsnullnullmsScheduleStressTest tTestElemen ,,0,,,,0, 1,41,13 ρρ

Carleton University TR SCE-05-13 September 2005

 156

The stress test schedule indicates that in order to instant stress test node “SEV_ON” in terms of message
traffic, we have to execute both DCCFPs

1,1ρ of SD OM_ON and
4,4ρ of SD DSPS_ON in time=0ms.

12.4.9 Derivation of Test Cases

We derived three sets of test requirements for the three test objectives in the previous sections. We derive
here the corresponding test cases.

12.4.9.1 Test Objective 1

For the test objective 1, we derived the following stress test requirement (schedule):

() () >=< nullnullmsnullnullmsScheduleStressTest tTestElemen ,,0,,,,100, 1,41,11 ρρ

The stress test schedule indicates that in order to stress test network Canada in terms of data traffic in an
instant time, we have to execute DCCFPs

1,1ρ of SD OM_ON and
4,4ρ of SD DSPS_ON in time=100ms and

time=0ms, respectively. Since both SDs OM_ON and DSPS_ON have only one DCCFP (and CCFP) each,
input values and conditions are not relevant to the design of test cases, only the schedule is.

12.4.9.2 Test Objective 2

The test requirement of this test objective was chosen in Section 12.4.8.2 to be the maximum stress DCCFPS
of CSDFP1 as:

()

=

1,5

1,4

1,2

1,1
0,0

1 "1_",,

ρ

ρ
ρ
ρ

ρ
CASEVrDTMaxNodInPeCSDFPSBuildDCCFP

Since the current test objective is an interval one, and the maximum stress requirement has been selected as
the above DCCFPS, it can be repeated as many times as desired to perform an interval stress test. In other
words, the DCCFPSmax can be repeated an arbitrary k number of times.

k

DCCFPS

=

1,5

1,4

1,2

1,1
0,0

max

ρ

ρ
ρ

ρ
ρ

Again, since ρ0,0 , ρ1,1 , ρ2,1, ρ4,1, and ρ5,1 are the only DCCPFs of their corresponding SDs, input values and
conditions are not relevant to the design of test cases. We only need to make sure SDs OM_ON, OM_QC,
DSPS_ON and DSPS_QC start at the same time to satisfy the current test requirement.

12.4.9.3 Test Objective 3

As the test requirement for the test objective 3, we derived the following stress test schedule:

() () >=< nullnullmsnullnullmsScheduleStressTest tTestElemen ,,0,,,,0, 1,41,13 ρρ

The stress test schedule indicates that in order to instant stress test node SEV_ON in terms of message
traffic, we must start executing both DCCFPs

1,1ρ of SD OM_ON and
4,4ρ of SD DSPS_ON at time=0ms.

Therefore, test case for this test requirement is simply to run SDs OM_ON and DSPS_ON at the same time.

12.5 Stress Test Architecture

An overview of the SCAPS stress test architecture is shown in Figure 132. The sequence of high-level steps
to be performed by a tester to run a complete stress test procedure is shown.

Carleton University TR SCE-05-13 September 2005

 157

SCAPS
main

Tester

(4) Stress test cases:
-certain inputs/
conditions

(6) Test results:
 -Message start/end times
 Test verdicts:
 -passed/failed RT constraints

SCAPS
UML Design Model

Test Driver

(5) Running stress
test cases

Our
methodology

(1) Test objectives

(2) UML model

(3) Stress test requirements:
-CSDFPs (for periodic tests)
-DCCFPs (for instant tests)
-DCCFP start times
(for instant tests)

SCAPS

(6)

Figure 132-Overview of SCAPS Stress Test Architecture.

The steps are briefly explained below.
(1) Tester feeds the test objectives to the methodology. For example, we considered three test objectives in

our case study.
(2) The methodology uses the SCAPS UML model as input.
(3) The methodology uses the SCAPS UML model to generate test requirements for the given test

objectives and returns the test requirements to the tester. Note that this step is completely automated.
(4) Tester devises appropriate test case for the test requirements. Note that this step is currently done

manually by the tester. Tester feeds the test cases into a test driver which is responsible for running the
test cases.

(5) The test driver runs the generated test cases by feeding them into the system. Note that we have made
the test driver a component of the SCAPS system in our current implementation. Embedding the test
driver inside SCAPS helped us simplify the actual test environment and test executions. It also enabled
us to reduce the probe effects (due to monitoring) as much as possible. The probe effects resulting from
the test driver were negligible since the test driver only feeds specific test cases and monitors the
system. Feeding test cases consisted in setting the attributes of a test object to specific values and
starting the system. The resulting probe effect in this case was then the time to set specific variables to
specific values, which is in the range of several milliseconds, which are negligible when compared to
the SCAPS message durations (several hundreds of milliseconds, as it can be seen in the SCAPS SDs in
Figure 110-Figure 115). Monitoring SCAPS consisted in exporting the time duration of statements into a
log file, which again had very negligible probe effects when compared to executing the statements of
SCAPS’ main functionalities. Similar to the case when feeding test cases, the statements responsible for
monitoring SCAPS have short execution times. We furthermore designed SCAPS to support a high
level of controllability1. This included features such as: easy selection of any subset of test cases and
flexibility in scheduling DCCFPs.

(6) Test results are gathered from the system. They include: start/end times of distributed messages and
test verdicts on real-time constraints, which specify whether each real-time constraint has been adhered
to in a particular run. Test results are both logged in files and also displayed live in a text box to the
tester. A high level of observability2 has been designed in the output interface of SCAPS to better assess
the behavior of the system. For example, in order to make it more convenient for the tester to notice
real-time faults due to network-aware stress testing, we have incorporated a built-in functionality in
the SCAPS main module to monitor the time duration of each message and SD, and report any real-
time constraint violation.

1 Controllability is an important property of a control system and plays a crucial role in many control
problems, such as stabilization of unstable systems by feedback, or optimal control [126].
2 Observability is a measure for how well internal states of a system can be inferred by knowledge of its
external outputs.

Carleton University TR SCE-05-13 September 2005

 158

12.6 Running Stress Test Cases

As shown in the SCAPS stress test architecture in Figure 132, we developed a test driver module inside
SCAPS to run test cases. In running the stress test cases, we adhered to the following general principles to
make our test environment as real as possible:

• Since we did not have access to a dedicated network infrastructure1 to run our prototype tool
(SCAPS), we ran all the test cases in late day hours (after 8 PM) and on the weekends in order to
mimic a dedicated network and minimize the effects of unpredictable network delays in our test
results. In public networks (such as our institution’s network), the durations of different runs of a
distributed data intensive function may be different, due to variable network traffic triggered by
other activities in the network.

• Since any distributed system behavior is to some extent indeterministic (multiple runs might
exhibit different behavior), we run each test case several times and calculate the mean values of the
data collected to account for random variation.

12.7 Test Results

Results of running the stress test cases, as derived in the previous sections, are reported and discussed in
this section. Our fundamental approach to show the usefulness of our stress test technique in this work is
to observe the system and analyze the RT-constraint violations due to specific schedules and subsets of
DCCFPs, as generated by our technique. Results are then compared with what we refer to as Operation
Profile-based Test Cases (OPTC), which act as the baseline of comparison descried in Sections 12.7.2-12.7.4.
We discuss in Section 12.7.1 how we derive OPTCs.

In the presentation of the test results, we compare the statistical start and end times of distributed messages
and also determine if a stress test case causes a RT-constraint violation which is not observed while running
OPTCs. This will help us assess whether our methodology is useful in terms of increasing the chances of
exhibiting network traffic faults which lead to RT failures.

Note that, in the test results reported in this section, we analyze and discuss the MIOD-level soft and hard
RT constraints described in Section 12.3.4.5. SD-level constraints can be defined in a similar way and the
corresponding test results can also be analyzed.

12.7.1 Baseline of Comparisons

We define here what baseline of comparison we use to assess the effectiveness of our stress test case. We
consider Operation Profile-based Test Cases (OPTC) which are derived from the operational profile [71] of
a SUT. The operational profile of a system is defined as the expected workload of the system once it is
operational in the field. In other words, OPTCs actually test a SUT in terms of its expected behavior in the
field.

To derive OPTCs for SCAPS, we present an operational profile, which takes into account the system’s
business logic in the context of SCADA-based power systems. Using the SCAPS MIOD (Figure 116) and
CCFGs (Figure 119 to Figure 124), we model the operational profile to be the probabilities in which the true
and false edges of conditions are taken. More precisely, we focus on the decision nodes in the CCFGs of
SDs OC and PRNF, Figure 121 and Figure 124, respectively. These two CCFGs are the only CCFGs of
SCAPS where the control flow might actually change.

The two decision nodes in CCFG(OC) check for overload status in load data of provinces of Ontario and
Quebec. In case of overload status in any of the provinces, a new load policy is generated and is sent to the

1 What we mean by a dedicated network is a network which has been designed and devoted to a particular
safety-critical system (such as SCAPS) so that no other system is using the network. This is usually done to
avoid unpredictable network delays due to indeterministic network traffic and also for security reasons.

Carleton University TR SCE-05-13 September 2005

 159

respective provincial server. Otherwise, a message is sent to keep the old policy. As power systems are
designed in such a way to minimize the chances of overload, we assume the probabilities that the Ontario
and Quebec grids experience overload are %1 and %2, respectively. Thus the probabilities that the control
flow in decision nodes CCFG(OC) will follow the overload paths will be the same.

The above control flow path probabilities can be expressed as the operational profile of SCAPS shown in
Table 12, where probabilities of per SD per province are shown and have been mapped to paths after
decision nodes.

SD CCFG Function-Province Path after Decision Node in
CCFG

Probability

Ontario overload %1 Overload monitoring-
Ontario Ontario normal load %99

Quebec overload %2

OC CCFG(OC)

Overload monitoring-
Quebec Quebec normal load %98

Separated power system (SPS)
in Ontario

%0.5 Detecting separated power
system -Ontario

No SPS in Ontario %99.5
Separated power system in
Quebec

%0.25

PRNF CCFG(PRNF)

Detecting separated power
system - Quebec

No SPS in Quebec %99.75

Table 12-An operational profile for SCAPS.

For example, Figure 133 shows a part of CCFG(OC) with decision node outgoing edges annotated with
probabilities. The probability of an edge after a decision node in a CCFG denotes the probability with
which the control flow takes one of the subpaths started with this edge.

CCFG(OC)

[else] [else]

... ...

... ...

Ontario overload (%1)

[overloadIn
(:ASA:loadON)]

[overloadIn
(:ASA:loadQC)]

Ontario normal load (%99)

Quebec overload (%2)

Quebec normal load (%98)

Figure 133-Part of CCFG(OC), annotated with probabilities of paths after decision nodes.

Using the operational profile in Table 12, we can derive the probabilities of different DCCFPs in OC and
PRNF. When probabilities of taking edges after decision nodes are given, the probability of any DCCFP can
be calculated. For example DCCFP ρ3,1 of SD OC corresponds to taking “Ontario overload” and “Quebec
overload” edges of the decision node in CCFG(OC), Figure 133. Using the operational profile in Table 12,
the probability to choose this DCCFP will be then %1x%2=%0.02. Using a similar approach, the
probabilities of taking other DCCFPs of SDs OC and PRNF have been calculated and are shown in Table 13.

SD DCCFP Probability
ρ3,1 %0.02
ρ3,2 %0.98
ρ3,3 %1.98

OC

ρ3,4 %9702
ρ6,1 %0.00125
ρ6,2 ~%0.0049
ρ6,3 ~%0.0024

PRNF

ρ6,4 %0.9925

Carleton University TR SCE-05-13 September 2005

 160

Table 13-Probabilities of taking DCCFPs of SDs OC and PRNF according to the operational profile given in Table 12.

Now we discuss how a set of OPTCs can be derived from the SCAPS operational profile. To derive OPTCs,
we first derive Operation Profile-based Test Requirements (OPTR). An OPTC is the set of inputs/conditions to
a SUT that trigger a OPTR. An OPTR here means any concurrent SD flow path (CSDFP) in the SCAPS
MIOD and any corresponding control flow path (CCFP) for each SD in the chosen CSDFP. In other words,
an OPTR corresponds to a DCCFPS (Section 7.2.2). The main constraint in choosing an OPTR is to take into
account the probabilities given in the operational profile. The higher the probability of a flow path after a
decision node, the more likely the CCFPs containing that path will be selected. For example, assume that
the following CSDFP of SCAPS is selected.

PRNF
QC_DSPS
ON_DSPS

OC
QC_OM
ON_OM

STARTUP_OM

The set of probabilities given in the operational profile (Table 12) can be used to select CCFPs for each of
the SD in the above CSDFP. DCCFPs probabilities (Table 13) can then be used to randomly select a DCCFP
for each SD in a selected CSDFP.

12.7.2 Test Objective 1

The test requirements corresponding to the test objective 1 (Section 12.4.8.1) is to trigger DCCFP ρ1,1 from
SD OM_ON and ρ4,4 from SD DSPS_ON. Referring to the SCAPS MIOD (Figure 116), we can see that SRTC1
and SRTC2 are visited by triggering these two DCCFPs. Therefore, we can say that test objective 1 is
associated with SRTC1 and SRTC2 (Figure 116), and thus we report here how the duration1 of the soft RT
constraint SRTC1 is affected when running test cases corresponding to test objective 1. Our experiments
showed that SRTC2 has a similar behavior.

In order to determine if stress testing makes a difference in the durations of SRTC1 when compared the
results with OPT test cases, we measured the executions of 500 randomly selected OPT test cases. We then
ran 500 test cases corresponding to test objective 1 and collected the duration of SRTC1 across all these
runs. The comparison between Operational Profile Test (OPT) and Stress Test (ST) cases is depicted by the
two execution time distributions in Figure 134. The x-axis is the test type and the y-axis is execution time.
The quantiles and the histograms of the two distributions are depicted.

T
im

e

1000

1100

1200

1300

1400

OPT ST

Test Type

OPT ST

Figure 134-Execution times distributions of test suites corresponding to SRT constraint SRTC1 by running operational profile test

(OPT) and stress test (ST) cases corresponding to test objective 1.

1 By “duration” of a RT constraint, we mean the time difference between the arrival times of the start and
end events of a RT constraint.

Carleton University TR SCE-05-13 September 2005

 161

Level Min. 10% 25% Median 75% 90% Max.
OPT 953 1029 1059 1094 1125 1156 1241
ST 1276 1305 1317 1329 1344 1358 1382

Table 14-Quantiles of the distribution in Figure 134.

Due to the indeterminism of distributed environments, the duration of distributed messages can be
different across different executions, hence the variance in the distributions of Figure 134. However, all
OPT test executions satisfy SRTC1 whereas SRTC1 is violated in almost 96.4% (482/500) of stress test cases.

12.7.3 Test Objective 2

As derived in Section 12.4.9.2, the stress test requirement corresponding to test objective 2 was:
k

DCCFPS

=

1,5

1,4

1,2

1,1
0,0

max

ρ

ρ
ρ

ρ
ρ

By examining the corresponding SDs of each of the DCCFPs of this DCCFPS with the RT constraints in the
SCAPS MIOD (Figure 116), we can see that only SRTC1 and SRTC2 are visited when executing test
objective 2. Therefore, we monitor the duration of these two constraints when executing OPTCs and stress
test executions. The comparison of time distributions for SRTC1 is shown in Figure 135.

T
im

e
(m

s)

950

1000

1050

1100

1150

1200

1250

1300

OPT ST

Test Type

OPT ST

Figure 135- Execution times distributions for constraint SRTC1 by running operational profile test (OPT) and stress test (ST) cases

corresponding to test objective 2 .

As it can be seen, there is a difference in the SRTC1 time distributions between OPT and ST test cases
corresponding to test objective 2. However, none of the time distributions indicate a RT constraint
violation, as they are both below the 1,300 ms deadline. This result can be easily explained as the test case
for test objective 2 is just a typical DCCFPS of the system, which is executed when neither overloaded
situation nor a separated power grid is found and SCAPS continues (in a loop) to monitor the national
power grid. Recall that, during the preliminary testing of SCAPS, we made sure that all RT constraints held
in typical execution scenarios.

However, as the ST distribution shows significantly higher values (e.g., average) that the OPT distribution,
we can conclude that stress testing has been successful in running the system under stress conditions.
However, this was not enough to trigger a network-traffic or RT fault. This result suggests that not all stress
test strategies may expose network-traffic or RT faults in a SUT, under specific settings for RT constraint
values and network infrastructure (capacity, buffer sizes, etc.).

Carleton University TR SCE-05-13 September 2005

 162

12.7.4 Test Objective 3

As derived in Section 12.4.9.3, the stress test requirement corresponding to test objective 3 was:

() () >=< nullnullmsnullnullmsScheduleStressTest tTestElemen ,,0,,,,0, 1,41,13 ρρ

By examining the corresponding SDs of each of the DCCFPs of this DCCFPS and the RT constraints in the
SCAPS MIOD (Figure 116), we can determine that only SRTC1 and SRTC2 are visited when executing test
objective 3. Therefore, we monitor the duration of these two constraints while executing OPT and ST test
cases. The comparison is shown in Figure 136 and we can see, once again, that SRTC1 is violated in most of
ST test executions.

T
im

e
(m

s)

1000

1100

1200

1300

1400

OPT ST

Test Type

OPT ST

Figure 136- Execution times distributions of test suites corresponding to SRT constraint SRTC1 by running operational profile

tests (OPT) and stress tests (ST) corresponding to test objective 3.

12.7.5 Conclusions

In this chapter, using the specification of a real-world power distribution system, we designed and
implemented a system and described how the stress test cases were derived and executed using our
methodology. We also reported the results of applying our stress test methodology on this system and
discussed its effectiveness in detecting violations of real-time constraints when compared to test cases
based on an operational profile. The results are promising as they suggest that our stress test cases can help
significantly increase the probability of exhibiting network traffic-related faults in distributed systems.

Carleton University TR SCE-05-13 September 2005

 163

Chapter 13

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

13.1 Conclusions

A model-driven, stress test methodology aimed at increasing chances of discovering faults related to
network traffic in distributed systems was presented. The technique uses as input a UML 2.0 model of a
system, augmented with timing information. We specified an adequate and realistic input test model which
includes (1) a Network Deployment Diagram (following the UML package notation) that describes the
distributed architecture in terms of system nodes and networks and (2) a Modified Interaction Overview
Diagram (following the UML 2.0 interaction overview diagram notation) that describes execution
constraints between sequence diagrams. Our stress testing technique relies on a careful identification of
control flow paths in UML 2.0 Sequence Diagrams and the network traffic they entail. This data is used to
generate stress test requirements composed of specific control flow paths (in Sequence Diagrams) along
with time values indicating when those paths have to be triggered so as to stress the network the to the
maximum extent possible. To do so, we resort to optimization algorithms. In the most complex case, when
external system events follow complex arrival patterns, we make use of a specifically tailored Genetic
Algorithm, which has shown promising initial results. .

Using the specification of a real-world distributed system, we designed and implemented a system and
described how the stress test cases were derived and executed using our methodology. We furthermore
reported the results of applying our stress test methodology on this system and discussed its effectiveness
in detecting violations of a hard real-time constraint when compared to test cases based on an operational
profile. Our first results are promising as they suggest that our generated stress test cases significantly
increase the probability of exhibiting network traffic-related faults in distributed systems.

13.2 Open Questions

The open questions we are now working on are: (1) How can we account for data flow and parameters in
the SD sequential constraint modeling?, (2) How can we account for the variation in the data traffic value of
a distributed message during its execution?. We also need to perform further, larger scale investigations of
the Genetic Algorithm-based stress test technique in terms of its capacity to reveal distributed faults.

13.3 Future Research Directions

Our stress test methodology can be generalized to other distributed-type faults, such as distributed
unavailability of networks and nodes, and other resources such as CPU, memory, and database usage.
Stress testing a distributed system with respect to distributed unavailability fault (Section 3.2.1) is to cause
scenarios in which the maximum stress on a system occurs when a node (or a network) becomes
unavailable. CPU or memory-aware stress testing will put a SUT under maximum possible usage of CPU
or memory and will increase the chances of exhibiting resource usage faults related to CPU or memory.

Carleton University TR SCE-05-13 September 2005

 164

The UML Testing Profile [127] defines a language for designing, visualizing, specifying, analyzing,
constructing and documenting the artifacts of test systems. It is a test modeling language that can be used
with all major object and component technologies and applied to testing systems in various application
domains. The UML Testing Profile (UML-TP) can be used in an integrated manner with UML to handle a
system's test artifacts [127]. Specifying the generated stress test requirements and the stress test process of
our methodology with the UML-TP would lead to having all software artifacts, from analysis and design to
specifying testing test suites, modeled with UML. This would facilitate traceability between analysis,
design, and testing artifacts and since UML-TP has paved the way for possible tools to execute test cases
modeled in the UML-TP, test automation could potentially be improved.

UML models can be statically verified to make sure that behavior models do not lead to RT faults by
checking if there is any possible scenario in which a RT fault can occur under stress conditions in terms of
different types of resources, e.g. network traffic, CPU and memory. The verification can be applied on a
system’s design model before it has been implemented. The overall procedure for the verification is to find
the maximum possible stress conditions of behavior models and check if, for example, the maximum
possible traffic exceeds the network bandwidth. Resource usage information can either be modeled by
modelers using resource usage modeling constructs proposed by the UML-SPT, or can be predicted from
models [128].

Performance bottlenecks of a DRTS can be pinpointed using PERT (Program Evaluation and Review
Technique) technique. Given the time duration of each use case in a system and also their sequential
constrains (using a MIOD), the PERT technique can be used to find the critical paths in a MIOD, i.e.,
performance bottlenecks.

It would also be important to develop a Stress-Test based Performance Engineering (STPE) approach which
can assist testers and system analysts in fixing distribution-related faults. Following STPE, the designer
would use stress test results to evaluate the performance throughout of a SUT, analyze missed real-time
constraints, and provide guidelines to enhance performance and robustness of the system in terms of real-
time constraints.

Risk assessment/fault analysis of distributed-type faults, the investigation of QoS faults and
implementation of a test model generator from UML models are also worthwhile future research
directions. A QoS fault is said to have occurred when a system component does not function in its required
QoS requirement. We also intend to stress test more complex distributed systems using our methodology
and perform more empirical investigations of its effectiveness.

Carleton University TR SCE-05-13 September 2005

 165

ACKNOWLEDGMENTS

This work was in part supported by Siemens Corporate Research, Princeton, NJ and the Canada research
chair in Software Quality Engineering.

REFERENCES

[1] M. Wall, "GAlib: A C++ Library of Genetic Algorithm Components," v2.4, Document Revision B,
Massachusetts Institute of Technology 1996.

[2] V. Garousi, L. Briand, and Y. Labiche, "Control Flow Analysis of UML 2.0 Sequence Diagrams,"
Technical Report SCE-05-09, Carleton University,
http://www.sce.carleton.ca/squall/pubs/tech_report/TR_SCE-05-09.pdf, 2005.

[3] J. J. P. Tsai, Y. Bi, S. J. H. Yang, and R. A. W. Smith, Distributed real-time systems: monitoring,
visualization, debugging, and analysis: John Wiley & Sons, 1996.

[4] E. Weyuker and F. I. Vokolos, "Experience with Performance testing of Software Systems: Issues,
an Approach and Case Study," IEEE Trans. of Soft. Eng., vol. 26, no. 12, pp. 1147-1156, 2000.

[5] R. Kuhn, "Sources of Failure in the Public Switched Telephone Network," IEEE Computer, vol. 30,
no. 4, pp. 31-36, 1997.

[6] Object Management Group (OMG), "Unified Modeling Language Specification (v1.3)," 1999.

[7] Object Management Group (OMG), "Unified Modeling Language Specification (v1.5)," 2003.

[8] Object Management Group (OMG), "UML 2.0 Superstructure Final Adopted specification,"
http://www.omg.org/docs/ptc/03-08-02.pdf Sept. 2003.

[9] T. Pender, UML Bible: Wiley, Sept. 2003.

[10] Object Management Group (OMG), "UML Profile for Schedulability, Performance, and Time
(v1.0)," 2003.

[11] C. S. D. Yang, "Identifying Potentially Load Sensitive Code Regions for Stress Testing," Proceedings
of MASPLA'96 (The Mid-Atlantic Student Workshop on Programming Languages and Systems),
State University of New York at New Paltz, NY, USA, April 1996.

[12] J. Zhang and S. C. Cheung, "Automated Test Case Generation for the Stress Testing of Multimedia
Systems," Software Practice & Experience, vol. 32, no. 15, pp. 1411-1435, 2002.

[13] A. Avritzer and E. J. Weyuker, "The Automatic Generation of Load Test Suites and the Assessment
of the Resulting Software," IEEE Trans. on Software Eng, vol. 21, no. 9, pp. 705-716, 1995.

[14] L. C. Briand, Y. Labiche, and M. Shousha, "Automating Stress Testing for Real-Time Systems Using
Genetic Algorithms," Technical Report SCE-03-23, Carleton University Sept. 2003.

[15] A. Avritzer and B. Larson, "Load Testing Software Using Deterministic State Testing," International
Symposium on Software Testing and Analysis (ISSTA), pp. 82-88, Cambridge, MA, 1993.

[16] L. C. Briand, Y. Labiche, and M. Shousha, "Automating Stress Testing for Real-Time Systems Using
Genetic Algorithms," Proc. of Genetic and Evolutionary Computation Conference, Search-based
Software Engineering Track, pp. 1021-1028, 2005.

[17] W. Brauer, W. Reisig, and G. R. (eds.), "Petri nets, central models and their properties," in Advances
in Petri Nets 1986, Part I. Proceedings of an Advanced Course, Bad Honnef, Lecture Notes in Computer
Science, vol. 254. Berlin: Springer, 1987.

Carleton University TR SCE-05-13 September 2005

 166

[18] J. F. Allen, "Maintaining Knowledge about Temporal Intervals," Communications of the ACM, vol. 26,
no. 11, pp. 832-843, 1983.

[19] R. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools: Addison-Wesley, 1999.

[20] I. P. Paltor and J. Lilius, "Digital Sound Recorder: a Case Study on Designing Embedded Systems
Using the UML Notation," Turku Centre for Computer Science, Finland TUCS Technical Report
No. 234, 1999.

[21] B. Douglass, Doing Hard Time, Developing Real-Time Systems with UML Objects, Frameworks, and
Patterns: Addison Wesley, 1999.

[22] D. Herzberg, "UML-RT as a Candidate for Modeling Embedded Real-Time Systems in the
Telecommunication Domain," 2nd International Conference on the Unified Modeling Language
(UML’99), pp. 331-338, Fort Collins, Colorado, USA, 1999.

[23] L. Kabous and W. Neber, "Modeling Hard Real Time Systems with UML: The OOHARTS
Approach," 2nd International Conference on the Unified Modeling Language (UML’99), pp. 339-
355, Fort Collins, Colorado, USA, 1999.

[24] A. Lanusse, S. Gerard, and F. Terrier, "Real-Time Modeling with UML: The ACCORD Approach,"
1st International Conference on the Unified Modeling Language (UML’98), pp. 319-335, Mulhouse,
France, 1998.

[25] J. Hakansson, L. Mokrushin, P. Pettersson, and W. Yi, "An Analysis Tool for UML Models with SPT
Annotations," Presented at SVERTS2004, Lisbon, Portugal, October 2004.

[26] S. Bernardi, S. Donatelli, and J. Merseguer, "From UML sequence diagrams and statecharts to
analysable petri net models," the third international workshop on Software and performance
(WOSP), pp. 35-45, Rome, Italy, 2002.

[27] C. M. Woodside and D. C. Petriu, "Capabilities of the UML Profile for Schedulability Performance
and Time (SPT)," Workshop SIVOES-SPT on the usage of the SPT Profile, held in conjunction with
the 10th IEEE Real-Time and Embedded Technology and Applications Symposium RTAS'2004,
Toronto, Canada, May 2004.

[28] D. C. Petriu, "Performance Analysis Based on the UML SPT Profile," tutorial given at QEST'2004,
Enschede, The Netherlands, September 2004.

[29] D. C. Petriu and C. M. Woodside, "Extending the UML Profile for Schedulability Performance and
Time (SPT) for component-based systems," Workshop SIVOES-SPT on the usage of the SPT Profile,
held in conjunction with the 10th IEEE Real-Time and Embedded Technology and Applications
Symposium RTAS'2004, Toronto, Canada, May 2004.

[30] B. P. Douglass, "Rhapsody 5.0: Breakthroughs in Software and Systems Engineering," I-Logix Corp.
whitepaper 2003.

[31] A. Avizienis, J.-C. Laprie, and B. Randell, "Fundamental concepts of dependability," LAAS
(Laboratory for Analysis and Architecture of Systems) 01-145, April 2001.

[32] Y. Huang, P. Jalote, and C. Kintala, "Two Techniques for Transient Software Error Recovery,"
Lecture Notes in Computer Science (LNCS), vol. 774, pp. 159-170, 1994.

[33] J. Gray, "Why do Computers Stop and What Can be Done About it?," Proc. of 5th Symposium on
Reliability in Distributed Software and Database Systems, pp. 3-12, Los Angeles, California, USA,
1986.

[34] J. Gray, "A Census of Tandem System Availability Between 1985 and 1990," IEEE Trans. on
Reliability, vol. 39, pp. 409-418, 1990.

Carleton University TR SCE-05-13 September 2005

 167

[35] M. Sullivan and R. Chillarege, "Software Defects and Their Impact on System Availability - A
Study of Field Failures in Operating Systems," Proc. 21st IEEE Intl. Symposium on Fault-Tolerant
Computing, pp. 2-9, 1991.

[36] R. Chillarege, S. Biyani, and J. Rosenthal, "Measurement of Failure Rate in Widely Distributed
Software," Proc. of 25th IEEE Intl. Symposium on Fault Tolerant Computing, pp. 424-433,
Pasadena, CA, USA, July 1995.

[37] I. Lee, "Software Dependability in the Operational Phase," in Department of Electrical and Computer
Engineering. Urbana-Champaign, IL: University of Illinois, 1995.

[38] I. Lee and R. K. Iyer, "Software Dependability in the Tandem GUARDIAN System," IEEE Trans. on
Software Engineering, vol. 21, no. 5, pp. 455-467, May 1995.

[39] A. S. Tanenbaum, Computer Networks, Fourth ed: Prentice Hall, 2003.

[40] A. Ganesh, N. O'Connell, and D. Wischik, Big Queues: Springer Publication, 2004.

[41] B. P. Douglass, Real Time UML: Advances in the UML for Real-Time Systems, 3rd ed: Addison-Wesley
Professional, 2004.

[42] J. M. Bacon, Concurrent Systems: Operating systems, database and distributed systems, an integrated
approach, Second ed: Addison Wesley, 1997.

[43] D. Hovemeyer and W. Pugh, "Finding Concurrency Bugs in Java," In Proceedings of the PODC
Workshop on Concurrency and Synchronization in Java Programs, St. John's, Newfoundland,
Canada, July 25-26, 2004.

[44] Y. Ben-Asher, Y. Eytani, and E. Farchi, "Heuristics for finding concurrent bugs," In International
Parallel and Distributed Processing Symposium, IPDPS 2003, PADTAD Workshop, 2003.

[45] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur, "Multithreaded Java Program Test
Generation," Proceedings of the 2001 joint ACM-ISCOPE conference on Java Grande, pp. 181, Palo
Alto, California, United States, 2001.

[46] S. D. Stoller, "Testing Concurrent Java Programs using Randomized Scheduling," Proceedings of
the Second Workshop on Runtime Verification (RV), July 2002.

[47] H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications with UML: Addison-Wesley,
2000.

[48] Object Management Group (OMG), "UML 2.0 Superstructure Final Adopted specification," 2003.

[49] V. Garousi, L. Briand, and Y. Labiche, "Control Flow Analysis of UML 2.0 Sequence Diagrams,"
Proc. (to appear) of the European Conf. on Model Driven Architecture-Foundations and
Applications, 2005.

[50] OMG, "UML 2.0 Superstructure Final Adopted specification," Object Management Group,
www.omg.org Sept. 2003.

[51] J. Rumbaugh, I. Jacobson, and G. Booch, UML Reference Manual: Addison-Wesley, 1999.

[52] C. Larman, Applying UML and Patterns, 2nd edition ed: Prentice Hall, 2002.

[53] A. Abdurazik and J. Offutt, "Using UML collaboration diagrams for static checking and test
generation," Proceedings of the International Conference on the Unified Modeling Language, pp.
383-395, York, UK, 2-6th October, 2000.

[54] L. Briand and Y. Labiche, "A UML-based Approach to System Testing," Journal of Software and
Systems Modeling, vol. 1, no. 1, pp. 10-42, 2002.

Carleton University TR SCE-05-13 September 2005

 168

[55] F. Fraikin and T. Leonhardt, "SeDiTeC-testing based on sequence diagrams," In International
Conference on Automated Software Engineering, pp. 261-266, Edinburgh, Scotland, 23–27
September 2002.

[56] Y. Wu, M.-H. Chen, and J. Offutt, "UML-based Integration Testing for Component-Based
Software," In International Conference on COTS-Based Software Systems, 2003.

[57] H. Thane, "Monitoring, Testing and Debugging of Distributed Real-Time Systems," in Department of
Machine Design. Stockholm, Sweden: Royal Institute of Technology, 2000, pp. 128.

[58] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. GilChrist, F. Hayes, and P. Jeremaes, Object-Oriented
Development - The Fusion Method: Prentice Hall, 1994.

[59] I. Lanese and U. Montanari, "A Graphical Fusion Calculus," Proceedings of the Workshop of the
COMETA Project on Computational Metamodels, pp. 199-215, 2004.

[60] I. Lanese and U. Montanari, "Mapping Fusion and Synchronized Hyperedge Replacement into
Logic Programming," Seminar on Foundations of Global Computing, 2005.

[61] R. J. A. Buhr, "Use Case Maps as Architectural Entities for Complex Systems," IEEE Transactions on
Software Engineering, vol. 24, no. 12, December 1998.

[62] J. F. Allen, "Maintaining knowledge about temporal intervals," Communications of the ACM, vol. 26,
no. 11, pp. 832–843, 1983.

[63] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel, "Requirements by Contracts allow Automated
System Testing," th International Symposium on Software Reliability Engineering (ISSRE), Denver,
Colorado, November 17 - 21, 2003.

[64] T. Pender, UML Bible: Wiley, 2003.

[65] OMG, "UML 2.0 Superstructure Final Adopted specification," 2003.

[66] OMG, "UML Profile for Schedulability, Performance, and Time (v1.0)," 2003.

[67] S. Muchnick, Advanced Compiler Design and Implementation, First ed: Morgan Kaufmann, 1997.

[68] E. W. Weisstein, "Strongly Connected Component," From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/StronglyConnectedComponent.html, 2005.

[69] R. E. Tarjan, "Depth-First Search and Linear Graph Algorithms," SIAM J. Comput., vol. 1, no. 146-
160, 1972.

[70] Sun Microsystems, "Trail: Learning the Java Language," in
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html, 2005.

[71] M. S. Gittens, "The Extended Operational Profile Model for Usage-Based Software Testing,"
Doctoral Thesis - University of Western Ontario, 2004.

[72] M. J. Atallah, Handbook of Algorithms and Theory of Computation: CRC Press, 1999.

[73] J. W. Chinneck, "Practical Optimization: A Gentle Introduction," Systems and Computer
Engineering, Carleton University. Available at:
http://www.sce.carleton.ca/faculty/chinneck/po.html.

[74] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms: Wiley-Interscience, 1998.

[75] J. Lahtinen, P. M. Silander, and H. Tirri, "Empirical Comparison of Stochastic Algorithms,"
Proceedings of the Nordic Workshop on Genetic Algorithms and their Applications, pp. 45-60,
1996.

Carleton University TR SCE-05-13 September 2005

 169

[76] P. Chardaire, A. Kapsalis, J. W. Mann, V. J. Rayward-Smith, and G. D. Smith, "Applications of
Genetic Algorithms in Telecommunications," Proc. Applications of Neural Networks to
Telecommunications, pp. 290-299, 1995.

[77] S. W. Mahfoud and D. E. Goldberg, "Parallel Recombinative Simulated Annealing: A Genetic
Algorithm," Parallel Computing, vol. 21, no. 1, 1995.

[78] S. Y. Mahfouz, "Design Optimization of Structural Steel Work," Ph.D. Thesis, Dept. of Civil and
Environmental Eng., University of Bradford, UK, 1999.

[79] K. De Jong, "Learning with Genetic Algorithms: An overview," Machine Learning, no. 2, pp. 121-138,
1988.

[80] J. J. Grefenstette and H. G. Cobb, "Genetic Algorithms for Tracking Changing Environments," Proc.
of the 5th Int. Conf. on Genetic Alg, pp. 523-530, 1993.

[81] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das, "A Study of Control Parameters Affecting
Online Performance of Genetic Algorithms for Function Optimization," Proceedings of the third
international conference on Genetic algorithms, pp. 51-60, 1989.

[82] A. E. Eiben, P. E. Raue, and Z. Ruttkay, "Solving Constraint Satisfaction Problems using Genetic
Algorithms," Proc. IEEE World Conference on Evolutionary Computing, pp. 542-547, 1994.

[83] M. A. Pawlowsky, "Crossover Operators," Handbook of Genetic Algorithms Applications,, vol. 1, pp.
101-114, 1995.

[84] M. A. Pawlowsky, "Crossover Operators," Practical Handbook of Genetic Algorithms Applications,
L. Chambers Ed., pp. 101-114, 1995.

[85] T. Back, "Towards a Practice of Autonomous Systems," Proc. European Conference on Artificial
Life, pp. 263-271, 1992.

[86] H. Mühlenbein, "Parallel Genetic Algorithms, Population Genetics and Combinatorial
Optimization," Proceedings of the third international conference on Genetic algorithms, pp. 416-
421, 1989.

[87] J. E. S. a. T. C. Fogarty, "Adaptively Parameterized Evolutionary Systems: Self Adaptive
Recombination and Mutation in a Genetic Algorithm," The International Conference on Parallel
Problem Solving From Nature, pp. 441-450, 1996.

[88] S. J. Louis and G. J. E. Rawlins, "Predicting Convergence Time for Genetic Algorithms," Computer
Science Department, Indiana University, Technical Report 370, 1993.

[89] S. Mackay, E. Wright, and J. Park, Practical Data Communications for Instrumentation and Control:
Newnes, June, 2003.

[90] A. Daneels and W. Salter, "What is SCADA?," Int. Conf. on Accelerator and Large Experimental
Physics Control Systems, 1999.

[91] S. C. Bhatia, "Indusirial Scada: Scada Control Systems In Integrated Steel Plants," Proceedings of
Power Quality ‘98, Santa Clara, California, 1998.

[92] J. Brunton, G. Digby, and A. Doherty, "Design and Operational Philosophy for a Metro Power
Network SCADA System," Fourth International Conference on Power System Control and
Management, pp. 176-180, London, UK, 1996.

[93] Y. Ebata, H. Hayashi, Y. Hasegawa, S. Komatsu, and K. Suzuki, "Development of the Intranet-
based SCADA (supervisory control and data acquisition system) for power system," IEEE Power
Engineering Society Winter Meeting, pp. 1656-1661, 2000.

Carleton University TR SCE-05-13 September 2005

 170

[94] T. Seki, T. Tsuchiya, T. Tanaka, H. Watanabe, and T. Seki, "Network Integrated Supervisory
Control for Power Systems based on Distributed Objects," Proceedings of the 2000 ACM
symposium on Applied computing, pp. 620-626, Como, Italy, 2000.

[95] M. Mavrin, V. Koroman, and B. Borovic, "SCADA in Hydropower Plants," Proceedings of the IEEE
International Symposium on Computer Aided Control System Design, Hawai'i, USA, August 1999.

[96] E.-K. Chan and H. Ebenhoh, "The Implementation and Evolution of a SCADA System for a Large
Distribution Network," Transactions on Power Systems, vol. 7, no. 1, pp. 320-326, 1992.

[97] D. Trung, "Modern SCADA Systems for Oil Pipelines," Petroleum and Chemical Industry
Conference, pp. 299-305, Denver, CO, USA, 1995.

[98] A. J. N. Batista, A. Combo, J. Sousa, and C. A. F. Varandas, "A low cost, fully integrated, event-
driven, real-time control and data acquisition system for fusion experiments," Review of Scientific
Instruments, vol. 74, pp. 1803-1806, 2003.

[99] J. A. How, J. W. Farthing, and V. Schmidt, "Trends in Computing Systems for Large Fusion
Experiments," Proceedings of 22nd Symposium on Fusion Technology (SOFT), Helsinki, Finland,
2002.

[100] B. Stojkovic and I. Vujosevic, "A compact SCADA system for a smaller size electric power system
control-a fast, object-oriented and cost-effective approach," IEEE Power Engineering Society Winter
Meeting, pp. 695-700, Jan. 2002.

[101] R. Wakizono, T. Kawamura, T. Tsuchiya, T. Hatanaka, and T. Tanaka, "Object-oriented Database
Management System for Process Control Systems-Development and Evaluation," Proc. of the ACM
Symp. on Applied Computing, pp. 204-209, 1999.

[102] K. C. Thramboulidis, "Towards a UML-based Engineering Support System," 9th IEEE
Mediterranean Conference on Control and Automation, MED'01, Croatia, 2001.

[103] K. Thramboulidis, "Development of Distributed Industrial Control Applications: The CORFU
Framework," 4th IEEE International Workshop on Factory Communication Systems, Vasteras,
Sweden, August 2002.

[104] T. Brown, A. Pasetti, W. Pree, T. A. Henzinger, and C. M. Kirsch, "A Reusable and Platform-
independent Framework for Distributed Control Systems," Proc. of the Digital Avionics Systems
Conference, pp. 1-11, 2001.

[105] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, "Giotto: A Time-triggered Language for
Embedded Programming," Lecture Notes in Computer Science, vol. 2211, pp. 166-184, 2001.

[106] A. Pasetti, "A Software Framework for Satellite Control Systems – Methodology and
Development," in PhD Dissertation, University of Konstanz, Feb. 2001.

[107] H. Brand, D. Beck, E. Gaul, W. Geithner, S. Götte, T. Kühl, K. Poppensieker, M. Roth, and U.
Thiemer, "The PHELIX Control System Based on UML Design Level Programming in LabVIEW,"
Proceedings of ninth International Conference on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS), Gyeongju, Korea, 2003.

[108] R. Jamal and H. Pichlik, LabVIEW Applications and Solutions: Prentice Hall, 1999.

[109] E. W. Gaul, "PHELIX (Petawatt High Energy Laser for heavy Ion eXperiments)," GSI Scientific
Report 2003.

[110] M. Ivey, A. Akhil, D. Robinson, K. Stamber, and J. Stamp, "Accommodating Uncertainty in
Planning and Operations," Transmission Reliability Program, Office of Power Technologies, U.S.
Department of Energy 1999.

Carleton University TR SCE-05-13 September 2005

 171

[111] F. J. Molina, J. Barbancho, and J. Luque, "Automated Meter Reading and SCADA Application for
Wireless Sensor Network," Lecture Notes in Computer Science, vol. 2865, pp. 223-234, Oct 2003.

[112] ABB Co., "ABB Group Annual Report,"
http://www.abb.com/Global/Clabb/CLABB155.NSF/viewunid/2DDB4104B522E26A04256C3000
527EEB/$file/ABB_TECH_E-Annual2000.pdf 2000.

[113] K. P. Birman, J. Chen, K. M. Hopkinson, R. J. Thomas, J. S. Thorp, R. v. Renesse, and W. Vogels,
"Overcoming Communications Challenges in Software for Monitoring and Controlling Power
Systems," Proceedings of the IEEE, vol. 9, no. 5, 2005.

[114] The Liberty Consulting Group, "Nova Scotia Power Inc. Power Outage Review," Nova Scotia
Utility and Review Board,
http://www.nspower.ca/AboutUs/RegulatoryAffairs/Nov2004/DOCS/Liberty/LibertyIR-
51_60.pdf 2005.

[115] Z. Constantinescu, P. Petrovic, A. Pedersen, D. Federici, and J. Campos, "QADPZ (Quite Advanced
Distributed Parallel Zystem)," in http://qadpz.sourceforge.net, 2003.

[116] A. Sauvé, C. Matthews-Dickson, and O. Peterson, "Real–Time Distributed Factory Automation
System," Department of Systems and Computer Engineering, Carleton University, A report
submitted in partial fulfillment of the requirements of the 94.498 Engineering Project 2003.

[117] Y. Ebata, H. Hayashi, Y. Hasegawa, S. Komatsu, and K. Suzuki, "Development of the Intranet-
based SCADA (supervisory control anddata acquisition system) for power system," IEEE Power
Engineering Society Winter Meeting, pp. 1656-1661, 2000.

[118] European Information Society Technologies (IST), "COACH (Component Based Open Source
Architecture for Distributed Telecom Applications," in http://coach.objectweb.org, 2003.

[119] US military, "The Joint Interoperability Test Command," in http://jitc.fhu.disa.mil/, 2005.

[120] "CitectSCADA," in http://www.citect.com/products/citectscada, 2005.

[121] BWI Co., "ElipseSCADA," in http://www.bwi.com/proot/2775, 2004.

[122] N. Toshida, M. Uesugi, Y. Nakata, M. Nomoto, and T. Uchida, "Open Distributed EMS/SCADA
System," Hitachi Review, vol. 47, no. 5, pp. 208-213, 1998.

[123] H. S. Kim, J. M. Lee, T. Park, J. Y. Lee, and W. H. Kwon, "Design of Networks for Distributed
Digital Control Systems in Nuclear Power Plants," International Topical Meeting on Nuclear Plant
Instrumentation, Control, and Human-Machine Interface Technologies (NPIC/HMIT), pp. 629-633,
Washington DC, USA, 2000.

[124] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering: Using UML, Patterns, and Java,
2nd Edition ed: Prentice Hall, 2003.

[125] A. Makinen, M. Parkki, P. Jarventausta, M. Kortesluoma, P. Verho, S. Vehvilainen, R. Seesvuori,
and A. Rinta-Opas, "Power Quality Monitoring As Integrated With Distribution Automation,"
Proc. of Int. Conf. and Exhibition on Electricity Distribution, 2001.

[126] Wikipedia, "Definition of Controllability," in http://en.wikipedia.org/wiki/Controllability, 2005.

[127] Object Management Group (OMG), "UML 2.0 Testing Profile Specification," 2003.

[128] V. Garousi, L. Briand, and Y. Labiche, "A Unified Approach for Predictability Analysis of Real-
Time Systems using UML-based Control Flow Information," International Workshop on Modeling
and Analysis of Real-Time and Embedded Systems (MARTES), in conjunction with International
Conference on Model Driven Engineering Languages and Systems, 2005.

Carleton University TR SCE-05-13 September 2005

 172

[129] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning: Addison-Wesley,
1989.

[130] T.-P. Hong, H.-S. Wang, and W.-C. Chen, "Simultaneously Applying Multiple Mutation Operators
in Genetic Algorithms," J. Heuristics, vol. 6, no. 4, pp. 439-455, 2000.

[131] E. S. H. Hou, N. Ansari, and H. Ren, "A Genetic Algorithm for Multiprocessor Scheduling," IEEE
Trans. Parallel Distrib. Syst., vol. 5, no. 2, pp. 113-120, 1994.

[132] Wikipedia, "Definition of NP-hard," in http://en.wikipedia.org/wiki/NP_hard, 2005.

Carleton University TR SCE-05-13 September 2005

 173

APPENDIX A- GENETIC ALGORITHMS OVERVIEW

In [1, 129-131], the authors describe GAs as a means of solving complex optimization problems that are
often NP-hard1 [131] in limited amounts of time. Optimization problems are those that try to reach the best
solution given the measurement of the goodness of solutions. GAs are based on concepts adopted from
genetic and evolutionary theories. GAs are comprised of several components: a representation of the
solutions, referred to as the chromosomes, fitness of each chromosome, referred to as the objective (fitness)
function, the genetic operations of crossover and mutation which generate new offspring, and selection
operations which choose offspring fit for survival.

A chromosome models the problem solutions. Each element within a chromosome is known as a gene. The
collection of chromosomes used by the GA is called a population. Figure 137 illustrates these concepts in
terms of representation of the Red/Green/Blue (RGB) makeup of a population of three pixels on a screen.
The chromosome in the figure is composed of three genes. Each gene represents the red, green or blue
components of a pixel on a screen. Hence, the chromosome depicts one pixel’s RGB makeup. The
population portrays the makeup of three pixels on the screen.

1 1 0 1 1 0 1

0 1 1

1 1 0

Gene

Population

Chromosome

R R G B R G B

Figure 137-GA chromosome terminology.

The quality of a chromosome is its fitness. Fitness defines which chromosomes are closer to the optimal
solution. If the optimal solution for the population of Figure 137 is a pixel with only a red component (i.e. a
chromosome with RGB values 100), the first and the last chromosomes of the population would be deemed
fitter than the second one.

Both crossover and mutation operators are needed to explore the problem search space. Crossover
operators generate offspring from two parents based on the merits of each parent, as demonstrated in
Figure 138 through single point crossover2.

1 0 1

0 1 1

R G B

Parent 1

Parent 2

Crossover operator

1 1 1

0 0 1

R G B

Child 1

Child 2
Figure 138-Illustration of crossover operator (single point crossover).

Taking the G gene of a chromosome as a division point common to both parents, the parents alternate
genes with respect to the division point in creating the children. Parent 1 contributes the RB components of

1 In computational complexity theory, NP-hard (Non-deterministic Polynomial-time hard) refers to the
class of decision problems that contains all problems H such that for every decision problem L in NP there
exists a polynomial-time many-to-one reduction to H, written L = H. Informally this class can be described
as containing the decision problems that are at least as hard as any problem in NP. This intuition is
supported by the fact that if we can find an algorithm A that solves one of these problems H in polynomial
time then we can construct a polynomial time algorithm for any problem L in NP by first performing the
reduction from L to H and then running the algorithm A [132].
2 Single-point crossover is on type of crossover operators. There are other types such as multi-point
crossover.

Carleton University TR SCE-05-13 September 2005

 174

Child 1, allowing Parent 2 to contribute the G component. Similarly, Parent 2 contributes the RB
components of Child 2, while Parent 1 contributes its G component. Hence, GAs use the notion of survival
of the fittest by passing superior traits from one generation to the next.

Mutation operators mutate, or alter, a single chromosome. Mutation aids the GA in avoiding local minima.
In the example in Figure 139, the red gene is mutated, resulting in a chromosome with RGB values 010.

1 1 0

Original chromosome

Mutation operator 0 1 0

Mutated chromosome

R G B R G B

Figure 139-Illustration of mutation operator.

The process of selecting determines which individuals among the original populations, mutated and child
chromosomes will survive, hence retaining a constant population size.

An initial population of individuals (usually random) is first given to a GA. Working with the population,
the GA then selects and performs various crossover and mutation operations, creating new chromosomes.
The fitness of the new chromosomes (using the objective function) is compared to others in the population.
Fitter individuals are retained while less fit ones are removed. The process of crossover, mutation, fitness
comparison and replacement continues until a termination criterion is reached. In most cases, the
termination criterion is a particular number of runs or generations of the algorithm [1]. By adopting the GA
process concept from [74], we can draw an activity diagram for the process as shown in Figure 140.

Genetic Algorithm

Definitions

Chromosome
Representation

Initial Population
(usually random)

Evaluate Fitness

Choose Parents

Reproduce

Mutate

Test Coverage

Objective (Fitness)
Function

[Coverage
achieved]

[Coverage not
achieved]

Optimal Result

Figure 140-Activity diagram of the most general form of genetic algorithms (concept from [74]).

A variety of replacement methodologies are defined for GAs, such as simple, steady state and incremental.
Each replacement methodology specifies how much of the population should be replaced with each run or
generation of the algorithm. The simple GA creates an entirely new population of chromosomes with each
generation of the algorithm. The steady state algorithm, on the other hand, uses overlapping populations,
leaving it up to the user to determine the number of chromosomes to replace in each generation. Each
generation, the steady state GA produces, are stored in a temporary location. These are then added to the
population and the worst individuals are removed such that the population such that the population size
remains constant. In incremental genetic algorithms, only one or two offspring chromosomes are
generated. These are integrated into the population in one of the following ways: replacing the parent,
replacing a random individual in the population, or replacing an individual that is similar to the offspring.

