
Carleton University TR SCE-06-09 April 2006

1

Traffic-aware Stress Testing of Distributed
Real-Time Systems Based on UML Models

using Genetic Algorithms

Vahid Garousi, Lionel C. Briand, and Yvan Labiche
{vahid|briand|labiche}@sce.carleton.ca

Software Quality Engineering Laboratory (SQUALL)
http://squall.sce.carleton.ca

Department of Systems and Computer Engineering, Carleton University
1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada

Abstract. This report presents a model-driven, stress test methodology aimed at increasing chances of
discovering faults related to network traffic in Distributed Real-Time Systems (DRTS). The technique uses
the UML 2.0 model of the distributed system under test, augmented with timing information, and is based
on an analysis of the control flow in sequence diagrams. It yields stress test requirements that are made of
specific control flow paths along with time values indicating when to trigger them. The technique considers
different types of arrival patterns (e.g., periodic) for real-time events (common to DRTSs), and generates test
requirements which comply with such timing constraints. Though different variants of our stress testing
technique already exist (that stress different aspects of a distributed system), they share a large amount of
common concepts and we therefore focus here on one variant that is designed to stress test the system at a
time instant when data traffic on a network is maximal. Our technique uses Genetic Algorithms to find test
requirements which lead to maximum possible traffic-aware stress in a system under test. Using a real-world
DRTS specification, we design and implement a prototype DRTS and describe, for that particular system,
how the stress test cases are derived and executed using our methodology. The stress test results indicate
that the technique is significantly more effective at detecting network traffic-related faults when compared to
test cases based on an operational profile.

Keywords. Stress testing, performance testing, model-based testing, distributed systems, real-time systems,
UML, network traffic, genetic algorithms.

1 INTRODUCTION
Distributed Real-Time Systems (DRTS) are becoming more important to our everyday life. Examples include
command and control systems, aircraft aviation systems, robotics, and nuclear power plan systems [56].
However, the development and testing of such systems is difficult and takes more time than for systems
without real-time constraints or distribution [59]. Furthermore, based on an analysis of sources of failures in
the United States Public Switched Telephone Network (PSTN) [30], it is reported that in the 1992-1994 time
period, although only 6% of the outages were overloads, they led to 44% of the PSTN’s service downtime. In
the system under study, overload was defined as the situation in which service demand exceeds the
designed system capacity. So it is evident that although overloads do not happen frequently, the failure
resulting from them can be quite expensive.

Therefore the high-level motivation for our work can be stated as follows: because DRTS are by nature
concurrent and are real-time, there is a need for methodologies and tools for testing and debugging DRTS
under stress conditions such as heavy user loads and intense network traffic. These systems should be tested
under stress before being deployed in the field in order to assess their robustness to distribution-specific
problems. In this work, our focus is on network traffic, one of the fundamental factors affecting the behavior
of DRTS, though we will see that our methodology can be easily tailored to other aspects.

Carleton University TR SCE-06-09 April 2006

2

Distributed nodes of a DRTS regularly need to communicate with each other to perform system
functionality. Network communications are not always successful and on time as problems such as
congestion, transmission errors, or delays might occur. On the other hand, many real-time and safety-critical
systems have hard deadlines for many of their operations, where if the deadlines are not met, serious or even
catastrophic consequences will happen. Furthermore, a DRTS might behave well with normal network traffic
loads (e.g., in terms of amount of data, number of requests), but abnormal and/or faulty behavior (e.g.,
violation of real-time constraints) might result from poor and unreliable communication if many network
messages or high loads of data are concurrently transmitted over a particular network or towards a
particular node. This is the type of problems that our test methodology purports to uncover.

Our overall approach to testing is model-driven [5]. Since 1997, UML has become the de facto standard for
modeling object-oriented software for nearly 70 percent of IT industry [46]. The new version of UML, version
2.0 [42] offers an improved modeling language compared to UML 1.x versions. Some of the high level
improvements are: enhanced architecture modeling and extensibility, support for component-based
development, and model management [46]. As we expect UML to be increasingly used for DRTS, it is
therefore important to develop automatable UML model-driven, stress test techniques.

Proposing that UML design models for a DRTS be in the form of Sequence Diagrams (SD) annotated with
timing information, and the systems’ network topology be given in a specific modeling format, we devise a
technique to derive test requirement to stress the DRTS with respect to network traffic in a way that will
likely reveal robustness problems. Note that, for a DRTS where several concurrent objects are running on
each distributed node and objects communicate frequently with each other, the number of all possible object
interaction interleavings on a network is extremely large1. Testing all those interleavings is in general not
feasible. We thus introduce a systematic technique to automatically generate an interleaving that will stress
the network traffic on a network or a node in a System Under Test (SUT) so as to analyze the system under
strenuous but valid conditions. If any network traffic-related failure is observed, designers will be able to
apply any necessary fixes to increase robustness before system delivery.

The current work is an extended version of the work in [23], where we considered distributed systems in
which external or internal events did not exhibit arrival patterns (e.g., periods and bounded). The technique
in the current work takes into account different types of events arrival patterns that are common in DRTSs.
Such patterns impose constraints on the time instant when interactions between distributed objects can take
place. We make use of specifically-tailored Genetic Algorithms (a much simpler technique was used in [23])
to automatically generate test requirements which comply with such timing constraints and lead to high
traffic-aware stress in a SUT.

The remainder of this article is structured as follows. Related works are discussed in Section 2. An overview
of our stress test methodology is described in Section 3. Input system models are described in Section 4.
Section 5 discusses how a stress test model is built to support automation. The use of the stress test model to
derive test requirements is described in Section 6. Our prototype tool, referred to as GARUS (GA-based test
Requirement tool for real-time distribUted Systems) and its empirical analysis are presented in Section 7. The
results of applying the methodology to a case study system is described in Section 8 which shows the
applicability and assesses the effectiveness of the methodology in revealing faults related to network traffic.
Finally, Section 9 concludes the article and discusses some of the future research directions.

2 RELATED WORKS
No existing work seems to directly address the automated derivation of test requirements from UML models
for performance stress testing of DRTS from the perspective of maximizing the chance of exhibiting network
traffic faults. In general, there have been relatively few works [3, 7, 23, 62, 63] on systematic generation of
stress and load test suites for software systems.

1 A network interaction interleaving is a possible sequence of network interactions among a subset of objects
on a subset of nodes.

Carleton University TR SCE-06-09 April 2006

3

Authors in [3] propose a class of load test case generation algorithms for telecommunication systems which
can be modeled by Markov chains. The black-box techniques proposed are based on system operational
profiles. The Markov chain that represents a system’s behavior is first built. The operational profile of the
software is then used to calculate the probabilities of the transitions in the Markov chain. The steady-state
probability solution of the Markov chain is then used to guide the generation process of the test cases
according to a number of criteria, in order to target specific types of faults. For instance, using probabilities
in the Markov chain, it is possible to ensure that a transition in the chain is involved many times in a test case
so as to target the degradation of the number of calls that can be accepted by the system. From a practical
standpoint, targeting only systems whose behavior is modeled by Markov chains can be considered a
limitation of this work. Furthermore, testing based on an operational profile (representing typical use) can
hardly be expected to stress a system.

Briand et al. [7] propose a methodology for the derivation of test cases that aims at maximizing the chances
of deadline misses within a system. They show that task deadlines may be missed even though the
associated tasks have been identified as schedulable through appropriate schedulability analysis. The
authors note that although it is argued that schedulability analysis helps identify the worst-case scenario of
task executions, this is not always the case because of the assumptions made by schedulability theory
regarding aperiodic tasks. The authors develop a methodology that helps identify performance scenarios
that can lead to performance failures in a system.

Yang proposes a technique [62] to identify potentially load sensitive code regions and generate load test
cases. The technique targets memory-related faults (e.g., incorrect memory allocation/de-allocation,
incorrect dynamic memory usage) through load testing. The approach is to first identify statements in the
module under test that are load sensitive, i.e., they involve the use of malloc() and free() statements (in C) and
pointers referencing allocated memory. Then, data flow analysis is used to find all Definition-Use (DU)-pairs
that trigger the load sensitive statements. Test cases are then built to execute paths for the DU-pairs.

Zhang et al. [63] describe a procedure, with a similar goal to ours, for automating stress test case generation
in multimedia systems. The authors consider a SUT to be a multimedia system consisting of a group of
servers and clients connected through a network. Stringent timing constraints as well as synchronization
constraints are present during the transmission of information from servers to clients and vice versa. The
authors identify test cases that can lead to the saturation of one kind of resource, specifically CPU usage of a
node in the distributed multimedia system. The authors first model the flow and concurrency control of
multimedia systems using Petri-nets coupled with timing constraints. A specific flavor of temporal logic [1]
was used to model temporal constraints. The following are some of the limitations of their technique: (1) It
cannot be easily generalized to generate test cases to stress test other kinds of resources, such as network
traffic, as this would require important changes in the test model; (2) The resource utilization (CPU) of media
objects is assumed to be constant over time, although such utilization would likely depend on the requests
the server receives for example; (3) Although the objective is similar to ours, i.e., maximizing resource usage
at a given time instant, no variation of the technique is proposed or even mentioned to stress test over a
specific period of time. A system may only exhibit failures if stress testing is prolonged for a period of time;
(4) In practice, the use of Petri Nets and temporal logic can be an impediment to usage.

In this article, we build on a traffic-aware stress testing technique for distributed systems we presented in
[23]. An important aspect of real-time systems taken into account in the current work, which was left out in
[23], is the arrival patterns for events (e.g., periods) triggering SDs. Such patterns impose constraints on the
time instant when interactions between distributed objects can take place, and thus on the derivation of
(stress) test requirements. The stress test technique in this work uses Genetic Algorithms (GA) to find test
requirements which comply with such timing constraints and lead to high traffic-aware stress in a SUT.

There is an important body of work (e.g., [28, 44, 54, 55, 58]) that uses evolutionary algorithms (such as GAs)
for test case generation, which is commonly referred to as Evolutionary Testing (ET). ET uses meta-heuristic

Carleton University TR SCE-06-09 April 2006

4

search-based techniques1 to find good quality test data. Test data quality is often defined by a test adequacy
criterion (typically defined in terms of the program’s predicates) built into a fitness function. This function
determines the fitness of candidate test data, which in turn, drives the search implemented by an
optimization technique. Reported techniques in [28, 44, 55, 58] aim at generating adequate test data for
branch coverage and other white-box testing criteria for a program under test [6]. Reported fitness functions
essentially measure how close a candidate test input is to executing the desired (target) Control Flow Path
(CFP). Generating test data using ET has been shown to be successful, but its effectiveness is significantly
reduced in the presence of programming constructs which make the definition of an effective fitness function
problematic, e.g., unstructured control flow (in which loops have many entry and exit points) affects the
ability to determine how alike are the traversed and target paths [6]. ET techniques are also used for black-
box testing. For instance, Tracy et al. [54] use a genetic algorithm to derive test cases from pre and post-
conditions. They transform those predicates into disjunctive normal form and make each conjunct contribute
to the final fitness value. The fitness function rewards values that satisfy the pre-condition of a subprogram
and result in a violation of its post-condition. Since any particular test input either satisfies this criterion or
not, the authors also introduce the notions of better and worse values to represent values that nearly satisfy
the criterion or are long away from satisfying the criterion, respectively (this is similar to the aforementioned
measure of how close an input is to executing a specific CFP).

Though the focus of ET techniques has not been so far on load, performance or stress testing, the
methodology reported in this article is an evolutionary stress testing technique which searches among
model-based CFPs in a SUT to maximize a fitness function, but the CFPs are identified from models rather
than code. Another difference is that our fitness function (Section 6.5.5) is based on the amount of traffic a
CFP entails instead of how close a candidate test input drives execution to traversing the desired (target)
CFP. Furthermore, compared to ET techniques, our methodology takes into account a different set of
constraints (Section 6.5.2), which are specific to DRTSs. Two of such constraints we consider are: (1)
sequential constraints between SDs which imply that executing an arbitrary sequence of SDs in a SUT might
not be always valid or possible, e.g., the withdraw SD of a banking system can not be executed before login;
(2) SDs arrival patterns which impose constraints on the time instant when interactions between distributed
objects can take place, e.g., a periodic event may not be allowed to be triggered in arbitrary time instances
which do not belong to its periodic domain. Yet another difference is that our work derives stress test
requirements given a set of stress test objectives (e.g., a network to be stress tested in a time instance), while
most existing ET techniques focus on deriving a test case (input data) given a test requirement (e.g., a CFP).

3 AN OVERVIEW OF OUR METHODOLOGY
An overview of our model-based stress test methodology is presented using an activity diagram in Figure 1.
A UML model of a SUT, following specific but realistic requirements, is used as input. A test model (TM) is
then built to facilitate subsequent automation steps. The TM and a set of stress test parameters (objectives)
set by the user are then used by an optimization algorithm to derive stress test requirements. Test
requirements can finally be used to specify test cases to stress test a SUT.

Note the distinction made in Figure 1 using a color coding scheme (refer to the legend) between the
contributions of the work in [23] and the current article. The stress testing technique in [23] is referred to as
Time-Shifting Stress Test Technique (TSSTT), which uses only four elements of the TM. The technique in the
current article is referred to as Genetic Algorithm-based Stress Test Technique (GASTT), and uses all five
elements of the TM. The Arrival Pattern Model (Section 5.5) incorporates the arrival pattern constraints of
events in a SUT and enables GASTT (Section 6) to derive test requirement complying with such constraints.
Test activities with a crossed gray background (deriving test cases from test requirements and test execution

1 Typically genetic algorithms and simulated annealing have been used, but evolutionary testing requires
only that the technique used is characterized by some fitness (or cost) function, for which the search seeks to
find an optimal or near-optimal solution [6].

Carleton University TR SCE-06-09 April 2006

5

by the tester) are not addressed in this report but we will discuss those aspects in the context of our case
study (Section 8).

At a high level, the goal of our stress test technique is to choose the maximum number of SDs (to create an
amount of traffic) which can realistically be run concurrently, according to the business logic of a SUT, and
schedule them such that their maximum traffic messages run at the same time. The detailed steps of Figure 1
are described in the next sections:

• Specification of the input system models (Section 4)
• Specification and construction of the test model (Section 5)
• Derivation of stress test requirements using Genetic Algorithms (Section 6)

Stress test parameters (objectives) in Figure 1 specify the variant of the stress test technique to be applied and
the values for the parameters of that stress test strategy. We have 16 such variants in our methodology,
which share a common framework and many common concepts [22]. Each strategy is specified and named
according to four attributes: (1) a stress test location (a network or a node); (2) a stress test direction (applies
only to a node test location-In for towards, Out for from, or Bi for bidirectional traffic); (3) a test duration (a
time instant, Ins, or a time interval, Int); and (4) a stress test type (DT for maximizing amount of data traffic
and MT for maximizing number of messages). For example, the stress test strategy we focus on in this article
is named StressNetInsDT which is designed to stress test the system at a time instant (attribute duration-Ins)
when data traffic (attribute type-DT) on a network (attribute location-Net) is maximal. For this stress test
strategy, the tester should provide the name of the network under stress test (the network for which our
methodology will derive stress test requirements such that the instant data traffic is maximized).

Control Flow Model

Network Traffic Usage

Test Cases
(TC)Test Oracles

Network Deployment
Diagram (NDD)

Sequence Diagrams (SD)

Class Diagrams (CD)

Test Model (TM)
Stress Test

Requirements

Design UML Model

INPUT

OUTPUT

Modified Interaction
Overview Diagram

(MIOD)

Inter-SD Constraints

Test Model
Generator

Test DriverSUT

Time-Shifting Stress Test
Technique

Tester

Modeler
Stress Test
Parameters

System Context Diagram

Genetic Algorithm-based
Stress Test Technique

At least one of SUT
SDs has arrival
pattern constraints

None of SUT SDs
have arrival pattern
constraints

Stress Test
Parameters

Network Interconnectivity
Tree

Contributions of the current work

Legend
Contributions of [23]

Arrival Pattern Model

Not addressed
Figure 1. An overview of our model-based stress test methodology.

4 INPUT SYSTEM MODELS
The assumed input system models for the stress test methodologies in this article and [23] are almost the
same, except that the current work requires the arrival pattern of SDs to be modeled using stereotypes from
the UML Profile for Schedulability, Performance, and Time (UML-SPT) [43] in SDs. Thus, we present in
Section 4.1 only an overview of the assumed input system models. Interested reader can refer to [23] and [22]
for further details. Section 4.2 discusses how arrival pattern information can be modeled in SDs.

Carleton University TR SCE-06-09 April 2006

6

4.1 An Overview of the Input System Models

The input model consists of a number of UML diagrams. Some of them are standard in mainstream
development methodologies (class diagram, sequence diagrams, and system context diagram [24]). The
other two, further described in the next subsections, are needed to describe the distributed architecture of the
SUT (Network Deployment Diagram) and sequential constraints among SDs, i.e., their respective use cases,
(Modified Interaction Overview Diagram).

4.1.1 Network Deployment

The structure of the distributed architecture of a SUT as we need it to be described is formalized in Figure 2
as a metamodel. Such network information is paramount as one of our objectives is to stress, not only nodes
in a network, but also (sub-)networks. An example of a distributed architecture is depicted in Figure 3-(a)
which shows networks in a hierarchical structure (each network can have many subnets and only one
supernet), nodes belonging to networks, and objects distributed on nodes, e.g., node1 hosts three objects (o1,1,
o1,2, and o1,3).

1

1

«metamodel»
System Architecture

connected to *
*

member of

*

1..* *

1..*

1

1

1..*

subnet

supernet

1
Distributed System (SUT)

1

*

0..1
*

1

Distributed Node

ObjectNetwork PathNetwork

Figure 2. Metamodel for distributed architectures.

Each node can be connected to other nodes through several network paths. A path is defined as a sequence
of networks. For example, node1 is connected to node3 through the network path <Network1, SystemNetwork,
Network2> in Figure 3-(a). In the current work, we consider that there is only one path between two nodes,
rather than several paths. This simplifying assumption is not too simplistic though since many (proprietary)
SUT networks (e.g., a distributed controller system of a factory) are not as complex (e.g., in terms of topology)
as the World Wide Web. The main reason is that we want to evaluate whether our approach is feasible under
this assumption and leads to interesting results before considering multiple paths. Considering multiple
paths would increase the complexity of our network traffic usage model (Section 5.4) since this would
require a detailed analysis of the routing policy used in the network of the SUT.

«node»
node1

node1 node2 node3

o3,1 o3,2o1,1 o1,2

o1,3

o2,1

o2,2

Network1 Network2

SystemNetwork

«node»
node2

o3,3

«network»
SystemNetwork

«network»
Network1

«network»
Network2

«node»
node3

supernet
subnet subnet

(a) (b)

Figure 3. (a): An example distributed architecture. (b): An example Network Deployment Diagram
(NDD).

Modeling a hierarchical set of networks and their inter-connectivity is not directly addressed in the UML 2.0
specification [42]. We therefore extend UML 2.0 deployment diagrams by adding two stereotypes to the
node notation: «network» and «node». We thus identify the type of an entity as a network or a node.

Carleton University TR SCE-06-09 April 2006

7

Furthermore, association roles stereotyped with supernet and subnet are used to model the containment
relationships between super and sub-networks. As an example, the architecture in Figure 3-(a) is modeled by
the Network Deployment Diagram (NDD) in Figure 3-(b).

4.1.2 Modified Interaction Overview

The name Modified Interaction Overview Diagram (MIOD) comes from the UML 2.0’s Interaction Overview
Diagram (IOD) [42]. To model which actor can trigger a particular SD, we modify IODs to include activity
partitions: one partition per actor. A MIOD is used to model sequential and conditional constraints between
SDs (inter-SD constraints): activities (i.e., nodes in the diagram) are SDs and edges depict those sequential
constraints. Standard activity diagram decision nodes are used to model conditional constraints between
SDs. There exist alternative representations (e.g., [10, 14, 40]). However, as we discuss in [23], MIODs suit
best our needs for modeling sequential and conditional constraints among SDs in the context of UML-based
development.

Taking sequential and conditional constraints into account is important while defining stress tests since
executing an arbitrary sequence of SDs in a SUT might not be always valid or possible. The business logic of
a SUT might enforce a set of constraints on the sequence (order) of SDs and also certain conditions may have
to be satisfied before a particular SD can be executed. An example MIOD is shown Figure 4, where SDs SD1
and SD2 are triggered by actor1 and SD3 by actor2. The MIOD specifies the sequential and conditional
constraints among SDs, e.g., SD1 and SD2 should be executed and condition c2 should hold before SD3 can
be executed.

A
ct

or
2

A
ct

or
1

SD2SD1

SD3

ref ref

ref

[c1]

[c2]

Figure 4-An example MIOD.

4.2 SDs with Arrival Pattern Information

Our technique assumes that the arrival pattern1 information of SDs is given using the RTArrivalPattern
tagged-value which is a modeling construct in the TimeModel package of the UML Profile for Schedulability,
Performance, and Time (UML-SPT) [43]. As an example, the UML 2.0 SD in Figure 5 shows the temperature
data update process for a simplified chemical reactor system, where a sensor controller is getting the two
temperature values from two sensors (deployed on nodes ns1 and ns2), and then sends the data to be updated
in the sensors database (on ncs). The timing information of messages has been modeled using the UML-SPT.
For example, «RTstimulus» denotes that the first message is a RT stimulus with an execution duration of less
than 10 milliseconds (ms) and an arrival pattern specified by the RTArrivalPattern tagged-value: a periodic
event with a period value of 100 ms. RTstart and RTend tagged-values specify the start and end time
instances of a message. The time basis (t=0) in the UML-SPT is assumed to be the execution start time of a
SD.

1 Arrival-pattern constraints relate to timing of SDs. The time instant when a SD can start running might be
constrained in a SUT. Each SD might be allowed to execute only in some particular time instants.

Carleton University TR SCE-06-09 April 2006

8

SD updateSensorData

nnnnnnnnnnnnnnnnnn

«RTstimulus»
{RTArrivalPattern="'periodic',(100,'ms')"
RTduration<(10,'ms')}

:SensorDataCollector
{node=nsc}

:Sensor
{node=ns1}

:Sensor
{node=ns2}

data[0]

data[1]

updateSensorData()

«RTstimulus»
{RTstart=(1,'ms'),
RTend=(2,'ms')}

getData()

getData()

:SensorDB
{node=ncs}

updateData(data)

updateAck
«RTstimulus»
{RTstart=(6,'ms'),
RTend=(10,'ms')}

«RTstimulus»
{RTstart=(14,'ms'),
RTend=(15,'ms')}

Figure 5-Example of time modeling using the UML-SPT profile.

The system is obviously a safety-critical one, where an inadequate response time of the system might have
life-threatening consequences. In other words, the temperature of the system should be measured and
checked according to the timing notations in Figure 5 and prompt corrective actions should be carried out if
the temperature is higher than a pre-specified threshold.

5 BUILDING THE TEST MODELS
We build a Test Model (TM) which includes the following elements: (1) Control flow model, (2) Network
interconnectivity tree, (3) Network traffic usage patterns, (4) Inter-SD constraints model, and (5) Arrival
patterns model. These models are needed to facilitate the automated derivation of test requirements. The
activity diagram in Figure 6 illustrates the relationships among these models and input UML models, as well
as five distinct activities responsible for the construction of test models, e.g., the control flow analysis activity
builds the control flow model from an analysis of sequence and class diagrams.

The following subsections describe how the TM is built. Four of the five elements UML models composing
the TM are discussed in [23] and, due to space constraints, we present in Sections 5.1-5.3 only a brief
overview of those models and their construction. We devote more space to the description of the Network
Traffic Usage Model (Section 5.4) and the Arrival Patterns Model (Section 5.5).

Inter-SD Constraints Model

Modified Interaction
Overview Diagram

Network Deployment
Diagram

Independent-SD Set

Control Flow Model
(Concurrent Control Flow Graph)

Sequence Diagram

Network Interconnectivity Tree

Network Traffic Usage Model

Input UML Model

Control Flow Analysis

System Class
Diagram

System Context
Diagram

Test Model

Inter-SD Constraint
Analysis

Network Traffic Usage
Analysis

NDD Path Analysis

Arrival Patterns Model
Arrival Pattern Analysis

…

Figure 6. An overview of how test models are built from input UML models.

Carleton University TR SCE-06-09 April 2006

9

5.1 Control Flow Model

In UML 2.0 [42], SDs may have various program-like constructs such as conditions (using alt combined
fragment operator), loops (using loop operator), and procedure calls (using interaction occurrence construct).
As a result, a SD is composed of Control Flow Paths (CFP), defined as a sequence of messages in a SD.
Furthermore, as we discussed in [21], asynchronous messages and parallel combined fragments entail
concurrency inside SDs. Additionally, in a SD of a distributed system, some messages are local (sent form an
object to another on the same node), while others are distributed (sent from an object on one node to an object
on another node) thus entailing network traffic. Since network traffic usage varies with CFPs (e.g., varying
number of distributed messages transmitting data of varying sizes), a comprehensive model-based stress
testing should take into account the differences among CFPs in a SD.

In [23], we used the Model-based Control Flow Analysis (MBCFA) technique presented in [21], which was
formalized using meta-modeling and consistency-rules in the Object Constraint Language (OCL) [41]. We
also introduced Concurrent Control Flow Graphs (CCFG) as a means to analyze the concurrent control flow of
SDs, due for instance to asynchronous messages, and the associated notion of Concurrent Control Flow Path
(CCFP), i.e., a path in a CCFG.

5.2 Inter-Sequence Diagram Constraints Model

Recall from Section 4.1.2 that taking sequential and conditional constraints among SDs in a SUT into account
is important while defining stress tests since executing an arbitrary sequence of SDs in a SUT might not be
always valid or possible. A MIOD is used to model sequential and conditional constraints (inter-SD
constraints) between SDs. The goal of our stress test technique is to choose the maximum number of SDs (to
create maximum possible traffic) which can realistically be run concurrently, according to the MIOD, and
schedule them such that their maximum traffic messages run at the same time.

To comply with inter-SD constraints while considering the maximum number of SDs, we introduce the
concept of Independent SD Set (ISDS). Two SDs are independent if there is no path (inter-SD constraints)
between them in the MIOD: e.g., Figure 7-(a) shows the MIOD of a power distribution controller system we
use as a case study in Section 8, in which SDs A and B are independent. (More details about this MIOD, such
as actual SD names and the semantics of stereotype «HRT» are provided in Section 8.) An ISDS is a largest
(maximal) set of SDs, in which any two SDs are independent, thus enabling all the SDs in the set to run
concurrently. A MIOD can lead to several ISDSs and, as discussed in Section 6, the ISDS with maximum
traffic (among all the ISDSs for a given MIOD) will be chosen to generate stress test requirements.

A B D E

C F

[condition2][condition1]

[else]

[else]

(a)

AC

B

D

EF

 (b)

AC

B

D

EF

 (c)

Figure 7. (a): The MIOD of our case study system. (b) and (c): Deriving Independent SD Sets of the
MIOD.

To derive the set of ISDSs of a MIOD, we use a graph-based approach in which we first build a graph, e.g.,
Figure 7-(b), where nodes are SDs and there is an edge between two nodes if and only if the two

Carleton University TR SCE-06-09 April 2006

10

corresponding SDs are independent. Finding the ISDSs can then be formulated as a graph problem. More
specifically, every maximal-complete subgraph in this graph is an ISDS. Standard graph algorithms can then
be used to find those maximal-complete subgraphs. For the MIOD in Figure 7, four ISDSs are identified (e.g.,
ISDS1 is illustrated in Figure 7-(b)):

}F,C{ISDS}E,D,C{ISDS
}F,B,A{ISDS}E,D,B,A{ISDS

==
==

43

21

5.3 Network Interconnectivity Tree

A Network Interconnectivity Tree (NIT) is built from a NDD (Section 4.1.1). The root of the tree is always the
entire system network while system networks and nodes are its children. The motivation for NITs is to easily
identify the subset of nodes and networks that are relevant for deriving stress test cases and the network
paths between any two given nodes: e.g., when stress testing a specific network in a DRTS, we must identify
the messages, exchanged by nodes, that are transmitted through that network.

To identify the network path between any two given nodes, we define the network path function
getNetworkPath(ns,nr), where ns and nr are two nodes, which returns the network path that messages sent
from ns to nr would follow. (An algorithm for this function can be found in [22].) For example, the derivation
of the network path between node1 (the sender) and node3 (the receiver) in Figure 3-(a) is formally represented
as:

getNetworkPath(node1, node3)= <Network1, SystemNetwork,Network2>

5.4 Network Traffic Usage Model

A network traffic usage model describes the extent to which messages, and thus CCFPs entail traffic on a
network. An estimate of network traffic usage for each message and CCFP is required in order to derive
appropriate stress test requirements to stress test a SUT with respect to network traffic. We present in this
section a resource usage analysis (RUA) technique to measure traffic usage for CCFPs.

In order to analyze the traffic usage of a CCFP, we need to analyze the traffic usage entailed by its messages.
Only distributed messages (those sent between two different nodes) in SDs are of interest here since they are
the only ones entailing network traffic. A Distributed CCFP (DCCFP) is a CCFP where only distributed
messages are modeled. To measure the traffic entailed by a distributed message, we compute the data sizes
of the parameters of a call message or the return values of a reply message. For a distributed signal message,
we consider the size of the signal object (sum of the attributes’ size) as the size of the signal message1. We
define the data size of an object to be the summation of sizes (in bytes) of the attributes in its class.
Admittedly, other measures (perhaps more accurate) of network traffic can be considered. We however
consider our measurement as a reasonable and practical surrogate for network traffic.

In order to precisely define how we perform traffic usage analysis of CCFPs, we formally define SD
messages. Similar to the tabular representation of messages, proposed by UML 2.0 [42], each message
annotated with timing information (using the UML-SPT profile [43]) can be represented as a tuple:
message=(sender, receiver, methodOrSignalName, parameterList, returnList, startTime, endTime, msgType), where:
• sender denotes the sender of the message and is itself a tuple of the form sender=(object, class, node),

where:
o object is the object (instance) name of the sender.
o class is the class name of the sender.
o node is where the sender object is deployed.

1 In UML 2.0, in the case of a message of type signal, the arguments of the message must correspond to the
attributes of the signal class. The data carried by a signal message is represented as attributes of the signal
instance.

Carleton University TR SCE-06-09 April 2006

11

• receiver denotes the receiver of the message and is itself a tuple of the same form as sender.
• methodOrSignalName is the name of the method on the message or the signal class name in case of a

signal on the message.
• parameterList is the list of parameters for call messages. parameterList is a sequence of the form <(p1, C1,

in/out), ..., (pn, Cn, in/out)>, where pi is the i-th parameter of class type Ci and in/out defines the kind of the
parameter. For example if the call message is m(o1:C1, o2:C2), then the ordered parameters set will be <(o1,
C1, in), (o2, C2, in)>. If the method call has no parameter, this set is empty.

• returnList is the list of return values on reply messages. It is empty in other types of messages. UML 2.0
assumes that there may be several return values for a reply message. We show returnList in the form of a
sequence <(var1=val1,C1), …, (varn=valn,Cn)>, where vali is the return value for variable vari with type Ci.

• startTime is the start time of the message (modeled by UML-SPT profile’s RTstart tagged value).
• endTime is the end time of the message (modeled by UML-SPT profile’s RTend tagged value).
• msgType is a field to distinguish between signal, call and reply messages. Although the messageSort

attribute of each message in the UML metamodel can be used to distinguish signal and call messages,
the metamodel does not provide a

To formalize our network traffic usage model, we define a Network Traffic Usage (NTU) function (Equation 1),
which estimates the amount of traffic entailed by a distributed message. A dash (-) symbol indicates that a
field can take any arbitrary value. NTU is a function from the set of messages to real values (data traffic).

The data traffic (DT) value depends on the type of the message. For a signal message (function SignalDT is
used), DT is equal to the data sizes of all the attributes of the signal class referred by the message. For a call
message (function CallDT is used), DT is the sum of data sizes of all the attributes of each parameter. For a
reply message (function ReplyDT is used), DT is the sum of data sizes of all attributes of each member of the
return list. Data size of the data type of an attribute is extracted from the specification of the target
programming language as specified by the user.

∑
∑
∑

∈

∈−

∈−

=∈∀

=

=
=

⎪
⎩

⎪
⎨

⎧

=
=
=

=∈∀

→

attributesCa i

returnListmsgCC i

istparameterLmsgCC i

i

ii

ii

adataSizeCdataSizeamclassDiagrC

CdataSizemsgDTReply

CdataSizemsgCallDT
meOrSignalNamsg.methoddataSizemsgSignalDT

ReplymsgTypemsgmsgDTReply
Call''msgTypemsgmsgCallDT

 Signal''msgTypemsgmsgSignalDT
msgNTUMessagemsg

RealMessageNTU

.

.),(|

.),(|

)()(:

)()(

)()(
)()(

''. if;)(
. if;)(
. if;)(

)(:

:

Equation 1. Network Traffic Usage (NTU) function.

As an example, suppose we want to measure the traffic usage of a call message with two parameters of type
A and one of class type B, respectively, where classes A and B are defined in the class diagram of Figure 8-
(a). Using these class specifications, we can estimate the size of the message to be 5.8KB, as illustrated in
Figure 8-(b), assuming the target programming language is Java (the size of a char and a long variable are two
and eight bytes, respectively).

-attribute1 : long[100]
-attribute2 : char[100]

B
-attribute1 : long[100]
-attribute2 : long[500]

A

NTU(msg) = CallDT(msg)
= dataSize(A) + dataSize(B)
= (8×(100+500)) + (8×100+2×100)
= 5.8KB (kilobytes)

(a) (b)

Figure 8. (a): Two classes with data fields. (b): An example of computation of NTU.

Carleton University TR SCE-06-09 April 2006

12

Using NTU, let us now define Network Traffic Usage Pattern (NTUP) as a function from the set of DCCFPs,
networks, and time domain to real values (usage pattern values). The usage pattern of a DCCFP ρ on a
network net at a particular time instant t is the sum of NTU values of the subset of the DCCFPs’ messages
whose start/end time interval includes t and that go through net (using getNetworkPath() defined in Section
5.3). Dur() denotes the time duration of a message and since a message can span over several time units, our
definition for the data traffic value of a message at a given time unit is its total data size divided by its
duration, which yields the average message traffic per time unit.

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈
∧≤≤

∧∈

=

=

→××

∑
∈

otherwise;0

)..,..(
..

|
where;)(/)(

),,(

:

nodereceivermsgodensendermsgPathgetNetworknet
endmsgtstartmsg

msgmsg
MSGmsgDurmsgNTU

tnetNTUP

RealTimeNetworkDCCFPNTUP

ii

ii

ii
MSGmsg

ii

ρ

ρ

Equation 2. Network Traffic Usage Pattern (NTUP) function.

5.5 Arrival Pattern Model

An Arrival Pattern Model (APM) is built based on SDs’ Arrival Pattern (AP) information. We first describe in
Section 5.5.1 why we need an APM by explaining the impacts of arrival patterns on the stress testing.
Specifically, an APM will help our stress test requirement derivation process (Section 6) to derive valid test
requirements, i.e., test requirements which comply with SD’s APs. Types of arrival patterns we consider in
this work are discussed in Section 5.5.2. The analysis of arrival patterns to derive an APM is described in
Section 5.5.3. Section 5.5.4 presents the concept of Accepted Time Set, our APM, which is used by our stress
test technique.

5.5.1 Impact of Arrival Patterns

We discuss in this section the impacts of SD arrival patterns on the test requirements derivation process and
thus motivate the need for an Arrival Pattern Model (APM). Arrival Patterns (Section 4.2), modeled in UML
using the UML-SPT profile, specify constraints on the start times of messages in SDs, and thus on the start
times of SDs and thus as well as on the start times of DCCFPs. Arrival Patterns therefore impact the test
requirements generation process by limiting the search scope from unlimited time instants to limited
intervals for the start times of DCCFPs.

The impacts can be better visualized by the example of Figure 9. Let us first consider a simple search
heuristic (used by our earlier work in [23]), to be used when there is no arrival pattern: Figure 9-(a). The
heuristic searches among all the ISDSs and finds the one with maximum instant stress. Then the SDs of the
selected ISDS are scheduled, i.e., their start time is determined, to yield the maximum stress. The scheduling
is done so as the maximum stress message of different SDs start concurrently. In Figure 9-(a), showing the
selected ISDS with three SDs SD1, SD2, and SD3, the heuristic determined that the three SDs can start at the
same time to yield maximum stress.

On the other hand, if the same SDs have APs, time intervals, referred to as AP regions, are specified during
which SDs can start executing: for instance, Figure 9-(b). As it can be seen, there are three AP regions for SD1,
one AP region for SD2, and three AP regions for SD3. Due to such time constraints, SDs can not be scheduled
freely in any arbitrary time instants. The heuristics to find maximum possible stress while respecting APs, in
this case, will be to search among the AP regions of every SD and find a time instant when the summation of
entailed traffic values by DCCFPs from all the SDs is maximized. One of such possible schedules (among an
infinite number of them) is shown in Figure 9-(b).

Carleton University TR SCE-06-09 April 2006

13

time (ms)

SD3

SD2

SD1

time (ms)

SD3

SD2

SD1

AP regions of SD2

AP regions of SD1

AP regions of SD3

ISDS={SD1,SD2,SD3}

Without arrival patterns With arrival patterns

(a) (b)
Figure 9-Impact of arrival patterns on the derivation of test requirements

5.5.2 Types of Arrival Patterns

We assume that SD APs are modeled using the UML-SPT profile’s RTarrivalPattern tagged-value [43] (e.g.,
Figure 5). We provide next an overview on the five types of APs in the UML-SPT profile:

 Bounded: An AP where the iter-arrival time of two consecutive arrivals is bounded by minimum and a
maximum arrival times.

 Bursty: In this AP, a maximum number of events can occur during a specific interval.

 Irregular: An ordered list of time values represents successive arrival times.

 Periodic: Arrival times comply with a period and a deviation value.

 Unbounded: An AP specified by a Probability Distribution Function. The types of supported distributions
are: bernoulli, binomial, exponential, gamma, geometric, histogram, normal (Gaussian), poisson, and
uniform.

5.5.3 Analysis of Arrival Patterns

In order to study APs and devise a stress test strategy to account for them when generating stress test
requirements, the timing characteristics of APs should be analyzed. Furthermore, given an arrival time, we
should be able to determine if it satisfies an AP, i.e., whether the arrival time is legal given the AP.

The pseudo-code of function IsAPCSatisfied() shown in Figure 10 determines if a DCCFP arrival time satisfies
an AP. The AP can be any of the following: {‘bounded’, ‘bursty’, ‘irregular’, ‘periodic’, ‘unbounded’}. The pseudo-
code is described in detail next.

If the AP is bounded, IsAPCSatisfied() returns true if the arrival time is inside the time intervals specified by
the bounded pattern. Such a pattern is identified by a minimal and a maximal interval time (MinIAT, MaxIAT).
We assume that MinIAT and MaxIAT of a bounded AP can not be equal. If the two values are equal, the
arrival pattern is equivalent to a periodic one. For example, a bounded AP where MinIAT=MaxIAT=3ms, is
indeed a periodic arrival pattern with period=3ms. Consider a bounded AP with MinIAT=4ms and
MaxIAT=5ms. The gray eclipses in the timing diagram in Figure 11 depict the Accepted Time Intervals (ATI) of
the AP, i.e., the time intervals where an AP is satisfied.

Function IsAPCSatisfied(arrivalTime, AP)
AP∈{‘bounded’, ‘bursty’, ‘irregular’, ‘periodic’, ‘unbounded’}
1 Switch AP {

Carleton University TR SCE-06-09 April 2006

14

2 ‘bounded’:
3 If arrivalTime is in one of the intervals of the bounded pattern, then Return True
4 Else Return False
5 ‘bursty’: Return True
6 ‘irregular’:
7 If arrivalTime is one of the time values in the AP list, then Return True
8 Else Return False
9 ‘periodic’:
10 If there exists an arbitrary integer k such that arrivalTime∈[kp-d… kp+d], where p

and d are the period and the derivation values of the AP: then Return True
11 Else Return False
12 }

Figure 10- Pseudo-code to check if the arrival pattern AP is satisfied by an arrival time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time (ms)

...

Accepted Time Interval (ATI)

Legend

Figure 11-Accepted Time Intervals (ATI) of a bounded arrival pattern (‘bounded’, (4, ms), (5, ms)), i.e.

MinIAT=4ms, MaxIAT=5ms.

Note that the ATIs of a bounded AP denote all possible arrival times, regardless of actual arrival times in a
specific scenario. The curved arrows in Figure 11 denote how an ATI is derived from the previous one. For
the AP discussed above, assuming that the AP starts from time=0, the first ATI is [4..5ms]. If an event arrives
in time=4ms, according to the fact that MinIAT=4ms and MaxIAT=5ms, the next event can arrive in interval
[8…9ms]. Similarly, if an event arrives in time=5ms, according to the fact that MinIAT=4ms and
MaxIAT=5ms, the next event can arrive in interval [9...10ms]. In a similar fashion, a value between 4 and 5 ms
will cause the next arrival time to be in the range [8…10ms]. Therefore, the second ATI is [8…10ms]. The
next ATIs are [12…15ms], [16…20ms], [20…25ms], [24…30ms] and so on. Since a busty AP only constrains
the number of arrivals in a specific time interval, any ‘single’ arrival at any arbitrary time instance thus
satisfies this AP. Similar analysis for other APs (explaining the rest of the pseudo-code in Figure 10) can be
found in [22].

5.5.4 Accepted Time Sets

To better formulate our GASTT technique (Section 6), we define the concept of Accepted Time Set (ATS) for
each SD as the set of time instances or time intervals when a SD is allowed to be triggered, according to its
AP. An ATS can be derived from the AP of the corresponding SD. The ATS metamodel in Figure 12-(a)
formalizes the fundamental concepts.

Each SD has an ATS. An ATS is made of several Accepted Time Points (ATP), for irregular and periodic
(with no deviation) arrival patterns, or several Accepted Time Intervals (ATI), for the other arrival patterns.
This is because irregular and periodic (with no deviation) arrival patterns specify the time instances when a
SD can be triggered, whereas all the other arrival patterns deal with time intervals. The mutual exclusion
between ATIs and ATPs is shown by two OCL invariants (hasATInoATP and hasATPnoATI) in Figure 12-(a).
Each ATI has a start time and an end time of type RTtimeValue (from the UML-SPT), denoting the start and
end times of an interval. ATP is of type RTtimeValue too. The end time of an ATI can be null, which denotes
an ATI which has no upper bound (this is further justified below).

Carleton University TR SCE-06-09 April 2006

15

ATS

SD

1*

ATI ATP

-End3

1

-End4*

-End3

1
-End4*

UML-SPT::
RTtimeValue

*

*

1
*

* *

0..1*

startTime

endTime

(a) (b)

ATS: Accepted Time Set
ATI: Accepted Time Interval
ATP: Accepted Time Point

()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

4434421

321

K
48476876

44 344 21

876876

ATI

nedunconstrai

ATP

irregular

endTimestartTime

ATI

endTimestartTime

bounded

null,,ms)(ATS

,ms)(,,ms)(,,ms)(,,ms)(,,ms)(ATS

,,ms)(,,ms)(,,ms)(,,ms)(ATS

0

108651

10854

Invariants:

context ATS
inv hasATInoATP: self.ati->size()>0 implies self.atp->size()=0
inv hasATPnoATI: self.atp->size()>0 implies self.ati->size()=0
inv unconstrainedATS:
 self.ati->exists(i|i.startTime.timeValue=’0' and i.endTime->isEmpty())
 implies self.ati->size()=1

Examples:

ati

atp

Figure 12-(a): Accepted Time Set (ATS) metamodel. (b): Three instances of the metamodel.

Three ATS examples are illustrated in Figure 12-(b), which comply with the metamodel in Figure 12-(a).
ATSbounded and ATSirregular are the ATSs corresponding to a bounded and an irregular arrival pattern. ATS
unconstrained is an ATS for SDs which do not have any arrival pattern, i.e., can be triggered any time.

Our convention to represent an unconstrained ATS is to leave the end time of its only interval as null: it is
unconstrained so no upper bound can be defined. Such an ATS has only one ATI from time 0 to ∞. This
constraint has been formalized by the third OCL invariant (unconstrainedATS) in Figure 12-(a). Note that one
could need to consider other kinds of constraints such as the following, that we refer to as partly-constrained
ATS: () (){ }null,ms)(,ms)(,ms)(ATS strainedpartly-con ,5,3,0= ; where the corresponding SD can be triggered in all
times, except interval]3ms…5ms[. In such an ATS, there is at least one ATI where the end time is null.
However, modeling arrival patterns which lead to partly-constrained ATSs is not currently possible using
the UML-SPT. Since we assumed the UML-SPT as the modeling language to model arrival patterns in this
work, we assume that there will not be any SD with a partly-constrained ATS.

Our GA-based algorithm in Section 6 will require computing the intersection of the ATSs of two SD. This
will enable our algorithm to generate GA individuals (test requirements) with high stress values. Therefore,
we define an intersection operator (∩) for any pair of ATSs: Equation 3. For brevity, startTime and endTime
have been replaced by s and e.

{ }

() ()(){ }

() ()()
444444444444444444 8444444444444444444 76

444444444444444444 8444444444444444444 76

4444444 84444444 76

ATIsCommon

2121

212112122211

ATIsin ATPsCommon

12112122

ATPsCommon

2121

21

minmax

 ATSs

⎭
⎬
⎫

⎩
⎨
⎧

=∧=
>∧<∨>∧<∈∈∃

∪

∠∧∈∈∃∨∠∧∈∈∃∧∈∪

∈∧∈∧∈=∩

∀

)e.ati,e.ati(e.ati)s.ati,s.ati(startTime.ati
s.atie.atie.atis.atis.atie.atie.atis.ati:atsati,atsati|ati

atiatpatsatp:atsatiatiatpatsatp:atsatiATPatp|atp

atsatpatsatpATPatp|atpatsats

:ats,ats

Equation 3-Intersection of two ATSs.

The membership operators (∈) between an ATI/ATP and an ATS denote if an ATI/ATP is a member of an
ATS. For example, considering the ATP (1,ms) in Figure 12-(a), (1,ms)∈ATSirregular.

The output of the formula is the union of three sets: (a) common ATPs (in the case the two ATSs contain only
ATPs), (b) common ATPs in ATIs (in case one ATS contains only ATIs and the other contains only ATPs),
and (c) common ATIs (in case the two ATSs contain only ATIs). In case (a), the result is the set of ATPs
(atp∈ATP means that atp is an ATP) that belong to both ATSs ats1 and ats2. The membership operators (∈)

Carleton University TR SCE-06-09 April 2006

16

between an ATI/ATP and an ATS denote if an ATI/ATP is a member of an ATS. For example, considering
the ATP (1,ms) in Figure 12-(b), (1,ms)∈ATSirregular. In case (b), the result is the set of ATPs in one ATS (e.g.,
ats1) for which there exists an ATI in the other ATS (e.g., ats2), such that the (ATP) time point is inside the
(ATI) time interval. The formula uses a (in-range) operator ∠ to compare a time point (i.e., an ATP) and a
time interval (i.e., an ATI): atiatpendTime.atiatpstartTime.ati:ATIATP,atiatp ∠⇔≤≤∈∈∀ . In case (c), the
result is the set of overlapping time intervals. The rationale for finding overlapping (common) intervals of
two ATSs is illustrated in Figure 13.

startTime1 endTime1

startTime2 endTime2

Intersection operator

startTime1

endTime2

Overlapping interval

ati1

ati2

ats1

ats2

Figure 13- Illustrating the overlap of two ATSs’ intervals.

Note that the union of the above three sets is allowed in the current context from the set theory point of
view, since as the metamodel in Figure 12-(a) shows, ATS is a hybrid set of two element types: ATI and ATP.
Therefore, a set of type ATIs together with another set of type ATP can be the operands of a union operator,
yielding an ATS. Two examples, showing how intersections of two ATSs can be calculated using Equation 3,
are illustrated in Figure 14: between an ATS made of ATIs and an ATS made of ATPs (upper part of the
figure); between two ATSs made of ATIs (lower part of the diagram).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

time (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

time (ms)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

Figure 14-Example intersections of two ATSs.

Based on the above definition of intersection between two ATSs, the intersection of several ATSs can be
defined as: ()() nn atsatsatsatsatsats ∩∩∩=∩∩∩ KK 2121 .

6 USING GENETIC ALGORITHMS TO DERIVE STRESS TEST REQUIREMENTS
This section describes how stress test requirements are derived from our test model. The heuristics of our
stress test technique are described in Section 6.1. Section 0 formulates the stress test generation problem as an
optimization problem. The output stress test requirements format is presented in Section 0. Our choice of the
optimization technique (genetic algorithms) to solve the stress test generation optimization problem is
discussed in Section 6.4. The genetic algorithm formulation to our problem is presented in Section 6.5.

∩

∩

Carleton University TR SCE-06-09 April 2006

17

6.1 Stress Test Heuristics

Our previous stress testing technique, TSSTT [23], can be applied only when SDs do not have AP constraints,
i.e., their scheduling is not constrained. Therefore, given a specific network to stress test, we identify a
message (or a set of messages) in a DCCFP of a SD which imposes maximum traffic on the network [23]. We
refer to such messages as maximum stressing messages. Then, using the start times of the maximum stressing
messages selected in each DCCFP, the selected set of DCCFPs are scheduled in such a way that the
maximum stressing messages can all be sent concurrently. In other words, the SDs’ DCCFPs are scheduled
by shifting their NTUP functions along the time axis. Such a heuristic is illustrated in Figure 15-(a) and (b).
Figure (a) shows the NTUPs for three DCCFPs of a given ISDS (the ISDS contains three SDs and each SD
have one DCCFP). The corresponding maximum stressing messages (marked with vertical lines) execute at
different time instants. Figure (b) shows how the three DCCFPs are scheduled to lead to maximum stress at a
given time instant: DCCFP3 is triggered first, then DCCFP2 is triggered a bit later, followed by DCCFP1.

When SDs have AP constraints, DCCFPs executions can no longer be freely shifted along the time axis. Each
SD’s DCCFP can only be scheduled in time instances inside the SD’s Accepted Time Set (ATS) (Section 5.5.4).
The difference between the stress test heuristics of the current work with that of TSSTT [23] can be better
emphasized by comparing the two illustrations in Figure 15-(b) and (c). As opposed to Figure (b), Figure (c)
shows the periods of time (ATSs) during which it is legal to trigger the three DCCFPs. Each of the three
DCCFPs have different APs (the color-coded ellipses denote the ATS of each SD).

In short, our stress test heuristic in the current work is to look for SD schedules such that each SD start time
is inside its ATS. Only SDs (i.e., their respective DCCFPs) that are members of an ISDS are considered in
order to ensure we comply with inter-SD constraints. For each such schedule, the entailed traffic (stress) is
the maximum combined traffic (over all involved DCCFPs). Note that it is not always possible to achieve the
maximum possible stress (which could be entailed by concurrent execution of the SDs under study) when
considering AP constraints due to constraints in SD start times, e.g., marked by a vertical line in Figure 15-
(c). Considering that ATSs of different SDs in a SUT can be in general very different than each other, we can
also see in Figure 15-(c) that the optimization (search) algorithm needed to derive test requirements in this
context will likely have a complex set of constraints to satisfy and is expected not to be as simple as the one
in [23].

NTUP(DCCFP3,max,net,t)

NTUP(DCCFP1,max,net,t)

NTUP(DCCFP2,max,net,t)

(b): A stress test requirement
generated by TSSTT

GASTT Heuristics

t
Start times of
maximum stress
messages

t

NTUP(DCCFP2,max,net,t)

NTUP(DCCFP1,max,net,t)

NTUP(DCCFP3,max,net,t)

(a): NTUP of DCCFPs of an ISDS

t

t

(c): A stress test requirement
generated by GASTT

t

NTUP(DCCFP2,max,net,t)

NTUP(DCCFP1,max,net,t)

NTUP(DCCFP3,max,net,t)

NOT the maximum
possible stress, due
to AP constraints.

Maximum possible
stress can be
achieved in this
time instance.

SD can only be
started to execute in
a time instance inside
their Accepted Time
Sets (ATS).

Shift along
time axis.

TSSTT
Heuristics

Figure 15. An example comparing the heuristics of TSSTT [23] and GASTT (the current work).

6.2 Formulation as an Optimization Problem

The stress test heuristics defined above is an optimization problem, since it tries to find the maximum stress
messages given a set of constraints. In order to solve this optimization problem, we formulate it formally as
shown in Figure 16.

Carleton University TR SCE-06-09 April 2006

18

Objective Function: Maximize the traffic on a specified network

Variables:

− A subset of DCCFPs

− Schedule to run the selected DCCFPs

Constraints:

− Inter-SD sequential and conditional constraints

− SD arrival patterns

Figure 16. Formulating the problem of generating stress test requirements as an optimization problem.

Note that multiple concurrent invocations of a SD might be allowed in a system, e.g., a SD which is triggered
by five sensors concurrently. Therefore multiple DCCFP instances of such a SD can be executed to maximize
stress during testing. Our technique derives the number of multiple invocations of a SD from the information
specified in a system context diagram [24], i.e., a diagram specifying actors interacting with the system and
their expected numbers at run-time. For example, if five instances of an actor can trigger a SD, it implies that
five instances of the SD (i.e., one of its corresponding DCCFPs) can run concurrently.

6.3 Output Stress Test Requirements

Assuming that a SUT has n SDs (SD1, …, SDn), a test requirement will be a schedule of a selected set of
DCCFPs in the form of: <(ρ1max, αρ1max), …, (ρnmax, αρnmax)>, where for the i-th entry of the sequence, ρimax is a
DCCFP in the DCCFP set of SDi, DCCFP(SDi), that entails the maximum traffic over the selected network.
αρimax is the start time of ρimax, i.e., the time to trigger ρimax. Intuitively, if none of the DCCFPs of SDi has any
message going through the selected network, it means that that SDi does not have any traffic on the network
and hence it will not be included in the test requirements. In such a case, the i-th entry is null.

6.4 Choice of the Optimization Technique: Genetic Algorithms

For the test requirement generation problem at hand, which is an optimization scheduling problem, using
Linear Programming (LP) is impossible as the constraint regions of several ATSs altogether (their unions)
can generally be non-linear (disconnected in the context of ATSs). To better explain such a non-linearity,
suppose an n-dimensional space where n ATSs (corresponding to n SDs) are specified, where each ATS can
be disconnected (e.g., the ATS of a bounded or a periodic AP). In such a case, the acceptable search space of
the problem is the union of all those ATSs. Due to the disconnectivity of each ATS, the search space resulting
from their union will also be non-linear, thus making the entire problem unsolvable by LP. Furthermore, for
the scheduling problem at hand, any change in the number of SDs and DCCFPs or the execution times may
cause great changes in the solution. The solution space of the problem is thus uneven, characterized by
multiple peaks and valleys. A Non-Linear Programming (NLP) technique is thus needed that alleviates this
problem by exploring multiple parts of the non-linear problem space.

However, due to the disconnected nature of ATSs and also the unbounded number of possible schedules for
each SD in our problem, we expect to face one of the major common challenges in NLP: "local optima".
Algorithms that propose to overcome this difficulty are termed "Global optimization techniques" [27], also
known as meta-heuristic methods. They continually search for better solutions by altering a set of current
solutions. Furthermore, meta-heuristic methods are usually more scalable and flexible [52] than other NLP
techniques (e.g., branch-and-bound) for complex problems like ours.

Genetic Algorithms (GA) and Simulated Annealing (SA) are two of the commonly used global optimization
techniques. Some studies, such as [31] indicate that SA outperforms GAs, while others, such as [13] suggest
that GAs produce solutions equivalent or superior to SA. Most researchers, however, seem to agree that
because GAs maintain a population of possible solutions, they have a better chance of locating the global
optimum compared to SA and Taboo Search (TS) which proceed one solution at a time [34, 35].

Carleton University TR SCE-06-09 April 2006

19

Furthermore, because SAs maintain only one solution at a time, good solutions may be discarded and never
regained if cooling occurs too quickly. Similarly, TS may miss the optimum solutions. Alternatively, steady
state GAs, one of the variations of GAs, accept newly generated solutions only if they are fitter than previous
solutions. Furthermore, GAs lend themselves to parallelism, as they manipulate whole populations:
computations for different parts of the population can be dispatched to different processors. SA, on the other
hand, cannot easily run on multiple processors because only one solution is constantly manipulated [34].
Hence, we adopt GA as our optimization technique methodology.

6.5 Tailoring Genetic Algorithm to Derive Instant Stress Test Requirements

We use a GA to solve the optimization problem of finding DCCFPs and their triggering times such that
instant traffic on a network or a node is maximized. This section describes how we tailored the different
components of the GA to this problem. We define a chromosome representation in Section 6.5.1. Constraints
defining legal chromosomes are formulated in Section 6.5.2. Derivation of the initial GA population is
discussed in Section 6.5.3. The concept of a time search range which is needed in our GA for the initialization
process as well as the operators is discussed in Section 6.5.4. The objective (fitness) function is described in
Section 6.5.5. GA operators (crossover and mutation) are finally presented in Section 6.5.6.

6.5.1 Chromosome

Chromosomes define a group of solutions to be optimized. Their representation and length must be precisely
defined and justified [26]. Recall we need to optimize the selection of SDs’ DCCFPs and their schedule, i.e.,
their start times. Thus, we need to encode both DCCFP identifiers and their arrival times in a chromosome.
A gene can be depicted as a pair (ρi,selected, αρi,selected), where ρi,selected is a selected DCCFP of SDi, and αρi,selected is
the start time of ρi,selected. Together, the pair represents a schedule of a specific DCCFP. If no DCCFP is selected
from a SD (because the SD does not have traffic over a particular network, for example), the gene is denoted
as null. This is to ensure that the number of genes in each chromosome remains constant as this facilitates the
definition of mutation/cross-over operators and fitness function.

We formalize the concepts we employ in a metamodel which is depicted in Figure 17-(a). Such a metamodel
also constitutes a starting point for the design of our tool (Section 7). A Chromosome is composed of a
sequence of Gene instances, specifically as many genes as SDs in the system. The Initialization, Crossover and
Mutation operators are all defined in Chromosome, as well as the objective function, Evaluate. These functions
will be defined in Section 6.5.6.

Carleton University TR SCE-06-09 April 2006

20

-startTime: RTtimeValue
Gene

-End31 -End4*

Chromosome

Gene Gene

(a) (b)

1..*

(DCCFP1,2, (1, ‘2ms’)) (DCCFP2,2, (6, ‘9ms’))

ISDS

DCCFP

-End31 -End4*

-End31
-End4*

sd

isds

selectedDCCFP

0...1

1

1..*

*

*

*

sd

dccfp

1 *

An instance:

SUT

-End31 -End4*
sut

isds

sd

1

*

ap

Chromosome

+Initialize(Chromosome &ch)
+Mutate(Chromosome &ch)
+Crossover(const Chromosome & parent1,

const Chromosome & parent2,
Chromosome * child1,
Chromosome * child2)

+Evaluate(Chromosome &ch)

context Gene:
inv self.selectedDCCFP.sd=sd

-numOfMultipleSDInstances:Int
SD

-type
ArrivalPattern

isds*

1

gene

context Chromosome:
inv self.gene.sd.isds = self.isds
inv self.gene->size() = self.isds.sd->size()

Figure 17-(a): Metamodel of chromosomes and genes in our GA algorithm. (b): Part of an instance of the

metamodel.

Each Gene is associated with a SD. Furthermore, it has an association (selectedDCCFP) to zero (if no DCCFP is
chosen) or one DCCFP. A Gene has an attribute startTime, of type RTtimeValue (defined in the UML-SPT),
which is the time value to trigger selectedDCCFP. Each DCCFP belongs to a SD, whereas each SD can have
several DCCFPs. Attribute numOfMultipleSDInstances is the number of multiple SD instances which are
allowed to be triggered concurrently. Each SD can be a member of several ISDSs, and an ISDS can have one
or more SDs. Arrival pattern information of SDs is stored in instances of a class ArrivalPattern (attributes of
such a class can be easily defined based on the discussions in Section 5.5.2, such as type and AP parameters).
A SUT (model) has one or more ISDSs. Finally, to specify the well-formedness criteria of the above
metamodel, we have defined two and one invariants for the Chromosome and Gene classes, respectively. For
example, the SD instance owning the selectedDCCFP of a Gene should be the same SD instance refer by Gene.
Recall that we are maximizing traffic at a given instant and what matters is thus the number of SDs that can
be triggered concurrently. We therefore do not need to model sequential and conditional constraints.

An example of a chromosome and a gene is illustrated in Figure 17-(b), which complies with the metamodel
in Figure 17-(a). The chromosome is composed of two genes, since it is assumed that the SUT has two SDs:
SD1 and SD2. DCCFP1,2 and DCCFP2,2 are selected DCCFPs of SD1 and SD2, respectively. The genes indicate
that the DCCFPs’ start times are 2 ms and 9 ms, respectively.

6.5.2 Constraints

Inter-SD and arrival pattern constraints should be satisfied when generating new chromosomes from
parents. Otherwise GA backtracking procedures [26] should be used. Backtracking, however, has its
drawbacks: it is time consuming and some GA tools incorporate backtracking while others do not. To allow
for generality, we assume no backtracking methodology is available. Therefore, we have to ensure that the
GA operators always produce chromosomes which satisfy the GA’s constraints. In order to do so, we
formally express inter-SD and arrival pattern constraints based on our metamodel.

6.5.2.1 Constraint #1: Inter-SD constraints

We incorporated inter-SD constraints in ISDSs (Section 5.2). A set of DCCFPs are allowed to execute
concurrently in a SUT only if their corresponding SDs are members of an ISDS. As discussed in Section 6.5.1,
each chromosome is a sequence of genes, where each gene is associated with zero or one DCCFP. Therefore,
a chromosome satisfies Constraint #1 only if the SDs of DCCFPs corresponding to its genes are members of a

Carleton University TR SCE-06-09 April 2006

21

same ISDS. In other words, each chromosome corresponds to only one ISDS. We can formulate the above
constraint as a class invariant on class Chromosome (Figure 17-(a)) as presented in Figure 18.

context Chromosome

inv: self.gene.selectedDCCFP.sd.isds->asset()->size()=1

Figure 18- Constraint #1 of the GA (an OCL expression).

6.5.2.2 Constraint #2: Arrival pattern constraints

Given a chromosome, the OCL post-condition in Figure 19 determines if the chromosome (the scheduling of
its genes) satisfies the Arrival Pattern Constraints (APC) of SDs. The function
IsAPCSatisfiedByAChromosome(c :Chromosome) returns true if all genes of the chromosome satisfy the APCs.
The OCL post-condition makes use of function IsAPCSatisfied(startTime, AP), defined in Section 5.5.3.

1 IsAPCSatisfiedByAChromosome(c:Chromosome)

2 post: result=

3 if c.gene->exits(g| g.selectedDCCFP.notEmpty
and

not
IsAPCSatisfied(g.startTime,
g.sd.ap) then

4 false

5 else

6 true

Figure 19- Constraint #2 of the GA (an OCL function).

6.5.3 Initial Population

Determining the population size of a GA is challenging [2]. A small population size will cause the GA to
quickly converge on a local minimum because it insufficiently samples the search space. A large population,
on the other hand, causes the GA to run longer in search for an optimal solution. Haupt and Haupt in [26]
list a variety of works that suggests adequate population sizes. The authors reveal that the work of De Jong
[17] suggests a population size ranging from 50 to 100 chromosomes. Grefenstette et al. [25] recommend a
range between 30 and 80, while Schaffer and his colleagues [47] suggest a smaller population size, between
20 and 30. We choose 80 as the population size as it is consistent with most of experimental results.

The GA initial population generation process should ensure that the two constraints of Section 6.5.2 are met.
The pseudo-code to generate the initial set of chromosomes is presented in Figure 20. As indicated by the
constraint #1, each chromosome corresponds to an ISDS. Therefore, line 1 of the pseudo-code chooses a
random ISDS and the initialization algorithm continues with the selected ISDS to create an initial
chromosome. Note that to generate our GA’s initial population, CreateAChromosome() is invoked 80 times.

Carleton University TR SCE-06-09 April 2006

22

Function CreateAChromosome(): Chromosome
c: Chromosome
1 ISDS=a random ISDS
2 For all SDi∈ISDS
3 c.genei.selectedDCCFP = a random DCCFP from SDi
4 For all SDi∉ISDS
5 c.genei=null
6 Intersection=ATS(SD1) ∩ ATS(SD2) ∩… ∩ATS(SDi), where

SDj,j=1…i∈ISDS
7 If Intersection≠{}
8 Choose a random time instance tschedule in Intersection
9 For all c.genei ≠null
10 c.genei.startTime= tschedule
11 Else
12 For all c. genei ≠null
13 c.genei.startTime= A random time instance ti in ATS(SDi)
14 Return c

Figure 20-Pseudo-code to generate chromosomes of the GA’s initial population.

For each SD in the ISDS selected in line 1, lines 2-3 choose a random DCCFP and assign it to the
corresponding gene (i.e. genei corresponds to SDi). Other genes of the chromosome (those not belonging to
the selected ISDS) are set to null (lines 4-5). An initial scheduling is done on genes in lines 6-13. The idea is to
schedule the DCCFPs in such a way that the chances that DCCFPs’ schedules overlap are maximized, and
thus higher stress test values are achieved earlier in the GA evolution, i.e., being as close as possible to the
optimal solution as early as possible in the search. This is done by first calculating the intersection of ATSs
for SDs in the selected ISDS (line 6), using the intersection operator described in Section 5.5.4. The
intersection of two ATSs is an ATS that contains all the time instances and time intervals that are common to
the two ATSs. If the intersection set is not null (meaning that the ATSs have at least one overlapping time
instance), a random time instance is selected from the intersection set (line 8). All DCCFPs of the genes are
then scheduled to this time instance (lines 10-11). If the intersection set is null, it means that the ATSs do not
have any overlapping time instance. In such a case, the DCCFP of every gene is scheduled differently, by
scheduling it to a random time instance in the ATS corresponding to its SD (lines 12-13).

When selecting a random time instance for a gene, we need a range to select of time values to select from.
When calculating an intersection of ATSs, we also need a range of time values, especially when some ATSs
are unbounded. This range is discussed in Section 6.5.4 below.

Following the algorithm in Figure 20, we ensure the initial population of chromosomes complies with both
constraints of Section 6.5.2. Note that the above algorithm does not ensure that all the ISDSs are represented
in the initial population. However, after creating an initial population of randomly-selected ISDS and during
the GA process, one of our GA’s mutation operators (Section 6.5.6.2) will mutate an entire chromosome by
assigning another, randomly-selected ISDS, to the chromosome. That operator allows the search to
investigate different ISDSs.

6.5.4 Determining a Maximum Search Time

One important issue in our GA design is the range of the random numbers chosen from the ATS of a SD with
an arrival pattern. As discussed in Section 5.5.4, the number of ATIs or ATPs in some types of APs (e.g.
periodic, bounded) can be infinite. Therefore, choosing a random value from such an ATS can yield very
large values, thus creating implementation problems.

Carleton University TR SCE-06-09 April 2006

23

Another direct impact of such unboundedness on our GA is that it would significantly decrease the
probability that all (or a subset) of start times of DCCFPs (corresponding to the genes of a chromosome)
overlap or be close to each other. If the maximum range when generating a set of random numbers is
infinity, the probability that all (or a subset) of the generated numbers are relatively close to each other is
very small. Thus, to eliminate such problems, we introduce a Maximum Search Time. This maximum search
time is essentially an integer value (in time units) which enforces an upper bound on the selection of random
values for start times of DCCFPs, chosen from an ATS. The GA maximum search time will be used in our
GA operators (Section 6.5.6) to limit the maximum ranges of generated random time values.

Different values of Maximum Search Time (MST) for a specific run of our GA might produce different
results. For example, if the search range is too limited (small maximum search time), not all ATIs and ATPs
in all ATSs will be exercised. On the contrary, if the range is too large (compared to maximum values in
ATSs), it will take a longer time for the GA to converge to a maximum plateau, since the selection of random
start times for DCCFPs will be sparse and the GA will have to iterate through more generations to settle on a
stable maximum plateau (in which start times are relatively close to each other).

The impact of MST on exercising the time domain is illustrated in Figure 21 using an example, where the
ATSs of three APs (a periodic, a bounded and a bursty one) are depicted. Four maximum search times
(MSTi) have been arbitrarily chosen. The search range specified by MST1 (Search Range1) is not a suitable one
since only time values in the first ATI of the bounded ATS will be chosen thus preventing the GA from
searching all possible start times in the ATS range of the depicted bounded AP. This will limit the search
space, thus reducing the chances of finding the most stressful situations. Following a similar reasoning, the
search range specified by MST2 (Search Range2) is not a suitable one either. MST3 and MST4 specify ranges in
which a complete search over the possible ATS values can be performed. Comparing the last two, the latter
does not provide any advantage in terms of completeness of the search range over the former, while at the
same time causing a slower convergence of the GA. Therefore, MST3 is a preferable maximum search time
over MST4. Note that the ATS of the bursty AP in Figure 21 does not play any role in determining a suitable
maximum search time, since by having an unrestricted ATS, regardless of the choice of such a MST, any start
time can be chosen for a bursty AP.

A bounded AP

A bursty AP

A Periodic AP

MST1

MST: Max Search Time

MST2 MST3 MST4

Search Range1

Search Range2

Search Range3

Search Range4

Figure 21-Impact of maximum search time on exercising the time domain.

As we saw in the above example, a suitable maximum search time depends on the occurrence and
intersections of different ATSs. We discuss below how a suitable maximum search time can be estimated for
a set of ATSs based on a set of heuristics. In order to do this, we group the types of arrival patterns (AP) into
two groups:

• Bounded Arrival Patterns: APs which result in ATSs where the number of ATIs or ATPs is finite.

Only irregular APs match this description.

• Unbounded Arrival Patterns: APs which result in ATSs where the number of ATIs or ATPs is

infinite. With this definition, periodic, bounded, unbounded, and bursty APs are unbounded.

Carleton University TR SCE-06-09 April 2006

24

If all APs are irregular, then a suitable MST (MSTsuitable) will be the maximum of all latest irregular arrival
times in all ATSs. For example, the ATSs of three irregular APs are depicted in Figure 22. A MSTsuitable will be
the last arrival time of the third AP (as depicted), which has the maximum time value. This maximum search
time will allow the GA to effectively search in the time domain, considering all possible start times from all
APs.

Three
irregular
APs

A suitable maximum
search time

Figure 22- The ATSs of three irregular APs.

If APs are infinite, the occurrence and intersection of different ATIs in the APs should be taken into account.
Since only periodic, irregular, and bounded APs have discrete ATSs (Section 5.5.4), we only consider them in
finding a suitable maximum search time. Unrestricted APs (bursty and unbounded) do not impose any
restrictions on the selection of a suitable maximum search time, since any time value is acceptable by a
bursty or an unbounded AP.

We present in Table 1 a set of heuristics to identify a MSTsuitable based on a given set of periodic, irregular, and
bounded APs. In the heuristics, ap.type denotes the type of an AP, e.g., ‘bounded’, ‘periodic’.

Heuristics Rationale
1)1irregular''

maxATP.ap,,maxATP.ap(maxMST ntype.ap|apsuitable
ii

L
=∀

≥ This heuristic will allow the GA to effectively search
in the time domain, considering all possible start
times from all irregular APs.

2)1bounded''
URSP.ap,,URSP.ap(maxMST ntype.ap|apsuitable

ii

L
=∀

≥ This heuristic will provide a full search coverage on
all bounded APs simultaneously.

3

)1periodic''

1periodic''

deviation.ap,,deviation.ap(max

)period.ap,,period.ap(LCDMST

ntype.ap|ap

ntype.ap|apsuitable

ii

ii

L

L

=∀

=∀
+≥

The time range around this LCD value can yield
schedules when all the periodic SDs can start
simultaneously.

This heuristic can also be used when generating the
initial GA population to set start times close to this
LCD value which, in turn, can potentially yield stress
test schedules with high ISTOF values.

Table 1-A set of heuristics to identify a suitable MST (MSTsuitable).

Heuristic #1 denotes that a MSTsuitable should be greater than the maximum value among all maximum ATPs
of irregular APs. The rationale beyond this heuristic is the same as the case when all APs of a TM are
irregular (discussed above). ap.maxATP denotes the maximum ATP of an irregular AP and can be calculated
using the formula in Equation 4.

⎩
⎨
⎧ =>∈∀∧∈

=∈∀
elseundefined

irregular'' if
;

type.ap;atpatp:ATS.apatpATS.apatp|atp
maxATP.ap:APap maxmaxmax

Equation 4-A formula to calculate the maximum ATP (maxATP) of an irregular AP.

Heuristic #2 is meant to provide a full search coverage on all bounded APs simultaneously. Recall from
Section 5.5.4 that every bounded ATS has an ATI whose end time is unbounded. Furthermore, all time
instances after the start time of such an ATI are accepted arrival times. If the MST value is chosen to be
greater than all such start times among all bounded APs, the GA will be able to have a full search coverage
on all of the APs, and thus, maximizing the chances of finding a test schedule with high stress value. To

Carleton University TR SCE-06-09 April 2006

25

better formalize heuristic #2, we refer to such a start time as the bounded AP’s Unbounded Range Starting
Point (URSP). The URSP of a bounded AP can be calculated using the formula in Equation 5, given the ATIs
of the AP.

⎩
⎨
⎧ =∈

=∈∀
elseundefined

bounded'' if
;

type.ap;ATS.ap)'null',rtlastATIsta(|rtlastATIsta
URSP.ap:APap

Equation 5-A formula to calculate the Unbounded Range Starting Point (URSP) of a bounded AP, given
the ATIs of the AP.

For example, the URSP of the bounded APs in Figure 23 are denoted as URSPi. If the minimum and
maximum inter-arrival times (minIAT and maxIAT) of a bounded AP are given, the formula in Equation 6
can be used to calculate the value of the URSP. The proof of this formula is given in Appendix A.

⎪⎩

⎪
⎨
⎧

=⎥⎥
⎤

⎢⎢
⎡

−=∈∀
elseundefined

bounded'' if

;

type.ap;.minIAT
minIATmaxIAT

minIAT
URSP.ap:APap

Equation 6-A formula to calculate the Unbounded Range Starting Point (URSP) of a bounded AP, given
the minimum and maximum inter-arrival times (minIAT and maxIAT) of the AP.

Heuristic #3 is meant to provide a time range when all the periodic SDs can be triggered simultaneously or
close-enough to each other. The Least Common Denominator (LCD) value of all the period values of the
periodic APs provides one such a time range. The time range around this LCD value can yield schedules
with potential high stress values. The maximum value of the periodic APs’ deviations is also included in the
heuristic #3 to increase the chances of finding a potential schedule with a high stress value.

A MSTsuitable value should be calculated by considering all three heuristics in Table 1, i.e., a MSTsuitable is equal
to the maximum value among the three right-hand side in the three ≥ inequalities. To better explain the
above set of heuristics, an example with three irregular, three periodic, and three bounded APs is shown in
Figure 23 and the process of deriving a MSTsuitable for this particular example is described next.

The maximum value of maxATP’s for the three irregular APs is shown. Heuristic #1 denotes that a MSTsuitable
should be greater than this value.

The URSP of each bounded AP has been calculated using the formula in Equation 6 based on the minIATi
and maxIATi of each AP, and is denoted as URSPi. The maximum value among all URSPi’s is referred to as
URSPmax. Heuristic #2 denotes that a MSTsuitable should be greater than this value.

Finally, the LCD of the period values of the periodic APs is calculated based on the values of periodi and is
shown. Heuristic #3 denotes that a MSTsuitable should be greater than the sum of this value and the greatest
deviation value among all periodic APs. A MSTsuitable (shown by a bold line) is the smallest time value which
satisfies the above three heuristics.

Carleton University TR SCE-06-09 April 2006

26

Bounded APs

Periodic APs

A suitable MST

URSP1

URSP2

URSP3

...

...

.

...

...

...

URSPmax

(‘periodic’, (period1, ms), (devi, ms))

LCD (Least Common
Denominator) of periodi’s

(‘periodic’, (period2, ms), (dev2, ms))

(‘periodic’, (period3, ms), (dev3, ms))

(‘bounded’, (minIAT1, ms), (maxIAT1, ms))

(‘bounded’, (minIAT2, ms), (maxIAT2, ms))

(‘bounded’, (minIAT3, ms), (maxIAT3, ms))

Irregular APs

Maximum of maxATP’s for all
irregular APs

Figure 23-Illustration showing the heuristic of choosing a suitable maximum search time.

6.5.5 Objective (Fitness) Function

Optimization problems aim at searching for a solution within the search space of the problem such that an
objective function is minimized or maximized [2]. In other words, the objective function can aim at either
minimizing the fitness of chromosomes or maximizing them. The objective function of a GA measures the
fitness of a chromosome. Recall from Section 0 that our optimization problem is defined as follows: What
selection and what schedule of DCCFPs maximize the traffic on a specified network or node (at a specified time
instant)?

Recall from Section 5.5 that we apply our GA-based technique to find stress test requirements which stress a
SUT in a time instant. Therefore, let us refer to the objective function in this section as Instant Stress Test
Objective Function (ISTOF). The ISTOF should measure the maximum instant traffic entailed by a schedule of
DCCFPs, specified by a chromosome. Using the network traffic usage model in Section 5.4, we define ISTOF
in Equation 7.

()]).(.max).(min[

.),,.(max)(:
Re:

)()(

)(

CFPselectedDCgLengthstartTimegstartTimegeSearchRang

ncespleSDInstanumOfMultig.sdtnetCFPselectedDCgNTUPcISTOFChromosomec
alChromosomeISTOF

cGenesgcGenesg

cGenesgeSearchRangt

+=

×=∈∀

→

∈∀∈∀

∈∀∈∀
∑

K

Equation 7- Instant Stress Test Objective Function (ISTOF).

The first line of Equation 7 indicates that the input domain and range of ISTOF are chromosomes and real
numbers. Length(dccfp) is a function to calculate the time duration of a DCCFP (modeled in the
corresponding SD using UML-SPT tagged-values). Genes(c) returns the set of not null genes of the
chromosome c. net is the given network to stress test. NTUP is the traffic usage function (Section 5.4) to

Carleton University TR SCE-06-09 April 2006

27

measure the instant data traffic in a network. The value of NTUP is multiplied by the SD’s
numOfMultipleSDInstances value. When multiple instances of a DCCFP are triggered at the same time, the
entailed traffic at each time instant is proportional to the number of instances.

The heuristic underlying the ISTOF formula is that it tries to find the maximum instant data traffic
considering all genes in a chromosome. The search is done in a predetermined time range. The starting point
of the search is the minimum startTime (the start time of the earliest DCCFP), and the ending point of the
range is the end time of the latest DCCFP, which is calculated by taking maximum values among start times
plus DCCFP lengths.

To better illustrate the idea behind ISTOF, let us discuss how ISTOF for the chromosome in Figure 17-(b) is
calculated. The calculation process is shown in Figure 24. The chromosome contains two genes, which
correspond to DCCFP1,2 and DCCFP2,2. The search range is [2ms, 20ms]: 2 is the start time of the earliest
DCCFP, namely DCCFP1,2; 20 is the start time (9) of the other DCCFP, DCCFP2,2, plus its length (11). ISTOF
sums the NetInsDT values in this range and finds the maximum value: bottom right of Figure 24. The output
value of ISTOF is 110 KB.

NetInsDT(DCCFP2,2, SystemNetwork, t)

0

80 80

0
40 40 40

0 20 20

NetInsDT(DCCFP1,2, SystemNetwork, t)

0
40 40 40 40

0

90 90

0 20 0 0
30 30 30

D
T

(in
 K

B
)

t (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
T

(in
 K

B
)

Search range

ISTOF

0

80 80 80
40 20 20 0

D
T

(in
 K

B
)

t (ms)

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

90 90

0 20 0 0
30

110110

Objective function value

A chromosome

A Real value: 110

Gene Gene

(DCCFP1,2, 2ms) (DCCFP2,2, 9ms)

Figure 24-Computing the Instant Stress Test Objective Function (ISTOF) value of a chromosome.

6.5.6 Operators

Operators enable GAs to explore a solution space [26] and must therefore be formulated in such a way that
they efficiently and exhaustively explore it. If the application of an operator yields a chromosome which
violates at least one of the GA’s constraints, the operation is repeated to generate another chromosome. This
is an alternative to GA backtracking and is done inside each operator, i.e., each operator generates temporary
children first and checks if they do not violate any constraints (Section 6.5.2). If the temporary children
satisfy all the constraints, they are returned as the results of the operator. Otherwise, the operation is
repeated. Furthermore, operators should be formulated such that they can explore the entire solution space.
We define the crossover and mutation operators next.

6.5.6.1 Crossover Operator

Crossover operators aim at passing on desirable traits or genes from generation to generation [26]. Varieties
of crossover operators exist, such as sexual, asexual and multi-parent. The former uses two parents to pass
traits to two resulting children. Asexual crossover involves only one parent. Multi-parent crossover
combines the genetic makeup of three or more parents when producing offsprings. Different GA
applications call for different types of crossover operators. We employ the most common of these operators:
sexual crossover.

The general idea behind sexual crossover is to divide both parent chromosomes into two or more fragments
and create two new children by mixing the fragments [26]. In our application, since each gene corresponds to
a SD, we consider the sexual crossover’s fragmentation policy to be on each gene, making the size of each

Carleton University TR SCE-06-09 April 2006

28

fragment to be one gene. Therefore, assuming n is the number of genes, the resulting crossover operator
(using Pawlosky’s terminology [45]) is (n-1)-point, and is denoted nPointCrossover. In our application, the
mixing of the fragments is additionally subject to a number of constraints (Section 6.5.2): A newly generated
chromosome should satisfy the inter-SD and arrival pattern constraints. We ensure this by designing the GA
operators in a way that they would never generate an offspring violating a constraint.

Whether the alternation process of the nPointCrossover operator starts from the first gene of one parent or the
other is determined by a 50% probability. To further introduce an element of randomness, we alternate the
genes of the parents with a 50% probability, hence implementing a second crossover operator,
nPointProbCrossover. In nPointCrossover, the resulting children have genes that alternate between the parents.
In nPointProbCrossover, the same alternation pattern occurs as nPointCrossover, but instead of always
inheriting a fragment from a parent, children inherit fragments with a probability of 50%.

It is important to note that, for both crossover versions, if the set of non-null genes of a chromosome (their
corresponding SDs) do not belong to an ISDS, constraint #1 will be violated. In such a case, we do not
commit the changes and search for different parent chromosomes (by applying the operator again).
Regarding constraint #2, note that since the parents are assumed to satisfy the arrival pattern constraint and
the crossover operators do not change the start times of genes’ DCCFPs, the child chromosomes are certain
to satisfy such constraint. The start times of DCCFPs will be changed (mutated) by our mutation operator
(described in the next section) and the arrival pattern constraint will be checked when applying that
operator.

Let us consider the example in Figure 25 to see how our two crossover operators work. The number of genes
in each parent chromosome is five (assuming that there are five SDs in the SUT). Assume that the SUT has
two ISDSs, ISDS1 and ISDS2 such that ISDS1={SD1, SD4, SD5} and ISDS2={SD1, SD3, SD4}, and DCCFP ρi,x
belongs to SDi. Parent 1 has genes corresponding to DCCFPs in {SD1, SD4, SD5}⊂ ISDS1. Parent 2’s genes are
DCCFPs in {SD1, SD3, SD4}⊂ISDS2. The results of applying nPointCrossover and nPointProbCrossover are
shown in Figure 25 (b) and (c) respectively. In nPointCrossover, the fragments of Parent 1 and Parent 2 are
alternately interchanged (Figure 25-(b)): Child1 (resp. Child2) receives the first, third and fifth genes from
Parent1 (resp. Parent2) and the second and fourth genes from Parent2 (resp. Parent1). Using the same
example for nPointProbCrossover, one possible outcome appears in Figure 25-(c). Bold genes indicate the
fragments interchanged by nPointProbCrossover. Three of the four generated children (all except Child 2 in
Figure 25-(c)) conform to constraint #1, i.e., the SDs corresponding to the genes of each child belong to one
ISDS (ISDS1 or ISDS2), as well as constraint #2. Since Child 2 in Figure 25-(c) violates constraint #1, the two
temporary children (Child 1 and 2 in Figure 25-(c)) are abandoned, and this particular execution of
nPointProbCrossover is repeated.

Figure 25-Two example uses of the crossover operators.

The advantages of nPointProbCrossover are twofold. It introduces further randomness in the crossover
operation. By doing so, it allows further exploration of the solution space. However, nPointProbCrossover has

Carleton University TR SCE-06-09 April 2006

29

its disadvantages: the resulting children may be replicas of the parents, with no alteration occurring. This is
never the case with nPointCrossover; resulting children are always genetically distinct from their parents.

Crossover rates are critical. A crossover rate is the percentage of chromosomes in a population being selected
for a crossover operation. If the crossover rate is too high, desirable genes will not be able to accumulate
within a single chromosome whereas if the rate is too low, the search space will not be fully explored [26]. De
Jong [17] concluded that a desirable crossover rate should be about 60%. Grefenstette et al. [25] built on De
Jong’s work and found that the crossover rate should range between 45% and 95%. Consistent with the
findings of De Jong and Grefenstette, we apply a crossover rate of 70%.

6.5.6.2 Mutation Operator

Mutation aims at altering the population to ensure that the GA avoids being caught in local optima. The
process of mutation proceeds as follows: a gene (or a chromosome) is randomly chosen for mutation, the
gene (or the chromosome) is mutated, and the resulting chromosome is evaluated for its new fitness. We
define three mutation operators that (1) mutate a non-null gene (a gene with an already assigned DCCFP) in
a chromosome by altering its DCCFP, (2) mutate the start time of a non-null gene, or (3) mutate the entire
chromosome by assigning another, randomly-selected ISDS to it (i.e., assign to each gene of the chromosome
a randomly-selected DCCFP from the corresponding ISDS’s SDs, and start times from the ATSs of that
ISDS’s SDs, in a way similar to the creation of the chromosomes of the initial population). The mutation
operators are referred to as DCCFPMutation, startTimeMutation, and ISDSMutation, respectively.

The idea behind the DCCFPMutation operator is to allow the search to investigate different DCCFPs. The
idea behind the startTimeMutation operator is to move DCCFP executions along the time axis. This is done in
such a way that the constraints we defined on the chromosomes are met (Section 6.5.2). The purpose of the
ISDSMutation operator is to increase the population of genes related to an ISDS, thus increasing population
variability. This is expected to lead to a better search, especially when the number of ISDSs is close to (or
above) the selected population size (Section 6.5.3). In that case, the initial population created by the
algorithm in Section 6.5.3 will have, on average, only one, a few, or even no chromosome corresponding to
an ISDS. In that case, different combinations of DCCFPs and their triggering times inside an ISDS may not
thus be thoroughly searched. Our initial experiments with the GA were not using the ISDSMutation operator
and revealed that this operator was crucial to converge towards high fitness values.

Since the mutation operators alter non-null genes only, they do not change the set of SDs corresponding to a
chromosome, thus ensuring that constraint #1 is satisfied (the set of SDs will still belong to the same ISDS).
However, start times are changed by the mutation operator startTimeMutation, resulting in a possible
violation of constraint #2. The output of the DCCFPMutation operator will always adhere to constraint #2,
since the start times are unchanged by the operator. One way of making sure that a generated chromosome
by the startTimeMutation operator satisfies the arrival pattern constraints is to set the new start times to a
random value in the range of accepted arrival time values of a SD, i.e., Accepted Time Sets (ATS) – (Section
5.5.3). Therefore, we design the startTimeMutation operator in such a way that the altered start times are
always among the accepted one. In other words, there will be no need to backtrack in this case.

A mutation rate is the percentage of chromosomes in a population being selected for mutation. Throughout
the GA literature, various mutation rates have been used. If the rates are too high, too many good genes of a
chromosome are mutated and the GA will stall in converging [26]. Back [4] enumerates some of the more
common mutation rates used. The author states that De Jong [17] suggests a mutation rate of 0.001,
Grefenstette [25] suggests a rate of 0.01, while Schaffer et al. [47] formulated the expression length/. λ751
(where λ denotes the population size and length is the length of chromosomes) for the mutation rate.
Mühlenbein [38] suggests a mutation rate defined by 1/length. Smith and Fogarty [49] show that, of the
common mutation rates, those that take the length of the chromosomes and the population size into
consideration perform significantly better than those that do not. Based on these findings, we apply for all

Carleton University TR SCE-06-09 April 2006

30

the three mutation operators the mutation rate suggested by Schaffer et al.: length/. λ751 . Once mutation is
decided, using this mutation score, the three mutation operators are applied with the same probability.

7 AUTOMATION AND ITS EMPIRICAL ANALYSIS
Section 7.1 provides an overview of a prototype tool that was implemented to support the application of our
genetic algorithm-based stress test technique: GARUS (GA-based test Requirement tool for real-time distribUted
Systems). A carefully designed empirical study, using this tool, is then presented in Section 7.2 to validate the
design choices of our GA.

7.1 Tool Description

GARUS (GA-based test Requirement tool for real-time distribUted Systems) is our prototype tool for deriving
stress test requirements. Section 7.1.1 presents the class diagram of GARUS. A functional overview of
GARUS is described in Section 7.1.2. The input/output file formats are presented in Section 7.1.3 and Section
7.1.4, respectively.

7.1.1 Class Diagram

The simplified class diagram of GARUS is shown in Figure 26. The classes in the class diagram are grouped
in three packages: TestModelGenerator, TestModel and GA.

-End71 -End8*

ISDS

SD

DCCFP

-End71 -End8*

-End71 -End8*

-End71 -End8*

* ISDSs

* SDs

* DCCFPs

* NTUPs

GARUSGene

TestModel GA

+Initializer()
+Mutator()
+Evaluator()
+Comparator()
+nPointCrossover()
+nPointProbCrossover()

GARUSGenome

GAlib::GA1DArrayGenome

GAlib::GAGenome

-End7

1

-End8

*

UML-SPT::RTtimeValue

DCCFP
0..1

0..1 startTime

* genes
[ordered]

time
1NTUP

GARUS

GAlib::GASteadyStateGA

ga
-End71 -End8

*

genomes

+readTestModel()

TestModel

+initialize()
+evolve()

GAlib::GAGeneticAlgorithm

noAP

+getARandomArrivalTime()

AP

boundedAP

burstyAP

irregularAP

periodicAP

unboundedAP

arrivalPattern
1

periodValue
deviationValue

burstIntervalLength
maxNumOfArrivals

minIAT
maxIAT
ATIs:List<ATI>

numOfPoints
points:List<unsigned int>

TestModelGenerator

UMLModel

TestParameters

Figure 26-Simplified class diagram of GARUS.

To simplify the implementation of GARUS, we assume that a TM has already been built from a given UML model and
a set of test parameters by a test model generator (the TestModelGenerator package). The TM is also assumed to be
filtered by the given set of test parameters. For example, if test parameters are for a StressTestNetInsDT test strategy
over a network net, all DCCFPs in the CFM and network usage pattern parts of a TM are assumed to have been filtered
by that particular network. Thus, we would ideally have a package in GARUS that handles this. However, to simplify

Carleton University TR SCE-06-09 April 2006

31

the implementation of GARUS, the package is currently bypassed (the filtered TM is built manually from a UML
model).

The classes in the TestModel package store information about the test model of a SUT. The GA package
includes the GA domain-specific classes, which solve the optimization problem and derive stress test
requirements.

One object of class TestModel and one object of class GASteadyState GA are instantiated at runtime for a SUT.
The connection between the two packages is achieved via class DCCFP (in the TestModel package) and class
GARUSGene (in the GA package).

Abstract class AP in the TestModel package realizes the implementation of arrival patterns. Six subclasses are
inherited from class AP, five of which correspond to the five types of arrival patterns (Section 5.5.2). Objects
of type class noAP are associated with SDs which have no arrival patterns. Due to the implementation
details, this choice was selected instead of setting the arrivalPattern association of such SDs to null. Function
getARandomArrivalTime() is used in the mutation operator of GARUS (Mutation() in class GARUSGenome)
and, for each subclass of AP, it returns a random arrival time in the corresponding ATS (Section 5.5.4)
according to the type of arrival pattern.

7.1.2 Functional Overview

A functional overview of GARUS is presented using an activity diagram in Figure 27. The test model of a
SUT is given in an input file. GARUS reads the test model from the input file and creates an object named tm
of type TestModel, initialized with the values from the input test model. Then, an object named ga of type
GAlib::SteadyStateGA is created, such that tm is used in the creation of ga’s initial population (Section 6.5.3).
Note that object ga has a collection of chromosomes of type GARUSGenome, and each object of type
GARUSGenome has an ordered set of genes of type GARUSGene (refer to the class diagram in Figure 26).
Furthermore, ga’s parameters (e.g. mutation rate) are set to the values as discussed in Section 6.5.

GARUS then evolves ga using the overloaded GA mutator and crossover operators (Section 6.5.6). When the
evolution of ga finishes, the best individual (accessible by ga.statistics().bestIndividual()) is saved in
the output file (see Section 7.1.4).

GARUS (GA-based test Requirement generator for real-time distribUted Systems)

Input File

Test Model of a
SUT

Output File

Stress Test
Requirements

Initialize an object of
type

GASteadyStateGA
Evolve ga

ga:GASteadyStateGA

Read the input file
into an object of type

TestModel

tm:TestModel

ga.statistics()
.bestIndividual()

Figure 27-Overview activity diagram of GARUS.

7.1.3 Input File Format

The input file provided to GARUS contains the test model (TM) of a SUT. As it was shown in Figure 6, a TM
consists a CFM (including DCCFPs), inter-SD constraint (ISDSs) and distributed traffic usage patterns.

Referring to Figure 6, stress test parameters are also part of the input. As discussed in Section 4.1, stress test
parameters are in fact the type of stress test technique (e.g. StressTestNetInsDT and StressTestNodInIntMT)
and a set of parameters specific to the technique (e.g. a node name and a period’s start/end times for the
StressTestNodInIntMT stress test technique). Furthermore, as it was discussed in the algorithms and

Carleton University TR SCE-06-09 April 2006

32

equations in Section 5.4, a test model can be filtered based on different attributes discussed in distributed
traffic usage analysis (e.g. location, direction, and period).

The input file is in a format to accommodate a filtered TM. For example, if test parameters are for a
StressTestNetInsDT test strategy over a network net, all DCCFPs in the CFM and network usage pattern parts
of a TM are assumed to have been filtered by that particular network. The input file format consists of
several blocks, each specifying different elements of a TM. GARUS input file format is shown using the BNF
in Figure 28.

The input file format can be best described using an example. An example input file is shown in Figure 29.
Different blocks are separated with a gray highlight. The TM starts with a block of two ISDSs ISDS0 and
ISDS1 (ISDSsBlock in Figure 28). For example, ISDS0 consists of three SDs: SD0, SD1, and SD2.

The second block of the input file shows SDs (SDsBlock in Figure 28). There are five SDs: SD0,…, SD4. Each
SD line consists of a SD name, number of concurrent multiple instances allowed, followed by the number of
its DCCFPs and their names. For example SD2 has two DCCFPs named p21 and p22.

hTimeGAMaxSearc
) value(time::DTUPP

DTUPPDTUPPCCFPnDTUPPsInDDCCFPName::DCCFP

DCCFPDCCFP::kDCCFPsBloc

irregularAPTypeAPointAPointintsInAPnArrivalPo
boundedAPTypemaxIATminIAT
periodicAPTypealuedeviationVeperiodValu

unbounded,bursty,pattern_arrival_noAPType

::rsAPParamete

unbounded|bursty|irregular|bounded|periodic|pattern_arrival_no::APType
rsAPParameteAPTypeSDName::SDAP

SDAPSDAP::SDAPsBlock

DCCFPNameDCCFPNameDnDCCFPsInScestannsnMultipleISDName::SD
SDSDnSDs::SDsBlock

SDNameSDNamenSDsInISDSISDSName::ISDS
ISDSISDSnISDSs::ISDSsBlock

kDCCFPsBlocSDAPsBlockSDsBlockISDSsBlock::ormatinputFileF

iii

CCFPnNTUPPsInDiii

DnDCCFPsInSnDCCFPs

nDCCFPs

iintsInAPnArrivalPoi

iii

iii

i

i

i

iiii

nSDs

DnDCCFPsInSiiii

nSDs

nSDsInISDSiii

nISDSs

i

iSD
i

i

i

i

=

=

∑

=

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
=
=
∈∈

=

=
=

=

=
=

=
=

=

∀

=

K

4444 34444 21
K

K

K

K

K

K

K

1

1

1

1

1

1

1

1

 if;
 if;
 if;

 }{ if;

Figure 28-GARUS input file format.

The third block shows SD Arrival Pattern (AP) - (SDAPsBlock in Figure 28). Each line in this block consists of
a SD name, followed by its AP type and a set of parameters specific to that AP type. For example, SD1 has a
periodic arrival pattern. The period and deviation values of this periodic arrival pattern are 4 and 2 units of
time. Note that units for all time values in an input file are assumed to be the same, and hence they are not
specified. It is up to a user to interpret the unit of time. If the AP of a SD is bounded, the minimum and
maximum inter-arrival time (minIAT, maxIAT) are specified. In case when a SD has no arrival pattern
(no_arrival_pattern keyword), or it is bursty or unbounded, no additional parameters need to be specified.
This is because such APs do not impose any timing constraints in our stress test requirement generation
technique. Refer to Section 5.5 for further details.

The next block in an input file is the DCCFPsBlock. The number of DCCFPs in a DCCFPsBlock, is equal to the
sum of DCCFPs of all SDs, specified in the SDsBlock. For example, in the example input file in Figure 29, this
total is equal to: 5 (SD0) + 3 (SD1) + 2 (SD2) + 1 (SD3) + 4 (SD4)=15. All 15 DCCFPs have been listed, each
following by its NTUP (Network Traffic Usage Pattern). The format for specifying NTUP of a DCCFP is
described next. As discussed in Section 5.4, the NTUP of a DCCFP (with a fixed traffic location, direction and
type) is a 2D function where the Y-axis is the traffic value and the X-axis is time. The non-zero values of a
NTUP are specified in an input file. Each such value is specified by a pair consisting of the corresponding
time and traffic values, and is referred to as a NTUPP (Network Traffic Usage Pattern Point). For example,

Carleton University TR SCE-06-09 April 2006

33

NTUPPs of the NTUP in Figure 30 are: (1, 90), (3, 40), (4, 40), (8, 30), and (12, 50). For example, in the input
file in Figure 29, p41 has two NTUPPs: (4, 20) and (7, 4). The “,” symbol between time and traffic values is
eliminated in the input file to ease the parsing process.

2
ISDS0 3 SD0 SD1 SD2
ISDS1 4 SD0 SD2 SD3 SD4
5
SD0 1 5 p01 p02 p03 p04 p05
SD1 1 3 p11 p12 p13
SD2 1 2 p21 p22
SD3 1 1 p31
SD4 1 4 p41 p42 p43 p44
SD0 periodic 5 0
SD1 periodic 4 2
SD2 bounded 4 5
SD3 no_arrival_pattern
SD4 irregular 5 2 3 6 8 9
p01 5 (2 10) (3 5) (6 7) (12 20) (15 9)
p02 2 (1 5) (4 20)
p03 3 (3 5) (5 10) (6 7)
p04 2 (3 9) (6 35)
p05 1 (5 40)
p11 2 (4 4) (7 3.4)
p12 3 (1 1) (2 9) (5 6)
p13 5 (2 3) (5 4) (7 1) (9 6) (11 20)
p21 1 (4 30)
p22 4 (2 20) (3 10) (7 15) (9 30)
p31 3 (3 3) (5 9) (7 20)
p41 2 (4 20) (7 4)
p42 6 (2 3) (5 6) (8 8) (10 1) (12 9) (15 10)
p43 5 (4 2) (6 7) (10 5) (12 3) (15 2)
p44 2 (4 32) (6 10)

25

Figure 29-An example input file of GARUS.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

NetInsDT(p,Network,t)

t (ms)

100

KB 90
40 40 30

50

Figure 30-An example NTUP of a DCCFP.

The last piece of information in the input file is a Real value, referred to as GAMaxSearchTime (Section 6.5.4).
This value (in time units) specifies the range (from zero) in which the GA tries to search for a best result. The
initialization and the mutation operators use this maximum search value to select a random start time for the
DCCFP of a gene. For example, the GAMaxSearchTime in the input file in Figure 29 is 25 time units.
Therefore, the GA operators in GARUS will choose random seeding times for DCCFPs in the range of
[0…25] time units. The higher the GAMaxSearchTime value, the more broad the GA’s search range. However,
we expect that higher GAMaxSearchTime values deteriorates our GA’s performance in converging, since the
higher the GATimeSearchRange value, the less probable that multiple DCCFPs overlap with each other. A
suitable GAMaxSearchTime can be calculated using the two heuristics we presented in Section 6.5.4.

Carleton University TR SCE-06-09 April 2006

34

However, to allow variability of choices for GAMaxSearchTime in our experimentation, we assume that such
a time instance has been calculated by a tester and is given in the input file.

7.1.4 Output File Format

GARUS exports the stress test requirements to an output file, whose name is specified in the command line.
If no output file name is given by the user, the output is simply printed on the screen. Furthermore, the
output file also contains standard GAlib statistics, including the numbers of selections, crossovers,
mutations, replacements and genome evaluations since initialization, as well as min, max, mean, and
standard deviation of each generation. The main output is the stress test requirements, while GA statistics
are just informative values for debugging purposes. The format of stress test requirements in an output file is
shown in Figure 31-(a). An example set of stress test requirements is presented in Figure 31-(b), which is
generated by GARUS for the input file in Figure 29.

lueinteger vaan timestress Max.
efloat valu aISTOF

start timeDCCFPSD

111

=
=

−−−−−−−−−−−−−−−−−−−−−−−−−−−

nSDsnSDsnSDs startTimeCFPNameSelectedDCSDName

startTimeCFPNameSelectedDCSDName
KKK

(a)

SD DCCFP start time
---- ---- ----------
SD0 p04 10
SD1 p12 14
SD2 p21 12
SD3 none
SD4 none

ISTOF=74
Max stress time=16

(b)

Figure 31-(a): Stress test requirements format in GARUS output file. (b): An example.

The first block of the output file is a stress test schedule which, if executed, entails maximum traffic. Each line
in the first block of the output file corresponds to a SD of the SUT, and specifies a selected DCCFP with a
start time to trigger. Refer to Section 6.3 for the formalized representation of a stress test requirement. For
example, Figure 31-(b) indicates that p04 of SD0, p12 of SD1, and p21 of SD2 should be triggered at start
times 10, 14 and 12 unit of time, respectively. No DCCFP has been specified to be triggered for SD3 and SD4.
This is because a set of stress test requirements corresponds to an ISDS in a SUT, and as shown in Figure 29,
the SUT we used for these results has two ISDSs and SD0, SD1 and SD2 are members of one of them. In
other words, triggering all SDs SD0 …SD4 is not allowed in this SUT. Note that GARUS never schedules a
DCCFP in a start time which is not allowed according to SDs’ arrival patterns.

7.2 An Empirical Analysis to Validate Test Requirements Generated by GARUS

Along with a stress test requirement, GARUS also generates a maximum traffic value and a maximum traffic
time. The maximum traffic value is in fact the objective function value of the GA’s best individual at the
completion of the evolution process. The objective function was described in Section 6.5.5, and was referred
to as Instant Stress Test Objective Function (ISTOF). The maximum traffic time is the time instant when the
maximum traffic happens. For example the ISTOF value and maximum traffic time for the SUT specified by
the input file in Figure 29 are 74 (unit of traffic, e.g. KB) and 16 (unit of time, e.g. ms), respectively.

Test requirements generated by GARUS can be validated according to at least six criteria:

1. Satisfaction of ATSs by start times of DCCFPs in the generated stress test requirements (Section 7.2.1): As
explained in Section 6.5, each chromosome (including the final best chromosome) should satisfy this
constraint, i.e., the start times of each DCCFP in the final best chromosome of the GA should be
inside the Accepted Time Set (ATS) of its corresponding SD.

2. Checking ISTOF values (Section 7.2.2): As a heuristic, GAs do not guarantee to yield optimum results,
and checking that the ISTOF value of the final best chromosome is the maximum possible traffic
value among all interleavings is a NP-hard problem. It is, therefore, not possible to fully check how

A stress test
schedule

Carleton University TR SCE-06-09 April 2006

35

optimal GA results are. However, simple checks can be done to determine if, for example, GARUS
has been able to choose the DCCFP with maximum traffic value among all DCCFPs in a SD.

3. Repeatability of GA results across multiple runs (Section 7.2.3): It is important to assess how stable and
reliable the results of the GA will be. To do so, the GA is executed a large number of times and we
assess the variability of the average or best chromosome’s fitness value.

4. Convergence efficiency across generations towards a maximum (Section 7.2.4): In order to assess the
design of the selected mutation and cross-over operators, as well as the chosen chromosome
representation, it is useful to look at the speed of convergence towards a maximum fitness plateau
[32]. This can be measured, for example, in terms of number of generations required to reach the
plateau. This can be easily computed as, for each generation, GAlib statistics provide min, max,
mean, and standard deviation of fitness values. A maximum fitness plateau is reached when the
standard deviation of the fitness values equals 0.

5. Impacts of variations in test model size (scalability of the GA) - (Section 7.2.6): Assessing how The GA
performance and its repeatability are affected with different test model sizes.

6. Impacts of variations in parameters other than test model size - (Sections 7.2.7-7.2.9): Assessing how the
GA performance and its repeatability are affected when it is applied to different test models with
different properties. In the current work, we investigate the impacts of variations in arrival pattern
types (Section 7.2.7), arrival pattern parameters (such as periodic arrival pattern period and
deviation, and bounded arrival pattern minimum and maximum inter-arrival time values) (Section
7.2.8), and GA maximum search time (Section 7.2.9) on the GA results and on its repeatability aspect,
respectively.

Using the above six criteria, we analyze the stress test requirements generated by running GARUS on a set of
experimental test models, which were designed to test the repeatability and scalability aspects of our GA. We
discuss in Section 7.2.5 how we designed the set of the experimental test models, which will be used in the
rest of this chapter as a test-bed for our experiments and validations.

7.2.1 Satisfaction of ATSs by Start Times of DCCFPs in the Generated Stress Test Requirements

We check whether the start times of the DCCFPs in the generated stress test requirements satisfy the ATSs of
the corresponding SDs. In order to investigate this, we first derive the ATSs of the SDs in the test model
corresponding to the input file in Figure 29. Consistent with discussions in Section 5.5.4, they are shown in
Figure 32.

For example, as SD0 has a periodic AP with period value=5 and zero deviation, its ATS comprises time
instants 5, 10, 15 and so on. Since SD3 has no AP, therefore its ATS includes all the time instants from zero to
infinity. As an example, the stress test schedule generated by run number 2 in Table 4 has been depicted in
Figure 32. This stress test schedule includes p01 from SD0, no DCCFPs from SD1, p21 from SD2, p31 from
SD3, and p44 from SD4 to be triggered on time instances 10, 8, 5, and 8, respectively. The time instant when
the maximum traffic occurs (time=12) is depicted with a vertical bold line. The ISTOF value at this time is 92
units of network traffic.

As it can be seen in Figure 32, the start times of all selected DCCFPs in the stress test schedule reside in the
ATSs of the respective SDs. This is explained by the way the initial population of chromosomes is created
(Section 6.5.3) and the allowability property of our mutation operator (Section 6.5.6.2). The start time of each
DCCFP is always chosen from the ATS of its corresponding SD. This is achieved by building the ATS of each
SD according to its type of AP when GARUS initializes a test model. Then, when a random start time is to be
chosen for a DCCFP, method getARandomArrivalTime(), which is associated with a SD is invoked on an object
from a subclass of the abstract class AP. Refer to Figure 26 for details.

Carleton University TR SCE-06-09 April 2006

36

ATS of a SD

Execution of a
DCCFP DCCFPName

SD2

SD1

SD3

SD0

SD4

time...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time...

...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time...

Legend

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time

p01

p21

p31

p44

maximum instant traffic
Figure 32-ATSs of the SDs in the TM in Figure 29, and a stress test schedule generated by GARUS.

7.2.2 Checking the extent to which ISTOF is maximized

As a test to check if GARUS is able to choose the DCCFP with maximum traffic value among all DCCFPs of a
SD, we artificially modify NTUPs of the DCCFPs in the test model of Figure 29 such that one DCCFP of each
SD gets a much higher peak value in its NTUP. The modified values are shown in bold in Figure 33.

For example, the NTUP value of p03 at time=5 was 10, whereas its new value is 500. This value is an order of
magnitude larger than all other NTUP values of other DCCFPs in SD0. We then run GARUS with this
modified TM for a large number of times and see if the DCCFPs with high NTUP values are part of the
output stress test schedule generated by GARUS.

--DCCFPs
p01 5 (2 10) (3 5) (6 7) (12 20) (15 9)
p02 2 (1 5) (4 20)
p03 3 (3 5) (5 500) (6 7)
p04 2 (3 9) (6 35)
p05 1 (5 40)
p11 2 (4 4) (7 3.4)
p12 3 (1 1) (2 900) (5 6)
p13 5 (2 3) (5 4) (7 1) (9 6) (11 20)
p21 1 (4 300)
p22 4 (2 20) (3 10) (7 15) (9 30)
p31 3 (3 3) (5 9) (7 700)
p41 2 (4 20) (7 4)
p42 6 (2 3) (5 6) (8 800) (10 1) (12
9) (15 10)
p43 5 (4 2) (6 7) (10 5) (12 3) (15 2)
p44 2 (4 32) (6 10)

Figure 33-Modified DCCFPs of the test model in Figure 29.

We executed GARUS 10 times with this TM, and the 10 schedules generated by GARUS had the format
described in Table 2, where x stands for values which changed across different runs. As expected, DCCFPs
p21, p31, and p42 were present in all 10 stress test schedules, thus suggesting that GARUS selects the correct
DCFFPs. On the other hand, different DCCFPs from SD0 were reported in the output schedules. This can be

Carleton University TR SCE-06-09 April 2006

37

explained as SD0’s ATS contains specific time points (5, 10, 15, and so on) and p03 (the modified DCCFP)
will therefore not be able to have an effect on the maximum possible instant traffic (at time=16 or 17) since its
modified NTUP point is at time=5.

SD DCCFP Start Time
SD0 x x
SD1 none
SD2 p21 x
SD3 p31 x
SD4 p42 x

ISTOF=1500 or 1520
Max stress time=16 or 17

Table 2-Output format of 10 schedules generated by GARUS.

The reason why p12 (from SD1) is not selected in any of the outputs across different runs is that a set of
DCCFPs are generated by GARUS as a stress test schedule only if the SDs corresponding to the DCCFPs
belong to one ISDS. The set of SDs {SD0, SD1, SD2, SD3, SD4} does not belong to an ISDS. Furthermore,
among all ISDSs (ISDS0={SD0, SD1, SD2} and ISDS1={SD0, SD2, SD3, SD4}) of the test model, the maximum
instant traffic of ISDS1 has a larger value than that of ISDS0, thus not letting SD1 (and all of its DCCFPs)
play a role in the output stress test schedules.

7.2.3 Repeatability of GA Results across Multiple Runs

Since GAs are heuristics, their performance and outputs can vary across multiple runs. We refer to such a
GA property as repeatability of GA results. This property is investigated by analyzing maximum ISTOF
values as they are the fitness values of chromosomes in our GA. We furthermore analyze maximum stress
time values as such a time value denotes the time instance when a stress situation actually occurs.

Figure 34-(a) depicts the distributions of maximum ISTOF and stress time values for 1000 runs of test model
corresponding to the input file in Figure 29. From the ISTOF distribution, we can see that the maximum
fitness values for most of the runs are between 60 and 72 units of traffic. Descriptive statistics of the fitness
values are shown in Table 3. Average and median values are very close, thus indicating that the distribution
is almost symmetric.

Min Max Average Median Standard
Deviation

50 92 66.672 65 6.4

Table 3-Descriptive statistics of the maximum ISTOF values over 1000 runs. Values are in units of data
traffic (e.g. KB).

Such a variation in fitness values across runs is expected when using genetic algorithms on complex
optimization problems. However, though the variation above is not negligible, one would expect based on
Figure 34-(a) that with a few runs a chromosome with a fitness value close to the maximum would likely be
identified. Since each run lasts a few seconds, perhaps a few minutes for very large examples, relying on
multiple runs to generate a stress test requirement should not be a practical problem.

Corresponding portions of max stress time values for the most frequent maximum ISTOF value (72 units of
traffic) have been highlighted in black in Figure 34-(b). As we can see, these maximum stress time values are
scattered across the time scale (e.g., from 10 to 60 units of time). This highlights that a single ISTOF value
(maximum stress traffic) can happen in different time instances, thus suggesting the search landscape for the
GA is rather complex for this type of problem. Thus, a strategy to further explore would be for testing to
cover all (or a subset of) such test requirements with maximum ISTOF values in different time instances.
Indeed, although their ISTOF value are the same, a SUT’s reaction to different test requirements might vary,

Carleton University TR SCE-06-09 April 2006

38

since a different DCCFP (and hence set of messages) in a different stress time instance may be trigerred. This
might in turn lead to uncovering different RT faults in the SUT.

ISTOF Max stress time ISTOF Max stress time

50

60

70

80

90

10

20

30

40

50

50

60

70

80

90

10

20

30

40

50

60

(a) (b)

Figure 34-(a): Histogram of maximum ISTOF and stress time values for 1000 runs of test model
corresponding to the input file in Figure 29. (b): Corresponding max stress time values for one of the

frequent maximum ISTOF values (72 units of traffic).

7.2.4 Convergence Efficiency across Generations

Another interesting property of the GA is the number of generations required to reach a stable maximum
fitness plateau. The distribution of these generation numbers over 1000 runs of test model corresponding to
the input file in Figure 29 is shown in Figure 35, where the x-axis is the generation number and the y-axis is
the probability of achieving such plateau in a generation number. The minimum, maximum and average
values are 20, 91, and 52, respectively. Therefore, we can state that, on the average, 52 generations of the GA
are required to converge to the final result (stress test requirement). The variation around this average is
limited and no more 100 generations will be required. This number is in line with the experiments reported
in the GA literature [26] but is however likely to be dependent on the number and complexity of SDs as well
as their ATSs.

0

0.01

0.02

0.03

0.04

0.05

0.06

20 31 41 51 61 71 89

Generation num ber

Pr
ob

ab
ili

ty
 o

f a
ch

ei
vi

ng
 a

 m
ax

im
um

fit

ne
ss

 p
la

te
au

Figure 35-Histogram of the generation numbers when a stable maximum fitness plateau is reached in

1000 runs of the test model corresponding to the input file in Figure 29 by GARUS.

Carleton University TR SCE-06-09 April 2006

39

From the initial to the final populations in the test model corresponding to the input file in Figure 29, the
maximum fitness values typically increase by about 80%, which can be considered a large improvement. So,
though we cannot guarantee that a GA found the global maximum, we clearly generate test requirements
that will significantly stress the system.

The variability in the objective function and start times as well as detailed information for the first five runs
of the test model corresponding to the input file in Figure 29 are reported in Table 4. We can clearly see from
the table that in a single run when the generation number increases, the population converges (i.e. deviation
value decreases). For example, in the outputs reports in Table 4, the value of the deviation1 column decreases
continuously from 8.95 at generation #0 to 0.00 in generation #80. Also notice the convergence of minimum
and mean values towards the maximum (ISTOF) values when the generation number increases.

Run # Generation

Mean Max
(ISTOF)

Min Deviation

Best individual

1 0 36.74 55 30 8.95 SD DCCFP start time

 10 44.47 58 38 7.04 ---- ---- ----------

 20 52.46 61 41 6.44 SD0 p05 25

 30 61.14 66 55 5.86 SD1 none

 40 67.23 71 61 4.90 SD2 p22 21

 50 71.43 79 70 4.21 SD3 p31 23

 60 74.62 85 70 3.01 SD4 p42 2

 70 82.03 88 72 2.95

 80 90.00 90 90 0.00 ISTOF=90

 90 90.00 90 90 0.00 Max stress time=30

 100 90.00 90 90 0.00

2 0 36.45 58 30 8.82 SD DCCFP start time

 10 43.84 60 36 7.13 ---- ---- ----------

 20 51.23 65 41 6.97 SD0 p01 10

 30 57.82 66 50 5.45 SD1 none

 40 64.70 73 59 5.27 SD2 p21 8

 50 72.52 76 62 5.04 SD3 p31 5

 60 80.50 82 80 3.39 SD4 p44 8

 70 81.34 84 80 3.78

 80 83.78 86 80 2.58 ISTOF=92

 90 91.64 92 80 2.05 Max stress time=12

 100 92.00 92 92 0.00

3 0 36.93 49 30 7.98 SD DCCFP start time

 10 45.36 50 39 7.94 ---- ---- ----------

 20 54.05 58 44 7.63 SD0 p04 15

 30 62.35 68 52 6.93 SD1 none

 40 70.01 72 65 3.46 SD2 p22 19

 50 73.63 74 72 1.49 SD3 p31 14

 60 75.00 75 75 0.00 SD4 p44 9

 70 75.00 75 75 0.00

 80 75.00 75 75 0.00 ISTOF=75

 90 75.00 75 75 0.00 Max stress time=21

1 Deviation of a population in GAlib is defined as the standard deviation of individuals' objective scores [57].

Carleton University TR SCE-06-09 April 2006

40

 100 75.00 75 75 0.00

4 0 37.03 53 30 8.94 SD DCCFP start time

 10 45.37 58 37 8.14 ---- ---- ----------

 20 55.14 60 43 7.21 SD0 p05 15

 30 66.63 69 52 7.08 SD1 none

 40 73.29 78 70 6.22 SD2 p22 18

 50 79.02 80 72 2.62 SD3 p31 13

 60 80.00 80 80 0.00 SD4 p43 9

 70 80.00 80 80 0.00

 80 80.00 80 80 0.00 ISTOF=80

 90 80.00 80 80 0.00 Max stress time=20

 100 80.00 80 80 0.00

5 0 37.54 55 30 8.44 SD DCCFP start time

 10 45.60 58 39 7.50 ---- ---- ----------

 20 54.09 64 48 6.93 SD0 p05 5

 30 61.67 66 52 6.32 SD1 none

 40 68.42 69 65 2.52 SD2 p21 12

 50 70.37 71 70 0.78 SD3 p31 11

 60 71.14 72 70 0.99 SD4 p44 6

 70 72.00 72 72 0.00

 80 72.00 72 72 0.00 ISTOF=72

 90 72.00 72 72 0.00 Max stress time=10

 100 72.00 72 72 0.00

 Table 4-Summary of GARUS results for five runs.

7.2.5 Our Strategy for Investigating Variability/Scalability

To assess and validate test requirements generated by GARUS, we design a set of different test models
(referred to as experimental test models), and execute GARUS with each of them as input. Note that these test
models are in the input file format, described in Section 7.1.3. To ensure variability in the experimental test
models, a set of experimental test models were designed based on the following criteria:

 Test models with variations in test model sizes (Section 7.2.5.3)
 Test models with variations in SD arrival patterns (Section 7.2.5.4)
 Test models with variations in the GA’s maximum search time (Section 7.2.5.5)

Since most of the input files containing the test models are large in size, we do not list them in this article. As
an example, the contents of one input file corresponding to one of the test model in this section are shown in
Appendix B. We discuss next a set of variability parameters, we used in our experiments to incorporate
variability in different test models based on the above criteria.

7.2.5.1 Variability Parameters

The variability parameters used in our experiments are listed in Table 5, along with their explanations. The
parameters are grouped into three groups corresponding to the above three criteria: (1) Test model size, (2)
SD arrival patterns, and (3) Maximum search time.
We have defined eight parameters under the group of ‘test model size’ to incorporate variability in different
sizes perspectives in experimental TMs. Each parameters in this group correspond to a sizes perspective,
e.g., number of ISDSs, number of SDs, and minimum number of DCCFPs per SD. For example, a large TM
might have many ISDSs (by setting large values for nISDSs), while another large TM can have many

Carleton University TR SCE-06-09 April 2006

41

DCCFPs per SD (by setting large values for minnDCCFPs and maxnDCCFPs). Parameters prefixed with min
and max serve as statistical means, which enable us to incorporate statistically-controlled randomness into
the sizes of our experimental TMs. For example, we can control the minimum and maximum number of
DCCFPs per SD in a TM by minnDCCFPs and maxnDCCFPs parameters. Such a statistical range for number
of SDs per ISDSs, DCCFPs per SD, and NTUPPs per DCCFP also conforms to real-world models, where for
example, there are not variant number of DCCFPs per SDs in a TM. Our experimental TMs with variations in
TM sizes based on the variability parameters are presented in Section 7.2.5.3.

Parameter Group Parameter Parameter Explanation

nISDSs # of ISDSs
nSDs # of SDs in TM
minISDSsize min. # of SDs per ISDS
maxISDSsize max. # of SDs per ISDS
minnDCCFPs min. # of DCCFPs per SD
maxnDCCFPs max. # of DCCFPs per SD
minnNTUPPs min. # of NTUPPs per DCCFP

Test model size

maxnNTUPPs min. # of NTUPPs per DCCFP
APtype type of AP
minAPperiodicPeriod min. period value
maxAPperiodicPeriod max. period value
minAPperiodicDeviation min. deviation value
maxAPperiodicDeviation max. deviation value
minAPboundedMinIAT min. value for min. inter-arrival time
maxAPboundedMinIAT max. value for min. inter-arrival time
minAPboundedMaxIATafterMin min. distance between maxIAT and minIAT
maxAPboundedMaxIATafterMin max. distance between maxIAT and minIAT
minnAPirregularPoints min. # for irregular points
maxnAPirregularPoints max. # for irregular points
minAPirregularPointsValue min. time value for irregular points

SD arrival patterns

(all parameter values are in
time units, except
minnAPirregularPoints and
maxnAPirregularPoints)

maxAPirregularPointsValue max. time value for irregular points
Maximum search time MaximumSearchTime GA maximum search time

Table 5- Variability parameters for experimental test models.

The second group of the variability parameters (SD arrival patterns) is designed to incorporate variability in
different SD arrival pattern properties of our experimental TMs. All parameter values in this group are in
time units, except minnAPirregularPoints and maxnAPirregularPoints. The first parameter in this group
(APtype) determines the type of APs to be assigned for the SD of an experimental TM. APtype is of type
enumeration with possible values of:

 no_arrival_pattern: All SDs of the TM will have no APs, i.e., any arrival time in test schedules is
accepted for all SDs.

 periodic: All SDs of the TM will have periodic APs. Each AP’s parameters are set to the four
APperiodic variability parameters.

 bounded: All SDs of the TM will have bounded APs. Each AP’s parameters are set to the four
APbounded variability parameters.

 irregular: All SDs of the TM will have irregular APs. Each AP’s parameters are set to the four
APirregular variability parameters.

 mixed: Different SDs of a TM have different arrival patterns. The type of AP for a SD is chosen from
(no_arrival_pattern, periodic, bounded, or irregular) with equal probabilities

Carleton University TR SCE-06-09 April 2006

42

Parameters with APperiodic, APbounded and APirregular substring are specific to periodic, bounded and
irregular APs, respectively, and specify the range of values to be set for specific parameters of these AP. For
example, minAPperiodicPeriod, maxAPperiodicPeriod, minAPperiodicDeviation, and maxAPperiodicDeviation
specify min./max. period values, and min./max. deviation values for periodic APs of SDs. If they are set to
5ms, 10 ms, 2ms, and 3ms respectively, the following APs might be generated in an experimental TMs:
(‘periodic’, (6, ms), (2, ms)), (‘periodic’, (8, ms), (3, ms)), (‘periodic’, (10, ms), (3, ms)), and (‘periodic’, (6, ms), (3,
ms)). Our experimental TMs with variations in SD arrival patterns time based on the parameters in the
second group are presented in Section 7.2.5.4.

The third group of the variability parameters (maximum search time) has only one parameter
(MaximumSearchTime) which is designed to incorporate variability in GA maximum search time (Section
6.5.4) of our experimental TMs. Our experimental TMs with variations in maximum search time based on the
MaximumSearchTime parameters are presented in Section 7.2.5.5.

7.2.5.2 Random Test Model Generator

To facilitate the generation of experimental TMs based on the variability parameters (Section 7.2.5.1), we
developed a random test model generator (RandTMGen) in C++. A simplified activity diagram of
RandTMGen is shown in Figure 36, where the value for variability parameters are provided as input, and an
experimental TM is generated (in input file format of Figure 28).

Random Test Model Generator (RandTMGen)

Values for variability
parameters

A random test model (in
input file format)

Generate a random test model based on the
values for variability parameters

(uniform distribution is used.)

Figure 36-Simplified activity diagram of our random test model generator.

For the pair of parameters specifying min./max. of a feature, e.g. minnDCCFPs and maxnDCCFPs,
RandTMGen uses uniform distribution to generate a value in the range of [minnDCCFPs, maxnDCCFPs]. This
is a design decision, which can be modified easily, i.e., any other distribution can be used to generate a
random value in [minnDCCFPs, maxnDCCFPs]. As an example on how RandTMGen generate a random value
in a range, assume minnDCCFPs=3 and maxnDCCFPs=8. In such a case, all the integer values in the range of
[3, 8] are chosen by an equal probability to be set for the number of DCCFPs per a SD in a TM.

In the following three subsections, we describe the parameters provided to RandTMGen to generate a set of
experimental test models to ensure variability in test models as well as the scalability of GARUS.

7.2.5.3 Test Models with Variations in Sizes

In order to investigate the performance and size scalability of our GA (implemented in GARUS), six test
models with different sizes were generated using RandTMGen as reported in Table 6.
The SDs of the each of the above test models were assigned arbitrary (mixed) arrival patterns
(no_arrival_pattern, periodic, bounded, or irregular) with equal probabilities. Depending on the selected arrival
pattern type for a SD, the AP variability parameters were set as follows.

• Periodic arrival pattern
o minAPperiodicPeriod=5
o maxAPperiodicPeriod=10
o minAPperiodicDeviation=0
o maxAPperiodicDeviation=3

Carleton University TR SCE-06-09 April 2006

43

• Bounded arrival pattern
o minAPboundedMinIAT=2
o maxAPboundedMinIAT=4
o minAPboundedMaxIATafterMin=2
o maxAPboundedMaxIATafterMin=5

• Irregular arrival pattern
o minnAPirregularPoints=5
o maxnAPirregularPoints=15
o minAPirregularPointsValue=1
o maxAPirregularPointsValue=30

Test Models

Parameters

tm1
(small)
Figure

29

tm2
(many
ISDSs)

tm3
(many SDs

in TM)

tm4
(many SDs
per ISDS)

tm5
(many DCCFPs

per SD)

tm6
(many

NTUPs per
DCCFP)

nISDSs 2 100 10 10 10 2
nSDs 5 50 200 50 10 5
minISDSsize 3 2 2 20 2 2
maxISDSsize 4 5 5 30 5 5
minnDCCFPs 1 1 2 1 10 1
maxnDCCFPs 5 3 5 3 50 5
minnNTUPPs 2 1 1 1 1 50
maxnNTUPPs 6 10 10 10 10 100

Table 6-Experimental test models with different sizes.

Note that the above value for the AP variability parameters are chosen to be typical values, as our main
intention in designing TMs tm1,…, tm6 is to experiment our GA’s behavior and scalability aspect with
reaction to different TM sizes.

7.2.5.4 Test Models with Variations in SD Arrival Patterns

To investigate the effect of variations in SD arrival patterns in generated test requirements by GARUS, 12 test
models were generated using RandTMGen based on two variation strategies as reported in Table 7. The two
AP-related variation strategies we followed when generating TMs in this section were:

1. Different-AP-Types: Comparing generated test requirements for TMs with different AP types
2. Same-AP-Different-Parameters: Comparing generated test requirements for TMs with a same AP type,

but different AP variability parameters (e.g. maxAPperiodicPeriod, maxAPboundedMinIAT and
minnAPirregularPoints).

A dash “-“ in a cell of Table 7 indicates that the parameter (corresponding to the cell) does not apply to the
corresponding TM. For example, all SDs in tm8 are supposed to be periodic. Therefore, only periodic AP
parameters apply to this TM. The following TM-size parameters were used for the test models in Table 7. As
these parameters denote, the size of TMs tm7, …, tm18 have been chosen to be relatively medium (a typical
setting) as our main intention in designing these TMs is to experiment our GA’s behavior and output results
with reaction to variations in SD arrival patterns.

o nISDSs=10
o minISDSsize=5
o maxISDSsize=10
o nSDs=20
o minnDCCFPs=2
o maxnDCCFPs=5
o minnNTUPPs=1
o maxnNTUPPs=10

Carleton University TR SCE-06-09 April 2006

44

 AP-related variation strategies

 Different-AP-Types Same-AP-Different-Parameters

Test Models

Parameters

tm7 tm8 tm9 tm10 tm11 tm12 tm13 tm14 tm15 tm16 tm17 tm18

APtype

no_arrival_pattern

periodic

bounded

irregular

m
ixed

periodic

periodic

periodic

bounded

bounded

irregular

irregular

minAPperiodicPeriod - 5 - - 5 5 5 20 - - - -
maxAPperiodicPeriod - 10 - - 10 5 5 25 - - - -
minAPperiodicDeviation - 0 - - 0 1 5 1 - - - -
maxAPperiodicDeviation - 3 - - 3 5 5 2 - - - -
minAPboundedMinIAT - - 2 - 2 - - - 50 2 - -
maxAPboundedMinIAT - - 4 - 4 - - - 60 4 - -
minAPboundedMaxIATafterMin - - 2 - 2 - - - 2 60 - -
maxAPboundedMaxIATafterMin - - 5 - 5 - - - 5 70 - -
minnAPirregularPoints - - - 5 5 - - - - - 50 5
maxnAPirregularPoints - - - 15 15 - - - - - 100 15
minAPirregularPointsValue - - - 1 1 - - - - - 1 100
maxAPirregularPointsValue - - - 30 30 - - - - - 30 200

Table 7-Experimental test models with variations in SD arrival patterns.

We discuss next our rationale of designing each TM based on the two above variation strategies (Different-
APs and Same-AP-Different-Parameters).

 Different-AP-Types: The four TMs tm7… tm11 are intended to investigate the impacts of variations in
AP types on repeatability and convergence efficiency of the GA outputs. Each of these TMs have
different criteria to assign APs to SDs, as discussed in Section 7.2.5.1.

 Same-AP-Different-Parameters: Sets of two or more TMs where SDs in each TM have the same AP, but
different AP parameters. For example, all SDs in tm12, tm13 and tm14 have periodic APs, but have
different values for minAPperiodicPeriod, maxAPperiodicPeriod, minAPperiodicDeviation or
maxAPperiodicDeviation. tm15 and tm16 are our pair of experimental test models with bounded APs.
TMs tm17 and tm18 have SDs with irregular APs. Such a variation strategy will enable us to study
the impacts of variations in AP parameters on repeatability and convergence efficiency of the GA
outputs.

7.2.5.5 Test Models with Variations in the GA Maximum Search Time

To investigate the effect of variations in maximum search time (Section 6.5.4) on GARUS test requirements
by GARUS, we created the following two test models using our random test model generator. As an
example, the contents of the input file corresponding to tm20 is shown in Appendix B.

 tm19: SUT components (SDs, DCCFPs, ISDSs, etc.) are the same as tm1, but the MaximumSearchTime
is 5 time units instead of 50 in tm1.

 tm20: SUT components (SDs, DCCFPs, ISDSs, etc.) are the same as tm1, but the MaximumSearchTime
is 150 time units instead of 50 in tm1.

Carleton University TR SCE-06-09 April 2006

45

7.2.6 Impacts of Test Model Size (Scalability of the GA)
We investigate how the GA performance and its repeatability are affected when it is applied to test models
with different sizes. We study scalability by analyzing the impact of variations in test model size on the
following metrics:

 Execution time

 Repeatability of maximum ISTOF values

 Repeatability of maximum stress time values

 Convergence efficiency across generations

7.2.6.1 Impact on Execution Time

To investigate the impact of test model size on the execution time of our GA, the average, minimum and
maximum execution times over all the 1000 runs, by running GARUS with tm1…tm6 on an 863MHz Intel
Pentium III processor with 512MB DRAM memory are reported in Table 8. As we can see in the table,
minimums and maximums of the statistics in Table 8 for each test model are relatively close to the
corresponding average value. Therefore, we use the average values to discuss the impacts of test model size
on execution time of our GA. To better illustrate the differences, the average values are depicted in Figure 37.

Test Model Min Max Average Median Standard
Deviation

tm1 (small) 46 125 58 62 11.34
tm2 (many ISDSs) 743 1,150 1,089 375 44.79
tm3 (many SDs in TM) 1,015 2,219 1,240 1,171 199.10
tm4 (many SDs per ISDS) 734 1,641 809 782 97.61
tm5 (many DCCFPs per SD) 141 597 263 250 62.83
tm6 (many NTUPs per DCCFP) 734 1,375 820 797 74.74

Table 8-Execution time statistics of 1000 runs of tm1…tm6.

tm1

0 500 1000 1500

tm6tm4
tm2 tm3tm5

duration (ms)
Figure 37-Visualization of the average values in Table 8.

Average duration of the GA run of test model tm1 (58 ms) is the smallest among all. This is expected since
TM tm1 has the smallest size in terms of test model components (ISDSs, SDs, and DCFFPs). tm3 has the
highest average execution time among the six TM runs. Durations of tm2, tm6, tm4, and tm5 are next in
decreasing order. Based on the above order of execution values, we can make the following observations:

 The execution time of the GA is strongly sensitive to an increase in number of SDs in a TM. The
more SDs in a TM, the longer a single run of our GA takes (e.g. tm3). This can be explained as the
number of genes per chromosome in our GA is the same as the number of SDs in a TM. Thus, as the
execution results indicate, the execution time of our GA sharply increases when the number of genes
per chromosome increases. Such an increase impacts all functional components of the GA, the two
operators (Section 6.5.6) and the fitness evaluator (Section 6.5.5).

 As expected, the execution time of our GA is also highly dependent on the number of ISDSs (e.g.
tm2). As the number of ISDSs increases, the size of initial population grows, and so does the number
of the mutations and crossovers applied in each generation. The number of times the operators are
applied is determined by the mutation and crossover rates and the size of initial population.

Carleton University TR SCE-06-09 April 2006

46

 The execution time of our GA is also dependent on an increase in number of SDs per ISDS (e.g. tm4),
as well as an increase in number of NTUPs per DCCFP (e.g. tm6). As the number of SDs per ISDS
increases, the number of non-null genes per chromosome will increase. This will, in turn, lead to
more mutations and crossovers and an increase in computation for the fitness evaluator. Similarly,
an increase in number of NTUPs per DCCFP will lead to an increase in fitness computation time.

 The execution time of our GA is not as dependent on an increase in number of DCCFPs per SD (e.g.
tm5), when compared to other TM components. This can be explained as there will not be any
change in chromosome size, nor in the initial population in that case. Even the frequency of
mutations and crossovers will not change. For example, as the mutation operator chooses a random
DCCFP among all DCCFPs of a SD, there will be no effect in terms of execution time if the number of
DCCFPs per SD increases. The small difference between average durations of tm5 and tm1 in Figure
37 is due to the fact that tm5’s number of SDs is slightly more than that of tm1.

7.2.6.2 Impact on Repeatability of Maximum ISTOF Values

To investigate the impact of test model size on the repeatability of maximum ISTOF values generated by our
GA, Figure 38 depicts the histograms of maximum ISTOF values for 1000 runs on each of the test models
tm1,…,tm6. The corresponding descriptive statistics are shown in Table 9. Average and median values of all
distributions are very close, thus indicating that the distributions are almost symmetric.

We can see from the ISTOF distributions that the maximum fitness values for most of tm1 runs, for example,
are between 60 and 74 units of traffic. Referring to Figure 38, the variations in fitness values across runs is
expected when using genetic algorithms on complex optimization problems. However, though the variation
above is not negligible, one would expect based on Figure 38 that with a few runs, a chromosome with a
fitness value close to the maximum would likely be identified. To discuss the practical implications of
multiple runs of GARUS to get a sub-maximum result (stress test requirement) for tm1, we can perform an
analysis by using the probability distributions of maximum ISTOF values in the histogram of Figure 38-(a).

In the distributions of maximum ISTOF values for , as it can be easily seen in Figure 38-(a), 1000 runs of
GARUS has generated mainly three groups of outputs: values between 70 and 80 units of traffic (group70 in
Figure 38-(a)), [60,70] and [50,60]. Obviously, the goal of using GARUS is to find stress test requirements
which have the highest possible ISTOF values. Thus, the strategy is to run GARUS for multiple times and
choose a test requirement with the highest ISTOF value across all runs.

The practical implication of multiple runs to achieve a test requirement with the highest ISTOF value is to
predict the minimum number of times GARUS should be executed to yield an output with an ISTOF value in
group70 in Figure 38-(a). By looking into the raw data of the distribution (a), we found out that 425 (of 1000)
values in the histogram belong to group70. Thus, in a sample population of 1000 GARUS outputs, the
probabilities that an output belongs to group70 is p(group70)=0.425. Thus, to predict the minimum number of
times GARUS should be executed to yield an output with an ISTOF value in group70, we can use the
following probability formula:

p(a test requirement with an ISTOF value in group70 is yielded in a series of n runs of GARUS)=
()).()()group(p)group(p nn 42500.575111 1

70
1

70
−− −=−−

The above probability function is depicted in Figure 39, for n=1…15. Figure 39-(b) depicts a zoom-out of the
curve in Figure 39-(a) for n=0…40. For values of n higher than 15, the value of the above function is very
close to 1, meaning that one can get a stress test requirement with a ISTOF value in the range [70, 80] in 15
runs. Since each run lasts a few seconds (Section 7.2.6.1), perhaps a few minutes for very large examples,
relying on multiple runs to generate a stress test requirement should not be a practical problem.

Carleton University TR SCE-06-09 April 2006

47

50

60

70

80

90

(a)-tm1 (small)

200

300

(b)- tm2 (many

ISDSs)

170

190

210

230

250

270
280

300

(c)- tm3 (many SDs

in TM)

300

400

500

(d)- tm4 (many
SDs per ISDS)

200

300

(e)- tm5 (many

DCCFPs per SD)

400

500

(f)- tm6 (many

NTUPs per
DCCFP)

Figure 38-Histograms of maximum ISTOF values (y-axis) for 1000 runs of each test model. The y-axis
values are in traffic units.

Test Model Min Max Average Median Standard
Deviation

tm1 (small) 65 112 81.66 81 7.0
tm2 (many ISDSs) 171 367 255 260 36.9
tm3 (many SDs in TM) 171 306 220 217 25.2
tm4 (many SDs per ISDS) 299 502 364 360 32.9
tm5 (many DCCFPs per SD) 171 352 230 231 32.2
tm6 (many NTUPs per DCCFP) 333 494 404 406 36.8

Table 9-Descriptive statistics of the maximum ISTOF values for each test model over 1000 runs. Values
are in units of data traffic.

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15

Number of runs (n)

Pr
ob

ab
il

it
y

of
 a

t l
ea

st
 o

ne

ou
tp

ut
 in

 g
ro

up
_7

0

Figure 39- Probability of the event that at least one test requirement with an ISTOF value in group70 is
yielded in a series of n runs of GARUS.

We discuss two main observations based on the results shown in Figure 38.

 In all of the histograms, despite the fact that the results correspond to 1000 runs of different test
models which were designed to test the scalability and repeatability properties of our GA, the
maximum ISTOF values of the outputs produced by the GA lie in rather small intervals. For example
as shown in Figure 38-(f), the maximum ISTOF values generated for tm6 range in [330…500] units of
traffic.

 In terms of scalability, histograms in (b), (c), (d), (e), and (f) suggest that the GA can reach a
maximum plateau when the size of a specific component (SD, ISDS, DCCFP, etc) of a given TM is
very large.

group70

Carleton University TR SCE-06-09 April 2006

48

7.2.6.3 Impact on Repeatability of Maximum Stress Time Values

To investigate the impact of test model size on the repeatability of maximum stress time values generated by
our GA, Figure 40 depicts the histograms of maximum stress time values for 1000 runs on each of test
models tm1, …, tm6. The corresponding descriptive statistics are shown in Table 10. We discuss four main
observations based on the results shown in Figure 40.

10

20

30

40

50

(a)-tm1 (small)

0

100

200

300

400

500

600

(b)-tm2 (many

ISDSs)

0

100

200

300

400

500

600

(c)-tm3 (many SDs

in TM)

0

100

200

300

400

500

600

700

(d)-tm4 (many SDs

per ISDS)

0

100

200

300

400

500

600

(e)-tm5 (many

DCCFPs per SD)

0

1000

2000

(f)- tm6 (many

NTUPs per
DCCFP)

Figure 40-Histograms of maximum stress time values for 1000 runs of each test model. The y-axis values
are in time units.

Test Model Min Max Average Median Standard
Deviation

tm1 (small) 6 56 22 20 12
tm2 (many ISDSs) 11 602 103 61 108.8
tm3 (many SDs in TM) 16 618 180 123 135.2
tm4 (many SDs per ISDS) 7 655 301 296 147.0
tm5 (many DCCFPs per SD) 19 626 298 289 149.0
tm6 (many NTUPs per DCCFP) 87 2128 937 933 373

Table 10-Descriptive statistics of the maximum stress time values for each test model over 1000 runs.
Values are in time units.

 Average and median values of distributions in (d), (e), and (f) are quite close, thus indicating that the
distributions are almost symmetric. Conversely, distributions in (a), (b), and (c) are not symmetric.
This reveals that for tm4 (d), tm5 (e), and tm6 (f), the GA might produce maximum stress time values
with peak values only at some points. For tm1 (a), tm2 (b), and tm3 (c), the GA generated stress time
values with low standard deviation. Furthermore, these distributions are skewed towards the
minimums. Thus, one has to run the GA many number of times to get a value close to the
maximums.

 Distributions in (d) and (e) are quite flat. This can be explained as for tm4 (d) tm5 (e), the number of
alternatives to yield a best chromosome by the GA is higher than the others. Furthermore, large sets
of best chromosomes can yield different maximum stress time values due to the random start times
selected from the legal start times of DCCFPs.

 The standard deviation value for tm1 (a) is relatively smaller than the other distributions because of
the smaller range of maximum ISTOF values in tm1 results.

 The standard deviation of distribution (f), tm6, is much higher than the five others. This can be
explained by the higher number of NTUPs per DCCFP (50-100) in tm6, compared to the other TMs
(1-10). This will, in turn, result in a wider range in the time domain for the GA to search in and find
best individuals. As it can be seen in Figure 40, the range of minimum and maximum values in

Carleton University TR SCE-06-09 April 2006

49

distribution (f), [87, 2128], is much larger than the other five distributions, which is also resulted
from the aforementioned property of tm6.

7.2.6.4 Impact on Convergence Efficiency across Generations

Another interesting property of the GA to look at is the number of generations required to reach a stable
maximum fitness plateau. To investigate the impact of test model size on convergence efficiency across
generations in the GA, Figure 41 depicts the histograms of the generation numbers required to reach a stable
maximum fitness plateau over 1000 runs of test models tm1, …, tm6. The corresponding descriptive statistics
are shown in Table 11. On the average, 49-50 generations of the GA were required to converge to the final
result (a stress test requirement) for tm1, …, tm6. We therefore see that the TM size does not affect the
convergence efficiency across generations in our GA.

The variations around this average in different TMs are limited and no more 100 generations will be
required. This number is in line with the experiments reported in the GA literature [26]. As we can see, test
model size does not have an impact on convergence efficiency across generations, and the GA is able to
reach a stable maximum fitness plateau after about 50 generations on average, independent of test model
size.

30

40

50

60

70

80

90

100

(a)- tm 1 (small)

30

40

50

60

70

80

90

100

(b)- tm 2 (many

ISDSs)

20

30

40

50

60

70

80

90

100

(c)- tm 3 (many

SDs in TM)

30

40

50

60

70

80

90

100

(d)- tm 4 (many
SDs per ISDS)

10

20

30

40

50

60

70

80

90

100

(e)- tm 5 (many

DCCFPs per SD)

20

30

40

50

60

70

80

90

100

(f)- tm 6 (many

NTUPs per
DCCFP)

Figure 41- Histograms of the generation numbers when a stable maximum fitness plateau is reached in
1000 runs of each test model.

Test Model Min Max Average Median Standard
Deviation

tm1 (small) 27 98 49 47 10.78
tm2 (many ISDSs) 28 96 50 49 10.44
tm3 (many SDs in TM) 23 97 50 49 10.84
tm4 (many SDs per ISDS) 25 98 49 49 10.63
tm5 (many DCCFPs per SD) 17 96 49 49 11.77
tm6 (many NTUPs per DCCFP) 27 98 50 48 10.74

Table 11-Minimum, maximum and average values of the generation numbers when a stable maximum
fitness plateau is reached in 1000 runs of each test model.

7.2.7 Impacts of Arrival Pattern Types

The impact of variations in arrival pattern types are investigated by running GARUS with test models
tm7…tm11. The results are reported in the following four subsections.

 Impact on Execution Time

 Impact on Repeatability of Maximum ISTOF Values

 Impact on Repeatability of Maximum Stress Time Values

Carleton University TR SCE-06-09 April 2006

50

 Impact on Convergence Efficiency across Generations

7.2.7.1 Impact on Execution Time

We computed the average, minimum and maximum execution times over all the 1000 runs, by running
GARUS with test models tm7…tm11 on an 863MHz Intel Pentium III processor with 512MB DRAM memory
(Table 12). Minimums and maximums of the statistics in Table 12 for each test model run are relatively close
to the corresponding average value. Therefore, we use the average values to discuss the impacts of variations
in arrival patterns on execution time. To better illustrate the differences, the average values are depicted in
Figure 42.

Recall from Section 7.2.5.4 that test models tm7…tm11 have been designed such that they all have the same
number of SDs, CCFPs, and NTUPPs (same TM size). Based on the values depicted in Figure 42, the average
execution times of the test models tm7…tm11 with the same test model size, but different arrival patterns for
SDs, are relatively close to each other (within 100 ms). This indicates that execution time is not strongly
dependent on SD arrival patterns in a test model. Furthermore, as we discuss below, the difference in
execution times are mainly due to the implementation details of a method of class AP in GARUS.

Test Model Min Max Average Median Standard
Deviation

tm7 (all SDs with no arrival patterns) 234 593 296 281 51.27
tm8 (all SDs with periodic arrival patterns) 234 625 290 266 50.47
tm9 (all SDs with bounded arrival patterns) 250 594 295 281 53.78
tm10 (all SDs with irregular arrival patterns) 156 344 186 172 29.12
tm11 (SDs with arbitrary arrival patterns) 217 245 231 224 61.23

Table 12-Execution time statistics of 1000 runs of tm7…tm11.

0 500
tm9tm10 tm8

tm7

duration (ms)

tm11

Figure 42-Visualization of the average values in Table 12.

The execution times of two of these test models (tm8 and tm9), are slightly higher than those of tm7 and tm10.
The difference between the two TM groups (tm8 and tm9 versus tm7 and tm10) can be explained by an
implementation detail of GARUS. Function getARandomArrivalTime, a member function of class AP
(Figure 26), is overridden in each of AP’s subclasses. The time complexity of this function in noAP and
irregularAP classes is O(1), i.e., choosing a random value from a range or an array, respectively. However, the
implementation of the function in periodicAP and boundedAP classes required some extra considerations
(related to the ATSs of periodic and bounded APs), and thus the time complexities of the function are not
constant anymore, but dependent on the specific arrival pattern parameters.

The execution time of tm11, in which each SD can have an arbitrary arrival pattern, is placed somehow close
to the average value of the other four TMs (tm7, tm8, tm9, and tm10). This is as predicted since the APs of SDs
in tm11 are a mix of APs in the other four, thus leading to such an impact in its average execution time.

7.2.7.2 Impact on Repeatability of Maximum ISTOF Values

To investigate the impact of variations in arrival pattern types on the repeatability of maximum ISTOF
values, Figure 43 depicts the histograms of maximum ISTOF values for 1000 runs on each of the test models
tm7,…, tm11. The corresponding descriptive statistics are shown in Table 13.

As we can see, there are no big differences among the five distributions. The histogram of maximum ISTOF
values for tm8 is the only noticeable difference, in which the distribution is flatter than the four others (with

Carleton University TR SCE-06-09 April 2006

51

more peaks and valleys). This is perhaps due to the specific ATS properties of periodic arrival patterns (the
arrival pattern type of SDs in tm8).

Another observation is that the histograms in Figure 43-(a) and Figure 43-(c) are quite similar. Recall from
Section 5.5.4 that the ATS of a bounded arrival pattern covers the entire time domain except few time
intervals close to zero. Therefore, if the common unconstrained time intervals of a set of bounded arrival
patterns are considered, they resemble a set of SD with no arrival patterns. The effect of such a property,
thus, shows itself in the two histograms.

300

400

.05 .10 .15

Probability

(a)- tm7 (all SDs with
no arrival patterns)

300

400

.05 .10 .15

Probability

(b)- tm8 (all SDs with
periodic arrival

patterns)

300

400

.05 .10 .15

Probability

(c)- tm9 (all SDs with
bounded arrival

patterns)

300

400

.05 .10 .15 .20

Probability

(d)- tm10 (all SDs
with irregular arrival

patterns)

300

400

.05 .10 .15 .20

Probability

 (e)- tm11 (SDs with
arbitrary arrival

patterns)

Figure 43-Histograms of maximum ISTOF values for 1000 runs of each test model. The y-axis values are in
traffic units.

Test Model Min Max Average Median Standard
Deviation

tm7 (all SDs with no arrival patterns) 240 448 305 304 27.7
tm8 (all SDs with periodic arrival patterns) 216 404 279 279 27.0
tm9 (all SDs with bounded arrival patterns) 232 448 306 304 28.8
tm10 (all SDs with irregular arrival patterns) 234 420 294 289 28.41
tm11 (SDs with arbitrary arrival patterns) 248 459 309 307 25.72

Table 13-Descriptive statistics of the maximum ISTOF values for each test model over 1000 runs. Values
are in units of data traffic.

7.2.7.3 Impact on Repeatability of Maximum Stress Time Values

To investigate the impact of variations in arrival pattern types on the repeatability of maximum stress time
values, Figure 44 depicts the histograms of maximum stress time values for 1000 runs on each of test models
tm7,…, tm11. The corresponding descriptive statistics are shown in Table 14.

Carleton University TR SCE-06-09 April 2006

52

0

100

200

300

400

500

600

.05.10 .20

Probability

(a)- tm7 (all SDs with
no arrival patterns)

100

200

300

400

500

600

.02 .04 .06 .08

Probability

(b)- tm8 (all SDs with
periodic arrival

patterns)

100

200

300

400

500

600

.05 .15 .25

Probability

(c)- tm9 (all SDs with
bounded arrival

patterns)

100

200

.05 .10 .15 .20

Probability

(d)- tm10 (all SDs
with irregular arrival

patterns)

100

200

300

400

500

600

.05 .10 .15

Probability

(e)- tm11 (SDs with
arbitrary arrival

patterns)

Figure 44-Histograms of maximum stress time values for 1000 runs of each test model. The y-axis values
are in time units.

Test Model Min Max Average Median Standard
Deviation

tm7 (all SDs with no arrival patterns) 12 622 140 119 105.7
tm8 (all SDs with periodic arrival patterns) 58 655 347 346 129.8
tm9 (all SDs with bounded arrival patterns) 33 618 137 118 105.0
tm10 (all SDs with irregular arrival patterns) 22 211 89 66 43.0
tm11 (SDs with arbitrary arrival patterns) 29 669 214 184 157.04

Table 14-Descriptive statistics of the maximum stress time values for each test model over 1000 runs.
Values are in time units.

We attempt below to interpret the distributions shown in Figure 44.

 Distributions (a) and (c) are skewed towards their minimum values. For example, the mode of (a) is
around 70 units of traffic which is closer to 0 (the minimum) than 620 (the maximum). This can be
explained based on the early start times of NTUPs in DCCFPs of the fittest GA individual generated
for tm7 and tm9. Since the ATS of tm7 is unconstrained and the one for tm9 has only few constrained
ATIs, the GA chooses the common start times of maximum stressing DCCFPs as early as possible.

 The distribution in (b), corresponding to tm8, is flatter than the others. This can be explained based
on the specific ATS properties of periodic arrival patterns (the arrival pattern type of SDs in tm8).
The intersection of several periodic ATSs will be a discrete unbounded ATS (refer to Figure 45 for an
example). Therefore, given a TM with periodic SDs, the GA might converge to any of the common
ATPs in the intersection of all periodic ATSs.

In
te

rs
ec

tio
n

ATS1

ATS2

ATS3

Intersection ATS

...

...

...

...

Figure 45- The intersection of several periodic ATSs is a discrete unbounded ATS.

Carleton University TR SCE-06-09 April 2006

53

 Another observation is that the histograms in (a) and (c) are quite similar. Recall from Section 5.5.4
that the ATS of a bounded arrival pattern covers the entire time domain except few time intervals
close to zero. Therefore, if the common unconstrained time intervals of a set of bounded arrival
patterns are considered, they resemble a set of SD with no arrival patterns. Such similarity is visible
in the two histograms.

7.2.7.4 Impact on Convergence Efficiency across Generations

Regarding the impact of arrival patterns on convergence efficiency across generations in the GA, Figure 46
depicts the histograms of the generation numbers when a stable maximum fitness plateau is reached in 1000
runs of test models tm7,…, tm11. The corresponding descriptive statistics are shown in Table 15. It is
interesting to see that, on average, 49-50 generations were required to converge to the final result (a stress
test requirement) across all TMs: tm7,…, tm11.

30

40

50

60

70

80

90

(a)- tm 7 (all SDs with
no arrival patterns)

20

30

40

50

60

70

80

90

100

(b)- tm 8 (all SDs with

periodic arrival
patterns)

20

30

40

50

60

70

80

90

100

(c)- tm 9 (all SDs with

bounded arrival
patterns)

30

40

50

60

70

80

90

(d)- tm 10 (all SDs

with irregular arrival
patterns)

20

30

40

50

60

70

80

90

100

(e)- tm 11 (SDs with

arbitrary arrival
patterns)

Figure 46- Histograms of the generation numbers when a stable maximum fitness plateau is reached in
1000 runs of each test model.

Test Model Min Max Average Median Standard
Deviation

tm7 (all SDs with no arrival patterns) 30 90 50 48 9.97
tm8 (all SDs with periodic arrival patterns) 28 97 50 49 10.36
tm9 (all SDs with bounded arrival patterns) 30 98 50 49 10.86
tm10 (all SDs with irregular arrival patterns) 27 88 49 48 9.35
tm11 (SDs with arbitrary arrival patterns) 28 96 58 57 11.58

Table 15-Minimum, maximum and average values of the generation numbers when a stable maximum
fitness plateau is reached in 1000 runs of each test model.

The standard deviations variations of the distributions are limited and no more 100 generations are required
in all cases. Therefore, variations in arrival pattern types do not have a significant impact on convergence
efficiency across generations, and the GA is able to reach a stable maximum fitness plateau after about 50
generations on average, independent of any arrival pattern types.

7.2.8 Impacts of Arrival Pattern Parameters

The impact of variations in arrival pattern parameters were investigated by running GARUS on
experimental test models in which all SDs were periodic (tm8, tm12, tm13, and tm14), bounded (tm9, tm15
and tm16, or irregular (tm10, tm17 and tm18) (Table 7). The combinations of TMs to investigate in this section
were chosen to study the impacts of arrival pattern parameters such the period and deviations values of a
periodic AP, and minimum/maximum inter-arrival values of a bounded AP. The results are reported in the
following four subsections.

 Impact on Execution Time

Carleton University TR SCE-06-09 April 2006

54

 Impact on Repeatability of Maximum ISTOF Values
 Impact on Repeatability of Maximum Stress Time Values
 Impact on Convergence Efficiency across Generations

7.2.8.1 Impact on Execution Time

We computed the average, minimum and maximum execution times over all the 1000 runs, by running
GARUS on test models tm8, tm9, tm10, tm12,…tm18 on an 863MHz Intel Pentium III processor with 512MB
DRAM memory (Table 16).
Minimums and maximums of the statistics in Table 16 for each test model run are relatively close to the
corresponding average value. Therefore, we use the average values to discuss the impacts of variations in
arrival patterns on execution time. Based on the execution values in Table 16, we can make the following
observations:

 The GA execution takes longer time for higher numbers of periodic ATIs in a specific maximum
search time. The distribution mean and median values for execution times of tm12 (AP period
value=5) and tm13 (AP period value=5) are higher than those of tm8 (AP period values from 5 to 10)
and tm14 (AP period value from 20 to 25). This is explained by an implementation detail of GARUS.
Function getARandomArrivalTime, a member function of class AP (Figure 26), is overridden in
each of AP’s subclasses. The explanations can be made similar to the discussions in Section 7.2.7.1.
As the period value of an AP increases, the number of periodic ATIs in a specific maximum search
time decreases. This, in turn, reduces the GA’s execution time.

 Increasing the minimum inter-arrival time range (from [2,4] in tm9 to [50,60] in tm15) in bounded
APs has increased the average (from 590 in tm9 to 667 in tm15) and median execution times (from
562 in tm9 to 657 in tm15). This is explained by formula ⎡ ⎤)minIATmaxIAT(minIATk −= (proved in
Appendix C), where k is the number of ATIs for a bounded AP. Due to the implementation detail in
member function getARandomArrivalTime of class AP (Section 7.2.7.1), increasing the number
of ATIs in a bounded AP will increase execution time. Note that the denominator value in the above
formula is the same in both tm9 and tm15, by using the minAPboundedMaxIATafterMin parameter
(Table 5), while the nominator value is changed.

 Increasing the different between minimum and maximum inter-arrival time range (from [2,5] in tm9
to [60,70] in tm16) in bounded APs has decreased the average (from 667 in tm9to 503 in tm16) and
median execution times (from 657 in tm9to 494 in tm16). This is explained again by the above
formula and the implementation detail in member function getARandomArrivalTime of class AP
(Section 7.2.7.1), whereas decreasing the number of ATIs in a bounded AP will decrease execution
time. Note that the nominator value in the above formula is the same in both tm9 and tm16, while the
denominator value is changed.

Test Model Group Test Model Min Max Average Median Standard
Deviation

tm8 468 1,250 580 532 100.94
tm12 625 1,359 746 703 123.13
tm13 640 1,547 758 703 125.11

periodic

tm14 393 1,109 519 556 101.55
tm9 500 1,188 590 562 50.56
tm15 625 890 667 657 22.92

bounded

tm16 447 853 503 494 35.50
tm10 312 688 372 344 58.24
tm17 453 1235 582 531 97.77

irregular

tm18 500 984 557 532 64.4

Table 16-Execution time statistics of 1000 runs of tm8, tm9, tm10, tm12,…tm18.

Carleton University TR SCE-06-09 April 2006

55

7.2.8.2 Impact on Repeatability of Maximum ISTOF Values

To investigate the impact of variations in arrival pattern parameters on the repeatability of maximum ISTOF
values, Figure 47 depicts the histograms of maximum ISTOF values for 1000 runs on each of the test models
tm8, tm9, tm10, tm12,…tm18. The corresponding descriptive statistics are shown in Table 17. We discuss three
main observations based on the results shown in Figure 47.

Test Model
Group

Test Models

periodic

300

400

.05 .10 .15

Probability

(a)-tm8

300

400

.10 .20 .30 .40

Probability

(b)- tm12

300

400

500

.05 .10 .15 .20

Probability

(c)- tm13

300

400

.05 .10.15.20 .25

Probability

(d)- tm14
bounded

300

400

.05 .10 .15

Probability

(e)-tm9

300

400

.05.10 .15.20 .25

Probability

(f)- tm15

300

400

.05 .10 .15 .20

Probability

(g)- tm16

irregular

300

400

.05 .10 .15 .20

Probability

(h)-tm10

300

400

500

.03 .08 .13

Probability

(i)- tm17

300

400

500

.05 .10 .15 .20

Probability

(j)- tm18

Figure 47-Histograms of maximum ISTOF values for 1000 runs of each test model. The y-axis values are in
traffic units.

Carleton University TR SCE-06-09 April 2006

56

Test Model Group Test Model Min Max Average Median Standard
Deviation

tm8 216 404 279 279 27.0
tm12 273 476 323 317 26.65
tm13 287 500 331 323 27.8

periodic

tm14 240 435 298 296 25.21
tm9 232 448 306 304 28.8
tm15 249 507 306 297 22.29

bounded

tm16 260 449 317 310 28.34
tm10 234 420 294 289 28.41
tm17 268 490 348 345 33.58

irregular

tm18 262 556 329 330 35.01

Table 17-Descriptive statistics of the distributions in Figure 47.

 Among TMs with all periodic APs (tm8, tm12, tm13, and tm14), tm13 has the highest maximum
ISTOF value (500). This is because the APs in tm13 have both period and deviation values of 5, which
means that the corresponding ATSs are virtually unconstrained, i.e., all time instants are accepted.
This, in turn, lets the GA search the entire time domain and find the best possible stress test
schedule. The ATSs of other three TMs (tm8, tm12, and tm14) are constrained and do not include any
time instant in the time domain.

 Increasing the number of arrival points (from [5,15] in tm10 to [50,100] in tm17) in irregular APs has
increased the highest maximum ISTOF value (from 420 in tm10 to 490 in tm17). This is because as the
number of arrival points increases, the number of possible stress test requirements increases, and so
does the chances of finding a stress test requirement with the highest stress value.

 Increasing the location of arrival points (from [1,30] in tm10 to [100,200] in tm18) in irregular APs
does not have a significant impact on the distribution of maximum ISTOF values. This is because
such a change will only shift (in time domain) the time instant when stress traffic will be entailed
(maximum stress time).

7.2.8.3 Impact on Repeatability of Maximum Stress Time Values

To investigate the impact of variations in arrival pattern types on the repeatability of maximum stress time
values, Figure 48 depicts the histograms of maximum stress time values for 1000 runs on each of test models
tm8, tm9, tm10, tm12,…tm18. The corresponding descriptive statistics are shown in Table 18. We discuss three
main observations based on the results shown in Figure 48.

 The difference between the mode and other values of the distribution (d) is slightly more than such a
difference in distributions (a), (b) or (c). This can be explained as tm14, corresponding to the
distribution (d), has relatively high period values ([20-25]) compared to the other three TMs. This, in
turn, affects the GA by providing less chances of finding overlaps between different ATSs in a TM.
Because of this, the number of such overlaps are maximized in fewer instants in the time domain in
tm14 compared to the other three.

 Among TMs with bounded AP, distributions (e) and (g) are skewed towards their minimum values,
while the values in (f) are distributed almost evenly across the distribution’s range, i.e., the
distribution is not skewed neither towards its minimum nor it maximum value. This can be
explained by the different values of the Unbounded Range Starting Point (URSP), Section 6.5.4., in the
bounded APs of the above three TMs. As shown in Appendix C, the URSP of a bounded AP can be
calculated by: ⎡ ⎤.minIAT)minIATmaxIAT(minIATURSP −= . Therefore, the URSP value of tm15 is
higher than those of tm9 and tm16, since the range of minIAT in tm15 is higher than those in tm9 and
tm16, while the denominator of the above formula are in the same range. For example, considering a
bounded AP in tm15 with minIAT=55 and maxIAT=58, the URSP will be 1045 units of time. This
value is even higher than the maximum search time (500 units of time) set in all the above three TMs.

Carleton University TR SCE-06-09 April 2006

57

Therefore, there will not be any unconstrained ATI in the ATSs of tm15, and thus the GA will not be
able to do an unconstrained search for stress test requirements in time domain. Such a search is
possible in tm9 and tm16 because their URSPs will be inside the specified maximum search time. For
example, one example URSP for a SD AP in tm9 with minIAT=3 and maxIAT=5 is 6 units of time,
which is < 500.

Test Model
Group

Test Models

periodic

100

200

300

400

500

600

.02 .04 .06 .08

Probability

(a)-tm8

0

100

200

300

400

500

600

.01 .03 .05 .07

Probability

(b)- tm12

100

200

300

400

500

600

.01 .03 .05 .07

Probability

(c)- tm13

100

200

300

400

500

600

.02 .04 .06 .08

Probability

(d)- tm14
bounded

100

200

300

400

500

600

.05 .15 .25

Probability

(e)-tm9

100

200

300

400

500

600

.03 .05 .08 .10

Probability

(f)- tm15

0

100

200

300

400

500

600

.05 .10 .15 .20

Probability

(g)- tm16

irregular

100

200

.05 .10 .15 .20

Probability

(h)-tm10

100

200

.05.10 .20

Probability

(i)- tm17

200

300

.05 .10 .15 .20

Probability

(j)- tm18

Figure 48- Histograms of maximum stress time values for 1000 runs of each test model. The y-axis values
are in time units

Carleton University TR SCE-06-09 April 2006

58

Test Model Group Test Model Min Max Average Median Standard
Deviation

tm8 58 655 347 346 129.8
tm12 18 613 332 337 131.54
tm13 49 664 334 334 131.15

periodic

tm14 41 631 333 337 125.3
tm9 33 618 137 118 105.0
tm15 72 657 366 362 139.32

bounded

tm16 26 615 151 115 109.11
tm10 22 211 89 66 43.0
tm17 14 235 67 59 32.54

irregular

tm18 136 372 239 242 40.39

Table 18-Descriptive statistics of the distributions in Figure 48.

 As discussed in the previous subsection, increasing the location of arrival points (from [1,30] in tm10
to [100,200] in tm18) in irregular APs does not have a significant impact on the distribution of
maximum ISTOF values. However, as we can see by comparing distributions (h), (i) and (j), such an
increase shifts (in time domain) the time instant when stress traffic will be entailed (maximum stress
time). As we can see, both average and median values in distribution (j), corresponding to tm18, are
higher than those in distribution (h), corresponding to tm10.

7.2.8.4 Impact on Convergence Efficiency across Generations

Regarding the impact of arrival patterns on convergence efficiency across generations in the GA, Figure 49
depicts the histograms of the generation numbers when a stable maximum fitness plateau is reached in 1000
runs of test models tm8, tm9, tm10, tm12,…tm18. The corresponding descriptive statistics are shown in Table
19. On average, 49-59 generations were required to converge to the final result (a stress test requirement)
across all TMs: tm8, tm9, tm10, tm12,…tm18. No more 100 generations are required in all cases.

As we can see, variations in arrival pattern parameters has a slight impact on convergence efficiency across
generations. We discuss such impacts individually for each of the three test model groups:

 TMs with periodic APs (tm8, tm12, tm13, and tm14): The results for tm13 converge relatively faster
than the other three (almost the same), as the minimum, average and medians denote. This can be
explained as the APs in tm13 are periodic with both period and deviation values of 5. This AP
resembles to a unconstrained ATS, in which all time instant are accepted. Therefore, the GA will
have better chances to find “fit” individuals earlier. In the other three, more applications of the GA
operators are required to converge the population.

 TMs with bounded APs (tm9, tm15 and tm16): As the corresponding minimum, average and
medians denote, the results for tm16 converge relatively faster than the other two (almost the same).
This can be explained by the URSP formula for bounded APs
(⎡ ⎤.minIAT)minIATmaxIAT(minIATURSP −=). By calculating the range of URSPs based on the given
ranges of minIAT and maxIAT, tm16 has the lowest value of URSP among the above set of TMs with
bounded APs (tm9, tm15 and tm16). By having a smaller value for URSP, our GA can search the time
domain (up to maximum search time) to a greater extent, thus, yielding a faster convergence.

 TMs with irregular APs (tm10, tm17 and tm18): As the corresponding minimum, average and
medians denote, the results for tm17 converge relatively faster than the other two. This can be
explained by the higher number of irregular arrival points in tm17, i.e., the range of [50,100]
compared to [5,10] in tm10and tm18. By having a higher number of irregular arrival points, our GA
can search the time domain (up to maximum search time) to a greater extent, thus, yielding a faster
convergence.

Carleton University TR SCE-06-09 April 2006

59

Test Model
Group

Test Models

periodic

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

(a)-tm8

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

(b)- tm12

20

30

40

50

60

70

80

90

100

.05 .10 .15 .20 .25

Probability

(c)- tm13

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

(d)- tm14

bounded

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

(e)-tm9

30

40

50

60

70

80

90

100

.05 .10 .15 .20 .25

Probability

(f)- tm15

20

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

(g)- tm16

irregular

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

(h)-tm10

30

40

50

60

70

80

90

.05 .10 .15

Probability

(i)- tm17

30

40

50

60

70

80

90

100

.05 .10 .15 .20 .25

Probability

(j)- tm18

Figure 49- Histograms of the generation numbers when a stable maximum fitness plateau is reached in
1000 runs of each test model.

Carleton University TR SCE-06-09 April 2006

60

Test Model Group Test Model Min Max Average Median Standard
Deviation

tm8 42 99 57 56 10.45
tm12 41 99 58 57 10.94
tm13 28 97 50 49 10.81

periodic

tm14 43 99 58 57 11.70
tm9 39 97 58 57 11.0
tm15 40 99 58 57 10.86

bounded

tm16 30 98 50 49 10.48
tm10 44 99 59 58 11.27
tm17 27 88 49 48 9.35

irregular

tm18 36 96 59 57 11.09

Table 19-Descriptive statistics of the distributions in Figure 49.

7.2.9 Impact of Maximum Search Time

We report in this section the impact of variations in GA maximum search time on execution time,
repeatability of outputs (maximum ISTOF and stress time values), and also maximum plateau generation
numbers. Maximum search time is the range of the random numbers chosen from the ATS of a SD with
arrival pattern (Section 6.5.4).

We first compare GA results for TMs tm1, tm19 and tm20 in Figure 50. As described in Section 7.2.5.5, tm19
and tm20 have the same SUT components (SDs, DCCFPs, ISDSs, etc.) as tm1, but the GATimeSearchRange
value for tm19 and tm20 are 5 and 150 time units, respectively, instead of 50 in tm1. Therefore, comparing GA
results for tm1, tm19 and tm20 should reveal the impact of maximum search time on all variables of interest.
The corresponding descriptive statistics are shown in Table 20.

There are 12 graphs (3 rows in 4 columns) in Figure 50. Three rows correspond to different maximum search
time, while columns relate to GA variables (execution time, maximum ISTOF values, maximum stress time
values, and maximum plateau generation number).

In terms of execution time, variations in maximum search time do not have an impact. Across 1000 runs, all
three TMs (tm1, tm19 and tm20) show execution times in the range [45 ms, 130 ms]. Since a change in
maximum search time only changes the range in which a random time from an ATS is selected, it is not
surprising that there is no effect on the workload of different GA components.

As the maximum search time increases across the three test models (5 in tm19 to 50 in tm1 and 150 in tm20),
the maximum of maximum ISTOF values across 1000 runs of a TM increases, i.e. 82 traffic units for tm19, 91
traffic units for tm1 and 110 traffic units for tm20. This can be explained by an increase in the size of GA’s
time search range (in ATSs) from tm19 to tm1 and tm20. From another perspective, the difference between
the maximum and minimum of maximum ISTOF values also increases with the maximum search time. The
differences between the maximum and minimum of maximum ISTOF values for tm19, tm1 and tm20 are 20
(82-62), 41 (91-50), and 69 (110-41) respectively. This can also be explained by the increase in the size of GA’s
time search range (in ATSs) from tm19 to tm1 and tm20.

Carleton University TR SCE-06-09 April 2006

61

Distribution
Group

Test Model Min Max Average Median Standard
Deviation

tm1 46 125 58 62 11.34
tm19 46 125 65 62 16.86

Execution time

tm20 46 125 69 63 17.50
tm1 65 112 81 81 7.0
tm19 60 82 73 72 4.67

Maximum ISTOF
values

tm20 42 112 61 62 6.79
tm1 6 56 22 20 12
tm19 6 11 8 9 1.54 Maximum stress

time values
tm20 9 156 31 13 37.56
tm1 27 98 49 47 10.78
tm19 26 94 48 46 10.52

Max Plateau
Generation #

tm20 27 99 48 47 10.69

Table 20-Descriptive statistics of the distributions in Figure 50.

In terms of maximum stress time values, similar patterns to maximum ISTOF values can be observed among
the three distributions in column ‘maximum stress time values’ of Figure 50. In terms of maximum plateau
generation number, we can see that the increase in maximum search time slightly delays convergence across
generations, i.e., the maximum plateau generation number in tm19 runs is reached at 91, while it is 100 for
both tm1 and tm20 runs.

Carleton University TR SCE-06-09 April 2006

62

 Impact on

 Execution time Maximum ISTOF
values

Maximum stress
time values

Max Plateau
Generation #

5
(tm19)

50

60

70

80

90

100

110

120

130

.10.20 .40.50

Probability

60

70

80

.05.10.15 .25

Probability

6

7

8

9

10

11

.10 .20 .30 .40

Probability

20

30

40

50

60

70

80

90

.05 .10 .15 .20 .25

Probability

50
(tm1)

50

60

70

80

90

100

110

120

130

.10 .30 .50

Probability

50

60

70

80

90

.10 .20 .30 .40

Probability

10

20

30

40

50

.05 .10 .15 .20 .25

Probability

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

G
A

 M
ax

im
um

 S
ea

rc
h

Ti
m

e
(ti

m
e

un
its

)

150
(tm20)

50

60

70

80

90

100

110

120

130

.10 .30 .50

Probability

40

50

60

70

80

90

100

110

.10 .20 .30 .40

Probability

0

100

.10 .30 .50

Probability

20

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

Figure 50- Impact of variations in maximum search time on the GA’s behavior and outputs.

Carleton University TR SCE-06-09 April 2006

63

8 CASE STUDY
This section presents a case study based on an actual Distributed Real Time System (DTRS). We describe in
Section 8.1 the SUT we chose for our case study. The stress test results are presented in Section 8.4.

8.1 System Under Test

Our stress test methodology can be used to stress test distributed systems, with an emphasis on safety-
critical and data-intensive systems. Distributed Control Systems (DCS) [33] and Supervisory Control and Data
Acquisition (SCADA) Systems [16] are two kinds of such systems.

We surveyed numerous existing systems (e.g. [11, 15, 19, 20]) to choose a suitable case study. Selection
criteria were that it should be possible to run a system on a standard hardware/software platform, the
design model and source code of the system should be available, and also the system should be accessible for
use. Since no public domain systems met all the above requirements, we decided to analyze, design and
build a prototype system based on a real-world specification.

SCAPS (our prototype system) is a SCADA-based power system (e.g. [50]) which controls the power
distribution grid across a nation consisting of several provinces, in which are cities and regions. Each city
and region has several local power distribution grids, each with a Tele-Control unit (TC), which gathers the
grid data and can also be controlled remotely. There is a nation-wide central server, and each province has
one central server that gathers the SCADA data from TCs from all over the province and sends them to the
central server. The central sever performs the following real-time data-intensive safety-critical functions as
part of the Power Application Software [53]: (1) Overload monitoring and control, (2) Detection of separated
power systems and (3) Power restoration after network failure.

We designed SCAPS so that it meets all the suitability criteria for a case study. The UML model was defined
and the system was implemented using Borland Delphi, which is a well-known Integrated Development
Environment for Rapid Application Development. Further details can be found in [22].

We used our GARUS tool (Section 7) with the SCAPS UML model (Section 8.1.4) as input to derive stress test
requirements maximizing instant data traffic on the SCAPS nation-wide network (Canada). We then derived
the corresponding stress test cases for those requirements by finding the specific inputs/conditions which
drive the test execution through the specific CFPs in the stress test cases. Furthermore, in our test execution,
we scheduled those CFPs (their corresponding SDs) to be executed in the specific time instances as were
determined by the stress test requirements. The test requirements included executing SDs D and E presented
in Figure 7. The two SDs are parts of the power application software model discussed above. There are time
constraints defined on these SDs’ executions and our goal is to assess whether stress testing can help detect
violations of these constraints.

Because none of the systems we surveyed meets the requirements, we decided to analyze, design, and build
our own prototype system by using the ideas and concepts from existing distributed system technologies.

Section 8.1.1 presents an overview on SCADA-based power systems. Our design of a SCAda-based Power
System (SCAPS) is described in Section 8.1.2. In Section 8.1.3, we discuss how and why SCAPS meets our case
study requirements. We present the SCAPS’ UML design model in Section 8.1.4. Relevant implementation
issues are presented in Section 8.1.5. Section 8.1.6 provides a brief description of SCAPS’ hardware and
configuration.

8.1.1 SCADA-based Power Systems

SCADA for power systems was developed in the 1960’s and has been improving ever since. The architecture
of power SCADA systems has changed from the mainframe-dominated, centralized computing systems to
network-based distributed computing in the early 1990’s [18]. A new class of SCADA systems that is called

Carleton University TR SCE-06-09 April 2006

64

open distributed systems [53] has been designed based on this new architecture. Fundamental features of open
distributed systems that distinguish it from the previous design are the use of industry-standards, Local
Area Network (LAN) and the distribution of functions among several computers or workstations on a LAN
or WAN (Wide Area Network).

SCADA systems have been used in both nuclear and hydro power generation plants [29, 37] and distribution
grids [9, 12, 19, 48, 51]. Most of the SCADA power systems require dedicated and special-purpose hardware
to run and none of the systems are made public (even those made for research purposes in articles).
However, the overview descriptions of SCADA systems are usually available. Figure 51 shows a typical
SCADA model of a power distribution system [19].

WAN Internet

s/s
TC

s/s
TC

s/s
TC

s/s
TC

SEV

SEV

Firewall

c/c
CL c/c

CL

c/c
CL

SEV

s/s
TC

c/c
CL

c/c
CL

SEV: Sever
TC: Tele-Control unit
c/c: Control Center
s/s: Substation
CL: Client

Figure 51-Power systems SCADA model [19].

The model consists of TCs (Te1e-Control units) that send data to servers. SCADA applications execute in
servers. Clients (CLs) are used by operators in control centers (c/c) inside or outside the WAN. Operators
monitor and control the power system through the software installed on clients. Each TC sends data related
to the component (e.g., a city or a geographical region) of the power system to servers. Multicast
communication based on IP is applied to the communication between TCs and servers, and all servers can
receive data from every TC. The location of servers is transparent to clients. Critical functions of SCADA can
be installed in servers that can be backed up. WAN-based SCADA connects to the Internet through a
firewall.

The communication model between tele-control units (TCs) and servers (SEVs) in a SCADA system [19] is
shown in Figure 52. As we can see in this figure, power systems usually have a hierarchical operational
organization [48].

Carleton University TR SCE-06-09 April 2006

65

System Network

Subnet 2

Subnet 2_1

Subnet 2_n

Subnet 1

SEVs/s
TC

s/s
TC

s/s
TC

s/s
TC

…

SEV: Sever
TC: Tele-Control unit
TCM: Tele-Control Master unit
s/s: Substation

SEV

TCM

SEV

TCM

s/s
TC

s/s
TC

s/s
TC

Figure 52- Communication model between tele-control units and servers in a SCADA system [19].

A typical operational organization of power systems is shown in Figure 53. This helps to make them a good
candidate for our case study, as they fit well to our discussions on Network Deployment Diagram and
Network Interconnectivity Graph (NIG).

Central Load Dispatching Office

Nuclear and Thermal Power Stations

Regional Load Dispatching Offices

Transformer Substations

Local Load Dispatching Office

Hydroelectric Power Stations

Transformer Substations
Figure 53-A typical operational organization for power systems [48].

8.1.2 SCAPS Specifications

We intend to design a SCADA power system which controls the power distribution grid across a nation
consisting of several provinces. Each province has several cities and regions. Each city and region has several
local power distribution grids. There is one central server in each province which gathers the SCADA data
from Tele-Control units (TCs) from all over the province, installed in local grids, and perform the following
real-time data-intensive safety-critical functions as part of the Power Application Software installed on the
SCAPS servers:

 Overload monitoring and control: Using the data received from local TCs, each provincial server
identifies the overload conditions on a local grid and cooperates with other provinces’ servers to
reduce the load on overloaded local grids. If the grid stays overloaded for several seconds and the
load does not get decreased, a system malfunction is to occur, such as hardware damage and
regional black-out.

 Detection of separated power system: Any separated (disconnected) grid should be identified
immediately by the central server, and proper precautions should be made to balance the
regional/provincial/national load due to this black-out so that the rest of the system stays stable.

Carleton University TR SCE-06-09 April 2006

66

 Power restoration after network failure: This functionality provides emergency strategies to prevent
network disruption just after a network fault and later presents strategies and switching operation of
breakers and disconnectors to restore power while keeping network’s reliability.

It should be noted that we only focus on the real-time data-intensive safety-critical functions of the SCAPS
here. Therefore, our stress test technique will be more effective in revealing faults if it is applied to such
functions (use-cases) of a SUT. The above three functions are typical functions performed by SCADA power
systems [19, 53], and will be shown in a use case diagram (Section 8.1.4), where we present the partial UML
model of SCAPS. Some of the non real-time, non safety-critical functions of these systems, which we do not
consider in our system, are [19, 53]:

 State estimation: Estimates most likely numerical data set to represent current network

 Load forecasting: Anticipates hourly total loads (24 points) for 1-7 days ahead based on the weather
forecast, type of day, etc. utilizing historical data about weather and load.

 Power flow control: Supports operators activities by providing effective power flow control by
evaluating network reliability for each several-minute time period for the next several hours,
considering anticipated total load, network configuration, load flow, and contingencies.

 Economical load dispatching: Controls generator outputs economically according to demand
considering the dynamic characteristics of boiler controller of thermal power generators while
keeping ability to respond quickly to sudden load changes.

 Unit commitment of generator: A suitable schedule for starting/stopping the generators for the next 1-
7 days is made using dynamic programming.

8.1.3 SCAPS Meets the Case-Study Requirements

To justify our decision, we discuss below how SCAPS meets all our requirements:

 Requirement 1: SCAPS is distributed, hard real-time, and safety-critical.

 Requirement 2: TCs send large amounts of information about the status and load of each component
in their distribution grid to the provincial servers. SCAPS is therefore data-intensive.

 Requirement 3: We design and build a SCAPS prototype, using the architecture of existing similar
systems (Section 8.1.1). We had, however, to account for the limitation of our research center’s
hardware/software platforms when designing and implementing the system in such a way to
preserve the realism of our case study. For example, we did not have access to dedicated power
distribution hardware such as load meters and sensors and we used stubs to emulate their behavior.

 Requirement 4: We develop the SCAPS UML model and source code, hence ensuring we have a
complete set of development artifacts.

 Requirement 5: Our SCAPS models make use of UML 2.0.

8.1.4 Partial UML Model

Consistent with the SCAPS specification in Section 8.1.2, its partial UML model is provided below. What we
mean by a partial model is one which mostly includes the model elements required by our stress test
approach. The UML model, presented in this section, consists of the following artifacts:

 Use-Case diagram: Although this diagram is not needed by our testing technique, we present it to
provide the reader with a better understanding on the overall functionality of the system.

 Network deployment diagram

 Class diagram

Carleton University TR SCE-06-09 April 2006

67

 Sequence diagrams

 Modified Interaction Overview Diagram (MIOD)

8.1.4.1 Use-Case Diagram

The SCAPS use-case diagram is shown in Figure 54. An ASA (Automatic System Agent) actor triggers
Overload Monitoring (OM) and Detection of Separated Power System (DSPS) use-cases. As it will be
modeled in SCAPS Modified Interaction Overview Diagram (Section 8.1.4.5), ASA will have a reactive
behavior by continuously triggering those two SDs in a non-ending loop until the system is stopped.

* *

Timer

Real-time data-intensive
safety-critical

Overload
Monitoring (OM)

Detection of
Separated Power System (DSPS)

Power Restoration
after Network Failure (PRNF)

Gathering data
from local TCs

*

*

*

*
ASA (Automatic

System
Agent)

Overload Control
(OC)

OM_ON

OM_QC

DSPS_ON

DSPS_QC

TCs (Tele-
Control units)

* *

«includes»

«includes»
«includes»

«includes»

«includes»

«includes»

«extends»

«extends»

«includes»

«includes»

Figure 54- SCAPS use-case diagram.

We design SCAPS to be used in Canada. To simplify the design and implementation, we consider only two
Canadian provinces in the system, Ontario (ON) and Quebec (QC). For example, OM_ON stands for
overload monitoring for the province of Ontario; and DSPS_QC stands for Detection of Separated Power
System (DSPS) for the province of Quebec.

8.1.4.2 Network Deployment Diagram

The Network Deployment Diagram (NDD) of SCAPS is shown in Figure 55.

Carleton University TR SCE-06-09 April 2006

68

«network»
Ontario

TC_YOW1

«network»
Canada

«network»
Quebec

«network»
Ottawa

«network»
Toronto

TC_YOW2

TC_YOW3

TC_YYZ1

TC_YYZ2

«network»
Montreal

TC_YMX1

TC_YMX2

«network»
Quebec City

TC_YQB1

TC_YQB2

SEV_ON SEV_QC

SEV_CA2SEV_CA1

Figure 55- SCAPS network deployment diagram.

The networks for the provinces of Ontario and Quebec are shown in the NDD. Only two cities are
considered in each of these two provinces. Three TCs (Tele-Control units) are considered for the city of
Ottawa, while other cities have two TCs. There is one server (SEV_ON and SEV_QC) in each of the
provinces. There are two servers at the national level: SEV_CA1 is the main server. SEV_CA2 is the backup
server, i.e., it starts to operate whenever the main server fails.

8.1.4.3 Class Diagram

Part of the SCAPS class diagram which is required to illustrate the case study is shown in Figure 56. The
classes are grouped in two groups: entity and control classes [8, 24]. Entity classes are those which are used
either as parameters (by inheriting from SetFuncParameter) or return values (by inheriting from
QueryFuncResult) of methods of control classes. Control classes are those from which active control objects
will be instantiated and are the participating objects in SDs. All entity classes are data-intensive, since grid
and load data of power systems for each region (or city) usually contain huge amounts of data [29, 37].
Furthermore, since there are two main groups of use-cases (overload and separated grid handlers), we group
entity classes by two abstract classes GridData and LoadData. LoadStatus and GridStatus are the results of
function query in class TC and queryONData and queryQCData in class ProvController. LoadPolicy and
GridStructure are the parameters of set functions setNewLoadPolicy and setNewGridStructure in class TC,
respectively. For brevity, usage dependencies among classes have not been shown in the class diagram, e.g.
from ProvController to QueryFuncResult.

Tele-Control (TC) unit objects will be instantiated from class TC. Objects of class ProvController and ASA will
be deployed on provincial (SEV_ON and SEV_QC) and national servers (the main server SEV_CA1 and the
backup SEV_CA2), respectively.

Carleton University TR SCE-06-09 April 2006

69

LoadData

Data-Intensive

GridData

LoadPolicyLoadStatusGridStructure GridStatus

+query(in dataType, out output:QueryFuncResult)
+setNewLoadPolicy(in policy:LoadPolicy)
+setNewGridStructure(in gs:GridStructure)

TC

+analyzeOverload(in load:LoadStatus)
+balanceLoadON(in loadON:LoadStatus, in loadQC:LoadStatus)
+balanceLoadQC(in loadON:LoadStatus, in loadQC:LoadStatus)
+buildNewGridStructureON(in gsON:GridStatus, in gsQC:GridStatus, out gs:GridStructure)
+buildNewGridStructureQC(in gsON:GridStatus, in gsQC:GridStatus, out gs:GridStructure)

ASA

+queryONData(in dataType, out output:QueryFuncResult)
+queryQCData(in dataType, out output:QueryFuncResult)

ProvController

QueryFuncResult

SetFuncParameter

Entity Classes

Control Classes

-End1*

-End2*

-End1*

-End2*

gridStatus loadStatus

Figure 56-SCAPS partial class diagram.

8.1.4.4 Sequence Diagrams

To render the effort involved in our case study manageable, we simplified the design model and
implementation of SCAPS by only accounting for a subset of use cases and by implementing stubs
simulating some of the functionalities of the system. In doing so, we tried to emulate as closely as possible
the behavior of real SCADA-based power systems.

More precisely, we designed the SDs in ways that the simplifications did not impact the types of faults (e.g.,
RT faults) targeted by our stress test technique. We incorporated enough messages and alternatives in SDs to
allow the generation of non-trivial stress test requirements. Since we designed SCAPS as a hard RT system,
we therefore modeled the RT constraint using the UML SPT profile [43].

Eight SDs are presented in Figure 57-Figure 62. They correspond to use-cases in the SCAPS use-case diagram
(Figure 54). SDs OM_ON and OM_QC in Figure 57 correspond to the overload monitoring use case. For
example, an object of type ASA (Automatic System Agent) sends a message to an object of type
ProvController (provincial controller) in SD OM_ON to query Ontario’s load data. The result is returned and
is stored in ASAloadON. The object of type ASA then analyzes the overload situation by analyzing the
ASAloadON.

A realistic periodic arrival pattern value must be larger than the execution duration of the SD it is assigned
to. This is because an invocation of the SD should complete execution before it is re-executed (due to a new
event according to its arrival pattern). For example, as we measured, the duration of SD OM_ON is on
average 1300 ms. We assume a periodic arrival pattern value of, say, 2400 ms for it. Similarly, since the
durations of DSPS_ON and DSPS_QC are 1300 and 1100 ms, periodic arrival patterns with period and
deviation values of 1700, 200 ms, and 1400, 200 ms are assigned to them, respectively.

Carleton University TR SCE-06-09 April 2006

70

To account for time delays in real-world, a deviation of 100 ms is considered for this periodic arrival pattern.
Since SCAPS is a reactive system, we assign periodic arrival pattern to its SDs. Reactive systems usually
check for environment changes periodically and take appropriate actions.

sd OM_ON

analyzeOverload(:ASA.loadON)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

ref
queryONData(“load”)

sd OM_QC

analyzeOverload(:ASA.loadQC)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_QC}

(a) (b)

queryONData(“load”)

:ASA.loadON

ref
queryQCData(“load”)

queryQCData(“load”)

:ASA.loadQC
{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(500,'ms')
RTend=(1200,'ms')}

{RTstart=(1200,'ms')
RTend=(1300,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(300,'ms')
RTend=(900,'ms')}

{RTstart=(900,'ms')
RTend=(1000,'ms')}

triggerOM_ON triggerOM_QC

{RTArrivalPattern=" 'periodic', (2400, 'ms'), (100, 'ms')"
RTduration < (5, 'ms')}

{RTArrivalPattern=" 'periodic', (2100, 'ms'), (100, 'ms')"
RTduration < (5, 'ms')}

Figure 57- SDs OM_ON and OM_QC (Overload Monitoring).

The two SDs in Figure 58 (queryONData(dataType)) and Figure 59 (queryQCData(dataType)) are utility SDs
which are used by the other SDs using the InteractionOccurrence construct. As it was shown in the Network
Deployment Diagram (NDD) of SCAPS (Figure 55), five TCs (Tele-Control units) were considered for the
province of Ontario. Therefore, there is a parallel construct made up of five interactions in the SD of Figure
58 which queries the load data from each of the five TCs. Reply messages in queryONData(dataType) and
queryQCData(dataType) have been labeled based on the name of the sender object. For example, the reply
message YOW1 is a reply to the load query from the TC deployed on the node YOW1 (one of the TCs in the
city of Ottawa). The entire load data of each province is finally returned by an object of type ProvController to
the caller.

sd queryONData(dataType)

:ProvController
{node = SEV_ON}

:TC
{node = TC_YOW1}

:TC
{node = TC_YOW2}

:TC
{node = TC_YOW3}

:TC
{node = TC_YYZ1}

:TC
{node = TC_YYZ2}

par
query(dataType)

YOW1 query(dataType)

query(dataType)

query(dataType)

query(dataType)

YOW2

YOW3

YYZ1

YYZ2

queryONData(dataType)
{RTstart=(50,'ms')
RTend=(250,'ms')}{RTstart=(0,'ms')

RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(50,'ms')
RTend=(400,'ms')}

{RTstart=(50,'ms')
RTend=(280,'ms')} {RTstart=(50,'ms')

RTend=(150,'ms')}

{RTstart=(50,'ms')
RTend=(200,'ms')}

Figure 58-SD queryONData(dataType).

Carleton University TR SCE-06-09 April 2006

71

sd queryQCData(dataType)

:ProvController
{node = SEV_QC}

:TC
{node = TC_YMX1}

:TC
{node = TC_YMX2}

:TC
{node = TC_YQB1}

:TC
{node = TC_YQB2}

par
query(dataType)

YMX1 query(dataType)

query(dataType)

query(dataType)

YMX2

YQB1

YQB2

queryQCData(dataType)

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(100,'ms')
RTend=(300,'ms')}

{RTstart=(100,'ms')
RTend=(200,'ms')}

{RTstart=(100,'ms')
RTend=(200,'ms')}

{RTstart=(100,'ms')
RTend=(200,'ms')}

Figure 59-SD queryQCData(dataType).

OC (Overload Control) SD (Figure 60) checks if there is an overload situation in any of the two provinces
(using overloadIn() as a condition). If this is the case in any of the two provinces, a new power distribution
load policy is generated by an object of type ASA and it is sent to the respective provincial controller (using
setNewLoadPolicy()).

Similar to the OM_ON and OM_QC SDs, DSPS_ON and DSPS_QC SDs (Figure 61) fetch grid connectivity
data from the provincial controllers and check whether there is any separated power system (using
detectSeparatedPS()).

Similar to the OC SD (Figure 60), PRNF (Power Restoration after Network Failure) SD (Figure 62) checks if
there is any separated power system in any of the two provinces (using anySeparationIn() as a condition). If
this is the case in any of the two provinces, a new power grid structure is generated by an object of type ASA
and it is sent to the respective provincial controller (setNewGridStructure()).

:ProvController
{node = SEV_QC}

sd OC

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

par

[overloadIn(:ASA:loadON)]

[else]

alt

newLoadON=balanceLoadON(:ASA.loadON, :ASA.loadQC)

setNewLoadPolicy(newLoadON)

[overloadIn(:ASA:loadQC)]

[else]

alt

newLoadQC=balanceLoadQC(:ASA.loadON, :ASA.loadQC)

setNewLoadPolicy(newLoadQC)

keepOldLoadPolicy()

keepOldLoadPolicy()

{RTstart=(0,'ms')
RTend=(300,'ms')}

{RTstart=(300,'ms')
RTend=(1000,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(200,'ms')}

{RTstart=(200,'ms')
RTend=(800,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

Figure 60- SD OC (Overload Control).

Carleton University TR SCE-06-09 April 2006

72

sd DSPS_ON

detectSeparatedPS(:ASA.connectivityON)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

sd DSPS_QC

detectSeparatedPS(:ASA.connectivityQC)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_QC}

(a) (b)

ref
queryQCData(“connectivity”)

queryQCData(“connectivity”)

:ASA.connectivityQC

ref
queryONData(“connectivity”)

queryONData(“connectivity”)

:ASA.connectivityON
{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(600,'ms')
RTend=(1100,'ms')}

{RTstart=(1100,'ms')
RTend=(1300,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(500,'ms')
RTend=(900,'ms')}

{RTstart=(900,'ms')
RTend=(1100,'ms')}

triggerDSPS_ON

{RTArrivalPattern=" 'periodic', (1700, 'ms'), (200, 'ms')"
RTduration < (5, 'ms')}

triggerDSPS_QC

{RTArrivalPattern=" 'periodic', (1400, 'ms'), (200, 'ms')"
RTduration < (5, 'ms')}

Figure 61-SD DSPS_ON and DSPS_QC (Detection of Separated Power System).

:ProvController
{node = SEV_QC}

sd PRNF

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

par

[anySeparationIn(:ASA:connectivityON)]

[else]

alt

newGSON=buildNewGridStructureON(:ASA.connectivityON, :ASA.connectivityQC)

setNewGridStructure(newGSON)

[anySeparationIn(:ASA:connectivityQC)]

[else]

alt

newGSQC=buildNewGridStructureQC(:ASA.connectivityON, :ASA.connectivityQC)

setNewGridStructure(newGSQC)

{RTstart=(0,'ms')
RTend=(300,'ms')}

{RTstart=(300,'ms')
RTend=(1000,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

keepOldGridStructure()

keepOldGridStructure()

{RTstart=(0,'ms')
RTend=(400,'ms')}

{RTstart=(400,'ms')
RTend=(1000,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

Figure 62-SD PRNF (Power Restoration after Network Failure).

8.1.4.5 Modified Interaction Overview Diagram

The MIOD of SCAPS is shown in Figure 63. As denoted in the SCADA-based power systems literature (e.g.
[9, 12, 19, 48, 51]), such systems have both soft and hard RT constraints.

Carleton University TR SCE-06-09 April 2006

73

OM_ON OM_QC
DSPS_ON DSPS_QC

OC

[overloaded
status]

[normal load]

PRNF

[any separated TC]

[no separated TC]

[system shutdown] [system shutdown]

OM_STARTUP

«HRTaction»
{duration<(1000,'ms'),
criticality=1}

«HRTaction»
{duration<(1000,'ms'),
criticality=1}

«SRTaction»
{duration<(1300,'ms'),
missProb<(0.5)}

«SRTaction»
{duration<(1300,'ms'),
missProb<(0.2)}

SRTC1

SRTC2

HRTC1

HRTC2

Figure 63-SCAPS Modified Interaction Overview Diagram (MIOD).

In order to model hard and soft RT constraints, we propose an extension to the RTaction stereotype of the
UML-SPT referred to as HRT (Hard RT Constraints) and SRT (Soft RT Constraints). Furthermore, in order to
model the statistical threshold probability up to which SRT constraints can be missed, we consider a tagged
value referred to as missProb for SRT constraints. Similarly, we consider a tagged value referred to as
criticality for HRT constraints. Criticality is a real number in the range [0..1] indicating the degree to which
the consequences of missing a hard deadline are unacceptable: the closer to one the criticality of a HRT
constraint, the more severe the consequences of missing it. For example, if violating a HRT constraint may
cause life-threatening situations, it would be better to set criticality to 1. Conversely, if for example the cost of
violating a HRT constraint is just an increase in the temperature of a water hydro plant (which will not
immediately lead to catastrophic results), then this constraint would have a lesser value of criticality.
HRTaction and SRTaction stereotypes are presented in Table 21 and Table 22, which are similar to the
representation used in the UML-SPT [84].

Stereotype Base Class Tags
Message
MessageSequence
Action

SRTaction

ActionSequence

RTduration
RTmissProb

Table 21-A stereotype to model SRT constraints.

Stereotype Base Class Tags
Message
MessageSequence
Action

HRTaction

ActionSequence

RTduration
RTcriticality

Table 22-A stereotype to model HRT constraints.

Table 21 and Table 22 define two new stereotypes, «SRTaction» and «HRTaction», which can be applied to
any of the four UML modeling concepts listed (Message, MessageSequence, Action, and ActionSequence) or to
their respective subclasses. Message corresponds to messages in SDs. A MessageSequence is an ordered
sequence of SD messages. Action corresponds to actions in activity diagrams (AD). A ActionSequence is an

Carleton University TR SCE-06-09 April 2006

74

ordered sequence of AD actions. For further details on these base classes, refer to [84]. The «SRT» and «HRT»
stereotypes have two associated tagged values each, which are defined in Table 23.

Tag Type Multiplicity
RTduration RTtimeValue [0..1]
RTmissProb Real [0…1] [0..1]
RTcriticality Real [0…1] [0..1]

Table 23-Tagged values of SRT and HRT stereotypes.

Table 23 defines the type of each tag. An RTduration tagged value is an instance of the RTtimeValue data type
(Section 4.2.2.4 of [84]). RTmissProb and RTcriticality are real value in the range of [0…1]. Each tag also has a
multiplicity indicating how many individual values can be assigned to each tag. A lower bound of zero
implies that the tagged value is optional.

«SRTaction» and «HRTaction» stereotypes can be used either in a SD or a MIOD. In the former case, the RT
constraint is applied to a Message or a MessageSequence, while in the latter, the constraint is applied to an
Action, or an ActionSequence (since MIOD is a subtype of activity diagrams).

We consider four MIOD-level RT constraints for SCAPS. Figure 63 shows two MIOD-level Soft RT (SRT) and
two Hard RT (HRT) constraints for SCAPS. We model them using the extended stereotypes («SRTaction» and
«HRTaction») from the UML-SPT profile. The constraints are labeled (bold face text) to make it easier to refer
to them later, and are explained below.

1. SRT constraints
a. SRTC1: Detection of separated power systems (concurrent runs of DSPS_ON and DSPS_QC)

should be done in less than 1300 ms, with an acceptable missing probability of 0.2 (20%). In
other words, this constraint must not be missed in more than 20% of the runs.

b. SRTC2: Overload monitoring (concurrent runs of OM_ON and OM_QC) should complete
within less than 1300 ms from its start time. We set the acceptable missing probability of this
SRT constraint to 0.5.

2. HRT constraints
a. HRTC1: As soon as a separated power system is detected, the power restoration policy

(PRNF SD) should be executed in less than 1000 ms. We assign criticality=1 to this
constraint.

b. HRTC2: As soon as an overload situation is detected, overload control policy (OC SD) should
be executed in less than 1000 ms. We assign criticality1=1 to this constraint. As discussed
above, criticality of a HRT constraint ranges between 0 (for a HRT constraint with no critical
consequences) to 1 (for a constraint with highly critical consequences).

8.1.5 Implementation

SCAPS was developed using Borland Delphi 2 , which is a well-known IDE (Integrated Development
Environment) for RAD (Rapid Application Development). Delphi is an Object-Oriented (OO) graphical
toolset for developing Windows applications in Pascal programming language. Delphi was selected as it
enables rapid development of prototype applications without spending extensive time on programming
details.

We developed a Delphi application for SCAPS. The application asks the user for the node on which it is to
run, e.g., SEV_CA1, SEV_ON, and TC_YOW1. Afterwards, the business logic of the application changes
accordingly. For example, if SEV_CA1 is chosen, the application switches to the national server node,

1 As defined by UML SPT profile [43], criticality determines the extent to which the consequences of missing
a hard deadline are unacceptable.
2 www.borland.com/delphi

Carleton University TR SCE-06-09 April 2006

75

waiting for connections from provincial nodes. When different copies of the application on different nodes
have been deployed and all nodes connections are ready, the system then starts functioning. A screenshot of
the main screen of SCAPS is shown in Figure 64, where the application is running as a SEV_CA1 node and
has just accepted a connection from the TC_YOW1 node.

Figure 64-A screenshot of the main screen of SCAPS.

We had to account for the limitation of our research center’s hardware/software platforms when
implementing the system in such a way to preserve the realism of our case study. The parts of the system for
which we had to incorporate stubs to emulate behavior were: (1) dedicated power distribution hardware
such as load and connectivity meters and sensors, which are parts of the TC actors (refer to the SCAPS use-
case diagram in Figure 54), and (2) complex functionalities of the power application software, such as the
analyzeOverload function in the ASA class to decide whether a load overload situation has occurred, given an
instance of the LoadPolicy class (refer to the SCAPS class diagram in Figure 56).

As to the design of stubs for the dedicated power distribution hardware, there was no need to try to emulate
similar data to what is done in real systems, because stress testing a SUT is based on triggering specific
DCCFPs in specific time instances. To enforce SCAPS to execute specific DCCFPs, we found it easier, in
terms of implementation and controllability, to embed a test driver component inside SCAPS than
manipulating data values so that specific edges of decision nodes are taken. The test driver was responsible
for guiding the control flow in each conditional statement to follow the edges specified by a test case. In
terms of returned values by stubs for the dedicated power distribution hardware, for example function
query() of class TC, they only return a random large data object.

The implementation of stubs for complex functionalities of the power application software was similar to
that of the dedicated power distribution hardware. The results generated by such functions were not really
needed in our context to execute test cases. However, we had to make sure the durations of such functions
were as close as possible to real world situations. We made realistic assumptions in such cases using the
power systems literature [9, 12, 19, 48, 51], e.g., we assumed that function analyzeOverload of class ASA takes
100 ms to run (refer to the SDs OM_ON in Figure 57). As we had embedded a test driver component inside
SCAPS, we could easily use it to make the control flow take specific paths inside each stubbed function.

8.1.6 Hardware and Network Specifications

The SEV_CA1 server application was deployed on a PC with Windows XP, Pentium 4 2.80 GHz CPU, with 2
GB of RAM and a 3COM Gigabit LOM network card. The Quebec server SEV_QC and its regional tele-control
units were deployed on a PC with Windows 2000, 2 GHz CPU, 1 GB of RAM, and a 3COM Fast Ethernet
Controller network card. The Ontario server SEV_ON and its regional tele-control units were executed as
different applications on a Dell PowerEdge 2600 server with Windows 2000, two Pentium 4 2.8GHz CPUs,
and an Intel PRO/1000 XT network card. The LAN was a 100 Mbps network.

Carleton University TR SCE-06-09 April 2006

76

8.2 Stress Test Architecture

An overview of the SCAPS stress test architecture is shown in Figure 65. The sequence of high-level steps to
be performed by a tester to run a complete stress test procedure is shown. The steps are briefly explained
below.

SCAPS
main

Tester

(4) Stress test cases:
-specific inputs/
conditions

(6) Test results:
 -Message start/end times
 Test verdicts:
 -passed/failed RT constraints

SCAPS
UML Design Model

Test Driver

(5) Running stress
test cases

Our
methodology

(1) Test objectives

(2) UML model

(3) Stress test requirements:
-CSDFPs (for periodic tests)
-DCCFPs (for instant tests)
-DCCFP start times
(for instant tests)

SCAPS

(6)

Figure 65-Overview of SCAPS Stress Test Architecture.

1. The tester feeds the test objectives to the methodology. For example, we considered three test objectives
in our case study.

2. The methodology uses the SCAPS UML model as input.

3. The methodology uses the SCAPS UML model to generate test requirements for the given test objectives
and returns the test requirements to the tester. Note that this step is completely automated.

4. The tester devises appropriate test case for the test requirements. Note that this step is currently done
manually by the tester. The tester feeds the test cases into a test driver which is responsible for running
the test cases.

5. The test driver runs the generated test cases by feeding them into the SUT. Note that we have made the
test driver a component of the SCAPS system in our current implementation. Embedding the test driver
inside SCAPS helped us simplify the actual test environment and test executions. It also enabled us to
reduce the probe effects (due to monitoring) as much as possible. The probe effects resulting from the
test driver were negligible since the test driver only feeds specific test cases and monitors the system.
Feeding test cases consisted in setting the attributes of an instance of a test class (in the test driver) to
specific values and starting the system. The resulting probe effect in this case was then the time to set
specific variables to specific values, which is in the range of several milliseconds, which is negligible
when compared to the SCAPS message durations (several hundreds of milliseconds, as it can be seen in
the SCAPS SDs in Figure 57-Figure 62). Monitoring SCAPS consisted in exporting the time duration of
statements into a log file, which again had very negligible probe effects when compared to executing the
statements of SCAPS’ main functionalities. Similar to the case when feeding test cases, the statements
responsible for monitoring SCAPS have short execution times. We furthermore designed SCAPS to
support a high level of controllability1. This included features such as flexibility in scheduling DCCFPs
(via a scheduler in the test driver).

6. Test results are gathered from the SUT. They include: start/end times of distributed messages and test
verdicts on real-time constraints, which indicate whether each real-time constraint has been adhered to
in a particular run. Test results are both logged in files and also displayed live in a text box to the tester.
A high level of observability2 has been designed in the output interface of SCAPS to better assess the
behavior of the system. For example, in order to make it more convenient for the tester to notice real-

1 Controllability is an important property of a control system and plays a crucial role in many control
problems, such as stabilization of unstable systems by feedback, or optimal control [60].
2 Observability is a measure of how well the internal state of a system can be inferred by knowledge of its
external outputs [61].

Carleton University TR SCE-06-09 April 2006

77

time faults due to network-aware stress testing, we have incorporated a built-in functionality in the
SCAPS main module to monitor the time duration of each message and SD, and report any real-time
constraint violation.

8.3 Building the Stress Test Model for SCAPS

Using the given UML design model in Section 8.1.4, we first build the test model required by our test
technique.

8.3.1 Network Interconnectivity Tree

The Network Interconnectivity Graph (NIG) of SCAPS can be derived from the Network Deployment
Diagram (NDD) in Figure 55. The NIG is shown in Figure 66.

Quebec

Canada

Toronto Quebec City

TC_YYZ1

Ottawa

Ontario

TC_YYZ2TC_YOW1 TC_YOW3TC_YOW2

SEV_ON SEV_QC

TC_YMX1 TC_YMX2

Montreal

TC_YQB1 TC_YQB2

SEV_CA1 SEV_CA2

Figure 66- SCAPS Network Interconnectivity Graph (NIG).

8.3.2 Control Flow Analysis of SDs

Recall from Section 5.1 the concept of CCFG (Concurrent Control Flow Graph) as a CFM (Control Flow
Model) for SDs. We apply the technique on the SDs of Section 8.1.4.4. CCFGs shown in Figure 67 to Figure 72
correspond to SDs in Figure 57 to Figure 62. CCFGs have been labeled by following the convention:
CCFG(SD_name).

Since SD OM_STARTUP does not have any distributed message and has only one CCFP, it will not be
relevant to our stress testing technique. Hence, there is no need to derive its control flow information.

CCFG(OM_ON)

CCFG(queryONData)

:ASA.loadON=queryONData(“load”)

query(dataType)

YOW1

query(dataType) query(dataType)

YOW3

query(dataType)query(dataType)

YOW2 YYZ1 YYZ2

A2 A3 A4 A5 A6

A7 A8 A9 A10 A11

analyzeOverload(:ASA.loadON)

A13

queryONData(“load”)

A1

A12

Figure 67-CCFG(OM_ON).

Carleton University TR SCE-06-09 April 2006

78

CCFG(OM_QC)

CCFG(queryQCData)

:ASA.loadQCFD=queryQCFDData(“load”)

query(dataType)

YMX1

query(dataType) query(dataType)query(dataType)

YMX2 YQB1 YQB2

B2 B3 B4 B5

B6 B7 B8 B9

B10

B11

analyzeOverload(:ASA.loadQCFD)

queryQCData(“load”)

A1

Figure 68-CCFG(OM_QC).

CCFG(OC)

[overloadIn
(:ASA:loadON)]

setNewLoadPolicy(newLoadON) setNewLoadPolicy(newLoadQC)

[overloadIn
(:ASA:loadQC)]

[else] [else]

C1
C2

C3 C4

newLoadON=balanceLoadON
(:ASA.loadON, :ASA.loadQC)

newLoadQC=balanceLoadQC
(:ASA.loadON, :ASA.loadQC)

keepOldLoadPolicy()keepOldLoadPolicy()
C5 C6

Figure 69-CCFG(OC).

CCFG(DSPS_ON)

CCFG(queryONData)

:ASA.connectivityON=queryONData(“connectivity”)

query(dataType)

YOW1

query(dataType) query(dataType)

YOW3

query(dataType)query(dataType)

YOW2 YYZ1 YYZ2

D2 D3 D4 D5 D6

D7 D8 D9 D10 D11

D13

queryONData(“connectivity”)

D1

D12

detectSeparatedPS(:ASA.connectivityON)

Figure 70-CCFG(DSPS_ON).

Carleton University TR SCE-06-09 April 2006

79

CCFG(DSPS_QC)

CCFG(queryQCData)

:ASA.connectivityQC=queryQCData(“connectivity”)

query(dataType)

YMX1

query(dataType) query(dataType)

YQB1

query(dataType)

YMX2 YQB2

E2 E3 E4 E5

E6 E7 E8 E9

E10

E11

queryQCData(“connectivity”)

E1

detectSeparatedPS(:ASA.connectivityQC)

Figure 71-CCFG(DSPS_QC).

CCFG(PRNF)

[anySeparationIn
(:ASA:connectivityON)]

setNewGridStructure(newGSON) setNewGridStructure(newGSQC)

[anySeparationIn
(:ASA:connectivityQC)]

[else] [else]

F1 F2

F3 F4

newGSON=buildNewGridStructureON
(:ASA.connectivityON, :ASA.connectivityQC)

newGSQC=buildNewGridStructureQC
(:ASA.connectivityON, :ASA.connectivityQC)

keepOldGridStructure()keepOldGridStructure()
F5 F6

Figure 72-CCFG(PRNF).

8.3.3 Derivation of Distributed Concurrent Control Flow Paths

Using the technique presented in [21], the CCFPs and DCCFPs are derived from the CCFGs shown in Figure
67 to Figure 72, and are shown in Figure 73Figure 74. To ease future references, we assign SDi and ρi,j indices
to SDs and the DCCFPs of each SD, respectively. Let us assign ρ0,0 to the only CCFP of SD OM_STARTUP,
which does not contain any distributed message.

Carleton University TR SCE-06-09 April 2006

80

{
{{{{

{{{{
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⇒

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⇒

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⇒

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⇒

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⇒

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⇒

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

4,63,62,61,6

6

1,5

5

1,4

4

4,33,32,31,3

3

1,2

2

1,1

1

6

5

4

5

6

3

4

3

6

5

42

31

10

95

84

73

62

11110

95

84

73

62

1

12

116

105

94

83

72

11312

116

105

94

83

72

1

6

5

4

5

6

3

4

3

6

5

42

31

10

95

84

73

62

11110

95

84

73

62

1

12

116

105

94

83

72

11312

116

105

94

83

72

1

,,,)(,)(

)_()_(

)_()_(

,,,)(,)(

)_()_(

)_()_(

ρρρρ

ρ

ρ

ρρρρ

ρ

ρ

F
F

F
F

F
F

F
F

PRNFDCCFP
F
F

FF
FF

PRNFCCFP

E

EE
EE
EE
EE

EQCDSPSDCCFPEE

EE
EE
EE
EE

EQCDSPSCCFP

D

DD
DD
DD
DD
DD

DONDSPSDCCFPDD

DD
DD
DD
DD
DD

DONDSPSCCFP

C
C

C
C

C
C

C
C

OCDCCFP
C
C

CC
CC

OCCCFP

B

BB
BB
BB
BB

BQCOMDCCFPBB

BB
BB
BB
BB

BQCOMCCFP

A

AA
AA
AA
AA
AA

AONOMDCCFPAA

AA
AA
AA
AA
AA

AONOMCCFP

SD

SD

SD

SD

SD

SD

321

4434421

43421

44 344 21

43421

4434421

43421

4434421

43421

Figure 73-CCFP and DCCFP sets of SDs in SCAPS.

8.3.4 Derivation of Independent-SD Sets

Using the method in Section 5.2 and the SCAPS MIOD (Figure 63), we derive SCAPS Independent-SD Sets
(ISDSs). We need to first derive the Independent-SDs Graph (ISDG) corresponding to the MIOD. Using the
algorithm in Section 5.2, the ISDG shown in Figure 75 is derived from the MIOD of Figure 63. Note that we
do not include SD OM_STARTUP in this ISDG, since it does not have any distributed messages.

Carleton University TR SCE-06-09 April 2006

81

{
{{{{

{{{{
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⇒

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⇒

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⇒

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⇒

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⇒

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⇒

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

4,63,62,61,6

6

1,5

5

1,4

4

4,33,32,31,3

3

1,2

2

1,1

1

6

5

4

5

6

3

4

3

6

5

42

31

10

95

84

73

62

11110

95

84

73

62

1

12

116

105

94

83

72

11312

116

105

94

83

72

1

6

5

4

5

6

3

4

3

6

5

42

31

10

95

84

73

62

11110

95

84

73

62

1

12

116

105

94

83

72

11312

116

105

94

83

72

1

,,,)(,)(

)_()_(

)_()_(

,,,)(,)(

)_()_(

)_()_(

ρρρρ

ρ

ρ

ρρρρ

ρ

ρ

F
F

F
F

F
F

F
F

PRNFDCCFP
F
F

FF
FF

PRNFCCFP

E

EE
EE
EE
EE

EQCDSPSDCCFPEE

EE
EE
EE
EE

EQCDSPSCCFP

D

DD
DD
DD
DD
DD

DONDSPSDCCFPDD

DD
DD
DD
DD
DD

DONDSPSCCFP

C
C

C
C

C
C

C
C

OCDCCFP
C
C

CC
CC

OCCCFP

B

BB
BB
BB
BB

BQCOMDCCFPBB

BB
BB
BB
BB

BQCOMCCFP

A

AA
AA
AA
AA
AA

AONOMDCCFPAA

AA
AA
AA
AA
AA

AONOMCCFP

SD

SD

SD

SD

SD

SD

321

4434421

43421

44 344 21

43421

4434421

43421

4434421

43421

Figure 74-CCFP and DCCFP sets of SDs in SCAPS.

As discussed in Section 5.2, this needs finding maximal-complete subgraph in a graph. By finding the
maximal-complete subgraph of the ISDG in Figure 75, the Independent SD Sets of SCAPS can be derived.
SCAPS has seven ISDSs:

}PRNF,OC{ISDS}OC,QC_DSPS,ON_DSPS{ISDS
}PRNF,QC_OM,ON_OM{ISDS}QC_DSPS,ON_DSPS,QC_OM,ON_OM{ISDS

==
==

43

21

Carleton University TR SCE-06-09 April 2006

82

OM_ON

OM_QC

DSPS_ON

DSPS_QC

PRNF

OC

(a)

OM_ON

OM_QC

DSPS_ON

DSPS_QC

PRNF

OC

 (b)

OM_ON

OM_QC

DSPS_ON

DSPS_QC

PRNF

OC

 (c)

OM_ON

OM_QC

DSPS_ON

DSPS_QC

PRNF

OC

 (d)

Figure 75-(a):Independent-SDs Graph (ISDG) corresponding to the MIOD of Figure 63. (b), (c) and (d):
Three of the maximal-complete subgraphs of the ISDG (shown with dashed edges), yielding three ISDSs.

8.3.5 Data Size of Messages

Note that, for brevity, we do not discuss the data structure of the entity data classes in SCAPS (Figure 56).
But according to the literature on SCADA-based power systems [9, 12, 19, 48, 51], data items such as load
status/policy and grid status/structure are usually data-intensive and can be implemented using large data
structures such as arrays. As the exact (or statistical average) sizes of this data classes is needed by our stress
test technique, we assume the values given in Table 24 as the mean data sizes of the entity data classes in
Figure 56. These values are realistic size estimates of real grid and load values according to the literature on
SCADA-based power systems [36]. For example, an instance of the load object of the power distribution grid
of a city includes the load values of the different hubs and components of the grid. This value can vary
depending on the size of the city as well as the complexity of the distribution grid. We assume the data size
to be in the order of several mega-bytes, which is reasonable assumption based on what is reported in the
literature.

Note that we assume the data sizes in Table 24 to be representative for instances of all TCs. However, as
different TCs are deployed in different cities/regions, the load or grid status data can vary to a large extent.
This can be easily accounted for by extending data sub-classes and calculating the corresponding data sizes.
For example, sub-classes like OttawaLoadStatus and TorontoLoadStatus (with different data fields sizes) can be
derived from the class LoadStatus in Figure 56.

Carleton University TR SCE-06-09 April 2006

83

Data Class Mean Data Size
LoadStatus 4 MB
LoadPolicy 2 MB
GridStatus 3 MB
GridStructure 1 MB

Table 24-Mean data sizes of the entity data classes of SCAPS.

8.3.6 Using GARUS to Derive Stress Test Requirements

In this section, we use GARUS to derive stress test requirements for the above test objective. The derivation
of GARUS input files for the test objective is described in Section 8.3.6.1. The GA execution and the
repeatability of its results are discussed in Section 8.3.6.2. The stress test requirements generated by GARUS
are presented in Section 8.3.6.3.

8.3.6.1 Input File

Recall from Section 7.1.3 that an input file passed to GARUS contains the test model of a SUT. We
furthermore assumed that the test model in an input file has already been filtered according to the test
parameters of a test objective (e.g. stress location, stress direction). ‘Filtered’ in a sense that, for example,
given a set of test parameters, only those SDs messages are included in a TM, which comply with the criteria
specified in the test parameters. For example, SD messages going through a specified network are inculded.
We use the SCAPS test model (Section 8.3) to build an input file (Figure 76) corresponding to the above test
objective. This input file is based on the format presented in Section 7.1.3.

Carleton University TR SCE-06-09 April 2006

84

--ISDSs
4
ISDS1 4 OM_ON OM_QC DSPS_ON DSPS_QC
ISDS2 3 OM_ON OM_QC PRNF
ISDS3 3 DSPS_ON DSPS_QC OC
ISDS4 2 PRNF OC
--SDs
6
OM_ON 1 1 p11
OM_QC 1 1 p21
OC 1 4 p31 p32 p33 p34
DSPS_ON 1 1 p41
DSPS_QC 1 1 p51
PRNF 1 4 p61 p62 p63 p64
--SD_Arrival_Patterns
OM_ON periodic 24 1
OM_QC periodic 21 1
OC no_arrival_pattern
DSPS_ON periodic 17 2
DSPS_QC periodic 14 2
PRNF no_arrival_pattern
--DCCFPs
p11 7 (5 2.8) (6 2.8) (7 2.8) (8 2.8) (9 2.8) (10 2.8) (11 2.8)
p21 6 (3 2.66) (4 2.66) (5 2.66) (6 2.66) (7 2.66) (8 2.66)
p31 8 (2 0.33) (3 0.61) (4 0.61) (5 0.61) (6 0.61) (7 0.61) (8 0.33) (9 0.33)
p32 7 (3 0.28) (4 0.28) (5 0.28) (6 0.28) (7 0.28) (8 0.28) (9 0.28)
p33 6 (2 0.33) (3 0.33) (4 0.33) (5 0.33) (6 0.33) (7 0.33)
p34 0
p41 5 (6 3) (7 3) (8 3) (9 3) (10 3)
p51 4 (5 3) (6 3) (7 3) (8 3)
p61 7 (3 0.14) (4 0.3) (5 0.3) (6 0.3) (7 0.3) (8 0.3) (9 0.3)
p62 7 (3 0.14) (4 0.14) (5 0.14) (6 0.14) (7 0.14) (8 0.14) (9 0.14)
p63 6 (4 0.16) (5 0.16) (6 0.16) (7 0.16) (8 0.16) (9 0.16)
p64 0
--GASearchTimeRange
200

Figure 76- Input File containing SCAPS Test Model for a GASTT Test Objective.

The first block (--ISDSs) of the input file lists SCAPS’ four ISDSs. SD data descriptions (--SDs) then follow.
We explained earlier that only one copy of each SD will be triggered in SCAPS at a single time instance (as
denoted the parameters set to ‘1’ after SDs’ names in --SDs block). Numbers and names of DCCFPs for each
SD (e.g. DCCFP p11 for OM_ON) are taken from Section 8.3.3. Arrival pattern data are extracted from SDs in
Section 8.1.4. Note that, for brevity, the time unit is assumed to be 100 ms. For example, the first DTUPP of
DCCFP p11, states that it entails 2.8 units of traffic in time instant 500 ms (5x100ms). Finally, the GA time
search range has been set to 200 time units (20,000 ms). This value was selected using the heuristics in
Section 6.5.4.

Our experimentation of different values for the GA time search range also confirmed that 200 time units is a
suitable value. To explain how we come to this conclusion, a timing diagram showing the relationship
between ATSs of SCAPS SDs and their possible execution durations, shown as data series d(sd_name), in 50
time units is shown in Figure 77.

Carleton University TR SCE-06-09 April 2006

85

0 10 20 30 40 50

Time unit

d(PRNF)

PRNF

d(DSPS_QC)

DSPS_QC

d(DSPS_ON)

DSPS_ON

d(OC)

OC

d(OM_QC)

OM_QC

d(OM_ON)

OM_ON

Figure 77-Relationship between ATSs of SCAPS SDs and their execution durations, d(sd_name), to each

other in 50 time units.

For example, as the period and deviation values of the periodic AP for SD OM_ON are 24 and 1 time units,
its ATS has been depicted as ATIs: [23, 25], [47, 49] and etc. The execution duration of a SD is the longest
interval made of the difference between the minimum and maximum timing values of a DCCFP of the SD.
For example, referring to the input file in Figure 76, the minimum and maximum timing values in the
DCCFP p11 of SD OM_ON are 5 and 11 time units. Therefore, considering an ATI such as [23, 25] in which an
execution of SD OM_ON can be started, the distributed messages of such an execution can take place in
interval of [23+5=28, 25+11=36], as depicted in Figure 77. The rationale of analyzing the ATSs and execution
durations of SDs is to find a suitable GA time search range. Since SDs OC and PRNF have no arrival patterns,
they can be triggered in any time instance.

As we can easily see in Figure 77, there will not be any chance for our GA algorithm (GASTT) to find a time
instance when the execution durations of all six SDs overlap, and thus generating a stress test schedule to
entail maximum traffic on the network. This is because the intersection of all execution durations in Figure
77 is simply null. This is why 50 time units is not a suitable GA time search range. We now discuss how the
overlapping between ATSs and SD execution durations change by increasing the search range from 50 to,
say, 200 time units (Figure 78).

When the search range is increased to 200 time units, the situation changes and as it can be calculated (and
seen in Figure 78, the six execution durations will overlap in time instances: 106-107, 128-130, and 173-176.
Therefore, there will be chances of overlapped executions of SDs in the random schedules generated during
GASTT’s operation. This will, in turn, enable GASTT to generate GA individuals which have higher fitness
values (entailed traffic values). Increasing the search range to values more than 200 will not increase
GASTT’s chances in generating better individuals (better stress test requirements), since as long as there is
overlapping time among the six execution durations, there are chances to find such test requirements.
However, an increase in the search range will deteriorate our GA’s performance, since it will take longer
time for the GA to converge to a maximum plateau. This is because the selection of random start times for
DCCFPs will be sparser (compared to when the range is 200) and GA has to iterate through more
generations to settle on a stable maximum plateau (Section 6.5.4). Refer to Sections 7.2.9 for the impacts of
variations in GA maximum search time on our GA’s performance.

Carleton University TR SCE-06-09 April 2006

86

0 20 40 60 80 100 120 140 160 180 200

Time unit

d(PRNF)

PRNF

d(DSPS_QC)

DSPS_QC

d(DSPS_ON)

DSPS_ON

d(OC)

OC

d(OM_QC)

OM_QC

d(OM_ON)

OM_ON

Figure 78--Relationship between ATSs of SCAPS SDs and their execution durations, d(sd_name), to each

other in 200 time units.

8.3.6.2 GA Execution and the Repeatability of Results

Similar to discussions in Section 7.2, since GARUS is based on GAs, the stability and repeatability of results
across multiple runs need to be investigated as GAs are by definition a heuristic. Therefore, GARUS was
executed 100 times with the above input test file. Histograms of maximum ISTOF values, maximum stress
time values, and maximum plateau generation number are depicted in Figure 79.

6

6.5

7

7.5

8

8.5

9

(a)-Maximum ISTOF values

0

50

100

150

200

(b)-Maximum stress time values

30

40

50

60

70

80

(c)-Generation number when a

maximum plateau is first
reached

Figure 79-Histograms of 100 GARUS Outputs for a SCAPS Test Objective.

Each execution had the duration of 326 ms on average. Therefore, running GARUS for 100 times was not a
practical problem from a time standpoint. As we can see in Figure 79-(a), 100 runs of the test model
generated five different ISTOF values. The corresponding maximum stress time values are spanned in the
range of [21…198] time units (each time unit=100 ms). As the histogram in Figure 79-(c) shows, GARUS was
able to converge to a maximum plateau in 29 to 82 generations (48 on average) across the 100 runs.

groupA

groupB

Carleton University TR SCE-06-09 April 2006

87

We now discuss the practical implications of multiple runs of GARUS to get stable results. For the particular
case study in this chapter, as it can be easily seen in Figure 79-(a), 100 runs of GARUS has generated mainly
two groups of outputs: a group with maximum ISTOF values of between 8.25 and 9 units of traffic (groupA in
Figure 79-(a)), and the one with values between 6 and 6.5 (groupB in Figure 79-(a)). Obviously, the goal of
using GARUS is to find stress test requirements which have the highest possible ISTOF values. Thus, the
strategy is to run GARUS for multiple times and choose a test requirement with the highest ISTOF value
across all runs.

The practical implication of multiple runs to achieve a test requirement with the highest ISTOF value is to
predict the minimum number of times GARUS should be executed to yield an output with an ISTOF value in
groupA in Figure 79-(a). Such an analysis can be performed by using the probability distributions of the above
two groups of maximum ISTOF values in the histogram of Figure 79-(a). 54 and 46 (of 100) values in the
histogram belong to groupA and groupB, respectively. Thus, in a sample population of 100 GARUS outputs,
the probabilities that an output belongs to groupA or groupB are p(groupA)=0.54 and p(groupB)=0.46,
respectively.

The two outcomes of an output being in groupA or groupB are two mutually-exclusive events1. Thus, to predict
the minimum number of times GARUS should be executed to yield an output with an ISTOF value in groupA,
we can use the following probability formula for two independent events:

For two mutually-exclusive events A and B with probabilities pA and pB, the probability
that A occurs at least once in a series of n samples (runs) is:

p(event A occurs at least once in a series of n samples)=1- A
n

B pp 1−

Substituting groupA and groupB probabilities in the above formula will yield us:

p(a test requirement with an ISTOF value in groupA is yielded in a series of n runs of GARUS)=
).().()group(p)group(p n

A
n

B 54046011 11 −− −=−

The above probability function is drawn in Figure 80. The probability values (y-axis) are shown in linear
scale in Figure 80-(a). Figure 80-(b) depicts a zoom-out of the curve in Figure 80-(a) for n=0…10.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

Number of runs (n)

Pr
ob

ab
il

it
y

of
 a

t l
ea

st
 o

ne
 o

ut
pu

t i
n

gr
ou

p_
A

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10

Number of runs (n)

Pr
ob

ab
il

it
y

of
 a

t l
ea

st
 o

ne
 o

ut
pu

t i
n

gr
ou

p_
A

(b)

Figure 80- Probability of the event that at least one test requirement with an ISTOF value in groupA is
yielded in a series of n runs of GARUS for SCAPS.

As it can be easily seen in Figure 80, the probability values increases exponentially by increasing number of
runs (n) and converges to 1 very quickly in values above n=6. Therefore, it can be said that one can achieve a
good stress test requirement (with a value in groupA) by running GARUS with SCAPS test model for about 6

1 In probability theory, two events A and B are said to be mutually-exclusive if event A happens, then event
B cannot, or vice-versa.

Carleton University TR SCE-06-09 April 2006

88

times and selecting the best output (with highest ISTOF value). Similar probabilistic analysis can be done
when using GARUS to generate test requirements for other SUTs.

8.3.6.3 Stress Test Requirements

As discussed above, 100 runs of the test model by GARUS generated five different ISTOF values (Figure 79-
(a)). Five of the test requirements reported by GARUS for those five different ISTOF values are shown in
Figure 81.

SD DCCFP start time
---- ---- ----------
OM_ON none
OM_QC none
OC p34 148
DSPS_ON p41 155
DSPS_QC p51 156
PRNF none

(a)- TR1 (ISTOF=6)

SD DCCFP start time
---- ---- ----------
OM_ON none
OM_QC none
OC p32 149
DSPS_ON p41 151
DSPS_QC p51 152
PRNF none

(b)- TR2 (ISTOF=6.28)

SD DCCFP start time
---- ---- ----------
OM_ON p11 23
OM_QC p21 21
OC none
DSPS_ON p41 19
DSPS_QC p51 12
PRNF none

(c)- TR3 (ISTOF=8.46)

SD DCCFP start time
---- ---- ----------
OM_ON p11 119
OM_QC p21 188
OC none
DSPS_ON p41 185
DSPS_QC p51 183
PRNF none

(a)- TR4 (ISTOF=8.66)

SD DCCFP start time
---- ---- ----------
OM_ON p11 71
OM_QC p21 85
OC none
DSPS_ON p41 70
DSPS_QC p51 68
PRNF none

(b)- TR5 (ISTOF=8.8)

Figure 81-Five Different Test Requirements (TR) generated by GARUS for a SCAPS Test Objective.

As we can see, some of the test requirements (TR) generated by GARUS have different combinations of
DCCFPs (e.g. TR1, TR2 and TR3), while some have the same combinations of DCCFPs, but with different
schedules. For example, in TR3, TR4 and TR5, DCCFPs p11, p21, p41 and p51 have been selected with
different start times.

Since our stress test goal is to maximize the amount of traffic, we choose TR5, and stress test SCAPS with its
corresponding test case. The test requirement is to trigger DCCFPs p11, p21, p41 and p51 from SDs OM_ON,
OM_QC, DSPS_ON and DSPS_QC in time units 71, 85, 70 and 68 respectively.

8.4 Stress Test Results

In this section we compare the durations for SDs D and E presented in Figure 7 when running Operational
Profile Tests (OPT) and Stress Tests (ST). We considered OPTs to be a useful baseline of comparison as test
cases are derived from the operational profile of SCAPS and therefore represent a “typical” situation in
which the system can be exercised. This is a common testing practice to assess a system based on its expected
usage in the field [39]. To derive operational profile test cases, we took into account SCAPS business logic in
the context of SCADA-based power systems. For example, overload and power failure situations are
expected to be fairly rare in a power grid [53].

Recall that we also modeled a HRT constraint in the MIOD of SCAPS in Figure 7. It specifies the maximum
acceptable value for the durations of SDs D and E: they should be less than 1,300 ms (milliseconds). Figure 82
shows the observed values of this duration by running 500 Operational Profile Tests (OPT) and 500 Stress
Tests (ST). The x-axis shows the test type and the Y-axis the duration in milliseconds. The quantile regions
and the histograms of the two distributions are also depicted, and reported in Table 25.

Carleton University TR SCE-06-09 April 2006

89

Ti
m

e
(m

s)

1000

1100

1200

1300

OPT ST

Test Type

OPT ST

Figure 82. Duration of a hard RT constraint by running Operational Profile Tests (OPT) and Stress Tests

(ST).

Table 25. Quantiles of the distribution in Figure 82. Values are in milliseconds.

Level Min. 10% 25% Median 75% 90% Max.
OPT 953 1029 1059 1094 1125 1156 1241
ST 1211 1254 1263 1274 1285 1295 1327

Due to the indeterminism of distributed environments (different message transmission times due, to, among
many reasons, different delay times in network links and routers, and different load situations in nodes or
networks), the duration of distributed messages can be different across different executions, hence the
variance in the distributions of Figure 82. The 1,300 ms deadline (HRT constraint) is illustrated by a
horizontal bold line in Figure 82 and all OPT test executions satisfy it. In contrast, it is violated in almost
7.8% (39/500) of ST stress test cases. Furthermore, the differences in average and median value between OPT
and ST distributions are large too, illustrating the ability of ST test cases to stress the system.

9 CONCLUSIONS AND FUTURE WORKS
This report presents a model-driven, stress test methodology aimed at increasing chances of discovering
faults related to network traffic in distributed systems. The technique uses a UML 2.0 model of a system,
augmented with timing information, as an input model. Such input model was carefully defined so as to be
adequate for our objectives but also as practical as possible from the standpoint of modelers. Our input
model includes, in addition to the standard class and sequence diagrams, (1) a System Context diagram that
describes actors interacting with the system under test and their expected numbers at run-time, (2) a
Network Deployment Diagram (following the UML deployment diagram notation) that describes the
distributed architecture in terms of system nodes and networks, and (3) a Modified Interaction Overview
Diagram (following the UML 2.0 interaction overview diagram notation) that describes execution constraints
between sequence diagrams. Our stress testing methodology relies on a careful identification of the control
flow in UML 2.0 Sequence Diagrams and the network traffic they entail. This data is used to generate stress
test requirements composed of specific control flow paths (in Sequence Diagrams) along with time values
indicating when those paths have to be triggered so as to stress the network to the largest extent possible.

The current work is an extended version of the work in [23], where we considered distributed systems in
which external or internal events do not exhibit arrival patterns (e.g., periods). The technique in the current
work takes into account different types of arrival patterns for events that are common in DRTSs. Such
patterns impose constraints on the time instant when interactions between distributed objects can take place.

Carleton University TR SCE-06-09 April 2006

90

Tool support was developed based on a specifically tailored genetic algorithm (GA) to automatically
generate test requirements based on the above input model. GAs being heuristics, a careful analysis showed
that the tool was able to converge efficiently towards test requirements that significantly stressed the system
and do so relatively consistently across different executions (repeatability).

Using the specification of a real-world distributed system as a case study, we designed and implemented a
prototype distributed system and reported the results of applying our stress test methodology to it. We
discussed its effectiveness in detecting violation of a hard real-time constraint when compared to test cases
based on an operational profile of the system usage. Our first results are promising as they clearly show our
stress test technique is able to identify constraint violations whereas operational profile test cases are not.
This suggests that our stress test cases can help increase the probability of exhibiting network traffic-related
faults in distributed systems.

Some of our future works include: (1) Experimenting with the other variants of stress testing techniques; (2)
Generalizing the methodology to other distributed-type faults, such as distributed unavailability of networks
and nodes, and other resources such as CPU, memory and database.

ACKNOWLEDGEMENTS
This work was in part supported by Siemens Corporate Research, Princeton, NJ, and a Canada Research
Chair (CRC) grant. Lionel Briand and Yvan Labiche were further supported by NSERC operational grants.

REFERENCES

[1] J. F. Allen, "Maintaining Knowledge about Temporal Intervals," Communications of
the ACM, vol. 26, no. 11, pp. 832-843, 1983.

[2] M. J. Atallah, Handbook of Algorithms and Theory of Computation: CRC (Chemical
Rubber Company) Press, 1999.

[3] A. Avritzer and E. J. Weyuker, "The Automatic Generation of Load Test Suites and
the Assessment of the Resulting Software," IEEE Transactions on Software
Engineering, vol. 21, no. 9, pp. 705-716, 1995.

[4] T. Back, "Towards a Practice of Autonomous Systems," Proceeding of European
Conference on Artificial Life, pp. 263-271, 1992.

[5] R. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools: Addison-
Wesley, 1999.

[6] J. P. Bowen, K. Bogdanov, J. Clark, M. Harman, R. Hierons, and P. Krause,
"FORTEST: Formal Methods and Testing," Proc. of Int. Computer Software and
Applications Conf., pp. 91-101, 2002.

[7] L. C. Briand, Y. Labiche, and M. Shousha, "Using Genetic Algorithms for Early
Schedulability Analysis and Stress Testing in Real-Time Systems," Forthcoming in the
Journal of Genetic Programming and Evolvable Machines, Springer, 2006.

[8] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering: Using UML,
Patterns, and Java, 2nd Edition ed: Prentice Hall, 2003.

[9] J. Brunton, G. Digby, and A. Doherty, "Design and Operational Philosophy for a
Metro Power Network SCADA System," Proceeding of International Conference on
Power System Control and Management, pp. 176-180, 1996.

Carleton University TR SCE-06-09 April 2006

91

[10] R. J. A. Buhr, "Use Case Maps as Architectural Entities for Complex Systems," IEEE
Transactions on Software Engineering, vol. 24, no. 12, 1998.

[11] BWI Co., "ElipseSCADA," in http://www.bwi.com/proot/2775, 2004.

[12] E.-K. Chan and H. Ebenhoh, "The Implementation and Evolution of a SCADA
System for a Large Distribution Network," IEEE Transactions on Power Systems, vol.
7, no. 1, pp. 320-326, 1992.

[13] P. Chardaire, A. Kapsalis, J. W. Mann, V. J. Rayward-Smith, and G. D. Smith,
"Applications of Genetic Algorithms in Telecommunications," Proceeding of
Applications of Neural Networks to Telecommunications, pp. 290-299, 1995.

[14] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. GilChrist, F. Hayes, and P. Jeremaes,
Object-Oriented Development - The Fusion Method: Prentice Hall, 1994.

[15] Z. Constantinescu, P. Petrovic, A. Pedersen, D. Federici, and J. Campos, "QADPZ
(Quite Advanced Distributed Parallel Zystem)," in http://qadpz.sourceforge.net, 2003.

[16] A. Daneels and W. Salter, "What is SCADA?," Proceeding of International
Conference on Accelerator and Large Experimental Physics Control Systems, pp.
39-343, 1999.

[17] K. De Jong, "Learning with Genetic Algorithms: An Overview," Machine Learning,
vol. 3, no. 3, pp. 121-138, 1988.

[18] Y. Ebata, H. Hayashi, Y. Hasegawa, S. Komatsu, and K. Suzuki, "Development of
the Intranet-based SCADA (supervisory control anddata acquisition system) for
power system," IEEE Power Engineering Society Winter Meeting, pp. 1656-1661,
2000.

[19] Y. Ebata, H. Hayashi, Y. Hasegawa, S. Komatsu, and K. Suzuki, "Development of
the Intranet-based SCADA for Power System," Proceeding of IEEE Power
Engineering Society Winter Meeting, pp. 1656-1661, 2000.

[20] European Information Society Technologies, "Component Based Open Source
Architecture for Distributed Telecom Applications," in http://coach.objectweb.org,
2003.

[21] V. Garousi, L. Briand, and Y. Labiche, "Control Flow Analysis of UML 2.0 Sequence
Diagrams," Proceeding of European Conference on Model Driven Architecture-
Foundations and Applications, LNCS 3748, pp. 160-174, 2005.

[22] V. Garousi, L. Briand, and Y. Labiche, "Traffic-aware Stress Testing of Distributed
Real-Time Systems based on UML Models using Genetic Algorithms," Technical
Report SCE-06-09, Carleton University,
http://www.sce.carleton.ca/squall/pubs/tech_report/TR_SCE-06-09.pdf, 2006.

Carleton University TR SCE-06-09 April 2006

92

[23] V. Garousi, L. Briand, and Y. Labiche, "Traffic-aware Stress Testing of Distributed
Systems based on UML Models," Proceeding (to appear) of International
Conference on Software Engineering, 2006.

[24] H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications with UML:
Addison-Wesley, 2000.

[25] J. J. Grefenstette and H. G. Cobb, "Genetic Algorithms for Tracking Changing
Environments," Proceeding of International Conference on Genetic Algorithms, pp.
523-530, 1993.

[26] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms: Wiley-Interscience, 1998.

[27] R. Horst and P.M. Pardalos (eds.), Handbook of Global Optimization: Kluwer,
Dordrecht, 1995.

[28] B. F. Jones, H.-H. Sthamer, and D. E. Eyres, "Automatic Structural Testing using
Genetic Algorithms," Software Engineering Journal, vol. 11, no. 5, pp. 299–306, 1996.

[29] H. S. Kim, J. M. Lee, T. Park, J. Y. Lee, and W. H. Kwon, "Design of Networks for
Distributed Digital Control Systems in Nuclear Power Plants," Proceedings of
International Topical Meeting on Nuclear Plant Instrumentation, Control, and
Human-Machine Interface Technologies, pp. 629-633, 2000.

[30] R. Kuhn, "Sources of Failure in the Public Switched Telephone Network," IEEE
Computer, vol. 30, no. 4, pp. 31-36, 1997.

[31] J. Lahtinen, P. M. Silander, and H. Tirri, "Empirical Comparison of Stochastic
Algorithms," Proceedings of Nordic Workshop on Genetic Algorithms and their
Applications, pp. 45-60, 1996.

[32] S. J. Louis and G. J. E. Rawlins, "Predicting Convergence Time for Genetic
Algorithms," Technical Report 370, Computer Science Department, Indiana
University 1993.

[33] S. Mackay, E. Wright, and J. Park, Practical Data Communications for Instrumentation
and Control: Newnes, June, 2003.

[34] S. W. Mahfoud and D. E. Goldberg, "Parallel Recombinative Simulated Annealing:
A Genetic Algorithm," Journal on Parallel Computing, vol. 21, no. 1, pp. 1-28, 1995.

[35] S. Y. Mahfouz, "Design Optimization of Structural Steel Work," Ph.D. Thesis,
Department of Civil and Environmental Engineering, University of Bradford, 1999.

[36] A. Makinen, M. Parkki, P. Jarventausta, M. Kortesluoma, P. Verho, S. Vehvilainen,
R. Seesvuori, and A. Rinta-Opas, "Power Quality Monitoring as Integrated with
Distribution Automation," Proceedings of International Conference and Exhibition
on Electricity Distribution, pp. 172-172, 2001.

Carleton University TR SCE-06-09 April 2006

93

[37] M. Mavrin, V. Koroman, and B. Borovic, "SCADA in Hydropower Plants,"
Proceedings of the IEEE International Symposium on Computer Aided Control
System Design, Hawai'i, USA, August 1999.

[38] H. Mühlenbein, "Parallel Genetic Algorithms, Population Genetics and
Combinatorial Optimization," Proceedings of International Conference on Genetic
algorithms, pp. 416-421, 1989.

[39] J. D. Musa, "The Operational Profile in Software Reliability Engineering: An
Overview," Proc. Int. Symp. on Software Reliability Engineering, 1992.

[40] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel, "Requirements by Contracts
allow Automated System Testing," Proceedings of International Symposium on
Software Reliability Engineering, pp. 85-96, 2003.

[41] Object Management Group (OMG), "OCL 2.0 Specification," 2005.

[42] Object Management Group (OMG), "UML 2.0 Superstructure Specification," 2005.

[43] Object Management Group (OMG), "UML Profile for Schedulability, Performance,
and Time (v1.0)," 2003.

[44] R. P. Pargas, M. J. Harrold, and R. R. Peck, "Test-data Generation using Genetic
Algorithms," Journal of Software Testing, Verification and Reliability, vol. 9, no. 4, pp.
263–282, 1999.

[45] M. A. Pawlowsky, "Crossover Operators," Practical Handbook of Genetic
Algorithms Applications, L. Chambers Ed., pp. 101-114, 1995.

[46] T. Pender, UML Bible: Wiley, Sept. 2003.

[47] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das, "A Study of Control
Parameters Affecting Online Performance of Genetic Algorithms for Function
Optimization," Proceedings of International Conference on Genetic algorithms, pp.
51-60, 1989.

[48] T. Seki, T. Tsuchiya, T. Tanaka, H. Watanabe, and T. Seki, "Network Integrated
Supervisory Control for Power Systems based on Distributed Objects," Proceedings
of International Symposium on Applied Computing, pp. 620-626, 2000.

[49] J. E. Smith and T. C. Fogarty, "Adaptively Parameterized Evolutionary Systems: Self
Adaptive Recombination and Mutation in a Genetic Algorithm," Proceeding of
International Conference on Parallel Problem Solving From Nature, pp. 441-450, 1996.

[50] B. Stojkovic and I. Vujosevic, "A Compact SCADA System for a Smaller Size Electric
Power System Control-a Fast, Object-Oriented and Cost-Effective Approach,"
Proceedings of IEEE Power Engineering Society Winter Meeting, pp. 695-700, 2002.

[51] B. Stojkovic and I. Vujosevic, "A compact SCADA system for a smaller size electric
power system control-a fast, object-oriented and cost-effective approach," IEEE
Power Engineering Society Winter Meeting, pp. 695-700, Jan. 2002.

Carleton University TR SCE-06-09 April 2006

94

[52] D. Thierens, "On the Scalability of Simple Genetic Algorithms," Report 1999-48.
Information and Computing Sciences, Utrecht University, The Netherlands, 1999.

[53] N. Toshida, M. Uesugi, Y. Nakata, M. Nomoto, and T. Uchida, "Open Distributed
EMS/SCADA System," Hitachi Review, vol. 47, no. 5, pp. 208-213, 1998.

[54] N. Tracey, J. Clark, and K. Mander, "Automated Program Flaw finding using
Simulated Annealing," ACM SIGSOFT Software Engineering Notes, vol. 23, no. 2, pp.
73-81, 1998.

[55] N. Tracey, J. Clark, and K. Mander, "The way Forward for Unifying Dynamic Test-
case Ceneration: The Optimization-based Approach," Proc. of Int. Workshop on
Dependable Computing and its Applications, pp. 169-180, 1998.

[56] J. J. P. Tsai, Y. Bi, S. J. H. Yang, and R. A. W. Smith, Distributed Real-Time Systems:
Monitoring, Visualization, Debugging, and Analysis: John Wiley & Sons, 1996.

[57] M. Wall, "GAlib: A C++ Library of Genetic Algorithm Components,"
Documentation version 2.4, Massachusetts Institute of Technology 1996.

[58] J. Wegener, A. Baresel, and H. Sthamer, "Evolutionary Test Environment for
Automatic Structural Testing," Journal of Information and Software Technology, Special
issue on Software Engineering using Metaheuristic Innovative Algorithms, vol. 43, no. 14,
pp. 841-854, 2001.

[59] E. Weyuker and F. I. Vokolos, "Experience with Performance Testing of Software
Systems: Issues, an Approach and Case Study," IEEE Transactions on Software
Engineering, vol. 26, no. 12, pp. 1147-1156, 2000.

[60] Wikipedia, "Definition of Controllability," in
http://en.wikipedia.org/wiki/Controllability, 2005.

[61] Wikipedia, "Definition of Observability," in http://en.wikipedia.org/wiki/Observability,
Last accessed: Feb. 2006.

[62] C. S. D. Yang, "Identifying Potentially Load Sensitive Code Regions for Stress
Testing," Proceedings of the Mid-Atlantic Student Workshop on Programming
Languages and Systems, 1996.

[63] J. Zhang and S. C. Cheung, "Automated Test Case Generation for the Stress Testing
of Multimedia Systems," Journal on Software Practice and Experience, vol. 32, no. 15,
pp. 1411-1435, 2002.

Carleton University TR SCE-06-09 April 2006

95

Appendix A- Proof of the Formula to Calculate the Unbounded Range Starting Point (URSP) of a
Bounded Arrival Pattern
The following is the proof of formula (Equation 6) to calculate the Unbounded Range Starting Point (URSP)
of a bounded arrival pattern (AP), given the minimum and maximum inter-arrival times (minIAT and
maxIAT) of the AP The formula is used in Section 6.5.4 for determining a suitable maximum search time for
our GA.
Recall from Section 5.5.4 the concept of Accepted Time Intervals (ATI) for a bounded arrival pattern. For
example, the gray eclipses in the timing diagram in Figure 11 depict the ATIs of the arrival pattern
(‘bounded’, (4, ms), (5, ms)), i.e. minIAT=4ms, maxIAT=5ms. To devise a formula to find the calculate the URSP
of a bounded AP, we formalize bounded APs time properties as demonstrated in Figure 83.

i+11 2 3 i-1 i

time

...

[minIAT,
maxIAT]

[2minIAT,
2maxIAT]

[3minIAT,
3maxIAT]

...

[(i-1).minIAT,
 (i-1).maxIAT]

d1 d2 d3

[i.minIAT,
 i.maxIAT]

[(i+1).minIAT,
 (i+1).maxIAT]

didi-1

Figure 83-Formalization of bounded APs time properties.

ATIs are indexed and are referred as ATIi. Recall from Section 5.5.4 (analysis of arrival patterns) that each
ATI’s start and end times are multiples of the AP’s minIAT and maxIAT, respectively. For example, the
consecutive ATIs of the arrival pattern (‘bounded’, (4, ms), (5, ms)) are: [4 ms, 5 ms], [8 ms, 10 ms], [12 ms, 15
ms], [16 ms, 20 ms], and so on. In the parametric form, consecutive ATIs are shown in Figure 83 as: [minIAT,
maxIAT], [2minIAT, 2maxIAT], [3minIAT, 3maxIAT], [k.minIAT, k.maxIAT], and so on. di denotes the closest
distance between two neighboring ATIs ATIi and ATIi+1. It is obvious that:

i.maxIATminIAT.1)(idi −+=

The URSP of a bounded AP appears when two consecutive ATIs overlap1, i.e., the start time of the next ATI
is smaller than or equal to the end time of the current ATI. This, in turn, entails than dk ≤0 in such a case. k
here denotes the index of the ATI whose start time is the URSP of the bounded AP. Such a situation is
visualized in Figure 84.

k

time

......

[k.minIAT,
 k.maxIAT]

[(k+1).minIAT,
 (k+1).maxIAT]

dk<0

k+1

URSP

Figure 84-Two overlapping ATIs.

Therefore, in order to find the value of URSP, we should find the k-th ATI’s start time such that dk ≤0. To
prove that for every bounded AP, there exists a URSP, we should prove that there exists a dk ≤0. This can be
proved if we show that the di values of a bounded AP are descending, i.e., di> di+1. Since supposing that di will
start from a positive value and it is descending, it will at some point be equal to zero or less than zero.

Theorem. The di values of a bounded AP are descending, i.e., di> di+1.
Proof. We follow a proof-by-contradiction approach. Assume to the contrary that di≤di+1. Then:

1 Two ATIs are said to be overlapped if they have at least one common ATP.

Carleton University TR SCE-06-09 April 2006

96

minIATmaxIAT
1).maxIAT(i1)minIAT1(ii.maxIAT1)minIAT(i

dd 1ii

≤
+−++≤−+

≤ +

We can see that, after takeing the proof-by-contradiction approach, we have got a conclusion which
contradics the assumption of minIAT<maxIAT for bounded APs (Section 5.5.4). This means the proof of the
main theorem, i.e., the di values of a bounded AP are descending, i.e., di> di+1.

Therefore, in order to find the value of URSP, we should find k-th ATI’s start time such that dk ≤0 (the
smallest k). If we find the index, k, of the ATI, URSP can be found easily by URSP=k.minIAT. The value of k
can be found as the following:

integer.)an is (since

0
0

k
minIATmaxIAT

minIATk

minIATmaxIAT
minIATk

minIAT)minIATmaxIAT(k
k.maxIAT1)minIAT(k

dk

⎥⎥
⎤

⎢⎢
⎡

−
=⇒

−
≥⇒

≥−⇒
≤−+⇒

≤

Therefore, the URSP of a bounded AP can be calculated by:

.minIAT
minIATmaxIAT

minIATURSP ⎥⎥
⎤

⎢⎢
⎡

−
=

For example, the URSP of the bounded AP (‘bounded’, (4, ms), (5, ms)) is 16 ms which can be verified visually
in Figure 11.

ms.URSP 164
45

4
=⎥⎥

⎤
⎢⎢
⎡

−
=

