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Abstract
Although today’s largest Desktop Grid harvests idle cycles from only 0.46‰ of the Personal
Computers (PC) deployed world-wide, it is way ahead of the currently fastest supercomputer
with respect to raw computing performance. If it were possible to attract roughly 7% of
the world’s PC owners to donate their resources, the resulting virtual supercomputer would
right now punch through the exascale barrier expected to be broken by supercomputers not
until around the year 2020.
However, the full potential of Desktop Grid Computing has not yet been unleashed in

another respect: application support. Due to their centralized interaction model Desktop
Grids are currently limited to embarrassingly parallel applications. By complementing
the foundations of Desktop Grid Computing systems with Peer-to-Peer concepts and
methods, their scope can be extended to non-trivial applications from the field of High-
Performance Computing, like parallel search problems – including discrete optimization,
constraint satisfaction, and satisfiability solving –, Raytracing, or N-Body simulations. These
applications are all instances of a special class of parallel applications called Irregularly
Structured Problems (ISP). Their computation and interaction patterns are input-dependent,
unstructured, and evolving.
The incorporation of Peer-to-Peer methods has impact on many aspects of Desktop

Grid Computing systems: Their architecture has to be retrofitted to support decentralized
operation by multiple authorities in a secure and safe environment. The plethora of
algorithmic alternatives available beyond Client/Server interaction requires the system to be
designed for extensibility from the ground up. Solving task-parallel ISPs requires much more
sophisticated platform support in the form of a distributed task pool that is able to perform
dynamic decomposition, load balancing, and termination detection in a decentralized and
fault-tolerant way. To support this decentralized execution model the underlying network
substrate must provide efficient Peer-to-Peer unicast and multicast primitives and the ability
to rapidly report available resources and their vanishing, both without seriously impairing
scalability.

Cohesion, the next generation Desktop Grid Computing platform described in this
thesis, is an amalgamation of novel approaches designed to tackle these challenges. It’s
capacity to efficiently execute task-parallel ISPs in volatile and heterogeneous Desktop Grids
is demonstrated by means of Satciety, a state-of-the-art distributed SAT solver build on
top of Cohesion.
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Zusammenfassung
Die Zahl der weltweit in Betrieb befindlichen Einzelplatzrechner steigt jedes Jahr um etwa
12%. Nach aktuellen Prognosen [Shi08] wird erwartet, dass deren Zahl bis zum Jahr 2014
zwei Milliarden übersteigen wird. Andere Studien [Mut92] belegen, dass die Rechner einen
Großteil der Zeit unausgelastet, ja häufig sogar ungenutzt sind. Das sich daraus ergebende
Potenzial ist enorm. In der Folge hat sich mit dem Desktop Grid Computing eine Disziplin
des Grid Computing herausgebildet, in der die freien Ressourcen der unausgelasteten Rechner
genutzt werden, um rechenintensive Probleme zu lösen. Bis in welche Leistungsdimensionen
Desktop Grids vorstoßen können, zeigt das Folding@home [Sta10] Projekt, das mit einer
maximalen (realen) Leistung von über 7 petaFLOPS den aktuell schnellsten Supercomputer
TianHe-1A mit einer maximalen Leistung von rund 2.6 petaFLOPS an Leistung deutlich
übertrifft. Obwohl diese Zahlen nur begrenzt vergleichbar sind, da unterschiedliche An-
wendungen zur Ermittlung der Leistung herangezogen werden, kann man doch sagen, das
Desktop Grids eine ernst zu nehmende Alternative zu klassischem Supercomputing darstellen.
Ein ganz wesentlicher Aspekt sind dabei die deutlich geringeren Kosten, die seitens des
Ressourcennutzers entstehen. Während für TianHe-1A Anschaffungskosten von 88 Millionen
USD anfielen und jährlich Betriebskosten von deutlich über 10 Millionen USD anfallen,
schlägt der Betrieb des Folding@home Desktop Grids mit lediglich einigen Hunderttausend
USD zu Buche, die Anschaffungskosten sind mit einigen Zehntausend USD vernachlässigbar.
Dies erklärt sich vor allem damit, dass sich die Besitzer der Einzelplatzrechner selbst um
Anschaffung und Wartung ihrer Systeme kümmern.

Allerdings unterscheiden sich Desktop Grids in fundamentaler Weise von klassischen
parallelen Systemen: Zunächst sind die Knoten des Grids nicht permanent verfügbar. Bedingt
durch das Verhalten des Nutzers und sporadisch auftretende Fehlerzustände treten Knoten
dem Grid in unvorhersehbarer Weise bei oder treten ebenso unvorhersehbar aus diesem aus.
Dieses Phänomen wird Volatilität [BSV03, WSH99] genannt. Des Weiteren zeichnen sich
die Ressourcen eines Desktop Grids durch ein hohes Maß an Heterogenität aus. So können
beispielsweise die Taktfrequenzen der CPUs in einem Desktop Grid durchaus zwischen 179
MHz und 3 GHz variieren [KTB+04]. Schließlich werden Desktop Grids meist über Wide-Area
Netzwerke betrieben, sodass die Kommunikationskosten uneinheitlich sind und die Konnekti-
vität durch Firewalls und private Netzwerke eingeschränkt wird. Volatilität, Heterogenität
und eingeschränkte Konnektivität in Verbindung mit uneinheitlichen Kommunikationskos-
ten machen Desktop Grids zu einer der herausforderndsten parallelen Systemumgebungen.
Trotzdem hohe Effizienz zu erzielen, stellt System- und Applikationsdesigner vor schwierige
Aufgaben. Daher werden Desktop Grids heute überwiegend für die Lösung trivial-paralleler
Probleme genutzt. Diese zeichnen sich dadurch aus, dass sie auf einfache Art und Weise
im Vorfeld der eigentlichen Berechnung in einzelne unabhängige Teilprobleme zerlegt wer-
den können, die dann zur Berechnung auf die Knoten des Desktop Grids verteilt werden.
Allerdings erlaubt die Natur vieler wichtiger Applikationen keine derartige Vorgehensweise.
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Dazu zählen unter anderem parallele Such- und Optimierungsprobleme sowie physikalische
Kleider- und Vielkörpersimulationen. Um das volle Potenzial des Desktop Grid Computing
auszuschöpfen, ist eine Erschließung weiterer Applikationsklassen jenseits der trivial parallelen
Anwendungen notwendig. Eine wichtige Klasse von Problemen, die in diese Kategorie fallen,
sind die sogenannten taskparallelen irregulär-strukturierten Probleme (ISP). Der Ablauf der
Berechnung und die dabei auftretenden Interaktionsmuster sind bei diesen Problemen stark
eingabeabhängig, unstrukturiert und dynamisch [SW03]. Insbesondere ist die Laufzeit der
Teilprobleme unvorhersehbar. Dies macht ein dynamisches Vorgehen erforderlich, das die
Zerlegung in Teilprobleme während der Berechnung bei Bedarf vorsieht. Bestehende Desktop
Grid Systeme können dies aufgrund ihrer zentralen Organisation nicht leisten, da sie je nach
Rechnerzahl und Problemgröße früher oder später an die Grenzen ihrer Skalierbarkeit stoßen.
Wie in Abbildung Z.1 dargestellt, leistet die vorliegende Arbeit Beiträge in mehreren

Gebieten. Zentral ist dabei die systematische Erweiterung des Desktop Grid Ansatzes um
Methoden aus dem Bereich der Peer-to-Peer Systeme, mit dem Ziel deren Anwendungsradius
auf nicht-triviale Applikationen aus dem Bereich des High-Performance Computing auszu-
weiten. Die Auswirkungen dieses Schritts werden auf allen Ebenen des Systems analysiert
und dieses, wo nötig, durch neue Ansätze ergänzt. Die dabei gewonnenen Erkenntnisse
wurden im Rahmen einer State-of-the-Art Desktop Grid Computing Middleware namens
Cohesion umgesetzt und erprobt.
Die im Folgenden vorgestellten wissenschaftlichen Beiträge dieser Arbeit wurden in

Zeitschriften [SBHD08, SBH09, SBP10, SB10b] veröffentlicht und auf internationalen
Konferenzen [BDS06, SB07, SBP09, SB11] und Workshops [SB10a] präsentiert. Außerdem
wurden große Teile Cohesion’s unter Open Source [ios] und Forschungslizenzen [coh] der
Öffentlichkeit zugänglich gemacht.

Mikrokern-basierte Erweiterbarkeit
Frühe Desktop Grid Computing Projekte, wie SETI@home [Uni] und distributed.net [Dis],
waren als monolithische Systeme ausgelegt – Plattform- und Anwendungsfunktionalität waren
untrennbar miteinander verbunden (vgl. Abbildung Z.2a). Die mangelnde Flexibilität dieses
Ansatzes führte zu dessen Ablösung durch flexiblere Desktop Grid Computing Middleware-
Lösungen, die eine simultane Ausführung mehrerer Anwendungen erlauben (vgl. Abbildung
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Abbildung Z.1: Beiträge der vorliegenden Arbeit
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Abbildung Z.2: Entwicklung der Architektur von Desktop Grid Plattformen vom monolithi-
schen System über Middleware-basierte Ansätze mit Unterstützung für die simultane Ausfüh-
rung mehrerer Anwendungen (A,B) bis hin zu COHESION’s mikrokern-basiertem Ansatz

Z.2b). Der wohl bekannteste und heute am weitesten verbreitete Vertreter dieses Ansatzes
ist die Berkeley Open Infrastructure for Network Computing (BOINC) [Uni10]. Das sehr gut
verstandene Client/Server-Interaktionsmodell dieser Plattformen ermöglicht die gesamthafte
Bereitstellung von weitgehend applikationsunabhängiger Funktionalität durch die Plattform.
Im Gegensatz dazu ergibt sich durch den Übergang zum Peer-to-Peer-Interaktionsmodell, wie
er in dieser Arbeit vorgeschlagen wird, bezüglich jedes Systemaspekts eine Vielzahl möglicher
Alternativen. Diese können unmöglich alle durch die Plattform bereitgestellt werden. Daher
ist Erweiterbarkeit eine der wichtigsten Eigenschaften von Desktop Grid Plattformen der
nächsten Generation. Cohesion wird dieser Anforderung durch die Umsetzung des durch
das Betriebssystem Mach [ABB+86] bekannt gewordenen Mikrokern-Architekturmusters
gerecht [SBHD08].

Peer-to-Peer Management und Automatische Mehrstufige
Modulisolation
Neben seiner technischen Bedeutung steht der Begriff Peer-to-Peer auch für ein Organi-
sationsprinzip, das allen an einem System partizipierenden Teilnehmern dieselben Rechte
einräumt und dieselben Pflichten auferlegt. Eine unmittelbare Konsequenz der Anwendung
dieses Prinzips auf das Desktop Grid Computing liegt darin, dass der Betrieb des Desktop
Grids nicht mehr in der Hand einer einzelnen Autorität liegt, sondern zur gemeinsamen
Aufgabe der Eigentümer der teilnehmenden Rechner, den Infrastrukturanbietern und den
Applikationsbetreibern wird. Solch ein Multi-Authority Environment stellt neue Anforderun-
gen an die Management- und Sicherheitsinfrastruktur. Diesbezüglich liegen die Beiträge der
vorliegenden Arbeit in einem Isolationssystem für Modulsysteme namens i-OSGi und in
einem Management Framework für große Systeme volatiler Ressourcen.

i-OSGi [SB11] implementiert einen neuartigen Ansatz zur Isolation von Modulen un-
tereinander und zwischen Modulen und dem umgebenden Hostsystem. Ausgehend von
implizit oder explizit spezifizierten Isolationsvorgaben berechnet i-OSGi automatisiert eine
Systemkonfiguration, in der jedem Modul eine Isolationsumgebung derart zugeordnet ist,
dass alle Isolationsvorgaben erfüllt sind. Der Grad der Isolation kann dabei durch den Einsatz
unterschiedlicher Isolationstechniken variiert werden. Die Konfigurationen werden dabei
über eine Kombination aus SAT-basierter Optimierung und Graphfärbealgorithmen mit dem
Optimierungsziel minimaler Ressourcennutzung bestimmt. Die Skalierbarkeit des Systems
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wurde im Rahmen einer Serie von Mikrobenchmarks für Systeme nachgewiesen, die aus
Hunderten von Modulen bestehen.

Cohesion’s Peer-to-Peer Management Framework [SB07] basiert auf dem weit verbrei-
teten Java Management Extensions (JMX) [Sunb] Standard. Multi-Authority Environments
werden durch einen Rollen-basierten Zugriffsschutz unterstützt, der es nur dem Eigentümer
eines Objektes gestattet, dessen Parameter zu verändern. Das Framework beinhaltet Werk-
zeuge, um eine große Zahl von Objekten virtuell auf einer Peer zusammenzuführen und deren
Managementschnittstellen zusammenfassen, sodass die Einstellungen aller Objekte durch
Ausführung einer einzigen Operation angepasst werden können. Auf diese Weise können
Managementaufgaben effizient für eine große Anzahl von im System verteilten Objekten
durchgeführt werden. Ein Dienst zur Ausführung von Management-Skripten erlaubt die
Abarbeitung von wiederkehrenden Aufgaben. Skripte können darüber hinaus auch als Mobile
Agenten entsandt werden, um Managementoperationen auf entfernten Peers durchzuführen.
Dies auch dann, wenn die Peer zeitweise nicht verfügbar ist.

Netzwerksubstrat für High-Performance Desktop Grid Computing
Die Anforderungen die High-Performance Computing Anwendungen an das Netzwerksubstrat
stellen, unterscheiden sich fundamental von denen existierender Desktop Grid und Peer-
to-Peer Anwendungen: Zunächst erfordert die engere Kopplung bei High-Performance
Computing Anwendungen, dass Peers direkt miteinander kommunizieren können. Das zentrale
Organisationsmodell bestehender Desktop Grid Plattformen, bei dem stets der Umweg über
einen zentralen Masterknoten gegangen werden muss, ist hierfür ungeeignet. Des Weiteren
muss die Verfügbarkeit bzw. der Ausfall einer Peer unverzüglich erkannt und gemeldet werden,
sodass die Last effizient verteilt und Fehlerzustände so schnell wie möglich kompensiert
werden können. Da zahlreiche verteilte Algorithmen erheblich von der Verfügbarkeit einer
effizienten Multicast-Kommunikationsoperation profitieren, sollte das Netzwerksubstrat eine
solche anbieten. Schließlich muss ein geeignetes Substrat effizient innerhalb von Wide-Area-
Netzen arbeiten, die sich durch nicht-einheitliche Kommunikationskosten und eingeschränkte
Konnektivität auszeichnen. Da bestehende Substrate diese Anforderungen nicht oder nur
teilweise erfüllen, besteht ein signifikanter Beitrag dieser Arbeit in der Bereitstellung eines auf
offenen Standards basierenden Netzwerksubstrates, das die genannten Anforderungen erfüllt:
Orbweb [SBP09, SBP10] gehört zur Klasse der hybriden Peer-to-Peer Netzwerke da es Teile
der Funktionalität an ausgezeichnete besonders leistungsfähige Peers, sogenannte Superpeers,
delegiert. Dazu gehört insbesondere das Management von Prozessgruppen, innerhalb derer
Orbweb verschiedene virtuelle Topologien zur Verfügung stellen kann. Dadurch wird der
Trade-off zwischen dem Umfang der auf den Peers bereitgestellten Information über die
Zusammensetzung der Gruppe und ihrer Skalierbarkeit einstellbar. Orbweb basiert auf
dem eXtensible Messaging and Presence Protocol (XMPP) [xsf] und kann so von der
Dynamik einer großen und aktiven Community profitieren. Orbweb’s Leistungsfähigkeit
wurde mittels einer umfassenden experimentellen Analyse bestätigt. Dabei wurden Gruppen
bis zu einer Größe von über 10.000 Knoten bezüglich des Peer- und Superpeer-seitigen
Ressourcenverbrauchs unter realen Bedingungen untersucht.
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Knoteneigenschaftsbewusste Informationsaggregation
Informationsaggregation ist die Zusammenfassung von Information innerhalb eines verteilten
Systems. Um Skalierbarkeit zu erreichen, organisieren moderne Aggregationssysteme die
Knoten des Systems in einem Aggregationsbaum entlang dessen Kanten die Information
eingesammelt, zusammengefasst und mit unterschiedlichem Abstraktionsgrad – je nachdem,
an welchem Knoten innerhalb des Baumes die Information abgenommen wird – angeboten
wird. Zahlreiche fundamentale Problemstellungen in verteilten Systemen lassen sich über
Aggregationsverfahren lösen [vR03]. Dazu gehören Leader Election, Dienst- und Ressourcen-
platzierungprobleme und Wiederaufsetzungsverfahren nach Fehlerzuständen. Trotz seiner
zentralen Bedeutung gibt es zahlreiche ungelöste Probleme bezüglich des Entwurfs und
der Implementierung von Aggregationssystemen [RM06]. Speziell, die Kosten zur Rekon-
figuration des Aggregationsbaumes und zur Evaluation komplexer Reduktionsfunktionen
können weniger leistungsfähige Knoten überfordern und damit die Leistung des Gesamt-
systems beeinträchtigen. Cohesion stellt eine Lösung für dieses Problem bereit [SBH09],
bei der Eigenschaften wie die Leistungsfähigkeit und die Stabilität eines Knotens bei seiner
Platzierung innerhalb des Aggregationsbaumes berücksichtigt werden, sodass besonders
leistungsfähige und stabile Knoten nahe der Wurzel und auf mehreren Ebenen des Aggregati-
onsbaums platziert werden. Dadurch wird die durch die Aggregation entstehende Last nicht
wie bei existierenden Systemen gleichmäßig, sondern entsprechend ihrer Leistungsfähigkeit
und Stabilität über die Knoten des Systems verteilt. Es konnte gezeigt werden, dass die
resultierende Besetzung des Aggregationsbaumes höhere Qualität aufweist, als dies bei
agnostischen Verfahren der Fall ist (siehe Abbildung Z.3).

(a)

(b)

Abbildung Z.3: Vergleich der Allokationsqualität für ein Konstruktionsverfahren (a) ohne und
(b) mit Berücksichtigung der Leistungsfähigkeit der teilnehmenden Rechner (helle Knoten
stehen für leistungsstarke, dunkle Knoten für leistungsschwache Rechner)
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Fehlertoleranter Verteilter Taskpool
Die Problemdekomposition, also die Art und Weise, wie ein Problem in Teilprobleme zer-
legt wird, spielt eine sehr wichtige Rolle in der Parallelisierung. Sie kann statisch vor der
eigentlichen parallelen Berechnung oder dynamisch während der Berechnung erfolgen. Im
letzteren Fall werden bei Bedarf sogenannte Tasks als Objekte erster Ordnung erzeugt
und dynamisch freien Prozessoren zur Ausführung zugeteilt. Da die Laufzeit einer Task bei
irregulär-strukturierten Problemen a priori nicht bekannt ist, führt statische Problemdekom-
position zu signifikanten Effizienzeinbußen, die sich im Fall zu feiner Granularität aus dem
Mehraufwand der Prozessierung unnötig vieler Einzeltasks, im Fall zu grober Granularität
aus Leerlaufzeiten ergeben. Daher muss die Dekomposition dynamisch erfolgen. Im Task
Pool Modell sind Problemdekomposition und Lastverteilung durch eine Datenstruktur ent-
koppelt, in der dynamisch erzeugte Tasks abgelegt werden können. Bestehende Desktop Grid
Plattformen implementieren meist einen zentral organisierten Task Pool, der wenig komplex
ist, sich dafür aber als ineffizient im Zusammenspiel mit dynamischer Dekomposition erweist.
Cohesion’s Peer-to-Peer-Interaktionsmodell [SBHD08] ermöglicht die Umsetzung eines
dezentralen Ausführungsmodells (siehe Abbildung Z.4), das auf einem verteilten Task Pool
beruht. Dabei ist jedem Prozessor eine lokale Warteschlange für Tasks zur Seite gestellt mit
deren Hilfe Problemdekomposition und Lastverteilung autonom durchgeführt werden können.
Diese Dezentralisierung bringt aber auch einen deutlichen Anstieg der Komplexität mit sich,
da die intrinsische Fehlertoleranz1 des zentralen Modells verloren geht. Cohesion verbirgt
diese Komplexität hinter einer generischen Task Pool Abstraktion [SB10b]: Lastverteilung,
Fehlertoleranzmaßnahmen und Terminierungserkennung werden dabei transparent durch die
Plattform durchgeführt. Dabei wird die durch Orbweb bereitgestellte Gruppenabstraktion

Datenparallel

Taskparallel
Statisch

Dynamisch

Zentraler
Task Pool

Verteilter
Task Pool

Parallelität
Problem-

dekomposition
Ausführungs-

model

Abbildung Z.4: COHESION’s Ausführungsmodell für taskparallele irregulär-strukturierte
Probleme

1 Fehlertolerant ist ein zentral organisierter Taskpool nur solange die zentrale Koordinationsinstanz, die
einen Single Point of Failure darstellt, nicht von einem Ausfall betroffen ist. Die Zuverlässigkeit des
Gesamtsystems kann durch Replikation dieser kritischen Komponente über bestehende Verfahren, wie
Paxos [Lam98], erhöht werden.
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genutzt, um die gleichzeitige Verwendung mehrerer Task Pools durch unterschiedliche Appli-
kationen innerhalb desselben Desktop Grids zu ermöglichen. Für die Terminierungserkennung
wurde dabei ein neues Verfahren entwickelt, das unempfindlich gegen Taskduplikation ist,
die aufgrund des asynchronen Verhaltens des zugrunde liegenden Systems auftreten kann.
Dazu werden die skalaren Gewichte des klassischen Terminierungserkennungsalgorithmus
von Mattern [Mat89] durch Gewichtsintervalle ersetzt, sodass deren Addition idempotenten
Charakter erhält. Der Taskpool wurde einer umfangreichen experimentellen Analyse unter-
worfen. Dabei konnte eine sehr gute schwache Skalierbarkeit (96% parallele Effizienz bei
160 Knoten) unter realen Bedingungen für bis zu 160 Knoten nachgewiesen werden.

SAT Solving im Desktop Grid
Das Erfüllbarkeitsproblem der Aussagenlogik (engl. satisfiability, SAT) ist das Entschei-
dungsproblem, ob zu einer gegebenen booleschen Formel eine erfüllende Belegung existiert.
SAT war das erste Problem, für das NP-Vollständigkeit nachgewiesen wurde [Coo71].
Anwendungen finden sich in zahlreichen wichtigen Bereichen, wie dem Entwurf von lo-
gischen Schaltungen [VB01], der künstlichen Intelligenz [KS92], des Scheduling [CB94]
und der Kryptography [MM00]. Trotz intensiver Forschung konnten seit der Erfindung der
CDCL-Techniken um die Jahrtausendwende keine wesentlichen Fortschritte hinsichtlich
der Beschleunigung bestehender SAT-Solving Verfahren mehr erzielt werden. So gibt es
heute eine große Zahl von Problemen, die mit heutigen sequenziellen Techniken nicht zu
lösen sind. Mit der Einführung von Multicore-Architekturen tauchten auch parallele Solver
für gemeinsamen Speicher auf [HJS09a]. Signifikante Beschleunigungen sind aber erst bei
Verfügbarkeit von Manycore-Architekturen mit einer erheblich höheren Zahl von Kernen als
heute üblich zu erwarten. Der nächste logische Schritt sind deshalb massiv-parallele Ansätze
für Architekturen mit verteiltem Speicher und Hunderten oder gar Tausenden von Prozesso-
ren. Satciety [SB10a, SB10b] ist ein erster Vertreter dieser neuen Klasse von parallelen
SAT-Solvern. Satciety nutzt Cohesion’s verteilten Taskpool und Orbweb’s Peer-to-
Peer Kommunikationsmittel zur Umsetzung des bislang einzigen fehlertoleranten verteilten
SAT-Solvers, der für das heterogene und volatile Umfeld der Desktop Grids geeignet ist und
dabei dennoch in der Lage ist substantielle Beschleunigungen im Vergleich zu modernen
sequenziellen SAT-Solvern zu erzielen. Dafür wurden zahlreiche Neuerungen in Satciety in-
tegriert. Dazu zählen ein adaptives Verfahren zum Wissensaustausch zwischen Solverkernen,
das die Topologie des physikalischen Netzwerkes bei der Festlegung der Austauschraten
berücksichtigt, die Bereitstellung der teilweise sehr großen Formeln (> 100 MB) über
Peer-to-Peer Protokolle und ein kompaktes binäres Datenformat, sowie ein mehrstufiges
Verfahren zum Speichermanagement, das die Vollständigkeit des Solvers – also die Fähigkeit
zum Nachweis der Unerfüllbarkeit einer Formel – erhält. Die Leistungsfähigkeit wurde in
einem Desktop Grid unter realen Bedingungen nachgewiesen. Dabei konnte trotz hoher
Heterogenität der genutzten Ressourcen ein signifikanter mittlerer Speedup gegenüber dem
schnellsten teilnehmenden Rechner von 14.5 bei 40 Prozessoren für langlaufende unerfüllbare
Instanzen erzielt werden.
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Ausblick
Die Frage, ob das Desktop Grid Computing und die in diesem Bereich gewonnenen Erkennt-
nisse auch in 20 Jahren noch von Interesse sein werden, ist legitim. Vieles spricht dafür:
Zunächst sind die hier vorgestellten Erkenntnisse bezüglich des Umgangs mit volatilen und
heterogenen Ressourcen auch für andere aufstrebende Anwendungs- und Forschungsgebiete
relevant. Dazu zählen Multi-/Manycore-Architekturen, Cloud Computing und Exascale Com-
puting. Wie eingangs dieser Zusammenfassung ausgeführt, ist das Potenzial der Desktop
Grids bei Weitem nicht ausgeschöpft. Das enorme Angebot an Rechenleistung steht einer
stetig wachsenden Nachfrage gegenüber. Allein in Deutschland hat diese im Zeitraum von
2005 bis 2010 um das 80-fache zugenommen [BHL05]. Da dieser Zuwachs die von David
House in einem Korollar zu Moore’s Gesetz [Moo75] vorhergesagte Verdoppelung der Leis-
tungsfähigkeit von Mikroprozessoren alle 18 Monate deutlich übersteigt, ist anzunehmen,
dass Rechenleistung auch in Zukunft knapp bleiben wird. Vor diesem Hintergrund ist nicht
anzunehmen, dass das enorme Potenzial des Desktop Grid Computing ungenutzt bleiben
wird. Das Interesse an Desktop Grid Computing wird aber noch aus einem anderen Grund
weiter steigen: Butter’s Law [Teh00] prognostiziert eine Verdoppelung der Bandbreite von
Glasfasern alle neun Monate. Hält diese Entwicklung an, werden Prozessoren in 20 Jahren
1000-mal, die Netzwerke jedoch eine Million Mal so schnell sein wie heute. Damit rücken
weitere enger gekoppelte Applikationsklassen, die heute nur auf Supercomputern sinnvoll
ausgeführt werden können, in die Reichweite der Desktop Grids.
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1 The Subject Matter
Today’s pervasiveness of information technology results in a plethora of exploitable computing
power. This is true for dedicated supercomputing systems, personal computers, and mobile
devices: The performance of the best, the worst, and the aggregate computing power of
all supercomputers listed in the TOP500 table [TOP10] has been growing exponentially
for almost 20 years now. The number of personal computers in use worldwide is growing
by 12% every year and is expected to exceed two billion in 2014 [Shi08]. The number of
mobile phones is just as impressive – it reached 4.6 billion at the end of 2009 [UN 10].
For supercomputers this steady growth is stimulated by an ever increasing demand for

computing power. This is particularly true in the areas of science and engineering where
important grand-challenge problems exist that are not solvable with today’s supercomputers.
One example is accurate long-time climate modeling. It’s goal is to predict the consequences
of global warming by conducting large-scale long-term simulations with high spatial and
temporal resolution that require supercomputers that are up to one million times faster than
the currently fastest supercomputers [DeB05].

1.1 Grid Computing
Grid Computing has become a viable tool to narrow the gap between supply of and demand
for computing power by aggregating networked compute resources across administrative
domains. The first definition of the term Grid Computing was given by Ian Foster and Carl
Kesselman [KF98] in 1998 before Grids as we know them today actually emerged:

»A computational grid is a hardware and software infrastructure that pro-
vides dependable, consistent, pervasive, and inexpensive access to high-end
computational capabilities.«

A few years later they refined their definition [FKT01] introducing so called Virtual
Organizations (VO):

»[Grid computing is] coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations.«

They also gave a more precise notion of resource sharing:

»The sharing that we are concerned with is not primarily file exchange but rather
direct access to computers, software, data, and other resources, as is required
by a range of collaborative problem-solving and resource-brokering strategies
emerging in industry, science, and engineering. This sharing is, necessarily,
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highly controlled, with resource providers and consumers defining clearly and
carefully just what is shared, who is allowed to share, and the conditions under
which sharing occurs. A set of individuals and/or institutions defined by such
sharing rules form what we call a virtual organization.«

With Grid Computing becoming a hot topic and an increasing commercial appeal, a trend
became apparent to call everything from cluster management systems to network file systems
a Grid. In response to this development, Foster proposed a three item Grid Checklist [Fos02],
according to which a Grid is a system that:

1. coordinates resources that are not subject to centralized control

2. uses standard, open, general-purpose protocols and interfaces

3. delivers nontrivial qualities of service (like response time, throughput, availability,
security, and co-allocation of multiple resource types to meet complex user demands)

The early vision of Grid Computing to enable users to access computing power and other
resources as simple as attaching a device to the power grid has not been fulfilled until now.
Grid systems as envisioned by Foster et al. are usually far too complex to setup and maintain
for non-expert individuals. Consequently, two distinct types of Grids have emerged: Service
Grids and Desktop Grids.

1.1.1 Service Grids
Operating Service Grids is usually reserved for larger institutions that are able to employ
professional system administrators that take care of the complex Grid environment consisting
of hard-, middle-, and software. Today, an increasing number of middleware solutions for
Service Grids (including the most widely used Globus Toolkit [Fos06] and gLite [Conb])
adhere to a common standard called the Open Grid Services Architecture (OGSA) [FKS+05].
OGSA is developed within the Global Grid Forum (GGF) and has been evolved from
ideas of Foster et al. [FKNT02]. OGSA-based Service Grids are service-oriented grid
computing environments composed of interoperable Web Services representing the available
resources and subsystems. The OGSA specification defines a set of services for identity
management, authentication and authorization, service level agreement negotiation and
monitoring, management and communication within virtual organizations, integration of
data resources into computations, managing and monitoring collections of services, etc.
Prominent large-scale Service Grids are D-Grid [D-G], NorduGrid [SEE+03], and EGEE
[Cona]. The latter is the largest Grid in the world consisting of over hundred thousand
processors. However, deploying and maintaining a Grid Computing infrastructure is a
complex and costly effort and is thus economically worthwhile only for large organizations
like big companies, research laboratories, universities, and governments.
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1.1.2 Desktop Grids
The other kind of Grid Computing is based on Desktop Grids. Desktop Grid Computing
[CBK+08] aims at harnessing the idle resources of personal computers instead of super-
computers for tackling resource intensive problems. Due to its inherent deployment and
maintenance cost, Service Grid Computing technology has not been adopted for Desktop
Grid Computing. Instead, custom platforms with close to zero deployment and maintenance
overhead have emerged that are used for both small-scale installations comprising the
workstations of a department [CCEB03] for example, as well as for large-scale Internet-wide
setups [And04].

The potential of Desktop Grid Computing is enormous. Studies have revealed that personal
computers are frequently idle or at least not fully utilized: While this had been true 75% of
the time two decades ago [Mut92], this number has probably increased since multi-core CPUs
and high performance GPUs have become standard for personal computers. As can be seen
from Table 1.1, Desktop Grids are able to deliver enormous computing power significantly
higher than that of today’s most powerful supercomputers (for certain application classes)
at a fraction of the costs. Moreover, as people buy or upgrade and maintain their hard- and
software regularly, the resources of a Desktop Grid are not only largely self-financing, but also
self-updating and self-maintaining. However, there are downsides: First, the FLOPS/Watt
ratio of a commercial-off-the-shelf (COTS) computer is lower than that of a supercomputer
built from optimized hard- and software components. As can be seen from the second row
of Table 1.1, this fact translates to a significantly higher relative energy-consumption of

Folding@home TianHe-1A
Processors 460k active machines 14k CPUs + 7k GPUs
Power Consumption 2.8 MW/petaFLOPS 1.6 MW/petaFLOPS

(> 19.6 MW) (4 MW)
Initial Costs few $k (server farm) / $88 mil. / -
(operator/donator) $460 mil. ($1k/machine)
Annual Costs few $100k (server farm) / $2.7 mil. (power) +
(operator/donator) $60 mil. ($130 for power $10-$20 mil. (salaries

per machine and year) for 200 operators) / -
Maximal Performance1 > 7 petaFLOPS2 2.57 petaFLOPS

Table 1.1: Key fact comparison for Folding@home [Sta10], the world’s largest Desktop Grid,
and TianHe-1A, the leader of the TOP500 list [TOP10] of the fastest supercomputers in the
world (FLOPS is an acronym for FLoating point OPerations per Second)

1 The maximal performance is the maximal performance achieved on a real application. Note that the
application is different for both systems (a protein folding application for Folding@home and LINPACK
for the TianHe-1A).

2 The reported number is the number of x86 FLOPS that is computed by totaling the number of
operations required on an x86 processor for each native operation. x86 FLOPS have been introduced by
Folding@home [Sta10] when GPUs were added to the system that can perform some operations much
more efficiently than an x86 CPU.
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Desktop Grids. The Desktop Grid community is aware of this deficiency and initial efforts
to tackle the problem [SE10] are underway as part of the Desktop Grids for International
Scientific Collaboration (DEGISCO) project [conc]. Second, for Internet-wide Volunteer
Computing projects like Folding@home resource donors have to be attracted and retained
through public relations and incentive systems. Third, there are security issues threatening
the host systems of resource donors and the Desktop Grid infrastructure servers.

However, in view of the fact that the enormous potential of the Desktop Grid approach is
largely untapped – the largest Desktop Grid Folding@home today spans less than 0.46‰ of
the PCs available worldwide in 20081 – these drawbacks seem negligible: If a project would
be able to attract approximately 7% of the resources available in 2008 the resulting virtual
supercomputer would approach the exascale barrier expected to be broken by supercomputers
not until around the year 2020 [DBM+11]. According to Gartner [Shi08] a strong growth
in the emerging markets will push the number of PCs in use world-wide well beyond two
billion in 2014. Thus, Desktop Grid Computing projects will be able to harness resources
with dozens of exaFLOPs of overall performance.

1.2 Characteristics of Desktop Grids
Exploiting the huge potential of Desktop Grid Computing for a broad spectrum of applications
is difficult for two reasons: First, the ecosystem around Desktop Grid Computing has become
increasingly fragmented in the past: There is a vast yet still growing number of Desktop Grid
Computing projects (for a comprehensive list see [Pea]) and many of them had deployed
their own ad-hoc infrastructure. As a result of this development resource contributors
are likely to be put off by the need to pollute their system with clients for many different
platforms. While the evolution of early Desktop Grid projects like GIMPS [Gim], SETI@home
[ACK+02], and Distributed.net [Dis] into the Berkeley Open Infrastructure for Network
Computing (BOINC) middleware [Uni10] with support for multiple applications has been
an important step towards resolving this issue, its lack of support for applications beyond
embarrassingly parallel computations makes it unlikely that BOINC becomes a universal
platform for Desktop Grid Computing in the same way as the Globus Toolkit became for
Grid Computing.
Second, Desktop Grids differ significantly from other types of parallel systems. Particu-

larly, the aggregated resources join and leave the Grid in an unpredictable manner. This
phenomenon is called volatility [BSV03, WSH99] and is much more pronounced than in
other kinds of parallel systems like compute clusters. The reasons which result in a multipli-
cation of possible error sources are manifold: non-dedication of resources, reduced system
isolation, and typically lower reliability of hardware and software system components due
to lack of redundancy. Hence, a Desktop Grid system not only needs to handle occasional
error conditions but must be explicitly tailored to cope with a constant flux in resource
availability. Another major difficulty is heterogeneity: While cluster nodes are most often
virtually identical, the nodes of a Desktop Grid are different concerning hard- and software

1 460k of over a billion PCs [Shi08]
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configuration. The actual differences can be substantial: The CPU clock rates within an
Institutional Desktop Grid at the San Diego Supercomputer Center have been reported to
range from 179 MHz up to 3 GHz [KTB+04]. To complicate matters further, resource usage
may be constrained by the host owner. Finally, Desktop Grids are typically operated over
wide area networks (WAN) or the Internet. This causes non-uniform communication costs
and often comes with restricted connectivity between the participating hosts due to network
address (and port) translating (NA(P)T) devices and restrictive firewalls.
In summary, the system properties of Service and Desktop Grids are fundamentally

different. Hence, approaches trying to unify both by dissolving one into the other have
little prospect of success. However, recent research [FHL+08, FKBG10] is concerned with
integrating Service and Desktop Grids into a single system by providing bridges both from
Service to Desktop Grids and vice versa (see Chapter 6).

1.3 High-Performance Desktop Grid Computing
Volatility, heterogeneity, and partially restricted connectivity with non-uniform communication
costs turn Desktop Grids into one of the most challenging environments for parallel computing.
Delivering sustained computing power in this setting poses enormous challenges to system and
application designers. As a consequence, existing Desktop Grid applications are most often
embarrassingly parallel . The input to such applications can be decomposed into independent
subproblems, which can be farmed out for computation without further communication
among the hosts processing individual subproblems. Hence, Desktop Grid Computing has
been a tool mainly used for High Throughput Computing (HTC) that is about delivering
large amounts of processing capacity over an extended period of time without efficiency
being a major concern. However, many important applications are different in so far as
they cannot be solved (efficiently) without direct inter-host communication. Examples are
parallel search and optimization problems or parallel N-Body simulations. In contrast to the
embarrassingly parallel class of applications, they belong to the class of High Performance
Computing (HPC) applications. This discipline of parallel computing is about delivering
large amounts of computing power for short periods of time with high efficiency. Extending
the scope of Desktop Grid Computing towards HPC applications would further increase the
utility of the approach and would make Desktop Grids qualify as a competitive alternative
to expensive supercomputing and Grid resources.
Not every HPC application can be efficiently executed on top of a Desktop Grid. A

decisive factor is the degree of coupling. Tightly-coupled payloads do not match well with
the (comparatively) low bandwidth high-latency network link characteristics in WANs and
the Internet. More suitable are loosely-coupled yet not embarrassingly parallel applications.
An important representative of this kind of application are task-parallel Irregularly Structured
Problems (ISP). ISPs are parallel applications whose computation and interaction patterns
are input-dependent, unstructured, and evolving [SW03]. Prominent examples are all kinds
of parallel search problems – including discrete optimization, constraint satisfaction, and
satisfiability solving –, raytracing, N-Body problems, and physically-based cloth simulation.

However, the environmental (volatile and heterogeneous resources, restricted connectivity,
and non-uniform communication costs) and ISP-specific (unpredictable task size and com-
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(a)

(b) (c)

Figure 1.1: Multiple stages of a physically-based simulation of a square piece of cloth with
15K vertices draping over an undulated bar (colors in Figures (a)-(c) indicate mesh partitioning
for parallel physical modeling).

munication patterns, inter-task dependencies) characteristics make solving ISPs on Desktop
Grids a challenging task (see Figure 1.3) that requires much more sophisticated platform
support than required for solving embarrassingly parallel applications: Due to the fact that
the execution time of a subproblem is no longer related to the size of the input, subproblems
can no longer be created in advance and scheduled trivially. Instead, a technique called
dynamic load balancing [GGKK03] has to be applied that redistributes the workload as the
computation progresses. This way processors that become idle can be assigned new work
that is taken from busy processors.

Creating tasks in advance is also problematic as finding the optimal decomposition depth in
the face of unpredictable subproblem runtime, fluctuating resource availability, and resource
heterogeneity is impossible. Hence, some depth has to be chosen that most likely won’t
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(a)

(b)

Figure 1.2: Effect of dynamic problem decomposition and load balancing on the parallel effi-
ciency of the collision handling phase (x-axis =̂ i-th processor, z-axis =̂ CPU usage in %).
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be optimal. In case too few tasks are created, processors become idle when the number of
available tasks drops below the number of processors. Creating too many tasks, in contrast,
induces overhead caused by task migration between processors. Both conditions have a
negative impact on efficiency. Thus, a second technique called dynamic decomposition
[GGKK03] is applied that consists in decomposing the problem on-demand according to the
workload distribution during runtime.

The consequences of ignoring the fundamentally different nature of solving ISPs become
evident when we look at the collision detection phase of a parallel physically-based cloth
simulation1 [TB07]. As can be seen from Figure 1.1, the density and spatial distribution of
rigid collisions and self-collisions evolve over time. This results in pronounced imbalance
between processors when static decomposition is employed (see Figure 1.2a). By applying
dynamic decomposition and dynamic load balancing, significant efficiency gains can be
achieved (see Figure 1.2b).

The requirement for dynamic load balancing has an immediate consequence: As subprob-
lems may be large, direct communication is mandatory to migrate subproblems efficiently.
The most severe limitation of existing Desktop Grid Computing middlewares in this regard
is their centralized interaction model. The term interaction model refers to the way the
nodes of a Desktop Grid interact when executing a parallel application employing certain
parallel algorithms and parallel programming models. BOINC – like most of today’s Desktop
Grid platforms – is tailored to applications with a Client/Server interaction model, which
is characterized by a fixed star-shaped communication topology that is suitable for trivial
Master/Worker-style parallel applications with independent tasks such as bag-of-tasks, pa-
rameter sweep/study, and monte carlo simulation. Although applications with a significant
amount of inter-node communication could be executed on top of this topology in principle
as well, messages exchanged between two clients or as part of collective communication
operations among multiple clients had to be relayed by the server, leading to a bottleneck
that severely limits efficiency and scalability.
Hence, a pivotal step towards HPC-enabled Desktop Grid Computing capable of solving

ISPs is the replacement of the centralized interaction model of existing platforms with a
more powerful Peer-to-Peer2 (P2P) interaction model. As discussed in the following chapter,
this involves reconsidering design decisions on all levels of the parallel system. In this thesis,
we present the results of this reconsideration paving the way for the transition to a new
breed of HPC-enabled Peer-to-Peer Desktop Grid Computing platforms.

1 Parallel collision detection is done using the strict multi-threading programming model [BK03] of the
parallel system platform DOTS [BKWb98].

2 In our context, the term Peer-to-Peer refers to the ability of the system to collectively provide a service
by direct interaction between peers, with limited use of intermediary or coordinating entities. According
to the definitions given in [Sch01], this kind of architecture/interaction model is more precisely termed
hybrid Peer-to-Peer (cf. Chapter 13).





2 Contributions
As depicted in Figure 2.1, this thesis makes contributions in several areas, in particular
systems architecture, distributed systems, and parallel applications. Most importantly, it
describes how the foundations of Desktop Grid Computing can be complemented with
Peer-to-Peer concepts to extend its scope to non-trivial applications from the field of High
Performance Computing. The impact of this transition is analyzed on all layers of the system
and novel approaches are proposed where existing approaches fall short. The results of this
analysis are amalgamated in Cohesion a state-of-the-art P2P Desktop Grid Computing
middleware stack depicted in Figure 2.2.

The individual scientific contributions summarized subsequently and discussed in detail in
the following chapters have been published in scientific journals [SBHD08, SBH09, SBP10,
SB10b], and have been presented at international conferences [BDS06, SB07, SBP09, SB11]
and workshops [SB10a]. In addition, large parts of Cohesion’s codebase have been made
available to the public under Open Source [ios] and research licenses [coh].

2.1 Microkernel-Based Extensible System Core
Early Desktop Grid Computing applications like SETI@home [Uni] and distributed.net [Dis]
were monolithic systems mixing up platform and application functionality in a non-detachable
manner (cf. Figure 2.3a). Due to the resulting inflexibility and an emerging trend towards
fragmentation of the Desktop Grid ecosystem, these early systems were superseded by more
flexible Desktop Grid Computing middleware – most notably BOINC [And04] – designed to
support multiple concurrently executing applications (cf. Figure 2.3b). The well understood
Client/Server interaction model of applications deployed on these platforms allows to provide
a comprehensive set of platform functionality that is largely application independent. The
transition to a Peer-to-Peer interaction model as proposed in this thesis in contrast results
in a plethora of options on every layer of the system. For example, the selection of an
appropriate groupcast algorithm for a given application depends on a large number of
factors, including network topology, expected communication load, and required quality of
service (QoS) properties. Generally, the design space for Peer-to-Peer Desktop Grid systems
and applications becomes highly multidimensional and thus is considerably larger than the
design space of platforms with a Client/Server interaction model. Consequently, providing a
comprehensive toolbox serving all conceivable application requirements is no longer possible.
Hence, a key purpose of next generation Desktop Grid platforms must be to provide a
set of generic reusable components for common application aspects that may be replaced
and supplemented with extensions contributed by and tailored to the needs of a specific
application. Similar to the evolution in the field of operating systems, next generation
Peer-to-Peer computing systems must be specifically designed to cope with this kind of
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A B

(a) Monolithic

A B 

(b) Middleware

AB

(c) Microkernel

Figure 2.3: Evolution of the software architecture of Desktop Grid platforms from mono-
lithic system designs over middleware approaches with multi-application support to COHE-
SION’s microkernel-based approach.

application specific customization at the system level. Hence, by adopting the mircokernel
architectural pattern known from the Mach operating system [ABB+86], Cohesion brings
modularity – which is considered a cornerstone in modern software architecture – to the
core of Desktop Grid Computing platforms (cf. Figure 2.3c) [SBHD08].

2.2 Peer-to-Peer Management and Adjustable Module Isolation
The term Peer-to-Peer – besides its technical meaning – stands for an organizational principle
granting participating entities the same rights and imposing the same duties. A direct
consequence of adopting this principle for Desktop Grid Computing is that operating the
Desktop Grid is no longer a task performed by a single authority, but becomes a collaborative
effort of host owners, infrastructure providers, and application providers. This kind of
multi-authority scenario introduces new challenges in the fields of application manageability,
security, and safety that have not yet been addressed in the context of P2P Desktop Grid
Computing. In this regard, the contributions of this thesis are a sophisticated isolation system
called i-OSGi and a management approach for large-scale systems based on established
standards.

i-OSGi [SB11] allows for adjustable inter-module isolation providing a tunable trade-off
between isolation degree and resource consumption. System configurations with minimal
resource usage and inter-module communication overhead are computed for up to hundreds
of modules in a fully automated way by leveraging state-of-the-art optimization techniques.
The novel approach of i-OSGi supersedes existing application sandboxing approaches as
it is able to protect the host system and modules from malicious or erroneous collocated
modules with minimal consumption of host system resources.

Cohesion’s Peer-to-Peer management framework [SB07] is based on the industrial
grade Java Management Extensions (JMX) [Sunb] management standard. Multi-authority
environments are supported through a role-based management approach that allows for
restricting access of a party to its own manageable objects. The framework provides tools to
transparently cascade and aggregate the management interfaces of large numbers of remote
objects and allows for managing offline peers through scripting. The management services
are made accessible over an integrated management workbench based on the Eclipse IDE
[Ecl].
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2.3 Standards-Based Network Substrate
The requirements of HPC applications on the network layer are fundamentally different
from those of both existing Desktop Grid and traditional P2P applications: First, the
tighter coupling between subproblems in HPC applications necessitates that peers are able
to communicate directly, avoiding the bottlenecks of existing Desktop Grid Computing
middleware with centralized interaction models. Second, instant updates concerning resource
availability are required to efficiently distribute load among the peers and to allow for quick
compensation of the effects of peer failures. Third, implementing advanced distributed
algorithms requires extended communication mechanisms most importantly an efficient
one-to-many (multicast) communication primitive. Finally, the substrate has to provide its
entire functionality within WANs or over the Internet with heterogeneous resources (links
and hosts) and restricted connectivity. As existing network substrates fall short in satisfying
these requirements, a significant contribution of this thesis is Orbweb [SBP09, SBP10],
a standards-based hybrid Peer-to-Peer network substrate centered around a powerful peer
group abstraction with a tunable trade-off between the extent of information provided to
peers about the structure of the group and its scalability. By adopting and adapting the
IETF eXtensible Messaging and Presence Protocol (XMPP) [xsf] standard for this purpose,
Desktop Grid Computing can gain momentum from the impetus of a large and influential
community.

2.4 Capability-Aware Information Aggregation
Information aggregation is the process of summarizing information across the nodes of a
distributed system. Existing hierarchical approaches based on aggregation trees can provide
information with different levels of detail by progressively summarizing data along the edges

(a)

(b)

Figure 2.4: Comparison of the allocation quality for (a) capability-agnostic and (b) capability-
aware aggregation tree maintenance (lighter/darker nodes represent more/less capable nodes)
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of a spanning tree. Many fundamental aspects of distributed systems can be realized
using information aggregation [vR03], including leader election, voting, service and resource
placement, multicast tree formation, and error recovery. Despite its importance, there are
numerous open challenges in the design and implementation of aggregation systems that
are considered worthy of future research [RM06]. In particular, the cost of reconfigurations
caused by high node volatility and frequent evaluation of complex reduction functions can
overwhelm less powerful nodes. Cohesion includes a solution to this problem [SBH09] that
embraces the heterogeneity across nodes prevalent in Desktop Grids by distributing the onus
of aggregation not uniformly across the nodes of the system as done in existing approaches
but according to their capabilities with respect to performance and stability. We have shown
experimentally that the resulting allocation quality is superior to that of capability-agnostic
approaches (see Figure 2.4). The many-to-one communication (reduction) primitive provided
by the aggregation system complements the primitives provided by Orbweb.

2.5 Fault-Tolerant Distributed Task Pool
Problem decomposition plays a central role in the design of parallel applications as it
determines how the problem is divided into (sub-)tasks to be executed in parallel. Basically,
problem decomposition can be carried out statically before the actual application execution
or in a dynamic manner creating tasks on demand at runtime. In the latter case, tasks are
first-class objects that can be dynamically assigned to idle processors for execution. As for
ISPs a task’s runtime cannot be determined a priori, a static decomposition approach can
result in significant processor idling. This has been demonstrated by means of a parallel cloth
simulation application in Chapter 1. Thus, dynamic problem decomposition is mandatory.
This in turn necessitates explicit load balancing. The task pool model decouples problem
decomposition and load balancing by a data structure that stores task objects created by
dynamic decomposition operations. Existing Desktop Grid Computing middlewares use a
centralized task pool that is easy to implement but of limited scalability and efficiency
when used in conjunction with dynamic problem decomposition. Cohesion’s Peer-to-Peer

Data Parallel

Task Parallel
Static

Dynamic

Centralized
Task Pool

Distributed
Task Pool

Parallelism
Problem

Decomposition
Execution

Model

Figure 2.5: Execution model for task-parallel ISP applications
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interaction model [SBHD08] allows for realizing a decentralized execution model based on
the distributed task pool model (see Figure 2.5) with a task queue at each peer performing
problem decomposition and load balancing autonomously. However, distributing the task
pool comes at the price of losing the intrinsic1 fault-tolerance of centralized approaches.
Cohesion provides a generic distributed task pool abstraction [SB10b] that transparently
handles load balancing, fault tolerance, and termination detection. The task pool leverages
the features of Orbweb and can be instantiated multiple times to support concurrent
execution of multiple applications within the same Desktop Grid. Termination is detected
using a novel weight-throwing algorithm that is resilient to task duplication. This is achieved
by replacing the scalar weights of Mattern’s classical termination detection algorithm [Mat89]
with weight intervals rendering the addition of weights idempotent.

2.6 Distributed SAT Solver for Desktop Grids
The Satisfiability (SAT) problem is the decision problem whether there is a satisfying solution
to a given boolean formula. SAT solving was the first problem shown to be NP-complete in
1971 by Cook [Coo71] and today is an enabling technology for many important application
domains. Prominent examples are electronic design automation [VB01], artificial intelligence
[KS92], scheduling [CB94], and cryptography [MM00]. Despite this success there has been
little progress since the invention of the conflict-driven clause-learning SAT solving algorithm
around the turn of the millennium and there are still many problems that can’t be solved
by today’s state-of-the-art sequential solvers. With the advent of multicore CPUs, shared
memory parallel SAT solvers have emerged [HJS09a]. However, until manycore CPUs with
a significant number of cores are common, they are able to achieve moderate speedups only.
The next frontier in parallel SAT solving are massively parallel approaches that employ

hundreds or even thousands of processors with distributed memory to open up new perfor-
mance dimensions and to tackle problems that are way beyond the capability of today’s
mostly centrally organized parallel solvers. Satciety [SB10a, SB10b] is a first step towards
this new breed of parallel SAT solvers able to operate within the highly demanding Desktop
Grid environment with heterogeneous and volatile resources yet still yielding substantial
speedups compared to a state-of-the-art sequential solver. Satciety leverages Cohe-
sion’s distributed task pool and Orbweb’s Peer-to-Peer communication facilities to realize
the first fault-tolerant Desktop Grid-enabled distributed SAT solver with inter-peer adaptive
and topology-aware knowledge exchange.

1 As long as the central system components are not affected by a failure.



3 Structure of this Thesis
The rest of this thesis is structured as follows: Part II discusses general related work. It is
complemented with focused treatments of related work concerning the respective topic in
the Parts III-VI, and in Part VIII. Part III describes i-OSGi the adjustable module isolation
system which is part of Cohesion’s extensible core. Part IV summarizes the Peer-to-
Peer management framework used to tackle the challenges related to the management
of the large number of entities in multi-authority Desktop Grid environments. Part V is
devoted to Orbweb the novel hybrid P2P network substrate. The fundamental concepts
of peer groups and virtual peer topologies are introduced and their realization on top of
the mature XMPP standard is described. The scalability and efficiency of Orbweb is
substantiated with a thorough performance evaluation. Part VI summarizes the information
aggregation method that takes the capabilities of peers into account when distributing
the onus of performing system-wide information aggregation at a large scale. In Part VII
Cohesion’s fault-tolerant distributed task pool is discussed that lays the foundations for
performing large-scale task-parallel computations in Desktop Grids. Part VIII describes
Satciety, a distributed SAT solver realized on top of Cohesion. The part details how
the services of the platform are leveraged to tackle various domain-specific challenges, first
and foremost scalable knowledge exchange. Satciety represents the state-of-the-art in
distributed SAT solving. Finally, Part IX summarizes the results of this thesis and identifies
opportunities for future research.

As outlined above the contributions of this thesis are manifold. Due to length restrictions
not all contributions can be discussed in full detail. Hence, Part IV and Part VI are summaries
of the respective topic. The interested reader is referred to the publications listed on the
cover page of the respective part.
For readers not familiar with scalability theory there is a primer in Appendix A. Module

definitions and protocol specifications in Parts V and VII use the model and notation
introduced by Cachin et al. in [CRG11]. A condensed summary of both can be found in
Appendix B.
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During the last 15 years a plethora of Desktop Grid Computing systems have been
created and their number is still growing rapidly. The discussion of related work presented
in this part is limited to Desktop Grid Computing systems that have at least one aspect
or goal in common with Cohesion. In particular, we do not cover plain Client/Server-
based platforms [CCEB03, And04, BWKW05, CDF+05, KKF+09]. The reader interested
in details on this kind of systems is referred to one of the many surveys on the topic
[Sar01, CME04, CKB+07, FHL+08, VC08, ZLL11]. The most comprehensive yet still
incomplete survey we are aware of proposes a taxonomy based on 28 properties and classifies
16 Desktop Grid Computing systems [CBK+08].

The systems of interest within the context of this thesis covered throughout the three
chapters1 of this part . . .

. . . open up new application classes beyond embarrassingly parallel (also known as trivially
parallel) applications. Supported application classes and programming models are
fully-strict multi-threading [BBB96], distributed shared memory with custom semantics
[BKKW99], Bulk Synchronous Parallel applications [Sar99], applications consisting of
a finite number of independent and irregular tasks [FKS10], general [WTK07, NH09]
and DAG-style [AB07, ACJ10] workflows, as well as Branch-and-Bound [NC05] and
Divide-and-Conquer [vNWJB10] applications. Some systems [KSS05, GR07, LAGS09,
LSG10] even try to implement support for tightly-coupled parallel applications using
the MPI programming model. However, as indicated by various performance studies,
the synchronous nature of MPI doesn’t fit well with the volatility and heterogeneity
of Desktop Grid environments. Finally, there are research efforts [FHC08, CSKT08]
aimed at providing support for data-intensive applications.

. . . improve scalability by incorporating methods and techniques from the realm of Peer-
to-Peer systems. The main weakness of classical systems with respect to scalability
is centralized scheduling. Thus, hierarchical [ELvD+96, VNRS02, KSS05, TB05],
superpeer-based [TS10, MCT+09, BZH06], and decentralized [MMB03, DJW+03,
MK05, LZZ+05, CBL07, FFM06, KNM+07, FFM06, KNM+07, ZYX09, DWH09]
scheduling techniques for Desktop Grid Computing systems have been devised. Some
approaches [BEDSV04, CBG+06, ZL06] are sensitive to environmental conditions like
the degree of volatility or heterogeneity.

. . . employ Peer-to-Peer concepts on the organizational layer [CM02], implement market-
oriented approaches [RN00, LK00, BV01] to attract a larger number of resource
donors and foster interoperability between different Desktop Grids [ACJ09], between
Desktop Grids and Service Grids [FHL+08, FKBG10], and between Desktop Grids and
Clusters [vNWJB10, SBB+11].

Cohesion is unique among these projects for several reasons: First of all, it is the only
approach capable of solving ISPs in highly volatile environments. While systems like Atlas

1 Note that some of the systems described hereinafter contribute in several of these areas. Nevertheless,
they appear only once in the following chapters. However, their contributions in the other areas are
discussed as well.
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[BBB96] and Javelin [NC05] support dynamic problem decomposition and load balancing,
they are not designed to cope with high volatility. CONFIIT [FKS10] on the other hand in
principal supports solving irregular problems under heavy churn but with fixed decomposition
granularity only and using global knowledge. Second, Cohesion approaches distributed
computing in Desktop Grids from an end-to-end perspective addressing challenges on the
whole software stack. In this regard, Ibis [BMvN+10] and ProActive [CDDCL06] are most
similar. However, they are not explicitly designed for Desktop Grids and hence do not address
specific issues like efficient isolated application execution in multi-authority environments.
Finally, Cohesion fosters interoperability from the ground up by facilitating technology
based on open standards whenever possible instead of deploying proprietary solutions.



4 Application Support

4.1 Task-Parallel Applications
Bayanihan [Sar98, SH99] is a framework based on a Master/Worker execution model for
conducting Desktop Grid related research. It is designed to be extensible on all levels of
the system but is no multi-application middleware. Using Bayanihan an embarrassingly
parallel application is reported [Sar98] to be executed with a promising efficiency of 92.8%,
however, on a small ensemble of only eight processors. Efficiencies for a fractal image
computing application are between 1% and 91% in a 16-node setup [SH99]. This wide
range is due to different task granularities that are not dynamically adapted in Bayanihan.
Later, the Bulk Synchronous Parallel (BSP) programming model was implemented on top
of Bayanihan [Sar99]. BSP applications are structured as a sequence of parallel supersteps
separated by barrier synchronization. The Bayanihan system was complemented with eager
scheduling, checkpointing, and sabotage tolerance mechanisms based on two techniques
called majority voting and spot-checking proposed by the same authors [SH99]. Majority
voting schedules tasks multiple times and accepts a result only if it is reported by a majority
of the processors. Spot checking is a probabilistic method to verify the trustworthiness
of workers by precomputing randomly chosen tasks and comparing that result to those
returned by the workers. If a mismatch occurs the offending worker is blacklisted. The BSP
model was applied to several applications with different degrees of coupling ranging from
embarrassingly parallel to tightly-coupled. The resulting efficiencies for the embarrassingly
parallel application class are ≈ 85% for fractal image computing and ≈ 45% for parallel
matrix multiplication. Performing a tightly-coupled Jacobi iteration1 in parallel resulted in a
40-fold slowdown.

Charlotte [BKKW99] is a parallel virtual machine implementing a shared memory archi-
tecture with Concurrent Read, Concurrent Write Common (CRCW-Common) semantics.
Parallelism is expressed using routines which are code snippets embedded into sequential
code that are to be executed as tasks in parallel. CRCW-Common means that all routines
may read from any memory location and write to any common location as long as all writing
routines write the same value. Reads are done at the beginning of a parallel step, writes
become visible at the end. Routines are assigned to processors using self-scheduling in
bunches. Self-scheduling systems are able to adapt to changing resource availability by
having processors actively fetch outstanding tasks in a self service manner. Bunching , i.e.,
the aggregation of several tasks to be handled as a single one with respect to scheduling
is used to reduce task assignment overhead, to hide communication latency, and to allow

1 The Jacobi Method is an algorithm from the field of numerical linear algebra for solving a certain type
of systems of linear equations.
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for writing fine-grained applications. (N-1)-resiliency is achieved using eager scheduling
[KPS90]. Charlotte does not allow for dynamic decomposition. The reported efficiency for
an embarrassingly parallel application on a setup of 16 stable nodes communicating over
a (compared to the power of the compute nodes) high performance network is 91%. The
efficiency for four volatile nodes is reported to be 88%.

Computation Over Network for FIIT (CONFIIT) [FKS10] is a purely decentralized (N-1)-
resilient Peer-to-Peer Computing middleware. It is tailored to applications that are composed
of a Finite number of Independent and Irregular Tasks (FIIT). Note that FITT applications
differ from task-parallel ISP applications in two respects: First, FITT tasks are independent
while ISP tasks are not. Second, FIIT tasks are of finite number, while ISP tasks are
decomposed dynamically into subtasks as needed. CONFIIT nodes build a logical ring using
an existing ring maintenance protocol [PDH00] enhanced with (N-1)-resiliency. A token is
routed along the ring that is used for coordination and communication. Like Bayanihan,
CONFITT does not allow for dynamic decomposition. All tasks of the computation are
generated in advance and made available on all nodes. Hence, the impact of task granularity
is significant: while generating too many tasks introduces excess computation, generating
to few causes processor idling. Guessing a good granularity poses a serious challenge to
application developers. This is especially true in the context of FITT applications where
tasks are irregular with run times that are hard or even impossible to predict. A per-node
local scheduler assigns open tasks randomly. When a task is done, the result is sent around
the ring using the token, which removes the task from the list of open tasks on all nodes.
As a task may be scheduled by multiple nodes concurrently, CONFIIT implements a kind of
randomized eager scheduling . Termination detection is trivial as all nodes maintain a list
of all open tasks. This N-fold replication scheme provides for CONFIIT’s (N-1)-resiliency.
Obviously, the performance of CONFITT crucially depends on how well the nodes’ positions
in the overlay matches their geographic distribution. The impact of the quality of this
mapping on application performance is evaluated in [SBB+11] on 60 nodes of the Grid’5000
testbed [BCC+06] for a worst case and an optimum mapping. The authors find that this
impact for an application solving the Langford problem [Knu08] is negligible. They attribute
this interesting fact to CONFIIT’s ability to overlap computation and communication enabled
by the strategy to immediately schedule a new task when a task is finished without waiting
for the token to return.

4.1.1 Dynamic Decomposition
Atlas [BBB96] is an offspring of the Cilk-NOW system [BL97] and the first system that
combined adaptive parallelism and resiliency. Atlas adopts the fully-strict multi-threading
also known as the fork/join programming model from Cilk [BJK+95] in which a program
consists of at least one procedure that is comprised of a sequence of tasks. Tasks can spawn
child tasks and successor tasks. The former are eligible to be farmed out for computation by
other nodes, the latter are executed locally after all input arguments are available. Random
stealing is used to balance load among the nodes of the system. Resiliency is achieved using
fully distributed checkpointing that guarantees eventual completion of all tasks but may
cause significant overheads as losing a task triggers restoration of the whole subtree rooted
at that task.
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Javelin [NC05] is a distributed computing system for Branch-and-Bound applications like
the Traveling Sales Person (TSP) problem. Branch-and-Bound algorithms search for an
optimum within a set of feasible solutions with exponential cardinality by pruning unexplored
parts of the search space with solutions having costs above the currently best known optimal
solution. Pruning results in irregularity, making Branch-and-Bound applications belong
to the class of ISPs. Javelin supports adaptively parallel computing, i.e., can cope with
volatile resources, by employing a number of previously known techniques: First, tasks are
decomposed dynamically until an atomicity threshold is reached. Limiting the decomposition
depth ensures that the overhead of task management does not impair performance. Second,
load is balanced using structured work-stealing along the edges of a centrally managed
dynamically repaired host tree. Third, eager scheduling tailored to the specifics of Branch-
and-Bound applications is used when a host is unable to get work from its neighbors. Besides
host tree management, the node on which the job has been submitted is also responsible
for maintaining the currently best bound. On change, the new bound is broadcast by
propagating the new bound along the edges of the host tree. A novel aspect of Javelin is
dynamic depth expansion which increases the maximum decomposition depth over time
such that hard tasks running for a long time can be decomposed into smaller subtasks
towards the end of the computation. The authors report an efficiency of ≈ 56% for 1024
nodes. According to the authors the system is not suitable for highly volatile Desktop Grid
environments as one of its fundamental assumptions is that the number of failures/departures
is small compared to the number of processors.

4.1.2 Divide-and-Conquer
Ibis [BMvN+10] is a distributed programming and deployment system that consists of two
layers: a high performance communication library called the Ibis Portability Layer (IPL)
on top of which several programming models have been implemented. And a middleware
interoperability layer called the Java Grid Application Toolkit (JavaGAT) that is used for
deploying and managing distributed applications. Satin [vNWJB10] – one of the programming
models provided by Ibis – supports the execution of divide-and-conquer applications in
volatile and heterogeneous environments. Load balancing is done using cluster-aware random
stealing [vNKB01] which is variant of random stealing that avoids high cross-site bandwidth
consumption by emitting a steal request only once to a single remote cluster when a node
becomes idle. Fault-tolerance is achieved using a combination of checkpointing and a
mechanism called orphan work saving [WvNMB05]. An orphan is a subtask that has lost
its parent task, i.e., the task it was split off from. Satin restores parent/child relationships
between orphans and their parent and thus preserves the work done for processing orphan
tasks using a lightweight recovery protocol. The efficiency of Satin has been substantiated
in a whole string of experiments [vNKB01, WvNMB05, vNWJB10]. However, Satin cannot
be used for solving ISPs efficiently. This is because problem decomposition in divide-and-
conquer systems is continued until the subproblems become simple enough to be solved by
a single processor. When this condition holds is unfortunately undecidable for ISPs.



58 4 Application Support

4.2 MPI
P2P-MPI [GR07] is a distributed computing platform for fault-tolerant execution of Message
Passing Interface (MPI) [Pac96] applications on large-scale volatile systems. In contrast
to other systems targeted to the same combination of application class and execution
environment, P2P-MPI fault management [GJR09] is based on active replication [Sch90]
rather than checkpointing. Replication is done by having a group of processes act as a
single logical process. Members of a process group proceed in synchrony controlled by a
master node. The master node is replaced by one of the backup nodes in case of failure.
The overhead induced by synchronous execution leads to longer runtime which in turn
increases the probability for the occurrence of fault during the computation. Based on this
observation, the authors describe how the optimum replication degree can be computed when
the system’s failure trace and some application-dependent metrics are known. Unfortunately,
no experimental comparison to a system based on a checkpointing approach is given.
However, the fact that n-fold replication on p processors limits the achievable speedup to
p/n for replication-based systems makes it likely that checkpointing approaches are superior.
VolpexPyMPI [LSG10] is a Python-based MPI library claimed to be capable of executing

unaltered MPI programs in Desktop Grid environments. This is made possible by replicating
processes and by using pull-based communication with message logging. With slowdowns
between 1.5 and 6.5 the system performs badly compared to the C-based VolpexMPI
[LAGS09] implementation in case of unreplicated execution. Adding replication results in an
additional penalty of up to 50% for threefold replication. The evaluation is flawed in several
ways: First, no comparison to standard MPI has been conducted. Second, the results have
been obtained in a cluster with homogenous high performance nodes and a high performance
interconnect. Hence, the utility of the system within a Desktop Grid environment has to be
doubted.

4.3 Distributed Objects
ProActive [CDDCL06] is a general framework for parallel and distributed computing based
on a distributed object programming model with weak migration support and location
independent addressing. ProActive deploys an unstructured pure Peer-to-Peer network
maintained by a custom protocol that establishes a peer list of configurable length. The
protocol uses heartbeating to remove failed peers from the list and on-demand random
neighborhood exploration to find new peers. Fault-tolerance is based on rollback-recovery .
Applications can choose from distributed checkpointing [CL85] and pessimistic message
logging1 depending on their requirements and the properties of the environment they are
executed in. Load balancing of active objects is done using a variant of random pushing that
balances load between processors only if the randomly selected victim peer2 is underloaded
and its rank, that quantifies its relative processing speed, is similar or higher [BJCCP05].

1 A pessimistic message logging protocol is one in which no process p ever sends a message m until it
knows that all messages delivered before sending m are logged [AM98].

2 The victim peer is the peer to which work is pushed.
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ProActive’s scalability and performance has been substantiated in various experimentations
with up-to 2700 processors in Desktop Grid, Service Grid [CDDCL06], and mixed setups
[CCM07].

4.4 Workflows
XtremWeb-CH (XWCH) [AB07] is an upgraded version of XtremWeb [CDF+05]. It strives
for providing a high performance Peer-to-Peer platform for executing applications that can be
expressed as a Directed Acyclic Graph (DAG). While the system allows for direct and relayed
inter-worker communication and hence allows for executing applications with dependent
tasks, the scheduling algorithm is centralized and neither resilient to node failures nor to
node departures. Hence, the system’s suitability for Desktop Grid environments is limited
PastryGrid [ACJ10] broadens the application support of institutional Desktop Grids to

tasks with precedences. As the name indicates the system employs a Pastry [RD01b] overlay
for scalable operation. Scheduling of jobs described by a DAG is done in a decentralized
way by having peers processing a given task schedule this task’s successors autonomously.
The system supports static task graphs only and thus is not suitable for applications with
dynamic irregular structure. Fault-tolerance is achieved by a passive replication approach
based on PAST [RD01a]. The scalability provided on the network layer is not preserved on
the coordination layer as PastryGrid uses a centralized yet per application different failure
detector based on probing. However, the impact of this flaw is not that significant as
institutional Desktop Grids are hardly larger than a few thousand nodes – a size centralized
architectures can easily handle. Unfortunately, no meaningful performance analysis for the
system without failures was conducted. The impact of faults affecting different parts of the
system is substantial [ACJM10]: The runtime of an application consisting of 128 parallel
jobs (no dependencies) on a testbed comprised of 200 machines is reported to increase by
40% if a single worker peer, 57% if the rendezvous peer, and 15% if the peer performing
failure detection fails.
The Peer-to-Peer Desktop Grid system of Wang et al. [WTK07] aims at increasing the

dependability for general workflow-based computations. Dependability in their context
is the ratio of the performance on a given problem with and without failures. Their
approach is based on a centralized workflow orchestrator that is responsible for translating
the workflow into individual tasks that are scheduled as soon as their dependencies are
satisfied. Dependability is achieved by a redundant dispatch strategy that assigns workflow
tasks multiple times to eliminate performance degradation in case a task gets lost due to
a peer failure. The originality of the approach lays in a scheme to dynamically adjust the
redundancy level based on the current system state, in particular, the number of available
workers, the number of incomplete tasks, and the average failure rate.

Aneka [CNJ+07] is a modular service-oriented platform for Desktop Grid Computing.
Aneka supersedes the Alchemi [LBRV05] platform that was restricted to the Master/Worker
execution model and a distributed object programming model. In contrast, Aneka is designed
to be able to balance various types of workloads and to support several different programming
models including distributed threads, bag-of-tasks, MPI, and general workflows. It supports
multi-application scenarios and achieves extensibility through a configurable container for
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pluggable services. Beyond these architectural concepts, not much information about the
system is available. The parallel efficiencies achieved for a protein-folding bag-of-tasks and
a matrix multiplication application on a student lab testbed consisting of 30 non-volatile
nodes with a Fast Ethernet interconnect are ≈ 56% and ≈ 53% respectively. These figures
may however result from a badly chosen task granularity for the bag-of-tasks application
and a general mismatch between tightly-coupled applications like matrix multiplication and
the Desktop Grid paradigm.

4.5 Data-Intensive Applications
BitDew [FHC08] is a data management system that strives for extending the scope of
Desktop Grids towards data-intensive applications. BitDew supersedes ad-hoc centralized
data management solutions of existing Desktop Grid Computing platforms with a scalable
fault-tolerant solution for data indexing and distribution based on Peer-to-Peer methods and
protocols. BitDew provides a framework and an API to transparently utilize existing lookup
techniques and data distribution protocols. Key aspects of how to provision a data item
are controlled by attached metadata. This includes the replication level, fault-tolerance,
i.e., whether to create a new replica when an existing fails, lifetime, affinity, i.e., if a data
item should be collocated with another one, and hints about the protocol to be used
for distribution. BitDew uses a DHT-based data catalog for data indexing and lookup.
For a Desktop Grid spanning 250 nodes, the authors report on a 5-fold speedup for an
embarrassingly parallel application from the field of biology with a large gene database (≈
2.5 GB) required on each node. However, this improvement is largely due to the efficiency
of the BitTorrent [bit, LPP07] protocol used to distribute the database.
Costa et al. [CSKT08] compare pure Peer-to-Peer data distribution using BitTorrent

to a (now discontinued) superpeer-based data caching architecture called P2P-ADICS.
They argue that whilst the former is better with respect to available aggregate bandwidth,
superpeer-based approaches provide superior security as only trusted peers may be promoted
to become data caching superpeers. This renders denial-of-service attacks more difficult to
stage.
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5.1 Hierarchical Approaches
JXTA [TAA+03] is a protocol suite for Peer-to-Peer applications1 that provides a powerful
peer group abstraction that can be used to build hierarchical systems. A whole string
of projects have been built on top of JXTA including Jalapeno [TB05], JNGI [VNRS02],
Personal Power Plant [KSS05], P2P-MPI [GR07], and OurGrid [BAV+07]. The last two
have migrated to other network technologies for reasons discussed in Chapter 23. They do
not implement a hierarchical approach and are thus presented in Chapter 4 and Section 5.2.

Jalapeno [TB05] is a hierarchical approach that uses JXTA peer groups to setup clusters
of medium size (up-to 100 peers) called worker groups that are managed by a single manager
peer. Manager peers are responsible for decomposing tasks in a two step process: First,
the job is split into a set of subjobs of which all but one are forwarded to other managers.
Second, the subjob kept local is decomposed into tasks to be handled by workers attached
to the manager. However, both decomposition steps are not performed on demand but up
to a preconfigured granularity in a similar way as in Javelin. Work stealing is performed to
balance work within worker groups. The authors report on very good parallel efficiency of
91% for a RC5 brute-force key cracking application and a moderate efficiency of 70% for
ray-tracing. However, both benchmarks were run in a small setup of eight nodes and thus
are not qualified to assess the scalability of the system. The efficiency of the ray-tracing
application shows that the lack of support for dynamic decomposition renders Jalapeno less
suitable for solving ISPs.
The Personal Power Plant (P3) [KSS05] adds a thin layer on top of JXTA to simplify

access to network-related functionality. On top of this facade different distributed computing
libraries are deployed. This includes libraries with support for MPI-style message passing and
embarrassingly parallel applications. The platform provides no fault-tolerance mechanisms
and is thus not suitable for Desktop Grid Computing. The system achieves a 20-fold speedup
in a 32 node cluster on a RC5 brute-force key cracking application. However, this moderate
result is due to a task granularity of 1.4 seconds, which has been chosen by at least an
order of magnitude to low by the authors. Unfortunately, as in Jalapeno and CONFIIT task
granularity is static. Thus extensive experimentation is required to find a suitable value.
JNGI [VNRS02] is a generic distributed computing platform. Scalability is achieved by

organizing peers in a hierarchy of arbitrary depth by means of JXTA’s peer group abstraction.
The assignment of peers to groups can be done according to similarity [BEDSV04] with
respect to qualitative and quantitative metrics. This concept called similarity groups can be
used to transparently group peers according to their network distance in wide-area setups.

1 JXTA is introduced in detail in Chapter 23.
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As peers interact intensively only when they are member of the same group, doing so results
in a significant rise in efficiency due to increased bandwidth and reduced latency.

Condor [LLM88] is a centralized HTC system using COTS components. Condor nodes are
organized into pools with a manually configured central manager responsible for scheduling
jobs using a matchmaking mechanism [RLS00] that finds matching resources for submitted
jobs. Condor supports job migration and checkpointing [LS99] and thus can handle resource
volatility. Condor pools can be federated by a flocking mechanism [ELvD+96] that allows
for cross-pool resource sharing. However, flocking relies on manual configuration.

5.2 Superpeer-Based Scheduling
OurGrid [BAV+07] is a hierarchical superpeer-based Peer-to-Peer Desktop Grid targeted to
bag-of-tasks applications. The architecture consists of three layers: The working machines
on the lowest layer are responsible for actually executing tasks pushed to them by their single
associated superpeer acting as a cluster-head. The superpeer performs Work Queue with
Replication (WQR) [dSCB03] scheduling. WQR is essentially the same as eager scheduling:
It replicates and concurrently executes each task multiple times to provide fault-tolerance
and to compensate for heterogeneity. Thus, WQR-based systems do not achieve high parallel
efficiency. As task replicas are monitored by superpeers in order to reschedule abnormally
terminated tasks, the system could have implemented reactive fault-tolerance as well to
reschedule lost tasks on demand. Superpeers connect to an ultrapeer – called the Core Peer
in OurGrid – that provides a registry of available superpeers queried by a superpeer on job
scheduling. OurGrid provides a XEN-based sandbox called Sandboxing Without A Name
(SWAN) [CAG+06] for isolated task execution.

ShareGrid [ACG10] extends OurGrid by providing firewall traversal based on Virtual
Private Networking (VPN), a portal server for web-based user access, and a storage server
for persisting input and output data. ShareGrid refrains from using SWAN because of its
high execution overhead, its limited number of supported platforms, and the requirement
for administrative privileges to be setup. Despite the most simple bag-of-tasks application
type and very low rates of abnormal task termination, the reported application level parallel
efficiency for a range of applications – although based on the Equivalent Reference Machines
(ERM) [KTB+04] metric – is comparatively low.

ad hoc Grid [TS10] strives to remove the necessity for centralized administration efforts in
the OurGrid system. This is achieved by using IP multicast communication to dynamically
elect and announce OurGrid superpeers. While this improves resiliency, the limited adoption
of IP multicast may hamper deployment. The impact on computing performance with no
failures is 1.5% and thus negligible. Unfortunately, no meaningful results are available for
setups with failures.
The Peer-to-Peer Desktop Grid system for bag-of-tasks applications proposed by Mas-

troianni et al. [MCT+09] employs an unstructured superpeer network to match descriptions
of and requests for tasks and the data required for their execution. The system relies
on flooding to locate jobs and data descriptions matching a given request. Whilst being
conceptually simple, the flooding approach is of limited scalability and does not guarantee
that a satisfiable request is actually satisfied. To increase locality and fault-tolerance, data



5.3 Decentralized Scheduling 63

is replicated throughout the super-peer network. The simulation-based parallel efficiency for
a job consisting of 1000 tasks with an average execution time of 500 seconds and a size
of 7.2 MB in a network consisting of 1000 workers, 100 superpeers of which 49 are used
as data caches, and a single data source is 6%. This low efficiency is caused by 10-fold
task replication the system assumes to be required by applications to enhance statistical
accuracy or to minimize the effects caused by faulty or malicious workers.

Butt et al. [BZH06] extend Condor ’s flocking mechanism to become self-organizing using
the Pastry [RD01b] overlay. The role of the central manager is assigned dynamically to the
node whose identifier is numerically closest to a certain identifier in the Pastry overlay. By
replicating state with its n closest neighbors the central manager becomes (N −1)-resilient.
For the purpose of flocking, the central managers of all Condor pools form another overlay
instance on top of which descriptions of idle resources are made available to remote managers.
Performance numbers given by the authors substantiate the scalability of their approach.
However, no evaluation concerning the attainable efficiency neither in stable nor in volatile
setups has been conducted.

5.3 Decentralized Scheduling
5.3.1 Probabilistic Scheduling
Paradropper [DJW+03] strives to provide a novel Peer-to-Peer network substrate for Global
Computing. However, the originality of the proposed overlay construction algorithm is
limited, as it is very similar to that of the SCAMP [GKM01] group membership service.
Paradropper ’s load balancing algorithm can be deployed on any overlay network featuring
a higher clustering than a random network of the same size. It is based on the idea of
pushing surplus tasks to that neighbor with the lowest load level for a finite number of times.
This way a task is eventually transferred to an underloaded node with high probability. The
authors do not provide a meaningful experimental analysis as they compare the efficiency of
their algorithm to itself on a random network only, but not to other approaches.

Di et al. report on a gossip-based load balancing approach for unstructured Peer-to-Peer
networks [DWH09] based on the Newscast [VJvS03] protocol that maintains a random
network by periodically dropping existing connections and connecting to other peers selected
at random. Although the system is not yet fully implemented, load balancing is supposed to
be done by process migration. The proposed algorithm tries to achieve optimal load balance
with minimal migration cost. Detection of over-/underloaded peers is done by comparison
to the globally aggregated average load computed by a gossip-based aggregation protocol.
Each overloaded peer periodically selects underloaded neighbors to negotiate transferal of
load. To avoid reassignment conflicts, i.e., several peers migrate processes to the same
target peer resulting in an even greater imbalance, an overloaded peer migrates processes
to a peer that is underloaded to the same extent with respect to some metric. Thus, the
probability of two peers selecting the same target peer is substantially reduced. Simulation
results show that the proposed system achieves very good load balance while causing very
low average process migration costs that are independent of system size.
P2P-Tuple [NH09] deploys a fully distributed tuple space [Gel85] based on the PAST
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[RD01a] Peer-to-Peer distributed storage system to store task-related data of bag-of-tasks
applications. The infrastructure is multiplexed by using a SCRIBE [CDKR02] multicast
group for each application. Fault-tolerance is approached in a probabilistic way using replicas
and erasure codes based on Rabin’s Information Dispersal Algorithm (IDA) [Rab89]. The
systems resiliency to node failures can be tuned by selecting a replication factor. Eightfold
replication, for example, ensures task survival under churn for up to two days. Hence,
responsibility of eventual completion for long running jobs is shifted to the submitting client.
The system is evaluated under real-world conditions where it achieves a moderate overall
efficiency of 74% for an embarrassingly parallel application with independent tasks in a
19-node cluster setup and 66% in a 72-node PlanetLab [CCR+03] setup. The comparatively
low parallel efficiency is caused by a randomized scheduling strategy that creates an overhead
of approximately 17%. While P2P-Tuple can be used to execute workflows, it is not suitable
for ISPs or other applications that require for dynamic task decomposition.

5.3.2 Autonomic Scheduling
The Organic Grid (OG) [CBL05] adopts autonomic scheduling [KCCF03] to overcome the
restriction of state-of-the-art Master/Worker-based Desktop Grid systems to embarrassingly
parallel applications. Autonomic scheduling is a decentralized scheduling scheme that only
uses information that is locally available to take a scheduling decision. Thus, the scalability
limitations of metaschedulers used in Grid Computing systems is eliminated, while still
supporting non-trivially parallel applications. OG adapts the idea of autonomic scheduling
to support highly dynamic systems by constantly reconfiguring its tree overlay network that
is used to distribute tasks and collect results. This reconfiguration is done in a way that
ensures that those peers with high task throughput are eventually located near the root of
the tree. As tasks and results travel along the edges of the tree, this scheme minimizes the
average path length between the root and the best performing peers. The tree overlay is also
used for termination detection by propagating results towards the root and fault-tolerance
by having peers store task replicas for all tasks delivered to any child peer. Hence, OG
is in principle suitable for executing diffusing computations with dynamic decomposition.
However, for ISPs a situation may arise where most work gets propagated into a leaf of
the tree where it is no longer available for load balancing. Although, this situation can be
prevented easily by using an alternative performance metric, the time required for performing
the resulting tree reconfigurations – the authors report on slow work diffusion that takes
5 minutes for a small network of 18 nodes – may induce long periods of work imbalance
and thus would seriously impair the system’s overall performance. Although stated by the
authors, the approach is not fully decentralized as the peer where a new task is injected has
to be available until the computation is finished. The authors do not provide any results for
volatile setups although the impact of node failures on a regular application where studied
elsewhere [CBL07].

5.3.3 Agent-based Scheduling
Choi et al. propose an adaptive scheduling approach based on mobile agents [CBG+06].
The originality of their approach is to group peers according to some metrics (like failure
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rate, peer availability, or peer credibility) and to apply a scheduling technique within each
of these groups that best matches the prevailing conditions. While the establishment of
scheduling groups is accomplished by a single dedicated master peer, scheduling is performed
in a decentralized way by scheduling agents that create and distribute task agents within
their associated group. Fault-tolerance is achieved by heartbeating for scheduling agents
and by replication for task agents. According to a performance evaluation on a testbed of
200 nodes, their approach is superior to centralized eager scheduling and yields increases of
3% to 20% in task throughput for a non-volatile setup and of 14% to 120% for a volatile
setup with session times between 5 and 50 minutes.

PPVC [ZYX09] is a Peer-to-Peer Desktop Grid system with agent-based dynamic decom-
position and thus is in principal suitable for ISP execution. However, crucial aspects of the
system including details on the type and structure of the underlying Peer-to-Peer network and
the employed termination detection algorithm have not been published. Furthermore, the
simplistic fault-tolerance mechanism proposed by the authors induces significant inefficiencies
when an intermediary task in the spawn tree gets lost as the whole subtree of descendant
tasks is restored. The parallel efficiency for the N-Queen problem on a testbed consisting of
three nodes is – despite peer failures are not considered – well below 90%.

Messor [MMB03] is a biologically inspired Peer-to-Peer Grid Computing system based on
mobile agents. The natural model of Messor is a particular ant species called Messor Sancta
whose colonies are able to pile objects into clusters. This emergent behavior results from
very simple behavioral patterns of individual ants. While building on the same principles,
Messor agents balance load across the nodes of the system by randomly migrating through
the system searching for overloaded nodes. Once found, the agent again performs a random
walk trying to locate an underloaded node. On success, the agent drops contact information
and starts over. The authors present preliminary test results showing fast dispersion of load.
However, no comparison to other load balancing techniques has been conducted.

5.3.4 Overlay-Based Scheduling
Cluster Computing on the Fly (CCOF) [LZZ+05] aims at creating a scheduling architecture
for Desktop Grids tailored to different kinds of applications. In particular, CCOF announced
support for tree-based search problems – however, contributions in this field are still pending.
A unique feature of CCOF is its timezone-aware scheduler [ZL06]. The scheduler exploits
the fact that Desktop Grids often span hosts located in different time zones and that hosts
are idle at night with high probability. By proactively migrating tasks such that they are
always located at a host in a time zone where it is night, CCOF outperforms classic timezone-
oblivious scheduling approaches as tasks are more likely to be run to completion without
being interrupted. The scheduler is realized using a self-organizing overlay network based on
the Content Addressable Network (CAN) [RFH+01] in which hosts organize themselves in a
way such that those with small time differences are located nearby in the overlay network.
However, the benefit of the approach compared to decentralized systems employing load
balancing and checkpointing techniques has to be doubted as idle cycles during daytime can
be scavenged as well by these systems and progress made on a task is not (completely) lost
when a host departs.

G2:P2P [MK05] is an extension to a previously centrally organized Desktop Grid Computing
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system called G2:Classic [KRS02]. G2:P2P implements a distributed object model, however
with the restriction that each remote method invocation may execute for a short period of
time only. This restriction is due to the system’s weak object migration model that requires
an object to become idle before migration may be initiated. To support volatile systems in
which objects have to be migrated away from departing hosts, object addressing is realized
in a location independent way by using the identifiers of a DHT-based network overlay based
on Pastry [RD01b]. Load balancing is achieved using the well-known DHT approach of
mapping from object identifiers to host identifiers by applying a hash function. To cope
with suboptimal identifier distributions, the authors propose an optimization to level local
imbalances by allowing for placing objects in the direct neighborhood of their target host.
However, this introduces additional overhead to the already expensive multi-hop message
routing scheme of DHTs as method invocation messages routed to a host potentially have
to be forwarded to the real location of the target object which adds another hop to the
routing path. Fault-tolerance in G2:P2P is transparent, fully automated, and adjustable
to satisfy the requirements imposed by the underlying system. However, only one of the
three available schemes assumes a realistic failure model, where hosts crash or leave without
notice and (may) never return. The scheme is based on a combination of checkpointing and
message logging but suffers from high complexity induced by the distributed object model.
Whether it is still able to deliver high efficiency is unclear as no evaluation is given.

Fischer et al. propose a scheduling middleware [FFM06] that provides different methods to
distribute partial task lists for bag-of-tasks applications within a Peer-to-Peer Desktop Grid.
A job is decomposed on submission and the resulting tasks are scheduled for execution right
afterwards. The proposed methods are gossiping, Chord -based broadcast, and a combination
of both. Fault-tolerance is achieved using timeout-based task restarts performed on the
initiating peer that is thus required to be stable until the computation is done. The authors
present results of an experimental evaluation using a synthetic benchmark with uniform
subtasks on a testbed of 160 non-volatile middleware instances running on a 16-node cluster
with a Gigabit Ethernet interconnect. The results indicate that the hybrid approach is
superior to the pure approaches. The achieved parallel efficiencies however are low, ranging
from ≈ 37% for 64 subtasks to ≈ 76% for 256 substasks. These moderate results can be
attributed to the system’s inability to dynamically decompose tasks: For the setup with 64
subtasks not all nodes are taking part in the computation. For the setup with 256 subtasks
any schedule that assigns more than one task to a node puts the execution on that node on
the critical path. In both cases many nodes are idle producing substantial losses in efficiency.
Kim et al. propose a Peer-to-Peer Desktop Grid system that employs DHT overlays to

solve the problem of finding a peer within the system that satisfies the requirements to
solve a given task. This scheduling problem is called the matchmaking problem. The
authors propose two different solving strategies: The first employs tree-based hierarchical
aggregation of peer information to quickly determine whether a matching peer is contained
within the subtree routed at the given peer [KNM+07]. If this is the case the request is
routed to the respective children. Otherwise, the parent peer is visited. This way a matching
peer can be found in O(logN) steps in a network consisting of N peers if such a peer exists.
The second approach puts peers into a Content Addressable Network (CAN) [RFH+01] at
coordinates derived from the capabilities of the peer [KKM+07]. A task can be routed to a
matching peer by simply mapping the task’s requirements to a location within the overlay.
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6.1 Meta- and Integration Approaches
BonjourGrid [ACJ09] is a meta-approach to autonomously orchestrate multiple instances of
existing Institutional Desktop Grid Computing middleware systems based on the Master/-
Worker execution model. BonjourGrid provides multi-application support with per application
fault containment. The system implements a fully decentralized resource discovery service
based on the Bonjour protocol1. The scalability and performance of the discovery subsystem
has been substantiated in a large-scale setup of 300 nodes [AD09]. While fault-tolerance
for workers is handled by the respective Desktop Grid Computing middleware, master nodes
are made resilient using passive replication and virtualization [ACJS10]. One limitation of
BonjourGrid is its lack of support for wide area setups.
Enabling Desktop Grids for e-Science (EDGeS) [FHL+08] is a European effort to make

Desktop and Service Grids interoperable by allowing to seamlessly process jobs from Service
Grids in Desktop Grids and vice versa. Technically this is done using bridging technology
[FKBG10] that uses either Service Grid resources as Desktop Grid nodes or the other way
around. As of now, the proposed approach is only suitable for embarrassingly parallel
applications as communication across the boundaries of a Service Grid is problematic and
the schedulers of the Grids do not cooperate. Which additional application classes can be
supported is yet an open research question.

6.2 Market-Based Approaches
Volunteer Computing has proven to be able to attract a large number of enthusiasts.
However, to tap the full potential of Desktop Grid Computing the set of contributors must
be extended beyond enthusiasts. One approach to attain this goal is to have clients pay
for the resources they consume. This idea led to the emergence of market-based systems
like Popcorn [RN00], JaWS [LK00], the Compute Power Market (CPM) [BV01], and the
Computational Exchange (CX) [CM02]. Common to all these systems is their approach
to trade resources between providers and consumers by means of auction systems and
brokers.

1 Bonjour is Apples implementation of the ZeroConf protocol [SC05].
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Part III

Modularization

Desktop Grid Computing platforms, as well as Enterprise Mashups and Cloud Computing
infrastructures, are representatives of a new breed of systems that leverage the modularity
paradigm to assemble large-scale dynamic applications from modules contributed by different,
possibly untrustworthy providers. Faulty and malicious modules, incompatibility issues, and
lack of per-module resource accounting are major challenges for assembling and operating
such systems. In this part, we describe how these problems are solved by retrofitting module
management systems with the ability to deploy modules to execution environments with
adjustable degree of isolation. We give a formal definition of the underlying hierarchical
Module Isolation Problem and devise an online algorithm to solve it in an incremental
fashion. We discuss how to apply our approach to the state-of-the-art OSGi module
management system that is the nucleus of Cohesion and demonstrate its effectiveness by
an experimental evaluation.

Related Publications
[SB11] Schulz, Sven and Blochinger, Wolfgang: Adjustable Module Isolation for Dis-
tributed Computing Infrastructures, In: The 12th IEEE/ACM International Conference on Grid
Computing (Grid 2011), In press.
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Modularity is the paradigm of building complex systems from smaller loosely-coupled
subsystems that can be designed and implemented independently, yet function together
as a whole. As it fosters flexibility, adaptability, and reusability, modularity has become a
cornerstone in software engineering and represents an important measure to tackle the ever
increasing complexity of today’s IT systems. Since the groundbreaking work of Parnas [Par72]
in the early 1970s, support for modularity has constantly evolved from build-time approaches
offered by programming languages, like Modula, to sophisticated Module Management
Systems that allow for changing the composition and configuration of running systems
on the fly. A major advantage of such systems is a significantly increased availability as
downtime caused by maintenance outages can be minimized.

Today, module management systems are often employed in multi-authority environments,
where modules come from different, possibly untrusted sources and are used concurrently by
multiple independent parties. Apart from Desktop Grid systems, Enterprise Mashups [mas]
and Cloud Computing infrastructures [RDA09, APG+10] are examples for this new kind of
systems. Ensuring essential system properties like system security, process safety, resource
accountability, and consistency of configuration is very challenging for these computing
environments and has not been solved satisfactorily yet.

We propose to tackle these challenges by providing customized isolation environments act-
ing both as a security sandbox and as an ad-hoc, platform-independent runtime environment
for modules. The distinguishing features of our language and framework agnostic approach
are fully automated operation, tunable degree of isolation between modules, efficient use of
host system resources, sufficient scalability to support a large number of modules, flexible
specification of isolation constraints, and support for multiple authorities that can specify
such constraints. Further contributions are a formal definition of the (Minimum) Module
Isolation Problem and the application of our approach to the OSGi module management
system, which is the de facto standard for modular applications in the Java universe.
The rest of this part is organized as follows: In Chapter 7, we substantiate the idea of

an Isolating Module Management System by giving an informal definition, identifying key
requirements, and demonstrating the relevance of our work by discussing typical application
scenarios. In Chapter 8, we give a formal definition of the Module Isolation Problem, show
how the degree of isolation between individual modules can be made adjustable, and present
an online algorithm that can be efficiently employed in highly dynamic environments. Chapter
9 describes the application of our approach to OSGi and discusses interesting aspects of our
prototypical implementation called i-OSGi, in particular a performance evaluation. Related
work is discussed in Chapter 10.
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7.1 Definition and Requirements
A Module Management System (MMS) consists of a set of modules and functionality to add
and remove modules from this set at runtime. An Isolating Module Management System
(IMMS) is an MMS that maintains a dynamic set of isolation environments to which modules
are deployed such that a set of isolation constraints is satisfied. The most simple IMMS
would create a dedicated isolation environment for each module. As discussed in Chapter
10, existing solutions work this way. Our approach is more sophisticated as it is designed to
satisfy the following six requirements:

R1 Isolating modules entails overhead. In particular, inter-module interaction becomes
more expensive when modules no longer share the same address space. Thus, the
degree of isolation between modules must be adjustable to allow for balancing out
overhead and isolation requirements.

R2 Isolation environments consume host system resources, e.g., main memory and file
handles. Moreover, they must be configured, launched, and – when no longer required
– destroyed. These management operations incur additional costs. Thus, the number
of isolation environments should be minimized by sharing them whenever possible.

R3 Large modular applications can consist of hundreds of modules. This complexity
renders manual configuration of an isolation system infeasible and requires a fully
automated solution to configure the isolation environment. Configuration must be
done in an efficient and scalable way to support a sufficiently large number of modules.

R4 The mechanism to define isolation constraints must be flexible and expressive enough
to support a broad range of constraint types.

R5 MMS-based approaches are typically used in multi-authority environments. Thus, an
IMMS has to allow for multiple parties to contribute constraints.

R6 The fact that a module runs within an isolated environment must be transparent
to both the module itself and the remainder of the system. This non-intrusiveness
ensures that module development is independent of the details of later isolation.

7.2 Application Scenarios
To substantiate the usefulness of our IMMS approach, we discuss a number of scenarios
where the ability to isolate modules is particularly advantageous.
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7.2.1 Security/Safety
A common technique for ensuring security and safety in modular systems is trust. However,
relying on trust-based mechanisms is not an ideal solution: First, there are bugs in each and
every software system. Although the issuer of a module is trusted, a yet unknown bug may
seriously impair the host system. Second, there may be a need for using a module despite its
source being untrustworthy, because for example there are no alternative implementations of
the required functionality available and a reimplementation is too expensive. On the other
hand, permission-based systems are often fine-grained, rendering the task of specifying what
a specific module may and may not do very time-consuming and error-prone. Moreover, the
resource provider may be no IT expert and simply is not able to decide whether a given
set of permissions poses a threat to his system or not. Even if the execution environment
provides additional security mechanisms, as it is for example the case for the Java Virtual
Machine (JVM), the protection may be incomplete. An example is native code attached
over the Java Native Interface (JNI) which runs outside the security sandbox, exposing the
system to serious threats like buffer overflow attacks or format string attacks.

In all discussed cases an IMMS can be used to put the potentially dangerous module under
quarantine. Auditing security related actions within an isolated environment with limited or
controlled access to the host system can then be used to decide whether the module should
be released from quarantine after some time. In case of an incident the malicious module
can be terminated and removed without harming other parts of the system. This approach
allows using the module while keeping the risk of being damaged low.

7.2.2 Compatibility
Today’s IT world is highly heterogeneous. Integrating components written in different
languages and/or for different platforms has become an inevitable yet expensive aspect of
software development. Java modules incorporating native code for example are platform
dependent and thus have to be explicitly ported to all target systems. Using our IMMS
such modules can be run in a customized environment with a compatible setup causing no
additional development effort. Another source of incompatibilities are version conflicts in
the dependency sets of modules. Although some MMS allow for deploying several versions
of a module concurrently, the resulting duplication wastes resources. Even worse modules
may publish or consume singleton resources rendering parallel deployment impossible.

7.2.3 Resource Accounting
Accounting for the consumption of resources, such as CPU time, memory, or persistent
storage is a vital prerequisite for many real-world applications in particular in the field of Cloud
Computing. It is necessary for billing as well as for preventing malicious or accidental resource
overuse, such as denial-of-service attacks. However, predominant execution platforms, like
the Java or Python, lack support for mature resource accounting mechanisms. Existing
approaches either require a modified JVM [CDT03] or contribute considerably to the overall
execution time [HB08]. With module isolation, lightweight accounting facilities of modern
operating systems can be leveraged by running specific modules in a separate OS instance.



8 Adjustable Module Isolation
In this chapter, we present an algorithmic framework to incrementally compute the mapping
of modules to isolation environments. At its core lies the basic Module Isolation Problem
(MIP), for which we first give a formal definition. Subsequently, we describe, how we can
achieve a variable degree of isolation between modules (R1,R2) employing a hierarchical
approach which is based on solving the corresponding minimum MIP on multiple layers.
Finally, we derive an online algorithm that is able to compute solutions incrementally every
time the system composition is changed by adding or removing a module. We also show
that the basic MIP is – and hence all derived problems are – NP-complete. In Chapter 9, we
deal with selecting suitable approximations and heuristics for implementing our algorithmic
framework that allow us to handle several hundred modules (R3).

8.1 The Module Isolation Problem
Let S be a multi-authority modular system (MAMS) defined by the triple (M,A,�) with:

1. A set of modulesM = {m1, . . . ,mn}.

2. A set of authorities A = {a1, . . . ,ap}, like the infrastructure or module provider.

3. A set � defining isolation constraints. It contains a binary relation �i ⊆M2 for each
authority ai ∈A. (mk,ml) ∈ �i indicates that according to authority ai modules mk and
ml have to be deployed to different isolation environments.

Let I = {i1, . . . , im} be a set of isolation environments to each of which one or more modules
can be deployed.

Definition 8.1.1. Module Isolation Problem (k-MIP) Given an MAMS S = (M,A,�),
k-MIP is the decision problem whether there is a set I of isolation environments with ∣I ∣ ≤ k
and a mapping f ∶M↦ I such that all relations in � hold.

To prove that k-MIP is NP-complete, we show that k-MIP is in NP, i.e., its solutions
can be verified in polynomial time, and that it is NP-hard, i.e., it is at least as hard as the
hardest problems in NP.

Lemma 8.1.1. k-MIP is in NP.

Proof. Consider the following procedure for verifying solutions:
1: procedure isValid-k-MIP(S, f )
2: for all �′ ∈ � do
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76 8 Adjustable Module Isolation

3: for all (m,m′) ∈ �′ do
4: if f (m) = f (m′) then return f alse
5: return true

Obviously, the procedure isValid-k-MIP exhibits polynomial run-time. ∎

Lemma 8.1.2. k-MIP is NP-hard.

Proof. We show that k-coloring reduces to k-MIP. Let G = (V,E) be an undirected graph
with vertices V and edges E. K-coloring is the decision problem whether colors can be
assigned to the vertices V such that only k different colors are used and no adjacent vertices
have the same color. The straightforward polynomial time mapping between instances of
k-MIP and k-coloring is as follows

1. Each vertex vi ∈V becomes a module mi ∈M and vice versa

2. Each edge (vi,v j) ∈ E becomes a tuple (mi,m j) ∈ � and vice versa

We now show that G is k-colorable, iff a solution to the corresponding k-MIP instance for
S = (M,{a} ,�) and some authority a exists:

„⇒“: Let c ∶V ↦ [1,k] be a k-coloring of G and [i] = {v ∈V ∣c(v) = i} denote all vertices
with color i. By construction, there are no edges between the vertices in [i]. Hence, a
solution to k-MIP is I = {i1, . . . , ik} and f maps m j to that il for which v j ∈ [l] holds.

„⇐“: Let I ={i1, . . . , ik} and f be a solution to the k-MIP instance. With [ j]={m ∈M∣ f (m) = i j}
being the modules mapped to the isolation environment i j by f . Note, that by construction
(mi,m j) is not in �, if mi and m j are both in the same isolation environment. Hence, if we
assign a unique color l to all modules in a given isolation environment il, there are no edges
between the corresponding vertices of the k-coloring instance. ∎

Theorem 8.1.1. k-MIP is NP-complete.

Proof. Follows directly from Lemmas 8.1.1 and 8.1.2 ∎

Keeping the resource usage and thus the number of isolation environments as small as
possible is one of our design goals. Hence, we are interested in the minimum number of
isolation environments necessary for a given MAMS. The resulting optimization problem is
the

Definition 8.1.2. Minimum Module Isolation Problem (Minimum-MIP) Given an
MAMS S = (M,A,�), Minimum-MIP is the optimization problem of finding a minimum set
I of isolation environments such that a solution to k-MIP exists for S.

Theorem 8.1.2. Minimum-MIP is an NP-optimization problem.

Proof. Follows directly from the fact that k-MIP is the corresponding canonical decision
problem for Minimum-MIP. ∎
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Figure 8.1: Nested isolation environments (L-i IE denotes a level-i isolation environment)

8.2 Adjustability
Let T = {t0, . . . ,tn} be a type hierarchy, which is a totally ordered set of isolation environment
types abbreviated as types in the following. The order is defined by a containment relation,
i.e., for two types ti,t j ∈ T , ti < t j holds if t j can contain instances of ti (see Figure 8.1). An
instance of a type ti is called a level-i isolation environment. Modules are deployed to level-0
instances. Child environments of an isolation environment are indexed consecutively. Ik ⊆ I
denotes the set of all level-k isolation environments.

The location of a module m is defined as Lm = (l∣T ∣−1, . . . , l0), where li represents the index
of a specific isolation environment instance on level i. Two modules are said to be isolated
on level ∣T ∣− i−1 when their locations share a common prefix of length i. For example, in
Figure 8.1 modules deployed to locations (1,1,1) and (1,2,1) are isolated on level 1.

To incorporate type hierarchies, we extend our previous definition of �, which now denotes
a set that consists of a binary relation � j

i for each tuple (ti,a j) ∈ T ×A. A tuple (mk,ml) ∈ � j
i

indicates that according to authority a j two modules mk,ml ∈M have to be deployed to
different instances of ti, i.e., should be isolated on level i.
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With these definitions, we can specify the

Definition 8.2.1. Hierarchical Module Isolation Problem (Hierarchical-k-MIP) Given
an MAMS S = (M,A,�) and a type hierarchy T = {t0, . . . ,tn}, the Hierarchical-k-MIP is
the decision problem whether there is a set I of isolation environments with ∣I j∣ ≤ k,
∀ j ∈ {1, . . . , ∣T ∣} and a mapping f ∗ ∶M↦ N∣T ∣ from modules to locations such that all
relations in � hold.

We first show that

Lemma 8.2.1. Hierarchical-k-MIP is in NP.

Proof. A solution to Hierarchical-k-MIP can be verified with the following procedure:

1: procedure isValid-H-k-MIP(S,T , f ∗)
2: for all i ∈ {1, . . . , ∣T ∣} do
3: S ′← (M,A,∪ j � j

i )
4: if ¬ isValid-k-MIP(S ′, f ∗) then return f alse
5: return true

With Lemma 8.1.1 it is obvious that isValid-H-k-MIP is a polynomial time procedure.
Hence, Hierarchical-k-MIP is in NP. ∎

Theorem 8.2.1. Hierarchical-k-MIP is NP-complete.

Proof. Follows immediately from Lemma 8.2.1 and the fact that k-MIP is NP-hard (Lemma
8.1.2) and a specialization of Hierarchical-k-MIP (for ∣T ∣ = 1). ∎

As in the case of k-MIP and Minimum-MIP we can define the corresponding optimization
problem, namely the

Definition 8.2.2. Minimum Hierarchical Module Isolation Problem (Minimum-
Hierarchical-MIP) Given an MAMS S = (M,A,�) and a type hierarchy T = {t0, . . . ,tn},
the Minimum-Hierarchical-MIP is the optimization problem of finding a minimum set I of
isolation environments such that a solution to Hierarchical-k-MIP exists for S and T .

Theorem 8.2.2. Minimum-Hierarchical-MIP is an NP-optimization problem.

Proof. Follows directly from the fact that Hierarchical-k-MIP is the corresponding canonical
decision problem for Minimum-Hierarchical-MIP. ∎

Let Min-MIP(S) be a (approximation) procedure that solves the Minimum-MIP for a
given MAMS S = (M,A,�) and let ○ be the append operator on tuples

○ ∶In× Im→ In+m, (8.1)
(i1, . . . ,in)○( j1, . . . , jm)↦ (i1, . . . ,in, j1, . . . , jm) .

Then a call to the following recursive procedure with initially k = ∣T ∣ solves the Minimum-
Hierarchical-MIP:
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1: procedure Min-H-MIP(S,T ,k)
2: �←⋃ j� j

k
3: (I, f )← Min-MIP(M,A,�)
4: for all m ∈M do
5: Lm← Lm ○ f (m)
6: if k > 0 then
7: for all i ∈ I do
8: Min-H-MIP(([i] f ,A,�) ,T ,k−1)

In line 2 an aggregated set of isolation constraints for level-k isolation environments is
computed, which is fed into the Min-MIP procedure to compute a solution to Minimum-
MIP (line 3). Note that Minimum-MIP always has a solution, as it corresponds to the vertex
coloring problem using a minimum number of colors, which is always possible as any graph
G can be trivially ∣V ∣-colored where V is the node set of G. In lines 4 and 5 the locations
of the modules are constructed incrementally according to this solution. Finally, if level 0
hasn’t been reached yet, the procedure is called recursively to compute the child isolation
environments for each set of modules located in the same isolation environment on the
current level (lines 6–8).

8.3 Online Processing
Min-H-MIP is an offline algorithm, i.e., the whole input has to be available from the
beginning. However, in an IMMS modules are added and removed at runtime. Thus, an
online algorithm is required.
Let σ be the suffix operator on tuples

σ ∶In×{0, . . . ,n}→ Im, (8.2)
σ ((i1, . . . ,in) ,k)↦ (in−(k+1), . . . ,in) .

and let L′ be the set of module locations from a previous invocation (defined by f ′), then
a call to the following procedure with initially k = ∣T ∣ computes an incremental solution to
S = (M,A,�) withM being eitherM′∪{m} (module m added) orM′∖{m} (module m
removed):

1: procedure Inc-Min-H-MIP(S,T ,k,L′)
2: �←⋃ j� j

k
3: (I, f )←Match(Min-MIP((M,A,�) ,L′))
4: for all m ∈M do
5: Lm← Lm ○ f (m)
6: if k > 0 then
7: for all i ∈ I do
8: if [i] f ≠ [i] f ′ then
9: Inc-Min-H-MIP(([i] f ,A,�) ,T ,k−1,L′)
10: else
11: for all m ∈ [i] f do
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12: Lm← Lm ○σ(Lm,k)

Basically, the algorithm is a variation of Min-H-MIP that only descends into isolation
environments that have been subject to a change. Line 2 and lines 4 and 5 are the same as
in Min-H-MIP. In line 3 Min-MIP is invoked as above but the result is further optimized
by the procedure Match (to be discussed below) taking into account the previous module
locations L′. Line 8 checks whether any module has been added or removed from isolation
environment i ([i] f ′ can be computed trivially from L′). If this is the case, the algorithm
descends into that isolation environment in line 9. Otherwise, the locations of all modules
in i are completed by the respective parts of the previous locations (lines 11 and 12).

Match computes a least-cost matching between (I, f ) returned by Min-MIP and
(I ′, f ′) implicitly defined by L′. This is necessary as the solution to the Minimum-MIP for
the new configuration of the MAMS may be considerably different from the solution for
the original MAMS. The underlying problem is called the linear assignment problem. With
A = {[i] f ∣i ∈ I} and B = {[i] f ′ ∣i ∈ I ′}, we have to find a bijection1 g ∶ A→ B such that the
cost function

∑
i∈I

δ ([i] f ,g([i] f )) (8.3)

is minimized. The weight function δ ∶ A×B→N is the edit distance between two unordered
sets with respect to element addition and removal. Thus, the (per level) overall number of
module migrations between isolation environments is minimized by Match.

1 If ∣I∣ ≠ ∣I′∣ empty dummy environments have to be added to the smaller set.



9 i-OSGi – An IMMS on top of OSGi
This chapter describes how the IMMS concept can be realized on top of an industrial
strength MMS from the Java universe – OSGi. i-OSGi’s architecture is especially designed
to satisfy the requirements identified in Chapter 7 and is used as the isolation system in the
extensible core of Cohesion. The algorithmic framework for module isolation presented in
the last chapter is translated into a fine-grained isolation environment type hierarchy and
a versatile mechanism for both manually providing and automatically deducing isolation
constraints. The performance of our i-OSGi implementation, which employs two different
approaches to solve the underlying Minimum-MIP, is substantiated by an experimental
evaluation.

9.1 Prerequisites
9.1.1 OSGi
OSGi [OSG] – an acronym for Open Services Gateway interface – is a module management
system for Java. The OSGi specification is maintained by the OSGi Alliance, a growing
community of leading IT companies. OSGi has matured over a decade since its inception in
2000 and is awaiting the 4.3 release at the time of this writing. There are a whole host of
open-source and commercial OSGi implementations that are used in many large projects
including industrial strength IDEs and JEE application servers.

The OSGi framework exhibits a layered architecture consisting of the following four layers:

• The Execution Environment comprises the set of classes and methods available on a
specific platform.

• The Module and Lifecycle Layer provides a dynamic module system which allows for
hot-deployment, hot-undeployment, and inter-dependency management of modules,
called bundles in OSGi jargon. OSGi has built-in support for native code extensions
by providing the ability to automatically load platform-dependent shared libraries.
However, as with standard Java, native code attached over the Java Native Interface
(JNI) [Lia99] is executed outside the security sandbox.

• The Service Layer implements a system-wide registry exposing a publish-find-bind
model for services. An OSGi service is a Java interface that is decorated with a set
of service properties encoded as key/value-pairs on publication. Service consumers
can query the registry using LDAP-style (RFC 1960) filter predicates and bind to
returned service references. The indirection over service references allows for handling
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82 9 i-OSGi – An IMMS on top of OSGi

the inherent volatility1 induced by the dynamism of the module system, i.e., a service
disappears as soon as the providing bundle is stopped.

• The Security Layer extends the Java security model with module- and service-specific
functionality.

9.1.2 Distributed OSGi
The OSGi service model was scoped to purely local OSGi frameworks prior to version 4.2.
Stimulated by a growing number of enterprise use cases, OSGi’s service model has been
extended to distributed scenarios by allowing provisioning and consumption of services across
framework borders. This extension called Distributed OSGi is based on two new entities: the
distribution provider and the discovery service. The former is responsible for handling the
communication between service providers and consumers by creating protocol-specific service
endpoints. The discovery service is used to publish and retrieve the service descriptions
together with their service endpoints. When a remote service is imported to the local
framework, the distribution provider crafts and deploys a service proxy that can be used by
the consumer like a local service object.

9.1.3 Isolation Techniques
In the context of OSGi the following isolation techniques are of particular relevance (see
Figure 9.1):

Child Frameworks. OSGi RFC 138 [osg10] specifies a mechanism to create Child Frame-
works of an OSGi framework. Child frameworks provide the lowest degree of isolation
including class-space and service isolation.

Isolates. The Java Application Isolation API (JSR-121) [Pal06] specification introduces
Isolates as a mechanism to run several Java applications within the same JVM in isolation.
Isolates provide object-space isolation (as long as no object references are exchanged
across isolate borders) while at the same time preserving the performance of direct method
invocation. Each isolate has for example its own system properties, classpath, security
manager, shutdown hooks, and garbage collector. Additionally, an experimental resource
accounting framework has been proposed [CHS+03].

Processes. All modern operating systems support the concept of processes. Process-
based isolation ensures fault containment and allows for leveraging all per-process resource
accounting and control facilities provided by the operating system.

1 Note that the term volatility refers to the unpredictable coming and going of OSGi services in this
context and is not related to the host volatility in Desktop Grids.
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Virtual Machines. Virtual machines provide the highest degree of isolation supported
by i-OSGi. The isolation covers resources managed by the operating system including
the filesystem and the networking subsystem. Bundles requiring a given OS/Architecture
combination can be deployed by creating a suitable virtual machine.

9.2 Architecture
Figure 9.2 depicts the component-based architecture of i-OSGi. The fundament of i-
OSGi are hierarchical Isolation Environments as introduced in Chapter 8. The architecture
is specifically designed to support a broad range of isolation strategies, in particular the
techniques discussed in Section 9.1.3. Together with an efficient implementation of our
algorithmic framework presented in Chapter 8, this flexibility ensures that the degree of
isolation can be fine-tuned to the requirements of many conceivable scenarios (R11).

Bundles are installed to Isolated Frameworks. An isolated framework is an OSGi framework
which runs exclusively in its own level-0 isolation environment. This allows us to isolate
unmodified OSGi bundles. Level-0 isolation environments expose a Framework Management
Service that is used to perform management operations on the contained isolated framework,
like installing, updating, and removing bundles. A Shared Service Registry spans all isolated
frameworks. Every service registered with the local service registry of any isolated framework
is transparently mapped to all other registries. Together, these features realize transparency
of isolation (R6).

Isolation environments may contain an arbitrary number of subordinate environments2 and
isolated frameworks may host an arbitrary number of bundles. This ensures that resources
are used efficiently (R2).

The Isolated Framework Builder employs Environment Factories to incrementally create
the environment chain for a new isolated framework according to a given set of properties.
For example, in case of native code extensions this includes the required operating system
and CPU architecture. Initially, there is only a single framework available, which is called the
primordial framework. Besides regular bundles, it also hosts the i-OSGi runtime system.
For each isolation environment, except for those on level 0, an environment factory is made
available through the shared service registry that is used by the framework builder to create
subordinate environments.
A shared Constraint Registry service for Isolation Constraints is available to all isolated

frameworks (R5) and can be used to register simple constraints of the form (a,b,l) meaning
that bundle a should be isolated from bundle b on level l (cf. Chapter 8). Unprivileged
bundles are not allowed to register constraints for other bundles, i.e., a or b must be the
calling bundle itself. Although constraints are intentionally kept very simple, more complex
constraints can be realized by transformations (R4). Examples are discussed in Section 9.3.
The Isolation Orchestrator is the core of the i-OSGi runtime system. It implements

the algorithmic framework discussed in Chapter 8 to deploy bundles in accordance to the

1 cf. Section 7.1
2 There may be restrictions enforced by the isolation technology, e.g., the number of processes is usually

limited by the operating system.
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Figure 9.2: The architecture of I-OSGI depicted as an UML component diagram. For reasons
of clarity, the shared registries for constraints and services are omitted. (IE = isolation environ-
ment)

registered constraints in a fully automated way (R3). To be able to accomplish this task,
the orchestrator is aware of all existing isolated frameworks, intercepts bundle management
operations, and is notified of changes to the constraint registry.
Interaction with the i-OSGi subsystems is accomplished by a façade service called the

Isolation Admin Service (IAS).

9.3 Isolation Constraints
In i-OSGi there are two principal authorities who define isolation constraints: On the one
hand, bundle constraints are defined by bundle issuers. On the other hand, i-OSGi allows
infrastructure providers to register arbitrary host constraints through the IAS in the primordial
isolation framework. This way a more restrictive isolation regime than the one implied by
the bundle constraints can be enforced.
While host constraints are defined manually, bundle constraints are not: OSGi bundles

use a file known as the manifest to declare all kinds of metadata. It contains key/value-pairs
called OSGi headers. i-OSGi both adopts this practice by introducing a new header
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that allows bundle issuers to declare explicit bundle constraints and exploits the fact that
metadata exists that can be analyzed to deduce implicit bundle constraints.

9.3.1 Explicit Bundle Constraints
To support the declaration of explicit bundle constraints, i-OSGi introduces the Bundle-Isolation
OSGi header. The header must conform to the following EBNF grammar

Bundle-Isolation ::= directive
{’,’ directive} ;

directive ::= ’level’ ’:=’ level
’;’ filter ;

with level being an isolation level and filter being an LDAP-style filter predicate. A
directive declares that the declaring bundle should be isolated on the given level from
all bundles (except the declaring bundle) matching the given predicate. Predicates from
directives targeting the same isolation level are combined using a logical conjunction (OR).
i-OSGi translates a directive for bundle b with level l and predicate p to a constraint by
evaluating p against the properties of bundle bi for each pair (b,bi) ∈M∖{b} adding a
constraint (b,bi,l) via the IAS if p is satisfied.

9.3.2 Implicit Bundle Constraint Deduction
i-OSGi interprets existing OSGi headers to automatically deduce bundle constraints. Sub-
sequently, we discuss two use-cases:

Singleton Bundles. A bundle is identified by the header Bundle-SymbolicName which
can have a singleton property indicating that only a single bundle with the given symbolic
name can be active in the framework at any given point in time. To ensure that only a single
singleton bundle is deployed to a framework, i-OSGi collects all bundles S = {b1, . . . ,bn}
with a given symbolic name that are flagged as singletons and adds a constraint (bi,b j,0)
for all pairs (bi,b j) ∈ S2.

Native Code Extensions. Bundle-NativeCode headers encode dependencies on native
code libraries for bundles with native code extensions. They associate the location of a
library with a number of attributes which are matched against the hosting environment.
The attributes relevant to i-OSGi are the name and version of the operating system, and
the processor architecture, collectively called the platform. Let N = {b1, . . . ,bn} be the set
of bundles with a Bundle-NativeCode header. To ensure that bundles with conflicting
requirements on the host platform are not deployed within the same virtual machine, i-
OSGi computes for every pair (bi,b j) ∈N 2 whether their requirements on the platform are
compatible, i.e., whether there exists an intersection between the sets of allowed platforms.
If not, a constraint (bi,b j,3) is added that ensures that the bundles are deployed to different
virtual machines.



9.4 Implementation 87

9.4 Implementation
The open source i-OSGi implementation [ios] used in Cohesion is based on the Apache
Felix v3.0.9 [fel] OSGi framework and the R-OSGi v1.0.0.RC4 [RAR07] Distributed OSGi
implementation. The isolation environment types based on Child Frameworks and Isolates
are currently not implemented as OSGi RFC 138 is not yet finalized and JSR-121 has
not been integrated into any but an experimental JVM implementation called Barcelona
[CDT03] that is only available for Sun OS. However, thanks to the extensible architecture
of our implementation both can be easily integrated as soon as they become available.

The implementation of the Virtual Machine (VM) isolation environment type is based on
Oracle VirtualBox v4.0 [vir] as it is remote controllable via web services. Moreover, it is very
memory efficient by supporting to share common memory pages among (Page Fusion) and
dynamic memory hand over between (Memory Ballooning) virtual machines. VM isolation
environment instances are created from preconfigured virtual appliances. Out-of-the-box,
i-OSGi provides low-footprint Linux (Tiny Core Linux/Microcore v3.5 [tin]) and Windows
(Windows PE v3.0 [Mic]) virtual appliances.

9.4.1 Inter-Isolated Framework Communication
The i-OSGi shared service registry is implemented using Apache Zookeeper [RJ08].
Zookeeper is a high performance fault-tolerant centralized coordination system for dis-
tributed systems. Zookeeper provides a shared hierarchical namespace that is modeled in
analogy to a filesystem. i-OSGi intercepts local service publications in isolated frameworks
and creates a corresponding Zookeeper node containing the properties of the service and its
R-OSGi endpoint, which is required to remotely invoke the service. Isolated frameworks
listen for newly created service nodes and make the respective remote services available
locally through a proxying mechanism provided by R-OSGi.

9.4.2 Isolation Engine
The isolation orchestrator of i-OSGi delegates solving the Minimum-MIP to an isolation
engine that implements a parallel multi-strategy approach to cope with the NP-hardness of
the problem. Multi-core CPUs are exploited by running two orthogonal strategies concurrently
stopping either on success of one of the strategies or after a configurable timeout period.
Both strategies produce intermediary solutions of increasing quality. On timeout the best
solution found so far is used. For both strategies, the linear assignment problem encapsulated
by the Match procedure (cf. Section 8.3) is solved using the polynomial time Hungarian
Algorithm [Kuh55].

The first strategy is to apply an approximation algorithm for graph coloring called Iterated
Greedy (IG) [CL96]. The translation of an MIP to a graph coloring instance has been
described in the proof of Lemma 8.1.2. IG uses a greedy graph coloring algorithm repeatedly
to discover better solutions in an incremental manner. The greedy algorithm visits the
vertices of the input graph in a specific order and assigns the smallest color not already
assigned to a neighbor vertex or a new color if no such color exists. IG permutes the order
in which the vertices are visited in each iteration such that independent sets (vertices of
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the same color) discovered in the previous iteration remain adjacent. The exit condition for
the algorithm is the number of iterations imax of the greedy algorithm performed after the
last improvement (with respect to the number of colors used in the coloring) was detected.
i-OSGi invokes the IG algorithm [HN] in an infinite loop with a geometric progression
for imax, i.e., imax (n) = 2n−1 for the n-th invocation, and uses the output of the previous
invocation as the initial coloring.
The second strategy produces exact solutions (if run to termination) and consists in

translating the MIP to a Pseudo-Boolean (PB) problem and to solve it using Sat4J [LBP10],
a solver for satisfiability-based (SAT) problems. This approach is motivated by the hypothesis
that the isolation constraints will probably be similar to real world trust relationships. The
related PB problem thus will be structured. Since the invention of conflict-driven backtracking
and dynamic clause learning, SAT solvers have become exceptionally efficient in solving
structured problems from many real-world application domains [BHvMW09] (see also Part
VIII). The mapping from MIP instances to PB problems is described subsequently.

9.4.3 Minimum-MIP as a Pseudo-Boolean Problem
A linear Pseudo-Boolean (PB) problem is an optimization problem over n Boolean variables
{x1, . . . ,xn} of the form

min cT x
Ax ≥ b
x ∈ {0,1}n

where A ∈Zm×n, b ∈Zm, c ∈Zn. cT x is called the objective function and Ax ≥ b are the linear
constraints.

Lemma 9.4.1. Every Minimum-MIP instance can be translated to an equivalent linear PB
problem.

Proof. Let I = {e1, . . . ,ek} be a set of isolation environments, and S = (M,A,�) an MAMS.
Then the associated Minimum-MIP can be translated to a Pseudo-Boolean problem as
follows (for an application of a similar encoding for exact graph coloring see [RMSA06]):
For each module mi ∈M, we introduce k Boolean indicator variables x1

i , . . . ,x
k
i . Module

mi is assigned to isolation environment e j, iff x j
i = 1. To guarantee that each module is

assigned to exactly one isolation environment, we add for each module mi ∈M the two
Pseudo-Boolean constraints

k
∑
j=1

x j
i ≥ 1 and

k
∑
j=1
−x j

i ≥ −1
⎛
⎝
↔

k
∑
j=1

x j
i = 1

⎞
⎠
. (9.1)
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Each isolation constraint (ma,mb) ∈ � is represented in conjunctive normal form (CNF)1:

k
⋀
j=1

(¬x j
a∨¬x j

b) . (9.2)

This ensures that no modules that should be isolated are assigned to the same isolation
environment.
Our goal is to minimize the number of isolation environments. A prerequisite to model

this goal is to track to which environments at least one module has been assigned. Thus,
we introduce k tracking variables y1, . . . ,yk and force the solver to set yi = 1 iff at least one
module has been assigned to the corresponding isolation environment ei by requiring

k
⋀
j=1

⎛
⎝

y j ⇔
∣M∣

⋁
i=1

x j
i
⎞
⎠
. (9.3)

This expression can be translated to CNF by eliminating biconditionals (α⇔ β ↔ (α ⇒ β)∧
(β ⇒ α)),

k
⋀
j=1

⎡⎢⎢⎢⎢⎣

⎛
⎝

y j ⇒
∣M∣

⋁
i=1

x j
i
⎞
⎠
∧
⎛
⎝

∣M∣

⋁
i=1

x j
i ⇒ y j

⎞
⎠

⎤⎥⎥⎥⎥⎦
(9.4)

eliminating the implications (α ⇒ β ↔ ¬α ∨β ),

k
⋀
j=1

⎡⎢⎢⎢⎢⎣

⎛
⎝
¬y j ∨

∣M∣

⋁
i=1

x j
i
⎞
⎠
∧
⎛
⎝
¬
∣M∣

⋁
i=1

x j
i ∨y j

⎞
⎠

⎤⎥⎥⎥⎥⎦
(9.5)

and finally distributing ∧ over ∨ after moving negations inwards in the second term. The
resulting CNF clauses are

k
⋀
j=1

⎡⎢⎢⎢⎢⎣

⎛
⎝
¬y j ∨

∣M∣

⋁
i=1

x j
i
⎞
⎠
∧
⎛
⎝

∣M∣

⋀
i=1

¬x j
i ∨y j

⎞
⎠

⎤⎥⎥⎥⎥⎦
. (9.6)

The objective is to minimize the number of isolation environments to which at least one

1 A formula in CNF is a conjunction of clauses of the form l1 ∨ . . .∨ ln. The literals li are variables or
negated variables. Each clause can be translated trivially into a linear PB constraint ∑i li ≥ 1.
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module has been assigned. This translates to the objective function

min
k
∑
i=1

yi. (9.7)

∎

9.4.4 Symmetry Breaking
Our implementation employs two lightweight but effective symmetry breaking techniques
to assist the Pseudo-Boolean solver in pruning the high-dimensional search space. One is
equivalent to Selective Coloring [RMSA06] and consists in preassigning the most constrained
module and its most constrained neighbor in the constraint graph. The other consists in
adding a first-order logic constraint

∃yi [yi ∈ {y1, . . .y j−1}∧¬yi]⇒ ¬y j (9.8)

for every tracking variable yi. This ensures that a module can be assigned to an isolation
environment ei only if at least one module has been assigned to each e j with j < i. Thus,
the search space becomes significantly smaller. The existential quantifier ∃ can be trivially
translated into a conjunction

j−1

⋁
i=1

¬yi⇒ ¬y j. (9.9)

After eliminating the implication, we get the CNF equivalent

y j ∨
j−1

⋁
i=1

yi. (9.10)

9.5 Performance Evaluation
To substantiate the usefulness of i-OSGi , we conducted a performance evaluation for the
key aspects of the system. This includes analyses of the time required to create and destroy
isolated frameworks, the service invocation overhead for different isolation levels, and the
performance of i-OSGi’s isolation engine. The former two experiments are conducted on a
Type I the latter on a Type II machine (see Table 9.1).

9.5.1 Isolated Framework Management
Table 9.2 shows the time it takes to create and the time it takes to destroy an isolated
framework under a given parent location. Creation involves spawning a level-0 isolation
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Hardware Software
CPU Memory OS Version

I Intel®Core 2™Duo 3GB Windows 7
2 Cores @ 2.00GHz
4MB Cache / Core

II Intel®Xeon™X5365 8GB Linux 2.6.32
8 Cores @ 3.00GHz
4MB Cache / Core

Table 9.1: Hardware and software configuration of the computers used for the performance
evaluation

Type Parent TCreate [ms] TDestroy [ms]
VM / 27097 ± 760 9597 ± 760
Process /1 2943 ± 392 123 ± 48

/* 2644 ± 174 98 ± 25

Table 9.2: Mean time to create (TCreate) and destroy (TDestroy) isolation environments based on
50 program runs (* denotes an arbitrary index)

environment (Process) either in an existing or in a newly created level-1 isolation environment
(VM/Host). In both cases an OSGi framework and the i-OSGi runtime system are deployed
and configured. In the latter case, a VM instance (Tinycore Linux/Microcore) is configured
and launched within which the level-0 isolation environment is created as described. After
launching the OSGi framework the isolation admin service blocks until the respective isolated
framework service is published over the shared service registry and thus becomes available
for use.
Destruction of an isolated framework consists in terminating the level-0 environment by

shutting down the OSGi framework explicitly (initiating an orderly shutdown) or implicitly
by shutting down the hosting VM. In both cases the shutdown is followed by a clean-up
procedure that removes OSGi- and VM-related files.
As expected, the time required to create an isolated framework within a non-existing

level-1 environment (/) is dominated by the costs associated with launching the VM. While
creating a process within an existing VM (/i) is even slightly faster than within the primordial
level-1 isolation environment (/1), the overhead is more than 9-fold in this case. Together
with the fact that running a VM requires orders of magnitude more main memory than
a process, this observation underlines the importance of the ability of our approach to
provide least cost isolation environment setups and to share isolation environments whenever
possible.
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Isolation Caller Callee TInvoke [¯s]
Level Location Location
- /1/i /1/i 0.452

/i/j /i/j 0.699
0 /1/i /1/j 133

/i/j /i/k 492
1 /1/* /j/* 464

/i/* /k/* 570

Table 9.3: Service invocation times for different inter-isolated framework communication
scenarios (* denotes an arbitrary index and i ≠ j ≠ k ≠ 1)

9.5.2 Inter-Isolated Framework Communication
Table 9.3 shows the service invocation overhead for all possible inter-isolated framework
communication scenarios. Intra-process invocation (no isolation) gives the baseline perfor-
mance with 452 ns in the primordial and 699 ns in VM-based level-1 isolation environments.
The 54 % difference can be attributed to virtualization overhead. There is an obvious trend
towards higher overheads for higher isolation levels: Inter-process invocation for bundles
isolated on level-0 is roughly 300 times and for bundles isolated on level-1 is roughly 1000
times slower. These large differences are due to R-OSGi’s socket-based communication and
virtualization overhead. The latter can be seen by comparing the invocation time for the
setups with modules isolated on level-1.

9.5.3 Isolation Engine
Solving the Minimum-MIP lies at the core of i-OSGi’s isolation engine. Figure 9.3 shows a
head-to-head runtime comparison of the Iterated Greedy and the Pseudo-Boolean solving
strategies for 880 random MIP instances (with varying constraint densities and numbers of
modules) with a 1 minute timeout. A cross indicates the time each strategy required to find
the best solution with respect to the number of isolation environments. A timeout means
that the respective solving strategy was not able to find a solution as good as the solution
found by the other strategy. There were 117 timeouts for the IG and 366 timeouts for the
PB strategy.
Figure 9.4 shows the probabilities that the PB strategy computes the better solution

for the same 880 instances used above. Obviously, PB is superior for constraint densities
between 0.1 and 0.3. For the special cases in which there are no or all possible constraints
present the strategies are approximately on par.
Both figures clearly show that the performance characteristics of the strategies are

significantly different and thus justify our approach to run both strategies in parallel.
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10 Related Work
There is a large body of research concerning isolation techniques on various levels of a
computer system, including programming languages, middleware, and operating systems.
For a survey see [VN].
In the following, we focus on approaches targeted at component and module systems.

None of the solutions discussed below is fully automated like i-OSGi or allows for adjusting
the degree of isolation between modules. Furthermore, they are not able to provide a
compatible runtime environment to modules comprising incompatible native code.

Gama et al. propose an approach [GD09, GD10] focused on enhancing the dependability
of OSGi-based applications that make use of untrustworthy third-party code. Their system
shields the main application by running third-party code in a fault contained security sandbox.
They describe two alternative sandbox implementations: one based on isolates and another
one using operating system processes. The focus of their approach lies on automatic
self-recovery after the sandbox hangs or crashes. The proposed technique is orthogonal to
isolation and could be applied to i-OSGi as well.
Wegner discusses a system [Weg09] that employs operating system processes to isolate

groups of bundles within so-called domains. This approach ensures fault containment and
is suitable for resource usage accounting and quota enforcement. However, in contrast to
i-OSGi the system does not support multi-authority environments and requires significant
manual configuration including manual mapping of bundles to domains, which is not feasible
for large applications consisting of hundreds of bundles.

Geoffray et al. use a modified JVM called I-JVM [GTFC08, GTM+09] to provide isolation
and resource accounting. Unfortunately, the underlying JVM implementation J3 is by
factors slower than state-of-the-art JVMs [GTL+10] and the modifications of I-JVM add
another 20% of overhead. Depending on the bundle interaction patterns, the approach at
its current state may be inferior to isolation approaches based on sandboxing with respect
to performance. In contrast to i-OSGi, the approach does not provide native code security.

The work of Frenot et al. [RFLM06] is targeted at residential gateways. Their approach
is to launch child frameworks within a master framework in a single JVM. The resulting
isolation is rudimentary and limited to namespace isolation. Meanwhile, OSGi RFC 138
– used by i-OSGi to create isolation environments with the lowest degree of isolation –
subsumed their approach.
Isolation concepts have also been integrated into other component frameworks. For

example, Microsoft’s Component Object Model (COM) [Low01] and its successor the .NET
platform [SNS03] both provide restricted isolation mechanisms: COM components can
either be loaded into the host application or deployed to a separate process. The Managed
Add-In Framework (MAF) from .NET allows for deploying add-ins to an application domain
– a concept similar to Java isolates – or to a separate process. Both approaches provide
fault containment when a separate process is used.
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Part IV

Peer-to-Peer Management∗

Peer-to-Peer Desktop Grid systems are notoriously hard to manage: The large number of
manageable entities hosted by volatile peers distributed over administrative domains and
the absence of central control disperses system management actions in time and space.
Hence, even straightforward management tasks tend to be cumbersome and error-prone.
Thus, the lack of assisting management technology is a limiting factor for successfully
operating even moderately sized P2P Desktop Grids. Cohesion tackles this issue with an
integrated Peer-to-Peer management solution that adopts and adapts existing industrial
grade management standards to support scalable remote management of volatile resources
within multi-authority environments.

Related Publications
[SB07] Schulz, Sven and Blochinger, Wolfgang: An Integrated Approach for Managing
Peer-to-Peer Desktop Grid Systems, In: Proc. of the Seventh IEEE International Symposium
on Cluster Computing and the Grid (CCGrid 2007), Rio de Janeiro, Brazil, S. 233–240

∗ This part contains a summary of the respective topic. For further details the reader is referred to the
related publications.
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11 Overview
Our management solution is designed as a component-based architecture that can be
subdivided into six layers of functionality (see Figure 11.1): On top of the industrial grade
Java Management Extensions (JMX) [Sunb] management standard, we provide support for
role-based management, through a role-aware access control component that is accompanied
by an infrastructure for role and policy management. Role-based management is an essential
building block for supporting multi-authority environments as it allows for defining who
is allowed to do what in a fine-grained way. A P2P JMX connector1 and a mechanism
to discover remote management agents are used to leverage an arbitrary Cohesion peer,
called a management gateway , to securely access any other peer within the system. We refer
to this feature as Peer-to-Peer Management. Peer-to-Peer management provides a basis
for managing large numbers of peers with virtualization techniques called agent cascading
and bean clustering. While the former allows to map remote managed objects – called
MBeans in JMX jargon – into the local agent analogous to mounting remote file systems in
modern operating systems, the latter is a multiplexing mechanism to perform management
operations on a number of managed beans as if it was a single one. To ease complex
and recurring management tasks, a scripting component is provided that allows combining
individual management tasks into script libraries. A service for Disconnected Management
handles volatility by delayed execution of management scripts on temporarily absent peers.
Finally, an extensible unified management tool depicted in Figure 11.2 integrates all these
components into an Integrated Management Workbench built on top of the Eclipse IDE

C
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esio

n
 (M

an
ag

ed
 System

)

JMX (JSR-3)  JMX Remote API (JSR-160)
Management
Technology

Role-Aware Access Control
Role-Based

Management Role Management

P2PMP Connector

Policy Management

Discovery

Cascading ClusteringVirtualization

Peer-to-Peer
Management

Scripting Disconnected MangementAutomation

Integrated Management WorkbenchIntegration

Figure 11.1: COHESION’s layered management architecture

1 JMX Connectors as specified in [Suna] are used to make managed beans remotely accessible over a
network.
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[Ecl].
Subsequently, the individual services are described briefly. For an in-depth discussion, the

reader is referred to [SB07].

11.1 Role-Based Management
Our approach to manage Desktop Grids is based on splitting up authority using management
roles. Roles are traditionally used to model authority and responsibility in distributed systems
[LS97]. Their application results in reduced policy maintenance complexity, since groups
of users can be treated as a single entity. Within our approach, management authority is
delegated by transferring management permissions from one role to another. For example,
by installing an application the host owner transfers permission to control application-related
objects to the application issuer.
JMX provides permissions for all aspects of interaction with management agents and

the MBeans deployed therein. This includes visibility of managed beans, access to their
attributes, and invocation of their operations. However, Java’s built-in security architecture
[LG03] is insufficient for role-based access control due to a static policy implementation:
Neither can permissions assigned once be later revoked nor can additional permissions be
granted. Thus, we use the OSGi Conditional Permission Admin Service to consult a role
database to dynamically determine all roles assigned to the invoking subject. To administer
roles and permissions, two agent services, the Role Management Service and the Policy
Service, are provided. While the former is used to assign roles to users and to modify the
set of available roles, the purpose of the latter is to grant permissions to these roles or to
revoke them.

11.2 Peer-to-Peer Management
In traditional management scenarios, management interactions are typically client/server
operations, often with a central management gateway. By contrast, within our approach
there is no permanent dedicated management gateway. Instead arbitrary peers can — by the
operator’s decision — become a gateway for temporarily managing the whole system (insofar
as allowed by the operators roles/permissions). In analogy to Peer-to-Peer communication
patterns, we refer to this feature as Peer-to-Peer Management. It provides a technical
basis for decentralized management through the virtualization and automation techniques
described below. To allow for P2P management, we have to provide the operator with two
abilities: to discover remote management agents and to perform management operations
on them. The former is implemented as a discovery agent service that advertises JMX
connectors attached to Cohesion peers. To allow for the latter, Cohesion deploys a
custom connector called the Peer-to-Peer Management Protocol (P2PMP) connector that
uses Orbweb for communication and thus is able to bridge network segmentations between
peers that are mutually shielded from each other by restrictive firewalls.
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11.3 Virtualization
Cohesion’s managed entity virtualization services – Agent Cascading and Bean Clustering
provide a single, consolidated, logical view of the management aspects of a whole set of
individual managed entities.

Agent cascading as proposed first in [Pac05] and depicted in Figure 11.3a is the process
of integrating (parts of) the tree of managed entities of a remote agent into the local one.
Cascading abstracts from the location of a managed entity by collocation. With cascading,
an operator can contract the management domain of the entire distributed system into a
single management agent. Thus, the whole set of managed entities becomes accessible to
an operator at the gateway agent without the need to establish sessions with each and every
node of the system manually.
Bean clustering, as depicted in Figure 11.3b, abstracts from differences in concrete

management interfaces by automatically extracting a common unified management interface.
An operation performed on a managed bean cluster is transparently dispatched to all
aggregated beans. The management interfaces of bean clusters are dynamic, i.e., changes
in the MBean tree throughout the clusters lifetime are automatically reflected. With bean
clustering, an operator can subsume invocations of the same operation performed on a
whole set of managed entities, that would otherwise have to be performed manually one
by one on each managed entity separately. Apart from the increased convenience, there
is also a speedup in the execution of management tasks, since batch invocations can be
performed in parallel. In conjunction with cascading, it’s possible to cluster managed beans
from different agents. For example, an application provider is able to adjust an application
parameter on all hosts running the application with a single management operation.

11.4 Automation
With possibly thousands of volatile peers within a Desktop Grid system, a management
task is scattered in time and space. With Peer-to-Peer Management and virtualization, the
operator is relieved from the burden of having to connect to each and every management
agent and to perform the required management operations manually. However, the problem,
that probably some peers will be offline while a management task is performed is still
not addressed. With MBean Scripting and Disconnected Management, we propose two
management automation techniques to tackle this problem.

The idea behind MBean scripting is to adopt a well proven automation technique from the
traditional management domain of computer administration. In contrast to the simpler batch
execution style of bean clusters, scripting allows for context-aware task execution by using
conditional control flow constructs provided by scripting languages. The full potential of
MBean scripting unfolds when it is used in conjunction with the virtualization and discovery
agent services described above: By mounting parts of the managed bean trees of remote
management agents and creating clusters from MBeans of interest, performing distributed
management tasks is considerably simplified. Moreover, since clusters transparently adapt to
changes in the set of aggregated MBeans, clustering is an effective instrument to shield from
the effects of volatility during script execution. As scripts can be executed asynchronously,
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they can be used to extend the managed system with new scripted functionality. This
resembles the approach described in [GY95].

To cope with volatility, task initiation and task execution are decoupled. Thus, an operator
can manage disconnected peers by delaying script execution until the peer reconnects.
Therefore, we refer to this concept as Disconnected Management. For the sake of scalability,
group models employed for P2P Desktop Grids often provide only partial membership views.
Thus, even if all peers are online, they may be not visible to the gateway agent. To cope
with this fact scripts may be propagated throughout the system by gossiping.

11.5 Related Work
As of our knowledge, there is no other comprehensive management solution that addresses
the domain-specific problems in the area of managing P2P Desktop Grids. However, there are
several projects in the field of systems management that are based on the same management
technology as our approach. Subsequently, we discuss the most prominent of them.
XtremeJ [Xtr] and the products of the IBM Tivoli brand [IBM] are commercial man-

agement solutions based on Eclipse technology. Their focus is on management of J2EE
application servers. A distinguishing feature of XtremeJ is the proprietary Management
Query Language (MQL) used for performing complex queries for MBeans satisfying certain
conditions. Tivoli targets additional application domains, like mainframe, storage, and
security management.

JManage [jma] is an open source, web and command-line based JMX client. It supports
application clusters similar to Cohesion’s bean clusters. However, clustering is realized as
a client-side service and is restricted to MBeans exposing exactly the same management
interface. Furthermore, JManage supports fine-grained access control based on Access
Control Lists (ACL) . Since ACLs are implemented as a client-side mechanism, the approach
is not suitable to reliably protect networked systems from unauthorized access.
JConsole [Sunc] is a simple yet extensible management console bundled with Java SE

5. Its primal field of application is to monitor non-distributed systems. To showcase the
extensibility the console is bundled with a plugin with scripting support.



Part V

Network Substrate

A fundamental component of the Cohesion Desktop Grid middleware is a hybrid P2P
network substrate called Orbweb that provides support for efficient node interaction over
a virtual overlay network. High Performance Desktop Grid Computing puts particularly high
demands on the underlying network substrate. Existing substrates like JXTA [TAA+03]
or SpoVNet [BHMW11] fall short in satisfying all requirements. Orbweb is designed
to close this gap. It leverages the open industrial-strength eXtensible Messaging and
Presence Protocol (XMPP) to tackle domain-specific challenges, including system scale,
resource volatility, and network segmentation induced by middle boxes like NAT devices
and firewalls. Orbweb extends XMPP with dynamically negotiated P2P communication
channels, superpeer-managed peer groups with customizable virtual topologies, efficient
probabilistic multicasting, and improved protocol efficiency.

Related Publications
[SBP10] Schulz, Sven; Blochinger, Wolfgang and Poths, Matthias: Orbweb – A Network
Substrate for Peer-to-Peer Grid Computing based on Open Standards. Journal of Grid
Computing (2010), Bd. 8(1):S. 77–107

[SBP09] Schulz, Sven; Blochinger, Wolfgang and Poths, Mathias: A Network Substrate
for Peer-to-Peer Grid Computing beyond Embarrassingly Parallel Applications, In: Inter-
national Conference on Communications and Mobile Computing (CMC 2009), IEEE Computer
Society, S. 60–68
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In analogy to the development of Grid Computing, which experienced a phase of consoli-
dation through standardization in the last decade, we believe that Desktop Grid Computing
has to go through a similar process by adopting existing open standards to tap its full
potential. By leveraging open standards one can profit from high interoperability, improved
robustness, and prolonged durability leading to lower and manageable risk and efficient use
of existing resources. In particular, this allows the community to concentrate on overarching
research challenges.
To this end, we propose to employ the industrial strength eXtensible Messaging and

Presence Protocol (XMPP) to build a generic network substrate for Peer-to-Peer Desktop
Grid Computing called Orbweb. While several projects already made an ad hoc transition
to XMPP (see Chapter 23), we strive to pave the way for a wider adoption of XMPP by
systematic extension and optimization of the core protocols. Our key contributions are as
follows:

1. We specify functional and non-functional requirements defining a network substrate
suitable for High Performance Desktop Grid Computing scenarios and demonstrate
that the abstractions and the existing infrastructure of XMPP are basically well-suited
to satisfy these requirements.

2. We describe how a great deal of those requirements can be satisfied using the XMPP
core standard and its extensions.

3. We contribute novel concepts and features amalgamated into our network substrate
to further increase the applicability of XMPP for High Performance Desktop Grid
Computing.

The remainder of this part is organized as follows: In Chapter 12, we identify functional
and non-functional requirements for a network substrate suitable for High Performance
Desktop Grid Computing with the interaction and organizational model described in Part
I. After giving an overview on Orbweb in Chapter 13, we explain how the elements of
XMPP can be used and amended to satisfy the identified requirements in Chapters 14-16.
In Chapters 17-20, we present our extensions designed to meet the requirements not yet
satisfied by plain XMPP. Chapter 21 presents supportive tools to visualize virtual peer
topologies and to analyze network traffic on superpeers. In Chapter 22, we present a
detailed performance and scalability evaluation that clearly demonstrates the suitability of
our approach and the improvements of our extensions over plain XMPP. Finally, Chapter 23
relates our approach to the state of the art.

Terminology and Notation
XMPP originally has been designed as a client/server system for Instant Messaging appli-
cations. Although, it has evolved beyond these roots since then, the standard documents
still make heavy use of the original terminology. Hence, the terms XMPP client/server and
Orbweb peer/superpeer are used interchangeably in the following.
The modular notation and the pseudo code used to specify the APIs and algorithms of

this chapter is introduced in Appendix B.
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12 Requirements
In this chapter, we identify functional and non-functional requirements for a P2P Desktop
Grid Computing substrate. We define the term functional requirement as an operation
or a set of operations a substrate must provide to support the P2P organizational and
interaction model within a Desktop Grid environment. Non-functional requirements describe
the qualities of these operations.

12.1 Functional Requirements
(F1) Peer Groups. Peer Groups1 are sets of peers grouped together to cooperatively
provide a service. They are used to structure applications and to model the environment
they are executed in. As both may be dynamic and of arbitrary complexity, groups have to
be lightweight first class objects such that a peer can create as many groups as required.
Membership in groups should be dynamic to support volatility and evolving inter-peer
relations as prevalent in ISP applications. Moreover, membership should be reified such
that changes in membership can be used as an input to distributed algorithms. Pushing
the concept of peer groups down the stack into the middleware relieves the application
programmer from the burden of implementing groups by himself and many aspects of writing
a distributed application become considerably simpler. From a technical point of view,
groups provide a scope for communication and establish a security context within which
applications can execute in isolation from each other. Thus, the group abstraction is an
essential means to realize the P2P organizational model described in Part I.

(F2) Virtual Topologies. Members of a peer group are provided with a dynamically
updated list of other members from the same group. These lists are called views and its
constituents are called the neighbors of the local peer. The views of all peers within a peer
group together induce a single distinct overlay network topology among the peers in the
very same way as the union of all sets of outgoing edges of a graph defines the graph’s
structure (except for unconnected vertices).
As discussed in Part I, P2P Desktop Grids are characterized by a potentially large scale

in combination with high volatility and by peer interaction patterns that are diverse and
evolving. In existing systems with an explicit group model, views are either complete and of
limited scalability or partial with limited support for application-specific interaction patterns.
Orbweb goes beyond that by enabling applications to select virtual topologies that best
match their specific requirements. These topologies are called virtual as they are built

1 Peer groups are also known as distributed process groups throughout the literature.
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from logical links as an overlay network that, in general, is different from the underlying
physical network. As peer groups are used for structuring applications, they are the most
natural scope for virtual topologies. Despite this relation, group membership and logical
peer neighborship (defined by virtual topologies) are independent concepts. To support the
dynamic nature of P2P interaction patterns, virtual topologies should be hot-swappable. To
facilitate the implementation of distributed algorithms, view entries should be decorated
with the role a neighbor plays with respect to the local peer, e.g., parent and child in a
tree or predecessor and successor in a ring topology.

(F3) Communication. Communication primitives are classified according to the number
of sources and sinks involved: Multicast (one-to-many) communication is the delivery of
a message from a single source to a set of sinks. Unicast (one-to-one) and broadcast
(one-to-all) are conceptually special cases of multicast where the message is sent to a
single recipient or to all possible recipients, respectively. Many-to-one communication and
all-to-one communication transfers data from many/all sources to a single sink. When data
is consolidated by means of a many/all-to-one operation the respective primitive is referred
to as a reduce operation.

Many-to-many and all-to-all communication can be decomposed into a many-/all-to-one
and a one-to-many/-all communication operation. This approach of composing complex
communication primitives from simple ones allows for supporting a broad spectrum of
functionality without a significant increase in the complexity of the middleware. Thus,
the concept has found its way into other middleware as well. A prominent example is the
Internet Indirection Infrastructure (I3) [SAA+04].

Hence, for full coverage of these communication primitives, our substrate should support
multicast, unicast, and many-to-one1 communication. In conjunction with the group
abstraction, multicast is referred to as groupcast in the following. The broadcast primitive
can be mapped to a groupcast within a special peer group2 that all peers of the Desktop
Grid join.

(F4) Fail-Stop Distributed System Model. Many problems in asynchronous distributed
systems become impossible3 to solve when processes are prone to failure. Consensus is a
prominent example that has been shown by Fischer, Lynch, and Paterson in their famous
FLP proof to be impossible in asynchronous message passing systems, even if at most one
process may fail and all communication channels are reliable. To simplify the implementation
of such distributed services and applications or to make them possible in the first place,
Orbweb should implement a fail-stop distributed system model that provides strong

1 Note that scalable many-to-one communication typically incorporates the repeated execution of a
reduction operation. For this reason, it is considered to be a computing service in the context of
this work. It is implemented on a higher layer of the Cohesion middleware stack as an information
aggregation service (see Part VI).

2 As all peers are members of this peer group it must use a scalable virtual topology and a scalable
multicast primitive (see Chapter 19).

3 In this context, the term impossible is used differently than in everyday language as it means that there
is no algorithm that can always reach consensus in bounded time.
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abstractions including processes with crash-stop behavior, perfect links, and a perfect failure
detector (for a definition of these terms see Chapter 16).

12.2 Non-Functional Requirements
(N1) Performance. Achieving high parallel efficiency is the main objective in High
Performance Computing (for a definition of the term parallel efficiency see Appendix
A). Thus, an appropriate substrate must provide low-latency communication that makes
economical use of the available bandwidth. To enable efficient use of idle resources, it
should ideally deliver changes in group membership instantly.

(N2) Scalability. Scalability of a network substrate is determined by the amount of
resources consumed per network node as a function of the overall network size (for a formal
definition of the term scalability see Appendix A). The usual approach to improve scalability
is to distribute state and/or responsibility among the nodes. However, this decentralization
comes at the price of increased synchronization and coordination overhead and hence most
likely reduced performance. This reciprocal effect can be mitigated by dropping certain
qualities of the operations provided by the substrate. For example such qualities are message
ordering, guaranteed message delivery, or the extent of knowledge about other peers in a
peer group. Orbweb should provide mechanisms to tune this trade-off on a per-group
basis depending on the requirements of the application.

(N3) Connectivity. As opposed to traditional parallel systems, Desktop Grids are typically
operated over area networks or the Internet. Thus, connectivity is often limited due to
NAT devices and restrictive firewalls. Orbweb should on the one hand ensure universal
connectivity by establishing an overlay network that transparently bridges segmentations
in the underlying physical network, and on the other hand expose information about the
inherent communication costs associated with virtual links to allow for using the physical
network most efficiently.

(N4) Security. Since large-scale Desktop Grids typically span more than a single admin-
istrative domain, a reasonable substrate must undertake measures to keep sensitive data
private and to protect the system state from malicious participants. This includes securing
communication as well as restricting access to peer groups.





13 Overview
Orbweb belongs to the class of hybrid or hierarchical P2P networks [Sch01]. In contrast
to pure P2P, the hybrid approach is characterized by the fact that part of the network
functionality is delegated to a comparatively small number of distinguished peers called
superpeers. In hybrid P2P networks built for data-centric applications, like file sharing,
superpeers are typically used as caches for resource indices of connected edge peers. By
concentrating knowledge on more powerful peers, query processing times can be reduced as
less communication with possibly slow edge peers is necessary. Orbweb adopts this idea
by delegating group membership and virtual topology management to particularly powerful
peers. This allows for rapid membership updates (N11), that are essential for achieving good
efficiency in P2P Desktop Grid Computing applications, although at the expense of absolute
scalability2 (N2). In this section, we give an overview, how we leveraged where possible (see
Chapters 14-16) and amended where necessary (see Chapters 17-20) the XMPP protocol
stack and infrastructure to realize Orbweb around this central idea.

Figure 13.1 shows the protocol and service stack of Orbweb. We have selected XMPP
from the large number of possible communication technologies because the open XMPP
standards, depicted in the lower layers of Figure 13.1, already cover two of our four functional
requirements: As described in Chapter 15, a peer group abstraction (F1) can be modeled
using XMPP Multi-User Chats (MUC). The unicast and groupcast communication primitives
(F3) are also covered by the functionality provided by MUCs. While the former can be
realized using private chats, the latter uses the fact that any occupant of a MUC room can
send a message to the room for delivery to all room occupants. As described in Chapter
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Figure 13.1: ORBWEB’s protocol and service stack with exemplary higher-level services

1 Nx and Fx are references to the requirements defined in Chapter 12.
2 See Appendix A for a formal definition of term absolute scalability
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14, XMPP already satisfies some of our non-functional requirements as well: It allows for
universal connectivity (N3) through relaying by the XMPP server, which is accessible in
most network scenarios as communication is client-initiated and an HTTP binding exists to
tunnel restrictive server-side firewalls (XEP-124, [xsf]). With various security measures1 at
the protocol level, in particular signing and/or encryption of XMPP stanzas, XMPP also
fulfills the security-related requirements (N4).
Despite the fact that XMPP is a good match for our requirements in some areas, the

fact remains that XMPP was not explicitly designed for P2P Grid Computing. Hence,
there is no clearly defined distributed system model available for XMPP (F4) and virtual
topologies (F2) are not supported. Moreover, several of our non-functional requirements are
not satisfied: First, XMPP implements no P2P interaction model: Even those messages that
could be exchanged directly between two clients are relayed by the XMPP server. Second,
the MUC protocol maintains complete membership information at all nodes, resulting in
view maintenance costs that grow quadratically with group size. Third, groupcast messages
are delivered using replicated unicast, i.e. by having the server send the message explicitly
to each group member, resulting in costs that grow linearly with group size. Fourth, XMPP
is an XML protocol that is verbose and highly redundant. Thus, XMPP using conventionally
encoded XML wastes bandwidth and processing power. These shortcomings result in
the server quickly becoming a performance bottleneck, when groups grow large and/or a
large number of messages have to be relayed. Thus, Orbweb would fail to satisfy the
non-functional requirements for performance (N1) and scalability (N2) without adaptations.

We addressed these issues by providing a set of extensions to the XMPP protocol itself and
the Openfire/Smack XMPP software stack from Jive Software [jiv] (see the middle layers of
Figure 13.1): First, Orbweb implements a fail-stop distributed system model (F4) on top
of XMPP. The definition of the fail-stop model and a discussion of its implementation within
Orbweb can be found in Chapter 16. Furthermore, we modified the XMPP communication
subsystem to create direct inter-client connections that can be used for P2P message
exchange. As described in Chapter 17, these connections are created based on traffic
pattern analysis in a way that respects the limitations of typically resource -constrained
peers within Desktop Grids. Thanks to this modification, Orbweb takes considerable
parts of the relay load off the XMPP server and becomes a P2P system. In Chapter 18,
we describe how the MUC protocol can be extended to support custom virtual topologies
(F2). This allows for example the establishment of tree-structured topologies among the
peers of a group, where each peer maintains only a partial and small membership view of
configurable size. The resulting maintenance costs are logarithmic with respect to the size
of the group. Chapter 19 discusses a probabilistic topology-aware decentralized groupcast
implementation with superpeer-side costs that are constant with respect to the size of the
group. Finally, we describe in Chapter 20, how Fast Infoset (FI) [fi], a binary encoding of
XML, can be integrated into the XMPP software stack without sacrificing scalability. As
will be substantiated in Chapter 22, these optimizations together significantly improve the
performance (N1) and the scalability (N2) of Orbweb.

1 For a detailed discussion of the security features of XMPP the reader is referred to the standard
documents (RFC 3920 [SA04b], RFC 3921 [SA04c], and RFC 3923 [SA04a]).



14 XMPP Basics
The Extensible Messaging and Presence Protocol (XMPP) is an open, XML-based protocol
for real-time communication that has been standardized by the Internet Engineering Task
Force (IETF). As XMPP is designed to be modular, it can be easily adapted to use cases
not covered by the XMPP core specifications published as RFC 3920 [SA04b] and RFC
3921 [SA04c]. Extensions are managed by the XMPP Software Foundation [xsf] as publicly
available XMPP Extension Protocols (XEP). Historically, XMPP – formerly known as
Jabber – has been used for instant messaging. However, due to its extensibility, the scope
of XMPP has grown significantly since then. All kinds of applications based on real-time
message exchange including signaling for video conferencing, whiteboarding, collaboration,
content syndication, and generalized XML routing have been built on top of XMPP. Today,
XMPP-based software is deployed on thousands of servers across the Internet. A large
number of client and server implementations written in a variety of languages exist, making
XMPP available for almost every platform.

The following section describes the architecture of XMPP. Subsequent sections provide
abstract specifications and, where required for reasons of comprehensibility, simplified
implementations for the core components of this architecture including the underlying
transport, XMPP session management, and Multi-User Chats (MUC). Specifications are
given as module definitions as introduced by Cachin et al. in [CRG11]. For a condensed
summary of their notation and our extensions to it, the reader is referred to Appendix
B. Note that error handling code has been omitted from the algorithms for the sake of
simplicity.

In the following, mappings are denoted using calligraphic letters, e.g. M. M(a) denotes
the value a is mapped to by M. If and only if there is no such mapped value, M(a)
evaluates to �. The inverse of a mapping is denoted asM−1. πi (t) denotes the projection
from the n-tuple t = (t1,t2, . . . ,tn−1,tn) to its i-th element ti for i ∈ {1,2, . . . ,n−1,n}.

14.1 Network Architecture
As depicted in Figure 14.1, the XMPP network has a decentralized client/server architecture
that resembles the email network. Clients and servers are referred to as entities in XMPP
jargon. Entities are addressed using unique Jabber Identities (JID). A JID is a triple consisting
of an optional node name, a DNS server name or IP address called a domain, and an optional
resource identifier. The typical representation of a JID is a string node@domain/resource.
Server JIDs consist of the domain part only. Every client is connected to a single XMPP
server through which it can exchange messages with other clients. When a client establishes
a session with a server, a unique JID is negotiated and assigned to the client. These client
JIDs are fully qualified, i.e., contain both the optional node and resource parts.
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Figure 14.1: The XMPP network consists of federated servers (A,B) that route stanzas between
clients (1-5).

Entities communicate by exchanging (usually small) XML documents called stanzas.
There are three main types of stanzas: message, presence, and info/query (IQ). They share
a common set of attributes. These are the JID of the sender (from), the JID of the recipient
(to), and the type of the stanza (type). A message stanza is used to push data to the
remote entity specified by the to attribute. Presence stanzas are a basic broadcasting
mechanism used to publish availability information to subscribed recipients. IQ messages
are used for request/response interaction between entities.

XMPP servers are responsible for routing stanzas through the XMPP network. For that
purpose a server maintains a routing table that contains a mapping from an entities JID
to an associated session. For clients connected to the same server, routing of a message
requires only a single lookup in the routing table. If no entry for the target JID exists, the
stanza is discarded. Otherwise, the stanza is sent to the target client using the associated
session. If an XMPP server receives a message addressed to a recipient connected to another
XMPP server, i.e. to a JID with a different domain part, the message is forwarded. If no
session for the target server exists, one is established dynamically and stored in the routing
table. Servers that cooperate by routing stanzas to each other are called federated in XMPP
jargon. There is no concept of multi-hop routing between federated XMPP servers, i.e.,
messages from one client to another are routed in at most three hops. Federation is beyond
the scope of this thesis and hence will not be considered in the following.
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Module 14.1 Interface of the XMPP stanza transport module
Module:

Name: Stanza Transport, instance st.
Requests:

⟨ st, Connect | endpoint ⟩: Establish a connection to endpoint.
⟨ st, Send | endpoint, stanza ⟩: Send the given stanza to endpoint.

Indications:
⟨ st, Established | endpoint ⟩: A connection has been established to endpoint.
⟨ st, Closed | endpoint ⟩: The connection to endpoint has been closed.
⟨ st, Deliver | endpoint, stanza ⟩: A stanza has been received from endpoint.

Properties:
ST1: FIFO delivery: If some endpoint sends a stanza s1 before it sends a stanza s2, then

the receiving endpoint delivers s1 before s2.
ST2: Atomic delivery: A stanza is delivered either completely or not at all.

14.2 Stanza Transport
An XMPP client can connect to a server using different protocols. The most widely protocol
used for this purpose today is TCP. However, when using TCP is impossible due to restrictive
firewalls or proxies, which is often the case in enterprise setups, the client can fall back to an
alternative connection method that emulates a long-lived TCP connection using a series of
requests and responses that are exchanged over short-lived HTTP(S) connections. XMPP
uses a protocol called BOSH defined in XEP-0124 for this purpose.
Module 14.1 defines the Stanza Transport interface that abstracts both the ability to

connect to a remote endpoint as well as sending and receiving stanzas over the established
connection. Implementations emit notifications when a connection is established or closed,
and when a stanza is received over a connection. The serialization of stanzas to and the
deserialization of stanzas from the transport’s payload representation is part of the module
implementation. Furthermore, implementations are required to guarantee per-endpoint FIFO
delivery (ST1) and that stanzas are delivered atomically, i.e., a stanza is delivered to higher
layers of the network stack, if and only if the whole stanza has been received (ST2). In the
following, we omit endpoint as a parameter to the requests and indications of the Stanza
Transport module if its value is unambiguously determined by the context.

14.3 Session Management
After an XMPP client has established a stanza transport with the server, an XMPP session
is established by negotiating a unique client JID in a process called resource binding. The
implementations for the respective client- and server-side Modules 14.2 and 14.4 are the
Protocols 14.3 and 14.5, respectively. Basically, the negotiation is accomplished using a pair
of specialized IQ messages. First, the client sends a request IQ stanza containing a bind
request (C-SM-1). On receipt of this request, the server creates a unique JID and updates
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Module 14.2 Client-side interface of the XMPP Session Management module
Module:

Name: Client-side Session Management, instance c-sm with server endpoint sp.
Requests:

⟨ c-sm, Init | sp ⟩: Initiate session with sp.

Protocol 14.3 Client-side XMPP session management protocol
Implements:

Client-side Session Management, instance c-sm with server endpoint sp.

Uses:
Stanza Transport, instance st.

upon event ⟨ c-sm, Init | sp ⟩ do ▷ C-SM-0
localJid ∶= �;
trigger ⟨ st, Connect | sp ⟩;

upon event ⟨ st, Established | end point ⟩ do ▷ C-SM-1
trigger ⟨ st, Send | end point, IQ[type=’set’](Bind()) ⟩;

upon event ⟨ st, Deliver | end point, IQ[type=’result’](Bind( jid)) ⟩ do ▷ C-SM-2
localJid ∶= jid;

Module 14.4 Server-side interface of the XMPP Session Management module
Module:

Name: Server-side Session Management, instance s-sm.
Indications:

⟨ s-sm, Closed | jid ⟩: The session with the client with the bound jid has been closed.

its routing table R1 with a tuple consisting of that JID and the respective endpoint. The
tuple is used to lookup the associated stanza transport for the purpose of routing whenever
an incoming stanza with a matching to attribute comes in subsequently (S-SM-2). To
acknowledge the successful binding process, the server responds with a response IQ stanza
containing the bound JID (S-SM-1). The client stores the JID as it has to be included
as the from attribute in any stanza that is sent to the server subsequently. Although not
reflected in the protocol descriptions herein, clients can also propose a JID to the server
that is refused, however, in case a binding for that JID already exists.
When a session is closed, either deliberately by the client or due to a broken transport

connection, the server removes the associated entry from the routing table (S-SM-3).

1 According to the definitions given in the introduction to this chapter, R(id) gives the endpoint for
the client with identifier id or � if and only if no such entry exists. R−1 is the inverse of R, i.e.
R−1(end point) gives the client identifier associated with the given end point or � if and only if no
matching entry exists.
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Protocol 14.5 Server-side XMPP session management protocol.
Implements:

Server-side Session Management, instance s-sm.
Uses:

Stanza Transport, instance st.
upon event ⟨ s-sm, Init ⟩ do ▷ S-SM-0
R ∶=∅;

upon event ⟨ st, Deliver | end point, IQ[type=’set’](Bind()) ⟩ do ▷ S-SM-1
boundJid ∶=CreateUniqueJid();
R ∶=R∪{(boundJid,end point)};
trigger ⟨ st, Send | end point, IQ[type=’result’](Bind(boundJid)) ⟩;

upon event ⟨ st, Deliver | end point, s ∶=Stanza[to](data) ⟩ do ▷ S-SM-2
target ∶=R(to);
if target ≠ � then

trigger ⟨ st, Send | target, s ⟩;
upon event ⟨ st, Closed | end point ⟩ do ▷ S-SM-3

jid ∶=R−1 (end point);
if jid ≠ � then
R ∶=R∖{r ∈R∣π2 (r) = end point};
trigger ⟨ s-sm, Closed | jid ⟩;

14.4 Multi-User Chats
Multi-User Chats (MUC), defined in XEP-0045 [SA13], extend the core XMPP protocol
to enable clients to discover each other and to communicate in a one-to-many fashion.
The scope of a MUC is a room. A room is a named dynamic set of JIDs, called its
occupants, maintained by the XMPP server. The (simplified1) client- and server-side MUC
interface specifications are given in Module 14.6 and 14.8, the associated implementations
are Protocol 14.7 and 14.9.
An XMPP client can enter (C-MUC-1) and leave (C-MUC-2) any number of MUC

rooms by sending an appropriate presence stanza to the room. Changes in room mem-
bership are tracked by the server using an occupant map OS. An entry in OS is a tuple
(boundJid,occupantJid), where boundJid is the identifier bound to the client as a result
of the resource binding process described in Section 14.3 and occupantJid is the occupant
JID triple generated and stored as c-muc.sel f by the client (C-MUC-1). After OS has been
updated, the server propagates the update to all occupants (including the new occupant)
by sending presence stanzas using replicated unicast (S-MUC-1). Additionally, a presence

1 Note, that XEP-0045 defines a bunch of additional features like different roles and privileges within a
room, the ability to ban users, and dynamically changing the nickname. These features are not relevant
here and are not exposed by the Orbweb API.
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Module 14.6 Interface of the Client-side Multi-User Chat module
Module:

Name: Client-side Multi-User Chat, instance c-muc with MUC roomname.
Requests:

⟨ c-muc, Enter | nickname ⟩: Enter the room using the given nickname.
⟨ c-muc, Leave ⟩: Leave the room.
⟨ c-muc, Send | target, message ⟩: Send the given message to the occupant identified by

the target JID or to all occupants of the room when target is the room’s JID.
Indications:

⟨ c-muc, OccupantStateChanged | occupantJid, state ⟩: An occupant identified by occupan-
tJid has entered (state = Joined) or left (state =Left) the room.

⟨ c-muc, Deliver | source, message ⟩: Deliver the given message received from source
(occupant or room JID).

stanza is sent to the new occupant for each occupant already in the room. Although not
explicitly stated in the algorithm pseudo code and not required by the XMPP specification,
OS is traversed such that the presence update for the triggering occupant is emitted last in
our implementation. On receipt of each of these presence stanzas, occupants update their
occupants set OC accordingly and signal the event to modules on higher layers (C-MUC-4).
The process of a client entering or leaving a room is terminated by the reception of a
presence stanza that signals the state change for the client itself. When the server-side
Session Management module indicates that a session has been closed, the server handles
this event as if the respective client had left the room explicitly (S-MUC-1).
Occupants of a MUC room can send message stanzas addressed to a single occupant

(private chat) or to the whole room (C-MUC-3). The former are just relayed by the
XMPP server to the recipient, the latter are send to all occupants (including the sender)
by the hosting XMPP server using a replicated unicast (S-MUC-2). The two cases can be
discriminated by looking at the to attribute of the incoming message: if the resource part
is missing, i.e., π3 (to) = �, a message is targeted to the whole room. In case one of the
parties is not an occupant of the room (any more), the message is dropped. When the
message arrives on the client, it is delivered to modules on higher layers (C-MUC-5).

While each MUC room is hosted by a single XMPP server, clients connected to federated
servers may participate as well. However, MUCs in federated setups have not been considered
in this thesis for the sake of simplicity.



14.4 Multi-User Chats 121

Protocol 14.7 Client-side XMPP Multi-User Chat protocol.
Implements:

Client-side Multi-User Chat, instance c-muc with roomname.

Uses:
Stanza Transport, instance st.
Client-side Session Management, instance c-sm.

upon event ⟨ c-muc, Init | roomname ⟩ do ▷ C-MUC-0
state ∶=NotJoined;
sel f ∶= �;
OC =∅;

upon event ⟨ c-muc, Enter | nickname ⟩ such that state ≠ Joined do ▷ C-MUC-1
sel f ∶= {roomname,π2 (c-sm.localJid) ,nickname};
trigger ⟨ st, Send | Presence[from=c-sm.localJid, to=sel f , type=’available’] ⟩;

upon event ⟨ c-muc, Leave ⟩ such that state = Joined do ▷ C-MUC-2
trigger ⟨ st, Send | Presence[from=c-sm.localJid, to=sel f , type=’unavailable’] ⟩;

upon event ⟨ c-muc, Send | target, data ⟩ such that state = Joined do ▷ C-MUC-3
trigger ⟨ st, Send | Message[from=c-sm.localJid, to=target](data) ⟩;

upon event ⟨ st, Deliver | Presence[ f rom, to=c-sm.localJid, type] ⟩ do ▷ C-MUC-4
if type =’available’ then
OC =OC ∪{ f rom};
if f rom = sel f then

state ∶= Joined;
trigger ⟨ c-muc, OccupantStateChanged | f rom, Joined ⟩;

else
OC =OC ∖{clientJid};
if f rom = sel f then

state ∶=Left;
trigger ⟨ c-muc, OccupantStateChanged | f rom, Left ⟩;

upon event ⟨ st, Deliver | m ∶= Message[ f rom, to=c-sm.localJid] ⟩ such that state = Joined
do ▷ C-MUC-5

if f rom ∈OC then
trigger ⟨ c-muc, Deliver | f rom, m ⟩;

Module 14.8 Interface of the Server-side Multi-User Chat module
Module:

Name: Server-side Multi-User Chat, instance s-muc with MUC roomname.
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Protocol 14.9 Server-side XMPP Multi-User Chat protocol.
Implements:

Server-side Multi-User Chat, instance s-muc with roomname.

Uses:
Stanza Transport, instance st.
Server-side Session Management, instance s-sm.

upon event ⟨ muc, Init | roomname ⟩ do ▷ S-MUC-0
OS ∶=∅;

upon event ⟨ st, Deliver | Presence[ f rom, to, type] ⟩ such that π1 (to) = roomname or upon
event ⟨ st, Closed | f rom ⟩ do ▷ S-MUC-1

occupantJid ∶= {roomname,π2 ( f rom) ,nickname};
if type = ’available’ then
OS ∶=OS∪{ f rom,occupantJid};

else
OS ∶=OS∖{ f rom,occupantJid};

forall o ∈OS do
trigger ⟨ st, Send | s-sm.R(π1 (o)), Presence[from=occupantJid, to=π1 (o), type] ⟩;
trigger ⟨ st, Send | s-sm.R( f rom), Presence[from=π2 (o), to= f rom, type] ⟩;

upon event ⟨ st, Deliver | endpoint, Message[ f rom, to](data) ⟩ such that π1 (to) = roomname
do ▷ S-MUC-2

if OS ( f rom) ≠ � then
if π3 (to) ≠ � then

recipientJid ∶=O−1
S (to)

if recipientJid ≠ � then
trigger ⟨ st, Send | s-sm.R(recipientJid), Message[from=OS ( f rom),

to=recipientJid](data) ⟩;
else
forall o ∈OS do
trigger ⟨ st, Send | s-sm.R(π1 (o)), Message[from=OS ( f rom), to=π1 (o)](data) ⟩;



15 Peer Groups
This chapter describes the concept of Peer Groups and how they are realized on top of the
XMPP Client-side Multi-User Chat module introduced in the previous chapter.

The idea of peer groups is not new but is known for decades under the original name
Process Groups [CZ85, BJ87]. Process groups are sets of local or distributed processes
grouped to cooperatively provide a service. In the latter case one speaks of Distributed
Process Groups. The most important reasons for grouping processes are according to Liang
et al. [LCN90]:

1. To abstract the common characteristics of processes.

2. To encapsulate internal state and hiding the interactions between group members
from the external world.

3. To be able to compose higher-level system services by using groups as building blocks.

As process groups are considered very useful, they (or similar concepts) are also provided
by some of the existing substrates for Peer-to-Peer applications discussed in Chapter 23.

A Process Group Model describes the characteristics of a process group. These character-
istics are manifold: Birman et al. [Bir93] differentiate anonymous and explicit group models.
While for the latter the members of the group are known to each other, this is not true
for the former. Liang et al. [LCN90] distinguish between deterministic group models with
built-in strong consistency and non-deterministic group models with relaxed consistency
constraints but lower maintenance overhead. Another differentiator proposed by the same
authors is whether process groups are open or closed , i.e., whether requests to the group
may be issued from outside the group or not.

The Orbweb group model has been designed to be very flexible and can be specified on
a per group basis. Orbweb groups can be anonymous or explicit and open or closed. They
provide consistent membership lists and are thus deterministic according to the definition of
Liang et al. All these properties are strongly related to the aspect of visibility between peers,
which is covered by the concept of virtual topologies in Orbweb. Virtual topologies and
how they are used to model visibility within peer groups is described in detail in Chapter 18.
For the rest of this chapter, we assume the special case of an explicit process group model
in which each peer is visible to all other peers.

15.1 Peer Group Management
Module 15.1 shows the interface of Orbweb’s Peer Group Management (PGM) module.
An Orbweb peer can create any number of peer groups. Once created, a peer group can
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Module 15.1 Interface of the Peer Group Management module
Module:

Name: Peer Group Management, instance pgm with group name.
Requests:

⟨ pgm, Init | name ⟩: Create a group with the given name.
⟨ pgm, Join ⟩: Join the group.
⟨ pgm, Leave ⟩: Leave the group.
⟨ pgm, View | members ⟩: Returns all group members that are in the local peer’s view.
⟨ pgm, Unicast | target, message ⟩: Send the given message to the group member identified

by target.
⟨ pgm, Groupcast | message ⟩: Send the given message to all members of the group.

Indications:
⟨ pgm, Joined | peerId ⟩: The local peer has joined the group successfully and has been

assigned the peer identifier peerId.
⟨ pgm, Left ⟩: The local peer has left the group.
⟨ pgm, ViewUpdate | peerId, state ⟩: A peer identified by peerId has joined (state = Joined)

or left (state =Left) the group.
⟨ pgm, Deliver | source, message ⟩: Deliver the given message received from the peer with

identifier source.
Properties:

PGM1: Unique Identities: The peer identifier assigned to a peer is unique for every invocation
of the join request.

PGM2: Fail-Stop Behavior: The abstractions provided by the module support the fail-stop
distributed system model.

PGM3: Atomic Delivery: Messages sent using the ⟨ Unicast ⟩ and ⟨ Groupcast ⟩ requests
are delivered either completely or not at all.

be joined and once joined left again at any time using the ⟨ Join ⟩ and ⟨ Leave ⟩ requests.
When the process of joining a group is completed, modules on higher layers are notified
via a ⟨ Joined ⟩ indication. Analogously, a ⟨ Left ⟩ indication is emitted when a peer has
left a group. Whenever a remote peer joins or leaves the peer group, this event is reported
to all other peers by means of a ⟨ ViewUpdate ⟩ indication. The local membership view
can be requested using the ⟨ View ⟩ request. Joined peers are able to send messages to
individual co-members using the ⟨ Unicast ⟩ or to the entire group using the ⟨ Groupcast
⟩ request. The exact semantics of the latter is discussed in detail in Chapter 19. The ⟨
Deliver ⟩ indication is triggered whenever a message is to be delivered to higher layers.

Implementations of the Peer Group Management module are required to ensure that each
invocation of the ⟨ Join ⟩ request – even for those issued by the same peer – produces a unique
peer identifier (PGM1). Moreover, implementations must make sure that the abstractions
implicitly provided by the requests and indications of this module, i.e. communication
channels, processes, and failure detector, support the Fail-Stop distributed system model
(PGM2). Due to the high complexity, the exact definition of the underlying requirements
and the proof that the implementation described in the following section satisfies these
requirements are given in Chapter 16.
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15.2 XMPP MUC-based Implementation
Orbweb’s implementation of the PGM module is based on XMPP Multi-User Chats. The
algorithm sketch is shown in Protocol 15.2. Basically, it is a thin wrapper around the
Client-Side MUC module (see Module 14.6) that adds logic to satisfy the requirement for
unique identities (PGM1) and to translate between occupant JIDs and peer identifiers. The
superpeer is only indirectly involved by means of the Server-Side MUC module in this PGM
implementation.
The uniqueness of peer identifiers (PGM1) is ensured by creating a unique identifier

prefix that is combined with a local incarnation counter. While the latter is incremented
during the processing of ⟨ Leave ⟩ requests by PGM-2, the former is generated by the
GenerateUnique function in PGM-0 from the media access control (MAC) address
of the host and the current value of the local hardware clock1. To see that the resulting
identifiers are unique, we look at all possible ways a peer can leave a group:

1. Intentionally by explicitly issuing a ⟨ Leave ⟩ request, which immediately increases the
incarnation number (PGM-2).

2. Due to the underlying XMPP session being closed, which triggers a ⟨ Leave ⟩ request
(PGM-7) and subsequently an increase of the incarnation number (see 1).

3. Resulting from a crash of the hosting process, which leads to a reinitialization of the
unique identifier prefix when the same group is rejoined later (PGM-0).

In all three cases the peer identifier assigned to the rejoining peer is different from all
identifiers that have been created before (with respect to the local hardware clock). Hence,
the Unique Identities property (PGM1) is satisfied.

Note that the implementation inherits the Atomic Delivery guarantee (PGM3) from the
Session Transport module.

1 We assume that the MAC addresses of all participating hosts are universally administered and hence are
universally unique and that the local hardware clock is never set to an earlier time.
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Protocol 15.2 XMPP MUC-based Peer Group Management protocol
Implements:

Peer Group Management, instance pgm with group name.

Uses:
Client-side Multi-User Chat, instance c-muc.

upon event ⟨ pgm, Init | name ⟩ do ▷ PGM-0
unique ∶=GenerateUnique();
incarnation ∶= 0;
localPeerId ∶= �;
view ∶=∅;

upon event ⟨ pgm, Join ⟩ such that c-muc.state ≠ Joined do ▷ PGM-1
localPeerId ∶= unique+’-’+incarnation;
trigger ⟨ c-muc, Enter | localPeerId ⟩;
wait for event ⟨ pgm, Joined | localPeerId ⟩;

upon event ⟨ pgm, Leave ⟩ such that c-muc.state = Joined do ▷ PGM-2
incarnation ∶= incarnation+1;
trigger ⟨ c-muc, Leave ⟩;
wait for event ⟨ pgm, Left ⟩;

upon event ⟨ c-muc, OccupantStateChanged | f rom, state ⟩ do ▷ PGM-3
peerId ∶= π2 ( f rom);
trigger ⟨ pgm, ViewUpdate | peerId, state ⟩;
if state = Joined then

view ∶= view∪ peerId;
if peerId = localPeerId then
trigger ⟨ pgm, Joined | peerId ⟩;

else
view ∶= view∖ peerId;
if peerId = localPeerId then
trigger ⟨ pgm, Left ⟩;

upon event ⟨ pgm, Unicast | target, msg ⟩ such that c-muc.state = Joined do ▷ PGM-4
recipentJid ∶= (name,π2(c-muc.sel f ),target);
trigger ⟨ c-muc, Send | recipientJid, msg ⟩;

upon event ⟨ pgm, Groupcast | msg ⟩ such that c-muc.state = Joined do ▷ PGM-5
groupJid ∶= (name,π2(c-muc.sel f ),�);
trigger ⟨ c-muc, Send | groupJid, msg ⟩;

upon event ⟨ c-muc, Deliver | source, msg ⟩ such that c-muc.state = Joined do ▷ PGM-6
peerId ∶= π3 (source);
trigger ⟨ pgm, Deliver | peerId, msg ⟩;

upon event ⟨ c-muc.st, Closed | end point ⟩ do ▷ PGM-7
trigger ⟨ pgm, Leave ⟩;

upon event ⟨ pgm, View | members ⟩ do ▷ PGM-8
members ∶= view;
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A distributed system model (DSM) describes the behavior of a distributed system in terms
of three basic abstractions: processes, communication links, and time. A DSM determines
which algorithms can be used to implement a distributed programming abstraction like a
totally ordered multicast channel, an agreement primitive, or group membership. In the
following, we describe the DSM that is exposed by Orbweb to the higher layers of the
Cohesion middleware stack and to applications.

16.1 Basic Abstractions
A process is an entity that is able to perform computations. A process abstraction describes
what faults may interrupt the flow of computation and communication steps that make up a
process and how the process may behave after a fault occurred. The most relevant process
abstractions are crash-stop, crash-recovery, and arbitrary-fault (also known as byzantine).
As the name implies crash-stop processes simply stop executing steps on failure and never
resume. Crash-recovery processes may crash and stop communicating but might recover
at a later point in time. Typically, algorithms designed for crash-recovery processes use
persistent storage to compensate for the loss of state when they crash. Arbitrary-fault
processes may behave arbitrarily. Typical reasons for this kind of behavior are malicious
attackers and implementation bugs.
Processes may interact by exchanging messages over communication links or links for

short. Link abstractions are typically characterized using three aspects: How often a message
is delivered1 that has been sent multiple times? How often a message may be duplicated?
And whether the network may corrupt or create messages? While there are numerous
possible link abstractions, many are of theoretical interest only. The most important of
practical importance are fair-loss and perfect links. The former essentially guarantees that
a message that is sent infinitely often is delivered infinitely often2, messages are duplicated
only a finite number of times, and messages are neither corrupted nor created by the network.
The properties of perfect links are detailed below. The practical importance of these link
abstractions stems from the fact that UDP is an implementation of the fair-loss and TCP is
an approximation3 of the perfect link abstraction [CGR11].

1 The term delivered means (1) received by the target host and (2) handed over to the target application.
2 In other words fair-loss links deliver messages with non-zero probability.
3 In asynchronous systems, TCP is just an approximation of the perfect link abstraction. While TCP

includes acknowledgments and retransmission mechanisms to recover from omissions, TCP breaks the
connection and fails to deliver messages, if the other endpoint is unresponsive for an extended period of
time, erroneously assuming that the corresponding node has crashed [CGR11].
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Both processes and links have properties related to time: Processes proceed at a specific
(relative) speed and links have message delivery delays referred to as latencies. Time-related
models describe whether bounds can be given for these properties. One distinguishes
synchronous and asynchronous systems. An asynchronous system does not allow making
timing assumptions at all: There are no known bounds on processing and communication
delays. For synchronous systems the opposite is true: There are known upper bounds
on both types of delays. In between synchronous and asynchronous systems are partially
synchronous systems in which one can expect periods of synchronous behavior of arbitrary
length. Because modeling algorithms based on explicit timing assumptions is cumbersome,
failure detectors have been introduced to abstract from concrete timing assumptions. A
failure detector classifies each processor as either failed or correct. The corresponding
failure detectors for synchronous and partially synchronous systems are the perfect and the
eventually perfect failure detector , respectively. Informally spoken, the latter is allowed to
change its mind about the status of a process for a finite number of times, while the former
is not.
A combination of these three basic abstractions results in a specific distributed system

model. For example the fail-recovery distributed system model is based on crash-recovery
processes, stubborn links1, and an eventually perfect failure detector. In general, combinations
consisting of abstractions giving stronger guarantees create more powerful distributed system
models in which algorithms may be implemented more easily. Thus, fail-stop as the most
powerful distributed system model substantially simplifies the implementation of distributed
programming abstractions.

Due to reasons of space, we were able to give a brief overview on the subject only. For a
comprehensive treatment of the subject, the reader is referred to the excellent text books
on distributed systems and algorithms by Lynch [Lyn96] and Cachin et al. [CRG11].

16.2 Orbweb’s Fail-Stop DSM
Orbweb operates on top of a distributed system. We assume that this system is partially
synchronous. Orbweb hides this fact and provides a more powerful distributed system
model shielding the Cohesion application programmer from handling the complexity by
themselves. As required by (F4), Orbweb provides a fail-stop distributed system model.
This simplifies the implementation of many distributed algorithms [CRG11]. The fail-stop
model is characterized by three properties:

1. Processes execute correctly but may crash at some point in time. After a process has
crashed it never recovers. This property is called crash-stop behavior.

2. Processes communicate using perfect links. A perfect link reliably delivers every
message sent by a correct process to a correct process exactly once. This breaks down
to three properties: First, every message sent by a correct process p to a correct
process q is eventually delivered by q (reliable delivery). Second, no message is

1 Stubborn links use retransmission to compensate for message losses.
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delivered more than once (no duplication). Third, only those messages are delivered
on q that have been sent by some process p to q (no creation).

3. Every process has access to a perfect failure detector [CT96]. Such a failure detector
eventually detects all crashed processes and never outputs false positives, i.e., never
reports a correct process to have failed. These properties are called strong completeness
and (perpetual) strong accuracy, respectively.

In the following, we give an informal proof that the DSM exposed by the Orbweb PGM
described in Chapter 15 satisfies these requirements.

16.3 Perfect Failure Detection
Orbweb provides a Perfect Failure Detector (PFD) despite the assumption of a partially
synchronous system. This seemingly contradiction to the well-known fact that only eventually
perfect failure detectors can be implemented in such systems [CRG11] is resolved by the
fact that our definition of a crashed process is different from the canonical one, which says
that a crashed process in the crash-stop model does not execute any local computation and
does not exchange messages with other processes. In contrast, our definition allows further
execution of local computations but does not allow a peer to communicate with any other
process once it has been detected as crashed. The rationale behind this definition is that
if the results of a local computation step never become visible to the rest of the system,
there execution is actually meaningless. As processes communicate only indirectly over the
superpeer our definition of crashed is as follows:

Definition 16.3.1. A peer is called crashed1 if and only if the XMPP session to the
Orbweb superpeer has been closed. Otherwise the peer is called correct.

As mentioned before, a perfect failure detector must satisfy two properties:

1. Eventually every crashed process is permanently detected as crashed by every correct
process (Strong Completeness).

2. If a process p is detected by any other process q, then p is crashed (Strong Accuracy).

Using definition 16.3.1, we have to prove the following three lemmas:

Lemma 16.3.1. A crashed Orbweb peer group member p is eventually detected by all
correct Orbweb peers within that peer group g.

1 Note that we restrict ourselves to crashes and ignore deliberate departures triggered by means of a ⟨
pgm, Leave ⟩ request. Since messages sent from or to a peer that is not a member of a group are silently
discarded in S-MUC-2 and C-MUC-5, a peer that has deliberately left a group is from the perspective of
other peers by all means equivalent to a crashed one.
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Proof. We assume that a correct peer q that occupies g does not detect p. By definition q
must have an open XMPP session with the superpeer. Hence, it is part of the occupant
map OS. As p has crashed the XMPP session of p with the superpeer has been closed
by definition. As of S-MUC-1 (see Protocol 14.9) the XMPP server has eventually sent
a presence stanza to all occupants of the MUC room including q. This triggers an ⟨
c-muc, OccupantStateChanged ⟩ indication that in turn triggers a ⟨ pgm, ViewUpdate |
p.c-muc.localPeerId, Left ⟩ indication on every client in particular on q which contradicts
the assumption. ∎

Lemma 16.3.2. Once detected, a crashed Orbweb peer p is detected permanently by a
correct peer q.

Proof. p has been detected by q. Hence, it has been removed from the view of q. p can
reappear in the view of q for two reasons only: Either the same or another peer joins with
the same peer identifier or a presence message indicating that p has joined the group arrives
out of order. The former can not happen since peer identifiers are unique as explained in
Section 15.2. The latter is impossible, since messages from and to the same client are
delivered in FIFO order (guaranteed by the ST1 property of the Stanza Transport module)
and are processed by the protocols in FIFO order (see Appendix B).

∎

Lemma 16.3.3. If a peer p is detected by any other peer q, then p has crashed.

Proof. If p is detected by q, then q has triggered a ⟨ pgm, ViewUpdate | p.c-muc.localPeerId,
Left ⟩ indication. This must have been triggered by a presence stanza sent during the
execution of S-MUC-1. S-MUC-1, however, is executed if and only if the XMPP session
between the server and p is closed. In this case, p has crashed by definition. ∎

Theorem 16.3.1. Orbweb process groups realize a perfect failure detector.

Proof. Follows directly from Lemmas 16.3.1 through 16.3.3. ∎

16.3.1 TCP and the XMPP Session Stanza Module
Definition 16.3.1 equates a peer’s correctness with the existence of an XMPP session between
the underlying XMPP client and the XMPP server hosted on the Orbweb superpeer. Until
now the exact conditions under which a ⟨ st, Close ⟩ indicator is emitted by the Session Stanza
module has not been discussed. Obviously, these conditions are related to the underlying
transport protocol. Orbweb uses TCP (Transmission Control Protocol) [Pos81].

As TCP was designed for resiliency and efficiency, intermittent problems (including process,
host, and router crashes, unplugged network cables, etc.) on the network path in between
and at the endpoints are not detected until an endpoint tries to send data. If the TCP
packets are not acknowledged in a timely fashion, the connection is considered broken and
closed on the sender side. However, as no more data can be transmitted, the receiving side
cannot be notified of this event and will block on the receive operation forever. This scenario
is called half-open connections. The problem is that when an Orbweb peer crashes in the
classical sense, the superpeer is not notified of this fact and the server-side Session Stanza
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module does not immediately trigger a ⟨ st, Close ⟩ indication. Consequently, the crashed
peer would stay in all previously joined rooms and would never be detected by the PFD.
TCP has an optional feature called keep-alives that in theory can be used to detect

half-open connections without modifying higher-level protocols. Unfortunately, this approach
has drawbacks that render its use impractical: First, the feature is optional and thus is
not necessarily implemented in all network stacks. Second, the system-wide parameters are
usually set to values much too high (e.g., two hours for Microsoft operating systems) for
most applications. Setting them to lower values is not only considered bad practice but
also requires administrative privileges which cannot be assumed in a Desktop Grid scenario.
Hence, Orbweb implements the keep-alive approach on the XMPP layer by forcibly sending
a single whitespace character whenever no XMPP stanza has been sent for a configurable
time period. Whitespace between XML tags is discarded when stanzas are parsed from
the incoming data stream. If the corresponding TCP packet is not acknowledged for some
reason, the connection is closed becoming half-open. The approach is applied symmetrically
on both the peer and the superpeer, such that a half-open connection becomes fully-closed
eventually. A fully-closed connection, however, triggers automatic cancellation of stale
membership in all groups and delivery of resultant view updates to the remaining members.

16.4 Perfect Links
The PGM module allows for unicasting messages between peers within the same peer group.
The virtual link between two such peers p, q is a two hop link on the transport layer
(p→ s→ q, where s is the superpeer). These virtual links are implementations of the Perfect
Link abstraction. A perfect link satisfies the following properties:

1. Every message sent by a correct process p to a correct process q is eventually delivered
by q (reliable delivery).

2. No message is delivered more than once (no duplication).

3. Only those messages are delivered on q that were sent by some process p to q (no
creation).

Using the nomenclature of Orbweb , this translates to the following lemmas (note that
we talk about messages at the PGM level, not at the XMPP stanza level).

Lemma 16.4.1. Every message sent (unicast) by a correct peer p to a correct peer q,
where p and q are members of the same peer group g, is eventually delivered by q.

Proof. As p is correct an XMPP session exists. Thus, the message eventually arrives at
the superpeer in S-MUC-2. Since q is correct it also has an XMPP session with the server.
As both p and q are members of g, they are represented in OS. Hence, the message is
not dropped by the validity checks in S-MUC-2 and is sent to q and delivered to the PGM
module in C-MUC-5 and finally in PGM-6 to the application. If the XMPP session of p or q
is closed while the message is in transit than p or q, respectively, are not correct and hence
the message has not to be delivered by q. ∎
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Lemma 16.4.2. No message is delivered more than once on the same peer p.

Proof. This follows from the fact that neither TCP as the underlying transport protocol
nor the Orbweb superpeer duplicates messages. For TCP this is guaranteed by the use of
sequence numbers. For the superpeer this is obvious from the protocol. ∎

Lemma 16.4.3. Only those messages are delivered on q that have been sent to q by some
member p of g.

Proof. It is obvious from the Orbweb protocol definitions that no messages are created
neither by the superpeer nor by any peer outside PGM-4. TCP itself satisfies the no
creation property. Furthermore, messages from XMPP clients that are not occupants of
the underlying MUC room are dropped in C-MUC-5. Hence, every delivered message must
originate from some member of g executing PGM-4 as a result of a ⟨ pgm, Unicast ⟩
request. The proof that the message is actually delivered at the peer it was targeted to is
straightforward but lengthy and is hence omitted for reasons of brevity. ∎

While not strictly required for the fail-stop property, Orbweb links actually are FIFO-Order
Perfect Links.

Lemma 16.4.4. If some peer sends a message m1 before it sends m2, then no correct peer
delivers m2 unless it has already delivered m1.

Proof. This follows immediately from the FIFO guarantee of TCP and the FIFO processing
order of the Orbweb peers and superpeers. ∎

Theorem 16.4.1. PGM unicast messaging implements FIFO-Order Perfect Links.

Proof. Follows immediately from Lemmas 16.4.1 through 16.4.4 ∎

16.5 Crash-Stop Behavior
While we gave a definition of the term crashed in Section 16.3, the above definition of
crash-stop behavior is incomplete with respect to the meaning of the term recover. Recovery
of a crashed process in general means that the process becomes operational again and
restarts to execute the algorithm it is expected to using state persisted on stable storage
before the crash occurred. Orbweb allows physical peers to recover. However, XMPP
resource binding (see Section 14.3) that takes place during session establishment ensures
that a returning physical peer gets assigned a new unique identity. This mechanism ensures
that a peer logically never recovers1 and that messages targeted to the crashed logical peer
are not received and hence not delivered by the new incarnation of the physical peer. A
consequence of our definition of a crashed peer is that the lifecycle of a peer is bound to
the lifecycle of the XMPP session. Hence, an Orbweb peer is forced to reinitialize in case
the XMPP session is closed.

1 Orbweb peers must adhere to the convention to not use any persisted state that may interfere with
the semantics of the provided DSM.



16.6 Impact of Network Partitioning 133

16.6 Impact of Network Partitioning
A network partition is the state of a network in which all paths between any two non-empty
groups of network nodes fail simultaneously. Dealing with network partitions in distributed
systems with shared state is non trivial as either consistency or availability has to be sacrificed
temporarily until the cause of the network fault has been eliminated. This fact has been
formalized by Brewer in his CAP Theorem as a conjecture, which has been proven later by
Gilbert and Lynch [GL02].

In Orbweb , network partitions translate to peer crashes. If a network partition occurs,
the Orbweb superpeer is located in exactly one partition. All XMPP sessions to peers
outside this primary partition are closed as soon as the underlying TCP connections are
closed. As a result, the peers are detected as crashed and removed from all occupied peer
groups eventually. They may of course rejoin the Orbweb network with a new logical
identity as soon as the network fault has gone.
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Orbweb superpeers act as relays for exchanging messages between peers. This guarantees
universal connectivity even for hosts that are behind restrictive firewalls or NAT devices.
However, the indirection over an intermediary server limits scalability and performance
unnecessarily, when peers are able to communicate directly. Hence, a modification of the
XMPP message delivery subsystem that enables P2P communication promises to increase
the overall system-wide message throughput by eliminating the performance bottlenecks
induced by XMPP servers and to decrease message latency by reducing the number of
necessary hops from two to one. We call this feature End-to-End (E2E) communication,
as peers at the ends of the mediated XMPP connection interact directly. Note that E2E
communication is an optimization and complements superpeer-relayed communication that
is always available as a fallback when E2E session establishment is not possible due to, for
example, NAT devices on the network path between two peers that do not allow to establish
a transport link. Furthermore, as will be discussed in Section 17.2, E2E communication can
only be used at the expense of losing the strong guarantees of the fail-stop model provided
by Orbweb.

Establishing and maintaining an E2E connection consumes host resources. This includes,
among other things, memory for the XMPP/XML parsing and serialization infrastructure,
network ports, and network bandwidth, as well as CPU cycles for session establishment
and the half-open connection detection mechanism described in Section 16.3.1. While
the resource consumption is essentially the same regardless whether an XMPP session
is established with another peer or with the superpeer, there is only one connection to
the superpeer but typically many to other peers. Furthermore, E2E sessions are much
more volatile, as their lifetime is coupled to the availability of the volatile target peers.
Hence, the overall resource consumption for E2E session management is significantly higher
as that associated with superpeer-relayed communication. In order to prevent resource
exhaustion, Orbweb’s E2E facility enforces a limit on the number of concurrent sessions.
Since heterogeneity is a characteristic property of Desktop Grids, this limit can be tuned to
the capabilities of peers on a per-peer basis.
Limiting the amount of concurrent E2E sessions creates the need for selecting peers for

which the establishment of an E2E session is most beneficial. In Orbweb, this is done
by sampling outgoing XMPP traffic on the peers. E2E Sessions are established with those
partners with which most stanzas have been exchanged recently. As virtual topologies
are intended to be chosen according to the interaction pattern of applications, messages
are likely exchanged more frequently between peers that are neighbors within the virtual
topology than between peers that are not. Hence, the E2E communication facility ensures
that virtual links are mapped to links on the transport layer when possible.

Besides selecting which peers are promising session partners, the system must also handle
the actual session establishment process. This is done by leveraging multiple existing
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Extension Name Description

XEP-0166 Jingle Enables client-to-client sessions between XMPP en-
tities. Jingle is a pure signaling protocol. Thus it
controls the connection negotiation process over the
XMPP channel, while P2P interaction is accomplished
out-of-band using custom communication technologies
like the Real-time Transport Protocol (RTP), the User
Datagram Protocol (UDP), or the Interactive Connec-
tivity Establishment (ICE) protocol. Jingle is primarily
targeted to support media exchange applications like
voice or video chats. However, due to its modular
design Jingle can be easily extended to support other
session types and transport mechanisms.

XEP-0247 Jingle XML Streams Defines a Jingle application type for establishing a
direct XML stream between two XMPP entities over
a reliable transport.

XEP-0246 End-to-End XML Streams Defines how two peers interact, particularly which
XMPP stanzas they exchange, after the session has
been negotiated. This includes the exchange of stream
headers, the use of the Transport Layer Security (TLS)
protocol and the Simple Authentication and Security
Layer (SASL) for establishing the security context and
the closing of the XML stream.

Table 17.1: XMPP extensions used by ORBWEB’s E2E communication facility

XMPP extensions (see Table 17.1): We use Jingle (XEP-0166) and Jingle XML Streams
(XEP-0247) for session negotiation and End-to-End XML Streams (XEP-0246) to establish
an XMPP connection between peers according to the results of the negotiation process.

17.1 Session Management
Orbweb’s E2E communication facility as depicted in Figure 17.1 samples the outgoing
traffic of all local XMPP sessions. This includes the standard client-to-server session (C2S)
as well as all E2E sessions. Based on the number of outgoing XMPP stanzas, a priority is
computed for each target JID at regular intervals, called rounds for the sake of brevity. To
lessen the impact of past traffic patterns the priority value is multiplied by an aging factor
fage ∈ ]0,1[ after each round. Based on these priorities the facility computes a list of JIDs,
called the nominal session list, for which it is expected to be most beneficial to have an
E2E session with. By comparing the nominal session list with the list of active sessions,
called the actual session list, a series of session establishment and session termination tasks
is computed. For each establishment attempt one of the following conditions hold:

1. The attempt succeeds and the new session is added to the actual session list.
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Figure 17.1: ORBWEB’s E2E communication facility creates E2E sessions to peers with which
many messages have been exchanged recently. These sessions are used to deliver XMPP stan-
zas directly. If no E2E session exists for a given target peer, the facility falls back to superpeer
relayed message delivery.

2. The attempt succeeds with respect to TCP connection establishment but during
handshake it turns out that the remote endpoint is not the expected peer. This
scenario can occur in networks with NAT devices. In this case the session partner is
excluded from further connection attempts (blacklisted).

3. The attempt fails because the session partner does not respond in a timely fashion
or does respond with an error stanza, which happens for example when the session
limit on the remote peer is exceeded. In both cases the session partner is greylisted
according to a greylisting strategy, that determines for how much time TG a potential
partner is excluded from session establishment after the n-th attempt to establish an
E2E session has failed. In our experiments the logistic function

TG ∝ 1/(1+e−n) (17.1)
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turned out to be a good choice.

Session trashing is the condition in which a system is spending most of its execution time
closing and establishing sessions caused by rapid priority order alteration near the priority
limit where a session becomes qualified for E2E session establishment or is displaced by
another one. To avoid session thrashing the priority value of a recently closed session is
reduced by multiplication with a penalty factor fpenalty ≪ 1.
To be able to handle large numbers of connections Orbweb’s E2E communication

facility implements the reactor pattern based on the Apache Mina [min] high performance
protocol construction framework. While systems based on the traditional approach of
using a thread-per-connection model waste significant parts of the available CPU time
with context switching leaving less time for doing actual I/O processing, Mina allows for
having a single thread serve a large number of sockets through I/O multiplexing enabled by
asynchronous I/O introduced in Java v1.4. This results in significantly improved scalability
and performance.

17.2 Impact on the System Model
When messages are delivered using E2E communication, Orbweb can not provide the
strong guarantees of the fail-stop distributed system model, as the requirement for perfect
links is no longer satisfied (cf. Chapter 16). In particular, the reliable delivery property of the
perfect link abstraction is violated, as E2E sessions may be closed by both endpoints at any
time. When this happens while a message is in transit, the message is lost although both
endpoints are correct. Note that losing messages is also possible in the fail-stop model, but
only when one of the endpoints is not correct. In case an algorithm relies on the fail-stop
model, Orbweb’s communication system can be forced to fall back to superpeer-relayed
delivery on a per-message basis.

17.3 XMPP Network Distance Service
Depending on the application, a peer may exchange messages with a large number of
other peers. As described in the introduction to this chapter, it is usually not possible to
maintain E2E sessions to all of them. While the E2E facility ensures that E2E sessions are
established for the most actively used communication paths, there is no application-level
knowledge about the costs of communicating with a remote peer. Provided that the
application allows for selecting with which peers to collaborate at what intensity, a peer
should prefer interacting with peers over E2E sessions for efficiency reasons. To enable
this, Orbweb’s E2E communication facility supports querying for the distance dXMPP in
terms of hops to other peers v within the Orbweb network on the XMPP layer. For a
given target peer v possible distances are dXMPP (v) = 0 for the peer itself, dXMPP (v) = 1 for
peers with which an E2E session has been established, and dXMPP (v) = 2 for peers between
which messages are relayed by the Orbweb superpeer. Note that this distance metric only
describes the number of hops within the XMPP network but is not suitable for reliably
characterizing the network path to another peer in terms of latency or path length in terms
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of hops in the IP network. Nevertheless, the utilization of the Orbweb infrastructure can
be optimized by reengineering network- and application-level protocols to be distance-aware
as then less XMPP stanzas have to be relayed by the superpeer.
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The interaction patterns between peers can be fundamentally different across applications:
While the random stealing algorithm described in Part VII exhibits random interaction
patterns, the nodes of a distributed hierarchical information aggregation system as described
in Part VI interact along the edges of a tree. For ISPs these interaction patterns are even
dynamic and evolving. Hence, maintaining interaction relationships is, especially within
volatile environments like Desktop Grids, a challenging task.

To simplify distributed algorithm design and implementation, Orbweb offers, in accor-
dance with requirements (F1),(F2), and (N2), fine-grained control over the mutual peer
visibility1 within a group. As already known from Chapter 15, Orbweb peer groups emit
⟨ pgm, ViewUpdate ⟩ indications whenever the group membership changes. By tracking
these indications a so called membership view [GKM03] can be bulit and maintained on the
peers. It is defined as follows:

Definition 18.0.1. A membership view (or view for short) of a peer p is the subset of
comembers within a group about whose availability status p is informed.

Based on this, we can define the abovementioned mutual peer visibility more formally as:

Definition 18.0.2. A virtual topology of a group g is the graph that consists of the union
of the view graphs of all members of g. A view graph for peer p is the graph consisting of a
vertex for p and all peers in the view of p and one edge between p and each peer in the
view of p.

Orbweb exposes virtual topologies as an abstraction closely related to the peer group
abstraction. To each group a single virtual topology is assigned. This topology is maintained
as a data structure centrally on the superpeer and enforced by sending tailored presence
stanzas in handler S-MUC-1 of the server-side XMPP MUC protocol (see Protocol 14.9)
to customize the membership views on the peers accordingly. Applications can create any
number of groups and for each of them select the virtual topology most suitable for the
distributed algorithm to be realized.

18.1 Implementation
To be able to implement new virtual topologies with minimal effort within the Orb-
web framework, we decouple group management from view management logic. While the

1 Note, that Orbweb peers can unicast messages to all other peers within the group, even if they are
not in their view, as long as they know their peer identifier.
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former provides all the functionality defined by the Peer Group Management module (see
Chapter 15), the latter determines which peers are visible to a peer within a group by means
of its membership view. Due to this separation of concerns, only the view management
logic has to be implemented, either by starting from scratch or by composition of existing
topologies.
The group management part is implemented by a generic replacement for the MUC

implementation of Openfire called eXtensible MUC or X-MUC . X-MUC delegates view
management to dedicated view managers. The architecture is based on the composite design
pattern [GHJV95]: Each presence stanza received by the X-MUC component, indicating
that a peer has joined or left the group, is forwarded to a view manager instance. The view
manager translates the incoming stanza into a set of outgoing stanzas based on its internal
model of the group’s topology. Outgoing stanzas carry role information as required by (F2)
and are delivered by the X-MUC component to the respective recipients. These in turn
update their membership views accordingly.

18.2 Elementary View Managers
Orbweb provides a set of elementary view manager implementations satisfying the re-
quirements for a broad range of use cases. Additionally, view manager composition can
be used to create more complex topologies by combining two or more elementary view
managers. Figures 18.1 a)-e) show sample topologies generated by the elementary view
managers. Their complexity characteristics are summarized in Table 18.1. In the following
discussion, let G denote the managed group and ∣G∣ the number of peers in the group.
Orbweb’s elementary view managers are:

Complete. This manager creates the same membership views as the standard XMPP
MUC. It realizes a single fixed explicit group model with complete membership views resulting
in each group member being aware of the status of each other group member. However,
groups with an explicit group model do not scale to thousands of hosts neither client- nor
server-side. The server has to transmit a quadratic number of messages to inform each

Manager Space Complexity Message Complexity Diameter
Client Server Update

Complete O(∣G∣) O(∣G∣) O(∣G∣) 1
Blind O(1) O(∣G∣) O(1) ∞
RBT O(s) O(s ∣G∣) O(s) O(log(s ∣G∣))
Ring O(1) O(∣G∣) O(1) ⌊ ∣G∣2 ⌋
Random O(log(∣G∣)) O(∣G∣ log(∣G∣)) O(log(∣G∣)) -

Table 18.1: View manager complexity characteristics for a group G of size ∣G∣. Update com-
plexities are the costs for handling a single join event. For the RBT view manager, the view size
s determines how often a node is inserted into the red-black tree.
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Figure 18.1: ORBWEB topologies for a group with 16 members. An edge between two nodes
means that they are part of each other’s view.

group member of each other’s membership status, i.e., join and leave operations are both of
O(∣G∣) time and message complexity. Additionally, the client keeps an account of all other
group members, which leads to memory usage linear with respect to the group size on each
client.

Red-Black Tree (RBT). This manager organizes group members in a tree and notifies
peers only about the group presence of its adjoining peers in the tree. Hence, if a peer is
not the single member of a group, it will see a minimum of 1 (as a leaf) and a maximum
of 3 (as an inner node) other members – we say its view size is 3. Each member can
also configure its view size to other values, say s, which will cause the view manager to
insert it min(1,⌊s/3⌋) times with random keys into the tree. The member then has a
maximum of s visible neighbors. To be able to perform tree updates in an efficient way,
our implementation is based on Red-Black Trees [Bay72]. Updates in the tree (a joining
or leaving member) can thus be computed in O(s log(∣G∣)) time, where s is the maximum
view size. Configurability of view sizes allows for implementing distributed algorithms that
are aware of the capabilities of participating peers and exploit this knowledge to best utilize
a heterogeneous resource set [SBH09]. Another use case for configurable view sizes is to
provide more detailed information about a group’s composition to peers that take special
responsibilities within a group. A prominent distributed algorithm that makes use of such a
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distinguished peer is the three-phase commit protocol [SS87].
The properties of red-black trees allow for providing an alternative implementation of

our communication primitives where the server is not involved: As the red-black tree is a
spanning tree, we can easily realize a groupcast by propagating messages along its edges.
This approach is used in Chapter 19 to implement a scalable probabilistic groupcast primitive.
Additionally, as a red-black tree is a binary-search tree, we can use host-to-host message
routing for unicasts known from DHTs. The choice of using a red-black tree assures that
two members are always connected by at most 4s log(∣G∣) other members. Thus, the path
length is O(s log(∣G∣)).

Ring. This manager arranges the members of a group into a bidirectional ring. The order
in which members appear in the ring can be customized by providing a custom comparator
for peer identifiers. A prominent example of ring-based distributed algorithms is termination
detection [DFvG86].

Random. Random networks are used in many distributed algorithms, especially in protocols
using gossiping strategies. The random view manager creates random networks where each
peer v has a given outdegree deg+ (v). While the default value of deg+ (v) is log(∣G∣), each
peer can configure the number of random contacts based on its capabilities, a concept
similar to the configurable view size used by the RBT view manager.

Blind. This manager implements the anonymous group model providing no information
about other group members, which leads to optimal time and space usage, but minimum
information. Note, that the group still enforces security restrictions and thus is appropriate
to drive the root group realized in most communication frameworks with a hierarchical
group model, e.g., the world peer group in JXTA [TAA+03]. Although, no membership
information is communicated, groups using the blind view manager still allow for unicast and
groupcast communication, and hence may be used in scenarios where contact information is
exchanged by external protocols or through other groups managed by one of the other view
managers.

18.3 Composite View Managers
A key strength of Orbweb’s view management is the ability to compose complex topologies
from simpler ones. The composition mechanism is based on a special view manager that
aggregates a set of subordinate view managers. To create such a composite view manager
the implementor simply specifies what happens on a peer join or leave event: to which
subordinate view manager(s) to add a joining peer with which parameters and from which
to remove a leaving peer. The composite view manager translates presence updates from
subordinate view managers into a single consistent view by interception and merging of
individual presence stanzas. Note, that view managers may attach attributes to presence
stanzas, which can be used by peers to differentiate between view members contributed by
different subordinate view managers.
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18.3.1 Chord
We illustrate the concept of composite view managers using the Chord P2P document
routing protocol [SMK+01]. Chord arranges peers in a ring topology based on a unique
identifier created by applying a hash function on local information that is unique for a given
peer. Keys are mapped to peers using consistent hashing [KLL+97] which ensures that only
a small number of key reassignments are necessary in the face of peer arrivals or departures:
Identifiers are ordered in an identifier circle modulo 2m, where key k is assigned to the first
peer whose identifier is equal to or follows k in the identifier space. In addition to the
predecessor and successor within the ring topology, each peer maintains a set of links called
fingers, where the ith finger references the 2i−1-th successor in the ring. Fingers ensure
efficient lookup as they allow implementing a distributed binary search. Key lookup happens
iteratively: a peer q receiving a lookup request from peer p for key k searches its finger
table for the peer r whose identifier most immediately precedes k and sends the result back
to p. Peer p then sends a lookup request to peer r. Hence, p iteratively learns about peers
with identifiers closer and closer to k.

To implement Chord on top of Orbweb, we encode Chord identifiers into the identifier
of Orbweb group members and use a composite view manager consisting of a ring view
manager that sorts peers according to this identifier and a custom view manager that is
responsible for maintaining the fingers. While the ring is updated on every join/leave event
to guarantee routability within the Chord P2P network, applying the same strategy for
maintaining the finger topology would be very inefficient as a large number of fingers would
have to be updated every time a node joins or leaves. To avoid such massive reconfigurations,
we restrict immediate updates to the addition of the fingers for the newly arrived peer. All
other updates are performed by a background thread that periodically selects a small set of
peers at random and updates their fingers. Hence, we trade off routing efficiency against
topology maintenance costs and decouple the latter from the degree of resource volatility.
The topology created by the Orbweb Chord view manager is depicted in Figure 18.1 f)
for a 16-node group. The topology includes the basic ring and fingers up to the 4th order.
Although Orbweb’s superpeer-assisted Chord implementation does not scale as well

as the original fully distributed protocol, it still supports network sizes of thousands of
hosts typical for P2P Grid applications. Complete knowledge of the membership list results
in superior convergence of the Chord network, which is of particular importance for high
performance applications executing on highly volatile networks typical for P2P Desktop Grid
Computing systems. Both claims are substantiated by experimental results discussed in
Chapter 23.
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As described in chapters 14-16, Orbweb provides the application developer with a fail-stop
distributed system model that includes perfect point-to-point links. However, interaction in
distributed systems is typically not restricted to bilateral relationships. Often multiple parties
have to interact in a coordinated manner. This point-to-manypoint type of communication
is covered by a concept called group communication. Group communication primitives can
come in various types and flavors. Unfortunately, the terminology is not consistent in the
literature. In the context of this work, we speak of a broadcast when all and of a multicast
in case only a subset of the nodes of a system are the recipients of a point-to-manypoint
communication operation. As group communication in Orbweb is closely related to the
peer group abstraction, we usually refer to a multicast as a groupcast operation.

Group communication primitives can come in various flavors exhibiting different qualities.
In accordance with requirement (N2), Orbweb allows applications to select between a
groupcast protocol that makes deterministic and one that makes probabilistic reliability
guarantees. The former is provided by the groupcast scheme specified by the XMPP
MUC standard as described in Chapter 14. The latter is a modification of the Bimodal
Multicast [BHO+99] protocol adapted to the specifics of the Desktop Grid environment.
While the deterministic groupcast scheme is, as confirmed by our performance measurements
in Chapter 22, not scalable – neither with respect to message size and rate nor with respect
to group size – it is (regular) reliable and totally ordered. As will be discussed in Section
19.2, the guarantees given by the probabilistic groupcast are much weaker. But in exchange
its scalability is significantly better.

19.1 Totally Ordered Regular Reliable Groupcast
As described in Chapter 14, the XMPP network clients are arranged in a star topology with
the XMPP server at its center. The totally ordered regular reliable groupcast (torrg for
short and occasionally referred to as servercast in the following) provided by Orbweb uses
this star topology to perform a replicated unicast: A message that is groupcast by some
member of peer group G is sent to the XMPP server first. The XMPP server then forwards
the message to all group members involving a total of ∣G∣ unicasts. The formal definition
of the associated module is shown in Module 19.1. The implementation has already been
presented in C-MUC-5 of Protocol 14.7 and S-MUC-2 of Protocol 14.9. We now give a
proof that our implementation guarantees the properties TORRG1-TORRG5. We assume
without loss of generality that all correct peers are members of some group g. The proofs
for the no duplication and no-creation property are analogous to the respective proofs for
perfect links in Section 16.4 and are thus omitted.
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Module 19.1 Interface of the Totally Ordered Regular Reliable Groupcast module
Module:

Name: Totally Ordered Regular Reliable Groupcast, instance torrg within group g.
Requests:

⟨ torrg, Groupcast | message ⟩: Send the given message to all members of the group g.
Indications:

⟨ torrg, Deliver | source, message ⟩: Deliver the given message received from the peer with
identifier source.
Properties:

TORRG1: Validity: If a correct peer p groupcasts a message m, then p eventually delivers
m.

TORRG2: Agreement: If a message m is delivered by some correct peer, then m is eventually
delivered by every correct peer.

TORRG3: No duplication: No message is delivered more than once.
TORRG4: No creation: If a peer delivers a message m with sender q, then m was previously

groupcast by peer q.
TORRG5: Totally Ordered: Let m1 and m2 be two messages and suppose p and q are any

two correct peers that deliver m1 and m2. If p delivers m1 before m2, then q delivers m1 before
m2.

Lemma 19.1.1. If a correct peer p groupcasts a message m, then p eventually delivers m
(TORRG1).

Proof. p is correct and thus has by definition 16.3.1 an open connection to the superpeer.
Hence, m is received by the superpeer which triggers the event handler S-MUC-2. As m is
sent to all members of g in S-MUC-2 and p is a group member of g (by assumption and
due to the fact that it is correct), m is sent to p. As p is correct, m is received by and
delivered on p by C-MUC-5 and PGM-6. ∎

Lemma 19.1.2. If a message m is delivered by some correct peer, then m is eventually
delivered by every correct peer (TORRG2).

Proof. As m is delivered by some correct peer, it must have been sent to that peer by the
superpeer as part of the event handler S-MUC-2 due to TORRG4. As in S-MUC-2 all correct
peers are traversed, m is sent to all correct processes. As correct processes have an open
session with the superpeer, m is delivered eventually by all of them. ∎

Lemma 19.1.3. Let m1 and m2 be two messages and suppose p and q are any two correct
peers that deliver m1 and m2. If p delivers m1 before m2, then q delivers m1 before m2
(TORRG5).

Proof. As p delivered m1 before m2, peers process events in FIFO order, and because of
the FIFO delivery property (ST1) of the Session Transport module, m1 has been sent to p
by the superpeer before m2. As the superpeer event handlers are executed atomically, i.e.,
two executions of the loop in S-MUC-2 never interleave, m1 has been sent to q before m2.
As of ST1 and the FIFO order handling of events, m1 is delivered before m2 on q. ∎
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19.2 Probabilistic Groupcast
To ensure the reliability property of multicast schemes despite faulty processes, the sender
has to collect acknowledgments from the receiving processes. Due to finite sender resources
(bandwidth, memory, CPU cycles) this problem known as the ack implosion problem limits
the scalability of reliable multicast schemes. Although these limits can be pushed by using
hierarchical approaches that distribute the onus of acknowledgment processing by aggregating
incoming acknowledgments on multiple levels, the scalability limitation by itself is intrinsic
to these sender-initiated schemes. Furthermore, they exhibit the possibility of unpredictable
performance under stress or in the face of slow or stalled participants [BHO+99, OOB00].
Even with a stable network of equally powerful participants, these protocols can hardly scale
beyond several hundred participants [PS97].

One way to circumvent the scalability limitation of sender-initiated multicast schemes is
to put the burden of failure detection (omission or corruption of messages) to the receivers.
The resulting scheme is called receiver-initiated as the receiver initiates a retransmission in
case of failure using a negative acknowledgment (NACK). Due to their decentralized mode
of operation, maintaining delivery state for messages becomes practically infeasible. Hence,
receiver-initiated multicast schemes give up the deterministic validity and the agreement
property guaranteed by reliable multicast protocols. Instead they offer what is called
probabilistic validity [CRG11]. The interface of a probabilistic groupcast is given in Module
19.2.

A prominent and well understood example for this kind of multicast scheme is the Scalable
Reliable Multicast (SRM) [FJL+97]. However, it has been shown that SRM behaves
pathologically under certain conditions resulting in retransmission storms [Liu97, Luc98].
As the problematic behavior is triggered by transient high rates of message loss, SRM can
be expected to be a poor choice for P2P Desktop Grids, where message losses caused by
unexpected host departures or perturbations due to slow or stalled hosts are likely. Hence,
Orbweb implements an adapted version of another probabilistic multicast scheme called
Bimodal Multicast [BHO+99] that has been designed to overcome the limited robustness
of SRM. The next four sections summarize the essentials of the original algorithm and
introduce our variant with the adaptions required to cope with the specifics of the Desktop
Grid execution environment.

19.2.1 Bimodal Multicast
Bimodal Multicast – abbreviated as pbcast by its inventors – is composed of two phases: The
first is an unreliable groupcast that makes a best-effort attempt to efficiently deliver a message
to all group members. The second is a round-based two-phase anti-entropy protocol that
detects and corrects inconsistencies in message history by continuously gossiping summaries
of the local message history. The first subphase of the anti-entropy protocol detects message
loss and if required triggers subphase two, where such losses are compensated.
Figure 19.1 illustrates the execution of the Bimodal Multicast protocol in a group of

4 peers. After a period of unreliable groupcasts (participants P1, P2, and P4 each send a
groupcast message, where participant P2 fails to receive message M0, P4 lacks M1, and P3
misses M2) constituting the first phase, the two-phase anti-entropy protocol is executed.
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Module 19.2 Interface of the Probabilistic Groupcast module
Module:

Name: Probabilistic Groupcast, instance pg within group g.
Requests:

⟨ pg, Groupcast | message ⟩: Send the given message to all members of the group g.
Indications:

⟨ pg, Deliver | source, message ⟩: Deliver the given message received from the peer with
identifier source.
Properties:

PG1: Probabilistic Validity: There is a ε > 0 such that when a correct peer groupcasts a
message m, the probability that every correct peer eventually delivers m is at least 1−ε.

PG2: No duplication: No message is delivered more than once.
PG3: No creation: If a peer delivers a message m with sender q, then m was previously

groupcast by peer q.
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Figure 19.1: Phases of the Bimodal Multicast
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Note, that the illustration simplifies the actual process, as the groupcast and the anti-entropy
phases are executed concurrently and participants advance independently. In the gossip
subphase of the anti-entropy protocol each participant randomly selects another participant
to which it sends a digest of its message buffer. All incoming payload messages are put
into the message buffer and are removed after a configurable number of rounds. A digest
contains the sequence numbers of all messages within the buffer. In the second subphase of
the anti-entropy protocol those participants that have received a digest perform a comparison
with their own buffer entries. For each missing message they send a retransmission request,
called a solicitation, to the sender of the digest. Upon receipt of a solicitation participants
respond with the retransmission of the requested message. At the end of the second subphase
of the anti-entropy protocol the message buffers of all participants have been populated
with messages that were not reliably transmitted by the groupcast phase. The inventors of
the Bimodal Multicast propose a number of optimizations. For an in-depth discussion see
[BHO+99].

19.2.2 Network Segment Detection
As discussed in the introduction to Part I, a distinguishing feature of Desktop Grids is the
fact that they are usually operated over wide area networks (WAN) or the Internet. Due
to the universal deployment of network address (and port) translating (NA(P)T) devices
and restrictive firewalls, together often referred to as middleboxes, this results in restricted
connectivity between the geographically and administratively distributed hosts of a Desktop
Grid. The testbed used for our experimental analysis in Chapter 22 serves as a good example
here. Although, it spans hosts from one organization only, the network infrastructure includes
three firewalls and two NAPT devices (see Figure 22.1).
Middleboxes create what is called network segments. Network segments are used to

isolate parts of the network from each other for various reasons and on various layers of the
ISO/OSI stack. For example routers are used to separate broadcast domains. Firewalls and
NAPT devices are primarily used for security reasons, although NAPT devices also help to
mitigate the IPv4 address exhaustion problem. In the context of this work, we do not take
any other middleboxes than firewalls and NAPT devices into account. Future work may also
include other device types. In particular, routers may be oversubscribed, i.e., the overall
available bandwidth may be exceeded, which leads to packet drops at segment boundaries
and hence limited cross-segment communication performance. Network segments created
by routers could be detected by exploiting the fact that they define IP broadcast domains.
Hence, such a segment could be detected by instructing a peer to emit a UDP broadcast
and then having every receiving node sending an acknowledgment to the broadcasting peer.
However, already mentioned, this is future work.

If Orbweb operates over a segmented network, the restricted connectivity between the
segments prevents the establishment of E2E sessions between hosts located in different
segments. If distributed algorithms are not designed to take this fact into account, the
load on the Orbweb superpeer will be high due to a large number of relayed messages.
In addition, there is most often no or limited knowledge about the network segmentation
available publicly because of security concerns. Even if this was not true, the costs of
manually (re-)configuring the substrate to consider network segments are prohibitive in a
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P2P Desktop Grid environment, where no or limited administrative manpower is available.
Hence, Orbweb implements an adaptive algorithm for network segment detection that
allows for self-management and eliminates the need for manual intervention.

Orbweb models network segments as so called network components (or just components
for short). We introduce the notion of a component because a component only eventually
becomes identical to a network segment. Each component is identified by a unique component
identifier that is made available to both peers and the superpeer. When a peer joins the
Orbweb network by connecting to the superpeer, it is assigned to its own new component.
This is done as at this time no information is available whether the peer belongs to an
existing component and if yes to which one. The superpeer periodically issues probe requests
to pairs of peers (pi, p j) selected randomly from two randomly selected components. On
receipt of such a probe request, the E2E manager at the recipient peer tries to establish an
E2E session with the other peer and sends the result of this attempt back to the superpeer.
If for both peers the attempt succeeds, the peers are considered to be within the same
network segment and hence are assigned to the same component. To avoid false negatives,
E2E session limits are not enforced for probing requests.
A prerequisite to the correctness of this algorithm is that connectivity is transitive: For

three peers pi, p j, and pk this requirement means that if E2E sessions can be mutually
established between pi and p j as well as between p j and pk, then sessions can be mutually
established between pi and pk. As illustrated by Figure 19.2a and 19.2b, assuming transitivity
is justified for typical WAN setups as long as firewall policies are reasonable and the IP
address within the private network is used for E2E session establishment on multi-homed
machines.

19.2.3 Topology-Aware Bimodal Multicast
The anti-entropy protocol of Bimodal Multicast randomly selects peers as receivers for gossip
messages without considering the underlying physical network topology. While this strategy
is suitable for LAN settings with full connectivity, it is, as described above, not well-suited
for scenarios with network segmentations, as a large number of gossip messages would
have to be relayed by the superpeer to peers in other segments. To remedy the resulting
scalability limitation, we extend the Bimodal Multicast protocol to take the segmentation
of the underlying network into account.

Therefore each peer is provided with a membership view for execution of the anti-entropy
protocol that is composed of peers selected randomly from the set of peers located within
the same network segment only. We refer to this extended protocol as the Topology-Aware
Bimodal Multicast1 or ta-pbcast. A ta-pbcast operation first sends the message to the
superpeer, which forwards the message to a single peer in each component that is the root of
a spanning tree used to efficiently distribute the message within that segment. Subsequently,
the anti-entropy protocol is performed within each component.

1 Network topology detection in general also includes the detection of other aspects of the physical
network infrastructure, like network switches. However, when we speak of topology awareness, we mean
the awareness regarding network segmentation as described above.
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(b) Connectivity is transitive for common firewall setups incorporating multiple security
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transitivity but would also compromise security as a successfully hijacked node B would
result in exposition of the inside zone. The correctly detected components are {A,B,C} and
{D,E}.

Figure 19.2: Transitivity of connectivity in typical WAN setups. Dashed lines with one arrow-
head indicate unidirectional, solid ones with two arrowheads indicate bidirectional connectivity.
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While performing the anti-entropy protocol only within components saves resources on
the superpeer, it reduces the probability that a groupcast message is eventually delivered
to all correct peers in that group. This is due to the fact that for the Bimodal Multicast
ε in the probabilistic validity property of the Probabilistic Groupcast interface definition
in Module 19.2 drops exponentially with the number of participants for a fixed share of
infected participants after the unreliable groupcast phase. However, as pointed out by
Birman et al. [BHO+99], achieving a high share of infected peers by means of the unreliable
groupcast is decisive for the success of a pbcast operation. Hence, we increase this share
by having the superpeer select a configurable number of additional injection points for
messages to be groupcast, i.e., peers within the same component. With respect to message
propagation, each injection point behaves like it was the root of the propagation tree: the
injected message is propagated to its children as well as to the parent peer. As we give
priority to stable peers, we refer to this scheme as stability-aware multi-injection. The share
of infected peers is increased by stability-aware multi-injection for two reasons: First, by
using k injection points, we have at least k infected peers. By selecting the most stable
ones, the probability that they are available during the anti-entropy phase is maximized.
Second, the probability that a propagation path is truncated due to a departing peer and
the resulting reconfigurations of the spanning tree is minimized, as every propagation path
in the spanning tree is likely covered by multiple propagation paths within the trees rooted
at the injection points.

Ring RandomRed-Black Tree
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C
2

C
3

C
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Network Segment

Figure 19.3: Composite virtual topology maintained by the ta-pbcast view manager
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19.2.4 Implementation
The ta-pbcast implementation of Orbweb is based on a composite view manager combining
a ring view manager and ∣C∣ superimposed red-black tree (RBT) and random view managers,
where C is the set of components detected by the network segment detection mechanism
described above. The resulting overall virtual topology is illustrated in Figure 19.3.

The ta-pbcast virtual topology is populated as follows: When a peer joins the group, it is
first integrated into the ring topology. Thus, it becomes the root of a new red-black tree
and is served with groupcast messages by the superpeer directly. In case two components
are detected to belong to the same network segment, the red-black trees of both are merged
into a single one.
Figure 19.4 shows the schematic for the client-side groupcast logic. The view members

contributed by the RBT view manager are used by the TreeCaster for the first phase of the
Bimodal Multicast protocol. To avoid unnecessary message propagations – either caused by
rotations within the RBT tree or due to multi-injection – the TreeCaster uses a unique
sequence number that is attached to incoming messages by the superpeer to decide over
which virtual links an incoming message still has to be propagated. The PBCaster performs
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the anti-entropy phase of the Bimodal Multicast protocol with the view members managed
by the random view manager.
As all tree and random edges exist between peers within the same network segment, no

more messages have to be relayed by the superpeer as soon as E2E session establishment
has been completed. A ta-pbcast groupcast operation thus has a superpeer-side message
complexity of O(k ∣C∣)), which results in costs that are in general significantly smaller than
the costs of the superpeer-based torrg groupcast.



20 Efficient XML Processing
XMPP clients and servers spend a significant amount of time on processing XMPP stanzas.
Thus, an attempt to increase the overall performance of the communication subsystem should
primarily address optimizing XML processing. In this section, we describe how we optimized
the XML processing stack of Openfire/Smack by incorporating a binary XML encoding
called Fast Infoset (FI) [fi] to yield substantial latency and throughput improvements.
Note that if performance was the only required quality for a network substrate, another

technology than XMPP would have been probably the better choice. However, as XMPP
provides many concepts that can be used to realize the functional requirements described in
Chapter 12, we think that XMPP is – despite the impact of using XML on the performance,
superior to the available alternative substrate technologies discussed in Chapter 23.

20.1 Fast Infoset
A major drawback of XML is that it is verbose. Since document size affects all stages
in the XML processing chain (serialization, transmission, and parsing), techniques to
reduce document size promise to increase processing performance. However, there is
a trade-off between document size and pre- and postprocessing effort. Simple stream
compression methods like GZIP significantly reduce document size, but at the same time
cause considerable pre-/postprocessing overhead. Fast Infoset overcomes this limitation by
interweaving serialization and compression or decompression and parsing, respectively.
FI specifies a binary encoding format for the XML Information Set. It aims to provide

more efficient serialization and parsing than the character-based standard XML format
(hereinafter referred to as W3C). FI is used to optimize both document size (≈ 50% on
average compared to standard XML 1.0 serialization using Apache Xerces v2.7.1 [fi]) and
processing performance (≈ 25% faster serialization and between 5 and 8 times faster parsing
compared to Xerces v2.7.1 SAX) and thus is more advanced than simple stream compression
based on GZIP used in contemporary XMPP servers. These improvements are achieved
through exploiting redundancy by avoiding end-tags, applying string indexing and Huffman
encoding, aligning information for faster access and by directly embedding binary data into
the stream, bypassing the usually necessary conversion to Base-64 representation.

20.2 Implementation
Openfire and Orbweb’s E2E facility both leverage the reactor design pattern [Sch95]
to achieve high scalability. Pending I/O-operations are handled sequentially by a single
dispatcher thread (per CPU core). This processing model is very efficient, since fewer threads
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means less resource consumption and fewer context switches. However, since XMPP stanzas
are delivered as elements embedded in a single large XML stream, this non-contiguous I/O
processing style is problematic, as to our best knowledge, there are no non-blocking Java
XML parsers available. A non-blocking XML parser returns immediately when no more data
is available from the input stream, leaving the parser in a continuable state and allowing the
dispatcher thread to continue with processing pending operations from other connections.

In the original Openfire implementation this problem is solved by prepending a lightweight
parser to the actual parser, that is non-blocking and that buffers incomplete XMPP stanzas
as long as they become complete. However, this approach is no longer applicable when
FI is used: First, implementing a lightweight parser doing the same job is a very complex
task, since decoding FI is considerably more involved than decoding a standard XML Infoset
document or fragment. Second, FI relies on indexing tables that are prepended to the
actual octet stream. Invoking the actual parser on the extracted XMPP stanza would imply
updating the tables, which would add significant overhead.

We circumvent this problem by dissecting the incoming byte stream containing the XMPP
stanzas (see Figure 20.1). For that purpose, we modified the XML serializers to prepend a
header to each stanza specifying its length in bytes. Receiver-side logic reads the header
and waits until the specified number of bytes have been received. As soon as the whole
sequence of bytes has been received, the whole stanza is forwarded at once to the XML
parser, which immediately returns after the end tag concluding the XMPP stanza has been
read. The length header is encoded as an octet-packed integer1 for space-efficiency reasons.

<stream:stream to="theta" 
   xmlns="jabber:client" 
   xmlns:stream="http://etherx.jabber.org/streams" 
   version="1.0">

0x0      E1                                                ...á

0x0000   E0 00 00 01 00 78 CD 0C-6A 61 62 62 65 72 3A 63   à....xÍ.jabber:c
0x0010   6C 69 65 6E 74 CF 05 73-74 72 65 61 6D 1F 68 74   lientÏ.stream.ht
0x0020   74 70 3A 2F 2F 65 74 68-65 72 78 2E 6A 61 62 62   tp://etherx.jabb
0x0030   65 72 2E 6F 72 67 2F 73-74 72 65 61 6D 73 F0 3F   er.org/streamsð?
0x0040   81 82 05 73 74 72 65 61-6D 78 01 74 6F 44 74 68   �‚.streamx.toDth
0x0050   65 74 61 78 06 76 65 72-73 69 6F 6E 42 31 2E 30   etax.versionB1.0
0x0060   F0                                                ð

<iq id="F9P2Vp-0" to="cohesion" type="get">
 <query xmlns="jabber:iq:register"></query>
</iq>

0x0      C7                                                ...Ç

0x0000   E1 00 74 FF 7C 01 69 71-78 01 69 64 46 39 50 32   á.tÿ|.iqx.idF9P2
0x0010   56 70 2D 30 00 47 63 6F-68 65 73 69 6F 6E 78 03   Vp-0.Gcohesionx.
0x0020   74 79 70 65 42 67 65 74-F0 38 CD 11 6A 61 62 62   typeBgetð8Í.jabb
0x0030   65 72 3A 69 71 3A 72 65-67 69 73 74 65 72 F0 3C   er:iq:registerð<
0x0040   04 71 75 65 72 79 FF                              .queryÿ

I 

II 

III 

IV 

TCP 
Packet 

Figure 20.1: FI encoded XMPP stream with headers (TCP packets I and III) specifying the
length of the following XMPP stanza.

1 The octet-packed integer encoding represents arbitrary large integer values as sequences of octets. The
highest bit is used to mark the last octet of a sequence.



21 Tooling
Understanding what happens within large distributed systems is complicated by the large
number of interacting nodes, lack of centralized access to their execution context, and
ubiquitous concurrency. For this reason, tooling is of particular importance on all levels of
P2P Desktop Grid Computing systems. This is particularly true for the network substrate
that forms the basis for the upper layers of the system. Orbweb meets this demand by
providing a rich set of supportive tools including traffic analysis and online visualization of
virtual topologies and network segmentation. We describe these tools subsequently.

21.1 Traffic Analysis
XMPP and its extensions specify a large number of different stanza types. When developing
complex protocols, like ta-pbcast (see Chapter 19), network traffic data provided by domain
independent network analysis tools like WireShark [ORBP07] is insufficient to gain a precise
understanding of the actual packet flow produced by the protocol implementation. Hence,
Orbweb provides a packet analysis tool that is implemented as a plugin for and thus
tightly integrates with the Openfire XMPP server. Figure 21.1 shows a screenshot of the
tool: It provides counters for incoming, outgoing, the overall number and the transmission
rate for presence, IQ (including namespace and action), and message stanzas (Ê). To get a
quick overview of the share a stanza type contributes to the overall traffic, a stacked chart
visualization is provided (Ë, Ì).

21.2 Component Visualization
As described in Chapter 19, the ta-pbcast view manager automatically identifies network
segments among the set of participating peers. As the message complexity of a groupcast
operation directly depends on the number of network segments, knowledge about the
network topology is of prime importance for debugging and evaluation purposes. Hence,
Orbweb provides a tree map visualization of the components currently identified by the
ta-pbcast view manager (see Figure 21.2). In conjunction with the traffic analyzer the
component visualization can provide valuable insight into the reasons of pathological traffic
patterns.

21.3 Topology Visualization
Orbweb’s superpeer-driven group management approach allows for easy debugging and
testing of group membership models by running a number of test peers collocated on a
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single host. Figure 21.3 shows our topology visualization tool showing a group of 40 locally
running peers managed by the ta-pbcast view manager as described in Chapter 19. The tool
allows for dynamically adding (Ê) and removing peers (Ë), unicasting and groupcasting
of messages (Ì), the selection of view managers (Í), and the online visualization of the
group’s topology (Î). The latter leverages the graph visualization library yfiles [WEK01].
The view is dynamically updated on every change in the topology, i.e., addition and removal
of peers and links. Light gray links indicate that the link partners are part of each other’s
local membership list (Ï). Black links indicate that an E2E session exists between the link
partners.
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22 Performance Evaluation
This chapter presents an analysis of the results obtained from running performance tests for
both the original Smack/Openfire XMPP stack and Orbweb.

22.1 Evaluation Method
The testbed used for our performance evaluation consists of 41 hosts located in three
different Fast Ethernet Local Area Networks connected by a campus network as depicted in
Figure 22.1. 40 machines are used to host Orbweb peers based on Smack v3.0.0 and the
single Type IV machine hosts an Orbweb superpeer based on Openfire v3.5.0. The hard-
and software setup of the hosts is summarized in Table 22.1. Note that, although all hosts
of the testbed run Linux, Orbweb is written in Java and is thus independent from the
underlying operating system. To be able to push the superpeer to its limits, we have each
physical host run up to 256 peers in parallel leading to a maximum overall number of ≈ 10K
peers. For test scenarios involving E2E sessions, we limit the number of collocated peers to
24 to avoid the risk of host overload. When XML encodings are compared, we use random
message payloads. As random data is in general incompressible for lossless compression

Type Hardware Software
CPU Memory OS Kernel

I AMD®Athlon™64 X2 4600+ 3GB Linux 2.6.22-14-generic
2 Cores
512KB Cache / Core

II Intel®Xeon™2.67GHz 2GB Linux 2.6.22-9
2 Processors
512KB Cache / Processor

III Intel®Pentium™D 3.40GHz 2GB Linux 2.6.23-gentoo-r8
2 Cores
2048KB Cache / Core

IV Intel®Core™2 Q6600 2.40GHz 8GB Linux 2.6.22-14-server
4 Cores
2048KB Cache / Core

Table 22.1: Hard- and software setup of the ORBWEB testbed hosts
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Campus 
Network

Computer Lab
(20 Type III Nodes)

Department Hosts
(5 Type I Node)

Compute Cluster
(15 Type II Nodes)

XMPP Server
(1 Type IV Node)

Figure 22.1: Topology of the testbed used for ORBWEB performance tests

algorithms1, related results are worst-case approximations2.
We use The Grinder [GA], an open source distributed load testing framework written

in Java, for test deployment and orchestration. To minimize context switching overhead
collocated peers are driven by threads within a single process controlled by the load injection
agent of The Grinder. Furthermore, the online collection of statistics and results of The
Grinder was replaced by a post-mortem approach to eliminate any interference with the
actual test execution. A warm-up phase preceded each test run to eliminate the impact of
Just-In-Time (JIT) compilation. Results are average values of 5 independent runs.

1 For random input sequences, each symbol appears with the same probability. Hence, there is no
redundancy that can be exploited by a lossless compression algorithm [Sol07].

2 The resulting numbers are approximations only, because the input sequence is finite which results in a
slightly non-uniform distribution for symbol occurrence.
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22.2 Membership Management
In this section, we report on the performance of the membership management operations
join and leave for various group sizes. The first test consists in having one of the group
members join and leave periodically (once per second). To assess the suitability of our
X-MUC extension for driving large-scale groups, we compare the superpeer-side network
traffic and CPU usage of both the simple original view-complete (SVM) and our RBT-based
view manager (RBT) implementation with partial membership lists and a view size of 3. In
order to obtain values related to a single join/leave-cycle, we calculate the quotient of the
overall resource consumption within the test period and the number of join/leave cycles
actually performed. The W3C encoding has been used for this test case. Figure 22.2a shows
the results of our experiments. The theoretical linear message complexity of the SVM is
perfectly confirmed by our measurements. Both CPU time and network traffic increase
linearly reaching a maximum of 102 ms/cycle and 743 KB/cycle respectively for 640 peers.
Tests with peer counts beyond 640 peers failed due to excessive memory consumption on
the superpeer. From these results, we conclude that view completeness becomes infeasible
for Orbweb groups growing larger than ≈ 512 peers, where roughly 10 join/leave-cycles
can be processed each second. However, this heavily depends on the actual degree of
volatility. The corresponding values for the RBT view manager are 2.15 ms/cycle and 6.9
KB/cycle respectively, resulting in improvements (growing with group size) by a factor of
≈ 48 compared to the SVM view manager. Note that the manager scales up to groups
consisting of 10K peers showing constant per-cycle resource usage.
Figure 22.2b shows the results of our second test, where all group members leave and

rejoin immediately every 15 seconds. Despite the extremely high churn rate of roughly 330
joins/leaves per second, the tree-based view manager exhibits constant resource usage for
up-to 5K peers1.

Figure 22.3 shows the resource usage on peers and the superpeer for the RBT view manager
with respect to peer session time TSession within a group of 960 peers with and without
Fast Infoset (FI) encoding enabled. Like in the previous test case, peers immediately rejoin
after having left the group. Resource usage linearly decreases with increasing session time
demonstrating Orbweb’s ability to operate efficiently both under extreme and real-world
conditions. Resource consumption on peers is comparatively low and thus will be negligible
for applications from our target application class. With average bandwidth savings of 74%
on the peers and 75% on the superpeer the superior space efficiency of FI is confirmed and
turns out to be even better than what could be expected from the results for general XML
documents discussed in Chapter 20. While CPU usage numbers on peers are on average 14%
better with FI enabled, there is a non-negligible performance penalty of 106% on average
when using FI on the superpeer. This penalty can be attributed to inefficiencies related to
contention in highly concurrent setups of the prototypical FI implementation used in our
experiments. Nevertheless, as substantiated below, using FI significantly improves message
latency and throughput despite the higher CPU usage observed in this test scenario.

1 Note that the load on the superpeer for the same group size is over 300 times higher in this scenario
than in the previous scenario. Hence, the maximum group size has been limited to 5K to avoid overload.
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Figure 22.2: Superpeer resource usage per join/leave-cycle with respect to group size
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Whether such high degrees of volatility as covered by our experiments actually arise in
real-world scenarios heavily depends on environmental conditions – like host failure rates
and host usage patterns –, the application, and the aggressiveness with which idle resources
are exploited. A study on resource availability in Desktop Grids [KTB+04] shows that
the mean host session time in a real-world Desktop Grid is 2.8 hours for weekdays and
5.9 hours for weekends. Obtaining meaningful experimental data for such long session
times is virtually impossible as perturbations dominate the resource usage actually caused
by membership management operations. Examples for such perturbations are garbage
collection and keep-alive messages. Their influence is visible in Figure 22.3 for session times
above 100 seconds. By extrapolation from the results of our second test case, we can
nevertheless estimate that the CPU utilization for a 5K group (1.51 ms/cycle) managed by
Orbweb’s RBT view manager would be approximately 0.19‰ for weekdays and 0.09‰
for weekends without FI enabled and 0.39‰ for weekdays and 0.19‰ for weekends with
FI enabled on our Type IV quad-core server machine. These results substantiate that
Orbweb satisfies the requirement to support a significant number of concurrent groups of
considerable size for real-world churn rates and thus is well suited for realizing P2P Desktop
Grids implementing the organizational and interaction models described in Part I.

22.3 Communication
In this section, we report on the results of performance tests for the I/O subsystem
performance with regard to the basic communication primitives.

22.3.1 I/O Subsystem Performance
With our first set of tests we assess the performance of Orbweb’s XMPP processing
pipeline by measuring throughput and latency for unicasts and groupcasts with and without
FI encoding enabled. Our tests only address communication relayed over the superpeer,
since E2E delivery of messages is based on plain TCP/IP. Note, that the test described
subsequently is no scalability test for groupcasting, which is addressed in the following
section.

The throughput test is carried out by having the sender node emit messages at maximum
rate to (1) a single receiver node (unicast) and to (2) a group of size 1 (groupcast). In both
cases, the single receiver acknowledges the receipt of all messages after the last message has
arrived. Throughput is calculated as the quotient between transmitted payload bytes and
the time elapsed between emission of the first message and receipt of the acknowledgment1.
As can be seen from Figures 22.4a and 22.4b, Openfire/Smack apparently has problems in
dealing with large messages. Due to a hardcoded server side limit on message size installed
to prevent denial of service attacks, sending messages larger than 512K is impossible. For
large messages between 16 KB and 512 KB our optimizations result in an improvement

1 Note that this acknowledgment is only used to indicate to the sender when all messages have been
received by the receiver and is not related to reliability of the message transmission. In particular, no
messages are held in a retransmission buffer which could potentially introduce scalability issues.
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Figure 22.4: ORBWEB communication subsystem performance
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between 38% and 1038% for unicasts and between 130% and 1051% for groupcasts. With
a resulting throughput of approximately 6.7 MB/s for unicast and 6.4 MB/s for groupcasts
our substrate outperforms the reference implementation with 5.2 MB/s for unicasts and
5.6 MB/s for groupcasts. While our implementation is roughly on par with the reference
implementation for small messages with payloads between 1 Byte and 256 Bytes, we achieve
up to 29% improved throughput rates for unicasts and up to 13% for groupcasts when mid-
size messages with payloads between 512 Bytes and 8 KB are transmitted. This indicates
that the dissection of the input stream as described in Chapter 20 adds no significant
overhead to the parsing process.
Latency measurements for both unicast and groupcast operations are carried out in a

ping-pong fashion. The sender emits a message using unicast or groupcast that is echoed
back by the recipient using the same kind of communication operation. As above, a group
of size 1 is used in the groupcast setting. The one-way latency is calculated as the time
between emission of the message and receipt of the echo message divided by two. Note
that the latencies given here are actually two hop latencies (sender→ superpeer→ receiver)
on the transport layer. Our optimizations result in very pronounced improvements for
both unicasts and groupcasts and all messages sizes. Improvements in unicast latency are
between 16% and 35% for small- and mid-size and 27% and 97% for large messages. The
increases for groupcasts are between 21% and 48% for small- and mid-size and range from
28% to 99% for large messages. With 1.28 ms (unicast) and 1.36 ms (groupcasts), the
minimal latencies (for a message carrying no payload) are noticeably lower for our optimized
implementation than for the reference implementation (1.53 ms and 2.65 ms respectively).
The unicast latency is comparable to the latency of JXTA sockets [AHJN05] in the case of
direct communication.
As expected, latency increases with payload size. For a 1 MB message it is roughly 300

ms in both settings, which might be considered too high for High-Performance Computing.
However, the nodes of the testbed are connected by a Fast Ethernet network with 100
Mbit/s theoretical bandwidth. The actual available bandwidth within our testbed was
roughly 10 MB/s between a Type I and the Type IV host. Hence, the latency for a single
hop on the TCP/IP layer is 100 ms. As the message is forwarded by the superpeer not
until the whole message has been received, this accumulates to 200 ms or two-thirds of
the overall latency for our two-hop relayed 1 MB message transmission. Thus, the time
to run through the Orbweb protocol stack twice, i.e., down the stack at the sender, up
and down on the superpeer, and finally up on receiver, only takes a reasonable 100 ms. In
case E2E links are used the latency is reduced by half. Also messages as large as 1 MB are
considered to be rather untypical for message passing applications. As described in Chapter
36, Cohesion applications may use an alternative mechanism based on the file sharing
protocol BitTorrent [bit] to disseminate larger payloads to all members of a group.

22.3.2 Groupcast Scalability
In this section, we assess the scalability and performance of the standard Openfire/Smack
groupcast (servercast) in combination with the blind view manager and Orbweb’s Topology-
Aware Bimodal Multicast (ta-pbcast). Note that all messages were reliably delivered for
both groupcast implementations in both test scenarios described subsequently.
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Figure 22.5: Resource usage on the superpeer per groupcast operation
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The first test scenario consists of a master peer groupcasting a message with 256 bytes of
random character payload five times a second within a static (Figure 22.5a) and a volatile
(Figure 22.5b) group of variable size. In the volatile setup 12.5% of the peers were configured
to join and leave periodically, i.e., being offline for 30 s and then online for 30 s in an
alternating manner. The progressions of CPU utilization and bandwidth usage are linear
with respect to the size of the group for the servercast and are almost identical for both
the static and the volatile setup. This is not surprising as peer joins and departures cause
virtually no overhead when the blind view manager is used. The numbers for the volatile
setup are even slightly better as the effective group size is smaller due to half of the volatile
peers being offline at any given point in time on average. With 70 ms per groupcast for
960 peers our Type IV quad-core machine could ideally handle message rates of up-to 57
groupcasts per second. However, roughly 450 KB per groupcast operation would result in
an overall bandwidth usage of over 25 MB/s requiring Gigabit Ethernet. For message sizes
larger than 1 KB, bandwidth becomes the limiting factor rendering the superpeer-based
groupcast unsuitable for large-scale applications requiring sustained high message rates.

In contrast, the superpeer-side costs per groupcast for ta-pbcast are almost constant at ≈ 5
ms per groupcast with a small linear overhead caused by component detection that executes
in parallel. This results in a projected maximum message rate of 296 groupcasts per second
in the static setup. The linear fraction for component detection is more pronounced for the
volatile setup as the constant flux in membership triggers more E2E session negotiations.
Another reason for the increased resource utilization is the small period of time that elapses
until the peer is assigned to a component. During this period groupcast messages are
delivered by the superpeer. As the number of such unassigned peers increases linearly with
group size, this adds another linear component to the resource usage numbers. Nevertheless,
the cost of groupcasting is still significantly lower than that for servercast. With 21 ms per
groupcast the projected maximum message rate within a 960 peer group is 190 groupcasts
per second.

Figures 22.6 and 22.7 show the resource usage for servercast and ta-pbcast on peers and
the superpeer with respect to peer session time TSession within a group of 480 peers with
and without Fast Infoset (FI) encoding enabled. In contrast to the previously described test
scenario, this time all but one of the peers are configured to be volatile and to rejoin right
after having left the group. A single stable master peer groupcasts messages with 1 KB
of random character payload ten times a second. Both groupcast implementations work
well in lightly to highly volatile setups. Resource usage is constant over the full range of
mean session times both on peers and on the superpeer for the servercast and on the peers
for ta-pbcast. As in the first test scenario resource usage on the superpeer for ta-pbcast is
influenced by the overhead of the component detection subprotocol, the time required to
detect to which component an arriving peer belongs to, and the extra work of E2E session
establishment after reconfigurations of the red-black trees maintained within components.
Towards lighter volatility scenarios these overheads decrease rapidly, resulting in moderate
resource usage on the superpeer that is within the same order of magnitude as the respective
resource consumption on peers. As expected, there is a substantial shift of load from the
superpeer to the peers when using ta-pbcast instead of servercast: CPU usage drops by
up to roughly 78% (W3C) and 86% (FI) for lighter volatility scenarios, traffic by between
73% and 94% for the W3C encoding and between 93% and 98% for FI. This allows the
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Figure 22.7: Resource usage on the superpeer for the superpeer-based groupcast and the ta-
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superpeer to handle significantly higher groupcast rates and/or group sizes. Using FI yields
considerable bandwidth savings for both servercast (15%-18%) and ta-pbcast (27%-30%
on peers and 62%-79% on the superpeer respectively). The large difference between the
savings for servercast and ta-pbcast is caused by differences in the distribution of message
types transmitted during the experiments: While the servercast almost exclusively transmits
groupcast messages with random payload that has not much potential for compression,
ta-pbcast additionally transmits large quantities of highly-redundant signalling (Jingle)
and component detection messages (probes). As already diagnosed in the membership
management experiments described above, the FI XML processor used to conduct the
experiments performs badly under certain conditions. Besides high contention scenarios
(described above), this includes setups with poorly compressible XML streams. The latter
in particular affects CPU usage numbers for the servercast resulting in degradation between
105% and 156%.





23 Related Work
This section gives an overview of alternative technologies suitable for implementing (part
of) the functionality provided by Orbweb and justifies the decision to build a substrate for
P2P Desktop Grid Computing based on XMPP by discussing a number of projects from the
domain of distributed computing that have already migrated to XMPP, however, without
addressing its shortcomings.

23.1 Alternative Substrate Technologies
Many structured P2P systems have been proposed that implement packet routing in a fully
distributed way [SMK+01, ZHS+03, RD01b, BBK+07, RFH+01]. These systems are able
to deliver packets associated with a destination identifier to the peer with an identifier
closest (with respect to some metric) to that identifier. This process typically involves
forwarding the packet in a multi-hop fashion along the edges of an overlay network gradually
approaching the destination peer. Such overlay routing systems can be used to implement
Distributed Hash Tables (DHTs). In principle, these systems can be used to implement part
of Orbweb’s membership management functionality in a scalable way by employing the
overlay neighbor sets to establish local membership lists. However, such a solution suffers
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from several shortcomings with respect to our requirements: First, only a single/limited
number of virtual topologies can be provided. Second, multihop routing necessarily leads to
increased communication latency. As low latency is of prime importance in High Performance
Computing, messages in our architecture are routed in a single hop for directly connected
peers and in two hops for peers connected to the same superpeer. Third, the churn resistance
of overlay routing networks is limited as indicated by numerous evaluations conducted recently.
For example, the routability of BruNet [BBK+07] drops to 84% when mean session time
falls below 6 minutes. Additionally, restoration of routability after massive node arrivals or
departures happens relatively slowly: BruNet needs 11 minutes to restore full routability
after an insertion of 450 nodes to a fully routable network of 460 nodes [BBK+07]. Similar
findings exist for Tapestry [ZHS+03], which needs 10 minutes to restore 95% routability
after inserting 200 nodes into an existing 325-node network. Although testbed setups are
not identical, the fact that Orbweb needs only 89 seconds to restore a perfect Chord
ring (see Chapter 18) after adding 640 nodes to an existing 640-node network (see Figure
23.1) indicates that using a hybrid implementation based on a superpeer-managed virtual
topology is a promising approach, when performance is considered more important than
utmost scalability. Note, that routability virtually remains unaffected when nodes join or
leave the network as long as the superpeer is not overloaded. This results from the fact
that predecessor and successor nodes are assigned/updated immediately when nodes join or
leave the group (cf. Chapter 18).
The ongoing Spontaneous Virtual Network (SpoVNet) [BHMW11] project develops a

platform for service overlays that can be setup with little effort and no manual configuration.
SpoVNet’s communication library called Ariba [HMM+10] can handle mobility, multi-homing,
and security transparently. Ariba creates an overlay using a variant of Chord and is able to
dynamically establish end-to-end connections between peers regardless of their location over
various network protocols. A hierarchical broadcast system called MCPO [HMW10] closely
related to the NICE [BBK02] protocol allows for one-to-many communication. However,
Ariba does not yet support peer groups neither as a modeling tool nor for providing a
multicast scope. Furthermore, there is no large-scale performance evaluation available, yet.
The problem of high end-to-end communication latency in multi-hop overlays can be

alleviated by creating superpeer-assisted overlays. Merz et al. [MWSP08] propose a self-
organizing superpeer overlay for Peer-to-Peer Desktop Grids. Edge peers are dynamically
elected to become superpeers on demand and downgraded when they are no longer needed.
Superpeers are interconnected by a Chord [SMK+01] overlay optimized for low multi-hop
latency using network coordinates [CDK+04]. The proposed system is able to reduce the
average end-to-end latency between peers of a ≈ 400 node network by 50% compared to
standard Chord resulting in twice the value of a fully meshed network. The evaluation is
performed by simulation based on live data from PlanetLab [CCR+03].

JXTA [TAA+03] is an open source initiative, sparked and maintained by Sun Microsystems.
Its primary goal is to provide a foundation for interoperable P2P applications. JXTA consists
of a set of six language- and platform-independent protocol specifications. It provides basic
services for generic P2P applications including peer group organization, inter-peer communi-
cation, and resource discovery. Although JXTA is the most advanced P2P library currently
available and is in general considered to be a good choice for implementing distributed
computing platforms [AHJN05], performance studies have revealed weaknesses in the Java
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Figure 23.2: JXTA / ORBWEB infrastructure comparison

implementation of the version 2.0 protocol specification. Criticism is related to high pipe
latency and low throughput for small messages [HD03], low reliability of TCP connections
[Sei], as well as rendezvous network instability [BGNT04] and slow convergence [ACJD07].
Apart from the fact that these shortcomings, which are specific to the reference implemen-
tation, exist, the overall JXTA design is not optimized for P2P Desktop Grid Computing.
In particular, it is not tailored for High Performance Computing applications. Resource
discovery for example, offers no guarantee about neither the number of advertisements it
will discover, nor the time the discovery is about to take [Rat08]. However, both JXTA
and XMPP provide similar functionality on the lower protocol layers dedicated to communi-
cation. With the addition of E2E sessions, the Orbweb network infrastructure becomes
very similar to the infrastructure of the JXTA [TAA+03] overlay network (see Figure 23.2):
The Orbweb superpeer is, like the rendezvous peer in JXTA, responsible for delivering
groupcast messages to all connected peers. If no E2E connection can be established due to
NAT devices or firewalls, unicast messages are delivered by the Orbweb superpeer. This is
similar to the responsibility of relay peers in the JXTA network architecture. Thus, it would
be certainly possible to implement the functionality of Orbweb on top of these layers.
However, due to its wide distribution and maturity, we think XMPP is still the better choice.
Peer-to-Peer simplified (P2PS) [Wan05] is an open-source project providing an infras-

tructure for P2P service discovery and pipe-based communication. The P2PS reference
implementation is written in Java. While sharing many concepts with JXTA, P2PS is more
focused on simplicity than on feature richness. P2PS peers can communicate over multiple
protocols that can be replaced transparently to the application. P2PS service discovery is
based on XML advertisements and queries and uses subnets to broadcast advertisements and
queries efficiently. As in JXTA, rendezvous peers are responsible for caching and forwarding
advertisements and queries to rendezvous’ in other subnets. Although P2PS provides a peer
group abstraction, there is no support for groupcasting. Thus, a substantial requirement
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for many distributed algorithms is not satisfied. To our knowledge there is no performance
evaluation available for P2PS.

23.2 XMPP Technology Adopters
OurGrid [CBA+06] is a platform for Desktop Grid Computing. Former versions of OurGrid
used Remote Method Invocation (RMI) over TCP/IP as the programming model. As
RMI suffers from poor performance, due to large protocol overhead and also does not
integrate well with restrictive firewalls and NAT devices, OurGrid employs an asynchronous
programming model called JDIC [LCBF06] that is based on XMPP since version 4.
The Distributed Infrastructure with Remote Agent Control (DIRAC) [TGSR04] is a

Service Oriented Architecture (SOA) composed of lightweight services forming a scalable
robust Grid Computing environment to manage and track a large number of computing
tasks. Since DIRAC is primarily targeted at High Throughput Computing applications, it
does not pose the same high demands on the communication infrastructure as P2P Desktop
Grid Computing focused on High Performance Computing does. XMPP is used to implement
three different aspects of the system: inter-service messaging, state monitoring of agents,
and job-level monitoring. While plain XMPP is suitable for the first two applications as
the number of services (5-20) and agents (10-100) is comparatively small, the third is
more critical as thousands of jobs are active at peak time. In contrast to our approach of
improving and extending the XMPP protocols, DIRAC restricts itself to protect the system
from the impact of overloaded XMPP servers by applying virtualization techniques. By
adopting Orbweb, DIRAC could probably avoid potential overload situations as most
inter-peer traffic could be exchanged over E2E sessions.

Xeerkat [Mil05] is a Grid economy platform based on dynamically reconfigurable networks
of agents that offer and consume services. Due to better infrastructure support and much
easier setup [Mil], Xeerkat migrated from JXTA to XMPP in the 2.0 release.
The Friend-to-Friend Computing framework [NKVB08] project envisions so called F2F

Grids or Frids. The basic idea of frids is to achieve increased ease of use compared to
traditional approaches to Grid Computing. Frids allow to start a parallel application quickly
with minimal administrative effort. To reach this goal, the authors propose among other
things to use XMPP as the enabling communication and coordination platform. Although
frids are simple to setup by exploiting existing instant messaging infrastructure, their usability
for solving demanding computational problems has not yet been evaluated at a large scale.



Part VI

Capability-Aware Information Aggregation∗

Information aggregation is the process of summarizing information across the nodes of a
distributed system. In this part, we present a hierarchical information aggregation system
tailored for Peer-to-Peer Desktop Grids whose resources typically exhibit a high degree of
volatility and heterogeneity. Aggregation is performed in a scalable yet efficient way by
merging data along the edges of a logical self-healing tree with each inner node providing a
summary view of the information delivered by the nodes of the corresponding subtree. We
describe different tree management methods suitable for high-efficiency and high-scalability
scenarios that take host capability and stability diversity into account to attenuate the
impact of slow and/or unstable peers on aggregation accuracy. As existing approaches
try to distribute the onus of aggregation evenly among the nodes of the system, this
capability-awareness is the most essential distinguishing feature of the proposed aggregation
system.

Related Publications

[SBH09] Schulz, Sven; Blochinger, Wolfgang and Hannak, Hannes: Capability-Aware
Information Aggregation in Peer-to-Peer Grids – Methods, Architecture, and Implemen-
tation. Journal of Grid Computing (2009), Bd. 7(2):S. 135–167

∗ This part contains a summary of the respective topic. For further details the reader is referred to the
related publications.
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24 Overview
Fundamental distributed paradigms and algorithms are based on or can be implemented using
information aggregation [vR03]. This includes leader election, voting, service and resource
placement, multicast tree formation, and error recovery. Thus, an information aggregation
service can serve as a basic building block for the design of sophisticated Peer-to-Peer
Desktop Grid components. Despite of its importance, there are numerous open challenges in
the design and implementation of aggregation systems that are considered worthy of future
research [RM06]. Especially, the cost of reconfigurations caused by high node volatility can
become significant if the variance in performance and stability features of peers are not
taken into account.
The information aggregation system described in this part complements and completes

the functionality of Orbweb by providing a generic many-to-one communication primitive
(known as a reduction in parallel computing). While the essential features and properties
of the system are discussed, many interesting aspects had to be omitted for the sake of
brevity. The reader is referred to [SBH09] for a thorough in-depth discussion of the systems
architecture, the aggregation tree management methods, and our implementation within
the Cohesion platform.

24.1 Architecture
The process of information aggregation in Cohesion can be decomposed into three phases
(see Figure 24.1): data gathering, data aggregation, and distribution of the aggregated
data.
Data gathering is addressed by providing an extensible sensing framework. The central

abstraction is a sensor bus that leverages the microkernel design of Cohesion to allow
modules to create and deploy custom sensors to capture system state (see Figure 24.1a).
The sensor bus actively schedules measurements using a dedicated measurement scheduler,
thus enforcing resource limitations configured by the host owner and preventing duplication
of measurements when aggregation of one and the same system property is performed
simultaneously on behalf of several modules.

Data aggregation is done in an efficient and scalable way along the edges of a self-healing
logical aggregation tree (see Figure 24.1b). The aggregation tree spans all peers within a
logical partition of the Desktop Grid. These logical partitions are called aggregation groups
and are mapped to Orbweb peer groups to guarantee isolation. The aggregation tree
consists of reducers collecting values from its children and providing aggregated values to
their parent. To use the aggregation infrastructure most efficiently, a single shared reducer
network per sensor is maintained that is used to satisfy an arbitrary number of parallel
aggregation requests and a single aggregation tree per application that is shared among all
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reducer networks.
Tree management is designed to be customizable: Different providers can be plugged-in

to realize custom tree management strategies. We use this feature to realize strategies for
two use cases: highly performant and highly scalable groups. Mechanisms to reduce the
impact of volatility and heterogeneity of resources are incorporated into both strategies
by considering specific capabilities of hosts (performance, stability, or quality of network
connection) when assigning a position within the reduction network.
Finally, delivery of sensor/reducer data within the reduction network is accomplished by

allowing to probe remote sensors across network segmentations in a fully transparent secure
fashion. This is achieved by leveraging the overlay network provided by Orbweb. Delivery
of aggregate values (see Figure 24.1c) can be accomplished in an application sensitive way
using a broad spectrum of strategies, including propagation along the aggregation tree or by
using a groupcast protocol provided by the platform. Because of this flexibility, the system
supports a wide variety of applications with diverse requirements.

24.2 Tree Maintenance
Naïvely, information aggregation could be done in a Client/Server fashion by having a
particular host fetch values from all other hosts in the system (see Figure 24.2a). Obviously,
such a centralized approach isn’t scalable, since the server would have to handle a vast
number of messages. Hence, in more sophisticated systems aggregation is performed in a
Peer-to-Peer fashion by merging data along the edges of a spanning tree [YD04], which
covers all the hosts in the system (see Figure 24.2b). While this approach distributes the
onus of aggregation over a larger number of hosts, the indefiniteness of spanning tree
construction with respect to balancedness makes consistent addressing, i.e., specifying the
set of hosts the aggregate value should be computed from, a challenging task. To circumvent
this limitation, we impose a logical overlay on the set of hosts instead of using a simple
spanning tree: The overlay topology is a tree, where each host in the system is a leaf node
(see Figure 24.2c). Upper levels of the tree are populated by having selected hosts simulate
additional nodes. As these nodes have no direct physical counterpart, we call them virtual
nodes or more shortly V-Nodes. Leaf nodes provide initial input to the aggregation tree.
Each V-Node u performs aggregation locally by applying an aggregation function

f (u) ∶= f ({v ∈ children(u)}) (24.1)

to the values provided by its child nodes. A level-λ aggregate, where λ ∈ {0,λmax} is the
value resulting from performing the aggregation process up to level λ . While a level-0
aggregate is the raw input value provided by one of the hosts, a level-λmax aggregate
summarizes information from all hosts in the system. In Figure 24.2c there are four level-1
aggregates (10,3,8,12), two level-2 aggregates (13,20) and one level-3 aggregate (33). Since
aggregates on the same level are characterized by the same level of detail, the tree overlay
allows for consistent addressing using aggregation points: An aggregation point is given by a
pair (host,λ) and is resolved by following λ parent links starting from the given host. While
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(4,2) and (2,2) reference the same aggregation point, (7,2) references another aggregation
point that exposes the same level of summarization, i.e., both aggregation points summarize
information from four hosts.

An appropriate selection of hosts to simulate V-Nodes is critical for the overall performance
of the aggregation system for two reasons: First, processing incoming values from lower
levels, evaluating the aggregation function, and communicating aggregated values to higher
levels consumes resources. Placing more than a single V-Node on a host may exceed local
resource usage constraints. Second, the cost of reconfiguration caused by a vanishing host
increases with the number of hosted V-Nodes. Hence, it is preferable to have the most
stable hosts simulate V-Nodes on the highest levels. Therefore, our approach is to prefer
hosts that are more capable in terms of both performance and stability to simulate V-Nodes
on higher levels. We call this feature of a tree management method capability-awareness.
In what follows, we discuss two different tree management methods with different

requirements and features (see Table 24.1) and describe how capability-awareness has been
incorporated in each case.

24.2.1 ID-Based Method
The idea of the ID-based tree management method is to make use of information on group
membership that is already available locally to construct and maintain a binary aggregation
tree. The levels of the aggregation tree are populated by selecting hosts according to a

Method Requirements Features
View Coverage Scalability Efficiency Capability Support

ID Complete Low High Static
Competition Partial High Low Dynamic

Table 24.1: Feature/Requirement comparison for the topology maintenance methods
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Figure 24.3: V-Node allocation and link associations for an aggregation group with seven hosts
in the ID-based topology management scheme
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total order R imposed on the set of hosts within the aggregation group. The structure of
tree is defined as follows (cf. Figure 24.3): Let posR(u) be the position of host u in the
aggregation group G with respect to R. Then host u is simulating V-Nodes up to level λ , if

posR(u) ∈ Rλ ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

] ⌈ ∣G∣
2λ+1 ⌉ ,⌈

∣G∣
2λ

⌉ ] ⊂N f or λ ∈ [0,⌈log2 (∣G∣)⌉[

{1} f or λ = ⌈log2 (∣G∣)⌉
(24.2)

Additionally, a level-λ V-Node ũλ located at host u is connected to the collocated V-Node
ũλ−1 and to the V-Node ṽλ−1 located at host v with

posR(v) = posR(u)+⌈ ∣G∣
2λ

⌉ , (24.3)

if it exists.
The algorithm executed by each host to create and maintain this topology works as follows:

After becoming a member of the aggregation group, host u is provided with a dynamic view
of the hosts within the group. As full knowledge about the group members is necessary
to compute posR(u), we must employ a group model with complete views. Whenever
this view is updated due to the arrival or departure of a host, posR(u) is recalculated.
Comparison with the former value posR∗(u) produced on the last update results in creation
(posR(u)> posR∗(u)) or destruction (posR(u)< posR∗(u)) of local V-Nodes on the respective
layers. Subsequently, links are created according to the rule given above. Note, that this
scheme is highly efficient as no communication other than that for group membership
management is required. However, scalability is limited by the necessity for a group model
with complete membership lists. Hence, aggregation using ID-based tree management is
particularly suited for applications or services, where efficiency is of prime interest.
In the case of capability agnostic topology management, the order R is defined by the

lexical order of the unique host identifiers that are provided by the group membership
subsystem. Making this management scheme capability-aware is as simple as replacing the
lexicographic order with one that reflects the capability of hosts. Therefore, we define R as
the ascending value order of the joint capability values c j (u) of the hosts u ∈G. We use
the simple joint capability function

c j (u) = p(u)a(u) (24.4)

where p(u) is the relative performance and a(u) is the availability ratio of host u. The
relative performance is computed using the CPU2006 benchmark result database published
by the Standard Performance Evaluation Corporation (SPEC) [Sta08] as the quotient of the
benchmark result of the host spec_cpu(u) compared to the benchmark result of a reference
machine spec_cpure f that may be selected arbitrarily but has to be used consistently by all
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hosts in the aggregation group

p(u) = spec_cpu(u)
spec_cpure f

. (24.5)

The availability ratio a(u) is estimated using the join timestamps of the hosts Tjoin =
{t join (u) ∣ u ∈G}, where t join (u) is the join timestamp of host u, as

a(u)∝ min Tjoin

t join (u) . (24.6)

The joint capability values of all peers must be made available to all peers. This is
accomplished either by encoding them statically into peer identifiers or by dynamically
exchanging them over a simple Query/Response protocol. For an in-depth discussion see
[SBH09].

24.2.2 Competition-Based Method
The functional principle of the competition-based tree management method is to have
peers compete for becoming higher-level V-Nodes. Initially, all peers host a level-0 V-Node
only. If the parent link of a V-Node is vacant for a certain period of time, the hosting
peer promotes to remedy the shortage by creating a V-Node on the next higher level. Link
partners are exchanged between the peers of the aggregation group by dissemination of link
descriptors. When a matching link partner is found the local and the remote peer negotiate
and establish the corresponding link. An established link is replaced by a link to a V-Node
hosted by a peer with a lexicographically smaller identifier. If the child links of a V-Node
remain vacant or a parented V-Node has only a single child for a certain period of time
the V-Node is destroyed. Together these mechanisms result in V-Nodes on higher levels
compete for V-Nodes on lower levels in a market-oriented manner. We thus refer to this
method as competition-based. In contrast to the ID-based method the only requirement on
the group model is that at least a single other member is announced to each member of
the aggregation group. This is necessary to decide whether a V-Node on level (λ +1) is
required, i.e., iff there is at least another member in the level-λ layer group Gλ .

Capability-awareness is incorporated into the competition-based management scheme by
using the joint capability function defined above (see Equation 24.4) and by introducing
two additional behavioral patterns: First, V-Nodes no longer look for link partners with
lexicographically smaller identifiers when their parent link is assigned, but for those that are
more capable. Consequently, V-Nodes with higher capability values are more attractive to
V-Nodes on the next lower level. To support this behavior, we attach the joint capability
value of the hosting peer to the link descriptors disseminated for link establishment. A
receiving peer can then quickly check whether another candidate is more capable than
the one it is currently connected to. Second, a peer promotes when the joint capability
value of the local V-Node is greater than that of a newly assigned parent link partner.
This modification is necessary to set off suboptimal steady states. Details can be found in
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[SBH09].

24.3 Related Work
Existing approaches to information aggregation in loosely coupled distributed systems are
either based on flat, gossip-style communication models with special termination/convergence
properties or employ a tree overlay topology to hierarchically compute aggregate values.
In [MJB04] an aggregation method of the former type based on an epidemic protocol

is discussed. Every peer periodically selects a neighbor peer at random, exchanges values
denoting the system state, and performs an aggregation specific computation. Based on
a basic protocol to compute averages, several other aggregation functions, like sum and
variance, are realized. While epidemic protocols are known to be exceptionally robust,
their efficiency is limited.
Tree topology based aggregation methods can be classified in static and dynamic ap-

proaches, depending on the way the tree topology is defined and maintained. Dynamic
approaches either depend on an unstructured communication model or leverage structured
network overlay technology. Subsequently, we discuss representative examples of these
classes.

Ganglia [MCC04] is a scalable distributed monitoring system mainly targeted at federations
of clusters. It employs a listen/announce protocol based on multicast for monitoring
individual clusters. Thus, all nodes of a cluster collect and store the state of all other nodes.
Membership is maintained by a multicast heartbeat protocol. Within federated clusters,
Ganglia uses a tree-based protocol for information aggregation, where leaves of the tree are
representative nodes of each cluster. For handling failures, multiple nodes of a single cluster
can be specified as representatives. Aggregation at inner nodes of the tree is accomplished
by periodically polling child nodes. Configuration files are used to specify the structure of
the aggregation tree, which typically reflects the administrative topology. As Ganglia takes
a static approach, it is not appropriate for highly dynamic P2P Desktop Grids.
Astrolabe [RBV03] is a robust and scalable monitoring and management solution for

distributed systems. Information aggregation is based on a tree structure which reflects the
administrative organization of the distributed system. The topology is maintained using an
unstructured gossip protocol that is also used for information dissemination. All aggregate
values of a subtree are replicated on every node of the subtree, such that all respective
queries can be answered with local information. Astrolabe uses a restricted form of mobile
code based on SQL syntax for specifying aggregation functions.
The aggregation method of SDIMS [YD04] leverages the internal routing protocols of

Distributed Hash Tables (DHT) to establish a tree based aggregation hierarchy. With this
approach, the union of the search/routing paths for a key from all nodes forms a tree. As
keys are derived from attribute names, different attribute names are mapped to different
trees, such that each node acts as an intermediate point of aggregation for some attributes.
Thus, the onus of aggregation can be distributed among the participating hosts. In order to
achieve administrative isolation, so called Autonomous Distributed Hash Tables (ADHT)
are employed which ensure that search paths are always contained in the smallest possible
domain and that search paths for a key from different nodes of a domain converge at a



24.3 Related Work 193

node part of that domain. On top of the ADHT layer, the Aggregation Management Layer
(AML) is responsible for maintaining attribute tuples, performing aggregations, and storing
aggregated values. For increasing robustness in case of network reconfigurations, the AML
layer performs replication both in time (lazy and on-demand) and space.
Neither Astrolabe nor SDIMS take varying host capabilities and stability into account.

Thus, the efficiency of the aggregation process is limited by the speed of slow hosts and the
accuracy may be seriously impaired by unstable hosts.

Sensor networks share some of the characteristics of P2P Desktop Grids, like constrained
resources, limited view of the whole system, and a high degree of volatility. TAG [MFHH02]
is an aggregation system especially addressing these sensor network specific issues. The
system represents an in-network aggregation approach and is based on routing trees. Trees
are constructed in an ad-hoc fashion leveraging the range restricted broadcast capabilities
of individual sensors.





Part VII

Distributed Task Pool

Due to their inherent irregular nature a task parallel approach with support for dynamic
problem decomposition is imperative to solve ISPs efficiently. However, distributed task
parallel programs require platform support in terms of a task pool abstraction that can be
used by peers to fetch and store tasks. Cohesion’s distributed task pool supersedes the
centralized task pool approaches of existing Desktop Grid platforms that do not support the
Peer-to-Peer interaction model. The task pool employs randomized load balancing, which is
known to be optimal with high probability in this context, a task-tracking checkpoint/restart
fault-tolerance scheme, and a novel termination detection algorithm that is resilient to task
duplication.

Related Publications
[SB10b] Schulz, Sven and Blochinger, Wolfgang: Parallel SAT-Solving on Peer-to-Peer
Desktop Grids. Journal of Grid Computing (2010), Bd. 8(3):S. 443–471
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There are two fundamentally different kinds of parallelism: data and task parallelism.
Problem decomposition in data parallel programs – classified as SIMD (Single Instruction
Multiple Data) or SPMD (Single Program Multiple Data) systems according to Flynn’s
taxonomy [Fly72] – is done by partitioning the usually large and structured input data (like
one or more arrays). Partitions are mapped to processors and are processed independently.
By contrast, in task parallel programs – MPMD (Multiple Programs Multiple Data) or MISD
(Multiple Instructions Multiple Data) systems according to Flynn – each processor performs
a different operation usually on the whole input.

Suppose we apply a data parallel approach to an ISP. Due to its inherent irregular nature,
the processing time for subtasks generated by data partitioning would vary considerably.
Assigning a single subproblem to each processor consequently would result in significant
processor idling and limited parallel efficiency. While reducing the granularity, i.e., creating a
larger number of subproblems and assigning multiple of them to each processor, can alleviate
the differences in workload, the resulting overhead, however, also impairs efficiency. Hence,
data parallel approaches are in general not suitable for solving ISPs. As will be described in
Part VIII, this is particularly true for distributed SAT solving.

Due to the unpredictability of task run times, problem decomposition for ISPs has to go
hand in hand with execution. Such an on-line decomposition approach is called dynamic
decomposition [GGKK03]: Starting from a single task consisting of the whole input, new
tasks are derived iteratively by decomposition whenever a processor becomes idle. In
contrast to data parallel approaches, task parallelism with dynamic decomposition requires
sophisticated support by the parallel execution environment. This is most often achieved
using an abstraction called a task pool . Module 24.1 defines a rudimentary interface for a
Task Pool module. The functionality includes submission of a job using the ⟨ Submit ⟩ request
and a mechanism to notify clients of the completion of a job by means of a ⟨ Completed
⟩ indication. Note that the task pool abstraction implemented in Cohesion provides a
significantly richer interface that includes operations to cancel queued submissions, to abort
jobs that are currently executed, and to retrieve a wide range of metrics that can be used
for monitoring purposes. However, for reasons of clarity, we exclude these functionality
from our discussion. The same is true for application level error handling, an aspect that is
definitely important for an implementation to be usable, but not required to understand the
core protocols discussed within this thesis.

Module 24.1 shows the external interface of the Task Pool module only. Internally, a task
pool provides operations to store and manage the tasks created throughout the execution of a
job. These operations are provided by submodules and are described in subsequent chapters.
All processes constituting the distributed task pool have access to these internal operations
so that they can fetch tasks for execution on demand and enqueue tasks dynamically created
during execution.

The Task Pool module definition includes a property called Eventual Completion (TP1).
It guarantees that a job that is submitted to the task pool on a peer pc, which is referred
to as the coordinator (for that job) in the following, will be completed eventually, if pc is
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Module 24.1 Interface and Properties of the Task Pool module
Module:

Name: Task Pool, instance tp.
Requests:

⟨ tp, Submit | job ⟩: Submits a job for execution.
Indications:

⟨ tp, Completed | job ⟩: A job has been completed.
Properties:

TP1: Eventual Completion: If the peer where a job j is submitted is correct, j will be
completed eventually.

correct1. We will show that Cohesion’s task pool implementation enforces this property
in Chapter 29 based on the properties of the submodules discussed in the following chapters.
If not stated otherwise, we assume that the coordinator peer is correct in the following.
The task pool abstraction can be realized in a centralized or in a distributed manner.

In centralized approaches – provided by most existing Desktop Grid Computing platforms
(cf. Chapter 10) – a master process maintains a global task queue from which idle worker
processes can fetch tasks. The queue is refilled with tasks generated through master- or
worker-side problem decomposition performed or triggered by the master whenever the
global task queue is about to become empty. A major drawback of centralized task pools is
that the master process is a sequential bottleneck as every task must be transferred from
and to the master process. As will be discussed in Part VIII, this limitation is in particular
impedimental in the case of distributed SAT solving as a task description may become very
large for real-world SAT instances with millions of variables. Enabled by Orbweb’s support
for Peer-to-Peer message exchange, Cohesion provides a distributed task pool model,
in which a task queue is located on every peer. While distribution eliminates the master
process as a sequential bottleneck, the downside of this approach is that realizing essential
aspects of the task pool control logic becomes much more challenging. These aspects are
load balancing, fault tolerance, and termination detection.
The remainder of this part is organized as follows: First, some basic abstractions are

introduced in Chapter 25. In Chapters 26-28 the submodules for load balancing, fault toler-
ance, and termination detection are specified and their implementation within Cohesion is
discussed. Chapter 29 gives a correctness argument for the task pool implementation as
a whole. Finally, the implementation is subjected to a thorough performance analysis in
Chapter 30 with real-world resource volatility.

Terminology and Notation
The modular notation and the pseudo code used to specify the APIs and algorithms of this
chapter are introduced in Appendix B.

1 Furthermore, as Cohesion implements the task pool abstraction on top of a peer group, it is assumed
that the coordinator peer stays in this group (at least) until the job is completed.



25 Basic Abstractions
Cohesion’s implementations of load balancing, fault tolerance, and termination detection
are based on four basic abstractions. These abstractions are:

1. A Task, which is an abstract data type (ADT) that encapsulates a unit of work
together with metainformation required by the submodules of Cohesion’s task pool.

2. A Task Queue module, which is essentially a Queue ADT that is able to indicate
modifications to interested parties.

3. A Processing Element (PE) module that specifies a processor for tasks with the
additional ability to split off a task from and to create a checkpoint of the task that
is currently executed by the PE on demand.

4. A Timer abstraction used to schedule a callback after a certain period of time.

Each of these abstractions is described subsequently up to the level of detail that is required
to understand the task pool implementation. When required, we also give some information
on how the abstractions are implemented within Cohesion.

25.1 Task
A task is a unit of work that carries both what should be processed and how. A job, as used
in the definition of Module 24.1, is essentially defined by a single task to be executed in
order to complete the job. This task is called the root task or initial task in the following.

At the heart of a task is its input data (or just input for short). We do not try to specify
the data format for the input data as this is application dependent. However, we do specify
some attributes of and operations on the Task ADT that are required by the submodules of
the Cohesion task pool. These attributes and operations are denoted as functions over
instances of the Task ADT. In case of attributes, A(t) ∶= v denotes an assignment of the
value v to the attribute A of task t:

The attribute Input(t) gives the input of task t. When used in formal proofs, we
abbreviate this to I(t) in the following. An input i is said to subsume another input j, if
and only if regarding to the result of the computation the execution of a task t j with input j
is optional when a task ti with input i is completed. If the inputs i and j are unambiguously
determined by the context, we also say that task ti subsumes task t j. As an example for
subsumption, consider the problem of searching an element e in arrays: If a is an array
that is a subarray of array b, then the input (b,e) to the search algorithm subsumes the
input (a,e). This is obvious, since if e is found in a, it is also found in b. Subsumption can

199



200 25 Basic Abstractions

be applied to sets of inputs as well: Let I and J be such sets of inputs. Then I is said to
subsume J, if and only if the execution of all tasks for the inputs in J are optional, when all
tasks for the inputs in I are completed.

The Split(t) operation splits off and returns a new task from the donator task t. Splitting
is done by means of the split operator * ∶ I ↦ I2,(i) = ( j,k) with I being the space of
possible inputs. While i is called the target of the split operation, j and k are called its split
products. In relation to j and k, i is referred to as the parent of the split products. Essential
requirements on the split operator are that neither j nor k are empty, i is subsumed by
( j,k) and vice versa, and that j and k are disjunctive in the sense that no input that is part
of any possible decomposition of j is subsumed by k and vice versa.
If we apply the split operator recursively on inputs from a set of inputs that initially

contains only a single input r and we connect the target of each split operation by an edge
with its split products, a tree is formed. This tree is called the decomposition tree of r. A
path within this tree from the root r to an input i is called the decomposition path of i.
The ID(t) attribute returns a globally unique identifier for task t. Our implementation

uses a pair ( j,s) of Peer Unique Identifiers (PUID) where j is the job identifier and s is the
so called split suffix. PUIDs are a concatenation of the unique identifier of the peer where
the PUID is generated and a peer local monotonic counter. The counter is incremented
every time a PUID is generated by invoking PUID(). When a job is submitted, its identifier
is set to (PUID(),�). The task identifier for a split off task is derived from the original
task’s identifier by replacing the split suffix with the PUID() evaluated on the peer where
the split happens. When we talk of a task in the following, we refer to a task with a specific
identifier and not to a task with a specific input. While the former is fixed, the latter may
change during the lifetime of a task.
The UC(t) attribute is a monotonic counter that is used to detect and discard delayed

messages in Cohesion’s fault-tolerance protocol. UC(t)++ increments the counter by
one.

Compensates(t) is an attribute required to coordinate the interaction between the
fault-tolerance and the termination detection protocol. It is assigned either to some Task
ADT instance or to �.

Finally, the attribute IsRoot(t) indicates whether task t is the root task of a job and the
attribute Coordinator(t) gives the peer identifier of the coordinating peer for task t. Due
to the way we construct them, both attributes can be easily computed from the identifier of
a task: IsRoot by checking whether there is a split suffix present and Coordinator by
extracting the peer identifier from the PUID used as the job identifier.

In addition, we make the following assumptions regarding the properties and behavior of
tasks:

1. Task execution is idempotent, which means that it doesn’t matter how often a task is
completed as long as it is completed once. This is required as tasks may be duplicated
by the fault-tolerance mechanism of Cohesion.

2. Every input can be processed in finite time. Otherwise, termination of the computation
can not be guaranteed.
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25.2 Task Queue

Module 25.1 Interface of the Task Queue module
Module:

Name: Task Queue, instance tq.
Requests:

⟨ tq, Enqueue | task ⟩: Enqueues a task.
⟨ tq, Dequeue | task ⟩: Dequeues a task.
⟨ tq, Lookup | taskId, task ⟩: Gets the task with taskId, if contained.
⟨ tq, Size | size ⟩: Gets the number of contained elements.

Indications:
⟨ tq, Modified | size ⟩: The queue has been modified due to an ⟨ Enqueue ⟩ or ⟨ Dequeue ⟩

operation. size is the number of contained elements after the modification.

As described in the introduction to this part, Cohesion’s decentralized task pool maintains
a local task queue on every peer. Module 25.1 shows the interface definition for such a task
queue. ⟨ Enqueue ⟩ and ⟨ Dequeue ⟩ are mutating operations from the well-known Queue
ADT to enqueue and dequeue a task, respectively. The latter returns � in case the queue
is empty. ⟨ Lookup ⟩ returns the task with the given task identifier or � in case no such
task is contained in the queue. ⟨ Size ⟩ gives the number of elements contained in the task
queue. Finally, ⟨ Modified ⟩ indicates a modification to the data structure triggered by one
of the mutating requests. The indication carries the number of elements contained in the
queue after the modification by means of the size parameter.

Cohesion by default uses a standard First-In-First-Out (FIFO) queue as the underlying
ADT to realize the Task Queue module. However, this is designed to be configurable on a
per task pool instance basis in order to allow application developers to tune the task pool to
applications where using a non-FIFO queue, like for example a priority queue, yields better
results.

25.3 Processing Element
Module 25.2 shows the interface of the Processing Element (PE) module. A PE is the
abstraction of a compute engine that fetches tasks from the local task queue and processes
them. Whenever a task is completed by the PE, a ⟨ Completed ⟩ indication is triggered. A
PE also allows to trigger a split operation by means of the ⟨ Split ⟩ request. Internally, this
interrupts processing of the currently executing task and invokes the Split operation of the
Task ADT that splits off a new task in an application-specific manner. The split off task is
stored in the task output parameter to be used by the invoking protocol. Finally, a ⟨ Split ⟩
indication is triggered that carries both the original task with updated input and the split
off task by means of the donator parameter and the task parameter, respectively. The ⟨
Checkpoint ⟩ operation is required for implementing Periodic Checkpointing, an optimization
to Cohesion’s fault-tolerance protocol described in Section 27.4. Finally, the PE interface
allows for getting the task that is currently processed by means of the ⟨ Executing ⟩ request.
� is returned in case the PE is idle. The same is true for the ⟨ Split ⟩ request.
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Module 25.2 Interface of the Processing Element module
Module:

Name: Processing Element, instance pe.
Requests:

⟨ pe, Split | task ⟩: Splits off a new task from the currently running task.
⟨ pe, Executing | task ⟩: Returns the task that is currently processed.
⟨ pe, Checkpoint | input ⟩: Returns an input that subsumes the original input in the context

of the execution. The input of the currently processed task is replaced by input.
Indications:

⟨ pe, Completed | task ⟩: A task has been completed.
⟨ pe, Split | donator, task ⟩: A new task has been split off from a donator task .

Today’s computers can work on more than a single thread (of execution) in parallel. To
exploit this capability, Cohesion allows for instantiating any number of PEs on a peer
which all fetch tasks from the same shared task queue. However, for certain applications
this strategy of instantiating one PE per hardware thread is disadvantageous because other
resources than CPU cycles (like I/O capacity or memory bandwidth) are not available to a
sufficient extent. Such non-scaling applications will not benefit from adding more PEs and
may even exhibit slowdowns. SAT solving (see Part VIII) is a good example for this behavior
as a single solver core may already saturate the cache capacity and the memory bandwidth
available on COTS processors. Hence, Cohesion allows to configure the number of PEs
on a per task pool basis. By default, a PE is instantiated for each available hardware thread.
However, for reasons of clarity, we restrict our discussion to a task pool with a single PE
per peer. An extension of the protocols to the general case is straightforward.

25.4 Timers

Module 25.3 Interface of the Timer module
Module:

Name: Timer, instance t.
Requests:

⟨ t, Schedule | delay, token ⟩: Schedules an ⟨ Elapsed ⟩ indication carrying a token to be
triggered after the delay has elapsed.

⟨ t, Cancel | token ⟩: Cancels the scheduled indication for the given token.
⟨ t, Scheduled | token, scheduled ⟩: Checks whether an ⟨ Elapsed ⟩ indication is scheduled

for a token.
Indications:

⟨ t, Elapsed | token ⟩: The delay for a scheduled indication with token has elapsed.

Module 25.3 shows the interface of the Timer module. A Timer allows for scheduling
future indications using the ⟨ Schedule ⟩ request. An ⟨ Elapsed ⟩ indication is triggered
after the specified delay has elapsed. It carries an arbitrary token for demultiplexing. The ⟨
Cancel ⟩ request can be used to cancel a previously scheduled indication. It does nothing
when no indication with the given token has been scheduled or the indication has already
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been triggered. The ⟨ Scheduled ⟩ predicate can be used to check whether an ⟨ Elapsed ⟩
indication is scheduled for a specific token that has not been triggered yet nor has been
canceled.





26 Load Balancing
Task scheduling is the assignment of tasks to processors according to a given policy. The
underlying theoretical problem is the NP-complete generalized scheduling problem [VD76].
Our view on the topic is highly focused on the special case of ISPs. For a comprehensive
treatment of the vast subject the reader is referred to [SKH95].
A main discriminator among task scheduling techniques is whether they are static or

dynamic. Static scheduling is done before program execution and typically requires detailed
knowledge regarding both the tasks to be executed and the environment they should be
executed in. Dynamic techniques require less knowledge and are executed concurrently to
the computation. They are based on transferring tasks from heavily loaded processors to
lightly loaded processors and thus are often referred to as load balancing techniques.
A key characteristic of ISPs is that many properties (like run time, memory usage,

etc.) of its tasks cannot be determined in advance. However, the efficiency of schedules
computed by static scheduling algorithms is crucially dependent on the estimation accuracy
for these properties. Since such estimations are exceedingly difficult and more often even
impossible for ISPs, static scheduling techniques are in general not applicable for them.
Hence, Cohesion implements load balancing for task scheduling. Module 26.1 shows the
interface of the Load Balancing module. It consists of a single indication ⟨ Transferred ⟩
that is emitted when a task has been transferred from the local task queue to a target
peer. Note that the term transferred in this context does not mean that the delivery is
acknowledged by the remote peer. It only means that is has been dequeued locally and sent
to the remote peer.

Blumofe and Leiserson [BL99] have shown that for applications where task sizes are not
known a priori a simple randomized load balancing algorithm is optimal with high probability.
Well-known representatives of these algorithms are random stealing and random pushing
[GGKK03]. While in random stealing protocols idle nodes pull or steal tasks from randomly
selected neighbors, random pushing protocols go for the opposite approach, where nodes
with excess tasks push them to randomly selected target nodes. We prefer random stealing
over random pushing as it is demand-driven and thus avoids unnecessary transferral of
potentially large tasks.
Protocol 26.2 shows the framework for Cohesion’s random stealing implementation

that is used as a basis for the concrete implementations described subsequently. It does
not include the logic that triggers task decomposition and does not handle incoming load
balancing requests. Hence, it is denoted as abstract. The implementation periodically checks
whether the PE is idle and no task is available from the local task queue (ARS-1). If this
condition holds, a Steal message is sent to a randomly selected member from the local
view commonly referred to as the victim (of the potential theft). This selection is done by
means of the Random function that selects a random element from the provided set. In
case the argument is the empty set, � is returned. To minimize processor idling the same
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Module 26.1 Interface of the Load Balancing module
Module:

Name: Load Balancing, instance lb.
Indications:

⟨ lb, Transferred | task, target ⟩: A task transferral from the local task queue to the peer
with identifier target has been initiated.

Protocol 26.2 Abstract Random Stealing protocol
Implements:

Load Balancing, instance ars with balancing period and group name.

Uses:
Timer, instance t.
Task Queue, instance tq.
Peer Group Management, instance pgm.
Processing Element, instance pe.

upon event ⟨ ars, Init | period, name ⟩ ▷ ARS-0
trigger ⟨ t, Schedule | 0, name ⟩;

upon event ⟨ pe, Completed | task ⟩ or upon event ⟨ t, Elapsed | token ⟩ such that
token = name do ▷ ARS-1

call ⟨ tq, Size | s ⟩;
call ⟨ pe, Executing | task ⟩;
if s = 0∧ task = � then

call ⟨ pgm, View | members ⟩;
victim ∶=Random(members∖pgm.localPeerId);
if victim ≠ � then
trigger ⟨ pgm, Unicast | victim, Steal[] ⟩;

trigger ⟨ t, Schedule | period, name ⟩;

upon event ⟨ pgm, Deliver | source, Transfer[task] ⟩ do ▷ ARS-2
trigger ⟨ tq, Enqueue | task ⟩;

handler is also triggered immediately whenever the PE becomes idle. When a Transfer
message is delivered locally, the contained task is enqueued into the task queue (ARS-2).

Cohesion supports both an eager and an on-demand task decomposition strategy. Both
protocols extend the Abstract Random Stealing (ARS) protocol. ARS with Eager Task
Decomposition, as shown in Protocol 26.3, splits off subtasks when the number of tasks in
the local queue drops below a configurable threshold (ETD-0). When a Steal message is
delivered, a task is dequeued from the local task queue, wrapped up in a Transfer message,
and send by unicast to the requesting peer (ETD-1). As all messages send by the protocols
described in this chapter, the potentially large Transfer message is sent via E2E links when
available. Finally, a ⟨ Transferred ⟩ indication is triggered to notify upstream modules about
this event. If no task is available locally, nothing happens.
In contrast, ARS with On-Demand Decomposition as shown in Protocol 26.4 initiates

decomposition only, when the transferral of a task is explicitly requested by a remote peer.
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Protocol 26.3 Random Stealing with Eager Task Decomposition protocol
Extends:

Abstract Random Stealing with Eager Task Decomposition, instance etd with split threshold.

upon event ⟨ tq, Modified | size ⟩ do ▷ ETD-0
if size < threshold then

call ⟨ pe, Split | task ⟩;
if task ≠ � then
trigger ⟨ tq, Enqueue | task ⟩;

upon event ⟨ pgm, Deliver | source, Steal[] ⟩ do ▷ ETD-1
call ⟨ tq, Dequeue | task ⟩;
if task ≠ � then

trigger ⟨ pgm, Unicast | source, Transfer[task] ⟩;
trigger ⟨ lb, Transferred | task, source ⟩;

Protocol 26.4 Random Stealing with On Demand Decomposition protocol
Extends:

Abstract Random Stealing with On-Demand Decomposition, instance odd.

upon event ⟨ pgm, Deliver | source, Steal[] ⟩ do ▷ ODD-0
call ⟨ tq, Dequeue | task ⟩;
if task = � then

call ⟨ pe, Split | task ⟩;
if task ≠ � then

trigger ⟨ pgm, Unicast | source, Transfer[task] ⟩;
trigger ⟨ lb, Transferred | task, source ⟩;

This behavior is realized by listening for incoming Steal messages (ODD-0). If no task is
available in the local task queue when such a message is delivered, a ⟨ Split ⟩ request is
triggered on the PE. The task, either split off or taken from the task queue, is wrapped up
in a Transfer message and sent to the requesting peer. Finally, a ⟨ Transferred ⟩ indication
is triggered to notify upstream modules about the transfer.
By default, Cohesion instantiates the ARS with On-Demand Decomposition protocol

when creating a task pool, because, in general, processing more task induces more excess
computation.





27 Fault Tolerance
High Performance Computing (HPC) applications may have long run times in the range
of days. However, as discussed in Part I, Desktop Grid environments are highly volatile as
hosts and network links are non-dedicated and characterized by increased failure probabilities.
Hence, the occurrence of failures during a prolonged application run is the rule rather
than the exception. In contrast to embarrassingly parallel applications, tasks in a HPC
application are not independent. Thus, the remaining part of the computation may depend
on the outstanding outcome of a task that got lost due to a failure. Hence, the underlying
middleware must restart failed tasks as soon as possible. To achieve this, Cohesion employs
a checkpoint/restart fault-tolerance scheme that tracks tasks over their entire lifespan until
they have been fully processed. In the following, we describe and discuss this protocol
and some optimizations. In accordance with our system model defined in Chapter 16, we
subsequently assume a dynamic set P = {p1, . . . ,pn} of crash-stop peers. However, as we
use a mix of E2E links and the FIFO-Order Perfect Links from Chapter 16, the distributed
system model exposed to the application is no longer fail-stop. The peer pc ∈ P on which a
job is submitted takes the role of the coordinator. pc is assumed to be correct until the
computation has been completed.

27.1 Task-Tracking Checkpoint/Restart Module
Module 27.1 shows the interface of Cohesion’s Task-Tracking Checkpoint/Restart module.
The module is purely reactive and triggers internal operations by means of listening to
indications from other modules of the task pool and the network substrate. Thus, it has

Module 27.1 Interface and properties of the Task-Tracking Checkpoint/Restart module
Module:

Name: Task-Tracking Checkpoint/Restart, instance ttcr.
Requests:

⟨ ttcr, Tracked | task, tracked ⟩: Checks whether a task is tracked locally.
Properties:

TTCR1: Eventual Completion: Every tracked task or a restored substitute is eventually
completed.

TTCR2: Safe Split: If a tracked task t is split updating I(t) to I′ and creating a new task t∗

by means of the split operation *(I(t)) = (I′,I∗), then either t remains tracked with unmodified
input, or t and t∗ are tracked with I(t) = I′ and I(t∗) = I∗ and I(t) is subsumed by I′ and I∗.

TTCR3: Eventual Subsumption: If a task t is tracked with input i = I(t), eventually a set
of tasks T = {t1, . . . ,tn} with inputs I = {I(t1) , . . . ,I(tn)} is completed such that the inputs I
collectively subsume i.
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no public API in the form of requests and indications, except the ⟨ Tracked ⟩ request that
allows for checking whether a given task is tracked locally. It is introduced for formal reasons
only as it is required to formulate the preconditions of the module’s guaranteed properties
TTCR1-TTCR3 by means of the following definition:

Definition 27.1.1. A task t for which ⟨ Tracked | t ⟩ yields true on the coordinator peer
pc is called tracked.

TTCR1 says that every tracked task – uniquely identified by its task identifier – or, in
case it gets lost due to a failure, a surrogate task restored by the protocol is completed
eventually. It says nothing about the inputs of these tasks. This is different for TTCR2,
which guarantees that if a tracked task is split, either the original task with the original input
is tracked or both split products are tracked and their inputs together subsume the original
task’s input. Stated even simpler, TTCR2 says that a split is safe in the sense that the same
overall job is performed even though any number of tasks are split during the computation.
Finally, TTCR3 extends the guarantee of TTCR2 from split operations to every possible
execution and additionally assures that the computation will eventually terminate1.

27.2 Basic Protocol
Protocol 27.3 implements the Task-Tracking Checkpoint/Restart module. Its purpose is
to keep record of the locations and inputs of all uncompleted tasks in a data structure on
the coordinator, subsequently called the task database. The data stored therein is used to
restart tasks in case of failure. The protocol is an extension to Protocol 27.2 that tracks
the lifecycle of local tasks and notifies the coordinator in case of relevant changes. Every
peer runs an instance of the combined protocol and takes over the role of the coordinator
for locally submitted jobs.

A change to the location or input of a task is communicated to the coordinator through
Update(t, pi, p f ) messages, where t is a representation of the affected task including all
the attributes described in Section 25.1, and pi and p f are the initial and final location
of the task, respectively. While Update(t, �, p f ) means that task t has been created on
peer p f , either as the initial task of a new job or as one of the split products from a split
operation, Update(t, pi, �) means that task t has been completed on pi and should thus
be removed from the task database. An Update message can also contain more than one
update. This is denoted as Update(u1, . . . ,un) with tuples u j = (t j, p j

i , p j
f ) for 0 < j ≤ n.

All Update messages are sent over Cohesion’s FIFO-Order Perfect Links (see Chapter
16). Hence, Update messages originating from the same peer are delivered in FIFO order
on the coordinator and thus in the order they are generated. However, this is not true for
Update messages (for the same task) generated at different peers. For example, if a task
is migrated from one peer to another and subsequently split, the Update message for the
latter event may arrive before that for the former. This is because the Transfer messages
used for task transferral are send over E2E links. Without further measures, the sequence

1 This only holds due to our assumption that the coordinator is stable.
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Protocol 27.2 Abstract Task-Tracking Checkpoint/Restart protocol
Implements:

Task-Tracking Checkpoint/Restart, instance ttcr.

Uses:
Load Balancing, instance lb.
Peer Group Management, instance pgm.
Processing Element, instance pe.
Task Queue, instance tq.

upon event ⟨ tq, Enqueue | task ⟩ such that isRoot(task) do ▷ TTCR-0
coordinator(task) ∶=pgm.localPeerId;
trigger ⟨ pgm, Unicast | pgm.localPeerId, Update[task, �, pgm.localPeerId] ⟩;

upon event ⟨ pe, Completed | task ⟩ do ▷ TTCR-1
pc ∶= coordinator(task);
UC(task)++;
trigger ⟨ pgm, Unicast | pc, Update[task, pgm.localPeerId, �] ⟩;

upon event ⟨ tq, Split | donator, task ⟩ do ▷ TTCR-2
pc ∶= coordinator(task);
UC(donator)++;
trigger ⟨ pgm, Unicast | pc, Update[{ (task, �, pgm.localPeerId), (donator,

pgm.localPeerId, pgm.localPeerId) }] ⟩;

upon event ⟨ lb, Transferred | task, target ⟩ do ▷ TTCR-3
pc ∶= coordinator(task);
UC(task)++;
trigger ⟨ pgm, Unicast | pc, Update[task, pgm.localPeerId, target] ⟩;

of events related to a task can not be reconstructed reliably on the coordinator. To cope
with this issue, all event handlers of Protocol 27.2 increment the update counter UC for
a task when either its location or its input is updated. As described below, this is used
by the coordinator to detect and discard delayed Update messages that would render the
reconstruction of the actual update sequences impossible.

TTCR-0 is executed for the root task of a job when it is submitted to the task pool using
the ⟨ Submit ⟩ request of the Task Pool module. As the local peer becomes the coordinator
for all locally submitted jobs, the Coordinator attribute of the task is set to the local
peer identifier. Finally, the peer sends an Update message to itself indicating that the root
task has been created locally.
TTCR-1 is the counterpart to TTCR-0: It is invoked when a task has been completed

and thus should no longer be tracked. As in the case of TTCR-0 an Update message is
sent to the coordinator that triggers the corresponding change to the task database. As
we are not necessarily on the coordinator this time, its peer identifier is read from the task
using the Coordinator attribute of the Task ADT.
When a split operation is performed, TTCR-2 is executed. It consists of two update

operations: one for each split product. If the update for the donator task was correctly
reported but that for the split off task was not, a crash of the peer where the split took place
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Protocol 27.3 Cohesion’s Task-Tracking Checkpoint/Restart Coordination protocol
Extends:

Abstract Task-Tracking Checkpoint/Restart with Coordination, instance ttcr-c with pa-
rameter task restoration timeout.

Uses:
Timer, instance t.

upon event ⟨ ttcr-c, Init | timeout ⟩ do ▷ TTCR-C-0
L ∶=∅;
T ∶=∅;

upon event ⟨ ttcr, Tracked | task, tracked ⟩ do ▷ TTCR-C-1
tracked ∶=Coordinator(task) =pgm.localPeerId∧L(ID(task)) ≠ �;

upon event ⟨ pgm, Deliver | source, Update[task, pi, p f ] ⟩ such that T (Id ∶= ID(task)) =
�∨UC(T (Id)) <UC(task) do ▷ TTCR-C-2

if pi ≠ � then
trigger ⟨ t, Cancel | id ⟩;
L(id) ∶= �;

if p f ≠ � then
L(id) ∶= p f ;
T (id) ∶= task;
call ⟨ pgm, View | v ⟩;
if p f ∉ v then
trigger ⟨ t, Schedule | timeout, id ⟩;

upon event ⟨ pgm, ViewUpdate | p, state ⟩ such that state = Left or upon event ⟨ pgm,
Deliver | p, Steal[] ⟩ do ▷ TTCR-C-3

for each (taskId, l) ∈L ∶ l = p do
trigger ⟨ t, Schedule | timeout, taskId ⟩;

upon event ⟨ t, Elapsed | taskId ⟩ do ▷ TTCR-C-4
task ∶= T (taskId);
Compensates(task) ∶= task;
ID(task) ∶= (PUID() ,�);
trigger ⟨ tq, Enqueue | task ⟩;

would be unrecoverable1. This is because the split off task would have been never stored
in the coordinator’s task database. Consequently, property TTCR2 of the Task-Tracking
Checkpoint/Restart module would be violated. To avoid this situation, either both or none
of the updates must be delivered. As Orbweb guarantees that message delivery is atomic,
this requirement can be satisfied easily by using a single Update message for transmitting
both updates.

Finally, TTCR-3 is executed when a task is transferred to another peer as part of a load

1 This is not true for the opposite case. However, the impact on performance would be significant in case
the donator task was lost and restored subsequently, as then all the work – including that split off –
would be done again, which could be the whole job in the worst case.
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balancing operation. It simply triggers an update to the location of the transferred task by
sending an appropriate Update message to the coordinator peer.

The event handlers of Protocol 27.3 implement the task tracking logic on the coordinator.
The ⟨ Init ⟩ request (TTCR-C-0) is triggered by the environment when the protocol is
instantiated. It initializes the task database that consists of two relations: L and T . L
contains pairs (taskId, location). Each such pair associates a task – uniquely identified by
its task identifier – with its last known location (in form of a peer identifier). L(taskId)
evaluates to the location associated with taskId or to �, if no such association exists. T
contains pairs (taskId,task) and is used to lookup the last known task description for a
given task identifier. T (taskId) evaluates to the instance of the Task ADT associated with
taskId or to �, if no such association exists.

TTCR-C-1 implements the only request of the Task-Tracking Checkpoint/Restart module:
⟨ Tracked ⟩. The predicate is computed by checking whether the local peer is the coordinator
of the given task and whether an associated entry exists in L. If and only if both requirements
are satisfied, the task is tracked by the local peer, and true is returned.

TTCR-C-2 is the most complex handler of the protocol and is executed when an Update
message is delivered. Although not captured explicitly here, an incoming Update message
carrying more than one update (as sent by TTCR-2) is transparently translated into several
Update messages each carrying exactly one update and processed in direct succession.
There are three different possible scenarios:

1. The task is unknown, i.e., it has been newly created or all previous Updates have
been delayed or omitted due to a crash of the emitting peer. In the former case, this
is a result of some peer executing TTCR-0 or TTCR-2.

2. A transferral of the task to another peer has been initiated, which is signaled by some
peer executing TTCR-3.

3. The task should be tracked no longer as it has been completed by some peer resulting
in the execution of TTCR-1.

In all three cases TTCR-C-2 updates the task database accordingly.
If a final location p j ≠ � is specified in an incoming Update(t, pi, p f ) message, the

coordinator checks whether peer p f is still correct by consulting the local membership view.
If not, the task is assumed to be lost and its restoration is scheduled by means of a ⟨
Schedule ⟩ request on the Timer instance. The restoration is not performed immediately
but delayed for a certain period referred to as the restoration timeout, because a transferral
of the task to another peer q could have been initiated just before p f has crashed without
being able to sent the corresponding Update message of TTCR-3 to the coordinator. In case
the task is updated subsequently on q, the restoration is canceled as part of the resulting
repeated invocation of TTCR-C-2. The restoration timeout is an input parameter to the
protocol and should be chosen to be large compared to the average round-trip time of the
largest expected Update message in the underlying network, which can be in the order of
hundreds to thousands of milliseconds in typical area networks spanned by Desktop Grids.
Intuitively, it’s clear that if the updates for a task do not arrive in the order they are

generated, it’s, in general, impossible to track a task’s location while it moves from peer
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Figure 27.1: Scenario where a task is duplicated by COHESION’s Task-Tracking Check-
point/Restart protocol (ti =̂ Task with symbolic identifier i, ti. j =̂ subtask of task Ti, B=̂ Update
message emitted by execution of handler with the given name or Transfer(t) message con-
taining task t, ViewUpdate(p) =̂ ⟨ pgm, ViewUpdate ⟩ indication triggered by departing peer
p).

to peer and its state across intermediate split operations. To avoid that delayed Update
messages override the assignments of previously delivered but later generated ones, TTCR-C-
2 is protected by a guard condition that only accepts Update messages that were generated
more recently than any Update message received so far. Although rejected updates are
discarded this way, we will see in the correctness proof given in Section 27.3 that all necessary
information to track a task is available to the coordinator due to the fact that update
sequences for tasks always match a certain pattern.
The purpose of TTCR-C-3 is to monitor the membership within the task pool’s peer

group. It is triggered when a peer departs either deliberately or by crashing. The protocol
relies on the ⟨ ViewUpdate ⟩ indication emitted by Orbweb’s Peer Group Membership
(PGM) module described in Chapter 15. On receipt of such an indication, the coordinator
consults the task database and schedules the restoration of all tasks that are assumed to be
located on the vanishing peer.

A second scenario where TTCR-C-3 is triggered is when the coordinator receives a Steal
request from some peer p. In that case the coordinator knows, that the PE at p was idle
and that the task queue of p was empty (cf. Chapter 26) at the time the Steal message
has been sent. As above, all tasks that are assumed to be located on p, but are probably
not as of this indication, are scheduled for restoration.
The restoration of a lost task itself is done by TTCR-C-4, the last event handler of the

protocol. It is triggered when the timer, started as part of TTCR-C-2 or TTCR-C-3, expires.
The handler recreates the task from the task description stored in the task database for the
task identifier used previously as the timer token. The task is enqueued with an entirely
new task identifier, and therefore is treated as a different task by the protocol. Additionally,
the substituted task is assigned to the Compensates attribute. As will be explained in
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Chapter 28, this is required for the correctness of the termination detection protocol.

27.2.1 Task Duplication
A characteristic feature of the Task-Tracking Checkpoint/Restart protocol is that tasks may
be duplicated under rare circumstances. Figure 27.1 depicts such a situation where a task
t1.1 is unnecessarily restored: After t1.1 has been split off on peer pi and its transferral to p j
has been initiated by the Load Balancing module, pi crashes before it can send the Update
message generated by TTCR-3 that signals the transferral to the coordinator. Since the last
known location of t1.1 is pi, it is assumed to be lost and its restoration is scheduled. As no
further update is made to t1.1 on p j during the restoration timeout, the restoration is not
canceled in time and finally performed. Consequently, two tasks t1.1 and t′1.1 are present for
the same input.

27.3 Correctness
In this section, we prove that our Protocols 27.2 and 27.3 together actually guarantee the
properties TTCR1-TTCR3 of the Task-Tracking Checkpoint/Restart module.

27.3.1 Eventual Completion
To facilitate the proof of the Eventual Completion property (TTCR1), we first need a
definition of the different states a tracked task can be in:

Definition 27.3.1. A tracked task can be in two states: manifested and lost. It is called
manifested at peer p, when it is currently processed by the PE hosted by p or contained in
the local task queue of p. It is called manifested, if it is manifested at any peer p ∈ P or in
transit on a communication link wrapped in a Transfer message. If a tracked task is not
manifested, it is called lost. A tracked task that has been lost but is manifested again is
called restored.

The proof for TTCR1 consists of three steps: First, we show that an invariant holds for
tracked tasks and the Task-Tracking Checkpoint/Restart Coordination protocol. Using this
invariant, we prove that every tracked task that gets lost is eventually restored. This is
finally used to prove that the Eventual Completion property (TTCR1) is guaranteed.

Lemma 27.3.1. Let View(pc) denote the membership view at peer p as returned by
the ⟨ View ⟩ request of the Peer Group Management module and let Scheduled(token)
denote the scheduling status for the given token as returned by the ⟨ Scheduled ⟩ request
of the Timer module. Then for every tracked task t with id ∶= ID(t) the invariant L(id) =
p∧(p ∈View(pc)∨Scheduled(id)) for some p ∈ P holds.

Proof. We prove the lemma by induction. Let t be a fixed but arbitrary task with id ∶= ID(t).
As t is tracked by assumption L(id) = p must hold for t and some p ∈P. This is obvious from
Definition 27.1.1 and the body of TTCR-C-1. As apart from initialization in TTCR-C-0, L
is set to some value different from � only in the second if-clause of TTCR-C-2, TTCR-C-2
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must have been triggered with u ∶=Update(t, q, p) and arbitrary q. In fact TTCR-C-2
could have been triggered more than once, the last invocation, however, must have been for
u. At that time p was either in the view of pc or not. In both cases L(id) is set to p. Hence,
in case p ∈View(pc), the invariant holds obviously. The same is true for p ∉View(pc),
since in this case ⟨ t, Scheduled ⟩ is invoked for id and consequently Scheduled(id) yields
true.

For the inductive step, we assume that the invariant holds at some arbitrary point in time
for some p ∈ P and show that it still holds after every possible protocol step. TTCR-C-1 is a
handler with read only behavior with respect to L(id) and the Timer instance. Hence, it is
not relevant here. The same is true for TTCR-C-4. For TTCR-C-2, we have to consider
all possible incoming Update(id, pi, p j) messages. The possible combinations for (pi, p j)
are (�,�), (�,q), (q,�) and (q,r) for arbitrary q,r ∈ P. (�,�) is not emitted by any event
handler of our protocols and thus is not relevant. For all other combinations p j ≠ � holds
and hence the invariant holds for the same reasons as in the argument for the induction
basis above.
TTCR-C-3 is triggered either if some peer q leaves the group or a Steal message from

some peer q is delivered. If p ≠ q holds, the execution of TTCR-C-3 is not relevant with
respect to t as L(id) = p holds due to our inductive hypothesis. Hence, we assume p = q. As
L is not modified by TTCR-C-3 our invariant becomes p ∈View(pc)∨Scheduled(id).
If TTCR-C-3 was triggered due to p leaving the group, then for all entries (id, p) ∈L ⟨ t,
Scheduled ⟩ is triggered. As L(id) = p holds due to our inductive hypothesis, this includes
an invocation for t, which results in the predicate Scheduled(id) becoming true. Hence,
the invariant holds. In case TTCR-C-3 was triggered by a Steal message from p, the
validity of the invariant is also not affected. This is true because p ∈View(pc) holds after
the invocation when it held before. The same is true for Scheduled(id). As one of both
conditions held before due to our inductive hypothesis, one still holds after the invocation.

Since both the basis and the inductive step of the induction proof have been performed,
the proposition holds for all tracked tasks and all valid protocol executions. ∎

Next, we show that in case a tracked task is lost, it is eventually restored. To facilitate
this, we first refine Definition 27.3.1 to a more precise statement about the states in which
a tracked task can be.

Lemma 27.3.2. A task t with id ∶= ID(t) is either manifested at exactly one peer, contained
in a Transfer message, or lost.

Proof. This is obvious from the protocols and the fact that a task is restored in TTCR-C-4
under a new identity. ∎

As a corollary to Lemma 27.3.2, we can easily specify the conditions under which a tracked
task is lost.

Corollary 27.3.1. A tracked task can get lost if and only if the peer where it is manifested
crashes or if a Transfer message that contains the task is not delivered at the receiver
due to a link failure.

Proof. Trivially follows from Lemma 27.3.2. ∎
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The next step is to prove that a tracked task that got lost is eventually restored. We do
this by proving the following two lemmas that together say that the restoration happens
under both possible conditions specified by Corollary 27.3.1. Before we start, we give a
definition of idle and busy peers.

Definition 27.3.2. A peer is called idle, if and only if the local PE is not executing a task
and there are no tasks in the local task queue. Otherwise, it is called busy.

Based on this definition, we prove an auxiliary lemma required subsequently.

Lemma 27.3.3. Every correct peer p ∈ P with p ≠ pc that is busy becomes idle eventually.

Proof. As long as p is busy, no new tasks are enqueued to p’s task queue despite those that
are created by splitting1. Remember that load balancing is done by the Abstract Random
Stealing protocol (see Protocol 26.2) through the emission of Steal messages. As can be
seen from ARS-1, no such messages are emitted as long as the task queue is not empty or
the PE is executing some task. This, however, matches the definition of a busy peer. As p
is correct and every input can be processed in finite time, p will become idle eventually. ∎

Now, we can go ahead with the following lemma:

Lemma 27.3.4. A tracked task that got lost due to a crash of the peer where it is manifested
is eventually restored.

Proof. Let q be the crashing peer and t the task with id ∶= ID(t) that got lost. We know
that the invariant from Lemma 27.3.1 holds for some p ∈ P. We have to distinguish between
two cases: q = p and q ≠ p. We handle both of them separately.

q = p: The crash of q eventually results in a ⟨ pgm, ViewUpdate ⟩ indication on pc as
both the superpeer and the coordinator are assumed to be correct. This triggers TTCR-C-3.
Since p crashes, p ∉View(pc) holds. As our invariant must still hold after the execution of
TTCR-C-3, Scheduled(id) must be true. The Update message that was delivered last
on pc and set L(id) = p was the last one generated for that t, because t was manifested
on the crashed peer p. Hence, all Update messages not yet delivered on pc do not trigger
TTCR-C-2 as they are rejected by its guard. As TTCR-C-2 is the only handler that possibly
cancels a scheduled restoration, the scheduled restoration of t is not canceled and t is finally
restored.

q ≠ p: Let U be the possibly empty set of Update messages not delivered on pc when
q crashes. ∣U ∣ is monotonically decreasing over time as t is lost and thus no new Update
messages are generated. Let u denote the Update message that triggers the last invocation
of TTCR-C-2. After this invocation the invariant from Lemma 27.3.1 must still hold for some
r ∈ P. If r has crashed already when u is processed by TTCR-C-2 than Scheduled(id)
must be true, as otherwise the invariant is violated. If r crashes after u is processed by
TTCR-C-2, the restoration of t is scheduled in TTCR-C-3 as L(id) = r due to the invariant
and will never be changed again. If r is correct, it will eventually become idle as of Lemma
27.3.3 and emit Steal messages to random peer group members. Eventually, such a

1 This is not true for the coordinator pc, as on pc tasks may also be created by restoration in TTCR-C-4.
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message will be sent to and delivered on the coordinator. This triggers TTCR-C-3, which
involves the scheduling of the restoration of t. Since u is by assumption the last Update
message triggering TTCR-C-2, the scheduled restoration of t is not canceled and t is finally
restored. ∎

Lemma 27.3.5. A tracked task that got lost due to a Transfer message not being
delivered is eventually restored.

Proof. The proof is almost the same as that for case q ≠ p in the proof of Lemma 27.3.4.
The only difference is that, U is now the possibly empty set of Update messages not
delivered on pc when the critical Transfer message is sent. ∎

Finally, we can give the proof for the desired theorem:

Theorem 27.3.1. Every tracked task or a restored substitute is eventually completed.

Proof. There are exactly three possible types of tracked tasks: Those that get never lost,
those that get finitely often lost, and those that get infinitely often lost. The existence of a
task of the last type, would contradict the proposition. Hence, we show that such a task
can not exist.

The overall work required to solve a task is finite by assumption (cf. Section 25.1). This
is true for a root task as well. The coordinator pc is assumed to be correct and hence, makes
steady progress. Thus, a tracked task that is never lost must be eventually completed.
A task that is finitely often lost is restored every time it got lost as of Lemmas 27.3.4

and 27.3.5 as a substitute. After it got lost the last time, it never gets lost again and hence
becomes a task of the first type.
Now assume that there is a task t that gets lost an infinite number of times. After a

sufficiently long period of time, a substitute for t must be the last task since all the others
are tasks of the first two types and are therefore eventually completed. According to Lemmas
27.3.4 and 27.3.5 and TTCR-C-4, t or one of its substitutes is restored on the coordinator
every time it gets lost. Let s be the substitute created by the last restoration after there are
no other tasks left. Since s is the last task, the PE of pc must be idle and hence starts to
process t. As pc is assumed to be correct, t is eventually completed and thus can not be
lost again. This is a contradiction to the assumption that t gets lost an infinite number of
times. Hence, there is no task that can get lost an infinite number of times. As the other
types of tasks are all eventually completed the proposition follows.

∎

27.3.2 Safe Split
To facilitate the proof of the Safe Split property (TTCR2), we first need to prove two
properties that hold for all possible sequences of Update messages for a task after a split
has been performed. For reasons of brevity, we subsequently refer to Update messages as
updates. The properties are defined by the following Lemmas 27.3.6 and 27.3.7. For both,
we assume a sequence U = u1, . . . ,un of updates. This sequence describes the generation
order of the updates for a task generated across the peers in P during the distributed
computation. Such a sequence exists and is unique for every task due to Lemma 27.3.2.
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Lemma 27.3.6. Let U = u1, . . . ,ui, . . . ,un be the sequence of updates generated for task
t. If ui is generated due to a split operation by TTCR-2 on peer p, then all subsequently
generated uk with k > i must be generated on p and be due to t being split again or
completed.

Proof. Since ui is generated due to a split operation by TTCR-2 on p, t must be currently
processed by the PE at p. Otherwise, it could not have been the target of a split operation.
Obviously, t must have been created previously and can be created only once. Furthermore,
t can not be migrated after a split as this is possible for tasks in the task queue only. Hence,
all updates generated for t subsequently must be generated on p and either be due to
another split or the completion of t. ∎

Lemma 27.3.7. If the conditions of Lemma 27.3.6 hold, then if ui is omitted (never
delivered at pc), then then all uk with k > i are omitted.

Proof. As of Lemma 27.3.6 all updates uk with k ≥ i are sent by the same peer p. This
means that they are sent using the same FIFO-Order Perfect Link provided by Orbweb.
These, however, guarantee as of Lemma 16.4.4 that if the Update message ui is sent before
another one uk with k > i, uk is not delivered before ui. As ui is never delivered by assumption,
uk is also never delivered. ∎

This property can be used to prove the Safe Split property (TTCR2) of our Task-Tracking
Checkpoint/Restart protocol.

Theorem 27.3.2. If a tracked task t is split, updating I(t) to I′ and creating a new task
t∗ due to an invocation of TTCR-2 and the split operation *(I(t)) = (I′,I∗), then either t
remains tracked and no newer updates for t arrive, or t and t∗ are tracked with I(t) = I′ and
I(t∗) = I∗, and I′ and I∗ together subsume I(t).

Proof. As can be seen from TTCR-2, the updates for both split products are sent using a
single Update message. Due to the Atomic Delivery property (PGM3) of the PGM module
(see Module 15.1), either both updates are delivered on the coordinator or none of them. In
the former case, both updates are processed immediately after each other due to the FIFO
processing order of our event handlers (cf. Chapter B). Thus, t and t∗ are tracked with
I (t) = I′ and I (t∗) = I∗ after the second update has been processed. The subsumption of
I (t) by I′ and I∗ follows directly from using the split operator to create the inputs for t
and t∗. If the Update message is omitted, then t is tracked, as it was tracked before by
assumption. Due to Lemma 27.3.7 no further updates are delivered for t. As the proposition
holds in both possible cases, the proposition holds in general. ∎

27.3.3 Eventual Subsumption
We first look at the sequence of updates as they are generated while a task runs through its
lifecycle.

Lemma 27.3.8. The sequence of generated updates U (as defined above) for any tracked
task always matches the EBNF [Ebn96] pattern Cr,{M} ,{S} ,[Cp]. Where Cr (Create)
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denotes an update generated by TTCR-0 or by TTCR-2 for the split off task, M (Migrate)
denotes an update generated by TTCR-3, S (Split) denotes an update generated by TTCR-2
for the donator task, and Cp (Completed) denotes an update generated by TTCR-1.
Proof. The first step for any task t is always its creation as the root task of a job or due
to a split. After that t can be optionally migrated any number of times until it is fetched
from some task queue by a PE. From that point on t can not migrate any more because
only tasks in a task queue can be migrated. Hence, t is subsequently either completed or
subjected to a split operation. According to Lemma 27.3.6, t can subsequently only be split
again or completed in the latter case. Between each of these steps t can get lost due to a
crashing peer or an omitted Transfer message. As all parts of the pattern except Cr are
optional the resulting sequence matches the pattern as well. ∎

Lemma 27.3.8 makes a statement about the flow sequence of updates as they are
generated. However, as has been explained in the protocol description in the previous
section, the order of delivery of updates for the same task from different peers on the
coordinator is arbitrary. Despite this fact, the following lemma holds:
Lemma 27.3.9. For every tracked task t with id ∶= ID(t), the sequence of assignments to
T (id) is a prefix of the path in the decomposition tree from t’s creation until it gets lost or
is completed.
Proof. We have to distinguish two cases: no split happens or at least one split happens.

In case no split happens, only creation, migration, and completion updates are generated.
Although, T (id) may be assigned by each of them, it is never assigned to a different value
than it has been assigned to before. Hence, the proposition holds trivially.

In case at least one split is performed on t, the situation is more complex. Now all types
of updates may occur. However, the order of arrival at pc of split and completion updates
among each other is the same as the order in which they are generated. This is due to the
fact that all of them are generated on the same peer according to Lemma 27.3.6 and the
FIFO ordering guaranteed by the FIFO-Order Perfect Links used to transmit them. The
creation and migration updates, in contrast, may be generated on other peers and hence
may arrive in any order, in particular in between subsequent split updates or between a split
and the completion update. However, as their update counter is smaller than that of all
split updates and the completion update because they have been created earlier, they do not
trigger TTCR-C-2 due the guard of that handler that filters out all updates older than the
newest received. Hence, the order in which the updates are applied is given by the EBNF
rule [Cr] ,{M} ,{S} ,[Cp]. Up to the first split update T (id) is set to the input assigned
on creation of the task. As the split updates are applied in order and the completion update
does not modify the assignment, T (id) is successively set to the inputs along the respective
path in the decomposition tree. Hence, the proposition holds. ∎

Using this lemma, we can prove the next lemma. It guarantees that if a tracked task is
lost, it is restored in a way such that at least the input space covered by the lost task is
covered by the restored task.
Lemma 27.3.10. A tracked task t that got lost is restored as a new task with an input
that subsumes the input of t at the time t got lost.
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Proof. The restoration of t is guaranteed by Lemmas 27.3.4 and 27.3.5. As of Lemma 27.3.9
t is restored by TTCR-C-4 with an input from the prefix of the path in the decomposition
tree from t’s creation until it got lost. Such an input, however, subsumes the input of t due
to the properties of the split operator (see Section 25.1). ∎

Now, we need to extend this result to arbitrary executions that include all kinds of updates
that a task can undergo, in particular split operations.

Lemma 27.3.11. If a tasked t is tracked with input i = I(t) at time τ , then a set of tasks
T = {t1, . . . ,tn} with inputs I = {I (t1) , . . . , . . . ,I (tn)} exists starting from some point in time
τ ′ ≥ τ such that every t ∈ T is tracked or completed and the inputs I collectively subsume i.

Proof. We show this by induction. The proposition holds trivially at time τ, since I(t)
always subsumes itself. For the inductive step, we assume that the proposition holds at
some time τ ′ ≥ τ ′′ ≥ τ and show that it still holds after every possible event that happens
next. Let t′ ∈ T be the task with id ∶= ID(t′) that is affected by this event. The possible
events are a migration of t′, t′ is subject of a split, t′ is completed, or t′ gets lost. As we
have seen at the end of the proof of Lemma 27.3.9, a migration of t′ never changes T (id).
Hence, the proposition still holds after a migration. As can be seen from TTCR-C-2, the
same is true for the completion of t′, since T (id) is not assigned in this case. For splits and
lost tasks the proposition holds due to Theorem 27.3.2 and Lemma 27.3.10, respectively.
Hence, the proposition holds for every possible event. By mathematical induction, we can
conclude that the proposition holds starting from some point in time τ ′ ≥ τ . ∎

Finally, we can give the proof that our protocols satisfy the Eventual Subsumption property
(TTCR3) of the Task-Tracking Checkpoint/Restart module.

Theorem 27.3.3. If a task t is tracked with input i = I(t), eventually a set of tasks
T = {t1, . . . ,tn} with inputs I = {I (t1) , . . . , . . . ,I (tn)} is completed such that the inputs I
collectively subsume i.

Proof. By premise, t is tracked. Hence, Lemma 27.3.11 applies. As all tracked tasks or
their restored equivalents are eventually completed due to Lemma 27.3.1 and the input of
every restored substitute as of Lemma 27.3.10 subsumes the input of the original task when
it got lost, the proposition follows. ∎

27.4 Optimizations
The basic Task-Tracking Checkpoint/Restart protocol described in Section 27.2 ensures
due to property TTCR3 that all work that has to be done to complete a job is eventually
done. However, certain aspects are not optimal with respect to efficiency and scalability.
This includes the amount of work performed twice in case a task is lost and the amount of
information to be exchanged with the coordinator peer. In the following, we propose three
simple optimizations to improve the basic protocol in these regards.
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Protocol 27.4 Cohesion’s Task-Tracking Checkpoint/Restart protocol with False Positive
Reduction
Extends:

Task-Tracking Checkpoint/Restart with Coordination with False Positive Reduction, instance
ttcr-c-fpr.

upon event ⟨ pgm, ViewUpdate | p, state ⟩ such that state = Left or upon event ⟨ pgm,
Deliver | p, Steal[] ⟩ do ▷ TTCR-C-FPR-0

for each (taskId, l) ∈L ∶ l = p do
trigger ⟨ pgm, Groupcast | Locate[taskId] ⟩;
trigger ⟨ t, Schedule | timeout, taskId ⟩;

upon event ⟨ pgm, Deliver | Locate[taskId] ⟩ do ▷ TTCR-C-FPR-1
call ⟨ pe, Executing | te ⟩;
call ⟨ tq, Lookup | taskId, tl ⟩;
if ID(te) = taskId∨ tl ≠ � then

task = if tl ≠ � then tl else te;
pc ∶=Coordinator(task);
trigger ⟨ pgm, Unicast | pc, Update[task, pgm.localPeerId, pgm.localPeerId] ⟩;

27.4.1 False Positive Reduction
As discussed in the description of the basic protocol in Section 27.2.1, tasks are potentially
restored although they have never been lost. Depending on how often these false positives
occur, the associated excess computation may be significant. To reduce the probability
of their occurence, the coordinator additionally groupcasts a Locate message as part of
TTCR-C-FPR-0 in the optimized protocol shown in Protocol 27.4. TTCR-C-FPR-0 replaces
TTCR-C-3 of the basic protocol. If the task is present in the task queue or is in execution
at the PE of a peer p that delivers the Locate message, p responds with a corresponding
Update message (TTCR-C-FPR-1). On receipt of that message, the coordinator is able to
update the location of the supposedly lost task and cancels its restoration (TTCR-C-2). If
no peer responds until the restoration timer expires, the coordinator assumes that the task
is actually lost and restores it.

27.4.2 Periodic Checkpointing
Checkpointing is a technique to limit the impact of a system failure by storing a snapshot
of the state of a computation, and using that snapshot to restore the execution state in
case of failure.

Cohesion applies checkpointing on the task level. Note that checkpoints are implicitly
created by our basic protocol whenever a task is split. However, the impact on performance
can be high, when a task, that has been processed for a long time without being split,
gets lost due to a crash of the hosting peer. To limit the damage in such situations,
Cohesion creates additional checkpoints periodically. Protocol 27.5 shows the pseudo
code for this optimization. TTCR-C-PC-1 is triggered periodically. It creates a checkpoint c
of the task t currently executed by the local PE and stores it in C as a pair (ID(t) ,c), if
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Protocol 27.5 Cohesion’s Task-Tracking Checkpoint/Restart protocol with Periodic
Checkpointing
Extends:

Task-Tracking Checkpoint/Restart with Coordination with Periodic Checkpointing, instance
ttcr-c-pc with checkpoint period.

upon event ⟨ ttcr-c-pc, Init | period ⟩ do ▷ TTCR-C-PC-0
C ∶=∅;
trigger ⟨ t, Schedule | period, ’CHECKPOINT’ ⟩;

upon event ⟨ t, Elapsed | ’CHECKPOINT’ ⟩ do ▷ TTCR-C-PC-1
call ⟨ pe, Executing | t ⟩;
if t ≠ � then

call ⟨ pe, Checkpoint | c ⟩;
id ∶= ID(t);
if c ≠ C (id) then
C (id) ∶= c;
pc ∶=Coordinator(task);
trigger ⟨ pgm, Unicast | pc, Update[t, pgm.localPeerId, pgm.localPeerId] ⟩;

trigger ⟨ t, Schedule | period, ’CHECKPOINT’ ⟩;

upon event ⟨ t, Elapsed | taskId ⟩ do ▷ TTCR-C-PC-2
task ∶= T (taskId);
ID(task) ∶= (π1 (ID(task)) ,PUID());
Input(task) ∶= C (taskId);
trigger ⟨ tq, Enqueue | task ⟩;

progress has been made compared to the previous checkpoint or if no checkpoint has been
created previously. The task is updated accordingly and sent as an Update message to the
coordinator. This way, only the work performed after the creation of the last checkpoint has
to be repeated in case the task gets lost and is restored by TTCR-C-PC-2 (that replaces
TTCR-C-4 of the basic protocol) subsequently.

The correctness of the basic protocol is not affected by this optimization, as the creation
of a checkpoint is conceptually the same as a split operation, where the input of the donator
task is replaced with an input that subsumes the previous input and the split off task does
nothing.

27.4.3 Differential Updates
The actual structure of Update messages is omitted from the Protocols 27.2 and 27.3
for reasons of simplicity. For certain kinds of problems – including SAT solving and other
search problems – updates need not to carry the full input, but only the delta to the input
of the parent task in the decomposition tree (or to the last checkpoint, if the Periodic
Checkpointing optimization is applied). We refer to this optimization as differential updates .
Figure 27.2 compares the resulting data flows for a centralized task pool on the one hand,
and for Cohesion’s distributed task pool on the other hand. Thanks to differential updates,
the bulk of data is transferred in a Peer-to-Peer fashion between the transfer partners when
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∆Ti,i.j=Ti.j -Ti
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pk pl

Ti.j

(a) Centralized task pool
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(b) Decentralized task pool

Figure 27.2: Comparison of the data flow in case of a split operation for task Ti on peer pk
with subsequent transferral of the split off task Ti. j to another peer pl for a centralized task
pool with implicit fault-tolerance (all communication including task transferals is relayed
by the coordinator) on the left and COHESION’s distributed task pool with its Task-Tracking
Checkpoint/Restart protocol and the Differential Update optimization on the right side (∆Ti,i. j

denotes the delta between the inputs for tasks Ti and Ti. j).

a split off task is migrated to another peer. The overhead of taking the indirection over the
coordinator is eliminated.
Differential updates are feasible due to the fact that all split operations for a task

are performed on the same peer (see Lemma 27.3.6). As Update messages are sent
over Orbweb’s FIFO-Order Perfect Links, the Update messages generated by these split
operations are delivered in FIFO order on the coordinator. Hence, the inputs of the split
products can always be reconstructed from the incremental task descriptions carried by the
differential updates.



28 Termination Detection
The problem of distributed termination detection was independently introduced by Dijkstra
et al. [DS80] and Francez [Fra80] in 1980. Due to its theoretical and practical importance
the problem has received a lot of attention since then. In asynchronous distributed systems
with message-based communication the detection of termination is a non-trivial problem
as there is neither global time nor full knowledge of the global state available. However,
termination detection is a simpler problem than distributed consensus. This is due to the fact
that termination is a persistent property of the global system state, i.e., once termination is
reached the property will never change again [Mat87].
The meaning of the term distributed termination is inseparably linked to the way a

computation is performed. The latter is called a computational model. The canonical
computational model used throughout the literature on termination detection is called the
Diffusing Computation Model (DCM). Using the basic abstractions of Chapter 25 and the
Orbweb abstractions of Part V, the model can be described as follows: Let G be a peer
group with members P. Every peer p ∈ P is either active, i.e., at least one local PE is
executing some task and/or the local task queue is not empty, or passive otherwise. Active
peers can become passive at any time by completing the last task that is available locally.
Active peers can send Transfer messages containing a task in response to load balancing
requests. A passive peer can only become active when it receives such a message. The
computation is initiated by the coordinator peer. With this computation model distributed
termination is defined as follows:

Definition 28.0.1. A distributed computation is terminated, if and only if every member
of G is passive and no potentially activating Transfer messages are in transit.

Many protocols have been proposed for termination detection under the DCM. The
two most important classes are parental responsibility and wave-based algorithms. The
former detect termination by establishing a tree over the set of participating processes that
reflects the order of activation. They use a computation model that is slightly different
from the DCM as a peer is allowed to become passive only, if all its child peers are passive.
Termination is detected, when the root of the tree becomes passive. Wave-based algorithms
take a different approach. They periodically propagate waves of control messages throughout
the network to collect information about the global state of the system.
Many algorithms from both of these classes make restrictive assumptions about the

distributed system model. Only more recent algorithms are applicable for communication
models where messages may arrive out-of-order or may be delayed for arbitrary but finite time
[DIR97, Stu02, MVP04, XL96]. Another common restriction is that dynamic environments
in which processes are created and destroyed throughout the computation are not fully
supported: Some are designed for environments where processes may be created but not

225
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Module 28.1 Interface of the Termination Detection module
Module:

Name: Termination Detection, instance td.
Indications:

⟨ td, Announce | id ⟩: The job identified by id has been completed.
Properties:

TD1: Accurate Detection: A job is detected as completed, if and only if a set of tasks
T = {t1, . . . ,tn} with inputs I = {I(t1) , . . . ,I(tn)} have been completed such that the inputs I
collectively subsume the input I(t) of the root task.

destroyed [CL82, DS80, MC82]. Others require a process to participate in the termination
detection protocol after it has been destroyed [Lai86].
We do not go into the details of existing protocols for the DCM. For a comprehensive

overview see [MC98, DTE07]. Considering the fact that Cohesion’s Task-Tracking Check-
point/Restart protocol duplicates tasks under certain circumstances, the associated definition
of termination as defined above is, despite being applicable, not optimal. This is due to the
fact that a corresponding termination detection algorithm announces termination only after
each and every task created throughout the computation is either lost or completed, which
may include any number of restored tasks whose execution is unnecessary, since they are
subsumed by tasks that have been completed before. To avoid this inefficiency, we use a
different notion of distributed termination that is precisely aligned with the abstractions and
properties of our task pool implementation:

Definition 28.0.2. A job with root task t is completed, if and only if a set of tasks
T = {t1, . . . ,tn} with inputs I = {I(t1) , . . . ,I(tn)} has been completed such that the inputs I
collectively subsume the input I(t) of the root task.

Module 28.1 defines the interface and properties of Cohesion’s Termination Detection
module. One might expect that such a module would feature a request to initiate the
detection process for a job to be called when it is submitted to the task pool. However,
this happens automatically in the task pool implementation of Cohesion by listening for ⟨
tq, Enqueue ⟩ indications for root tasks. Hence, no such request is provided. ⟨ Announce
⟩ is triggered when the completion of a job with the given identifier has been detected.
Besides this indication, the module definition includes a single property called Accurate
Detection (TD1) that reflects our definition of distributed termination. We will show that
our implementation satisfies this property in Section 28.2.3.

28.1 Mattern’s Credit/Recovery Algorithm
The Credit/Recovery termination detection algorithm devised by Mattern [Mat89] is ap-
plicable for asynchronous systems and fully supports dynamic environments. Applied to
the task pool execution model, the basic operating principle of the algorithm is as follows:
Every task t is associated with a certain credit share C(t) ∈ (0,1] ⊂R. Whenever a new
task is created by splitting, half of the donator’s credit share is subducted and assigned to
the split off task. On completion of a task, its associated credit share is sent back to the
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coordinator peer. When the accumulated credit at the coordinator equals the initial credit
that was given to the root task (usually 1), the distributed computation has terminated. A
fundamental property of the algorithm is that, with T denoting the set of tasks created so
far and C0 being the credit assigned to the initial task, the following invariant holds at all
times:

∑
ti∈T

C(ti) =C0. (28.1)

Even though Mattern’s algorithm has many benefits including conceptual simplicity and low
requirements on the distributed system model, we can not use it in its original formulation,
as it is not resilient to credit duplication: If a task has been duplicated, both the original
task and its duplicate carry the same credit share. Hence, the above invariant is violated
and termination would be detected wrongly, as soon as one of both was completed (see
Figure 28.1a). Thus, the algorithm is not compatible with Cohesion’s Task-Tracking
Checkpoint/Restart protocol. This inadequacy is a direct consequence of using scalar values
as credit shares and can be remedied easily as described in the following section.

28.2 Spectra Termination Detection
To retrofit Mattern’s algorithm with resilience to task duplication, we conceived a variant
called Spectra1 that uses real intervals [a,b) ⊂ R as credit shares instead of real values.
A credit share is referred to as spectrum (pl. spectra) in the following. As illustrated in
Figure 28.1b – a proof of correctness is given in Section 28.2.3 –, the effect of premature
termination announcement caused by credit share duplication can not occur with Spectra.

28.2.1 Protocol Description
Spectra is shown in Protocol 28.2. Every peer p ∈ P is supposed to run an instance of it.
Note that the protocol framework of Mattern remains unchanged in principle.

⟨ Init ⟩ (STD-0) is triggered by the environment and initializes the relations S and C to
the empty set. S is used to track the spectra for a job. It contains pairs ( jobId,{s1, . . . ,sn}).
Each such pair associates the identifier of a job with the set of spectra si,1 < i < n received
so far for that job. S( jobId) is assumed to return the associated set or � in case no such
association exists. The role of C and all parts of the protocol that deal with it, will be
discussed below and should be ignored for now.
STD-1 is triggered when a root task t is enqueued to the local task queue. As will be

shown in Chapter 29, this happens when a job is submitted to the task pool. The body of
the handler sets the protocol-specific Spectrum attribute of t to the initial spectrum of
[0,1), which is the counterpart to the initial credit in Mattern’s algorithm.

1 As the credit algorithm is also known under the alias fixed energy termination detection algorithm
and a collection of energy levels is called a spectrum in physics, we refer to our variant as the spectra
termination detection algorithm.
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Protocol 28.2 Spectra Termination Detection
Implements:

Termination Detection, instance std.

Uses:
Peer Group Management, instance pgm.
Processing Element, instance pe.
Task Queue, instance tq.

upon event ⟨ std, Init ⟩ do ▷ STD-0
S ∶=∅;
C ∶=∅;

upon event ⟨ tq, Enqueue | task ⟩ such that isRoot(task) do ▷ STD-1
Spectrum(task) ∶= [0,1);
if (c ∶=Compensates(task)) ≠ � then
C (π1 (ID(task))) ∶= (π1 (ID(c)) ,Spectrum(c));

upon event ⟨ pe, Completed | task ⟩ do ▷ STD-2
pc ∶=Coordinator(task);
trigger ⟨ pgm, Unicast | pc, Recover[π1 (ID(task)), Spectrum(task)] ⟩;

upon event ⟨ tq, Split | donator, task ⟩ do ▷ STD-3
[a,b) ∶= Spectrum(donator);
m ∶= a+ b−a

2 ;
Spectrum(donator) ∶= [a,m);
Spectrum(task) ∶= [m,b);

upon event ⟨ pgm, Deliver | Recover[ jobId, spectrum] ⟩ do ▷ STD-4
S ( jobId) ∶=(if (s ∶= S ( jobId)) ≠ � then s else ∅)∪ spectrum;
Compactify(S ( jobId));
if S ( jobId) ≡ {[0,1)} then

if (c ∶= C ( jobId)) ≠ � then
trigger ⟨ pgm, Unicast | pgm.localPeerId, Recover[π1 (c), π2 (c)] ⟩;

else
trigger ⟨ td, Announce | jobId ⟩;

When a task t is completed by the PE, STD-2 is triggered. Wrapped up in a Recover
message, the handler sends the spectrum associated with t and the job identifier for t to the
coordinator. The job identifier is extracted from the task identifier pair using the projection
operator π (cf. Section 25.1 and page 115).
Whenever a task is split, STD-3 dissects the spectrum associated with the donator task

into two halves and assigns each of them to one of the split products.
Finally, STD-4 is responsible for checking whether a job has been completed whenever a

Recover message is delivered. For this purpose, the received spectrum is first added to the
set of spectra s ∶= S ( jobId) for the affected job with identifier jobId. After that, a call to
Compactify condenses s by recursively replacing adjacent spectra [a,b) and [b,c) in s
with [a,c) until a fix point is reached. If the resulting set contains a single spectrum only
and that spectrum is equal to the initial spectrum [0,1), the job has been completed and
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the ⟨ Announce ⟩ indication is triggered.
Now, let’s come back to C: If the Task-Tracking Checkpoint/Restart protocol would

restore tasks in TTCR-C-4 of Protocol 27.3 naively as part of the same job, the termination
detection algorithm described so far would not be correct. To understand why this is
the case, consider the following example: Assume a job with a root task whose input
is a list (1,2,3,4). Assume further that the task ((4) ,[0,0.5)), where the first element
of the tuple is the input of the task and the second element is the associated spectrum,
has been completed already and another one u = ((1,2,3) ,[0.5,1)) is manifested but not
completed. Finally, assume that u has been considered wrongly as lost by the coordinator
and has been restored as task v. v inherits the spectrum from u. If u and v are both
split subsequently creating the split products u′ = ((1) ,[0.5,0.75)), u′′ = ((2,3) ,[0.75,1)),
v′ = ((1,2) ,[0.5,0.75)) and v′′ = ((3) ,[0.75,1)), the completion of u′ and v′′ would result
in the announcement of termination although the job is not completed as the input of the
root task is not subsumed.
To avoid this problem, TTCR-C-4 restores a task as a new job whose spectra will be

tracked independently. In the following, such a job will be referred to as a child of the job
the substituted task belongs to. When a child job is completed, the spectrum inherited
from the substituted task is attributed as a whole to the parent job. Thus, the problem
described above can not occur. C is used to track the parent/child relationships between
jobs. It contains pairs (idc,(idp,s)). Each such pair associates the identifier idc of a child
job with a pair consisting of the identifier idp of the parent job and the spectrum s assigned
to the substituted task. C ( jobId) returns the associated pair or � if no such association
exists. Entries of C are created in STD-1, if the Compensates attribute of the enqueued
task has been set in TTCR-C-4 of the Task-Tracking Checkpoint/Restart protocol. These
entries are used in STD-4 to send the spectrum associated with a job to its parent job.

28.2.2 Spectra Encoding
Cohesion’s implementation of the Spectra protocol uses Java’s arbitrary-precision signed
decimal numbers1, to represent the interval boundaries of spectra. Since these boundaries
are always sums of reciprocals of powers of 2, the memory consumption per boundary at
depth k of the decomposition tree is k bits. For comparison, the credit shares of Mattern’s
Credit/Recovery algorithm are plain reciprocals of powers of 2 and thus can be represented
by a single integer consuming ⌈log2 (k)⌉ bits only. During our experiments the depth of the
decomposition tree has been in the order of tens. Thus, the space overhead that a spectrum
added to Transfer and Update messages has never been significant.

28.2.3 Correctness
To prove the correctness of the Spectra protocol, we have to show that it satisfies the Accurate
Detection property (TP1) of the Termination Detection module. As the announcement of

1 implemented by the BigDecimal class in the java.lang package
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the completion of a job with job identifier id translates to the condition S (id) ≡ {[0,1)} for
Spectra, TP1 can be formulated as

Theorem 28.2.1. If the root task of a job with job identifier id and input Ir is enqueued
to the task queue at any peer p ∈ P, the condition S (id) ≡ {[0,1)} holds, if and only if a
set of tasks T = {t1, . . . ,tn} with inputs I = {I(t1) , . . . ,I(tn)} have been completed such that
the inputs I collectively subsume Ir.

Proof. „⇒“ (Safety): We first assume that no task is restored by the Task-Tracking
Checkpoint/Restart protocol. All spectra created throughout the computation are mutually
disjunctive. This can be easily shown by induction using the fact that a split operation
creates disjunctive spectra in STD-3. As no tasks are restored by assumption, the mapping
between the set of spectra and the inputs in the leaf set L of the decomposition tree is
a bijection. If no task for input i from L is completed, the associated spectrum s is not
delivered at the coordinator. Together with the fact that all spectra are mutually disjunctive,
it follows that s is missing from S (id), so S (id) ≠ {[0,1)}. This is a contradiction to the
premise that S (id) ≡ {[0,1)} holds. Therefore, all inputs must have been completed and Ir
is subsumed.

Now, we drop the restriction that no tasks are restored and assume that Ir is not subsumed.
Due to the latter, a task t with input i from L must have been lost for which I∪ i subsumes
Ir holds. Due to our premise S (id) ≡ {[0,1)}, some spectrum s with s ⊇ Spectrum(t)
must have been delivered on the coordinator instead. Due to the way spectra are propagated
by split operations, s can only come from a task with the same input or an ancestor of this
input in the decomposition tree. As the split operator guarantees that an input is subsumed
by both itself and any ancestor, i was subsumed. This, however, is a contradiction to the
assumption that Ir is not subsumed. Hence, the conclusion holds.
„⇐“ (Liveness): The split of inputs and the decomposition of spectra are interlocked

in the sense that whenever the one happens, the other happens as well. If we restrict our
reasoning to the case that no tasks are restored, the resulting mapping between the set of all
generated inputs and that of all generated spectra is a bijection. All inputs i ∈ I are mutually
disjunctive due to our assumption that no task is restored and due to the requirement on
the split operator that the created subproblems are disjunct. According to our premise, Ir is
subsumed by the inputs in I. Thus, all generated tasks must have been completed. Due to
the one-to-one correspondence between tasks and spectra, all generated spectra must have
been recovered and their union is [0,1).

Now, we drop the restriction that no tasks are restored. A direct consequence of Lemma
27.3.10 and the fact that the split operator creates disjunctive inputs is that a lost task
t with input i is restored as a task t′ with either the same input i or an input from an
ancestor of i in the decomposition tree. Due to the way spectra are distributed along the
paths of the decomposition tree, this translates into Spectrum(t) ⊆ Spectrum(t′).
If t′ is completed, Spectrum(t′) is delivered at the coordinator. Spectrum(t) ∪
⋃u≠t Spectrum(u)= [0,1) held before t was lost and with Spectrum(t)⊆Spectrum(t′)
becomes Spectrum(t′)∪⋃u≠t Spectrum(u) = [0,1) after t has been restored as t′. If t′

is not completed, it got lost and is restored again as t′′ due to Lemmas 27.3.4 and 27.3.5. In
this case the above argument can be applied again for t′ and t′′. This chain can be repeated
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until the restored task is completed. Hence, the conclusion holds as well in the case that
tasks are restored. ∎



29 Task Pool Implementation
With the modules and protocols described in Chapters 25-28, the implementation of a
task pool, as specified by Module 24.1, becomes almost trivial. As shown in Protocol
29.1, Cohesion’s implementation makes use of instances of the Task Queue module, the
Processing Element module, one of the load balancing protocols described in Chapter 26,
the Task-Tracking Checkpoint/Restart protocol, and the Spectra termination detection
protocol. Note that most of the coordination work is done under the hood by having these
modules listen to each others’ indications and using each others’ requests.
The initialization handler, DTP-0, is triggered by the environment. It’s only purpose is

to initialize the relation J to the empty set. J is used to store job definitions during the
time they are processed by the task pool and is therefore referred to as the job database.
It contains pairs ( jobId, job). Each such pair associates the identifier of a job jobId with
the job itself. J ( jobId) is assumed to return the associated job or � in case no such
association exists.
DTP-1 is triggered when a job is submitted to the task pool. First, a job identifier is

created and used as the task identifier for the root task that is extracted from the Job ADT
instance using the Task attribute. Before the root task is enqueued to the local task queue,
the job is stored in the job database.

Protocol 29.1 Distributed Task Pool protocol
Implements:

Task Pool, instance dtp.

Uses:
Task Queue, instance tq.
Processing Element, instance pe.
Load Balancing, instance lb.
Task-Tracking Checkpoint/Restart, instance ttcr.
Spectra Termination Detection, instance std.

upon event ⟨ dtp, Init ⟩ do ▷ DTP-0
J ∶=∅;

upon event ⟨ dtp, Submit | job ⟩ do ▷ DTP-1
t ∶=Task( job);
ID(t) ∶= ( jobId ∶= PUID(),�);
J ( jobId) ∶= job;
trigger ⟨ tq, Enqueue | t ⟩;

upon event ⟨ std, Announce | jobId ⟩ do ▷ DTP-2
trigger ⟨ dtp, Completed | J ( jobId) ⟩;
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When the completion of a job is announced by the termination detection protocol using
the ⟨ Announce ⟩ indication, DTP-2 simply translates the indication into a ⟨ Completed ⟩
indication. For this purpose, the provided job identifier is resolved into the submitted job
instance using the job database.
The fact that property TP1 of the Task Pool module is actually guaranteed by the

above implementation follows directly from property TTCR3 of the Task-Tracking Check-
point/Restart module and property TD1 of the Termination Detection module, which both
have been proven to be satisfied by our protocols.



30 Performance Evaluation
To substantiate the efficiency of Cohesion’s distributed task pool in highly demanding
Desktop Grid environments, we conducted a performance study on a heterogeneous Desktop
Grid. Scalability and performance of the task pool are proven in the presence of volatility
and faults by means of a synthetic benchmark application that mimics the characteristics
of ISPs. Before the results of the evaluation are presented in Section 30.2, the evaluation
methodology and the testbed setup are described in the following section.

30.1 Methodology and Testbed Setup
We conducted our evaluation on a dedicated testbed consisting of 40 hosts distributed
over three firewalled Fast Ethernet Local Area Networks (100 Mbit/s nominal bandwidth)
connected by a campus network as depicted in Figure 30.1. The hard- and software setup is
summarized in Table 30.1. All hosts run up to four Cohesion peers in parallel and a single
machine is configured to additionally serve as an Orbweb superpeer. For experiments with

Type Hardware Software RAPI1
CPU Memory OS Kernel

I AMD®Athlon™64 X2 3GB Linux 2.6.22-14 0.54
2 Cores @ 2.4GHz (generic)
512KB Cache / Core

II Intel®Xeon™ 2GB Linux 2.6.22-9 0.29
2 Processors @ 2.67GHz
512KB Cache / Processor

III Intel®Pentium™D 2GB Linux 2.6.23 0.51
2 Cores @ 3.40GHz (gentoo-r8)
2048KB Cache / Core

IV Intel®Core™2 Q6600 8GB Linux 2.6.22-14 1.0
4 Cores @ 2.40GHz (server)
2048KB Cache / Core

Table 30.1: Hardware and software configuration of the hosts of our testbed. We define the Rel-
ative Application Performance Index (RAPI) as RAPI(p;I) ∶= (1/ ∣I∣)∑i∈I TSeq(pre f ,i)/TSeq(p,i),
where I is a representative subset of the SAT benchmark instances used in Section 37, TSeq(p,i)
is the sequential runtime of instance i on host p and pre f is the fastest host (Type IV).

1 The RAPI is relevant to the performance evaluation of Satciety in Chapter 37 only.
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Campus 
Network

Computer Lab
(20 Type III Nodes)

Department Hosts
(3 Type I Node)

Compute Cluster
(16 Type II Nodes)

Orbweb Superpeer
(1 Type IV Node)

Node Network Router Firewall

Figure 30.1: Testbed Desktop Grid spanning 40 nodes and three networks

more than 40 peers, the additional peers are scattered over all hosts to distribute load fairly,
i.e., for a setup with 120 peers each host runs three peers. All peers were run on Sun JRE
v1.6.0_12 JVMs. Evaluation runs were repeated several times (30 times for the distributed
task pool, ten times for provisioning). The presented confidence intervals are based on a
95% confidence level.

30.1.1 Benchmark Description
In principal, we could have performed our evaluation by means of Satciety, the distributed
SAT solver realized on top of Cohesion described in Part VIII. However, the performance
of parallel SAT solvers is heavily influenced by algorithmic effects like work-anomalies
[Blo06] and superlinear speedups (see Appendix A). To get a clear understanding of the
potential and limits of our distributed task pool, we assess its performance using a synthetic
benchmark that is not subject to these effects while still reflecting the characteristics of
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Figure 30.2: Probability density (pdf) and cumulative distribution (cdf) functions for the log-
normal session time distribution for µ = 7.6 and σ = 2.2 (note the logarithmic scale of the x-axis)
after Wolski et al. [WNB07]

ISPs. Furthermore, by using a less resource demanding synthetic benchmark, a sufficiently
large number of peers can be hosted on a single physical host to demonstrate the potential
of our approach.

In our synthetic benchmark a task is defined by the number of milliseconds T a processor
must wait to process the task. Splitting a task TaskA is performed by subtracting a random
fraction TF of the remaining wait time TR and creating a new task TaskB for TF :

TaskA{TR}
Split→ (TaskA′ {TR−TF} ,TaskB{TF}) . (30.1)

30.1.2 Volatility Simulation
Wolski et al. have shown [WNB07] that machine availability in Desktop Grids is best
described by a log-normal distributed session time (TS > 0) with the probability density
function

pd f (TS;µ,σ) = 1√
2πσTS

e
−(lnTS−µ)

2σ2 (30.2)
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with parameters µ = 7.6 and σ = 2.2 (see Figure 30.2). We therefore configured peers to
exhibit the corresponding random session times (s = seconds)

TS (ν) = e7.6+2.2νs (30.3)

with ν being a random variate drawn from the normal distribution with mean 0 and standard
deviation 1. TS is log-normal distributed with mean 22471 s (≈ 6 hours), standard deviation
251709 s (≈ 3 days) and the quartiles1 453 s (≈ 8 minutes), 1998 s (≈ 33 minutes), and
8812 s (≈ 2 hours). These values illustrate that the distribution is highly skewed towards low
values. On the one hand, this means that there is considerable volatility despite the high
mean session time. On the other hand, the high value of the upper quartile implies that we
can find a stable peer for performing the coordination tasks, i.e., termination detection and
fault-tolerance, with high probability.

Volatility is simulated by having peers join the underlying computation group, participate
in the computation for TS seconds, leave the group and rejoin with a new identity immediately
after discarding the peer’s internal state. Peer failures are modeled by dropping tasks with
a given probability PError when leaving the computation group. Unfortunately, to our
knowledge, there is no study available yet that describes the reasons for host unavailability
and quantifies their respective share in total unavailability. Thus, we have to use an estimated
value. We have chosen a supposedly high default error probability of PError = 1% meaning
that on average 1 out of 100 peer departures is attributed to failure resulting in dropping
tasks currently located at the departing node.

30.2 Results
30.2.1 Scalability
To assess the scalability of the task pool, we use two standard metrics: speedup S and
parallel efficiency E 2. The runtime of the best sequential algorithm for a given problem size
used as reference to compute both metrics is the initial overall wait time TInitial. Figure 30.3a
shows strong scalability metrics for TInitial = 600s and up to 160 non-volatile peers. While
the speedup is almost optimal for small peer counts, it increasingly deviates from perfect
speedups for larger node counts resulting in a speedup of 111.0±6.6 and a corresponding
efficiency of roughly 69.4%±4.1% for 160 peers. As can be seen from Figure 30.4, the reason
for this behavior is the increasing parallel overhead caused by idle peers at the beginning
and the end of the computation. The time required to find an active peer for work-stealing
at a given point in time is proportional to the number of active peers at that time. Thus,
work diffusion at the beginning of the computation requires time TGrowth ∝ log(p) (where p
is the number of participating peers) until all peers are active. For the same reason, the
end of the computation is governed by exponential decay creating an analogue dependency

1 The second quartile is equivalent to the median.
2 For an introduction to scalability and parallel performance metrics see Appendix A
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Figure 30.3: Scalability of COHESION’s distributed task pool for the synthetic benchmark
application
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Figure 30.4: Node activity over normalized time τ (t; p) = t
T(p) (where T (p) denotes the parallel

execution time for p processors) for the synthetic benchmark application in 20 and 160 node
setups for TInitial = 600s. The figures show the minimum, mean, and maximum number of active
nodes at normalized time τ within the dataset collected over 30 runs. Shaded are those periods
where the number of active nodes is below 90% of the number of available nodes.
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TDecay ∝ log(p). However, the impact of these overheads on overall efficiency depends on
the ratio between problem size and peer count.
The weak scalability (TInitial = p600s) of the system is much better. As can be seen in

Figure 30.3b, speedups grow linearly for increasing peer count resulting in a slowly dropping
parallel efficiency between 97.9%±1.8% for 20 and 96.0%±0.6% for 160 peers.

30.2.2 Volatility Tolerance
Tolerating deliberate and failure induced peer departures is one of the most important
requirements for a Desktop Grid Computing system. Besides correctness, these factors may
also severely impair performance. To substantiate that Cohesion doesn’t suffer from such
inadequacies, we measured speedup and efficiency for the synthetic benchmark application
under volatility.

Figure 30.5a depicts the impact of a varying mean session time T∗
S = 1

f Ts with f > 0 for a
fixed error probability of 1% in a 160 peer setup and a problem size of N = 160 ⋅600s= 96,000s.
For f = 1 — resulting in the session time distribution described in Section 30.1 — the
speedup is 149.0±5.5 and the efficiency is 93.1%±3.4%. The penalty when compared to
the non-volatile setup from above is roughly 3%. For increasing f , speedups drop moderately.
Even in the most demanding scenario evaluated here with a 32 times shorter mean session
time, we still get a considerable speedup of 120.6±7.8 or an efficiency of 75.4%±4.9%.
Figure 30.5b shows the performance penalties for different error probabilities PError in

a 160 peer setup with the real-world session time distribution ( f = 1). For PError = 1%,
we see a speedup of 149.4±3.5 and an efficiency of 93.3%±2.2%. Decreasing the error
probabilities further results in nearly no further improvement. Noticeably, increasing PError
to as much as 50% still yields an acceptable speedup of 129.2±31.4. The large error of
31.4 is due to the fact that departures are comparatively infrequent so that the size T of
the dropped task becomes decisive for the actual impact on efficiency.
Besides the dominating overhead associated with work repetition and restoration costs

for lost tasks, a small fraction of the difference of roughly 3% in efficiency between the
non-volatile (96%) and the volatile setup (93.1%/93.3%) can be attributed to the slightly
smaller effective group size resulting from the small pause when peers leave and rejoin the
computation group.
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Figure 30.5: Volatility tolerance of COHESION’s distributed task pool



Part VIII

Distributed Satisfiability Solving

Satciety is a distributed-memory parallel SAT solver for Peer-to-Peer Desktop Grids. It is
based on guiding path decomposition realized on top of Cohesion’s distributed task pool.
Satciety employs a multi-stage preprocessing pipeline to compactify and simplify SAT
formulae before they are efficiently distributed within the Desktop Grid via BitTorrent. A
state-of-the-art CDCL solver core is amended with a memory manager that protects peers
from memory exhaustion. Solver cores exchange knowledge in an adaptive topology-aware
distributed dynamic learning scheme. Satciety is to the best of our knowledge the first
parallel SAT solver for Grid environments that employs a scalable decentralized execution
model. Despite the demanding conditions prevailing in Desktop Grids, Satciety achieves
considerable speedups compared to state-of-the-art sequential SAT solvers.

Related Publications
[SB10b] Schulz, Sven and Blochinger, Wolfgang: Parallel SAT-Solving on Peer-to-Peer
Desktop Grids. Journal of Grid Computing (2010), Bd. 8(3):S. 443–471

[SB10a] Schulz, Sven and Blochinger, Wolfgang: Cooperate and Compete! A Hybrid
Solving Strategy for Task-Parallel SAT Solving on Peer-to-Peer Desktop Grids, In: Proc.
of the International Conference on High Performance Computing & Simulation (HPCS 2010),
Workshop on Parallel Satisfiability Solving (WPSS 2010), IEEE Computer Society, Caen, France,
S. 314–323
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SAT is the problem of finding a variable assignment such that a given Boolean formula
evaluates to true, respectively to prove that no such assignment exists. SAT was the
first problem shown to be NP-complete [Coo71]. Besides this central role in theoretical
computer science, many real world problems could have been tackled in recent years by
encoding them as SAT instances. Prominent examples can be found in electronic design
automation [BCCZ99, VB01, SBSV96], artificial intelligence [KS92], scheduling [CB94],
and cryptography [MM00].
Despite the tremendous improvements in SAT solving methods achieved since the first

efficient SAT solving algorithm was introduced by Davis et al. [DP60, DLL62], there are
still unsolved SAT problem instances in all major application fields. Particularly, the ever
increasing complexity of chip designs is a source of extremely large and hard SAT problem
instances which are far too complex to be solved by state-of-the-art sequential SAT solvers.
Thus, parallel computing is a line of research that promises to enable further improvements
and to allow for solving previously unsolvable problems. Our specific goal is to use the
massive computational power of Desktop Grids to achieve a significant performance boost.
Our work shows that highly optimized parallel search algorithms like SAT solving are

prime examples of parallel applications that significantly take advantage of the unrestricted
interaction patterns enabled by retrofitting the Desktop Grid approach with Peer-to-Peer
methods. By enabling parallel SAT solving on Desktop Grids, we contribute to settling the
question which classes of problems can profit from Desktop Grid Computing. In particular,
we demonstrate that Desktop Grids are not only suitable for embarrassingly parallel but also
for High Performance Computing applications.

The rest of this part is organized as follows: In Chapter 31, we introduce the SAT problem
and give a brief account of state-of-the-art SAT solving methods. Chapter 32 summarizes
existing parallelization techniques. Subsequent to an overview of Satciety’s architecture
in Chapter 33, we give a detailed description of its inner workings in Chapters 34-36. We
report on performance measurements in Chapter 37 and discuss related work in Chapter 38.
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31 The SAT Problem
The Boolean satisfiability (SAT) problem asks whether one can find a variable assignment φ

for a Boolean formula F such that F ∣φ evaluates to true.
We assume that F is given in conjunctive normal form (CNF). In CNF, a formula

is composed of conjunctions (∧) of clauses. A clause is the disjunction (∨) of one or
more literals. A literal is either positive or negative. The former is a variable (v), the
latter a negated variable (¬v). The complement of a literal is its negated literal. By
convention, variables are numbered consecutively and are represented as indexed variables
xi with i ∈ {1, . . . ,n}. Note that all Boolean formulae can be transformed into the CNF
representation. A variable assignment φ is a tuple (φ1, . . . ,φn) that assigns a Boolean value
to all variables, i.e., x1→ φ1, . . . ,xn→ φn. If not all variables are assigned one speaks of a
partial assignment.
Consider the following Boolean CNF formula:

F = (x1∨x3)∧(x2∨
literal«¬x3 )∧(¬x1∨¬x2∨¬x3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

clause

)∧x3. (31.1)

The variable assignment φ = (false,true,true) represents a satisfying assignment of
F . For brevity, one often uses literals which are implicitly assumed to be true to describe a
variable assignment. Thus, the above assignment can be expressed as (x1,x2,x3).

A fundamental property of a formula in CNF is that it is satisfiable iff in each clause
at least one literal evaluates to true. If for a clause all but one literal have already been
assigned to false, the remaining literal must be assigned to true in order to satisfy the
clause. Such clauses are called unit clauses. A situation when all literals of a clause are
assigned to false is called a conflict, and the clause is called a conflicting clause.

31.1 DPLL/CDCL-Based SAT Solving Algorithms
The original Davis-Putnam-Logemann-Loveland (DPLL) SAT solving algorithm [DP60,
DLL62] still serves as the algorithmic framework of modern complete1 SAT solvers. However,
in recent years sophisticated heuristics have been incorporated which are capable to signifi-
cantly prune the search space for a wide spectrum of problem instances. Most beneficial
advances have been achieved by employing conflict driven backtracking and dynamic clause

1 In contrast to incomplete solvers, complete solvers are able to prove unsatisfiability of a SAT formula.
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learning [MSS96]. Solvers incorporating these techniques are referred to as CDCL solvers
(CD =̂ Conflict Driven, CL =̂ Clause Learning).

Figure 31.1 outlines the structure of the modern CDCL SAT solving algorithm. We
will restrict our discussion of the CDCL algorithm to a top-level treatment. An in-depth
description can be found in [ZM02] or [Mit05]. Basically, the CDCL algorithm is a search
process with backtracking. Partial variable assignments are speculatively extended to
find a satisfying assignment. The procedure decide determines according to a heuristic
[HV95, MMZ+01] which unassigned variable should be chosen next to extend the current
partial variable assignment. Each such decision is recorded on an assignment stack along
with an associated decision level. The decision level of the first decision made is 1. The
procedure propagate infers additional assignments that are logical consequences of the
current partial variable assignment using a technique called unit propagation: After making
a new decision, some clauses may have become unit clauses, which imply new assignments
as explained above. Such deduced assignments are called implications. They are recorded
immediately after the decision on the assignment stack at the current decision level. Thus,
the assignment stack tracks the current state of the search process. Unit propagation
terminates when either no more unit clauses exist or a conflict occurs. In the first case,
a new decision is made starting the next decision level. In the second case, the conflict
is analyzed and resolved by the procedure analyze_conflict. Basically, it performs two
tasks:

• Dynamic Clause Learning: A new clause called lemma is constructed by analyzing
the reasons for the current conflict. A lemma reflects a minimal subset of the current
assignments that implies the conflict. When appended to the input formula, a lemma
prevents the search process from reproducing the same conflict in other regions of
the search space. Problem clauses and lemmas constitute the clause database. There
are different schemes for deriving lemmas [ZMMM01]. However, lemmas are always
inferred by resolution and are thus logical consequences of the clause database which
can be added to the input formula without affecting the correctness of the CDCL
algorithm. For the same reason, lemmas can be safely removed from the clause
database, e.g., for saving memory.

1: procedure CDCL
2: while true do
3: if decide() == VARIABLE_ASSIGNED then
4: while propagate() == CONFLICT do
5: if current_level == 0 then
6: return UNSAT
7: else
8: new_level = analyze_conflict()
9: back_track(new_level)

10: else
11: return SAT

Figure 31.1: Top-level structure of the CDCL algorithm (DPLL with Dynamic Learning and
Conflict Driven Backtracking)
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• Conflict Driven Backtracking: By construction, a lemma is initially a conflicting
clause. The backtracking level is determined as the lowest level at which the lemma
becomes a unit clause. Note that at this level the current conflict is also resolved.
The procedure back_track releases all assignments recorded on the assignment stack
up to the computed backtracking level. The newly added lemma, which is now a unit
clause, takes the search to a new direction.

When backtracking reaches decision level 0, the current lemma forces a variable assignment
and potentially additional implications at level 0. Such variable assignments are called
top-level assignments. Since top-level assignments do not depend on any decision, they
are a necessary condition for the formula to be satisfied and are fixed for the rest of the
search process. As a consequence, a conflict at decision level 0 (top-level conflict) cannot be
resolved by releasing assignments. In that case the input formula is unsatisfiable. In contrast,
if all variables have been assigned without a conflict, the input formula is satisfiable.
Although not included in the algorithm outline shown in Figure 31.1 for reasons of

simplicity, restarts [GSC97] and clause deletion are two important techniques employed by
all modern CDCL SAT solvers. Extensively adding lemmas to the input formula can slow
down the deduction process and thus potentially outweigh the performance improvements of
dynamic learning. A solution to this problem is to periodically delete learned clauses selected
according to a heuristics. During a restart the search process is canceled by backtracking
to the root of the search tree and immediately restarted keeping knowledge – typically the
learned clauses – from the previous run. Restarts are performed periodically and frequently
in state-of-the-art SAT solvers [Hua07] in order to prevent the search process from getting
stuck in an infertile part of the search space. A crucial point when realizing restarts together
with clause deletion is to preserve completeness [BMS00]. A solver is called complete if it
eventually terminates either delivering a solution or indicating unsatisfiability. A prominent
technique to preserve completeness of a solver that performs restarts and clause deletion is
to gradually increase the restart interval.





32 Parallel SAT Solving
Stimulated by a lack of significant progress in sequential SAT solving during the last 10
years and the recent shift to multicore architectures, parallel SAT solving has become an
active field of research. Parallel solvers are characterized by two main aspects: the solving
strategy and the mechanisms of exchanging knowledge acquired throughout the solving
process. In this chapter, we summarize existing approaches for these aspects and discuss
which of them are (not) suitable for Peer-to-Peer Desktop Grids and why (not).

32.1 Parallel Solving Strategies
Since the first parallel SAT solver has been presented [BS96], numerous techniques for
parallel SAT solving have been proposed. A major discriminator is the targeted parallel
architecture, i.e., shared or distributed memory. The following discussion is limited to
techniques suitable for distributed memory architectures and thus in principle for Desktop
Grids. The main approaches that have been shown to be effective in the past can be roughly
divided into two categories: decomposition and portfolio approaches.

32.1.1 Problem Decomposition
Decomposition approaches are based on partitioning the search space such that the resulting
partitions can be processed in parallel. Three different techniques to perform this partitioning
have been proposed in the literature: guiding path decomposition, scattering, and splitting
by hashing.

Guiding path decomposition [ZBH96] defines non-overlapping regions of the search
space by recording the list of variables to which a value has already been assigned. A Guiding
Path (GP) essentially is a path from the root to an arbitrary node in the search tree and
equivalent to the assignment stack introduced in Chapter 31. A GP encodes all assigned
variables, their values, and whether they are set by decision (open) or due to implication
(closed). Starting from a given GP one can easily construct a pair of derived GPs that
encode disjoint parts of the search tree. The first step in constructing these splits is to
select one or more open variables. While this can in principle be done in a random fashion,
most parallel solvers use only a single open variable — namely the first one in the GP — as
the split variable. The rationale behind this strategy is that splitting on shorter GPs has
more potential to yield large subproblems as the remaining search space is larger than for
longer GPs. As the split variable is always assigned by decision, the dynamic decomposition
using GPs is closely related to branching heuristics. In fact the split variable has been
selected by the variable ordering recently. Today, activity-based branching heuristics like
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Variable State Independent Decaying Sum (VSIDS) [MMZ+01] are predominant. The idea
is that variables with high activity are of particular importance for the solving process as
they have increased potential of triggering many implications during unit propagation. By
using decision variables as split variables decomposition is effectively driven by the same
heuristic.

GP decomposition is tightly integrated with the CDCL solving process and goes hand-in-
hand with the exploration of the search space. Hence, GP decomposition is an exploratory
decomposition [GGKK03] technique. Workload balancing is accomplished by simply ex-
changing the comparatively small guiding paths between nodes. Another valuable property
of this approach is that lemmas can be exchanged unrestrictedly between all parallel solving
tasks. This is not true for the other approaches discussed below. These properties made
guiding path decomposition the most frequently used decomposition technique for parallel
SAT solving on distributed memory architectures [CW03, BWKW05, JLU05].

Scattering [HJN06] is a generalization of the guiding path technique, where each solver
gets a set of guiding paths instead of a single one. The scattered formulae are created
by a single modified DPLL solver and then farmed out for parallel processing to external
black-box solvers.

Lemma exchange is limited to one-way exchange from a given formula to their descendants
in the scattering tree. The inventors of scattering admit that it is currently an open
question whether scattering outperforms decomposition based on guiding paths. Furthermore,
scattering as proposed is inherently bound to the Master/Worker execution model and thus
is of limited scalability.

Splitting by hashing [BHS09] is a straightforward decomposition method that adds
hashing clauses to the original formula. A simple way of constructing hashing constraints is
the addition of parity constraints

Hi ∶=∑
x∈S

x ≡ i (mod 2) (32.1)

with S being a subset of the variables of the formula. The resulting hashed formulae
F1 = F ∧H1 and F2 = F ∧H2 are disjoint and cover the entire search space. By performing
this decomposition n times in a recursive fashion one can construct 2n subproblems.

Two serious limitations of the approach are that decomposition has to be done statically,
i.e., before the computation starts, which severely impacts efficiency as the work load is
highly imbalanced, and lemma exchange is no longer possible as clauses learned by the
emitting solver are not necessarily logical consequences of the clause set of the receiving
solver.

32.1.2 Portfolios
Modern CDCL solvers are a combination of different algorithms, implementation techniques,
and heuristics. In many cases the performance of a certain solver dominates all others,
on a given problem class. This is due to the fact that solvers are often highly tuned for
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particular problem domains. One can take advantage of such differences by combining several
algorithms into a portfolio [GS01, BSK03b], and running them in parallel1. Unfortunately, a
major challenge with this approach is to find a set of algorithms exhibiting sufficiently diverse
runtime distributions. While algorithm portfolios have been successfully applied for a small
number of competitors [XHHLB08, HJS09b], it is yet unclear how to solve the scalability
problem for massively parallel setups with hundreds or thousands of nodes. In contrast,
randomization is in principal better suited to build large portfolios, although recent results
[Hyv09] indicate that the scalability of this approach is limited as well since the variability
of solve times for randomized portfolios is limited.

Portfolio based parallel solvers are most simple to implement as fault-tolerance is intrinsic
to the approach: With all solvers working on the same problem, all but one solver can
crash without compromising correctness. Supporting heterogeneous resource sets is more
complicated for portfolios than for approaches based on decomposition as diversity from
different solvers may be obliterated by diversity stemming from processor heterogeneity. As
an example, consider the case where the best performing solver is executed on the least
powerful processor, the second best solver on the second least powerful, and so on. The
same argument is not true for dynamic search-space splitting as powerful processors will
split off work from less powerful ones when they become idle.

Although communication is largely dominated by problem instance distribution and lemma
exchange, portfolio approaches are less demanding than decomposition approaches in this
regard since there is no need for load balancing and fault tolerance mechanisms. However,
Cohesion’s task pool provides mechanisms to reduce the associated overheads (see Chapter
27).

32.2 Distributed Dynamic Learning
The dynamic learning process of sequential CDCL SAT solvers relies on accumulated
knowledge continuously deduced during the solving process. Learning clauses is essential for
pruning the search space and for proving the unsatisfiability of a formula2.
In a distributed setting each solver maintains its own local clause database containing

the clauses of the formula and the lemmas which have been deduced locally. Of course a
lemma derived by one solver can be of value for another solver as well. Thus, it is crucial to
exchange lemmas among the clause databases in order to exploit the full potential of this
technique. Doing so establishes a distributed dynamic learning process. It is orthogonal to
the parallelization of the backtracking search and specifically addresses the deduction part
of modern SAT solving methods. As discussed above, unrestricted lemma exchange is not
compatible with all solving strategies.
Exchanging all lemmas in an all-to-all fashion is not feasible as the total amount of

deduced lemmas increases linearly with the number of processors. Thus, lemma exchange

1 The organizers of the SAT Competition 2009 introduced the concept of the Virtual Best Solver, which
can be regarded as a solver which would run all other solvers in parallel, bringing together all the solvers
strengths [Sat09].

2 CDCL solvers implicitly perform a resolution refutation.
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must be selective. Existing approaches select lemmas according to local criteria like the
length [BSK01] or activity [PKA+06] of clauses. More recent approaches [HJS09b, HJS09a]
are adaptive. They either try to keep the number of clauses exchanged between two solvers
constant, exchange only high quality clauses, or both.



33 Architecture
Figure 33.1 shows the three-tier architecture of Satciety. It consists of

1. the solver backend that implements the distributed SAT solver. The solver uses
exploratory decomposition based on Cohesion’s distributed task pool that is capable
of handling volatility and random faults (see Part VII). Tasks are interchanged for
load-balancing in a compressed bandwidth-friendly encoding. The solver implements
distributed dynamic learning that adapts to bandwidth-utilization constraints and
instance-specific lemma generation rates. To protect host systems from memory
overload, Satciety uses a three-stage memory management approach that preserves
completeness of the solver. Details of the solver are described in Chapter 34 and
Chapter 35.

2. a J2EE application server constituting the middle-tier which is responsible for job
management and instance provisioning. The latter includes SAT formula simplification
through variable and clause elimination, transcoding to a space-efficient structure-pre-
serving replacement of the commonly used DIMACS format [Dim93], and efficient
instance provisioning over a P2P file sharing protocol. It is described in detail in
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Chapter 36. The middle-tier pushes job progress and result data in real-time to clients
via BlazeDS [Adob]. The middle-tier is connected via JMX [KHW03] over TCP/IP
to a dedicated Cohesion peer in the solver backend called the gateway.

3. a browser-based thin client-tier based on Adobe Flex [Adoc] (Figure 33.2 shows a
screenshot of the user interface) can be used by multiple users concurrently to submit,
monitor, and control their SAT jobs. Clients communicate with the middle-tier over
HTTP using the Active Message Format (AMF) [Adoa]. AMF is a binary format for
ActionScript object serialization.





34 Task Pool Integration
In this chapter, we describe how Satciety is implemented on top of the task pool abstrac-
tion provided by Cohesion. In particular, we describe the structure of a Satciety task,
how exploratory decomposition and checkpointing have been realized, how memory exhaus-
tion is prevented, and the implementation of two optimizations – reuse of solver cores and
task compression.

34.1 SAT Task Anatomy
A Satciety task consists of

1. the gateway’s peer identifier. This information is used to deliver the result or any
error conditions arising during the solving process.

2. a reference to the input formula, which is a uniform resource locator (URL) provided
by the middle-tier as part of the provisioning process (see Section 36),

3. the set of top-level assignments φ0 which defines the subproblem to be solved. As
large SAT instances have millions of variables this part constitutes the major fraction
of a task. Thus, Satciety employs task compression as described below to minimize
its size.

4. and additional parameters specified at job submission. This includes whether to
suppress task decomposition in order to force the solver to operate in sequential mode,
whether to perform lemma exchange, and a timeout to prevent the solver from running
indefinitely long for very hard instances.

34.2 SAT Task Behavior
As depicted in Figure 34.1, a task’s lifecycle consists of its creation on initial job submission
or decomposition, possibly several migrations, execution and finally its completion. Tasks
may get lost and eventually restored, or aborted as a consequence of user-initiated job
cancellation or expiration of the timeout specified on job submission.

The workflow executed in the Running state is depicted in the lower part of Figure 34.1
and consists of acquiring a solver instance for the given formula, executing the solver on the
arguments as specified by the task, optionally verifying the result, sending the result back
to the gateway peer for delivery to the middle-tier of Satciety, and releasing the solver.
Several aspects (marked with an asterisk in Figure 34.1) of the default behavior of a

Cohesion task have been customized. These are the operations migrate, split, and
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Figure 34.1: Lifecycle of a SATCIETY task

checkpoint. They are discussed right after a short description of solver recycling and the
optional result verification step. Finally, task compression, which is performed as part of
migrate operations, is explained.

34.2.1 Solver Reuse
Creating a new solver core instance for each task is disadvantageous for two reasons: First,
parsing of formulae is a time-consuming task, especially for real-world problems that can
be over a hundred megabyte in size [SATd]. Second, during processing of a task the
solver accumulates valuable knowledge through dynamic learning that can be reused for
pruning the search space when solving other tasks of the same job. For these reasons
Satciety implements a solver pool from which solver instances are fetched as needed and
to which solvers are released as soon as a task has been processed. To reclaim a released
solver the pool performs a reset that basically rewinds the assignment stack.
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34.2.2 Result Verification
Satciety can be configured to execute a verification step (the region surrounded by the
dashed line in Figure 34.1) in case a solution is found. Although this step is functionally
unnecessary, it was a valuable tool for identifying bugs in the highly complex distributed
solver implementation1. To verify a supposed solution the previously created solver instance
is reset and reused. In case the verification process fails, an error signal is sent to the
gateway. Result verification in case no solution has been found is an open problem even for
sequential SAT solving. Although, it is possible in principle, existing approaches are very
inefficient and have not yet been generalized to work in the context of parallel SAT solving.

34.2.3 Task Splitting
The split operation is implemented using the guiding path decomposition technique described
in Chapter 32. Technically, Satciety performs an assignment stack transformation (see
Figure 34.2) that modifies the assignment stack of the original task and creates a new
guiding path for the split off task. As motivated in Chapter 32, the variable assigned by
decision on level 1 is selected for splitting. The assignment stack of the running solver is
transformed on-the-fly, i.e., without restarting the solver, by moving the split literal and its
implications to decision level 0. Hence, they become part of the top-level assignment and
are fixed from then on. The top-level assignment for the split off task is constructed by
appending the complement of the split literal to the top-level assignments of the original
task.
As described in Chapter 26, Cohesion supports different strategies for triggering task

decomposition. We prefer on-demand splitting rather than eager problem decomposition.
Thus, we can limit undesirable growth of the effective search space caused by unnecessary
decomposition operations: As described in Section 31.1, a newly learned lemma prevents
that the solver makes the same unprofitable work over and over again in other parts of the
search space. By splitting tasks eagerly, the newly created task cannot profit from this extra
knowledge if it is transferred to another node for execution. This effect can only be partially
mitigated by distributed dynamic learning, as the vast number of locally deduced lemmas
cannot be exported to remote clause databases efficiently. Consequently, part of the search
space will be examined more often than necessary, resulting in the undesired growth of the
effective search space.

34.2.4 Checkpointing
Checkpointing is implemented as a lightweight operation that copies the current top-level
assignments from the solver core to the corresponding task object. As in the case of task
splitting, a checkpoint can be created on the fly. While in principle the entire state of the
solver core could have been included in a checkpoint, the sheer size of the clause database,

1 Achieving correctness is not easy even in the case of sequential SAT solving. This is reflected in the fact
that several solvers returned wrong results in recent SAT competitions [satc].
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which can contain millions of clauses, makes such an approach absolutely infeasible, especially
in the context of Desktop Grids with comparatively low-bandwidth connections.

34.2.5 Differential Updates
Cohesion’s distributed task pool uses differential updates for task state and location
bookkeeping to reduce bandwidth consumption on the superpeer. The conceptual description
given in Chapter 27, is now complemented with specific information on how differential
updates are implemented in the context of distributed SAT solving: The initial task, which
has an empty set of top-level assignments, is submitted on the coordinator allowing TTCR-0
of Protocol 27.2 to be performed locally without external communication. When TTCR-1
(completed task), TTCR-3 (transfer from one peer to another), and TTCR-C-FPR-1 of
Protocol 27.4 are executed, the task has been sent to the coordinator previously. Thus, it is
sufficient to transfer a unique identifier attached to each task on creation that can be used
by the coordinator to locate the associated task within the task location table. For the two
remaining updates performed in TTCR-2, Satciety exploits the fact that the top-level
assignments for both tasks resulting from a splitting operation can be composed from the
top-level assignments of the original task, the assignments done up to the moment the split
is performed, and the split literal (cp. Figure 34.2). As the coordinator already knows the
top-level assignments of the original task, it is not necessary to include them in the Update
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messages. Together these measures significantly reduce the network load on the coordinator
that would otherwise become a bottleneck.

34.2.6 Task Compression
As the solving process evolves, the top-level assignments quickly become the largest part of
a task. Its size is in the order of the number of variables which can easily exceed a million
for real-world instances. Simply using integer arrays to encode the top-level assignments
results in tasks sizes in the order of megabytes. This is prohibitive in the context of Desktop
Grid applications. Thus, Satciety employs a more sophisticated two-stage strategy: First,
we look at a compact binary encoding of the top-level assignments. For the set of variables
V , we need

∣Lit ∣2 = ⌈log2 ∣V ∣⌉+1 (34.1)

bits to binary encode a literal and hence

∣φ0∣sparse ≈ ∣Lit ∣2× ∣φ0∣ (34.2)

bits to encode the top-level assignments by concatenating the encoded literals. We call this
encoding sparse as only those variables are encoded that are assigned. In contrast a dense
encoding is performed by encoding every literal between the lowest and the highest literal of
the top-level assignments using 2 bits each. This results in a size of

∣φ0∣dense ≈ 2×(max{i ∶ liti ∈ φ0}−min{i ∶ liti ∈ φ0}). (34.3)

When a task is to be migrated, Satciety’s task encoder computes both ∣φ0∣sparse and
∣φ0∣sparse and encodes the top-level assignments using that encoding which yields the more
compact representation. As a second step Satciety uses GZIP compression to further
reduce the size of the task.

34.3 Memory Management
The CDCL algorithm adds a new clause to the clause database on every conflict. To
avoid running out of memory, modern sequential SAT solvers use heuristics to predict the
usefulness of clauses for the future solving process. Based on this prediction they decide
which clauses are deleted on periodic database reductions. One popular heuristic is to
delete those clauses that have not been used in conflict clause construction for a certain
period of time. To guarantee termination CDCL solvers gradually increase the reduction
interval. Hence, the solvers memory footprint is constantly growing, eventually resulting in
the system running out of memory. In a Desktop Grid scenario this behavior is prohibitive
for two reasons: First, with Satciety allocating a great deal of the overall system memory,



264 34 Task Pool Integration

other user processes are swapped out by the operating system, which drastically reduces
responsiveness in case the user reclaims the system. Second, the JVM is killed when no
more memory is available, preventing the host from further participation in the parallel
solving process. To circumvent these undesirable scenarios, Satciety employs a three-
stage memory management approach that enforces memory limits while preserving solver
completeness. The stages are:

1. Application Control. Satciety leverages the fine-grained application lifecycle control
of Cohesion. Satciety is allowed to run only as long as the amount of free
physical memory is above a given threshold MShutdown. In case free memory falls below
this threshold, local tasks are off-loaded to other peers and the Satciety application
is shutdown freeing all memory used by the solver.

2. Stimulated Reduction. When the amount of free physical memory drops below a
threshold MStimulate >MShutdown Satciety instructs the solver to reduce the clause
database. This reduction is equivalent to reductions triggered by the clause removal
heuristic described above and executed as part of the regular solving process.

3. Forced Reduction. Removing enough clauses to comply with memory constraints by
stimulated reduction is not always possible, since clauses are locked when they are
participating in the current backtracking branch by being the reason for a variable
assignment [ES03]. In case free memory is below a threshold MForced with

MStimulate >MForced >MShutdown (34.4)

after a stimulated reduction has been performed, Satciety triggers a restart. This
rewinds the assignment stack which unlocks additional clauses that may now be safely
deleted by another stimulated reduction.

To guarantee termination Satciety splits off a new task after performing a stimulated
or forced reduction. As described in Section 34.2 splitting fixes the decision variable on level
1 in the original task and adds the variable in the opposite phase to the assignment stack of
the split off task. Thus, performing the split ensures progress and eventual termination.



35 Topology-Aware Distributed Dynamic
Learning

Dynamic learning by conflict analysis has become standard for sequential SAT solvers and
tremendously improves their performance. By exchanging lemmas between solver cores, a
similar effect can be achieved for parallel and distributed SAT solvers. Although there is
neither a thorough theoretical investigation nor there are dependable experimental results,
the beneficial effect of sharing comparatively short lemmas is undisputed in the literature
[BSK01, PKA+06, HJS09b] as they carry high potential to help in pruning the search space
while at the same time are cheap to exchange.

A feature specific to Desktop Grid environments is the fact that in general a peer is not
able to directly exchange messages with all other peers. While Cohesion removes this
limitation by message relaying performed by superpeers, restricted connectivity introduces
inhomogeneous communication costs that have to be reflected in application level communi-
cation patterns to avoid inefficiency and superpeer overload. This kind of protocols is called
topology-aware. In contrast to existing Grid-enabled SAT solvers [CW06a, HJN08], lemma
exchange in Satciety is topology-aware. Neighbor classification is performed by leveraging
the component detection algorithm provided by Orbweb (see Chapter 19). As depicted
in Figure 35.1, lemmas are exchanged at a high rate within and at a lower rate between
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Figure 35.1: SATCIETY’s topology-aware lemma exchange using two ALEFs (see Figure 35.2)
for higher exchange rates within (light green) than between network components (dark green)
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components. While Satciety uses UDP for the former because of its small overhead,
lemmas exchanged between peers within different components are transmitted in-band over
XMPP connections with messages relayed by the Orbweb superpeer.

The number and average size of deduced lemmas heavily depends on the concrete SAT
instance. Straightforward solutions using hard-coded size limits thus yield unsatisfactory
results. Hence, Satciety makes use of an adaptive approach to ensure that a predefined
exchange rate is sustained but not exceeded. This is of particular importance in the Desktop
Grid context, as the user experience may be impaired by excessive communication. Figure
35.2 illustrates the functionality of the Adaptive Lemma Exchange Facility (ALEF) which is
instantiated twice by Satciety to implement topology-awareness as described above. The
ALEF control logic as depicted in Figure 35.2 continuously monitors two lemma databases
each with a fixed capacity. While the inbound lemma database (ILDB) is filled with lemmas
produced by the solver core, the outbound lemma database (OLDB) is drained by the lemma
shipper, which marshals extracted lemmas and sends them to the target peer. Every time
the OLDB becomes empty or the ILDB becomes full, the controller swaps the content of
the databases. Although the mechanism could have been implemented with a single DB
filled and drained concurrently, the strategy using two databases decouples solver core and
shipper, which is of particular importance as conflict clause generation is part of the main
loop of CDCL solvers. The database swap does not involve copying of the lemmas but is
implemented by simply swapping references. If both databases are constantly filled near their
capacity limit, the lemma production rate is too high. In this case the controller decreases
the length limit up to which lemmas are exported to the ILDB. Analogously, in case the
databases are nearly empty for a certain period of time, the length threshold is increased.
As proposed in [HJS09a], adjustment of the length threshold is done using the additive
increase/multiplicative-decrease (AIMD) algorithm known from TCP congestion avoidance.



36 Instance Provisioning
SAT instances that encode real world problems can be very large, this is especially true for
instances originating from formal verification. Figure 36.1 shows the histogram of file sizes
of the DIMACS [Dim93] encoded instances of the SAT Competition 2007 [Sata]. Depending
on how they are created, instances are categorized as random, (hand-)crafted, or industrial.
Most instances from the industrial category are larger than 512 KB with a cluster between
512 KB and 4 MB ranging up to over 40 MB. The size of instances from the SAT Race
2008 [Satb] is even up to 145 MB. Although there is in general no correlation between
the size of a formula and the time required to solve it, in practice, one can often observe
such a relation in sequential SAT solving – at least for problems with similar structure.
Hence, reducing the size of formulae by simplification is a promising approach to shorten
solving times and thus is a subject of active research. In the Desktop Grid scenario, limited
bandwidth is another important reason to keep instance encodings as compact as possible.
For the largest formula from above (47 MB) and the grid comprised of 40 peers used in
our performance evaluation in Section 37), a total of 40 ⋅47 MB ≈ 2 GB of data has to be
transmitted only to transfer the formula to the peers.

For these reasons Satciety employs an extensible preprocessing pipeline to ensure that
formulae are compactified as much as possible before the actual distributed solving process
is started. Extensibility ensures that new techniques can be incorporated easily. The pipeline
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Figure 36.1: Histogram of DIMACS encoded file sizes for 877 instances of the SAT Competi-
tion 2007

267



268 36 Instance Provisioning

is located in the middle-tier of Satciety (see Chapter 33). By default, it consists of
five stages: decompression, simplification, transcoding, compression and P2P provisioning.
Each stage maintains a job queue to allow for pipelining , i.e., the stages can be executed
in parallel for different instances. The decompression and compression stages are quite
self-explanatory: They use the GZIP algorithm to decompress the incoming formula and to
compress the transcoded formula respectively. The remaining three stages are explained
subsequently.

36.1 Formula Simplification
Preprocessing of SAT instances is a field of active research. Numerous approaches have
been proposed that use various simplification techniques including hyper-resolution [BW03],
clause distribution [SP04], vivification [PHS08], blocked clause elimination [JBH10], or
a combination of several techniques [AS06]. How they actually work is not relevant in
the context of this work. The application of a preprocessor to a SAT formula typically
results in a reduction of the number of literals, variables, and clauses, which yields smaller
file sizes and often significantly reduces the runtime of the SAT solver. Satciety uses
SatELite by Eén and Biere [EB05] in the simplification stage of the preprocessing pipeline.
As substantiated by the results of our evaluation presented in Chapter 37, SatELite is a
lightweight preprocessor and does not add significant overhead to the solving process, which
is crucial as preprocessing contributes to the sequential fraction of the solving process and
thus limits the achievable speedup according to Amdahl’s Law (see Appendix A). Thus,
parallel simplification techniques will be required to exploit the full potential of parallel SAT
solving. However, the invention of such techniques is beyond the scope of this thesis.

c SAT07-Contest Parameters:
c unif2p p=9 nbc2=228 nbc3=2052
c v=630 seed=702278147
p cnf 630 2280
-464 -204 0
-134 384 0
-456 446 0
...
-39 45 -225 0
295 516 337 0

Figure 36.2: An example formula in DIMACS format from the random category of the SAT
Competition 2007 consisting of a preamble (comments and problem line giving the number
of clauses and variables) and the clauses in CNF. Negative literals are denoted with a minus
character. Clauses are terminated by a ’0’.
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36.2 Transcoding to Binary CNF
SAT problems are usually encoded in the DIMACS format [Dim93]. DIMACS files are plain
ASCII files structured as depicted in Figure 36.2. While textual data encodings do not suffer
from differences in endianness and thus are in principle well suited as a file format, their
space efficiency is low. For example a literal -3.456.789 produces an eight Byte ASCII text
encoding, while a binary representation consumes only 23 Bit or 3 Byte if byte alignment is
enforced. Thus, Satciety transcodes DIMACS encoded formulae to a structure preserving1

binary encoding we call Bit-Packed Binary CNF (BCNF). The BCNF encoding is illustrated
in Figure 36.3.

SAT instances are very different with respect to the number of variables and the length of
clauses: While a hard random instance may have only a couple of variables and rather long
clauses, formulae resulting from real-world problems often have millions of variables and
many very short clauses. Thus, our BCNF encoder first looks at the number of variables
(given in the DIMACS preamble) to compute the number of bits ∣Lit ∣BCNF necessary to
encode a single literal, which is

∣Lit ∣BCNF = ⌈log2 ∣V ∣⌉+1, (36.1)

where V is the set of variables. While clauses are terminated by a ’0’ in DIMACS, BCNF
writes a variable length header in front of each clause indicating the number of literals the
clause consists of. This way memory can be allocated before reading the clause which helps
avoiding unnecessary copying. The first two bits of the header are used to indicate the
length of the header resulting in a possible maximum clause length of 28n−2 for an n-byte
header. BCNF could have been designed to be even denser, if structural modifications like
variable or clause reordering would have been applied. However, Satciety makes no use
of such optimizations for two reasons: First, downstream GZIP compression would have
partially leveled out potential savings. Second, reordering heavily influences the runtime of
SAT instances making performance comparisons unnecessarily difficult.

p #Format #Variables #Clauses Lit #1 Lit #2 ... Lit #N

|Lit|BCNF #Variables #Clauses Lit #1 Lit #|C|
Header
Length

|C|

2 Bit 6-30 Bit Bit|C|·|Lit| BCNF
1 Byte 4 Byte 4 Byte

Magic Number

4 Byte

CNF

BCNF

. . .

. . .

Figure 36.3: The transcoding of a generic DIMACS encoded formula into SATCIETY’s Bit-
Packed Binary CNF format

1 The structure of a formula is the order of the clauses within the file and the order of the literals within
the clauses.
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36.3 Peer-to-Peer Provisioning
After simplification and transcoding to BCNF the formula has to be delivered to the peers of
the Desktop Grid. As illustrated by the estimation above, this involves the transmission of
huge amounts of data for large real-world instances. Even when Satciety’s preprocessing
efforts result in files half as large as the original, the application server in the middle-tier
of Satciety still would be busy for minutes serving the formula, which actually stalls the
whole computation as all peers were served concurrently throttling each and every transfer.
This phenomenon is commonly known as a flash crowd [AHM+03]: a resource catches the
attention of a large number of parties, and subsequently gets an overloading surge of traffic.
To circumvent this problem, Satciety leverages BitTorrent [bit] for distributing SAT

formulae. BitTorrent is a peer-to-peer file sharing protocol which distributes the onus of
uploading over all participants. A large body of research concerning all aspects of the
protocol has been conducted. For a thorough analysis of its performance in heterogeneous
systems – like Desktop Grids – see for example Liao et al. [LPP07]. As demonstrated in
Chapter 37 using BitTorrent significantly reduces provisioning time for large instances and/or
large Grids.



37 Performance Evaluation
In this chapter we present the results of a performance analysis of Satciety. The testbed
is the same as that used to evaluate Cohesion’s distributed task pool in Chapter 30.

37.1 Peer-to-Peer Provisioning
As discussed above, SAT instances can be very large. Distributing the file from a single server
inevitably becomes a limiting factor for achieving high efficiency when the system is scaled
beyond a few dozen peers. To substantiate this claim, we performed a comparison between
provisioning over HTTP by the application server on the middle-tier of Satciety and P2P
provisioning over BitTorrent. Our implementation is based on the libtorrent v0.14.9 library
from Rasterbar Software [Ras] attached over JNI. Evaluation runs were repeated ten times
and the confidence intervals are based on a 95 % confidence level.

Figure 37.1 shows the time until a formula is available on all peers in a 40 peer setup for
varying formula sizes and both protocols. For formulae up to a size of 4 MB the overhead
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Figure 37.1: Comparison of elapsed time T max
Delay until a SAT formula of given size is available

on all peers
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of scraping1 and peer-to-peer connection negotiation levels out the achievable speedup of
multi-sourced download resulting in relative differences between ≈ 185% for 4 KB and ≈ 16%
for 4 MB instances in favor of server-based provisioning. For 16 MB formulae and beyond
P2P provisioning clearly outperforms server-based provisioning by increasing factors up to
≈ 6.4 for 256 MB instances. The absolute difference for the latter amounts to 389 s, which
is significant when compared to the overall runtimes given in the following section. The
overall amount of data transmitted in this setup is 10 GB.
As the absolute difference between the two mechanisms is small for instance sizes up

to 4 MB, the potential of an adaptive strategy, that employs the best mechanism for a
given instance size, is limited. Furthermore, the transition point where P2P provisioning
first outperforms server-based provisioning would shift towards lower instance sizes for larger
networks. Thus, Satciety always uses P2P provisioning regardless of instance size.

37.2 SAT Solving
Satciety provides an interface to plugin any CDCL solver that provides the ability to split
of new tasks on demand (as described in Chapter 34) and that emits and is able to consume
lemmas on the fly. For our performance analysis, we used Minisat v1.14 [ES03] attached
over JNI. Minisat attained top rankings in SAT competitive events of the last years [satc].
Motivated by the scalability results for Cohesion’s distributed task pool (see Chapter

30), the benchmark suite used to evaluate Satciety’s SAT solving performance consists
of long-running benchmarks from all three categories of the SAT Competition 2007 . We
call an instance long-running when it has been solved by Minisat within the allowed time
(10,000 s for industrial and 5,000 s for crafted and random instances) but took at least
1,200 s. This criterion is met by 15 random, 23 crafted, and 17 industrial instances.

Note that we restrict our evaluation to unsatisfiable instances. For parallel heuristic search
methods like SAT solving, speedups obtained for satisfiable instances are often super-linear
(see Appendix A). Hence, performance results obtained for satisfiable instances are not
suitable to investigate on the effectiveness of a specific parallel method.

Sequential runtimes were measured on the fastest machine among the testbed hosts (Type
IV in Table 9.1). On each host a single Cohesion peer was deployed. The coordinator
peer performing fault-tolerance and termination detection was also located on the fastest
host for the parallel runs. All other peers were configured to use the real-world session
time distribution described in Chapter 30 and an error probability of PError = 1%. Although
recent research [Bie08] indicates that using (at least rapid) restarts may not be beneficial for
unsatisfiable instances, disabling them would bias the results towards unsatisfiable instances.
We thus use restarts for both the sequential and the parallel setups.

The limits for Satciety’s memory management strategy (see Section 34.3) were set
to MStimulate = 90 %, MForced = 95 %, and MShutdown = 98 % of the total physical system
memory and/or the maximum supported process memory. Evaluation runs were repeated
three times. The presented confidence intervals are based on a 95 % confidence level.

1 Scraping is the process of generating file chunks and associated metadata for distribution over BitTorrent.
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Figure 37.2: Cactus Plot1 comparing the performance of the sequential Minisat and SATCIETY

Table 37.1 shows the results of our evaluation. With the exception of four benchmarks,
preprocessing through SatELite and transcoding to BCNF resulted in significant file size
reduction of up to 81.4 % and 30.3 % on average. Preprocessing times (Tpre) are – with a
single exception (uts-l06-ipc5-h33-unknown) – negligible as compared to both sequential
(Tseq) and parallel (Tpar) solver runtimes. Thus, they do not significantly affect speedups.

As can be seen from Figure 37.2 and Figure 37.3a, Satciety clearly outperforms the
sequential solver in all categories realizing significant average speedups of 15.1±0.5 for
random, 11.3±0.4 for crafted, and 18.1±2.5 for industrial instances (see Figure 37.3b).
The average speedup over all categories is 14.5±1.1. Note that the given speedup values
are based on the sequential runtimes on the fastest machine with a RAPI (as introduced
in Chapter 22 on page 235) value of 1.0 (cf. Table 9.1) while the mean RAPI value of
the hosts in our testbed is 0.44. In this light, the performance of Satciety is even more
pronounced.

The variability of speedups, both across instances and across runs for the same instance,
however is very pronounced. This decreased robustness is caused by work-anomalies [Blo06],
i.e., the total amount of work carried out by the parallel execution is different and in some
cases considerably larger than for the sequential execution. This behavior shows that it is
difficult to keep the effectiveness of the sequential heuristics in the corresponding parallel

1 Cactus Plots are traditionally used in SAT competitive events to compare SAT solver performance. It is
a cumulative plot showing how many instances (x-axis) have been solved in time below or equal to a
given runtime (y-axis).
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version at the same level for a wide range of different SAT instances. Work anomalies tend
to become more pronounced for larger number of processors which represents a significant
challenge for future research. Possible countermeasures are hybrid solving strategies that
combine both search space splitting and portfolio parallelism concurrently. Schulz et al.
have recently published first results on such a hybrid solver based on Satciety [SB10a].
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38 Related Work
In the following discussion of related work, we concentrate on approaches to parallel SAT
solving that are designed for distributed-memory parallel architectures. We further distinguish
between solvers suitable for clusters and solvers that can operate within a Grid. The reader
interested in parallel SAT solving on shared-memory parallel hardware is referred to [FDH04],
[SV05], [LSB07], and [HJS09b].

38.1 Parallel SAT Solving on Distributed-Memory Architectures
One of the first parallel SAT solvers was presented by Böhm et al. [BS96]. Their work
especially investigates on efficient load balancing techniques for a d-dimensional mesh
network-topology of a transputer. The outstanding parallel performance of the solver must
be attributed to the fact that sequential solvers at that time did not yet use sophisticated
heuristics like today’s state-of-the-art solvers do.

Other early approaches to parallel SAT solving are Zhang’s PSATO [ZBH96] and PSatz by
Jurkowiak et al. [JLU05]. PSATO is targeted at networks of workstations. It introduced the
guiding path technique for exploratory problem decomposition. PSATO is based on external
parallelization of the sequential solver SATO. PSatz by Jurkowiak et al. [JLU05] is a parallel
variant of the sequential solver Satz. It employs a very similar approach to parallelization as
PSATO, but uses work-stealing techniques for load-balancing. Both, PSATO and PSatz, do
not establish a distributed learning process, which is crucial for exploiting the potential of
modern SAT solving methods in parallel environments.

PaMiraXT and PaSAT are parallel SAT solvers that both establish a distributed learning
process, but are based on contrary design principles: PaMiraXT by Schubert et al. [SLB09]
is a parallel SAT solver designed for networks of shared-memory parallel computers. It
is based on the centralized Master/Worker model, where the master is responsible for
steering problem decomposition and load balancing. The master also serves as a hub for
collecting and disseminating lemmas among the clients. Due to the completely centralized
architecture, the scalability of this approach is limited. The authors present a limited
performance evaluation for a distributed environment consisting of 3 nodes with 8 cores in
total. Furthermore, the benchmark suite used to evaluate PaMiraXT consists of unsatisfiable
and satisfiable instances. Only cumulative results are given, such that it is not possible to
assess to which extent the overall speedup is caused by super-linear speedups on satisfiable
instances. Unlike Satciety, PaMiraXT does not implement fault-tolerance.

The parallel SAT solver PaSAT by Blochinger et al. [BSK03a] is targeted for tightly-coupled
distributed memory architectures, like HPC clusters. It is based on a fully distributed task
pool execution model for parallelizing the search process. Additionally, PaSAT establishes a
distributed parallel learning process based on mobile agents. While the fully distributed task
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pool approach ensures scalability, PaSAT is not fault-tolerant and thus is not appropriate
for environments with volatile hosts. The performance of PaSAT has been evaluated in a
distributed environment comprised of 24 nodes.

38.2 Parallel SAT Solving on Grids
ZetaSAT by Blochinger et al. [BWKW05] is a parallel SAT solver for Desktop Grids. It
is built on top of the discontinued Master/Worker based Desktop Grid platform ZetaGrid
[Wed]. Due to the limitations of this class of Desktop Grids, ZetaSAT uses a centralized
task pool and does not communicate lemmas among the nodes.

SATU by Hyvärinen et al. [HJN06] introduces the concept of scattering (see Chapter 32)
that allows only a limited form of lemma exchange. Whether the performance of scattering
is on par with decomposition based on guiding paths is an open question. The solver is
based on the Master/Worker execution model.

SDSAT and CL-SDSAT [Hyv09] are parallel portfolio solvers based on randomization. In
contrast to SDSAT which implements no lemma exchange at all, CL-SDSAT incorporates a
limited form of dynamic learning which is tailored for Grids comprised of batch controlled
resources, where individual jobs are not able to communicate directly. For solver jobs which
are terminated prematurely by the Grid scheduler because they exceeded their resource
limits, the lemmas deduced so far are communicated to the master node and stored in a
central clause database. When additional solver jobs for the same instance are submitted
some of these lemmas are selected by a heuristic and added to the initial clause databases.
Unfortunately, the evaluation results for both solvers are of limited use, as speedups are
either computed compared to the parallel solver using less compute nodes instead of the
sequential solver or determined within a non-dedicated Grid. Nevertheless, with lemma
exchange enabled the speedups are moderate ranging from 2.9 to 15.5 for 64 processors.

GridSAT [CW06b, CW06a] by Chrabakh et al. is a parallel SAT Solver especially designed
for Globus based Service Grids. The basic parallel procedure employs exploratory problem
decomposition controlled by a dedicated master node. More precisely, the master node acts
as a scheduler based on information delivered by external resource management services.
It is also responsible for storing checkpoints. The maximum size of the lemmas which are
selected for exchange is dynamically adjusted in order to adapt to the available network
bandwidth. GridSAT is able to dynamically include batch controlled resources. When such
resources become available, tasks are migrated from interactive nodes to these resources
in order to exploit the additional computational power for the time allotted by the batch
system.
While all discussed approaches are based on centralized control, Satciety is to the

best of our knowledge the first parallel SAT solver for Grid environments that employs a
decentralized execution model, which is able to provide good performance and scalability
even under a high degree of volatility and heterogeneity.



Part IX

Conclusions
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39 Summary
Desktop Grid Computing has become a valuable tool for scientific capacity computing at
least on par with the world’s largest supercomputers with respect to raw floating point
computing power. The Master/Worker execution model has been the prevalent paradigm
for computing on Desktop Grids. Its simplicity has helped the Desktop Grid approach to
obtain a remarkable record of success.

However, going beyond embarrassingly parallel applications necessitates a paradigm shift
from the Client/Server to a Peer-to-Peer interaction model. Doing so requires retrofitting
the software stack of Desktop Grid Computing systems on all layers with novel methods and
facilities to support Peer-to-Peer interaction and operation. The necessary enhancements
are fundamental and affect both system architecture and distributed algorithms but allow
for executing a class of advanced parallel applications formerly not suitable for Desktop
Grids – task-parallel Irregularly Structured Problems.
Enabling Desktop Grid Computing systems to execute this kind of applications poses

a number of challenges: First, the incorporation of Peer-to-Peer methods dramatically
enlarges the design space of parallel applications which renders adoption of the functional
exhaustiveness of existing platforms impossible. Instead, applications must be able to extend
the Desktop Grid system with custom functionality optimized for the given use case. This
extensibility comes at the price of increased platform complexity as security, compatibility,
and accountability must be ensured in the resulting multi-authority modular environment.
Management is a second cross-cutting aspect that becomes substantially more complicated
in the context of a multi-authority large-scale distributed system. Third, the necessity of
Peer-to-Peer interaction and the HPC characteristics of ISPs induce new requirements on
the network substrate that are not satisfied by existing ones. Finally, to ensure scalability
the centralized execution model of existing platforms must be replaced by a decentralized
model. Unfortunately, distribution renders load balancing, fault-tolerance, and termination
detection significantly more difficult.
To tackle the problems related to extensibility in multi-authority Desktop Grid envi-

ronments, we proposed a novel isolating module management system based on the idea
of providing configurable, shared, and ad-hoc isolation environments to deploy modules
according to arbitrary manually contributed or automatically deduced isolation constraints.
Solving the underlying Module Isolation Problem for systems of considerable size is despite
its NP-hardness possible with approximation algorithms for graph coloring and with exact
state-of-the-art methods for solving Pseudo Boolean problems. The resulting system is first
of a kind and not only applicable for Desktop Grid Computing middleware but as well for
other multi-authority modular systems like Cloud Computing infrastructures and Enterprise
Mashups.
Managing Desktop Grid systems is difficult because of scattered authority, distribution,

large scale, and volatile resources. We proposed a set of standards-based management
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services that addresses each of these issues: role-based management ensures that a party can
only access its own managed objects, Peer-to-Peer management hides spatial distribution,
agent cascading and bean clustering helps in handling the sheer size of Desktop Grids, and
disconnected management can be used to manage peers that are temporarily offline. While
these are only initial steps towards a comprehensive management solution, they considerably
simplify operating Desktop Grids and other systems with similar properties.
The challenges on the network layer are met by Orbweb, a hybrid Peer-to-Peer net-

work substrate based on the mature eXtensible Messaging and Presence Protocol . The
requirements for scalable and high performance peer groups, a fail-stop distributed system
model, and efficient multicast communication are fulfilled by adopting existing standards and
by complementing them with network component detection, Peer-to-Peer communication,
virtual topologies, topology-aware probabilistic multicast, and efficient XML encoding. As
substantiated by experimental results, Orbweb scales to thousands of peers.

Support for many-to-one communication is provided by a novel capability-aware information
aggregation system that turns the heterogeneity prevalent in Desktop Grids into an advantage
by distributing the onus of aggregation according to the stability and performance of
participating peers. The allocation quality of the resulting aggregation tree has been shown
to be superior to that of existing systems.

To realize the required decentralized execution model, Cohesion contributes a distributed
task pool that leverages the properties of Orbweb to implement an execution environment
for task-parallel applications with unpredictable and evolving interaction patterns. Distributed
termination detection is accomplished by a novel algorithm that tolerates task duplication
which is an inevitable consequence of uncertainty in partially synchronous real-world systems.
The task pool is shown to scale to hundreds of peers with high efficiency.

In conclusion, the resulting next generation middleware takes the concept of Desktop Grid
Computing one step further by opening up a new class of problems with many important
applications for efficient and scalable execution on one of today’s most demanding parallel
execution environments. To substantiate that Cohesion in fact can enable this kind of
applications, we created Satciety, a state-of-the-art distributed SAT solver that is – with
respect to system aspects – the most sophisticated available at the time of this writing.



40 Relevance to other Areas of Research
While the results of this work are first of all relevant to research on Desktop Grids, the
underlying methods to transparently handle volatility, heterogeneity, and non-uniform com-
munication costs are of interest in other important areas of research. This includes multi-
and manycore systems, Cloud Computing, and Exascale Computing.

40.1 Multi-/Manycore Systems
We haven’t seen any significant increase in CPU clock rates over the last years. Going far
beyond the 4 GHz barrier proves to be difficult1 as power consumption and heat dissipation
grow inevitably with clock speed. However, Moore’s Law [Moo75] – saying that the number
of transistors on an integrated circuit doubles approximately every two years – persists as the
number of transistors per chip can still be increased at a high rate, now by increasing the
number of cores per chip. Today, there are systems with six cores commercially available and
Intel has already finished a design for an 80-core processor [VHR+08]. However, sequential
programs no longer automatically benefit from increased CPU performance as the per-core
performance is not increasing significantly any more. Thus, one of the presumably most
important areas of computer science of the next decade will be the parallelization of software
for multicore processors [Sut05]. Since, the availability of parallelism within programs is
unlikely to grow at the same speed as the number of cores will, future processors will be
heterogeneous with special purpose cores and will have the ability to suspend and resume
cores on demand to save energy. A prominent example for this new kind of processor is
the already available and widely used Cell processor [KDH+05]. Another major obstacle for
exploiting parallelism at a larger scale is the limited bandwidth of the interconnect between
cores. Hence, future systems will have non-uniform memory access (NUMA) characteristics.
For manycore architectures consisting of thousands of cores the expected changes are

even more fundamental. Time-slicing, for example, is deemed to become obsolete as CPU
time is no longer the most precious resource and context switching makes inefficient use
of the now precious resources energy, on-chip memory, and off-chip bandwidth [ACC+09].
Instead, scheduling will be done by spatial partitioning and on-demand reallocation of the
CPU cores. Applications must be able to cope with this core volatility to use the underlying
hardware most efficiently.
In summary, many essential system properties of Desktop Grids and multi-/manycore

processors will converge.

1 Although experimental systems with liquid nitrogen cooling can be operated at considerably higher clock
rates.
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40.2 Cloud Computing
Cloud Computing [nis11] deals with on-demand provisioning of infrastructure (hardware
resources, like CPU time, memory, network bandwidth, and storage capacity), platforms
(software, like operating systems, middleware, and application servers), and applications (like
webmail, word or spreadsheet processors, and collaboration tools) with minimal management
effort for the customer. The provided resource is taken from a shared pool and is made
accessible as a service over a network. The three related service models are called Infrastruc-
ture as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
Typically, PaaS provisioning includes IaaS provisioning, and SaaS provisioning includes PaaS
and IaaS provisioning.
An essential characteristic of a Cloud Computing solution is the ability to allocate and

release additional resources on demand. This feature is called elasticity in Cloud Computing
jargon. A well-known IaaS provider is Amazon with the Elastic Compute Cloud (EC2) [Ama].
Customers can rent hosts with different capabilities (concerning CPU speed, amount of
available main memory, etc.) and are billed on a per-usage basis. So called spot instances
are hosts that are not assigned permanently. Instead, they are assigned temporarily to the
customer with the momentarily highest bid and are deprived as soon as he is outbid by
another customer. Hence, distributed applications deployed on an ensemble of EC2 spot
instances must be able to cope with both volatility and heterogeneity of resources. Moreover,
if the physical hosts are not collocated at the same site or several small instances are running
as virtual machines on the same physical host, the inter-instance communication costs are
non-uniform.

Volatility, heterogeneity, and non-uniform communication costs are not the only similarities
between Cloud and P2P Desktop Grid Computing. Middleware for both is concerned with
running applications from multiple issuers on the same set of resources concurrently. Thus,
the i-OSGi module isolation container of Cohesion qualifies as an efficient PaaS container
for Cloud Computing middleware.

40.3 Exascale Computing
A petascale system is a computer system – consisting of hardware, operating system, and
application – that is capable of delivering performance in excess of one petaFLOPS (1015

FLOPS). Several petascale systems exist at the time of this writing one of them being the
Chinese Tianhe-1A known from Chapter 1, which leads the TOP500 list [TOP10] of the
worlds fastest1 supercomputers with 2.57 petaFLOPS.

According to an outlook from the International Exascale Software Project (IESP) [ies],
the first exascale systems will emerge in the 2018-2020 timeframe. With a performance
of at least one exaFLOPS (1018 FLOPS) they will be three orders of magnitude faster
than Tianhe-1A. However, as outlined in the IESP roadmap [DBM+11], there are still many
open research questions concerning critical aspects on all layers of the system that have

1 The TOP500 table lists only systems that are able to run the Linpack benchmark. There are special
purpose architectures that are able to achieve petaFLOPS performance as well [Pet].



40.3 Exascale Computing 287

to be solved to implement the exascale vision. In particular, exascale-enabled runtime
systems must be able to cope with very dynamic environments with unforeseen variability
in application load and in availability and performance of resources. A major reason for
the latter is dynamic power management that will be indispensable in exascale systems to
reduce overall power consumption (which is expected to be in the range of 10-100 MW)
and to avoid thermal damages in increasingly compact hardware designs. The MTTF (mean
time to failure) of an entire exascale system is expected to be in the range of a few minutes
[DBM+11]. Thus, the occurrence of failures during the execution of an exascale application
will be the rule rather than the exception. In fact, exascale systems will need to be able to
cope with a continuous stream of error conditions by constant reconfiguration on all levels
of the hardware/software stack [CGG+09].





41 Future Perspectives
A legitimate question to ask is, whether Desktop Grid Computing will be of any importance 20
years from now? The answer to this question depends on whether the conditions that make
it attractive today will persist. These conditions are an increasing demand for computing
power and the huge compute capacity of billions of personal computers world-wide available
at extremely low-cost.

The projected demand for science-related compute capacity in Germany grew rapidly from
roughly 100 teraFLOPS for the time period from 2005-2007, approximately one petaFLOPS
for the time period from 2007-2009, to about eight petaFLOPS per year in 2010 [BHL05].
This tremendous increase surpasses the performance improvements as predicted by David
House in a corollary to Moore’s Law saying that the performance of integrated circuits
doubles every 18 months. Thus, there will likely be a constant shortage of compute capacity.
The situation is no different in other countries and will not change in the future as many
grand-challenge problems from many different areas of science cannot be tackled with
today’s supercomputers. This stimulates the development of exascale systems as described
in Chapter 40.

We believe that the demand for Desktop Grid Computing capacity will increase for another
reason: The suitability of applications for execution in a Desktop Grid depends critically on
the compute intensity , i.e., the ratio of time spent on performing computational operations
to that of communicating. The lower bound on the compute intensity for applications
suitable for execution in a Desktop Grid is determined by the ratio of processor performance
and network bandwidth/latency. This ratio will probably decrease with broad application of
two new networking technologies: The first are optical fiber networks. According to Nielsen’s
Law [Nie98] the bandwidth available to end users doubles every 21 months – slower than
the number of transistors of a processor according to Moore’s Law [Moo75]. However, the
broad adoption of optical fiber network technology will probably overthrow this relation as
Butter’s Law [Teh00] states that the bandwidth of an optical fiber is doubling every nine
months. Thus, bandwidth-related inefficiencies of applications with lower compute intensity
are likely to become less dominant.
The second technology trend that may result in more available bandwidth and lower

latency is not new but has reached a degree of maturity and pervasiveness that allows for
new kinds of applications – wireless networking. By applying the P2P paradigm to the
wireless networking infrastructure in metropolitan areas, an ad-hoc multi-hop high-speed
P2P network that covers entire cities can be created by interconnecting private and/or
public wireless local area networks. This way large amounts of data can be exchanged
efficiently between computers within such a network bypassing the limited infrastructure of
the Internet Service Provider.
The impressive growth in the number of personal computers deployed world-wide has

been discussed in the introduction already. However, personal computers are not the only
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computing devices. There, are ever more smart devices with considerable computing power.
The most important are smart phones, tablets, cars, set-top boxes, and game consoles. If
these are exploited in the future in the same way as personal computers are today, the
potential of Grid Computing on commodity hardware will increase by factors. Grid Anywhere
[TSSE10] is a first step in this direction exploiting the computational resources of set-top
boxes used to receive interactive digital television. The potential of the approach is huge as
virtually every household has a television. The same is true for hand held devices like smart
phones and tablets. While their usability is problematic while being on battery, this is not
true when they are in a cradle for recharging at night.
However, making all this computing power accessible will be challenging. Volunteer

Computing lives from enthusiasts donating their resources for projects with a public benefit.
While leader-board competition among individuals and teams helps in attracting and retaining
participants [ACK+02], additional incentive has to be provided to attract a broader audience
and to tap the full potential of Desktop Grid Computing. Possible approaches are amongst
others devices subsidized by parties requiring massive compute capacity, platforms realizing
a computational exchange model [CM02, PHP+03], and commercial Cloud Computing
solutions based on Desktop Grids, where resource donors are rewarded for providing their
devices.
Considering these facts and trends, we think that Desktop Grid Computing will be

important 20 years from now. Provided that the laws of Moore and Butter persist, we will
see processors that are thousand times faster than today’s fastest processors but networks
that are million times faster than today’s fastest networks (with respect to bandwidth).
Most probably, we will see Desktop Grids executing applications that today are executable
on supercomputers only.



Appendix A
Scalability Theory
Scalability is an important design goal and performance metric for distributed systems.
However, depending on which aspect of a system is considered, there are different notions
of this term. To provide a sound foundation for statements concerning scalability made
within this thesis, we give a formal definition of a scalable system. After that, we discuss
the term in the context of parallel computing.

A.1 Formal Scalability Framework
Let k be a scale parameter of a system S and m be a metric quantifying a quality property
of the system. For example the size of a system could be the scale parameter and the load
per processor could be the metric. If m(S;k) denotes the value of the metric m for the
system S at scale k, then M (S;k) = m(S;k)/m(S;1) denotes the associated normalized
metric. With C(k) being some scalability criterion, then scalability can be defined as follows:
Definition A.1.1. A system S is called absolutely scalable w.r.t. m and C, if and only if
there is a k′ for which

M (S;k) ≤C(k) (A.1)

holds for all k > k′.
Even if a system is not absolutely scalable, it can be more scalable than another one. Let
M (S) and M (S ′) be the normalized metrics for the same metric m and two systems S and
S ′.
Definition A.1.2. A system S is called relatively scalable w.r.t. S ′ and m, if and only if

lim
k→∞

M (S;k)
M (S ′;k) = 0 (A.2)

holds.

A.2 Computational Scalability
The prime measures of scalability in parallel computing are parallel speedup and parallel
efficiency. They are defined as follows:
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Definition A.2.1. Let T1 ∶= T (1) be the sequential execution time, i.e., the time a single
processor needs to complete a given task, and let T (p) be the parallel execution time, i.e.,
the time required by a p-way multiprocessor for the same task. Then the parallel speedup S
is defined as

S(p) = T1

T (p) . (A.3)

The parallel efficiency E is defined as

E (p) = S(p)
p

= T1

pT (p) . (A.4)

Typically parallelization results in sublinear speedups where an n-way parallel program yields
an m-fold speedup with 1 <m < n. However, as depicted in Figure A.1 there are other types
of speedups: slowdowns (the parallel program is slower than the sequential one), linear
speedups (an n-way parallel program yields an n-fold speedup), and superlinear speedups
(am n-way parallel program yields am m-fold speedup with n <m).

Every sequential program consists of parts that are suitable for parallel execution and
others that are not. The ratio between the time spent in the latter with respect to the
whole execution time is called the sequential fraction σ ∈ [0,1]. Typical examples are parallel
programs where each processor has to read the whole input of the sequential program.
There are three laws – two of them with associated scalability definitions – that can be used
to model the scalability of such programs, Amdahl’s Law, Gustafson’s Law, and Gunther’s
Universal Scalability Law. Figure A.2 shows the characteristics of these laws as a function
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Figure A.1: Different types of parallel speedup are slowdowns (negative speedup), sublinear,
linear, and superlinear speedups
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of the number of processors.

A.2.1 Amdahl’s Law
Let T1 be the sequential execution time for a given program with an irreducible sequential
fraction σ . Amdahl’s Law [Amd67] says that if the task can be equipartitioned into p
subtasks (see Figure A.3a), the speedup by parallel execution on a p-way multiprocessor has
an upper bound of

SA
max (σ ; p) = T1

σT1+(1−σ

p )T1

= 1
σ + 1−σ

p

. (A.5)

Definition A.2.2. A system S = (P,p) of a program P and p nodes is called strongly
scalable w.r.t. some scalability criterion C(p), if and only if it is absolutely scalable w.r.t.
m(S; p) = T (p) and M (S; p) = S(p)−1 for a task T with fixed size and C(p).

Note, that the sequential fraction limits the achievable speedup, as

lim
p→∞

SA
max (σ ,p) = 1

σ
(A.6)

holds.
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Figure A.3: Comparison of Amdahl’s and Gustafson’s Law for a program with a sequential
fraction σ = 0.5

A.2.2 Gustafson’s Law
Amdahl’s Law prohibits linear speedups for problems with a non-vanishing sequential fraction.
Given the fact that real-world programs typically do have a non-vanishing sequential fraction,
the prospect of large-scale parallel computing seems to be very limited. However, there
are real-world problems that are efficiently solved using large-scale parallel processing —
the key point is that these problems are large. Gustafson bore this point in mind when he
reconsidered the definition of scalability in the context of large-scale parallel computing.
His formulation is based on the idea of linearly scaling up the size of the input with the
number of processors (see Figure A.3b). This co-scaling interpretation of scalability results
in Gustafson’s Law [Gus88]

SG
max (σ ,p) = σ +(1−σ)p. (A.7)

Obviously, Gustafson’s Law is a linear function in p and thus allows for linear speedups.
With τ1 being the size of the input for the sequential program, the related notion of weak
scalability is defined as follows:

Definition A.2.3. A system S = (P,p) of a program P and p processors is called weakly
scalable w.r.t. some scalability criterion C(p), if and only if it is absolutely scalable w.r.t.
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m(S; p) = T (p) and M (S; p) = S(p)−1 for a task τ (p) = pτ1 and C(p).

A.2.3 Universal Scalability Law
Amdahl’s Law gives an upper bound on the achievable speedup through parallelization. This
is due to the fact that Amdahl considered the parallel processing as totally independent.
However, in most cases – embarrassingly parallel applications are an exception to this
rule – this assumption does not hold, as parallel programs have additional cost associated
with keeping shared data structures coherent. Gunther’s Universal Scalability Law (USL)
[Gun93] takes this into account by adding another parameter κ to Amdahl’s Law, which he
appropriately calls coherence. His notion of scalability is based on the relative capacity

Crel ∶=
X (p)
X (1) , (A.8)

where X (p) is the throughput on p processors. Both notions of scalability – speedup and
relative capacity – are equivalent. With this definition the USL can be written as

Crel (σ ,κ) = p
1+σ (p−1)+κ p(p−1) (A.9)

The first term in the denominator can be attributed to the ideal concurrency with linear
scalability. The second one models the limiting factor of contention due to serialization
or queuing. The third term models the additional effort to maintain coherency. The USL
is more realistic than Amdahl’s law as coherency maintenance costs are quadratic in the
number of processors and thus becomes dominant for large numbers of processors and
eventually results in significant performance degradation. This behavior can be observed
with real systems. Thus, the USL and the associated super-serial model are successfully
used to evaluate and predict (by extrapolation) parallel system performance.

A.2.4 A Note on (Super-)Linear Speedups
Every sensible parallel program must consolidate results somehow. Thus, the sequential
fraction of a sensible program is actually never zero. Hence, according to Amdahl’s Law
no program exhibits strong linear scalability. However, in practice, one can observe such
theoretically impossible linear and even superlinear speedups. A prominent example is
parallel search on datasets with non-uniformly distributed matching elements. For a detailed
explanation see [Sut08]. Another source for superlinearity are hidden increases in processing
resources. A prime example is the size of memory caches that are typically private to
processors and hence grow linearly with their number.





Appendix B
Notation
To describe the APIs and algorithms discussed in Parts V and Part VII, we adopt and adapt
the asynchronous event-based component model and the associated notation of Cachin et
al. [CRG11]. Note that we do not follow neither their model nor their notation strictly, but
introduce modifications and extensions where necessary. In the following, we describe all
major concepts and notations in order to enable the reader to understand the discussion of
the aforementioned APIs and algorithms.

B.1 Modules
Cachin’s component model is centered around the concept of modules. A module is an API
specification identified by a unique name and is characterized by a set of properties that
must be guaranteed by implementations of the API. The API itself is specified based on
the notion of events. An event is a tuple (Module-Name, Event-Type, {attr1, . . . ,attrn})
and is denoted as ⟨ Module-Name, Event-Type | attr1, . . . ,attrn ⟩. Module-Name is the
(abbreviated) name of the module that defines the event. Event-Type is a descriptive
name for the event. An event optionally carries information by means of the attributes
attri,0 < i ≤ n. In case no attributes are defined, the event is denoted as ⟨ Module-Name,
Event-Type ⟩. In case we reference an event in running text where the defining module is
unambiguously determined by the context, we simply write ⟨ Event-Type ⟩. There are two
kinds of events: Requests are used to invoke a service of a module. They are the inputs to

Algorithm B.1 Interface of the Sample module
Module:

Name: Sample Module, instance sm.
Requests:

⟨ sm, R | x, y ⟩: Description of the request R that specifies the meaning of attributes x and
y.

. . .
Indications:

⟨ sm, I | z ⟩: Description of the indication I that specifies the meaning of the attribute z.
. . .

Properties:
SM1: Property-Name Description of the property.
. . .
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a module. Indications are used to signal a condition to a module. They are the outputs of
a module. A full module definition is shown in Figure B.1.

B.2 Protocols
The implementation of a module is called a protocol (although it might perform local
operations only and might never interact with another process). A sample protocol definition
is shown in Figure B.2.
A protocol is defined by a set of named event handlers that are invoked in response

to incoming events. The name of an event handler is a pair (Module-Name, k), where
k is a serial number starting from 0, denoted as MN-k, where MN is an abbreviated and
capitalized version of Module-Name. A handler is denoted as a clause upon event event
do body, with body being a sequence of pseudo code instructions. We do not describe all
pseudo code instructions in detail here. In case they are not self-explanatory, we give a short
description in the running text.
Pseudo code instructions can access the attributes of the triggering event using their

symbolic names, as shown in the first line of the body of (S-1). Furthermore, the body of an
event handler may interact with other modules via two different instructions: trigger event;
asynchronously performs a request on a module or raises an indication, i.e., enqueues the
associated event in the process’ event queue. call event;, in contrast, is valid for requests
only and synchronously invokes associated handlers triggered by the given event. One can
think of called event handlers as being inlined at the call site. For calls, event attributes are
by-reference parameters and hence can be used to transfer information from a triggered
event handler to the call site. The handler can be thought of as being inlined at the call
site. For an example see the body of (S-2) in Figure B.2.
Sometimes an event handler should only be evaluated, if a condition holds. Such a

conditional event handler is denoted by inserting a such that condition expression right
after the event specification of the handler. We sometimes also use a condensed notation for
conditional handlers that makes use of pattern matching on the event. This is denoted by
replacing the symbolic names for event attributes with patterns that might in turn contain
symbolic names. A fully specified plain event handler (S-1) and an event handler that makes
use of pattern matching (S-2) are shown in Figure B.2. The latter one is invoked only, when
the first attribute of an event of type Event2a matches some-value.

The body of a handler may also contain function calls. These are tuples (Function-Name,
arg1, . . . ,argn) denoted as Function-Name(arg1, . . . ,argn). Specific functions used in
event handlers are described in the running text.
To initialize a protocol, an optional ⟨ Init | attr1, . . . ,attrn ⟩ request is automatically

invoked by the runtime, when an instance of the protocol is created. The given attributes
attri,0 < i ≤ n are initialization parameters and are described in the module header using a
with clause. These attributes are implicitly declared as variables and accessible from all
event handlers of the protocol.
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Algorithm B.2 Sample protocol
Implements:

Sample, instance S with parameter p.

Uses:
Module-A, instance a.
Protocol-B, instance b.

upon event ⟨ s, Init | p ⟩ do ▷ S-0
state ∶= �;

upon event ⟨ b, Event2
b | attr1, . . . ,attrn ⟩ such that Condition do ▷ S-1

sum ∶= attr1+ . . .+attrn;
trigger ⟨ a, Event1

a | sum ⟩;
. . .

upon event ⟨ a, Event2
a | some-value ⟩ do ▷ S-2

call ⟨ b, Event1
b | result ⟩;

state ∶= result;
. . .

B.2.1 Composition
The functionality of a module or protocol can be used by two different means: aggregation
and inheritance. Aggregation allows to specify a set {(name1,entity1) , . . . ,(namen,entityn)}
of abstract module interfaces or concrete protocol instances entityi with associated names
namei on which the declaring protocol depends on. Aggregation is denoted by means of
a special Uses section in the protocol definition. Each dependency is denoted using a
Protocol-Or-Module-Name, instance Instance-Name statement. A module can invoke all
requests and consume all indications from its dependencies by setting the Module-Name of
the respective event to Instance-Name like in both (S-1) and (S-2). Additionally, in case
the dependency is a protocol rather than a module, access to all its variables is possible and
denoted as Instance-Name.v for variable v.
Inheritance imports all properties, handlers, variables, and dependencies from another

protocol. Inheritance is denoted by replacing the standard module header of a module
definition by an Extends: Bequeathing-Module with Extension-Name statement. In case
an event handler from a protocol replaces one from the protocol it inherits from, this is
explicitly stated in the running text.

B.3 Event Handling
We assume that processes serially execute event handlers in a mutually exclusive and atomic
way1. The execution order is First-In-First-Out (FIFO). Every triggered event is enqueued to
the single event queue of a process and eventually executed as long as the hosting process

1 For calls this property holds for the handler’s body after the called handlers are inlined.
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is correct (in the sense described in Chapter 16). Events triggered during the execution of a
handler are enqueued at the end of the queue. One can think of a protocol as a finite state
machine whose transitions are triggered by the reception of events.
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Sven Trieflinger
High-Performance 
Peer-to-Peer Desktop Grid Computing
Architecture, Methods, Applications

Although today's largest Desktop Grid harvests idle cycles from only 0.46‰ of the Personal 
Computers (PC) deployed world-wide, it is on par with  the currently fastest supercomputer 
with respect to raw computing performance. If it were possible to attract roughly 7% of all 
PC owners to donate their resources, the resulting virtual supercomputer would right now
punch through the exascale barrier expected to be broken by supercomputers not until 
around the year 2020. 

However, with respect to application support the full potential of Desktop Grid Computing 
has not yet been unleashed. Due to their centralized interaction model, existing Desktop 
Grids are limited to embarrassingly parallel applications. By complementing the foundations 
of Desktop Grid Computing systems with Peer-to-Peer concepts and methods, their scope 
can be extended to a special class of parallel applications from the field of High-Performance 
Computing called Irregularly Structured Problems (ISP). Examples are parallel search problems, 
raytracing, and N-Body simulations.

Cohesion, the next generation Desktop Grid Computing platform described in this thesis, is 
an amalgamation of novel approaches designed to retrofit the Desktop Grid Computing 
approach to support efficient and scalable execution of ISPs on one of today’s most 
demanding parallel execution environments .
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