
Volume 24 (2005), number 2 pp. 217–245 COMPUTER GRAPHICS forum

Visual Supercomputing: Technologies, Applications
and Challenges

Ken Brodlie2, John Brooke3, Min Chen4, David Chisnall4, Ade Fewings1, Chris Hughes1, Nigel W. John1, Mark W. Jones4,

Mark Riding3 and Nicolas Roard4

1School of Informatics, University of Wales Bangor, UK
2School of Computing, University of Leeds, UK

3Manchester Computing, University of Manchester, UK
4Department of Computer Science, University of Wales Swansea, UK

contact email: m.chen@swansea.ac.uk

Abstract

If we were to have a Grid infrastructure for visualization, what technologies would be needed to build such an

infrastructure, what kind of applications would benefit from it, and what challenges are we facing in order to

accomplish this goal? In this survey paper, we make use of the term ‘visual supercomputing’ to encapsulate a

subject domain concerning the infrastructural technology for visualization. We consider a broad range of scientific

and technological advances in computer graphics and visualization, which are relevant to visual supercomputing.

We identify the state-of-the-art technologies that have prepared us for building such an infrastructure. We examine

a collection of applications that would benefit enormously from such an infrastructure, and discuss their technical

requirements. We propose a set of challenges that may guide our strategic efforts in the coming years.

Keywords: visual supercomputing, visualization, autonomic computing, grid computing, distributed processing,

mission critical visualization, computational steering.

ACM CCS: I.3.2 [Computer Graphics]; Distributed/network graphics; I.3.8 [Computer Graphics]: Applications;

I.3.m [Computer Graphics]: Visualization

1. Introduction

Today there are a variety of computational resources available

to visualization. While a huge number of users are content

with the visualization capabilities provided through modern

desktop computers and powerful 3D graphics accelerators,

many are still relying on high-performance computing facil-

ities to visualize very large datasets or to achieve real-time

performance in rendering a complex visualization. In some

areas, users have already demanded visualization capabilities

to be provided through mobile computing systems, such as

PDAs (Personal Digital Assistants), most of which are yet

to benefit from powerful 3D graphics accelerators. As the

size of visualization data (e.g. in visual data mining), the

complexity of visualization algorithms (e.g. with volumetric

scene graphs), and demand for instant availability of visual-

ization (e.g. for virtual environments) continues to grow, it is

unlikely that visualization users can be served adequately, at

least in the coming years, by an infrastructure largely based

on desktop computers.

Inevitably, this leads to a series of questions that we must

ask ourselves:

� What would be an adequate infrastructure that is built

upon modern computing and communication technolo-

gies and is designed to support visualization users?

� In what way do the computational requirements of visu-

alization differ from other software technologies?

� Is it desirable or feasible to bring a range of technologies

under one management (not necessarily under one roof)?

� If it were feasible to build such an infrastructure, what

would be an appropriate virtual machine interface for the

infrastructure?

c© The Eurographics Association and Blackwell Publishing Ltd
2005. Published by Blackwell Publishing, 9600 Garsington
Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

217

Submitted June 2004
Accepted April 2005
Received May 2005



218 Brodlie et al./Visual Supercomputing

� How should users’ experience be managed when they

access visualization resources in the infrastructure?

In fact, the computer graphics and visualization commu-

nity has been seeking answers for these questions for the past

few decades. The community has invested a huge amount of

effort in developing specialized graphics hardware, has al-

ways been among the first to deploy the latest technologies

for high-performance computing, and has accumulated large

volumes of research outputs in parallel, distributed, and web-

based techniques for visualization. Recently, the community

has shown equally great enthusiasm to embrace the cluster,

Grid and mobile technologies. However, in general, the com-

munity has tended to address these questions mainly from

the perspective of visualization technology. With the rapid

expansion of the visualization user community, there is an

urgent need to examine these questions from the perspective

of end-users, for instance, surgeons, field workers, network

managers and fraud detectives.

The authors of this survey are engaged in a collabora-

tive project, e-Viz [1], to develop a software infrastructure

for managing a variety of visualization tasks. In this survey,

we trace the historic route of deploying advanced computing

technologies for visualization, and survey a broad collection

of scientific and technological developments, including the-

ories, algorithms, hardware, software and services, for visu-

alization. We utilize the term Visual Supercomputing to en-

capsulate a subject domain concerning such an infrastructure

for visualization, and outline the user requirements by con-

sidering a range of applications. We present an overview of

the state of the art of technologies in hardware and software

for visualization, and the impacts of the Internet, Grid and

mobile technologies on visualization. We highlight those lat-

est developments that are relevant, or potentially relevant, to

visualization. We propose a set of technical challenges in re-

alizing a visual supercomputing infrastructure that manages

visualization tasks in complex networked computing envi-

ronments, as well as managing users’ experience in access-

ing and interacting with visualization resources. We believe

that autonomic computing can play an integral role in the

evolutionary development of such an infrastructure.

Our survey comes at a timely moment in considering the

relationship between visual supercomputing and Grid com-

puting. There is now a growing body of experience in adapt-

ing applications to a Grid environment. What is emerging is a

consensus that the original idea of a computational Grid that

behaved like a utility Grid for computation is perhaps over-

simplified. There may be several different structures for Grids

depending on whether the resources aggregated in the Grid

are to serve large-scale computation, large-scale data han-

dling, complex data sources (e.g. bioinformatics databases)

or perhaps to integrate business processes. In this, the visual

supercomputing paradigm presents novel challenges to the

Grid concept. A number of pioneering projects, described in

this survey, have been testing the implications of a Grid for

various visualization applications and have raised many tech-

nical issues including real-time processing, synchronicity of

resource allocation and interactivity between clients and Grid

services.

This survey paper is organized as follows. In Section 2,

we give a more precise definition of the term Visual Super-

computing and outline its technical scope. In Section 3, we

review major scientific and technological developments by

following the arrivals of different computing technologies,

and identify the state-of-the-art technologies that have pre-

pared us for building an infrastructure for visual supercom-

puting. In Section 4, we examine a collection of applications

that would benefit enormously from such an infrastructure,

and discuss their technical requirements. In Section 5, we

propose a set of challenges that may be used to guide our

strategic efforts in the coming years. These are followed by

a summary of our conclusions in Section 6.

2. Visual Supercomputing

In this section, we first define the term ‘Visual Supercomput-

ing’. We examine its relevance to the three semantic contexts

of visualization. We then outline the technical scope of visual

supercomputing from the perspectives of applications, users

and systems respectively.

2.1. Definition

Definition. Visual supercomputing is concerned with the

infrastructural technology for supporting visual and interac-

tive computing in general, and visualization in particular, in

complex networked computing environments.

In this survey, we are focusing only on the subject do-

main of visualization, though most of the discussions can be

extrapolated to other subject domains involving visual and

interactive computing, such as computer-aided design, com-

puter animation, and computer vision.

As an infrastructural technology, visual supercomputing

encompasses a large collection of hardware technologies and

software systems for supporting the computation and man-

agement of visualization tasks. It focuses on generic tech-

nologies for managing the specification, execution and de-

livery of visualization tasks. It addresses issues such as the

scheduling of visualization tasks, hardware and software con-

figurations, parallel and distributed computation, data distri-

bution, communication between different visualization tasks,

and communication between visualization tasks and their

couplings such as computation tasks or data collection tasks.

In addition, it provides infrastructural support for users’ in-

teraction with visualization systems, and manages users’

experience in accessing and interacting with visualization re-

sources. Nevertheless, visual supercomputing does not con-

cern a specific hardware, algorithm, technique and software

for processing a specific type of data in order to generate

visualization results.

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 219

Figure 1: Three semantic contexts of visualization.

We put an explicit emphasis on complex networked com-

puting environments, as this paper is intended not only as

a survey of the technologies that have been developed so

far, but also as a report on technologies that are in place as

well as those that are desirable for a future infrastructure. No

doubt such an infrastructure must take web computing, Grid

computing and mobile computing into account. Hence, it has

to provide comprehensive support for visualization tasks in

complex networked computing environments.

The best way to capture our imagination of a visual su-

percomputing environment is to consider a global Grid in-

frastructure for visualization. The above-mentioned techni-

cal features of visual supercomputing have clearly set it apart

from the traditional subject domains such as hardware archi-

tectures for visualization, parallel and distributed computa-

tion for visualization, web-based visualization, and collabo-

rative visualization. While the advances in these traditional

subject domains will have significant influence in shaping the

infrastructure of visual supercomputing, we need not only to

integrate these technical advances together in an environ-

ment, but also bring in, and develop new, technologies for

significantly improving the quality of services (QoS) of such

an infrastructure and users’ experience. This will become

apparent in Sections 4 and 5.

2.2. Semantic contexts

The gerund ‘visualizing’ refers to a process that extracts

meaningful information from data, and constructs a visual

representation of the information. In the field of visualiza-

tion, this process is commonly considered in three different

but interrelated semantic contexts as illustrated in Figure 1.

� Making displayable by a computer. This is concerned

with the algorithmic and computational process of ex-

tracting information and rendering a visual represen-

tation of the information. In this semantic context, a

visual supercomputing infrastructure should address is-

sues such as allocating and scheduling computational

resources for visualization tasks, managing data distri-

bution, and providing mechanisms for inter-process, and

inter-task communications within an infrastructure.

� Making visible to one’s eyes. This is concerned with the

process of specifying meaningful information, designing

appropriate visual representations, and conveying visual

representations to viewers. In this semantic context, a

visual supercomputing infrastructure should address is-

sues related to the interaction between users and their

visualization tasks, which can be conducted in a vari-

ety of forms, including interactive virtual environments,

Internet-based collaborative environments, mobile visu-

alization environments, and so on.

� Making visible to one’s mind. This is concerned with

users’ thought process and cognitive experience of inter-

preting received information (not necessarily in a visual

form) in one’s mind and converting the information to

knowledge in pictorial representations. In this seman-

tic context, it is neither desirable nor perhaps feasible

for a visual supercomputing infrastructure to manage the

thought process of a user. However, there may be a need

for introducing gradually new capabilities to support the

process of making visible to one’s mind.

2.3. Application perspective

The demands for visualization multiply in every direction

with an increasing number of new applications, which result

in new, and often conflicting, requirements. For example:

� In some applications (e.g. bioinformatics), the size of

datasets to be processed continues to grow, while in others

(e.g. mobile visualization), a careful control of data size

is absolutely necessary.

� In many applications (e.g. those involving 3D virtual en-

vironments), users still have plenty of appetite for pho-

torealistic visualization at an interactive speed, while in

others (e.g. visual data mining), schematic visual repre-

sentations and non-photo-realistically rendered images

are often able to convey more information.

� In many applications (e.g. virtual endoscopy), interactive

visualization can now be achieved with modern personal

computers, hence small integrated systems provide a high

degree of independence to users who operate in various

practical situations. Meanwhile, other applications (e.g.

those centralized around one or more data warehouses)

require a substantial amount of computation for visual-

ization to be closely coupled with the source of data.

Some applications, which have distributed or dynamic

data sources, demand a more complex computational

model.

From the perspective of applications, an important require-

ment for a visual supercomputing infrastructure is choice,

that is, it has to provide a large collection of platforms,

c© The Eurographics Association and Blackwell Publishing Ltd 2005



220 Brodlie et al./Visual Supercomputing

methods, mechanisms and tools to serve different applica-

tions, as well as offer each individual application a diverse

selection of means to accomplish a visualization task.

In Section 4, we will consider several major applications,

which collectively characterize the main requirements for a

visual supercomputing infrastructure.

2.4. User perspective

Visualization users are no longer limited to scientists and

engineers. At the same time, a visualization process often re-

quires a high degree of domain knowledge about the applica-

tion concerned. While the diversity of applications demands

a visual supercomputing environment to provide a large col-

lection of platforms, methods, mechanisms and tools, users

require the service to be tailored to individual needs, and to

be delivered in a seamless manner. Many users, especially

those less technically oriented, would very much hope for a

secretary-like visualization service, where they simply sub-

mit the data, give instructions and receive results. Although

to get appropriate results may require a few feedback loops,

many users certainly do not wish to get involved in choosing

hardware, programming parallelism, organizing storage for

input and output data, and so on. Furthermore, like a secretary,

perhaps a visual supercomputing infrastructure should accu-

mulate knowledge about various entities in the environments,

profiling hardware capabilities, software usage, users’ pref-

erence, etc. and gradually improving its quality of services

to individual users.

Recent developments in business computing, such as elec-

tronic customer relationship management (e-CRM) [2], have

shown that it is possible to provide users with better quality

of services with appropriate technologies that are capable of

collecting and processing users’ experience. The emergence

of autonomic computing [3] is gathering further momentum

in developing self-managed services in a complex infrastruc-

ture (see also Sections 3.6.2 and 5). Therefore, a visual super-

computing infrastructure should have the responsibility for

managing:

� visualization resources,

� visualization processes,

� source data and resultant data,

� users’ interaction and communication,

� users’ experience in accomplishing a visualization task.

2.5. System perspective

From the system perspective, a visualization task is a kind of

computation task, which exhibits a specific class of charac-

teristics. The infrastructure of visual supercomputing is built

upon a range of underlying technologies, including computer

hardware, operating systems, programming languages, data

warehouses, communications, world wide web, Grid com-

puting, knowledge-based systems, and standardization. It is

neither sensible nor feasible for the visualization community

to attempt to provide solutions in all these aspects. However,

it is necessary for the construction of such an infrastructure

to bring in the latest advances in other fields of computing

and communications, and moreover, to influence the devel-

opments in these fields. In the following section, we thereby

examine in detail the major advances and the state of the art

in the relevant fields.

3. Technologies of Visual Supercomputing

The technological infrastructure for visualization has heav-

ily depended on high-performance computing environments

until recently. In this section, we examine how the advances

in computing and communication technologies have shaped,

and reshaped, the foundation of visual supercomputing. Ob-

viously, it is not possible to provide a comprehensive cov-

erage for the large number of visualization works that have

impacted upon the development of visual supercomputing.

We hence focus on the contributions, in connection with each

major technological advance, which are particularly relevant

to the state of the art of visual supercomputing. For further

historic details, readers are encouraged to refer to several ex-

cellent surveys [4,5,6,7,8,9,10] and some major publications

[11,12,13,14,15,16].

3.1. The era of supercomputers

Elwald and Mass’s vector graphics library for Cray-1 [17]

represents the earliest efforts for providing visualization ca-

pability to support scientific computation on supercomputers.

Since then, there has been a huge volume of publications de-

voted to parallel architectures and algorithms for computer

graphics and visualization. While most of these architectures

are no longer in existence, and many of these algorithms have

difficulties in benefiting from modern hardware, the research

in the era of supercomputers has provided us with a collec-

tion of abiding concepts, which can still be entrusted to serve

modern visual supercomputing environments.1

3.1.1. Models of parallel computation

Since the creation of the very first computer, there have been

ever-increasing demands for processing power. Although

Moore’s Law [18], which suggests that processor power dou-

bles every 18 months, has been satisfied for the last 40 years,

today’s seemingly powerful desktop computers still cannot

meet the requirements of many scientists and engineers who

1Some of the works described in this section were developed
much later than the actual ‘era of supercomputers’. As they rep-
resent some fundamental concepts and methodologies, we have
conveniently placed them in this section.

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 221

seek to model, compute and visualize even larger and more

complex problems. Hence, there has always been, and will

continue to be, a need for parallel computation. There are

three paradigms for parallel computation:

� Functional Parallelism splits up the process of compu-

tation by dividing an algorithm into separate functional

sections and distributing these among different proces-

sors organized in a graph structure. One particular case

is a pipeline where functional sections are connected

along a single path from beginning to end. Data is passed

from one processor to another to be computed. The par-

allelism is achieved when different parts of data are pro-

cessed concurrently by different functional sections on

different processors. In many special-purpose graphics

hardware systems, including commodity graphics cards,

a graphics-rendering pipeline is partially realized using

functional parallelism.

� Data Parallelism splits up the process of computation by

dividing the data amongst the processors, all of which

perform more or less the same algorithmic function. The

parallelism is achieved when multiple streams of the data

are computed in parallel. Some graphics hardware, such

as the SGI InfiniteReality, makes use of data parallelism

at individual stages of a graphics pipeline. A large col-

lection of parallel visualization algorithms have been de-

signed based on data parallelism.

� Farm Parallelism, which is a hybrid approach, splits up

the process of computation into ‘tasks’, each of which

is essentially a portion of data coupled with a functional

operation to be performed. Typically, the tasks are kept

in a queue, and are distributed to a ‘worker’ processor

whenever one becomes available (i.e. idle). Many mod-

ern parallel visualization algorithms [19] have employed

farm parallelism to optimize processor utilization.

In 1972, Flynn’s taxonomy [20] redefined parallel archi-

tectures and, whilst it may be a little outdated now, it is still

generally appropriate and widely used. Flynn suggested four

categories of parallel machines, namely SISD (Single Instruc-

tion stream, Single Data stream), SIMD (Single Instruction

stream, Multiple Data stream), MISD (Multiple Instruction

stream, Single Data stream), and MIMD (Multiple Instruc-

tion stream, Multiple Data stream).

In 1978, Fortune proposed the PRAM (Parallel Random

Access Machine) model [21], which is an idealized parallel

machine of p processors sharing an unbounded global mem-

ory and a common clock. PRAM architectures are essentially

synchronous shared-memory MIMD systems, which are fur-

ther categorized into four subclasses according to whether

a memory location can be read or written concurrently. By

not considering synchronization problems and communica-

tion issues, the model focuses on the actual parallelization of

a problem.

Interconnection of processors and memory is a funda-

mental factor in classical parallel architectures. Two dis-

tinct system architectures are UMA (Uniform Memory

Access) and NUMA (Non-Uniform Memory Access) [22].

UMA systems are better known as SMP (Symmetric Multi-

Processor) systems, where all processors can access all

shared memory in the same, consistent time period. NUMA

systems have differing access times for processors depend-

ing on the locality of the memory being accessed. Hence,

NUMA systems can be much larger and more distributed

[23].

There are two principal memory structures that can operate

in both UMA and NUMA systems. Firstly, in a distributed

memory system, each processor has private access to its own

fast, local memory, but must use some form of message pass-

ing over the interconnection to access the memory of another

processor. A typical example is the Cray T3D. Distributed

memory systems are generally regarded as difficult to pro-

gram and debug, but they can scale to many thousands of

processors [24]. This is in contrast to shared memory sys-

tems, where all processors can access all memory directly

via a shared bus (normally in a UMA system) or a com-

plex switched interconnection network (normally in a NUMA

system). Both of these require synchronization functions in

order to safely handle contention for shared data. In hard-

ware specifically designed for shared memory purposes, ex-

tra cache memories are often present along with a Cache Co-

herency Protocol to ensure consistency between local cache

and global shared memory [25]. Volume visualization often

relies on memory systems supplying conflict-free simulta-

neous access to multiple voxel values in a volume dataset

[26].

Another major consideration in parallel computation is

granularity, which is often used to indicate, intuitively, the

size of parallel tasks in relation to the whole computation

requirement. Granularity of a parallel architecture is defined

as the ratio of the number of processors to the computation

capacity of each processor. Granularity of a parallel algo-

rithm is measured as the ratio of the time required for a basic

communication operation to that for a basic computation.

Different applications suit fine- or coarse-grain paralleliza-

tion. Finer granularity brings greater potential for parallelism

but increases the overhead of synchronization and commu-

nication. In graphics and visualization, researchers have de-

veloped a large collection of parallel visualization hardware

and algorithms of a wide range of granularity.

3.1.2. Models of inter-process communications

Since the first multitasking systems, it has been necessary to

provide means for concurrent processes to communicate. In

parallel and distributed systems, inter-process communica-

tion introduces delays, which may affect the efficiency of a

parallel algorithm significantly.

c© The Eurographics Association and Blackwell Publishing Ltd 2005



222 Brodlie et al./Visual Supercomputing

Shared memory architectures rely on low-latency (<1 ms)

communication between processing units and memory via a

dynamic interconnection network [27]. Several parallel ar-

chitectures, such as Cray Y-MP, utilized a crossbar switching

network to connect p processors to q memory banks. A sim-

ple but less scalable alternative is a bus-based network, in

which p processors connect to q memory banks by sharing

a common data path. Multistage interconnection networks

are a class of networks that offer more scalable performance

than bus networks and more scalable costs than crossbar net-

works. A typical configuration is the omega network where p

processors connect to p memory banks via p stages, and each

stage is an interconnection pattern connecting p inputs to p

outputs.

Distributed memory architectures typically involve static

interconnection networks, which may be of a variety con-

nection topologies [28]. In such architectures, some kind of

mechanism for message passing [29] or remote procedure

calls (RPC) [30] is required. The former enables data com-

munication between remote processes, and the latter facil-

itates server-client communication by allowing a client to

activate pre-defined remote procedures at a server and ex-

change data in a manner similar to conventional subroutine

calls. An object-oriented approach to inter-process commu-

nication enables a process to send data as well as operations

to remote processes, hence significantly improve the flex-

ibility and scalability in dynamic management of parallel

computation tasks. Common Object Request Broker Archi-

tecture (CORBA) [31] provides such an inter-process com-

munication in UNIX-like systems, while Microsoft Windows

incorporates such features into DCOM as an operating sys-

tem service. Some systems, such as Globe [32] allow a single

object to be distributed across a wide area network. Recently,

Bernholdt et al. [33] adopted a component-based approach

for building parallel applications in scientific computation.

A number of modern parallel environments provide

programmers with high-level programming interfaces for

managing inter-process communications. These include

coordination-based middleware such as Jini [34], and

document-based middleware such as Globus [35]. This en-

ables application developers to focus on the contents of the

communications, and many have adopted the XML standard

for defining the syntax of the contents [36]. Although there

is significant overhead in parsing transferred data when com-

pared with binary encodings, the XML standard facilitates

integration of different protocols and extension of existing

protocols.

3.1.3. Performance metrics for parallel systems

Many different metrics have been used to measure the per-

formance of parallel systems and algorithms. The primary

objective of using p processors in parallel to solve a problem

of size n is the multiplication of the amount of processing

power, commonly measured in terms of MIPS (millions of in-

structions per second) or FLOPS (floating-point operations

per second). However, as previously outlined, it is not possi-

ble to parallelize all problems perfectly without introducing

additional costs.

One widely used performance metric is the speedup [37],

which measures the ratio of the time taken by the fastest-

known sequential algorithm to that by a given parallel algo-

rithm executed on p processors. In theory speedup can never

exceed the number of processors p, though in practice super-

linear speedup (speedup >p) may sometimes be observed

due to the effects of a particular system architecture.

It is also important to measure a parallel system with the

efficiency metric, which is defined as the ratio of speedup to

the number of processors; and the cost metric, which is the

product of parallel run time and the number of processors

used. One design goal for a parallel algorithm is to achieve a

cost-optimal system, the cost of which is proportional to the

execution time of the fastest-known sequential algorithm. The

main obstacle to achieving a cost optimal parallel system is

the overhead resulting from parallelization, which is usually

caused by inter-process communication, extra computation

(e.g. initialization, distributed data management), and idle

waiting (e.g. load imbalance, task synchronization).

Increasing the number of processors reduces efficiency,

while increasing the size of the computation increases total

speedup hence efficiency. One of the most important metrics

is scalability [38], which measures the capability of a parallel

system to maintain efficiency by increasing problem size and

speedup in proportion to the number of processors.

Time-constrained scalability [39] is the core issue in some

applications, such as weather forecasting, where it is neces-

sary to fix the parallel run time, and to scale the problem

size according to the number of available processors. They

also examined the memory-constrained scalability, focusing

on the largest problem that can fit the available memory in a

parallel system.

3.1.4. Parallel programming paradigms

It is generally accepted that there are three primary program-

ming paradigms for developing parallel applications, namely

message passing, shared-address-space and data parallel

paradigms. The first two are sometimes collectively referred

to as the control-parallel paradigm.2

Message passing is a widely adopted programming

paradigm. Although it is commonly associated with MIMD

computers, it is universal enough to run on SIMD systems

and uniprocessor systems as well as cluster systems and

2The terms control parallelism, functional parallelism and
task parallelism are often used in an interchangeable manner,
while each places different emphasis on aspects of parallel
computation.

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 223

symmetric multiprocessor systems. It requires the program-

mer to ‘manually’ specify subtasks to be executed in parallel,

start and stop their execution, and coordinate their interaction

and synchronization.

Message Passing Interface (MPI) [29] is perhaps one of

the most popular programming environments for developing

parallel applications. It is hardware independent, and pro-

vides a set of library interface standards for managing process

creation and message communications. The MPI-2 standard

introduces dynamic process management, though only a few

implementations are MPI-2 compliant at present.

The Parallel Virtual Machine (PVM) is another implemen-

tation of the message-passing paradigm. Using the notion of

a virtual machine, PVM enables programmers to treat a set

of heterogeneous computers as a single parallel computer.

Although MPI is believed to be faster within a large multiple

processor system, PVM still scores highly due to its fault tol-

erance and recovery [40]. Other vendor independent libraries

for the messaging passing paradigm include EXPRESS, P4

and PICL.

The shared-address-space paradigm aims to provide pro-

grammers with a virtual shared memory machine, which can

be built upon distributed as well as shared memory architec-

tures. A programming environment for this paradigm nor-

mally includes primitives for creating processes and threads,

allocating shared variables, managing mutual exclusion and

facilitating synchronization. Managing mutual exclusion dur-

ing concurrent memory accesses is critical to the correctness

of parallel programs in this paradigm [41].

Linda is a coordination language, in the form of C and

Fortran extensions, for supporting shared-address-space pro-

gramming. SR is a language that supports both shared-

address-space paradigm and messaging passing paradigm.

X3H5 is an ANSI standard for shared-address-space pro-

gramming in the context of single program and multiple data

stream (SPMD). OpenMP, supported by many commercial

compilers, is an API for shared-memory programming on

multiprocessor architectures.

The data parallel paradigm provides programmers with a

collection of virtual processors. Hence, it facilitates a high-

level abstraction in developing parallel applications, hiding

the architectural features of the underlying hardware. Data are

distributed among virtual processors. It enables programmers

to focus on data parallelism within a parallel algorithm. The

parallelization of a computation task is usually realized by

an appropriate compiler, which must map virtual processors

onto physical processors [42].

Many languages were developed for supporting the data

parallel paradigm in the late 1980s and early 1990s, including

the CM-2 family (i.e. C∗, CM-Fortran and ∗Lisp by Thinking

Machine Co.), MP-2, Dataparallel C, DINO, PC++ and High

Performance Fortran (HPF) [42].

One important strand of the data parallel paradigm is

dataflow computation [43], in which operations are executed

in an order determined by the data interdependencies and

the availability of resources. The execution can be activated

by the availability of input data (i.e. data-driven) or by re-

quirements for specific output data (i.e. demand driven). The

concept of dataflow computing facilitates a functional spec-

ification of a computation task and the permitted freedom as

well as constraints in its parallelization.

This concept has also played a more significant role in visu-

alization (see also 3.2). Systems, such as OpenDX, AVS, IRIS

Explorer, SCIRun and DDV, are dataflow-based modular vi-

sualization environments. They provide a network of modules

as the specification of a visualization task, which in princi-

ple can support dataflow parallelism [44]. As most networks

normally define a coarse-grain dataflow, and most available

modules cannot handle partial datasets, these environments

offer only limited data parallelism under a centralized exec-

utive [45]. AVS, IRIS Explorer and OpenDX can all achieve

control parallelism with remote modules. SCIRun provides

threaded-task and data parallelism on shared-memory multi-

processors. DDV enables a pipelined-based, demand-driven

execution that requires the minimum amount of input data to

produce the results.

Stream-based computation, inspired by some parallel hard-

ware architectures, represents a combination of simple con-

trol parallelism and simple data parallelism. Chromium [46]

provides a collection of pluggable stream processing units,

and allows streams of OpenGL commands (which con-

tain mostly data) to be processed in parallel. Moreland and

Thompson [47] recently described a new set of VTK paral-

lel rendering components built on the top of Chromium for

supporting ‘cluster to wall’ visualization.

3.1.5. Design Methods for Parallel Visualization

Parallel and distributed computation in visualization is

broadly divided into two fundamental categories — object

space and image space [13]. ‘Object space parallel’ refers to

the decomposition of a visualization task by dividing input

data into a collection of smaller components, each being pro-

cessed by a computation node. Algorithms in this category

are also known as sort-last [48], reflecting the need for sort-

ing graphics primitives generated by different computation

nodes at the image composition stage of a graphics pipeline.

‘Image space parallel’ refers to the decomposition of a visu-

alization task into a collection of sub-tasks, each responsible

for a small portion of pixels in the visualization image to be

synthesized. Algorithms in this category are also known as

sort-first, reflecting the need for organizing (or ‘sorting’) data

according to the target sub-images prior to their entering into

the graphics pipeline.

There is always a need in any parallel implementations to

keep a balance between two, often conflicting, requirements,

c© The Eurographics Association and Blackwell Publishing Ltd 2005



224 Brodlie et al./Visual Supercomputing

namely data locality and load balance. The former helps re-

duce the communication overhead, whilst the latter attempts

to minimize the idle time of the processors involved.

Data partitioning is important for any visualization tasks

to be computed on parallel and distributed architectures. It

is particularly critical for distributed memory architectures,

such as Beowulf clusters, where partitioned data components

are distributed to different processing nodes. Data or spatial

coherence is often harnessed by partitioning algorithms to

ensure data locality while minimizing the amount of data

residing on each node [49]. Further consideration includes

image and frame coherence [50], and overlapping and ex-

change of boundary data [51]. In general, sophisticated parti-

tioning methods are largely datatype dependent, though they

can sometimes also be architecture dependent.

Data partitioning and distribution schemes may be clas-

sified according to division criteria (e.g. image-space [49],

object-space [52], or hybrid methods [53]), or organization

of data replication, which may be in one of the following

three forms:

� Complete Data Replication, in which each node holds

all data locally. This allows simple parallelization, clas-

sically image-space parallelization, through the same se-

quential algorithm on all nodes and minimizes commu-

nication overhead during processing. This technique is

effective for processing read-only data (such as many

graphics and visualization applications). In practice, it

often achieves near linear speedup and facilitates good

load balancing. However, it does not always scale well

as the cost of initial data distribution is a function of both

the size of data and the number of nodes. The demand for

large memory in each computation node is often difficult

to meet.

� Block Replication, in which a dataset is typically parti-

tioned into blocks or slices based on the ‘physical’ or-

ganization of the data. This meets the basic needs of

object-space parallelization, and replicates a small pro-

portion of an input dataset on each processor. For exam-

ple, a regular block decomposition method may divide

a volume dataset into equally sized regular blocks. As

equally sized blocks do not ensure an equal amount of

workload in each block, this sometimes leads to difficul-

ties in load balance. An irregular block decomposition

method is often employed to produce blocks that contain

similar workloads.

� Structured or Hierarchical Partitioning, in which one or

more higher level structures are superimposed upon the

raw dataset, facilitating data decomposition based on the

‘logical’ organization of the data. An occupancy map

[54] is a simple form of such structures, which employs

a binary flag to indicate whether or not a block of data

is of any interest to the rendering algorithm. A relatively

more complex approach is the Kd-tree Partitioning [55],

which is used for partitioning k-dimensional space into

sub-volumes along planes through the dataset. Another

commonly used approach is Octree subdivision [56,57],

which recursively divides the object-space (or an octant)

into eight octants. Such a structure can be used to orga-

nize the data according to various attributes, including

spatial occupancy and workload [58]. While most struc-

tured partitioning takes places in the object-space, many

of these methods can also serve image-space paralleliza-

tion as they can facilitate efficient view-dependent data

fetch [59], and combined image and data coherence. Re-

cently, scene graphs were used as a hierarchical structure

for managing sort-first, distributed memory parallel vi-

sualization [60], and facilitating real-time virtual reality

applications [61].

Load balancing is normally addressed by appropriate

task assignment methods, which are typically classified by

its run-time behaviour. Static task assignment [52,62] pre-

determines the workload of each processor according to

the predicated workload of each sub-task and processing

power of each computation node. Though it requires the pre-

processing of task assignment, it demands less communi-

cation overhead and little cost in run-time monitoring and

scheduling. It usually facilitates efficient data partition and

distribution by taking data coherence into account in task

assignment.

Dynamic task assignment (e.g. [53]) maintains a pool of

tasks, which are often of small and varying workloads. When-

ever a processor is free, it is assigned a new task from the

pool. This procedure repeats until the pool is empty. This

method is particularly effective in heterogeneous environ-

ments (where the available computation capacity of each

node is difficult to predict), and image-space paralleliza-

tion (where the workload of each sub-task is difficult to

predict).

Image composition, which transforms parallel streams into

a useful output (usually a single image), is often a bottleneck

in algorithms, especially sort last algorithms. Many classical

implementations use the direct send method, in which each

processor sends its rendered pixels directly to the proces-

sor responsible for image composition. However, this simple

method suffers from the problem of link contention with a

large communication overhead. Lee et al. [63] suggested a

parallel compositing algorithm to avoid link contention by

routing messages along pre-defined grid paths in a mesh

network. Ma et al. proposed to organize message paths in

the form of a binary-tree (also by [52]), together with a

binary swap algorithm for improving processor utilization.

Recently, Stompel et al. [64] presented a scheduled linear

image-compositing algorithm, as a highly optimized direct

send method, offering better scaling on larger numbers of

processors.

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 225

3.2. The arrival of graphics workstations and modular

visualization environments

The arrival of graphics workstations in the late 1970s changed

the face of visual computing. Up to that point, graphics was

a speciality, provided in the form of a graphics terminal con-

nected over a relatively slow communication line to a time-

sharing processor. Suddenly the processor was co-located

with the display, and so interaction became much more dy-

namic. Moreover, this development coincided with the emer-

gence of network-based windowing systems. This was sig-

nificant to visualization users, who benefited from not only

the WIMP-based user interface, but also from the interac-

tive graphics capability that allowed visualization tasks to be

carried out on the desktop.

However it took some time before visualization software

emerged to support these new opportunities. In the late 1980s,

the performance of workstations reached a point where inter-

active 3D visualization was feasible, and this performance

leap was accompanied by new algorithmic developments

such as Marching Cubes for isosurfacing [65], and ray cast-

ing for volume rendering [66]. A number of products started

to appear, first AVS and aPE, and soon followed by IRIS

Explorer, Khoros and IBM Visualization Data Explorer, and

more recently TGS Amira. These are known as modular visu-

alization environments, since applications are composed by

wiring modules together in a dataflow network, using a visual

programming paradigm. They are designed to suit end-users

with limited programming knowledge and enable them to in-

terrogate interactively a dataset via its visual representation.

Often these modular visualization environments were de-

veloped in the first instance as software tools to accompany

and promote particular graphics workstations. Thus, AVS was

developed as a tool for use with Ardent workstations, and

later Stardent; IRIS Explorer was developed to enhance the

promotion of SGI workstations. The cost was typically very

low, if not free. It is interesting that the software in most cases

has lived rather longer than the hardware it was designed to

support. For instance, responsibility for the development of

AVS and IRIS Explorer was passed to software vendors in the

1990s, NAG Ltd. in the case of IRIS Explorer. Khoros was

recently renamed as VisiQuest and marketed by AccuSoft.

IBM Visualization Data Explorer became OpenDX as IBM

decided to make it an open source product. AVS, IRIS Ex-

plorer, Khoros and OpenDX remain vibrant products today.

In the late 1990s, relatively expensive graphics worksta-

tions were gradually replaced with modern personal com-

puters equipped with commodity graphics cards. This has

certainly created new demands for visualization tools from

users in all types of occupations, for instance, security offi-

cers, and stock-brokers. It has also introduced a new dilemma

as to the best way to provide users with visualization capa-

bilities, and the role of modern personal computers equipped

with powerful graphics hardware in the infrastructure of vi-

sual supercomputing. Undeniably, it is a formidable argument

that a future visual supercomputing infrastructure should be

based on all these personal computers, either loosely or tightly

connected.

3.3. From special-purpose hardware to general purpose

hardware

Many graphics and visualization tasks are computationally

intensive, and continuing efforts have been made to offload

the tasks performed by different parts of a graphics pipeline

onto special-purpose hardware. These efforts are exemplified

by several often quoted developments, which include:

� The video random-access memory (VRAM) [67], which

provides an effective solution to improve the size and ac-

cess of the frame-buffer required by almost every graph-

ics pipeline.

� Graphics processors, such as Intel’s i860, which led to

an era when graphics processing units (GPUs) facili-

tated firstly window-based user interfaces to the desktop

computers, followed by computer games, interactive 3D

graphics, and interactive visualization toolkits.

� Multiprocessor graphics architectures, such as Silicon

Graphics’ POWER IRIS, which distributed the compu-

tational costs to a number of subsystems, each serving

a set of special-purpose operations, such as geometric

manipulation, scan-conversion, and visibility determina-

tion.

� Texture mapping hardware, which has provided com-

puter graphics and visualization with low-cost pseudo-

photorealism. In addition, such hardware has played a

significant role in the development of visualization algo-

rithms, and has been effectively deployed to accelerate a

range of visualization tasks, including texture-based vol-

ume rendering [68,69], flow visualization [70,71], splat-

ting [72] and point-based rendering [73]. Both 2D and 3D

texture mapping techniques benefit from hardware sup-

port, but only high-performance workstations currently

offer 3D texture mapping hardware.

The latest generations of commodity graphics cards, such

as the NVidia GeForce and ATI Radeon families, are allow-

ing more and more applications to take advantage of graph-

ics hardware. Demanding visualization techniques such as

volume rendering and ray casting have already been success-

fully implemented [51,74,75,76]. With their generous mem-

ory capability and sophisticated numerical processing power,

these cards have also been utilized for many circumstances

other than graphics and visualization. Their affordability and

extensive availability on almost all desktop computers, al-

lows them to become more general purpose than ever be-

fore. There are limitations on what can be achieved today,

however. For example, the size of the volume that can be

c© The Eurographics Association and Blackwell Publishing Ltd 2005



226 Brodlie et al./Visual Supercomputing

manipulated is limited by the amount of dedicated graphics

memory available on the card, and this can easily become

a bottleneck when dealing with large datasets. Texture data

must be fetched via the accelerated graphics port (AGP) from

the main memory of the PC, and this prevents interactive per-

formance from being achieved. Sophisticated partitioning of

the data can be applied as a pre-processing stage to help over-

come this limitation [77]. However, it will be the replacement

of the AGP with technology based on the new PCI-express

standard that will eventually overcome this bandwidth

bottleneck [78].

Among all of the increasingly ‘general purpose’ cards, one

stands out as a piece of truly special-purpose hardware; that is,

the TeraRecon VolumePro, which delivers high-quality and

real-time volume rendering capability [79] Built upon the

results of earlier research [80], the commercial VolumePro

card currently available for PCs can deliver up to 30 frames

per second for a 5123 voxel dataset.

While there has been a surge of interest in transferring

more computational costs from a visualization algorithm

to a commodity graphics card, there has also been effort

put into building high-performance architectures that ben-

efit from the collective power of an array of graphics cards.

Several recent developments have demonstrated how graph-

ics hardware of a PC cluster can accelerate a graphics

and visualization task [51,81], implementing either image-

space (sort-first) or object-space (sort-last) parallelism (see

Section 3.1.5).

WireGL [82] was the first of a new breed of graphics soft-

ware specifically designed to make use of such cluster sys-

tems, and it delivered general-purpose rendering capabilities

through its support of sort-first rendering to tiled displays.

The design of WireGL evolved into Chromium [46], which

is a stream-oriented framework for processing streams of

OpenGL commands on parallel architectures such as clusters.

It can support sort-first, sort-last and hybrid parallelization

strategies through the use of stream processing units. Inte-

gration between Chromium and visualization software such

as VTK and OpenRM was recently reported [47,60]. The

popularity of cluster computing has already led to a num-

ber of open-source software systems (e.g. Visapult [83,84],

ParaView [85] and VisIt [86]), and commercial products, in-

cluding software products such as Mod-viz and hardware

products such as the Sun Fire Visual Grid system and IBM

DeepView. Recent developments also include HP Sepia, Vi-

SUS [87] and Metabuffer [88].

The latest developments in graphics hardware have sug-

gested a modern approach to the architectural design

for visual supercomputing, aiming at gaining the collec-

tive power from a large number of CPUs and GPUs si-

multaneously. No doubt, cluster computing is set to be-

come a formidable technology in a visual supercomputing

infrastructure.

Figure 2: A large-scale, front projected, semi-immersive vir-

tual environment.

3.4. The drive for virtual reality

Immersive and semi-immersive virtual environments (Fig-

ure 2) represent a major technical drive in computer graphics

and visualization, and have helped push a range of hard-

ware and software technologies forward. Such a virtual en-

vironment enables users to be immersed inside a computer-

generated world with a sense of spatial presence and often

physical presence. For many visualization applications, vir-

tual environments can provide users with realistic experi-

ences in ‘interrogating’, ‘navigating within’, ‘feeling’ and

‘manipulating’ data via its visual representation.

3.4.1. Hardware technologies

Although conventional displays and input devices can offer

the most basic means for graphical interaction, they do not

provide a sense of immersion, which is highly desirable in

complex visualization tasks. Such tasks may require the user

to have a better spatial awareness, better physical control in

direct manipulation, better interaction with other users in the

same virtual world, or better association with the real world.

Several techniques were developed to enable users visually

immersed in a virtual world with 3D stereoscopic views and

volumetric views [15,89,90]. These include:

� Head-mounted display: It mounts a visual display in front

of each eye. It is limited to one user at a time, and requires

some form of cabled connection to the computer, which

could be cumbersome.

� Projection-based display: It provides stereoscopic views

by projecting two different series of images, one for each

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 227

eye, and allows several users to share the same visual-

ization at a time [91]. Users typically gain stereoscopic

experience using shutter glasses (i.e. in active stereo), or

polarizing glasses (i.e. in passive stereo).

� Autostereoscopic display: It does not require the user to

wear special glasses. One of such techniques is volumet-

ric display [92], which allows users to view a 3D dataset

directly. Parallax techniques, including hologram, par-

allax barrier display, lenticular display and holographic

stereogram [93], facilitate stereoscopic vision with mo-

tion parallax. A special layer (e.g. for example, a hori-

zontal array of cylindrical lenses in lenticular display) is

placed in front of interleaved images of a 3D object from

different viewing angles. When the viewer moves, a dif-

ferent image is picked up by the display, and the object

is perceived to have rotated.

In addition to stereoscopic displays, one growing trend is

building very large high-resolution displays, involving, for

instance, 63 million pixels [47]. Such a display can create an

unusual sensation of presence, and involvement, enabling a

team of users to interrogate a high fidelity model in its totality.

Techniques are available for users to interact with a virtual

world with 3D input devices, some of which facilitate users’

experience of physical immersion [94]. These include:

� 3D mouse: As a low-cost hand-held device, it provides a

tracker sensor and a set of buttons. By changing the orien-

tation of the mouse, the user can exert navigation control

or apply direct manipulation in a virtual environment.

� Interactive glove: It is worn by the user and has transduc-

ers sewn into the finger joints, which can be used to tell

the computer the physical characteristics of the fingers

when they are bent. This allows the computer to iden-

tify when an object is being picked up, although the user

would have no real sense of holding the object [15].

� Force feedback devices: They are able to give the user

a feel of physically interacting with virtual objects, and

are often referred to as active haptic devices. One of the

available techniques is the Phantom-like haptic device

[94], which involves a stylus fixed to a base, and can pro-

vide force resistance according to users’ input actions

and physical attributes defined with the object being ma-

nipulated. It can produce realistic feeling of the shape

and textures of a solid object and the physical property

of a deformable object.

3.4.2. Resourcing a virtual environment

The computational resources required to generate and interact

with a virtual environment can be very different depending

upon what is being simulated. A single desktop computer,

or a cluster, with a £1,000 graphics card can be sufficient

However, many high-performance applications are looking

to the Grid and parallel computing to provide high-quality

graphics and resource-intensive data processing.

One of the most successful implementations of a virtual

environment is the CAVE (Cave Automatic Virtual Environ-

ment) [95]. It provides the illusion of immersion by projecting

stereo images on the walls and floor of a room-sized cube.

Simply by wearing lightweight stereo glasses, multiple users

can enter and walk freely inside the CAVE. A head track-

ing system continuously adjusts the stereo projection to the

current position of the main viewer. The technology of the

CAVE and other large-scale visualization environments has

developed greatly over the last decade. Reconfigurable envi-

ronments are providing even greater flexibility today. CAVE

has been deployed in numerous visualization applications

around the world. Such an immersive virtual environment re-

quires the use of a high-performance computer, for example,

a SGI Onyx 3400 with 12 CPUs and 3 graphics pipes for

CAVE. A special-purpose software is also needed to manage

the virtual environment, such as the open source DIVERSE

[96].

A related development to DIVERSE is the Resource Aware

Visualization Environment (RAVE) [97]. It supports collab-

orative visualization and scales from immersive platforms,

to non-immersive but network-enabled platforms, including

PCs and PDAs. RAVE is ‘resource-aware’ so that the render-

ing platform and the visual representation will be determined

dynamically by factors such as the client capabilities and the

network bandwidth.

The Grid is becoming more and more important in visual-

ization, particularly when computational resources required

for real time interaction in a virtual environment are not lo-

cally available. Also, the popular component-based program-

ming paradigm, which has been adopted by many visualiza-

tion systems such as VTK, AVS and OpenDX, can make use

of Grid resources. This allows different computation steps

of a visualization pipeline to be distributed around the globe

[98]. In particular, the gViz project [55] has extended IRIS

Explorer to work in a Grid computing framework, with au-

thentication to allow remote execution of modules being han-

dled by the Globus toolkit.

3.4.3. Collaborative virtual environments

Collaborative Virtual Environments allow multiple users to

interact with each other and objects in a shared virtual en-

vironment. The users are usually also represented in the vir-

tual environment by embodying themselves in virtual actors.

Many of such environments are distributed systems, provid-

ing remote users with a sense of common presence.

Examples of collaborative virtual environments include

DIVE [99], MASSIVE [100], VRML-extension [101],

COVEN [102], DEVRL [103], and VirtuOsi [104]. Many of

them have focused on 3D virtual worlds, while others have

c© The Eurographics Association and Blackwell Publishing Ltd 2005



228 Brodlie et al./Visual Supercomputing

attempted to address a wide range of issues related to col-

laborative virtual environments, such as avatar design, users’

awareness, dynamic behaviours, system scalability, human

factors and interest management. However, most of these en-

vironments were built independently on a project-based in-

frastructure by assembling different technologies together in

an ad hoc manner.

Environments, such as those listed above, demand a notice-

able amount of computational resources, complex distributed

data management, dynamic resource allocation, as well as a

variety of graphics support, it is only appropriate for the future

development of such environments to be built upon a visual

supercomputing infrastructure, which can facilitate compu-

tation, communication, graphics, data management, interac-

tion management and interest management in a consistent

and coherent manner.

3.4.4. Augmented reality

Augmented Reality (AR) is an extension of the traditional

virtual environment technology. Instead of immersing a user

inside a virtual world completely, AR allows the user to see

the real world, whilst supplementing it with virtual objects

superimposed within the real world [105].

Most AR technologies have been based upon the use of

some form of transparent display, which is positioned be-

tween the real world and the eyes of the user [106]. The most

basic method is by overlaying computer graphics onto a 2D

tabletop surface. In order to align the computer graphics with

the physical reality, cameras are used to track the movements

of the user’s vision and allow the graphics to be realigned

[107]. Rekimoto et al. [108] developed an InfoTable, which

combined a set of cameras for identifying real objects and an

LCD projector for adding useful information to the known

objects. The development of a collaborative AR environment

has also been reported, in which several users can be tracked

and see the same virtual objects from different perspectives

[109].

Potential AR applications include medical visualization,

maintenance and repair, annotation, robot path planning, en-

tertainment and aircraft navigation [105]. Several AR tech-

niques have now been shown to add value to the information

available to doctors in the medical world. 3D medical datasets

of a patient can be rendered in real time and overlaid onto the

patient, allowing the doctor virtually to see inside the patient

[110]. This technique can also be used for medical training.

Some examples of deploying this technology can be found

in a recent survey [111].

One approach to facilitating interaction in an AR environ-

ment is to use Tiles as a reference between the virtual object

and the real world [112]. Through a head mounted camera,

the computer can identify the uniquely labelled Tiles and

superimpose other graphics onto each Tile. ARToolKit is a

software library for building AR applications [113], which

has been successfully used in several applications [114]. The

Tile approach was extended to become a Personal Interac-

tion Panel (PIP), which provided a two handed ‘pen and pad’

interface for AR applications, allowing users to interact with

virtual controls overlaid onto the panel [109].

Desktop PCs are continuing to increase in power and the

latest range of GPUs are capable of meeting the requirements

for many virtual environments. However, as many immersive

virtual environments consume a substantial amount of com-

putational resources, particularly when handling very large

datasets, there remains a need for a visual supercomputing

infrastructure.

3.5. The ever-growing world wide web

The world wide web has made navigating 3D virtual worlds

a readily accessible technology, through programming en-

vironments such as VRML, X3D and Java3D. It provides a

generic framework, under which it is possible to deliver visu-

alization services to every corner of the globe. Interestingly,

the web itself is becoming a focal point in information visual-

ization as its complex infrastructure, highly dynamic traffic,

and enormous amount of contents present serious challenges

to the state-of-the-art visualization technology.

The initial seminal work by Ang et al. [115] demonstrated

that the Web had a role in visualization. They associated vi-

sualization data with a MIME-type and this launched a helper

application on the client side when the browser (i.e. Mosaic

in 1994) downloaded the data. This data-driven approach has

subsequently been rarely used, but it did show that the web

can be an infrastructure for carrying out visualization, not

just publishing previously created visualizations.

Two distinct approaches have emerged. In the server-side

approach, the user submits a request from a web page, spec-

ifying the data to be visualized and the technique to be used.

The request is processed on the server, and result returned

as an image or a 3D VRML world. An early example, using

CGI-scripting and IRIS Explorer, was developed by Wood

et al. [116]. Engel et al. [117] exploit this for isosurface

extraction.

In the alternative, client-side approach, Java applets can be

used to provide simple visualizations on demand. An early

example is by Michaels and Bailey [118]. This client-side

approach has not gained wide popularity, perhaps because

the security restrictions on Java applets prohibit the process-

ing of local data. Thus, many applets tend to be educational

demonstrations rather than real services.

We can expect the server-side approach to be the forerun-

ner of serious attempts at visualization web services. Proto-

types are being developed using SOAP/XML (for Java-based

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 229

Figure 3: A collaborative visualization environment, where

Dr. Bone is collaborating with Dr. Blood at a remote site to

look at CT and SPECT data together.

services) and gSOAP (for services based on C/C++ and even

Fortran). In terms of visual supercomputing, this may offer an

attractive approach with its simplicity via a browser interface

and power via remote server processing.

3.5.1. Collaborative visualization

The Internet has also encouraged and facilitated collabo-

rative visualization where geographically distributed users

can work together as a team. Three distinct approaches have

emerged: display sharing, where a single application runs,

but the interface is shared; data sharing, where data is dis-

tributed to a group of users to visualize as they wish; and full

collaboration in which the participants are able to program

the way they collaborate.

Display sharing is supported by conferencing technology

such as Microsoft NetMeeting, and the non-proprietary VNC

[119]. This technology uses efficient compression on the

frame buffer so that screen updates can be feasibly trans-

mitted to a group of users. Data sharing has been exploited

in collaborative environments such as CUMULVS [120] and

in pV3 [121], where data from parallel computations is made

available to multiple viewers. Another example of data shar-

ing is provided by COVISE [122] where geometry is made

accessible to a group, each person in the group being able

to render as they please. The most flexible approach is full

collaboration, epitomized by the COVISA extension of IRIS

Explorer developed by Wood et al. [123]. In this approach,

each collaborator runs its own dataflow pipeline to create

a visualization, but can export data and parameter settings

to other users, and likewise import data and parameters. Al-

though developed for IRIS Explorer, the idea can be exploited

in any dataflow environment.

Figure 3 shows COVISA in action. It demonstrates the

sort of application where collaboration can be useful: two

doctors (Bone and Blood), each with his own speciality, can

collaborate over the network. Bone looks at CT, and Blood

at SPECT, but the two modalities can also be combined and

this combined visualization viewed by both. Shared pointers

allow discussion of significant features. The whole process

is supported by video conferencing facilities: either desktop

based using for example VRVS, or room-based using the

AccessGrid [124].

There are many significant issues in the design of collab-

orative visualization systems: technical issues such as het-

erogeneity of visualization systems and of operating systems

(collaboration between different visualization systems is hard

because of lack of standardized data formats); and social is-

sues such as privacy and floor control.

Both web-based and collaborative visualization have pre-

sented a visual supercomputing environment with the require-

ment for two essential services. As the web is likely to be

the dominant information highway in the near future, it is

inevitable that a visual supercomputing infrastructure will

deliver a substantial amount of its services through the web.

Web-based visualization and collaborative visualization will

continue to challenge the underlying technologies of a visual

supercomputing infrastructure.

3.6. The beginning of grid and autonomic computing

3.6.1. Grid computing

The Grid, as described by Ian Foster, is a distributed comput-

ing infrastructure for ‘co-ordinated resource sharing’ [125].

The Grid is composed of autonomous organizations that

maintain various local policies and software for controlling

their resources. This distinguishes Grid computing from clus-

ter computing, and introduces a great deal of complexity to

the software engineering needed to provide the services and

resources. A great deal of experimentation is being carried

out to determine the best way to provide middleware services

that ‘glue’ differing underlying systems together. The Grid

middleware sits between users’ applications and remote com-

puting resources. It is generally accepted that the following

key issues and services must be addressed within the Grid

middleware:

� networking quality of service (QoS),

� resource co-scheduling,

� load balancing,

� message passing,

� file transfer mechanisms,

� data security, integrity and coherence.

� authentication.

Initially Grid middleware was built as a layer on top of ser-

vices and protocols common in the Unix world, e.g. ssh, ftp

and LDAP. The Globus Project [126] developed a reference

implementation of Grid protocols by providing all of the ser-

vices and capabilities to construct a computational grid. This

resulted in a de facto standard in the form of the Globus

Meta-computing Toolkit [35], which contains a range of

tools for resource allocation and process management,

c© The Eurographics Association and Blackwell Publishing Ltd 2005



230 Brodlie et al./Visual Supercomputing

authentication and related security services, distributed ac-

cess to structure and state information, monitoring of health

and status of system components, and remote access to data

via sequential and parallel interfaces.

The Grid infrastructure must be able to support a vast range

of applications, allowing its services to be incorporated into

the applications using a mix-and-match approach. An impor-

tant aspect of the Globus Toolkit (GT) is that it separates local

and global services. Local services are kept simple to allow

deployment, and global services are built on top of local ser-

vices. The Metacomputing Directory Service is provided as

part of the toolkit to discover available resources and services.

This allows resources to be added and removed dynamically

and enables the Grid to recover if a failure was to occur.

Several other middleware developments took place in the

same time frame as Globus but based on different principles.

UNICORE [127] facilitated seamless access to computing

resources and integration of legacy applications. This devel-

opment was further extended into the European Grid infras-

tructure via the EUROGRID [128] and GRIP [129] projects.

ICENI provided an environment for deploying software com-

ponents over a federated pool of resources, with rich metadata

structures for describing the characteristics of the compo-

nents. Legion [130] federated computing resources as a vir-

tual supercomputer. Condor [131], which predates the idea of

a Grid, is Grid-like in that it locates and federates resources to

perform application tasks mainly in numerical computation.

Codine, designed for scheduling tasks across a distributed

infrastructure, was developed into Sun Grid Engine [132].

Several existing Grid infrastructures have been imple-

mented and are already being used for research. These in-

clude the UK e-Science Grid, NASA’s Information Power

Grid (IPG) and the European Data Grid. In addition, there

is the AccessGrid [124], which is not an infrastructure for

computation, but an IP-based conferencing infrastructure for

supporting large-scale collaborative activities.

In 2002, an alliance was formed between the Globus

Project and industrial partners to promote an Open Grid Ser-

vices Architecture (OGSA) [133]. This changed the delivery

of Grid middleware to a web services framework and all Grid

resources were virtualized as Grid services accessed via web

service standard interfaces written in WSDL (Web Services

Description Language). The emphasis has been shifted from

interfacing with resource control mechanisms to hosting en-

vironments for the Grid Services defined by OGSA. Thus,

Apache Axis and Microsoft .NET became the tooling envi-

ronments. Globus Toolkit 2 (GT2) was re-factored via tools

such as Axis to create Globus Toolkit 3 (GT3), which was

intended to preserve the functionality of GT2 in the new Grid

Service environment.

In March 2003, a working group of the Global Grid Forum

produced the first draft of the specification of Open Services

Grid Infrastructure (OGSI), which involved moving key web

services standards beyond what has been defined by the rele-

vant standards groups. Because of the growing strain between

the business and commerce users of web services and the

scientific users of Grid computing, Globus and IBM recently

announced that they were moving from OGSI to a newly

proposed standard WS-RF (Web Services Resource Frame-

work), which exposes resources (as in GT2) but now in the

context of web services. The concept of inherent state in the

former OGSI Grid Service has been abandoned, as web ser-

vices are stateless entities and have difficulties in handling

stateful management, such as a job queue. The beta release

of the Globus Toolkit 4 (GT4), which includes support for

WS-RF, has been made available in early 2005. In the mean-

time, WS-RF implementations are being developed based on

.NET (by University of Virginia) and Perl (by University of

Manchester) respectively.

The main problem with applying the Grid methodology,

and any of the above implementations or proposed standards,

to visual supercomputing is the need for interactivity with

components running on the Grid. While users’ interactive in-

tervention is an integral part of many visualization tasks, it

does not always fit naturally with the idea of virtual ‘visualiza-

tion’ resources. Some sophisticated middleware components

are therefore required. One interesting attempt is the develop-

ment of an Interactive Access plug-in to the UNICORE client

[134], which allows end-users to interact, via the UNICORE

middleware, with simulation processes running at multiple

locations.

The development of the Grid has laid critical foundations

for a visual supercomputing infrastructure. It is highly pos-

sible that the development of visual supercomputing can be

piggybacked on that of the Grid, and can learn a great deal

from the evolution of the Grid technology. However, it is also

important to recognize that visualization is not just another

computation process and hence a visual supercomputing in-

frastructure is not just a subset of the Grid infrastructure for

launching computational tasks.

The great emphasis on a web services framework in Grid

computing indicates that techniques developed for web-based

visualization may have a more generic use in Grid computing.

The server-based visualization services (see Section 3.5) al-

low visualization to deliver in a coarse-grained visualization

service, taking input data and sending back images. However,

it poses a much more difficult challenge to deliver a sophisti-

cated service, similar to modular visualization environments

(see Section 3.2), that could access Grid resources using the

web services paradigm.

3.6.2. Autonomic computing

A Grid infrastructure, or more generally, a pervasive infras-

tructure, will be considerably complex, and the difficulties

in managing such an infrastructure raise a serious question

as to whether it is adequate for it to be managed by human

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 231

administrators, and whether it requires a much more system-

level automation than what is currently implemented. Re-

searchers and developers in many fields, such as distributed

systems, data communications, Internet technology, Grid

computing, agent technology, database systems, expert sys-

tems and business management systems, are embracing the

concept of autonomic computing in managing large and com-

plex infrastructures and services.

Autonomic computing [3] refers to computing systems that

possess the capability of self-knowing and self-management.

Such a system may feature one or more of the following

attributes:

� Self-configuring—It can integrate new and existing com-

ponents with little intervention from an administrator.

� Self-optimizing—It can continually try alternate config-

urations to determine if the current one is optimal.

� Self-healing—It can detect, and recover from, failure of

components, hardware or software.

� Self-protecting—It can detect attempts to compromise it,

perhaps from hackers or viruses, and react accordingly.

A noticeable amount of research effort in autonomic com-

puting has been placed on the self-management of system

infrastructure and business services. Examples of this in-

clude self-configuration in patching management [135] and

Grid service composition [136], self-optimization in power

management [137], business objectives management [138],

and network resource management [139], and self-healing

in online service management [140] and distributed software

systems [141].

Efforts have also been made to broaden the scope of auto-

nomic computing, addressing a wide range of related research

issues, such as economic models [142], physiological models

[143], interaction law [144], preference specification [145],

ontology [146,147], human-computer interaction [148], and

so forth.

Though the development of generic software environ-

ments for autonomic applications is still in its infancy, sev-

eral attempts were made, which include projects such as

QADPZ [149], AUTONOMIA [150] and Almaden Optimal-

Grid [151].

QADPZ [149] provides an open source framework for

managing heterogeneous distributed computation in a net-

work of desktop computers using autonomic principles. In

QADPZ, the system complexity is hidden in the middle-

ware layer, facilitating self-knowledge, self-configuration,

self-optimization and self-healing.

AUTONOMIA [150] is a prototype software development

environment that provides application developers with tools

for specifying and implementing autonomic requirements in

network applications and services. It features an application

management editor for requirements specification, a mobile

agent system as a uniform execution interface to underlying

hardware and operating systems, an autonomic middleware

service for managing autonomic services, an application del-

egated manager as a broker between components and re-

sources in the context of Jini lookup service [34], and a fault

handler for self-healing.

OptimalGrid is a self-configuring, self-healing and self-

optimizing grid middleware, using a set of distributed white-

boards for communication between the different nodes. A

computational problem is expressed using Original Problem

Cells (OPCs), which describe the connectivity of the cells

with their neighbours and the calculations to be performed

using the neighbours’ information. OPCs are aggregated in

collections, which are themselves part of Variable Problem

Partitions (VPP), assigned to grid nodes. The OptimalGrid

system is then able to self-configure, using a list of available

compute nodes with their characteristics, and can optimize

the repartition of OPCs after each computation cycle. As the

communication history between nodes is saved in the white-

boards, if a node is lost the system is able to recover and

catch up with the computation, rather than restarting the en-

tire problem. The use of these different autonomic features

permits to deliver a grid system more robust and easier to use.

Future plans include integrating support for the Open Grid

Services Architecture (OGSA) [133].

By mimicking the behaviour of the human autonomic sys-

tem especially in dealing with homoeostasis, autonomic com-

puting is believed to be a solution to the increasing admin-

istrative complexity of computing infrastructures. Hence, no

visual supercomputing infrastructure can afford to ignore this

emerging technology.

4. Applications of Visual Supercomputing

If we were to have a Grid for visualization, what kind of

applications would benefit from it, and perhaps more im-

portantly, how would these applications necessitate specific

requirements for such an infrastructure? Shalf and Bethel

recently outlined a futuristic scenario depicting how a geo-

physics researcher and her international collaborators may

benefit from grid-based computation and visualization. They

concluded that the current state of visualization is not grid

ready [98]. In this section, we examine several traditional

and newly emerged application areas, and discuss their re-

quirements, especially those difficult to be met by the state-

of-the-art visualization environments.

4.1. Visual data mining and large-scale

data visualization

Never before in history have we had such capability for gen-

erating, collecting and storing digital data. Data repositories

c© The Eurographics Association and Blackwell Publishing Ltd 2005



232 Brodlie et al./Visual Supercomputing

Figure 4: Video visualization needs to deal with data streams

of an arbitrarily large size. Stream-based rendering can be

effectively deployed to visualize video streams.

at terabyte level are becoming commonplace in many appli-

cations, including bioinformatics, medicine, remote sensing

and nano-technology. In some applications, such as network

traffic visualization [152] and video visualization [153] (Fig-

ure 4), we are encountering the scenario that dynamic data

streams are almost temporally unbounded. Many visualiza-

tion tasks are evolving into visual data mining processes [9].

These applications are placing a huge strain on the existing

visualization environments, and challenging the state-of-the-

art technologies in many ways. They demand a variety of

infrastructural supports, such as,

� for providing sufficient run-time storage space to active

visualization tasks;

� managing complex data distribution mechanisms for par-

allel and distributed processing;

� choosing the most efficient algorithm according to the

size of the problem;

� facilitating the search through a huge parameter space for

the most effective visual representation.

Data management is the very first issue in handling large

datasets. Many visualization processes involve datasets that

are much too large for the internal memory of a computer,

and have to rely on external disk storage, usually under the

virtual memory management of an operating system. The ex-

ternal disk access can become a serious bottleneck in terms

of rendering speed. Out-of-core algorithms (also known as

external memory algorithms) [7] are designed to solve a vari-

ety of batch and interactive computational problems by min-

imizing disk I/O overhead. Various out-of-core visualization

algorithms have been proposed to handle large structured

and unstructured 3D datasets, for instance, in the context of

(i) isosurface extraction [154,155,156], (ii) terrain rendering

[59], (iii) streamline visualization [157], (iv) mesh simplifi-

cation [158], (v) rendering time-varying volume data [159],

(vi) rendering unstructured volumetric grids [160], and (vii)

ray tracing [161]. While some algorithms rely little on in-

ternal memory (e.g. [155,160]), others utilize preprocessed

data structures, such as octree [157] and indexing [159] to

optimize disk I/O operations. Kurc et al. [162] recently re-

ported their experience in visualizing large volume datasets

using Active Data Repository, which is composed of a set of

modular services and a unified interface for supporting the

management of, and mapping between, in-core and out-core

data.

There has been a similar amount of effort, if not more,

for developing techniques that synthesize a visualization im-

age using less than the full dataset. Two commonly used

approaches for determining a subset of data to be visualized

are multiresolution and view-dependent data organization.

Multi-resolution data organization makes use of various

hierarchical spatial structures to manage levels-of-details

(LODs) of a graphical model or scene. Such structures facili-

tate real-time rendering by allowing an appropriate LOD to be

selected according to the requirements of interactivity and the

constraints of computational resources. In computer graph-

ics and visualization, there exists a large collection of works

based on this approach. For example, octrees and min-max

indexing were used for isosurface extraction [154,163,164].

Laur and Hanrahan [165] utilized an octree for progressive

refinement in splatting. Wilhelms et al. [166] employed a k-

D tree for direct rendering irregular and multiple volumetric

grids.

Viewdependent data organization makes use of the con-

cepts and algorithms of hidden surface removal, and prior-

itizes geometrical primitives according to their visibility to

the viewer. For example, Livnat and Hansen [167] proposed

a view-dependent isosurfacing algorithm. LaMar et al. [168]

prioritized volume data based on its proximity to the viewer.

Other view-dependent works include visible set estimation

[169], visibility-based prefetching [77], and view-dependent

progressive rendering [170].

While it is necessary to deal with problems arising from

very large datasets, it is equally important to improve our ca-

pability for managing inter-related datasets in order to gener-

ate more meaningful visualization. In computer graphics and

computer aided design, scene graphs, built upon the concept

of constructive solid geometry, have played an indispensable

role in combining simple objects into a complex object and

bringing many objects together into a scene. It is common

for graphics systems to support scene graphs, for instance,

in RenderMan, OpenGL, OpenRM, VRML, Java3D, POV-

ray and Open Scene Graph. However, support for combina-

tional modelling in visualization systems [60,61] is largely

based on surface-based scene graphs, relying on image-space

composition. Early research efforts for modelling complex

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 233

visualizations involving multiple datasets were focused on

voxelization [171]. In order to address the problems asso-

ciated with voxelization [172], such as excessive data size

and data degeneration, Chen and Tucker [173] outlined the

concept of constructive volume geometry for combining vol-

umetric datasets and procedurally defined scalar fields. vlib

[174], an open source volume graphics API, offers volumetric

scene graphs as its fundamental data structure, and provides

a discrete ray tracer for direct rendering volumetric scene

graphs.

In large-scale data visualization, high-performance render-

ing techniques, such as massively parallel rendering [175],

progressive rendering [165] and stream-based rendering [46],

are essential to the process of making displayable by a com-

puter (Figure 1). However, facing very large datasets, mak-

ing meaningful information visible to one’s eyes is often more

critical in visualization. With very large datasets, ‘meaningful

information’ is often featured in a visualization at a sub-pixel

level, in a large amount or in four or higher dimensions. This

challenges us to develop visualization techniques into tools

for visual data mining [9].

A popular approach to the handling of a huge amount

of visual information is the use of focus and context tech-

niques, which highlight a ‘focus’ in detail and depict its

‘context’ with less details to provide an overview. Focus and

context techniques such as fisheye views [176], perspective

wall [177], hyperbolic space [178] and rubber sheets [179],

have been deployed extensively in information visualization.

This approach has also been employed in scientific visualiza-

tion, deformation-based volume visualization [180], distor-

tion viewing [181], non-photorealistic rendering [182], mag-

nification lens [183], two-level rendering [184], and digital

dissection [185].

Data mining should be closely coupled with visualization

[186]. Interactive visualization is an indispensable tool in

many data mining activities [187,188]. Interactive visual-

ization of large datasets not only demands sufficient com-

putational resources, but also requires effective interactive

techniques for data exploration, view navigation, data seg-

mentation, data filtering, data fusion and direct manipulation

[9].

One of the main challenges is computer-assisted design of

visual representations. Many techniques in information vi-

sualization enable automated placement of information in a

visualization, for instance, treemap [189] and Sunburst [190]

in hierarchy visualization, recursive pattern [191] and circle

segments [192] in time-series visualization, and spring mod-

els [193] and Kohonen networks [194] for self-organization

and self-optimization in the entire information space. In vol-

ume visualization, initial attempts have been made to auto-

mate the specification of transfer functions. Marks et al. [195]

proposed a design galleries approach to the problem, while

Kindlmann and Durkin [196] developed a semi-automatic

method for generating transfer functions.

The problems surrounding large-scale data visualization

are collectively becoming an infrastructure issue, as it is un-

likely an individual technique can provide a satisfactory so-

lution alone. To process a large amount of data at the speed

required, it is necessary for a visual supercomputing infras-

tructure to provide dedicated computational resources and

application software systems. It is useful for the infrastruc-

ture to select appropriate modelling, processing and rendering

techniques according to the available resources and interac-

tion requirements. It is also desirable for the infrastructure

to offer a wide range of tools for visual data mining as such

activities are often unplanned and the effectiveness of a par-

ticular tool cannot always be pre-determined.

4.2. Scientific computation and computational steering

Problem Solving Environments (PSEs) are ‘computer systems

that provide all of the computational facilities necessary to

solve a target class of problems’ [197]. For example, Cac-

tus, is an open source PSE, which was originally designed

to provide a framework for solving Einstein’s Equations, and

gradually evolved into a ‘unified modular and parallel compu-

tational framework for physicists and engineers’ [198]. While

PSEs have been successfully deployed to model many prob-

lems in science, engineering and finance, new problems, in-

cluding a number of grand challenge problems, continue to

be formulated.

In scientific modelling and simulation, it is rare to get a

correct model without a complex feedback loop involving

specification, modelling, computation, visualization and op-

timization. Upson et al suggested such a computation cycle

[199]. Marshall et al. [200] identified three modes of com-

bining simulation and visualization, namely post-processing,

tracking and steering.

� In post-processing, visualization is merely a post-

processing stage of simulation and cannot directly influ-

ence (or even abort) the simulation. This asynchronous

working requires the simulation to complete before visu-

alization begins, and so there is no opportunity to effect

any control on the simulation through the visualization.

A benefit however is that the scientists can take as long as

they want in visualizing the results, as the time scale for

visualization is independent of that for the simulation.

� In tracking, the simulation and visualization are coupled,

but there is no concept of the user altering the simulation

on the basis of the visualization, other than the user hitting

the abort key!

� In steering, the control parameters of the simulation are

exposed, and can be manipulated as it runs. The model

was expressed as dataflow. This concept was extended

by Brodlie et al. [104] to allow an audit trail of check-

point information to be stored in a tree structure, called

History Tree. This generalized steering to facilitate a

c© The Eurographics Association and Blackwell Publishing Ltd 2005



234 Brodlie et al./Visual Supercomputing

Figure 5: A computational steering environment developed

in the RealityGrid project.

‘reverse gear’. Simulation and visualization were seen

as separate processes, linked through a manager. Re-

cently Zhou et al. [201] proposed an approach towards

automatic steering based on comparative visualization

involving both experimental and computational results.

Building a generic computational steering environment is

a non-trivial task. A significant development in this area was

carried out by van Liere, van Wijk and Mulder [202,203,204].

The key innovation was to build steering widgets, which sat

within the visualization, to enable direct manipulation of the

simulation.

A major software advance was made with SCIRun, which

was a dataflow environment specially designed for steering. It

facilitated the interactive construction, debugging and steer-

ing of large-scale scientific computations [205]. CUMULVS

was developed to provide tools for scientific programmers. It

is a software framework for linking steering and visualization

services with parallel simulation. It provides two libraries:

one for the application, the other for the steering and visual-

ization front-end. It is collaborative in the sense that multiple

remote viewers can connect to a simulation. Recently the

RealityGrid project (Figure 5) have built some impressive

demonstrations of steering Lattice-Boltzmann simulations,

which are massive Grid applications, involving collections

of machines across the world, and are state of art in what can

be achieved on a global scale [206].

On a smaller scale, the gViz e-science project [207] has

studied two approaches to computational steering. One ex-

tends IRIS Explorer to run in secure distributed fashion across

Grid machines, so an IRIS Explorer session spans the inter-

net. The simulation runs inside IRIS Explorer. The other is

very similar to RealityGrid in building an API for steering,

and decoupling the simulation code from the visualization.

The close-coupling between computation and visualiza-

tion in computational steering has highlighted the need for

advanced inter-process and inter-task management in a visual

supercomputing infrastructure. This challenges the underly-

ing technologies of visual supercomputing, requires further

advances in fields such as operating systems (e.g. for pro-

cess management and migration), and programming envi-

ronments (e.g. for component-based programming, dynamic

integration management).

As scientific modelling and simulation usually involves

many repetitive steps in a feedback loop, there is a great

scope for a visual supercomputing infrastructure to collect

performance data in such a feedback loop, and transform the

data into knowledge, which can be used to offer users ap-

propriate guidance, identify the best configuration, automate

part of the process, and hence provide a higher quality of

services. Such an approach has been extensively deployed in

business, a conceptually similar situation, where customers

are involved in a repetitive process loop, and data measur-

ing various attributes of the process can easily be collected

and analysed. There are some successful examples where the

quality of services has been improved.

4.3. Mission critical visualization

This category of visualization requires the real time process-

ing of large datasets, possibly from diverse sources, that can

then be fed into an interactive visualization environment. Typ-

ically, such a system provides decision support tools to the

end user. Application areas exist in defence and intelligence,

law enforcement, healthcare and social services, scientific re-

search and education, transportation and communication, and

energy and the environment. A mature example of mission

critical systems are training simulators such as flight simu-

lators, which have used custom built hardware to train pilots

for many years both in routine flying and critical incident

handling [208].

Medical simulators are expected to be the next major ap-

plication to benefit from simulator technology, but based on

commodity graphics hardware (see Section 3.3). Clinicians

are also using intra-operative surgical planning tools and neu-

rosurgeons, for example, have been utilizing image guidance

for the last decade [209]. The military is another large mar-

ket for mission critical visualization. For example, the US

Fleet Numerical Meteorology and Oceanography Centre was

tasked with supplying military forces deployed in the Persian

Gulf with highly accurate meteorological information critical

to conducting land, sea and air operations.

A characteristic of mission critical visualization has been

the requirement for specialized and often expensive equip-

ment. Until recently, growth has been restricted to niche

areas and little work has been published on the optimiza-

tion and scheduling problems of the visualization task. Grid

and cluster based computing, however, are now providing an

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 235

Figure 6: Visualization-guided surgery is a typical applica-

tion of mission-critical visualization.

infrastructure for further exploitation and visualization will

be a key component of future work.

For example, as shown in Figure 6, in a system for de-

livering interactive volume interrogation of patient data in

the operating theatre [210], visualization tasks were carried

out on a server over a mile away from the hospital and then

delivered across the data network. Applications such as this

raise many issues including: how to guarantee a minimum

bandwidth required for both data communication and data

processing; the use of redundancy for both communication

and computation to ensure a reliable delivery of visualization;

and the handling of secure information. Synchronization al-

gorithms as well as data distribution techniques must also be

considered when making use of multiple compute resources

[211]. Those are exactly the issues to be addressed by a visual

supercomputing infrastructure.

4.4. Mobile visualization

Ubiquitous computing is capturing our imagination of a

global infrastructure that supports not only networks of desk-

top computers and high-performance computers, but also a

huge number of wearable and mobile computing devices

[212]. The prospect for integrating mobile devices into the

visualization pipeline and its applications offers new oppor-

tunities for accessing, interrogating and manipulating data

remotely.

Izadi et al. [213] proposed the FUSE system as a devel-

opment tool for collaborative systems across multiple plat-

forms. Lamberti et al. [214] demonstrated a mobile graphical

interactive rendering task running on a PDA, which is pro-

vided by a remote graphics workstation. Wolf et al. [215]

proposed the Smart Pointer as a role for PDA devices, where

it either presents a subset of the visualization when part of

a larger visualization environment (such as a CAVE) or it

aims to provide the same overall image as other (desktop)

clients, both approaches using a remote visualization server.

Hartling et al. [216] presented a middleware system, Tweek,

which displays a 2D GUI to a virtual environment using a

PDA. The user may interact with the virtual environment via

the PDA. D’Amora and Bernardini [217] developed a PDA

3D viewer that can access a remote database of CAD models.

Apart from the technical aspect, human factor issues in using

PDAs for visualization need to be addressed [218].

We categorize the demands upon both the mobile device

and the visualization service into the following classes or-

dered according to their communication requirements:

� Remote scheduling: A device, such as a PDA, can be

used to monitor the account status of the user on a visu-

alization server. The users should be able to consult their

account, see the current state of any job, and perform

basic management tasks, such as start, stop, hold and re-

move. This requires a low bandwidth duplex channel for

textual communications.

� Remote monitoring: Higher level monitoring functions

can take advantage of the colour displays on the de-

vice. Users may query their account to retrieve still im-

ages which are visualizations of their data. They may

(pre)select parameters for rendering (such as rendering

method and transfer function), and be presented with

the image. Such parameters may be used to assist with

scheduling decisions. This class requires a duplex chan-

nel with a higher bandwidth downstreaming traffic.

� Remote steering: A remote user can be notified on job

(or intermediate result) completion, and may view a vi-

sualization of the result. Some limited interaction with

the visual representation is possible as the user’s feed-

back can be used to generate modifications to the current

job. This is most useful for checking intermediate results

during batch mode without having to be tied down to one

location. Some steering of the simulation is possible as

jobs can be stopped and restarted from a recent state with

new parameters. The bandwidth requirement is higher as

the wait time for several images may be undesirable. The

computational demands on the PDA are higher due to

the need to zoom, pan, and interact with the data. At this

stage, transmission and interaction with small 3D models

may be desirable and possible.

� Remote visualization: The users interact freely with the

simulation, using the visualization to explore all aspects

of their data. This places a high demand on the PDA

as well as the server. The visualization could be in the

form of a sequence of images generated by the server and

transmitted compressed to the PDA, or the server could

send a stream, which could be processed by the limited

graphics hardware available on the PDA. User interface

widgets could be overlaid over the data, and the user

will send interaction data back to the server in order to

c© The Eurographics Association and Blackwell Publishing Ltd 2005



236 Brodlie et al./Visual Supercomputing

Figure 7: Mobile technology has offered an exciting scope

for developing new visualization applications.

steer the simulation. Some frame loss, and some pauses

in results are inconvenient but not critical.

Mobile visualization (Figure 7) introduces an interesting

design problem for a visual supercomputing environment. It

reminds us of the desktop technology two decades ago when

low resolution displays and limited computation resources

were supported by mainframe computers. However, it also

exhibits a completely new scenario where the requests for

visualization or task management, can come from anywhere

with often unreliable communication channels in terms of

bandwidth and security. The infrastructural support to mobile

visualization may significantly broaden the application scope

of visualization, and transform this largely laboratory-based

technology to a pervasive technology.

5. Challenges in Visual Supercomputing

The above discussions have clearly indicated the need for en-

compassing a large collection of infrastructural issues related

to the management of visualization tasks in a common frame-

work, for which we have introduced the subject domain of

visual supercomputing. The requirements from applications,

such as visual data mining, computational steering, mission-

critical visualization and mobile visualization, have indicated

a high research priority to the infrastructure of visual super-

computing. While such an infrastructure can benefit from the

state-of-the-art technologies in visualization, we are still fac-

ing many new challenges in order to realize a well-designed,

serviceable and cost-effective infrastructure for visual super-

computing.

Hoare outlined a set of criteria for a grand challenge in

computer science [219]. According to these criteria, building

a visual supercomputing infrastructure can be considered as a

grand challenge in the field of visualization. It raises a series

of scientific questions such as:

� Architectural design: Would it be desirable or feasible to

build an infrastructure for visual supercomputing based

on that of the Grid? How would it accommodate the dif-

ferent needs for centralized, distributed or independent

services from various applications? How would such an

infrastructure provide generic support to the management

of visualization data, distributed visual data mining, very

large-scale data visualization, mission-critical visualiza-

tion and mobile visualization?

� Technology deployment: Should special-purpose graph-

ics hardware form the central core of a visual super-

computing environment? If so, what would be the re-

lationship between such central hardware and graphics

hardware available on personal computers? How would

different hardware attributes impact upon visualization

algorithms, and how would visualization tasks be man-

aged to take such attributes into account?

� Quality of service: How would a visual supercomputing

infrastructure provide seamless services to many users

and for many applications, instead of just another ‘remote

login’ service? What would be the role of the infrastruc-

ture in managing interaction, data and knowledge about

users’ experience? In what way could users benefit from

a knowledge-based infrastructure?

One emerging strategy for developing complex computing

infrastructure is autonomic computing [3] (see also 3.6.2),

which seeks inspiration in self-adaptive biological systems

and self-governing social and economic systems.

Adapting the deployment model, proposed by IBM [220],

for the gradual evolution of complex system-wide self-

managing environments, one can envisage a similar five-level

deployment model for visual supercomputing, which can be

developed evolutionarily.

� Level 1: Basic—At this level, a visual supercomputing

infrastructure is an integrated system platform that pro-

vides visualization applications with necessary compu-

tation and communication resources. Typically, users are

fully involved in identifying appropriate tools, locating

computation resources, and managing data distributions.

It is often necessary for users to navigate themselves

through complicated technical obstacles, such as net-

working, security, parallelization, data replication, and

so forth.

� Level 2: Managed—At this level, a visual supercomput-

ing infrastructure will have a managed service layer be-

tween the user interface and the system platform. The

service layer is aware of the availability and ontology of

data and resources, and can provide services to various

visualization applications according to dynamic require-

ments of users and applications as well as dynamic states

of the system platform. To a large extent, the develop-

ment of the Grid technology is aiming at the delivery of

a general-purpose infrastructure. To manage visualiza-

tion applications effectively, it is necessary to incorporate

more advanced service features into the Grid technology

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 237

Figure 8: The deployment model for developing a visual supercomputing infrastructure.

for supporting a variety of visualization needs such as

interactive, distributed, mobile, and mission-critical ap-

plications in a more transparent manner.

� Level 3: Predictive—At this level, a visual supercomput-

ing infrastructure will have an information layer between

the user interface and the service layer, which collects,

monitors and correlates various user interaction data and

system performance data. It provides users with analyti-

cal data, which may indicate the quality of visualization

results, effectiveness of visualization tools, and so on.

In addition, this layer can enable faster and better task

specification by reporting potential problems and rec-

ommending suitable tools and visual representations. It

is at this level, the infrastructure starts to manage users’

experience in carrying out visualization tasks.

� Level 4: Adaptive—At this level, a visual supercomput-

ing infrastructure will have an adaptation layer between

the information layer and the service layer. Based on

the information collected, the adaptation layer has the

functionality for self-configuring and self-optimizing the

computational requirements of a visualization task, as

well as the functionality for self-managing the system

platform and various visualization services dynamically.

It is at this level, visualization users can be largely freed

from software management, and are able to focus on their

core business, that is, visualization.

� Level 5: Autonomic—At this level, the traditional user

interface in a visual supercomputing infrastructure will

be replaced by an intelligent user interface, for instance

‘a virtual secretary’, which is capable of transforming in-

formation to knowledge and provides users with a wide

range assistance. Such assistance may include specify-

ing visualization tasks, scheduling inter-dependent jobs,

organizing raw data and visualization results, managing

security, checking the quality of the service and results,

and arranging the sharing of the data with other users.

Figure 8 illustrates evolutionary advance of the infras-

tructure through the five levels. In this deployment model,

each layer is merely a conceptual placeholder for a collec-

tion of functional components (e.g. services, tools, agents,

databases, knowledge-bases, and so on). It is not necessary

for the development and deployment of each level to fol-

low a temporal order. Nor is it desirable to make each layer

a centralized bottleneck in the process of visualization. It

is most likely that the infrastructure will be realized with

a large number of autonomous, interacting, self-governing

functional components.

Building a visual supercomputing infrastructure is no

doubt an ambitious grand challenge. However, we have al-

ready had a solid foothold at Level 1, and are rapidly ap-

proaching Level 2. A noticeable amount of research effort

is being made to develop system-level autonomic computing

techniques in many fields, including distributed systems, data

communications, Internet technology, Grid computing, agent

technology, database systems and business management sys-

tems. Some of such effort can be viewed as ‘horizontal’ de-

ployment of autonomic computing at the system layer and

service layer of a visual supercomputing infrastructure (Fig-

ure 8), while others can provide new concepts, methods and

tools for the development of the intelligent user interface, in-

formation and knowledge layer and adaptation layer. Hence,

we believe that having such a visual supercomputing infras-

tructure is a realistic challenge.

6. Conclusions

In this survey paper, we have outlined an agenda for visual

supercomputing, which defines a subject domain concerning

the infrastructural technology for visualization. We have con-

sidered a broad range of scientific and technological advances

in computer graphics and visualization, which are relevant to

visual supercomputing. We have identified the state-of-the-

art technologies that have prepared us for building such an

infrastructure. We have examined a collection of applications

that would benefit enormously from such an infrastructure,

and discussed their technical requirements. We have proposed

a set of challenges that may guide our strategic efforts in the

coming years. In particular, we have highlighted the integral

role of autonomic computing in the gradual evolution of an

infrastructure for visual supercomputing.

Acknowledgments

This work is conducted under the framework of the

e-Viz project, which is jointly funded by EPSRC ICT

programme and e-Science Programme with grants

GR/S46567, GR/S46574 and GR/S46581. Special ac-

knowledgements to Chris Hughes whose initial review

c© The Eurographics Association and Blackwell Publishing Ltd 2005



238 Brodlie et al./Visual Supercomputing

motivated this survey, Nigel John who suggested making this

as a group exercise for the e-Viz project, and Min Chen who

coordinated the preparation of this paper. We are thankful to

John Sharp, University of Wales Swansea, for his valuable

advice on data flow computing.

References

1. e-Viz.www.eviz.org.

2. S. L. Pan and J.-N. Lee. Using e-CRM for a unified view

of the customer. Communications of the ACM 46(4):

95–99, 2003.

3. J. O. Kephart and D. M. Chess. The vision of autonomic

computing. IEEE Computer, pp. 41–50, 2003.

4. S. R. Whitman. A survey of parallel algorithms for

graphics and visualization. In Proc. Int. Workshop on

High Performance Computing for Computer Graphics

and Visualisation, pp. 3–22, 1996.

5. C. Hansen. Known and potential high performance

computing applications in computer graphics and visu-

alization. In Proc. Int. Workshop on High Performance

Computing for Computer Graphics and Visualisation,

pp. 23–29, 1996.

6. D. Bartz and C. Silva. Rendering and visualization in

parallel environments.In Eurographics Tutorials, 2001.

7. J. S. Vitter. External memory algorithms and data struc-

tures: dealing with massive data. ACM Computer Sur-

vey 33(2): 209–271, 2001.

8. K. Engel and T. Ertl. Interactive high-quality volume

rendering with flexible consumer graphics hardware. In

Eurographics State of the Art Reports, 2002.

9. D. A. Keim, W. Muller and H. Schumann. Visual data

mining. In Eurographics State of the Art Reports, 2002.

10. K. Brodlie, J. Wood, D. Duce, J. Gallop, J. Walton. Dis-

tributed and collaborative visualization. In Eurograph-

ics 2003 State of the Art Report, 2003.

11. P. M. Dew, R. A. Earnshaw and T. R. Heywood. (Eds.)

Parallel Processing for Computer Vision and Display.

Addison-Wesley, 1989.

12. T. Theogaris. Algorithms for Parallel Polygon Render-

ing. Springer-Verlag, 1989.

13. S. Green. Parallel Processing for Computer Graphics.

MIT Press, 1991.

14. S. Whitman. Multiprocessor Methods for Computer

Graphics Rendering. AK Peters, 1992.

15. M. Slater, A. Steed and Y. Chrysanthou. Computer

Graphics and Virtual Environments. Addison Wesley,

2002.

16. M. Koutek. Scientific Visualisation in Virtual Reality:

Interaction Techniques and Application Development.

Delft University of Technology, 2003.

17. R. Elwald and L. Mass. A high performance graph-

ics system for the Cray-1. ACM SIGGRAPH Computer

Graphics, pp. 82–86, 1978.

18. G. E. Moore. Cramming more components onto inte-

grated circuits. Electronics 38(8): 1965.

19. S. Parker, W. Martin, P.-P. J. Sloan, P. Shirley, B. Smits

and C. Hansen. Interactive ray tracing. In Proc. Symp.

Interactive 3D Graphics, pp. 119–126, 1999.

20. M. J. Flynn. Some computer organizations and their

effectiveness. IEEE Trans. Computers C-21(9): 948–

960, 1972.

21. S. Fortune and J. Wyllie. Parallelism in random access

machines. In Proc. ACM Symp. Theory of Computing,

pp. 114–118, 1978.

22. D. B. Skillicorn. A taxonomy for computer architec-

tures. IEEE Computer 21(11): 46–57, 1988.

23. X. Zhang and X. Qin. Performance prediction and eval-

uation of parallel processing on a NUMA multiproces-

sor. IEEE Trans. Software Engineering 17(10): 1059,

1991.

24. K. Davis, A. Hoisie, G. Johnson, D. J. Kerbyson, M.

Lang and S. Pakin, F. Petrini. A performance and

scalability analysis of the BlueGene/L architecture. In

Proc. ACM/IEEE Conf. on Supercomputing, pp. 41–ff,

2004.

25. T. Terasawa, S. Ogura, K. Inoue and H. Amano. A

cache coherency protocol for multiprocessor chip. In

Proc. 7th IEEE Int. Conf. on Wafer Scale Integration,

pp. 238–247, 1995.

26. H. Ray, H. Pfister, D. Silver and T. A. Cook. Ray cast-

ing architectures for volume visualization. IEEE Trans.

Visualization and Computer Graphics 5(3): 210–223,

1999.

27. A. S. Tanenbaum. Modern Operating SystemsM, 2nd

Ed. Prentice Hall, 2001.

28. T. Y. Feng. A survey of interconnection networks. IEEE

Computers, pp. 12–27, 1981.

29. R. Buyya. (Ed.) High Performance Cluster

Computing—Volume 2: Programming and Appli-

cations. Prentice Hall, 1999.

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 239

30. A. D. Birrell and B. J. Nelson. Implementing remote

procedure calls. ACM Trans. Computer Systems, 39–

59, 1984.

31. S. Baker. CORBA Distributed Objects. Addison Wes-

ley, 1997.

32. M. van Steen, P. Homburg and A. S. Tanenbaum. Globe:

A wide-area distributed system. IEEE Concurrency 7:

70–78, 1999.

33. D. E. Bernholdt, B. A. Allan and R. Armstrong et al.

A component architecture for high-performance scien-

tific computing. Int. J High-Performance Computing

Applications. to appear, 2005.

34. S. Oaks and H. Wong. Jini in a Nutshell. O’Reilly &

Associates, 2000.

35. I. Foster and C. Kesselman. Globus: A metacomputing

infrastructure toolkit. Int. J. Supercomputer Applica-

tions 11(2): 115–128, 1997.

36. K. W. Brodlie, J. Wood, D. Duce, J. R. Gallop, D. Gav-

aghan, M. Giles, S. Hague, J. Walton, M. Rudgyard, B.

Collins, J. Ibbotson and A. Knox. XML for visualiza-

tion. In Euroweb, 2002.

37. P. Jogalekar and M. Woodside. Evaluating the scala-

bility of distributed systems. IEEE Trans. Parallel and

Distributed Systems 11(6): 589–603, 2000.

38. E. V. Krishnamurthy. Parallel Processing: Principles

and Practice. Addison-Wesley, 1989.

39. J. L. Gustafson, G. R. Montry and R. E. Benner. De-

velopment of parallel methods for a 1024 hypercubes.

SIAM J. Scientific and Statistical Computing 9(4): 609–

638, 1988.

40. G. A. Geist, J. A. Kohla and P. M. Papadopoulos. PVM

and MPI: A comparison of features. Calculateurs Par-

alleles 8(2): 137–150, 1996.

41. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.

Manchek and V. Sunderam. PVM Parallel Virtual Ma-

chine, A User’s Guide and Tutorial for Networked Par-

allel Computing. MIT Press, 1994.

42. V. Kumar, A. Grama, A. Gupta and G. Karypis. Intro-

duction to Parallel Computing: Design and Analysis of

Algorithms. Benjamin, 1993.

43. J. A. Sharp (Ed.): Data Flow Computing: Theory and

Practice. Ablex Publishing, 1992.

44. D. Song and E. Golin. Fine-grain visualization algo-

rithms in dataflow environments. In Proc. IEEE Visu-

alization, pp. 126–133, 1993.

45. J. Ahrens, K. Brislawn, K. Martin, B. Geveci, C. C.

Law and M. Papka. Large-scale data visualization us-

ing parallel data streaming. IEEE CG&A 21(4): 34–41,

2001.

46. G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ah-

ern, P. D. Kirchner and J. T. Klosowski. Chormium: a

stream-processing framework for interactive rendering

on clusters. In Proc. ACM SIGGRAPH, 2002.

47. K. Moreland and D. Thompson. From cluster to

wall with VTK. In Proc. IEEE Symp. Parallel and

Large-Data Visualization and Graphics, pp. 25–32,

2003.

48. S. Molnar, C. M, D. Ellsworth and H. Fuchs. A sorting

classification of parallel rendering. IEEE CG&A 14(4):

23–32, 1994.

49. P. Mackerras and B. Corrie. Exploiting data coherence

to improve parallel volume rendering. IEEE Parallel

and Distributed Technology: Systems and Applications

2(2): 8–16, 1994.

50. S. Goil and S. Ranka. Dynamic load balancing for ray-

traced volume rendering on distributed memory ma-

chines.In Proc. Int. Conf. on High Performance Com-

puting, 1995.

51. S. Muraki, E. B. Lum, K.-L. Ma, M. Ogata and X. Liu.

A PC cluster system for simultaneous interactive volu-

metric modeling and visualization. In Proc. IEEE Symp.

Parallel and Large-Data Visualization and Graphics,

pp. 95–102, 2003.

52. C. M. Wittenbrink and M. Harrington. A scalable

MIMD volume rendering algorithm. In Proc. 8th Int.

Parallel Processing Symp., pp. 916–922, 1994.

53. P. Lacroute. Analysis of a parallel volume rendering

system based on the shear-warp factorisation. IEEE

Trans. Visualization and Computer Graphics 2(3): 218–

231, 1996.

54. M. Meissner, M. Doggett, U. Kamus and J. Hirche. Ac-

celerating volume rendering using an on-chip SRAM

occupancy map. In Proc. IEEE Int. Symp. Circuits and

Systems, vol. 2, pp. 757–760, 2001.

55. K. Brodlie, D. Duce, J. Gallop, M. Sagar, J. Walton and

J. Wood. Visualization in grid computing environments.

In Proc. IEEE Visualization, pp. 155–162, 2004.

56. L. J. Doctor and J. G. Torborg. Display techniques

for octree-encoded objects. IEEE CG&A 3(1): 29–38,

1981.

57. C. H. Chien and J. K. Aggarwal. Volume/surface

octrees for the representation of three-dimensional

c© The Eurographics Association and Blackwell Publishing Ltd 2005



240 Brodlie et al./Visual Supercomputing

objects. Computer Vision, Graphics and Image Pro-

cessing 36(1): 100–113, 1986.

58. J. Veenstra and N. Ahuja. Line drawings of octree-

represented objects. ACM Trans. Graphics 7(1): 61–75,

1988.

59. P. Lindstrom and V. Pascucci. Terrain simplification

simplified: A general framework for view-dependent

out-of-core visualization. IEEE Trans. Visualization

and Computer Graphics 8(3): 239–254, 2002.

60. E. W. Bethel, G. Humphreys, B. Paul and J. D. Bred-

erson. Sort-first, distributed memory parallel visual-

ization and rendering. In Proc. IEEE Symp. Parallel

and Large Data Visualization and Graphics, pp. 41–

50, 2003.

61. M. Naef, E. Lamboray, O. Staadt and M. Gross. The

blue-c distributed scene graph. In Proc. IEEE Virtual

Reality, pp. 275–276, 2003.

62. K. Ma, J. S. Painter and M. F. Krogh. Parallel volume

rendering using binary swap composition. IEEE CG&A

14(4): 59–67, 1994.

63. T.-Y. Lee, C. S. Raghavendra and J. B. Nicholas. Image

composition schemes for sort-last polygon rendering on

2D mesh multicomputers. IEEE Trans. Visualization

and Graphics 2(3): 202–217, 1996.

64. A. Stompel, K.-L. Ma, E. B. Lum, J. Ahrens and J.

Patchett. SLIC: Scheduled linear image compositing

for parallel volume rendering. In Proc. IEEE Symp.

Parallel and Large-Data Visualization and Graphics,

2003.

65. W. Lorensen and H. Cline. Marching cubes: a high res-

olution 3D surface construction algorithm. ACM SIG-

GRAPH Computer Graphics 21(4): 163–169, 1987.

66. M. Levoy. Display of surfaces from volume data. IEEE

CG&A 8(5): 29–37, 1988.

67. R. Pinkham, M. Novak and K. Guttag. Video RAM

excels at fast graphics. Electronic Design 31(17): 161–

182, 1983.

68. B. Cabral, N. Cam and J. Foran. Accelerated volume

rendering and tomographic reconstruction using texture

mapping hardware. In Proc. ACM/IEEE Symp. Volume

Visualization, pp. 91–98, 1995.

69. R. Westermann and T. Ertl. Efficiently using graphics

hardware in volume rendering applications. In Proc.

ACM SIGGRAPH, pp. 169–177, 1998.

70. C. Rezk-Salama, P. Hastreiter, C. Teitzel and T. Ertl.

Interactive exploration of volume line integral convo-

lution based on 3d-texture mapping. In Proc. Visualiza-

tion, pp. 233–240, 1999.

71. A. Telea and J. J. van Wijk. 3D IBFV: hardware-

accelerated 3D flow visualization. In Proc. IEEE Vi-

sualization, pp. 233–240, 2003.

72. J. E. II Swan, K. Mueller, T. Müller, N. Shareef, R.

Crawfis and R. Yagel. An anti-aliasing technique for

splatting. In Proc. IEEE Visualization, pp. 197–206,

1997.

73. H. Pfister, M. Zwicker, J. van Baar and M. Gross. Sur-

fels: surface elements as rendering primitives. In Proc.

ACM SIGGRAPH, pp. 335–342, 2000.

74. M. Meissner, U. Hoffmann and W. Strasser. Enabling

classification and shading for 3d texture mapping based

volume rendering using OpenGL and extensions. In

Proc. IEEE Visualizationn, 1999.

75. C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner

and T. Ertl. Interactive volume rendering on standard

PC graphics hardware using multi-textures and multi-

stage-rasterization. In Proc. Eurographics/SIGGRAPH

Workshop on Graphics Hardware, pp. 109–118, 147,

2000.

76. S. Roettger, S. Guthe, D. Weiskopf, T. Ertl and W.

Strasser. Smart hardware accelerated volume render-

ing. In Proc. EUROGRAPHICS/IEEE-TCVG Symp. Vi-

sualization, 2003.

77. W. T. Corrêa, J. T. Klosowski and C. T. Silva. Visibility-

based prefetching for interactive out-of-core rendering.

In Proc. IEEE Symp. Parallel and Large-Data Visual-

ization and Graphics, pp. 2–8, 2003.

78. A. Wilen, J. P. Schade and R. Thornburg. Introduction

to PCI Express: A Hardware and Software Developer’s

Guide. Intel Press, 2003.

79. H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer and L.

Seiler. The VolumePro real-time ray-casting system. In

Proc. ACM SIGGRAPH, pp. 251–260, 1999.

80. H. Pfister and A. Kaufman. Cube-4—a scalable ar-

chitecture for real-time volume rendering. In Proc.

ACM/IEEE Symp. Volume Rendering, pp. 47–54, 1996.

81. B. Wylie, C. Pavlakos, V. Lewis and K. Moreland. Scal-

able rendering on PC clusters. IEEE CG&A 21(4): 62–

69, 2001.

82. G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Ev-

erett and P. Hanrahan. WireGL: a scalable graphics sys-

tem for clusters. In Proc. ACM SIGGRAPH, 2001.

83. Visapult 2.0. http://www-vis.lbl.gov/Research/

visapult2/.

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 241

84. W. Bethel and J. Shalf. Consuming network band-

width with visapult. In The Visualization Handbook,C.

Hansen, C. Johnson, (Eds.) Academic Press, 2003.

85. ParaView. http://www.paraview.org/.

86. VisIt. http://www.llnl.gov/visit/.

87. VisSUS. http://pascucci.org/visus/.

88. The Metabuffer Project. http://www.ices.utexas.

edu/ccv/projects/DiDi/Metabuffer.htm.

89. G. Burdea and P. Coiffet. Virtual Reality Technology,

2nd ed. Wiley, 2003.

90. W. R. Sherman and A. B. Craig. Understanding Vir-

tual Reality: Interface, Application and Design. Mor-

gan Kaufmann, 2002.

91. S. Smith, T. Marsh, D. Duke and P. Wright. Drowning

in immersion. In Proc. UK-VRSIG, 1998.

92. B. G. Blundell and A. J. Schwarz. The classification

of volumetric display systems: characteristics and pre-

dictability of the image space. IEEE Trans. Visualiza-

tion and Computer Graphics 8(1): 66–75, 2002.

93. M. Halle. Autostereoscopic displays and computer

graphics. ACM SIGGRAPH Computer Graphics 31(2):

58–62, 1997.

94. R. J. Stone. Haptic feedback: A potted history from

telepresence to virtual reality. In Proc. 1st Int. Workshop

on Haptic Human-Computer Interaction, vol. LNCS

2058, pp. 1–7, 2000.

95. C. Cruz-Neira, D. J. Sandin and T. A. DeFanti et al.

The CAVE: Audio visual experience automatic virtual

environment. Communications of the ACM 35(6): 65–

72, 1992.

96. J. Kelso, L. E. Arsenault, S. G. Satterfield and R. D.

Kriz. DIVERSE: a framework for building extensible

and reconfigurable device independent virtual environ-

ments. In Proc. IEEE Virtual Reality, pp. 183–190.

2002.

97. RAVE. http://www.wesc.ac.uk/projects/rave.

98. J. Shalf and E. W. Bethel. The Grid and future visual-

ization systems architectures. IEEE CG&A 23(2): 6–9,

2003.

99. C. Carlson and O. Hagsand. DIVE: a platform for multi-

user virtual environments. Computers and Graphics

17(6): 1993.

100. C. M. Greenhalgh and S. D. Benford. MASSIVE: a

virtual reality system for teleconferencing. ACM Trans.

Computer Human Interfaces 2(3): 239–261, 1995.

101. W. Broll. Interacting in distributed collaborative VE. In

Proc. VRAIS, 1995.

102. V. Normand and J. Tromp. Collaborative virtual envi-

ronments: the COVEN project.In Proc. the Framework

for Immersive Virtual Environments Conf., 1996.

103. M. Slater, M. Usoh, S. Benford, D. Snowdon, C. Brown,

T. Rodden, G. Smith and S. Wilbur. Distributed ex-

tensible virtual reality laboratory (DEVRL). In Proc.

3rd Eurographics Workshop on Virtual Environments,

1996.

104. S. D. Benford, J. Bowers, S. Gray, T. R. Rodden, M.

Rygol and V. Stanger. The VirtuOsi project. In Proc.

London Virtual Reality Expo, 1994.

105. R. T. Azuma. A survey of augmented reality. Presence:

Teleoperators & Virtual Environments, 6(4): 355–85,

1997.

106. C. Pinhanez. Augmenting reality with projected inter-

active displays. In Proc. Int. Symp. Virtual and Aug-

mented Architecture, 2001.

107. D. LaRose. A Fast, Affordable System for Augmented

Reality. Master’s thesis, Robotics Institute, Carnegie

Mellon University, April 1998.

108. J. Rekimoto and M. Saitoh. Augmented surfaces: A

spatially continuous work space for hybrid computing

environments. In Proc. ACM CHI, pp. 378–385, 1999.

109. D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Ari, L. En-

carnac, A. Gervautz and W. Purgathofer. The Studier-

stube Augmented Reality Project. Tech. rep., TU Wien,

2000.

110. W. E. L. Grimson, T. Lozano-Pérez, W. M. Wells III,

G. J. Ettinger, S. J. White and R. Kikinis. An au-

tomatic registration method for frameless stereotaxy,

image guided surgery, and enhanced reality visualiza-

tion. IEEE Trans. Medical Imaging 15(2): 129–140,

1996.

111. F. P. Vidal, F. Bello, K. Brodlie, N. W. John, D. Gould, R.

Phillips and N. Avis. Medical visualization and virtual

environments. In Eurographics State of the Art Reports,

2004.

112. I. Poupyrev, D. S. Tan, M. Billinghurst, H. Kato, H.

Regenbrecht and N. Tetsutani. A survey of augmented

reality. IEEE Computer, 2–9, 2002.

113. M. Billinghurst, H. Kato and I. Poupyrev. The Mag-

icBook: A transitional AR interface. Computers and

Graphics, 745–753, November 2001.

c© The Eurographics Association and Blackwell Publishing Ltd 2005



242 Brodlie et al./Visual Supercomputing

114. The High Performance Computing Center in

Stuttgart: Visualization — augmented reality.

http://www.hlrs.de/organization/vis/ar/.

115. C. S. Ang, D. C. Martin and M. D. Doyle. Integrated

control of distributed volume visualization through the

world wide web. In Proc. IEEE Visualization, pp. 13–

20, 1994.

116. J. D. Wood, K. W. Brodlie and H. Wright. Visualization

over the world wide web and its application to environ-

mental data. In Proc. IEEE Visualization, pp. 81–86,

1996.

117. K. Engel, R. Westermann and T. Ertl. Isosurface extrac-

tion techniques for web-based volume visualization. In

Proc. IEEE Visualization, pp. 139–146, 1999.

118. C. K. Michaels and M. J. Bailey. VizWiz: A Java applet

for interactive 3D scientific visualization over the web.

In Proc. IEEE Visualization, 1997.

119. VNC. http://www.realvnc.com/.

120. NERSC:. http://acts.nersc.gov/cumulvs/.

121. pV3. http://raphael.mit.edu/pv3/pv3.html.

122. COVISE. http://www.vircinity.com/.

123. J. Wood, H. Wright and K. Brodlie. Collaborative vi-

sualization. In Proc. IEEE Visualization, pp. 253–259,

1997.

124. Access Grid documentation. http://www.

accessgrid.org.

125. I. Foster and C. Kesselman. (Eds.) The Grid: Blueprint

for a New Computing Infrastructure. Morgan Kauf-

mann, 1998.

126. I. Foster and C. Kesselman. The Globus project: a status

report. In Proc. Heterogeneous Computing Workshop,

pp. 4–18, 1998.

127. D. W. Erwin and D. F. Snelling. UNICORE: a Grid

computing environment. Lecture Notes in Computer

Science 2150, 825–834, 2001.

128. EUROGRID. http://www.eurogrid.org.

129. GRIP. http://www.grid-interoperability.org/.

130. S. J. Chapin, D. Katramatos, J. Karpovich and A.

S. Grimshaw. The Legion resource management sys-

tem. In Job Scheduling Strategies for Parallel Process-

ing,D. G. Feitelson, L. Rudolph, (Eds.) Springer Verlag,

pp. 162–178, 1999.

131. Condor. http://www.cs.wisc.edu/condor.

132. Sun Microsystems, Inc. http://www.sun.com/

solutions/infrastructure/grid.

133. I. Foster, C. J. N. Kesselman and S. Tuecke. The physi-

ology of the Grid: an open Grid services architecture for

distributed system integration. In Open Grid Services

Infrastructure WG, 2002.

134. D. Snelling. UNICORE: A grid computing environ-

ment. In Proc. EUROPAR August, 2001.

135. J. Dunagan, R. Roussev, B. Daniels, A. J. C. Verbowski

and Y. Wang. Towards self-managing software patching

process using black-box persistent-state manifestes. In

Proc. 1st Int. Conf. on Autonomic Computing, pp. 106–

113, 2004.

136. M. Agarwal and M. Parashar. Enabling autonomic com-

positions in Grid environments. In Proc. 4th Int. Work-

shop on Grid Computing, pp. 34–41, 2003.

137. N. Kandasamy, S. Abdelwahed and J. Hayes. Self-

optimization in computer systems via on-line control:

applications to power management. In Proc. 1st Int.

Conf. on Autonomic Computing, pp. 54–61, 2004.

138. S. Aiber, D. Gilat, A. Landau, N. Razinkov, A.

Sela and S. Wasserkrug. Autonomic self-optimization

according to business objectives. In Proc. 1st

Int. Conf. on Autonomic Computing, pp. 206–213,

2004.

139. J. Norris, K. Coleman, A. Fox and G. Candea. OnCall:

defeating spikes with a free-market application cluster.

In Proc. 1st Int. Conf. on Autonomic Computing, pp.

1198–205, 2004.

140. M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan and E.

Brewer. Failure diagnosis using decision trees. In Proc.

1st Int. Conf. on Autonomic Computing, pp. 36–43,

2004.

141. N. H. Minsky. On conditions for self-healing in dis-

tributed software systems. In Autonomic Computing

Workshop—Proc. 5th Int. Workshop on Active Middle-

ware Services, 2003.

142. T. Eymann, M. Reinicke, O. Ardaiz, P. Artigas, F. Fre-

itag and L. Navarro. Self-organizing resource allocation

for autonomic network. In Proc. 14th Int. Workshop on

Database and Expert Systems Applications, pp. 656–

660, 2003.

143. A. Lee and M. Ibrahim. Emotional attributes in auto-

nomic computing systems. In Proc. 14th Int. Workshop

on Database and Expert Systems Applications, pp. 681–

685, 2003.

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 243

144. N. Minsky and V. Ungureanu. Law-governed interac-

tion: a coordination and control mechanism for hetero-

geneous distributed systems. In ACM Trans. Software

Engineering and Methodology, 2000.

145. W. E. Walsh, G. Tesauro, J. O. Kephart and R. Das.

Utilities functions in autonomic systems. In Proc.

1st Int. Conf. on Autonomic Computing, pp. 70–77,

2004.

146. C. Linn. Semantic reliability in distributed systems:

ontology issues and system engineering. In Proc.

IEEE/WIC Int. Conf. on Web Intelligence, pp. 292–300,

2003.

147. G. Tziallas and B. Theodoulidis. Building autonomic

computing systems based on ontological component

models. In Proc. 14th Int. Workshop on Database and

Expert Systems Applications, pp. 674–680, 2003.

148. S. Anderson, M. Hartswood, R. Procter, M. Rounce-

field, R. Slack, J. Soutter and A. Voss. Making auto-

nomic computing systems accountable: the problem of

human computer interaction. In Proc. 14th Int. Work-

shop on Database and Expert Systems Applications, pp.

718–724, 2003.

149. Z. Constantinescu. Towards an autonomic distributed

computing environment. In Proc. 14th Int. Workshop on

Database and Expert Systems Applications, pp. 699–

703, 2003.

150. X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang, S.

Pavuluri and S. Rao. Autonomia: an autonomic com-

puting environment. In Proc. IEEE Int. Conf. on Perfor-

mance, Computing, and Communications, pp. 61–68,

2003.

151. G. Deen, T. Lehman and J. Jaufman. The almaden opti-

malgrid project. In Autonomic Computing Workshop—

Proc. 5th Int. Workshop on Active Middleware Services,

2003.

152. E. E. Koutsofio. Visualizing large-scale telecommuni-

cation networks and services. In Proc. IEEE Visualiza-

tion, 1999.

153. G. W. Daniel and M. Chen. Video visualization. In Proc.

IEEE Visualization, pp. 409–416, 2003.

154. P. Cignoni, C. Montani, E. Puppo and R. Scopigno.

Optimal isosurface extraction from irregular volume

data. In Proc. IEEE Symp. Volume Visualization,

pp. 31–38, 1996.

155. Y.-J. Chiang and C. T. Silva. I/O optimal isosurface

extraction. In Proc. IEEE Visualization, pp. 293–300,

1997.

156. P. M. Sutton and C. D. Hansen. Accelerated isosurface

extraction in time-varying fields. IEEE Trans. Visual-

ization and Computer Graphics 6(2): 98–107, 2000.

157. S.-K. Ueng, C. Sikorski and K.-L. Ma. Out-of-core

streamline visualization on large unstructured meshes.

IEEE Trans. Visualization and Computer Graphics

3(4): 370–380, 1997.

158. P. Lindstrom. Out-of-core simplification of large polyg-

onal models. In Proc. ACM SIGGRAPH, pp. 259–262,

2000.

159. H.-W. Shen, L.-J. Chiang and K.-L. Ma. A fast vol-

ume rendering algorithm for time-varying fields using

a time-space partitioning (tsp) tree. In Proc. IEEE Vi-

sualization, pp. 371–378, 1999.

160. R. Farias and C. T. Silva. Out-of-core rendering of large,

unstructured grids. IEEE CG&A 21(4): 42–50, 2001.

161. M. Pharr, C. Kolb, R. Gershbein and P. Hanrahan. Ren-

dering complex scenes with memory-coherent ray trac-

ing. In Proc. ACM SIGGRAPH, pp. 101–108, 1997.

162. T. Kurc, Ü. Çatalyürek, C. Chang, A. Sussman and J.

Saltz. Visualization of large data sets with the active

data repository. IEEE CG&A 21(4): 24–33, 2001.

163. J. Wilhelms and A. van Gelder. Octrees for faster isosur-

face generation. ACM Trans. Graphics 11(3): 201–227,

1992.

164. M. W. Jones. The Visualisation of Regular Three Di-

mensional Data. PhD thesis, University of Wales, 1995.

165. D. Laur and P. Hanrahan. Hierarchical splatting: a pro-

gressive refinement algorithm for volume rendering.

ACM SIGGRAPH Computer Graphics 25(4): 285–288,

1991.

166. J. Wilhelms, A. van Gelder, P. Tarantino and J. Gibbs.

Hierarchical and parallelizable direct volume rendering

for irregular and multiple grids. In Proc. IEEE Visual-

ization, 1996.

167. Y. Livnat and C. Hansen. View dependent isosurface

extraction. In Proc. IEEE Visualization, pp. 175–180,

1998.

168. E. LaMar, B. Hamann and K. Joy. Multiresolution tech-

niques for interactive texture-based volume visualiza-

tion. In Proc. IEEE Visualization, pp. 355–362, 1999.

169. J. T. Klosowski and C. T. Silva. The prioritized-layered

projection algorithm for visible set estimation. IEEE

Trans. Visualization and Computer Graphics 6(2): 108–

123, 2000.

170. A. Norton and A. Rockwood. Enabling view-dependant

progressive volume visualization on the grid. IEEE

c© The Eurographics Association and Blackwell Publishing Ltd 2005



244 Brodlie et al./Visual Supercomputing

CG&A 23(2): 22–31, 2003.

171. S. Wang and A. Kaufman. Volume sampled voxeliza-

tion of geometric primitives. In Proc. IEEE Visualiza-

tion, pp. 78–84, 1993.

172. M. W. Jones. The production of volume data from tri-

angular meshes using voxelisation. Computer Graphics

Forum 15(5): 311–318, 1996.

173. M. Chen and J. V. Tucker. Constructive volume geom-

etry. Computer Graphics Forum 19(4): 281–293, 2000.

174. A. S. Winter and M. Chen. vlib: a volume graphics API.

In Proc. Volume Graphics, pp. 133–147, 2001.

175. K.-L. Ma and S. Parker. Massively parallel software

rendering for visualizing large-scale data sets. IEEE

CG&A 21(4): 72–83, 2001.

176. M. Sarkar and M. Brown. Graphical FishEye views of

graphs. In Proc. ACM CHI, pp. 83–91, 1992.

177. J. D. Mackinlay, G. G. robertson and S. K. Card.

The perspective wall: detail and context smoothly inte-

grated. In Proc. ACM CHI, pp. 172–180, 1991.

178. T. Munzner. Exploring large graphs in 3d hyperbolic

space. IEEE CG&A 18(4): 18–23, 1998.

179. M. Sarkar, S. S. Snibbe, O. Tversky and S. P. Reiss.

Stretching the rubber sheet. In Proc. ACM Symp. User

Interface Software and Technology, 1993.

180. Y. Kurzion and R. Yagel. Space deformation using ray

deflectors. In Proc. 6th Eurographics Workshop on Ren-

dering, pp. 21–32, 1995.

181. M. S. T. Carpendale, D. J. Cowperthwaite and F. D.

Fracchia. Extending distortion viewing from 2D to 3D.

IEEE CG&A 17(4): 42–51, 1997.

182. S. M. F. Treavett and M. Chen. Pen-and-ink rendering

in volume visualization. In Proc. IEEE Visualization

2000, pp. 203–210, 2000.

183. E. LaMar, B. Hamann and K. I. Joy. A magnification

lens for interactive volume visualization. In Proc. IEEE

Pacific Conf. on Computer Graphics and Applications,

pp. 223–231, 2001.

184. M. Hadwiger, C. Berger and H. Hauser. High-quality

two level volume rendering of segmented data sets on

consumer graphics hardware. In Proc. IEEE Visualiza-

tion, pp. 301–308, 2003.

185. M. Chen, J. V. Tucker, R. H. Clayton and A. V. Holden.

Constructive volume geometry applied to visualization

of cardiac anatomy and electrophysiology. Int. J. Bifur-

cation and Chaos 13(12): 3591–3604, 2003.

186. P. Wong. Visual data mining. IEEE CG&A 19(5): 20–

21, 1999.

187. J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C.

Olston, V. Raman, T. Roth and P. J. Haas. Interactive

data analysis: The control project. Computer 32(8): 51–

58, 1999.

188. A. Hinneburg, D. A. Keim and M. Wawryniuk. Hd-eye:

Visual mining of high-dimensional data. IEEE CG&A

19(5): 22–31, 1999.

189. B. Shneidermann. Tree visualization with treemaps: a

2D space filling approach. ACM Trans. Graphics 11(1):

92–99, 1992.

190. J. Stasko and E. Zhang. Focus+context display and

navigation techniques for enhancing radial space-filling

hierarchy visualization. In Proc. IEEE Information Vi-

sualization, pp. 57–65, 2000.

191. D. A. Keim, H. P. Kriegel and M. Ankerst. Recursive

pattern: a technique for visualizing very large amounts

of data. In Proc. IEEE Visualization, pp. 279–286,

1995.

192. M. Ankerst, D. A. Keim and H. P. Kriegel. Circle seg-

ments: a technique for visual exploring large multidi-

mensional data sets. In Proc. IEEE Visualization, p. Hot

Topic Session, 1996.

193. H. Theisel and M. Kreuseler. An enhanced spring

model for information visualization. Computer Graph-

ics Forum 17(3): 335–343, 1998.

194. T. Kohonen. Self-Organizing Maps, 2nd ed. Springer,

1997.

195. J. Marks, B. Andalman and P. A. Beardsley et al. De-

sign galleries: a general approach to setting parameters

for computer graphics and animation. In Proc. ACM

SIGGRAPH, pp. 389–400, 1997.

196. G. Kindlmann and J. Durkin. Semi-automatic genera-

tion of transfer functions for direct volume rendering.

In Proc. IEEE Symp. Volume Visualization, pp. 79–86,

1998.

197. E. Gallopoulos, E. N. Houstis and J. R. Rice. Com-

puter as thinker/doer: Problem-solving environments

for computational science. IEEE Computional Science

and Engineering 1(2): 11–23, 1994.

198. G. Allen, W. Benger, T. Dramlitsch, T. Goodale, H.-C.

Hege, G. Lanfermann, A. Merzky, T. Radke, E. Seidel

and J. Shalf. Cactus tools for Grid applications. Cluster

Computing 4(3): 179–188, 2001.

199. C. Upson, T. Faulhaber Jr., D. Kamins, D. H. Laidlaw,

c© The Eurographics Association and Blackwell Publishing Ltd 2005



Brodlie et al./Visual Supercomputing 245

D. Schlegel, J. Vroom, R. Gurwitz and A. van Dam.

The application visualization system: A computational

environment for scientific visualization. IEEE CG&A

9(4): 30–42, 1989.

200. R. Marshall, J. Kempf, S. Dyer and C. Yen. Visualiza-

tion methods and simulation steering for a 3D turbu-

lence model for Lake Erie. ACM SIGGRAPH Computer

Graphics 24(2): 89–97, 1990.

201. H. Zhou, M. Chen and M. Webster. Comparative eval-

uation of visualization and experimental results using

image comparison metrics. In Proc. IEEE Visualiza-

tion, pp. 315–322, 2002.

202. J. J. van Wijk and R. van Liere. An environment

for computational steering. In Scientific Visualization:

Overviews, Methodologies, and Techniques,G. M. Niel-

son, H. Müller, H. Hagen, (Eds.), 1997.

203. R. van Liere, J. Mulder and J. van Wijk. Computational

steering. Future Generation Computer Systems 12(5):

1997.

204. J. Mulder, J. van Wijk and R. van Liere. A survey for

computational steering environments. Future Genera-

tion Computer Systems 15(2): 1999.

205. M. S. G. Parker, C. D. H. Miller and C. R. Johnson. An

integrated problem solving environment: the SCIRun

computational steering system. In Proc. 31st Hawaii

Int. Conf. on System Sciences, 1998.

206. J. M. Brooke, P. V. Coveney, J. Harting, S. Jha, S.

M. Pickles, R. L. Pinning and A. R. Porter. Compu-

tational steering in RealityGrid. In Proc. UK e-Science

All Hands Meeting, 2003.

207. J. Wood, K. Brodlie and J. Walton. gViz—visualization

and steering for the Grid. In Proc. e-Science All Hands

Meeting, 2003.

208. F. Sogandares. Stone axes and warhammers: a decade

of distributed simulation in aviation research. In Proc.

16th Workshop on Parallel and Distributed Simulation,

pp. 125–132, 2002.

209. T. Peters and B. Davey et al. Three dimensional mul-

timodal image guidance for neurosurgery. IEEE Trans.

Medical Imaging 15: 121–128, 1996.

210. R. F. McCloy and N. W. John. Remote visualization

of patient data in the operating theatre during helpato-

pancreatic surgery. In Computer Assisted Radiology

and Surgery. Elsevier, pp. 53–58, 2003.

211. R. M. Fujimoto. Advanced tutorials: Parallel and dis-

tributed simulation systems. In Proc. 33nd Conf. on

Winter Simulation, pp. 147–157, 2001.

212. M. Weiser. Some computer science issues in ubiquitous

computing. Communications of the ACM 36(7): 75–84,

1993.

213. S. Izadi, P. Coutinho, T. Rodden and G. Smith. The

FUSE platform: supporting ubiquitous collaboration

within diverse mobile environments. Automated Soft-

ware Engineering 9(2): 167–186, 2002.

214. F. Lamberti, C. Zunino, A. Sanna, A. Fiume and M.

Maniezzo. An accelerated remote graphics architecture

for PDAS. In Proc. 8th Int. Conf. on 3D Web Technol-

ogy, pp. 55–ff, 2003.

215. M. Wolf, Z. Cai, W. Huang and K. Schwan. Smartpoint-

ers: personalized scientific data portals in your hand. In

Proc. ACM/IEEE Conf. on Supercomputing, pp. 1–16,

2002.

216. P. Hartling, A. Bierbaum and C. Cruz-Neira. Virtual

reality interfaces using Tweek. In SIGGRAPH 2002

Sketches, 2002.

217. B. D’Amora and F. Bernardini. Pervasive 3D viewing

for product data management. IEEE CG&A 23(2): 14–

19, 2003.

218. J. Pascoe, N. Ryan and D. Morse. Using while mov-

ing: HCI issues in fieldwork environments. ACM Trans.

Computer-Human Interaction 7(3): 417–437, 2000.

219. T. Hoare, R. Milner, M. Thomas and A. Bundy.

Criteria for a grand challenge. http://www.cra.

org/Activities/grand.challenges/hoare.pdf, 2002.

220. IBM: Autonomic deployment model. http://www-

306.ibm.com/autonomic/levels.shtml, 2004.

c© The Eurographics Association and Blackwell Publishing Ltd 2005


