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Summary

This thesis introduces the concept of autonomic visualisation, where principles of auto-
nomic systems are brought to the field of visualisation infrastructure. Problems in visual-
isation have a specific set of requirements which are not always met by existing systems.

The first half of this thesis explores a specific problem for large scale visualisation; that
of data management. Visualisation algorithms have somewhat different requirements to
other external memory problems, due to the fact that they often require access to all, or a
large subset, of the data in a way that is highly dependent on the view. This thesis proposes
a knowledge-based approach to pre-fetching in this context, and presents evidence that
such an approach yields good performance.

The knowledge based approach is incorporated into a five-layer model, which provides a
systematic way of categorising and designing out-of-core, or external memory, systems.
This model is demonstrated with two example implementations, on in the local and one
in the remote context.

The second half explores autonomic visualisation in the more general case. A simulation
tool, created for the purpose of designing autonomic visualisation infrastructure is pre-
sented. This tool, SimEAC, provides a way of facilitating the development of techniques
for managing large-scale visualisation systems.

The abstract design of the simulation system, as well as details of the implementation are
presented. The architecture of the simulator is explored, and then the system is evaluated
in a number of case studies indicating some of the ways in which it can be used. The
simulator provides a framework for experimentation and rapid prototyping of large scale
autonomic systems.



Acknowledgements

First, I would like to thank Professor Min Chen for his patience and advice during his
time as my supervisor while completing this PhD. I would also like to thank Professor
Chuck Hansen for giving me the opportunity to vist the University of Utah in 2006.

Heartfelt thanks go to Beth Kupin, who helped keep me sane in the run up to submission
deadlines for the papers that I wrote during the course of this PhD. Without her help, I
would have found my PhD much more stressful.

I would also like to thank my parents for their support and advice over the years, espe-
cially for my mother for providing somewhere free of distractions where I could work
while finishing this thesis.

Next, I need to thank Will Harwood, primarily for his coffee-making abilities, but also
for his work on developing the official rules for the historic game of Labminton, without
which the lab would have been a far less interesting place.
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Chapter 1

Aims and Objectives

Contents
1.1 Large Dataset Management . . . . . . . . . . . . . . . . . . . . . . 2

1.2 System Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Summary of Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Visualisation applications continue to require more and more computational power. Sci-
entific datasets are now measured in gigabytes or terabytes, and show no sign of slowing
their growth. The process of extracting meaningful information from datasets of this size
through the process of visualisation can be computationally very expensive.

Current approaches to visualisation tend to follow a somewhat ad-hoc approach to the
problem of very large scale deployments. Existing algorithms are applied to new prob-
lems with some slight modifications for their new environment. Chapter 2 outlines the
problems involved in deploying a large-scale visualisation infrastructure, and some at-
tempts to address these problems.

The term Autonomic Computing was coined by IBM [144] to describe an evolution in
management of complex systems. This thesis will describe a vision for applying this
and related concepts to the problem of large scale visualisation, and will demonstrate the
progress made in this endeavour.

Delivering a full autonomic environment for visualisation would be far beyond the scope
of a single PhD thesis, and so two parts of the problem will be addressed directly.

1.1 Large Dataset Management

The rapid growth of data from both complex simulations and high-resolution scanning
instruments has outstripped the rate of growth of the physical memory, and in some cases
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1.1 Large Dataset Management 3

even local disk storage. This problem is exacerbated by the rise in mobile computing. A
modern laptop has a significant amount of processing power [287, 213] - often including
a relatively fast GPU - and so is up to the task of performing a number of forms of
visualisation. In the coming years it appears likely that this trend will extend to handheld
devices.

The growth in data size as well as the shrinking of the devices on which the data is likely
to be displayed presents a range of problems when it comes to data management. Most
operating systems provide some support for paged virtual memory. These typically work
on two key assumptions:

1. The computer has almost enough physical memory, and should only spill over in to
swap space occasionally.

2. The working environment is multitasking, and idle applications can be completely
swapped out.

The first assumption comes from the fact that most applications have a relatively small
working set, which changes infrequently. When this change occurs, it is mildly irritating
to the user for their computer to pause briefly, but does not have a great deal of impact on
overall performance.

Neither of these assumptions necessarily holds for a visualisation task. The dataset might
be several times the size of RAM, and the rendering algorithm may need several passes
over the entire dataset. This causes most operating systems to experience thrashing, the
situation in which most of their time is spent swapping data between disk and RAM rather
than performing useful computations.

One application for which this is a significant problem is discrete ray tracing of point
sets. This application suffers from the fact that the access patterns through the data are
highly dependent on the data itself, with the positions of both the points themselves and
the light sources within the scene affecting the paths of the rays.

The discrete ray tracer application will be used as a test case for examining prefetching
techniques. Since this application has serious memory usage problems, both in terms of
size and access patterns, it makes an ideal study for evaluating pre-fetching strategies. The
situation in which no pre-fetching occurs, demand paging, produces highly sub-optimal
results, and it is anticipated that the addition of a more advanced data management strat-
egy can provide significant performance benefits.

It should be possible to design such a strategy by first understanding the way in which
the ray tracing algorithm works. While this is useful in and of itself, doing so does not
require the use of autonomic concepts, nor is it likely to produce a solution that will be
useful in other situations.

Such an algorithm could, however, be used as a base-line for evaluating other techniques.
Of more use in the general case would be an algorithm that did not rely on understanding
the nature of the rendering algorithm. This could, potentially, be adapted to other ren-
dering techniques, eliminating the need for such things to be created on a per-problem
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basis. This thesis aims to evaluate the possibility of designing such an algorithm, and to
compare the performance of a system-specific approach with an autonomic one.

1.2 System Simulation

Designing a fully autonomic infrastructure for visualisation is a massive task, and building
one presents an even greater challenge. One of the biggest problems of such an endeavour
relates to the problems (and opportunities) associated with emergent properties.

Emergent properties arise when relatively simple systems are assembled to form complex
ones. The complex systems exhibit behaviours that are not always apparent from the
simple designs. In some cases, these can be highly advantageous, and can allow simple
designs to be used in complex rôles. In others, they are problematic. If a systems is
not designed with emergent properties in mind, then they can often cause pathological
behaviour.

For this reason, it is necessary to test an autonomic infrastructure as early as possible
in the design process and attempt to discover any emergent behaviours, then either take
advantage of them or eliminate them. This, unfortunately, can not be done by techniques
such as unit testing, since it requires the entire system to be tested simultaneously.

The proposed solution to this problem is simulation. A simulation environment matching
the needs of autonomic computing would allow simplified models of individual compo-
nents to have their interactions with other parts of the system tested, without the cost and
effort of building the entire system.

This thesis aims to present a working system to address this need. Such a system must be
easy to use and extend, and have the ability to work at varying levels of granularity. As a
system is developed it will be possible to use prototypes and even final versions of com-
ponents to provide more calibration data to the system. A good simulation environment
must adapt to this growing amount of input data.

Scalability also extends in the other direction. It must also allow the user to perform
highly detailed simulations of a subset of components, and more coarse simulations of
the entire system distributed over a large grid.

Visualisation tasks are fairly similar to other tasks which could be performed by an auto-
nomic grid environment, and so it is hoped that such a simulator would be usable for eval-
uating systems that were not directly tied to visualisation. To this end, it should not make
any assumptions about the nature of visualisation tasks. This is important even within the
context of visualisation, since such assumptions become outdated rapidly. Visualisation
used to be solely the province of supercomputers, and later high-end workstations. Now
a large number of visualisations can be performed on modest commodity hardware, and
even hand-held computers often come with some form of graphics co-processor.

The gradual move from thin-, or dumb-client through desktop and laptop and to ubiqui-
tous computing shows that assumptions about the location and distributions of workloads
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within a computational system rarely last. Autonomic computing is somewhat orthogo-
nal to the underlying distribution paradigm, but is often identified closely with ubiquitous
computing. A fully autonomic grid infrastructure would be most likely to exist within
the overall context of ubiquitous computing, but deployment of some components would
almost certainly begin before such a setting existed. For this reason, a simulator must
be able to handle both existing and proposed systems, and to allow the gradual transition
from one to the other to be effective.

The usability of such a system can only be evaluated experimentally, and so it is aimed
that the simulation should be used for some real-world tasks and evaluated.

1.3 Summary of Aims

The aims of this thesis can be summarised as follows:

1. Create an out-of-core prefetching strategy for the rendering problem outlined above.

2. Determine whether it is possible to achieve equivalent performance from a general,
knowledge-based, prefetching algorithm.

3. Devise a systematic model for building out-of-core systems.

4. Demonstrate the model is feasible by providing at least one implementation of it.

5. Design a simulation system that can be used for developing an autonomic comput-
ing infrastructure.

6. Implement and evaluate the system.

If this thesis meets the goals outlined here then it will provide a demonstration of the
effectiveness of knowledge-based solutions and provide a systematic means for other
researches to incorporate these ideas into their own specific problems. It is hoped that
these will be able to augment, and even replace, existing application-specific strategies.
The later goals relate more generally to the field of autonomic visualisation and, if met,
will facilitate the development of this very young field to a significant degree by allowing
rapid evaluation of algorithms aimed at this field.

1.4 Outline

The remainder of Part I describes the problem associated with visual supercomputing in
general, and suggests how autonomic computing could be applied to give some possible
solutions. The remainder of the thesis will then focus on some areas within this topic.

Part II describes the problem of managing large datasets, specifically those too big to
fit in RAM and those too big to be stored locally. These are increasingly common in



1.4 Outline 6

visualisation. Modern scientific instruments can generate data of a size limited only by
the size of the disk arrays used to store them.

This part will describe a visualisation system for large data sets and a pre-fetching strategy
tied to the renderer. It will then show how a self-optimising approach can be used to
simplify the development of systems to handle them. An adaptive approach to data pre-
fetching is proposed, as well as a systematic model for building out-of-core systems. Two
example implementations of the model are discussed.

Part III describes a system for simulating the interactions between components running
on a heterogeneous grid environment. This system was developed to aid the development
of autonomic distributed visualisation systems, and some example uses are discussed.
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The Problem of Visual Supercomputing
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2.1 Introduction

Today there is a variety of computational resources available to visualisation. While a
huge number of users are contented with the visualisation capabilities provided through
modern desktop computers and powerful 3D graphics accelerators, many are still relying
on high performance computing facilities to visualize very large data sets or to achieve
real-time performance in rendering a complex visualisation. In some areas, users have al-
ready demanded visualisation capabilities to be provided through mobile computing sys-
tems, such as PDAs (Personal Digital Assistants), most of which are yet to benefit from
powerful 3D graphics accelerators. As the size of visualisation data (e.g., in visual data
mining), the complexity of visualisation algorithms (e.g., with volumetric scene graphs),
and demand for instant availability of visualisation (e.g., for virtual environments) con-
tinues to grow, it is unlikely that visualisation users can be served adequately, at least in
the coming years, by an infrastructure largely based on desktop computers.

This leads to a series of questions:

• What would be an adequate infrastructure?

• In what way do the computational requirements of visualisation differ from other
software technologies?

7
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• Is it desirable or feasible to bring a range of technologies under one management
(not necessarily under one roof)?

• If it were feasible to build such an infrastructure, what would be an appropriate
virtual machine interface for the infrastructure?

In fact, the computer graphics and visualisation community has been seeking answers for
these questions for the past few decades. The community has invested a huge amount
of effort in developing specialized graphics hardware, has always been among the first
to deploy the latest technologies for high performance computing, and has accumulated
large volumes of research outputs in parallel, distributed, and web-based techniques for
visualisation. Recently, the community has shown equally great enthusiasm to embrace
the cluster, Grid and mobile technologies. However, in general, the community tended
to address these questions mainly from the perspective of visualisation technology in
isolation, rather than from the perspective of a coherent infrastructure design.

In this chapter, the historic route for deploying new technology in the context of visu-
alisation is examined and a broad range of scientific and technological developments,
including theories, algorithms, hardware, software and services, are described. The term
Visual Supercomputing is used to encompass the concepts and technologies required to
build a computing infrastructure for visualisation. An overview of the state of the art of
technologies in hardware and software for visualisation are presented, and the impacts of
the Internet, Grid and mobile technologies is discussed.

Those latest developments that are relevant, or potentially relevant, to visualisation in-
frastructure are highlighted. A set of technical challenges in realising a visual supercom-
puting infrastructure that manages visualisation tasks in complex networked computing
environments, as well as manages users experience in accessing and interacting with vi-
sualisation resources are proposed. Later chapters in this thesis discuss the application of
principles from the field of autonomic computing to the solution of some of the challenges
presented.

There is now a growing body of experience in adapting applications to a Grid environ-
ment. What is emerging is a consensus that the original idea of a computational Grid that
behaved like a utility Grid for computation is perhaps oversimplified. There may be sev-
eral different structures for Grids depending on whether the resources aggregated in the
Grid are to serve large-scale computation, large-scale data handling, complex data sources
(e.g., bioinformatics databases) or perhaps to integrate business processes. In this, the vi-
sual supercomputing paradigm presents novel challenges to the Grid concept. A number
of pioneering projects, described in this chapter, have been testing the implications of a
Grid for various visualisation applications and have raised many technical issues includ-
ing real-time processing, synchronisation of resource allocation and interaction between
clients and Grid services.

This chapter is organized into the following sections. In Section 2.2, the term Visual Su-
percomputing is defined. In Section 2.3, major scientific and technological developments
are reviewed by following the arrivals of different computing technologies, identify the
state of the art technologies are identified that have are required for building an infras-
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tructure for visual supercomputing. In Section 2.4, a collection of applications that would
benefit enormously from such an infrastructure are examined, and their technical require-
ments discussed.

2.2 Visual Supercomputing

In this section, the term ‘Visual Supercomputing’ is defined. Its relevance to the three
semantic contexts of visualisation is examined. Finally, the technical scope of visual
supercomputing from the perspectives of applications, users and systems respectively.

2.2.1 Definition

Definition 2.1 (Visual supercomputing). Visual supercomputing is concerned with the
infrastructural technology for supporting visual and interactive computing in general,
and visualisation in particular, in complex networked computing environments.

This thesis is focussed on the subject domain of visualisation, although most of the dis-
cussion in this chapter can be extrapolated to other subject domains involving visual and
interactive computing, such as computer-aided design, computer animation, and computer
vision.

As an infrastructural technology, visual supercomputing encompasses a large collec-
tion of hardware technologies and software systems for supporting the computation and
management of visualisation tasks. It focuses on generic technologies for managing the
specification, execution and delivery of visualisation tasks. It addresses issues such the
scheduling of visualisation tasks, hardware and software configurations, parallel and dis-
tributed computation, data distribution, communications between different visualisation
tasks, and communications between visualisation tasks and their couplings such as com-
putation tasks or data collection tasks. In addition, it provides infrastructural support to
users’ interaction with visualisation systems, and manages users’ experience in accessing
and interacting with visualisation resources. Nevertheless, visual supercomputing does
not concern a specific algorithm and technique for processing a specific type of data in
order to generate visualisation results.

Explicit emphasis is given to complex networked computing environments, as this chapter
is not intended as only a survey of the technologies that have been developed so far in the
context of visual supercomputing, but as a report on technologies that are in place as well
as that are desirable for a future infrastructure. No doubt such an infrastructure must take
web computing, Grid computing and mobile computing into account. Hence it has to pro-
vide comprehensive support to visualisation tasks in complex heterogeneous networked
computing environments. As current trends in hardware design are increasingly driven
by power consumption as well as raw speed, there is an increasing reliance on dedicated
hardware. This trend makes it appear likely that heterogeneous environments will be the
norm, rather than the exception, in the near future.
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The visual supercomputing environment is best considered as a global Grid infrastructure
for visualisation. The above-mentioned technical features of visual supercomputing have
clearly set it apart from the traditional subject domains such as hardware architectures
for visualisation, parallel and distributed computation for visualisation, web-based visu-
alisation, and collaborative visualisation. While the advances in these traditional subject
domains will have significant influence in shaping the infrastructure of visual supercom-
puting, building such an environment will require not only integrating these technical
advances together in an environment, but also bringing in, and developing new, technolo-
gies for significantly improving the quality of services (QoS) of such an infrastructure
and users’ experience.

2.2.2 Semantic Contexts

The term ‘visualising’ refers to a process that extracts meaningful information from data,
and constructs a visual representation of the information. In the field of visualisation, this
process is commonly considered in three different but interrelated semantic contexts as
illustrated in Figure 2.1.

Reps.
Visual Data

User

Display Control

Rendering

Making displayable by a computer

Making visible
to one’s eye

Making visible to one’s mind Mental
Images

Figure 2.1: Three semantic contexts of visualisation.

Making displayable by a computer. This is concerned with the algorithmic and com-
putational process of extracting information and rendering a visual representation
of the information. In this semantic context, a visual supercomputing infrastructure
should address issues such as allocating and scheduling computational resources
for visualisation tasks, managing data distribution, and providing mechanisms for
inter-process, and inter-task communications within an infrastructure.

Making visible to one’s eyes. This is concerned with the process of specifying meaning-
ful information, designing appropriate visual representations, and conveying visual
representations to viewers. In this semantic context, a visual supercomputing in-
frastructure should address issues related to the interaction between users and their
visualisation tasks, which can be conducted in a variety of forms, including in-
teractive virtual environments, Internet-based collaborative environments, mobile
visualisation environments, and so on.
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Making visible to one’s mind. This is concerned with users’ thought process and cog-
nitive experience of interpreting received information (not necessarily in a visual
form) in one’s mind and converting the information to knowledge in pictorial rep-
resentations. In this semantic context, it is neither desirable nor perhaps feasible
for a visual supercomputing infrastructure to manage the thought process of a user.

This section presents further detailed discussions on how visual computing relates to the
above three semantic contexts, and provides rationalisation for focusing infrastructural
support on the processes of making displayable by a computer and making visible to
one’s eye, with the state of the art technologies in visual supercomputing. It also argues
for the necessity for introducing gradually new capabilities in a visual supercomputing
environment, to support the process of making visible to one’s mind.

2.2.3 Application Perspective

The demands for visualisation multiply in every direction, and there is an increasing num-
ber of new applications, resulting in new, and sometimes conflicting, requirements. For
example:

• In some applications (e.g., bioinformatics), the size of datasets to be processed
continues to grow, while in others (e.g., mobile visualisation), a careful control
of data size is absolutely necessary. Even in cases where the data is sufficiently
small to fit on a single machine, collaboration and security concerns may make it
advisable to store it centrally. This makes the ability to quickly access the required
subset of data that is available.

• In many applications (e.g., those involving 3D virtual environments), users still
have plenty of appetite for photorealistic visualisation at an interactive speed, while
in others (e.g., visual data mining), schematic visual representations and non-photo-
realistically rendered images are often able to convey more information. A visual
supercomputing environment must be able to handle both latency- and throughput-
dependent tasks.

• In many applications (e.g., virtual endoscopy), interactive visualisation can now
be achieved with modern personal computers, hence small integrated systems pro-
vide a high degree of independence to users who operate in various practical situ-
ations. Meanwhile, other applications (e.g., those centralized around one or more
data warehouses) require a substantial amount of computation for visualisation to
be closely coupled with the source of data. Some applications, which have dis-
tributed data sources or dynamic data sources, demand a more complex computa-
tional model. A visual supercomputing environment must scale to all devices from
hand-held machines up to supercomputers.

From the perspective of applications, an important requirement for a visual supercomput-
ing infrastructure is choice. It has to provide support for a large collection of platforms,
methods, mechanisms and tools to serve different categories of application, as well as of-
fer each individual application a diverse selection of means to accomplish a visualisation
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task.

Section 2.4 considers several major applications, which collectively characterize the main
requirements for a visual supercomputing infrastructure.

2.2.4 User Perspective

Visualisation users are no longer limited to scientists and engineers. At the same time, a
visualisation process often requires a high degree of domain knowledge about the appli-
cation concerned. While the diversity of applications demands a visual supercomputing
environment to provide a large collection of platforms, methods, mechanisms and tools,
users require the service to be tailored to individual needs, and to be delivered in a seam-
less manner. Many users, especially those less technically oriented, would very much
hope for a secretary-like visualisation service, where they simply submit the data, give
instructions and receive results. Although to get appropriate results may require a few
feedback loops, many users certainly do not wish to get involved in choosing hardware,
programming parallelism, organizing storage for input and output data, and so on. Further
more, like a secretary, perhaps a visual supercomputing infrastructure should accumulate
knowledge about various entities in the environments, profiling hardware capabilities,
software usage, users’ preference, etc. and gradually improving its quality of services to
individual users.

Recent developments in business computing, such as electronic customer relationship
management (e-CRM) [241, 183], has shown that it is possible to provide users with bet-
ter quality of services with appropriate technologies that are capable of collecting and
processing users’ experience. The emergence of autonomic computing [165] is gather-
ing further momentum in developing self-managed services in a complex infrastructure
(see also Section 3.2). Therefore a visual supercomputing infrastructure should have the
responsibility for managing:

• visualisation resources,

• visualisation processes,

• source data and resultant data,

• users’ interaction and communication,

• users’ experience in accomplishing a visualisation tasks.

2.2.5 System Perspective

From the system perspective, a visualisation task is a kind of computation task, which
exhibits a specific class of characteristics. The infrastructure of visual supercomputing is
built upon a range of underlying technologies, including computer hardware, operating
systems, programming languages, data warehouses, communications, world-wide-web,
Grid computing and knowledge-based systems. It is neither sensible nor feasible for the
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visualisation community to attempt to provide solutions in all these aspects. However, it
is necessary for the construction of such an infrastructure to bring in the latest advances
in other fields of computing and communications, and moreover, to influence the devel-
opments in these fields.

The following section, examines in detail the major advances and the state of the art in
the relevant fields.

2.3 Trends in Visual Supercomputing

Visualisation is fundamentally an application of computing, and so trends in visual com-
puting tend to follow overall trends in computing. The predominant trend in the industry
since its inception has been towards miniaturisation. The one prediction that has always
held in every aspect of computing has been ‘you will be able to do this with a smaller
machine next year.’

This section will provide a description of some of the more important trends and mile-
stones in the computing industry, and their impact on visualisation. As visualisation is
such a computationally-demanding application, it has always been near the forefront of
uses for new advances.

For more information, please see the relevant surveys [332, 135, 27, 321, 104, 161, 40]
and some major publications [94, 304, 127] [331, 281, 171].

2.3.1 The Dinosaurs

The pre-history of computing is dominated by large machines taking several rooms worth
of space. The Cray-1 was possibly the first supercomputer deserving the name, although
its computational power was small by modern standards. Visualisation was not the only
task performed on this model, but Elwald and Mass’s vector graphics library for this
platform [103] represents some of the first efforts at directing supercomputing power
towards visualisation.

Once the potential for computer visualisation began to be understood by the scientific
community at large, the field began to get more attention. Supercomputers are difficult to
define, as a breed. Some personal computers have been advertised as ‘supercomputers’
based solely on US export restrictions on processing power during the tail end of the
cold war. This metric is not particularly meaningful, since the PDAs of one age are
the supercomputers of an earlier one. Most supercomputers are based around the idea
of massively parallel computational engines with very fast interconnects between them.
This broad scope will be used for the remainder of this section, which will thus include
some techniques that post-date the widespread use of supercomputers for visualisation,
but inherit some concepts from this age.
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Figure 2.2: The decomposition of a multiply-by-three operation using functional paral-
lelism.

2.3.1.1 The Growth of Parallel Computation

Computers are never quite fast enough. In 1965, Gordon Moore noted the trend that
the number of elements that can be placed on an integrated circuit, for a fixed invest-
ment, doubles roughly every 18 months. This observation came to be known as Moore’s
Law [221].

Although Moore’s Law says nothing about computational power, it has been a fairly ac-
curate rule-of-thumb. If you double the number of transistors on a die, you can double
the number of execution units, the amount of cache, etc. This is usually accomplished by
a reduction in feature size, which comes with a corresponding increase in feasible clock
speeds.

In spite of these gains, a single CPU is often still not fast enough. Or, more accurately,
the cost of building a single CPU that is fast enough is prohibitive. A much cheaper
alternative is to by two (or more) CPUs and join them together.

Most traditional programming models owe their heritage to very simple computers, and
so have no concept of parallelism. New models were required, and two emerged. These
were functional parallelism and data parallelism.

Functional parallelism, also called pipelining, describes a model by which an operation
is split up into a number of stages, each of which can be executed sequentially. Figure
2.2 shows a trivial example, in which the function f(n) = n × 3 is decomposed into
functionally parallel stages. Assuming that each block in the diagram can be executed on
a separate execution unit, the right hand pipeline could run twice as fast as the left. This
is exploited by modern CPUs at the instruction level, but in visualisation it is commonly
done at a much coarse granularity giving rise to the term visualisation pipeline.

Data parallelism is conceptually simpler, but often harder to implement in practice. Data
parallelism splits the data, rather than the algorithm. A data parallel version of the
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multiply-by-three example would simply add a second multiplier. You could then achieve
double the throughput, assuming that you could keep both supplied with data. The diffi-
culty in implementing data parallelism comes from the fact that, for many applications,
the data is not independent. Most modern hardware incorporates some form of data par-
allelism, from superscalar architectures in general purpose CPUs to multiple independent
pipelines in GPUs.

In graphics, data parallelism is typically achieved using either image space or object space
decomposition. Image space decomposition splits the workload up based on the pixels in
the final image. Ray tracing is particularly suited to this approach, since each pixel in a
ray-traced image is generated by a different ray, which is independent from the others. In
rasterisation-based approaches, techniques such as scan line interleaving are common. In
general, image space decomposition works better on shared memory architectures, since
each thread needs access to all (or a large subset) of the source data for most techniques.

A final form of parallelism, known as farm parallelism is a hybrid of the two. In this,
a problem is decomposed into computational tasks, encapsulating both a portion of data
and some functional workload. These are typically independent, are are processed by
whichever computational resources become free first. This form of parallelism is used by
visualisation algorithms such as [242].

In terms of implementations, Flynn’s taxonomy [111] still works well to describe the pos-
sible forms of parallel hardware in terms of the number of concurrent data and instruction
streams. The simplest case, single instruction, single data (SISD) refers to the absence of
any parallelism. At the other extreme, multiple instruction, multiple data (MIMD) refers
to independent instructions working on multiple data streams, as is the case with indepen-
dent processors. In the middle are single instruction, multiple data, (SIMD) and multiple
instruction, single data (MISD) systems. The first, also known as vector processors, are
common in supercomputer chips and increasingly as extra instructions on general purpose
CPUs.

SIMD machines allow individual instructions to operate on vector rather than scalar quan-
tities. While an add instruction in a SISD machine would be defined as add(x, y)→ x+y,
the equivalent SIMD instruction might be defined as add((x1, x2, x3, x4), (y1, y2, y3, y4))→
(x1 + y1, x2 + y2, x3 + y3, x4 + y4). Vector processors typically have a very large peak
throughput, however it is difficult to keep them saturated. In the four-way vector example,
adding two numbers together would take as long as adding four pairs of numbers together.
Visualisation algorithms tend to be well suited to this kind of architecture, since a vector
can be used to store each colour component (for example), and acted on independently.

The final approach, MISD, is perhaps the hardest to pin down. It is difficult to define
a MISD machine, because most machines could be categorised as MISD. A multiply
instruction could be considered to be a series of add and shift instructions, for example
(and a shift instruction, itself, could be considered a series of add instructions). Very
few machines, if any, have instructions so simple that they can not be considered to be
combinations of simpler operations.
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2.3.1.2 Sharing Data

The simplest form of parallel computation is two completely independent computers, run-
ning two independent tasks. This could be regarded as the most widely-deployed form
of parallel computation, since every computer in the world, past and present, is part of
a grid implementing this form of parallelism. It is not usually regarded as a model of
parallel computation, however. Some form of communication between computational re-
sources is typically regarded as the basic entry requirement for being classed as a parallel
computer.

There are two main ways of sharing data between a pair of processors; shared memory and
message passing. The Parallel Random Access Machine (PRAM) model [112] represents
the first method. PRAM describes a MIMD architecture with a number of independent
processors with a shared clock and an unbounded memory space; the MIMD equivalent
of an unlimited register machine. PRAM architectures can be categorised according to
the capability of the memory; whether each location can be read from or written to con-
currently. In modern machines, most RAM has no capability for concurrency, although
specialised Video RAM (VRAM) has been designed to allow the DAC connected to the
screen to read its contents while the CPU updated the contents, removing the need to lock
the memory as the display was scanned. This has gone out of fashion in recent years as
RAM prices have dropped enough to make double buffering the norm.

More recent models for parallel architectures have focussed on the layout of the mem-
ory, describing architectures according to whether access to the memory has a uniform
cost [280, 50]. Uniform Memory Architecture (UMA) machines are those for which it
does. UMA designs are typically found in systems which do not exhibit a large degree of
parallelism1. The reason for this is that maintaining a uniform access cost for large num-
bers of processors to large amounts of memory requires either n×m interconnects, where
n is the number of processors and m is the number of banks of memory, or a large con-
stant cost. UMA systems where the processing units are heterogeneous are referred to as
symmetric multiprocessing (SMP) systems, since a task can run as easily on any process-
ing unit. Volume visualisation often relies on memory systems supplying conflict-free
simultaneous access to multiple voxel values in a volume dataset [255].

Non-uniform memory architecture (NUMA) systems exhibit greater scalability [345]. In
a NUMA architecture, there is some fast, local, memory for each processing resource.
The speed of access to this memory is constant, irrespective of the number of nodes in
the system. In contrast, adding one node to a UMA system either increases the cost
of memory access to all nodes, or increases the cost of building the system (often by a
large amount). The largest disadvantage of a NUMA system is that it requires locality
of reference to be used effectively, delegating data distribution to the programmer. This
makes NUMA machines more of a challenge to effectively utilise.

The other model for sharing data is message passing. A message passing system partitions
the address space so that each processor has its own private memory and explicitly sends
and receives data from others. While these two models seem different, it is important to

1What constitutes a ‘large degree’ depends largely on the year in which the system was designed.
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note that it is relatively easy to implement one using the other. Shared memory can have
message queues stored in it, and accesses to remote memory regions can be trapped and
fetched using a message passing mechanism. It is important to distinguish between the
underlying mechanism, and that exposed to the programmer.

A distributed memory system is one in which each processor has its own private memory,
which is fast and not shared. A message passing mechanism is then used for non-local
access. The Cray T3D is an archetypal example of this. A more modern implementation
of this idea is found in the Cell microprocessor where each synergistic processing unit
(SPU), of which there are eight on each die, has 256KB of very fast local memory and
uses DMA transfers to access the system’s main memory. A similar low-level design is
used on most modern processors, although the fast local memory is not directly accessibly
by the programmer; instead it is used as cache for the main memory, and the contents are
determined at run-time by the cache controller. Distributed memory systems are often
regarded as difficult to program, since they do not map to conventional programming
languages very easily. CSP-based languages, such as Erlang [23] and Termite [123], are
well suited to targeting these architectures, since their semantics more closely match the
underlying hardware. In spite of this, distributed memory systems are popular for very
high-end systems due to their ability to scale to many thousands of processors [299].
Distributed memory systems can have their nodes arranged in a variety of configurations.

Most UMA systems are shared memory systems at the low level. These typically make
use of a distributed memory hierarchy, where each processor has a local cache that is not
accessible to others. Maintaining coherence between these caches requires a cache co-
herence protocol. In the absence of cache coherence, a modification to a shared memory
region might not be detected by one of the processors [299]. Some NUMA architec-
tures also implement a cache coherency protocol. These are referred to as cache coherent
NUMA (ccNUMA). The one of the most widespread ccNUMA architectures currently
is AMD’s Opteron, where each CPU has a memory controller and communicates with
the others over a message-passing point-to-point HyperTransport interconnect. When a
memory location is updated, the cache lines containing it in all of the connected proces-
sors are flushed. This is a good example of the importance of distinguishing between the
implementation and the programmer-visible design, since most operating systems expose
Opteron machines as UMA systems to the programmer.

2.3.1.3 Programming Models

Conceptually, the simplest model for programming parallel systems is shared memory,
where each thread of execution has access to the same memory resources. While this
is conceptually simple, it has several limitations. The most obvious is that it places a
significant burden on the programmer, in terms of synchronisation. The second is that
is is not ideal for NUMA systems. A shared memory system, where communication
latencies are significantly under 1ms can present a shared memory view to a programmer
using a structure such as a dynamic interconnection network [297] or a crossbar switch
such as that found on the Cray Y-MP to keep latencies relatively constant. On NUMA
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systems, however, the cost of accessing memory can vary widely. This makes reasoning
about performance very difficult [121].

Shared memory does not have to be exposed as an untyped melange of data. Linda [55] is
a coordination system, which exposes a shared tuple space to developers. Linda supports
C and Fortran. A similar model is available for Java in the form of JavaSpaces. The
SR language [16] supports both shared-address-space paradigm and messaging passing
paradigm.

Message passing as a programming model scales better than pure shared memory, and
maps more cleanly to the underlying mechanisms of NUMA systems. Some languages,
such as Erlang and Termite, have been designed around this model, but they require sig-
nificant changes to the design of many existing algorithms. These languages are based on
the communicating sequential processes formalism, where a problem is decomposed into
independent parts, with no shared resources, that communicate by passing messages.

Message passing mechanisms have been attached to other languages at the library level.
The most popular for high-performance visualisation, and computing in general, is Mes-
sage Passing Interface (MPI) [51]. This specification has been implemented for a variety
of languages, including C/C++ and Fortran.

An alternative is the Parallel Virtual Machine (PVM), from Oak Ridge National Lab-
oratories. This uses an abstract virtual machine as the target, and an emulator for this
machine. Although this incurs some performance penalty, it provides good fault toller-
ance and recovery, and so remains relatively popular [122]. A similar approach is taken
by a derivative of the Plan 9 operating system, InfernoTM [99]. InfernoTM runs both as
an operating system and in ‘hosted mode’ as a process in other operating systems, and is
designed to run distributed applications written in the Limbo programming language and
just-in-time compiled for the native platform.

In the late 1970s, Alan Kay proposed a method of software development where programs
would be described as running on ‘simple computers that communicate by message pass-
ing.’ He termed this model object oriented programming. At the time, most computers
had a single CPU and so the most efficient method for implementing message passing was
synchronously, atop function calls. Languages such as Smalltalk built on this principle,
however, present message passing as an abstraction and so allow different approaches to
be used. Messages in Smalltalk-like languages can easily be replaced with trampolines
which return a proxy object, which then blocks on access, implicitly extracting paral-
lelism from synchronous algorithms2.

Other languages, such as Java and C++ adopt some aspects of object orientation, and
replace function calls with method invocations as the basic primitive for controlling pro-
gram flow. Function calls and method invocations are very similar, both in implementa-
tion and use. A method invocation in these languages is basically a function call scoped
to an instantiation of an abstract data type; a verb to the object’s noun.

2An implementation of this idea in Objective-C by the author of this thesis is available from http://etoile-
project.org

http://etoile-project.org
http://etoile-project.org
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Function calls and method invocations are, at the local level, synchronous. Both have been
extended to support parallel computation, however. Function calls have been extended as
remote procedure calls (RPC). A number of implementations of these exist, with the
most common being those of Sun and Microsoft. While the procedure calls themselves
complete synchronously, it is common for them to be used to initiate a longer process
which then completes asynchronously.

The concept of RPC was extended by NeXT Computers to give Portable Distributed
Objects (PDO). The PDO system allowed both synchronous and asynchronous method
calls to objects on remote machines. Since objects were passed as parameters, this gave
more functionality than procedure calls. PDO was limited by the fact that it primarily
worked on compiled languages, however which forced the classes to be distributed out-
of-band before the system started.

The Java implementation, remote method invocation (RMI) overcame this limitation. Java
classes are compiled as bytecode, which is machine-agnostic. This means that objects can
be passed as parameters irrespective of whether their underling code had been distributed
before hand. If they had not, then the bytecode could be distributed between nodes in the
network and run.

Two PDO-like systems gained widespread adoption. The Common Object Request Broker
Architecture (CORBA) [25] is a specification for method invocations across language and
process boundaries. Microsoft’s Distributed Common Object Model (DCOM) goes a step
further, and specifies a binary interface, allowing DCOM objects to interact independently
of the object resource broker on which they are running (although, in practice, the only
DCOM implementation that has seen any widespread use is Microsoft’s own). CORBA
and COM, like PDO, use the object as the ‘atom’ — the unsplitable component — in
the system. Globe [313] goes a step further, and permits a single object to be distributed
amongst nodes.

In recent years, there has been a growth in distributed middleware, including coordination-
based systems such as Jini [240], and document-based designs such as Globus [114].
Many of these use XML at the protocol level [43], especially those based on web, and
later grid-service architectures.

The idea of dataflow computation [275, 276] is an alternate model for parallel program-
ming, in which execution is driven by the dependencies within the data. The Polytypic
Grid [100] provides a similar model, making use of the implicit parallelism that can be
extracted from functional languages (moving from λ-calculus to π-calculus for the under-
lying formalism) in combination with lazy evaluation to perform on-demand execution of
a parallel graphics pipeline.

Dataflow computation has seen a lot of use in the context of visualisation, as it maps
well to the visualisation pipeline abstraction. Implementations including OpenDX [2],
AVS [311], IRIS Explorer [117], SCIRun [243] and DDV [222] are all examples of
dataflow environments aimed at visualisation. They treat the visualisation pipeline as
a directed graph, where each node represents a computation. This provides support for
dataflow parallelism [285], since each node can be executed in parallel. There are some
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limitations to most implementations of this approach, such as the inability to handle par-
tial datasets [6], although this is a practical, rather than theoretical, limitation to the model.

One final model, that of stream-based computation provides an approach similar to data
parallelism, but with some aspects of control parallelism. A stream-parallel system is
composed of stream processing units, which take streams of commands and data and
execute in parallel. This model is used by Chromium [149], which processes streams of
OpenGL commands (which can be control or data, but are more often data). A set of
extensions to VTK based on Chromium have also been proposed [223].

2.3.1.4 Measuring Performance

The main reason for moving to parallel computation is to achieve better performance,
and so it is important to be able to measure the increase on performance derived from the
addition of extra processing units.

One of the most popular metrics is speedup [154]. This measures the increase in speed
per added processing resource. Speedup is calculated as the ratio of the serial and parallel
runtimes, multiplied by the number of processors. In the parallel case, the total time of all
processors is taken, so a task which takes two seconds on each of two processors would
have a parallel run time of four seconds. In the ideal case, the speedup for an algorithm
will be the number of processors (P ). Note that in many cases speedup is a function of
P , rather than a constant. Some algorithms have a ‘natural’ degree of parallelism, and
have a speedup of the order of P up to this value, after which little benefit is gained from
adding more processors. In theory, the speedup can not exceed P , however in practice,
concurrent applications may incur some overhead from context switching on a single
processor that is removed when they are run on more. This is often apparent on highly-
concurrent applications written in languages such as Erlang. The upper bound on speedup
is given by Amdahl’s Law [12]. Given a problem of size w that has a sequential fraction
of size ws and a parallel fraction of size wp = w − ws, the upper bound of speedup is
w/ws, regardless the number of processors.

It is important to track the efficiency of a parallel approach. The efficiency of parallelisa-
tion is defined as the speedup divided by the number of processors. In the ideal case, the
efficiency will approach 1. In general (for most non-trivial algorithms), it tends towards
0 as P tends towards infinity. At some point, it ceases to be economical to keep adding
processors to a problem. Another way of determining this is the cost metric. This is the
total computation time needed (the run time multiplied by the number of processors). If
the speedup is less than P (i.e. the efficiency is less than one) then the cost will grow as
P grows.

The optimum value of P can be determined by the scalability [173] metric. This measures
the rate of change of speedup, in terms of P . The isoefficiency function is an alternate
metric based on the size of the problem required to maintain a constant efficiency, based
on a known overhead. An isoefficiency function takes into account the structure of the
parallel computational resources, including the communication speeds. A scalable paral-



2.3 Trends in Visual Supercomputing 21

lel system is usually indicated by a small efficiency function [126].

For some applications, the time-constrained scalability [133] of the problem is a very
important metric. This allows a fixed run-time to be defined, and reached by adjusting the
size of the data. Similarly, memory-constrained scalability describes the way in which
the memory usage of an algorithm can be adjusted in terms of its input data. This can be
very important when running an algorithm on real hardware. In the case of visualisation,
it is often possible to employ level of detail techniques to reduce the data size.

When describing parallel systems, it is important to be aware of the granularity of the
parallelism. This describes the ratio of the number of processing units to the capacity of
each. The smallest capacity is a single instruction, and most modern processors exhibit
some degree of parallelism at this level, known as instruction level parallelism (ILP). This
is the finest-grained form of parallelism that is likely to be encountered.

2.3.1.5 Parallel Visualisation

So far, parallel programming has been discussed in the general case, rather than the con-
text of visualisation. This section will attempt to discuss how some of the concepts have
been applied by the visualisation community

When creating a parallel system of any form, it is necessary to decompose the problem
into smaller parts. In the scope of visualisation, this is usually done using either image
space or object space [127] decomposition. These relate to how the scene is distributed
across rendering nodes, either partitioning the input (object space) or the output (image
space).

Image space approaches are often called sort-first algorithms, since the primitives are
sorted during the rendering of the sub-images. Sort-last algorithms [220] are usually
object-space. Different sets of objects are rendered to produce simpler objects which
must then be composited (depth-sorted) together to produce the final image.

A parallel rendering task typically faces a problem when it comes to data distribution.
Object space decomposition allows parts of the scene to be placed logically close to the
processing resources rendering them, which helps to reduce the communication overhead.
This is more true of visualisation tasks than many more general computational tasks, since
visualisation typically involves a large reduction in the data size (for example, turning a
large volume dataset into a 2D image). Image space decomposition typically requires
all of the nodes to be able to access the entire dataset, which can allow more efficient
distribution of tasks at the cost of a greater communication overhead.

For systems that do not have shared memory at the hardware level, distributing the data
efficiently is important to minimise the communication overhead used. It is often possible
exploit some characteristics of the data being visualised in order to produce an efficient
distribution strategy. Some partitioning strategies take advantage of spacial locality [203],
others image and frame coherence [124], and overlapping and exchange of boundary
data [227]. These strategies are not easy to generalise. Typically, a distribution strategy is
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tied to a particular data type, and often to the rendering algorithm and even the underlying
architecture of the system. Such strategies can be classified according to the type of ren-
dering they support; image-space [203], object-space [337], or hybrid approaches [178].
Alternatively, a taxonomy based on the method of splitting the data can be used.

The simplest form of distribution is complete data replication, where a copy of the entire
dataset is placed on each rendering node. This is common for image-space decomposition
and rendering of read-only images. The cost, however, scales linearly in terms of the
number of nodes, which can be prohibitively expensive, particularly on cheap rendering
nodes which generally have fairly modest local storage abilities.

The next form is block replications, where the data is split based on coarse-grained slices
across the object space. Typically, the blocks overlap, so that each node has slightly more
than 1/p of the data. The overlapping area is typically much smaller than the size of
the block, however, and so adding more nodes reduces the amount of data on each node,
meaning the total storage space required scales much better than linearly. For workloads
where the distribution of data is non-uniform, an irregular block decomposition method
can be used to make blocks which have roughly the same number of features inside, and
so have roughly equivalent rendering times.

The most complex distribution strategies are structured or hierarchical partitioning meth-
ods. These rely on an overlay structure used to organise the raw data. One of the simplest
forms is an occupancy map [211, 159]. This makes use of an overlay structure which is a
simple mapping from blocks to a boolean variable, indicating whether the block contains
data that should be rendered. This can be used at a fairly coarse granularity to quickly
eliminate empty regions.

The simplest forms of hierarchical partitioning are structures like octrees [97, 69]. These
divide a region into a number (eight, for an octree) of equal-sized sub-regions. These are
recursively re-divided until a threshold is reached, such as a minimum number of features
(e.g. vertexes) in a leaf node. Kd-trees [31] provide a similar method of partitioning,
although they split the data in such a way that the there is always an equal number of
points in each node at a given depth, by placing the splitting plane on the median point.
Hierarchical structures can be used to divide data on a variety of attributes, including
spacial occupancy and rendering workload [316].

Structural partitioning is typically associated with object-space methods, although it is
possible to make use of some image-space parallel rendering techniques with them, as
they can be used to produce view-dependent information for efficient data access [194].
On generated data, the scene graph abstraction is often used to compose objects in 3D
space. These can be used for managing sort-first, distributed memory parallel visualisa-
tion [32] and have been used in the context of real-time virtual reality [228].

After the data has been split, it is necessary to assign parts of the rendering task to dif-
ferent nodes for parallel execution. There two approaches to this problem. Static task
assignment [337, 201] maps tasks to nodes at the start of execution. This works well
for rendering algorithms that have a fixed, or easily computable, cost for a given set of
input data. A preprocessing step is required to generate the mapping, but then the task
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can run with no further intervention. The alternative is dynamic task assignment [178],
where tasks are assigned to to nodes as the job runs. This is typically done by splitting the
rendering job into (many) more components than there are processing nodes, and issuing
new ones from a queue to idle nodes.

The former is more commonly associated with object-space approaches, where a known
amount of data is rendered by each node. The later is better suited to image-space algo-
rithms, where rendering times are not constant. Consider the extreme case of a parallel
ray tracer, where each ray is an individual task. Some rays will pass directly through
the image, and be very cheap to render. Some will interact with complex structures and
spawn secondary and tertiary rays, possibly in large numbers. Assigning a group of rays
to each processor at the start of rendering would almost certainly cause some to terminate
and sit idle before others.

The final step in most parallel rendering tasks is image composition. This is the pro-
cess of re-assembling the results of the parallel rendering tasks into a single image, and
often presents a bottleneck. The simple direct send method, where the results are sent
directly to a compositing node, can cause some significant bottlenecks by saturating
the compositing node’s bandwidth. An alternative is to use a parallel composition al-
gorithm [188, 337], where the image is gradually assembled in a hierarchical fashion.
Another option is a scheduled linear image compositing algorithm, as a highly optimized
direct send method [289], which offers better scaling to large numbers of processors. Fi-
nally, dedicated stream-processing hardware can be used for compositing, although this
typically increases the cost.

2.3.2 Towards Local Visualisation

It is axiomatic that computers get smaller over time. Early visualisation was performed
on large mainframe or supercomputing resources. This started to change in the late 1970s,
with the arrival of the graphics workstation. These machines had the processing resources
required for simple (by todays standards) visualisation tasks in the same device as a dis-
play. This reduced latency, and allowed more interactive visualisations. In the same time-
frame, network-transparent graphics systems, such as NeWS and X11, were developed.
These allowed similar interactivity to be gained over a fast network.

In the ’80s, graphical computing began to take off in the mainstream, with the widespread
deployment of GUI-based operating environments. Even cheap home computers began
to have framebuffers, and some had more complex graphics acceleration, such as sprite-
rendering hardware and simple vector drawing accelerators. At the higher-end, 3D vi-
sualisation became possible on workstation-class hardware. Volume rendering became
practical using isosurface extraction techniques such as Marching Cubes [199] and direct
volume rendering methods such as volume ray casting [191].

From the late 1980s to the early 1990s, a number of commercial products targetting vi-
sualisation began to appear, such as AVS [311], aPE [102] and Khoros [254], later joined
by IRIS Explorer [117] and TGS Amira [302]. These use a visual representation of a
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visualisation pipeline as a user interface. They generally support a variety of modules,
including some supplied by third parties, leading to their being described as modular visu-
alisation environments. By presenting a visual model, rather than a programatic one, they
lowered the barrier to entry for users wishing to exploit the capabilities of a visualisation
environment.

These visualisation tools were regarded as the ‘killer application’ for high-end worksta-
tions for some time. Visualisation required large amounts of processing power, but the
requirement for low latency made workstations much more appealing than thin-client
solutions. Most modular visualisation environments were developed around this time to
fuel demand for visual workstations, and were given away with the workstations, or made
available at a very low cost. AVS was developed by Ardent to sell their workstations, and
IRIS Explorer to sell Silicon Graphics workstations3.

Just as graphics workstations took over from larger machines, their market began to be
eroded by commodity hardware. This demand was largely driven by the gaming industry,
which constantly demanded higher-quality visual effects than were possible with purely
CPU-based graphics algorithms. Initially, 2D vector accelerators were introduced into
commodity PCs. These accelerated simple line-drawing functions, and were often mar-
keted as ‘windows accelerators,’ since they accelerated the drawing operations used by
a GUI. Dedicated 3D hardware was introduced into the commodity market by manufac-
turers such as PowerVR (now owned by Intel) and 3dfx (now owned by nVidia), who
provided support for texturing in hardware. Later, nVidia added support for offloading
transform and lighting calculations to the Graphics Processing Unit (GPU). This was
later extended to provide fragment, vertex and finally geometry shader support in hard-
ware. Modern GPUs have a completely programmable rasterisation pipeline, and are
sufficiently flexible that they are now being used for non-visualisation tasks.

This has been compounded in the last few years with the incorporation of graphics hard-
ware into PDA form factor devices. These tend to be significantly slower than their desk-
top counterparts, however they are also typically limited by much lower bandwidth for
transmitting images from a remote renderer, making the decision between local and re-
mote rendering far less clear-cut.

2.3.3 Hardware for Visualisation

Visualisation tasks can often be offloaded effectively onto dedicated hardware. While
dedicated silicon is generally more expensive than general purpose hardware, it can
be significantly faster. When RAM was very expensive, dual-ported memory called
VRAM [252] was popular. This had a read-write port for the CPU and a read-only port for
the DAC. This allowed the CPU to write to the frame buffer while the display hardware
was scanning it for output, without requiring any locking. This was obsoleted when RAM
prices dropped sufficiently that two frame buffers could be used, and switched between.

3Silicon Graphics changed its name to SGI later, when the company began to focus more on the general
HPC market than on visualisation
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The CPU would write to one, while the display hardware read the other, and then they
would be flipped. This also helped reduce visual artefacts, since the current frame will
not be updated while it is being displayed (as long as the switching is synchronoised with
the flyback period).

One of the earliest processors used as a dedicated graphics processor was the Intel i860 [129].
The i860 was intended as a general purpose CPU for workstation use, and was intended
to replace the 8086-compatible line. It could achieve a theoretical peak of 66MFLOPS,
compared to the 33MFLOPS of the i486 at the time. In general purpose use, particu-
larly with compiler-generated code, the i486 performed better, however. This, combined
with the very high context-switching overhead of the i860 caused it to be abandoned as
a general purpose CPU. The instruction set was based on VLIW principles. This made
it very good for running jobs that included large groups of unrelated instructions (since
the compiler had to arrange them into bundles that could be executed in parallel). This
made it particularly well suited to a number of graphics tasks, such as vector drawing.
The chip was included in the NeXTdimension expansion board for the NeXT Cube. In
this configuration, it ran a Mach kernel with a PostScript interpreter. Display elements
would be sent to it as PostScript programs, which executed very quickly. Some systems,
such as the IRIS Power series from SGI [8] moved in the opposite direction, and included
large numbers of general purpose chips in a parallel configuration.

Texture mapping hardware began to appear in consumer hardware in the early ’90s. This
did not offload any of the geometry calculations from the main CPU, but did allow some
more rendering techniques to be explored. Flow visualisation [259, 300, 192] took advan-
tage of texture mapping to display flows on top of simple geometric primitives represent-
ing the structure of the flow. Splatting [296] used textures representing a 2D projection of
a sphere (i.e. a shaded circle) mapped onto square primitives to quickly render point data
sets, and other point-based techniques also made use of texturing hardware [249]. Recent
consumer cards (and older workstation hardware) also includes support for 3D textures.
These take up large amounts of memory; a 512 voxel cube in 32-bit colour will require
512MB of memory to store, without compression.

Modern GPUs are not exactly dedicated graphics hardware. They are highly parallel
stream processors. They have some limitations over general-purpose hardware, such
as the relatively high cost of branching. Early generations of GPU could not execute
branches at all. Later ones did so by simply executing both parts and then throwing away
the wrong result. The newer cards support branching natively, although their very long
pipelines make them comparatively expensive. In spite of these limitations, a number of
applications such as volume rendering and ray casting [212, 258, 264, 227, 89] have been
ported to GPU architectures. Their shortcomings are largely made up for by the fact that
they have very high throughput.

Modern GPUs have an interesting memory architecture. They generally have their own
RAM and the ability to access the system RAM. Those connected via AGP are more able
to quickly move data from main memory to their local storage, but moving in the other
direction is much slower. PCI express addresses this by providing much more, symmetri-
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cal, bandwidth [333]. Roadmaps from both Intel and AMD4 indicate that future x86 chips
will incorporate GPU-like functionality, giving the GPU the same memory bandwidth as
the CPU. In the interim, some pre-processing approaches have been proposed that help
alleviate this bottleneck [82].

Hardware acceleration is not limited to surface rasterisation. Dedicated hardware such as
the TeraRecon VolumePro allow real-time direct rendering of volume datasets [247]. This
is based on an earlier research project in the same area [248], and delivers up to 30fps on
data sets up to 512 voxels along each side.

As discussed earlier, ‘more processors’ tends to be cheaper than ‘faster processors’ and
GPUs are no exception. A number of approaches have been proposed to take advantage
of multiple GPUs in a cluster configuration [343, 227]. This has lead to dedicated designs
such as the WireGL [148], which evolved into Chromium [149], allowing an OpenGL
command stream to be transparently distributed amongst nodes in a cluster. Additional
work has been done by others on using multiple CPUs in a cluster [219] and commer-
cial solutions are available. Visualisation toolkits such as OpenRM and VTK have been
integrated with Chromium [32, 223] and other commercial visualisation products, such
as Mod-viz [218] have been developed for cluster deployment. On the hardware side,
Sun Fire Visual Grid [293] and IBM DeepView [167] provide similar strategies from a
hardware perspective.

Trends towards dedicated and general purpose hardware tend to be cyclic. At the time of
writing, it appears that the trend is about to start its swing back towards general purpose
hardware, with the next generation CPUs including design elements taken from GPUs
and extensions to their instruction sets aimed towards graphics applications.

2.4 Applications of Visual Supercomputing

Visualisation is, first and foremost, a practical discipline. Technology is only interesting
in the context of applications. There have been a number of trends in recent years that
lead to the conclusion that a large-scale visualisation infrastructure is needed.

2.4.1 Alternative Reality

Total immersion virtual reality environments have been a dream of the visualisation com-
munity since the 1980s. This places a very large demand on computation [49, 281, 278];
either a very large display is required, or a smaller one with very frequent updates for
movement (or some combination of the two).

Head mounted displays are fairly common for VR applications. They present a different
screen to each eye, with a rendering from a slightly different viewpoint. The motion of
the user’s head must be tracked to maintain the illusion of immersion. For multiple users,

4Who now own ATi
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projection-based approaches project the stereoscopic images onto a screen [283]. These
can be projected at the same time, and filtered by coloured or polarised lenses, or protected
alternately and split by shutter-glasses worn by the users. Since these displays do not track
the motion of multiple users, there are only a small number of situations in which they are
useful. Another alternative is to use a ‘true’ 3D display, where the individual pixels are
drawn in a tank in 3D space, either using a holographic display [283], or some mechanism
involving a rapidly rotating screen [36]. Since these draw an entire volume every frame,
they require a huge amount of bandwidth, and are limited to the kind of 3D scene that
can fit inside the tank. At the opposite extreme, it is possible to use very high resolution
displays (for example, 63 million pixels [223]) to present large scenes in which there
is little parallax. All of these approaches require a significant amount of computational
power to maintain the illusion of presence.

The other half of the problem relates to input. Presenting a 3D world is only of use if it
can be interacted with, and this helps maintain the illusion of physical immersion [290].
The simplest input devices are 3D mice, which track their position in three dimensions, or
gloves. These work well in one direction — the computer can track the user — but do not
work well in terms of feedback to the user [281]. Haptic systems, such as the phantom
stylus [290], provide a better sense of interaction, since the computer and user can both
affect the other.

The computational resources required to maintain a fully interactive visual and haptic
environment are huge. The Cave Automatic Virtual Environment (CAVE) system provides
a visually immersive environment by projecting a stereoscopic image onto each wall of a
room, and tracking the head movements of the user. A typical CAVE is powered by a 12-
CPU SGI Onyx and special purpose software such as DIVERSE [162] for management.

The issue of management is almost as important as that of processing cost. While pro-
cessing power for a given investment doubles roughly every 18 months, the cost of a
human managing the system does not. In fact, the converse is true; as system complexity
grows the skills required to manage the system become rarer and thus more expensive. A
self-managing system is highly prized.

Virtual environments are particularly attractive for collaboration, since they can present
the illusion of physical proximity between remote collaborators. Examples of collabora-
tive environments include DVIE [53], MASSIVE [128], VRML-extension [44], COVEN [236],
DEVRL [282], and VirtuOsi [30]. These tend to adopt the virtual world model. This
places great demands on the infrastructure to ensure that the individual users see a consis-
tent view of the world, both in terms of rendering at the edges and ensuring distributing
the data between them.

In many situations, a complete artificial world is not required, just some slight modifica-
tions to the existing one. The solution to this is augmented reality, where a virtual world
is overlaid on the real one. AR typically uses a transparent display between the user and
the real world [251] and a camera tracking objects in the real scene [182]. Examples of
systems using this include th InfoTable [257] which detects objects and allows arbitrary
metadata associated with them to be displayed. AR can also be used in a collaborative
context, allowing users to see the same virtual object [271].
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The Grid is becoming more and more important in the field of visualisation, particularly
when computational resources required for real time interaction in a virtual environment
are not locally available. Also the popular component-based programming paradigm,
which has been adopted by many visualisation systems such as VTK, AVS and OpenDX,
can make use Grid resources. This allows different computation steps of a visualisation
pipeline to be distributed around the globe [274]. Other visualisation systems such as
EnSight Gold [1] and VisIt [70, 318] also support parallel processing directly.

2.4.2 Distributed Visualisation

The biggest change to the computing landscape in the last decade has been the dramatic
rise to prominence of the Internet, and more specifically the World Wide Web. The early
web could display static images, and so presented a new mechanism for distributing the
results of visualisation; a rendering could be generated on a large machine and then easily
distributed to users without requiring them to install any specialised software.

The web has grown dramatically since the early days, both in size and capabilities. The
ability of early browsers to launch ‘helper applications’ based on MIME types allowed
custom applications for viewing visualisations to be triggered by visiting a web page [17].
The growth of plug-in architectures since then has allowed more complex visualisation
tasks to be run from within the browser, using technologies such as VRML, X3D and
Java.

The web gives rise to two conceptual structures for visualisation. The first, server-side
visualisation, has been possible since the first web browsers; a user sends a request for a
web page and receives a rendering as a result. This has been exploited by systems such as
CGI interfaces to existing visualisation tools [342, 105]. The alternative is to delegate the
rendering to the client side [215]. In this case, the web is used to distribute the data used
for client-side visualisation. Both of these involve trade-offs. Server-side visualisations
can be significantly more complicated, since the web server can be a front-end to a large
rendering farm, while client-side renderings are limited both by the power of the client
and the amount of data that can be sent over a network connection. The advantage of
client-side visualisation is the low latency between the user and the renderer, giving much
better interactivity.

These two approaches have, in combination, given rise to the web-services approach. This
is similar to the server-side approach, but allows multiple servers. Data can be stored
in one place and different stages in the visualisation pipeline can be run on different
machines in a loosely-coupled environment.

Beyond the web, a number of other approaches for remote visualisation via the Internet
have been developed. ORL’s Virtual Network Computer (VNC) [322] uses a screen-
scraping mechanism to send a copy of the framebuffer to a remote user, and remotely
send mouse and keyboard input to workstation.

VNC provides basic collaboration abilities, however it does not provide any means of
mediating access to resources. Different levels of collaboration are possible within dis-
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tributed systems. The simplest is data sharing, which is supported by environments such
as CUMULVS [229] and pV3 [253], where multiple viewers can inspect the same data,
or COVISE [83] where geometry is shared, but collaborators retain their own viewpoint.
This is in contrast with something like VNC, which provides display sharing, since each
collaborator shares the same view of the data.

There is a growing need for collaborative visualisation, as the next section will explain,
and some of the tools for building the required infrastructure are beginning to become
available. The current state of visualisation, however, is not ready for deployment on the
grid [274], and further work is required.

2.4.3 Visual Data Mining and Large-scale Data Visualisation

Never before in history have we had such capability for generating, collecting and storing
digital data. Data repositories at terabyte level are becoming a common place in many
applications, including bioinformatics, medicine, remote sensing and nano-technology.
In some applications, such as network traffic visualisation [172] and video visualisa-
tion [87] (Figure 2.3), we are encountering the scenario that dynamic data streams are
almost temporally unbounded. Many visualisation tasks are evolving into visual data
mining processes [161].

These applications are placing a huge strain on the existing visualisation environments,
and challenging the state of the art technologies in many ways. They demand a variety of
infrastructural supports, such as,

• for providing sufficient run-time storage space to active visualisation tasks;

• managing complex data distribution mechanisms for parallel and distributed pro-
cessing;

• choosing the most efficient algorithm according to the size of the problem;

• facilitating the search through a huge parameter space for the most effective visual
representation.

Data management is the very first issue in handling large datasets. Many visualisation
processes involve datasets that are much too large for the internal memory of a computer,
and have to rely on external disk storage, usually under the virtual memory management
of an operating system. The external disk access can become a serious bottleneck in
terms of rendering speed. Out-of-core algorithms (also known as external memory al-
gorithms) [321] are designed to solve a variety of batch and interactive computational
problems by minimizing disk I/O overhead. Various out-of-core visualisation algorithms
have been proposed to handle large structured and unstructured 3D datasets, for instance,
in the context of (i) isosurface extraction [75, 67, 295], (ii) terrain rendering [194], (iii)
streamline visualisation [308], (iv) mesh simplification [193], (v) rendering time-varying
volume data [277], (vi) rendering unstructured volumetric grids [109], and (vii) ray trac-
ing [250]. While some algorithms rely little on internal memory (e.g., [67, 109]), others
utilize preprocessed data structures, such as octree [308] and indexing [277] to optimize
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disk I/O operations. Kurc et al. [175] recently reported their experience in visualizing
large volume datasets using Active Data Repository, which is composed of a set of mod-
ular services and a unified interface for supporting the management of, and mapping
between, in-core and out-core data.

There has been a similar amount of research effort, if not more, for developing techniques
that synthesize a visualisation image using less than the full dataset. Two commonly used
approaches for determining a subset of data to be visualized are multi-resolution and
view-dependent data organisation.

Multi-resolution data organisation makes use of various hierarchical spatial structures to
manage levels-of-details (LODs) of a graphical model or scene. Such structures facili-
tate real-time rendering by allowing an appropriate LOD to be selected according to the
requirements of interactivity and the constraints of computational resources. In com-
puter graphics and visualisation, there exists a large collection of works based on this
approach. For example, octrees and min-max indexing were used for isosurface extrac-
tion [334, 155, 75]. Laur and Hanrahan [184] utilized an octree for progressive refinement
in splatting. Wilhelms et al. [335] employed a k-D tree for direct rendering irregular and
multiple volumetric grids.

View-dependent data organisation makes use of the concepts and algorithms of hidden
surface removal, and prioritizes geometrical primitives according to their visibility to the
viewer. For example, Livnat and Hansen [197] proposed a view-dependent isosurfac-
ing algorithm. LaMar et al. [179] prioritized volume data based on its proximity to the
viewer. Other view-dependent works include visible set estimation [168], visibility-based
prefetching [82], and view-dependent progressive rendering [238].

While it is necessary to deal with problems arising from very large datasets, it is equally
important to improve our capability for managing inter-related datasets in order to gen-
erate more meaningful visualisation. In computer graphics and computer aided design,
scene graphs, built-upon the concept of constructive solid geometry, have played an indis-
pensable role in combining simple objects into a complex object and bringing many ob-
jects together into a scene. It is common for graphics systems to support scene graphs, for
instance, in RenderMan, OpenGL, OpenRM, VRML, Java3D, POV-ray and Open Scene
Graph. However, support for combinational modelling in visualisation systems [32, 228]
is largely based on surface-based scene graphs, relying on image-space composition.
Early research efforts for modelling complex visualisations involving multiple datasets
were focused on voxelisation [327]. In order to address the problems associated with vox-
elisation [156], such as excessive data size and data degeneration, Chen and Tucker [60]
outlined the concept of constructive volume geometry for combining volumetric datasets
and procedurally defined scalar fields. vlib [336], an open source volume graphics API,
offers volumetric scene graphs as its fundamental data structure, and provides a discrete
ray tracer for direct rendering volumetric scene graphs.

In large-scale data visualisation, high performance rendering techniques, such as mas-
sively parallel rendering (e.g., [202]), progressive rendering (e.g., [184]) and stream-
based rendering (e.g., [149]), are essential to the the process of making displayable by
a computer (Figure 2.1). However, facing very large datasets, making meaningful in-
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formation visible to one’s eyes is often more critical in visualisation. With very large
datasets, ‘meaningful information’ is often featured in a visualisation at a sub-pixel level,
in a large amount or in four or higher dimensions. This challenges us to develop visuali-
sation techniques into tools for visual data mining [161].

A popular approach to the handling of a huge amount of visual information is the use of
focus and context techniques, which highlights a ‘focus’ in detail and depict its ‘context’
with less details to provide an overview. Focus and context techniques such as fisheye
views [268], perspective wall [204], hyperbolic space [226] and rubber sheets [269], have
been deployed extensively in information visualisation. This approach has also been em-
ployed in scientific visualisation, deformation-based volume visualisation by Kurzion and
Yagel [177], distortion viewing by Carpendale et al. [54], non-photorealistic rendering by
Treavett and Chen [305], magnification lens by LaMar et al. [180], two-level rendering
by Hadwiger et al. [134], digital dissection in cardiac visualisation by Chen et al. [61].

Data mining should be closely coupled with visualisation [339]. Interactive visualisation
is an indispensable tool in many data mining activities [139, 142]. interactive visualisation
of large datasets not only demands sufficient computational resources, but also requires
effective interactive techniques for data exploration, view navigation, data segmentation,
data filtering, data fusion and direct manipulation [161].

Perhaps one of the main challenges in the coming years is computer-assisted design
of visual representations. Many techniques in information visualisation enable auto-
mated placement of information in a visualisation, for instance, treemap [279] and Sun-
burst [288] in hierarchy visualisation, recursive pattern [160] and circle segments [18]
in time-series visualisation, and spring models [303] and Kohonen networks [170] for
self-organisation and self-optimisation in the entire information space. In volume visuali-
sation, initial attempts have been made to automate the specification of transfer functions.
Marks et al. [206] proposed a design galleries approach to the problem, while Kindlmann
and Durkin [166] developed a semi-automatic method for generating transfer functions.

The problems surrounding large scale data visualisation are collectively becoming an
infrastructure issue, as it is unlikely an individual technique can provide a satisfactory
solution alone. To process such large amounts of data at the speed required, it is necessary
for a visual supercomputing infrastructure to provide dedicated computational resources
and application software systems. It is no doubt useful for the infrastructure to select
appropriate modelling, processing and rendering techniques according to the available
resources and interaction requirements. It is also highly desirable for the infrastructure to
offer a wide range of tools for visual data mining as such activities are often unplanned
and the effectiveness of a particular tool cannot always be pre-determined.

2.4.4 Scientific Computation and Computational Steering

The scientific community is one of the largest consumers of visualisation. It is unusual
to use visualisation in isolation. More typically, it is integrated with a simulation system
or problem solving environment. Such an environment is usually designed in a domain-
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specific manner, targeting a particular class of problem [119]. Cactus is an example
of an open source problem solving system used by physicists and engineers [10]. In
scientific modelling, visualisation is one component in a feedback loop [311]. These
feedback systems typically fit into one of the following categories, a taxonomy proposed
by Marshall et al. [207].

Post-processing uses visualisation after the simulation has run, simply to display the
results. The user has no control over the simulation, and can not abort it or modify
the parameters as a result of the visualisation, without running the simulation again.
Since these visualisations run offline, they may use expensive pre-processing steps
to achieve interactive framerates during the visualisation.

Tracking refers to visualisations that run during the simulation, but have no direct feed-
back mechanism. A user may use a tracking visualisation to check that a simulation
is progressing adequately, but not as a control system.

Steering is the most complex of the three. In a steering environment, the visualisation
component is part of the user interface, and decisions that affect the simulation can
be made by the user at run-time based on the output of the visualisation. This can
also be used to provide an audit trail [38], where checkpoints from various steering
phases are stored. A steering environment using visualisation can be quite different
to a conventional user interface. The parameters of the simulation can be modified
by the environment based on very high-level responses to the visualisations made
by the user, as in [346].

A steering environment that is flexible enough for all uses has been attempted [314, 312,
225] by adding steering widgets to visualisation systems, allowing the same generic tools
used for visualisation to be used for controlling simulations. SCIRun, from the Scientific
Computation and Imaging Institute at the University of Utah is a visualisation environ-
ment designed from the ground-up for steering tasks [243]. Other tools for this purpose
include the Collaborative User Migration, User Library for Visualisation and Steering
(CUMULVS) [229], which was developed to provide tools for scientific programmers.
This framework is designed to allow steering and visualisation components to be inte-
grated with large-scale simulations.

The RealityGrid project, as shown in Figure 2.4, is another project aimed at assisting
steering applications. This has been used to build a number of different grid applications,
including large scale Lattice-Boltzmann simulations [45] running on a large number of
distributed machines.

The gViz project [340] has extended the IRIS Explorer application, described earlier, to
allow components of the visualisation pipeline to run on different machines. In a grid
environment, it is expected that communications between two machines are not necessar-
ily private, and so a system like this is likely to require encryption, and a mechanism for
authenticating trusted machines.

It is clear from the interaction between computation and visualisation that high-level inter-
process communication mechanisms are required for the grid environment. These typi-
cally involve moving very large amounts of data between parts of the pipeline, and so the
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current grid services architecture, built using XML and HTTP, might not be appropriate.
Systems such as Kepler [11] integrate scientific workflows with visualisation.

Simulations have been the focus of much of this section, but they are not the only things
that require visualisation, nor are they the sole recipients of steering activities. The same
feedback mechanisms can be applied to control real systems, such as experimental appa-
ratus, medical systems or industrial equipment. A nuclear power plant, for example, is
too dangerous to directly observe, and so can only be controlled based on output from
sensors and is a good target for visualisation driven steering.

While simulations can typically be paused, interrupted, or restarted, real systems can
(usually) not. They require real-time processing of datasets that are often very large,
and low-latency feedback. This category of mission critical visualisation does not solely
encompass systems requiring immediate feedback, but such systems do usually have a
fixed time window between availability of data and the need for a user to make a decision.
An example of this would be a flight simulator used to train pilots [284]. The simulator
throws situations at a pilot, which must be visualised in time for the pilot to control the
simulated aircraft in a way that reacts to the simulated situation.

The medical community is likely to be another area in which this form of visualisation
will be used extensively. Visualisations from patient scans are commonly used during the
planing phase of surgical procedures [246], and it is not a great imaginative leap to think
that they could be used for training and even remote operations conducted by specialists
on a different continent in the near future.

Figure 2.5 shows a system for delivering interactive volume interrogation of patient data
in the operating theatre [209]. In this example, visualisation tasks are carried out on a
large, remote visualisation server and delivered over the network.

This form of visualisation is typically conducted using custom (expensive) hardware at
the moment, which makes it an ideal target for a visualisation infrastructure. The com-
puting power available to a large scale infrastructure is likely to be sufficient to perform
many of these tasks, however the management of such a system, the allocation of re-
sources, and the interaction of components are still very much open problems. Quality of
service concerns are significant for mission critical situations. In a lot of existing applica-
tions a few dropped frames are irritating. In a remote surgery application, a sudden drop
in computing resource assignment or bandwidth allocation causing dropped frames or in-
creased latency could potentially be fatal. Synchronisation and data distribution are also
important problems [118], which must be addressed when designing an infrastructure for
visualisation.
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Figure 2.3: Video visualisation needs to deal with data streams of an arbitrarily large size.
Stream-based rendering can be effectively deployed to visualize video streams [87].
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Figure 2.4: A computational steering environment developed in the RealityGrid
project [45].

Figure 2.5: Visualisation-guided surgery is a typical application of mission-critical visu-
alisation [209].



Chapter 3

Autonomic Computing and Visual
Supercomputing

3.1 The Question of Scale

The Grid concept refers to a distributed computing infrastructure for ‘co-ordinated re-
source sharing’ [116]. This extends the concept of the World Wide Web, which is a
distributed computing infrastructure for sharing data. While a grid infrastructure allows
sharing of data, it also allows sharing of storage space and computational resources.

The Grid is a large heterogeneous system in which different components with different
resources and policies interact to further their own goals. Unlike cluster computing, the
Grid idea does not include a single administrator responsible for the whole system, nor a
single set of policies for use. A Grid infrastructure must provide a set of services [243],
but the way in which these services are provided is not well defined. There are a number
of standards, but many of them are incompatible. These are typically embodied by a Grid
middleware, which should implement the following services:

• networking quality of service (QoS),

• resource co-scheduling,

• load balancing,

• message passing,

• file transfer mechanisms,

• data security, integrity and coherence.

• authentication.

One widely-deployed middleware is that provided by the Globus Project [115], the Globus
Meta-computing Toolkit [114]. This contains a range of tools, which can be used for
building grid services. Globus makes a distinction between local and global services.
The former are simple to deploy, and are not publicly visible. They are then exported

36
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via global services, which typically wrap a small group of local services. Local ser-
vices can be tied to particular hardware resource, and more instances of the same service
added without changing the public appearance of the global service. This also allows
fault-tolerance; a global service could run a single job on two local services exported by
different machines, and if one fails return the result from the one that didn’t, without the
external user being aware of the failure.

Globus is not the only option for Grid middleware. Others include UNICORE [106],
which allows legacy closed-source applications to be re-packaged as grid services, which
was then extended to provide EUROGRID [107] and GRIP [130]. The Imperial College
e-Science Networked Infrastructure is designed to allow software components to be de-
ployed in a federated resource pool, as is Legion [58] which assembles the pool into a
virtual supercomputer. Condor [79] could be classed as a Grid middleware application,
although it predates the idea of the Grid, and is mainly focussed at numerical computa-
tion tasks, while the Grid is typically regarded as a more general idea. Codine, which was
designed for scheduling tasks across a distributed infrastructure, was developed into Sun
Grid Engine [294].

Several Grid infrastructure projects have resulted in deployment to date. The UK e-
Science Grid, NASA’s Information Power Grid (IPG) and the European Data Grid are
all examples which are usable for research purposes, although not necessarily for general
use. The AccessGrid [3] is a very specialised Grid environment, based around providing
conferencing services, which has seen some use in visualisation since it is designed to
share visual data for video conferencing, and can be extended further.

The plethora of Grid ‘standards’ is expected to converge at some point. The Open Grid
Services Architecture [113] was formed by the Globus project and IBM. This aims to
build standard interfaces for Grid services on top of existing Web Services. The first draft
specification was released in 2003.

Current Grid systems are not ideally suited to running interactive tasks, they are better
suited to batch-processing. Since most visualisation tasks require some form of inter-
activity, this is less than ideal. Some attempts have been made to modify existing Grid
middleware to fulfil these needs, such as the Interactive Access plug-in to the UNICORE
client [106], which allows end-users to interact, via the UNICORE middleware, with
simulation processes running at multiple locations.

The Grid is the embodiment of large scale computing. Many of the participants on the
Grid (i.e. those offering Grid services) are likely to be clusters or supercomputing centers.
Mobile devices occupy the other end of the scale, with very limited computing power and
connectivity. The addition of mobile devices to the Grid brings us closer to the vision
of ubiquitous computing, where computational resources are widely deployed, and con-
sumer electronic devices participate in a Grid-like environment, along with mobile and
even wearable computers [328]. This is particularly interesting from a visualisation per-
spective, since it provides a number of new and exciting opportunities which are largely
unexplored.

Some work has been done in this area already. The FUSE system has been proposed as a
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tool for developing collaborative systems that are to be deployed on multiple platforms.
PDAs have been used for a variety of tasks, including as a remote display for visualisa-
tions rendered on a graphics workstation [181], or a smart pointer [338]. Tweek [137]
presents another alternative, a middleware system which displays a 2D GUI to a virtual
environment on a variety of devices, including PDAs.

An alternative use is to use the on-board processing power of the PDA to create visualisa-
tions. D’Amora and Bernardini [86] developed a PDA 3D viewer that can access a remote
database of CAD models. Some current PDAs have quite powerful 3D accelerators, when
taken in the context of their screen size.

Izadi et al. [151] proposed the FUSE system as a development tool for collaborative sys-
tems across multiple platforms. Lamberti et al. [181] demonstrated a mobile graphical
interactive rendering task running on a PDA which is provided by a remote graphics work-
station. Wolf et al. [338] proposed the Smart Pointer as a role for PDA devices, where
it either presents a subset of the visualisation when part of a larger visualisation environ-
ment (such as a CAVE) or it aims to provide the same overall image as other (desktop)
clients, both approaches using a remote visualisation server. Hartling et al. [137] pre-
sented a middleware system, Tweek, which displays a 2D GUI to a virtual environment
using a PDA. The user may interact with the virtual environment via the PDA. Apart
from the technical aspect, human factor issues in using PDAs for visualisation need to be
addressed [244].

We have categorized the demands upon both the mobile device and the visualisation ser-
vice into the following classes ordered according to their communication requirements:

Remote scheduling — A device, such as a PDA, can be used to monitor the account
status of the user on a visualisation server. The user should be able to consult their
account, see the current state of any jobs, and perform basic management tasks,
such as start, stop, hold and remove. This requires a low bandwidth duplex channel
for textual communications.

Remote monitoring — Higher level monitoring functions can take advantage of the
colour displays on the device. Users may query their account to retrieve still im-
ages which are visualisations of their data. They may (pre)select parameters for
rendering (such as rendering method and transfer function), and be presented with
the image. Such parameters may be used to assist with scheduling decisions. This
class requires a duplex channel with a higher bandwidth downstreaming traffic.

Remote steering — A remote user can be notified on job (or intermediate result) com-
pletion, and may view a visualisation of the result. Some limited interaction with
the visual representation is possible as the user’s feedback can be used to gener-
ate modifications to the current job. This is most useful for checking intermediate
results during batch mode without having to be tied down to one location. Some
steering of the simulation is possible as jobs can be stopped and restarted from a
recent state with new parameters. The bandwidth requirement is higher as the wait
time for several images may be undesirable. The computational demands on the
PDA are higher due to the need to zoom, pan, and interact with the data. At this
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stage, transmission and interaction with small 3D models may be desirable and
possible.

Remote visualisation — The user interacts freely with the simulation, using the visuali-
sation to explore all aspects of their data. This places a high demand on the PDA as
well as the server. The visualisation could be in the form of a sequence of images
generated by the server and transmitted compressed to the PDA, or the server could
send a stream which could be processed by the limited graphics hardware available
on the PDA. User interface widgets could be overlayed over the data, and the user
will send interaction data back to the server in order to steer the simulation. Some
frame loss, and some pauses in results are inconvenient but not critical.

Figure 3.1: Mobile technology has offered an exciting scope for developing new visuali-
sation applications (image courtesy of Dr. Mark Jones).

Mobile visualisation (Figure 3.1) introduces an interesting design problem for a visual
supercomputing environment. It reminds us of the desktop technology two decades ago
when low resolution displays and limited computation resources were supported by main
frame computers. However, it also exhibits a completely new scenario where the requests
for visualisation, or managing visualisation tasks, can come from anywhere with often
unreliable communication channels in terms of both bandwidth and security. The infras-
tructural support to mobile visualisation may significantly broaden the application scope
of visualisation, and transform this largely laboratory-based technology to a pervasive
technology.

3.2 Autonomic Computing

A Grid infrastructure, or more generally, a pervasive infrastructure, will be considerably
complex, and the difficulties in managing such an infrastructure raise a serious question
as to whether it is adequate for it to be managed by human administrators, and whether
it requires a much more system-level automation than what is currently implemented.
Researchers and developers in many fields, such as distributed systems, data communi-
cations, Internet technology, Grid computing, agent technology, database systems, expert
systems and business management systems, are embracing the concept of autonomic com-
puting in managing large and complex infrastructures and services.
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Autonomic computing [165] refers to computing systems which possess the capability
of self-knowing and self-management. Such a system may feature one or more of the
following attributes:

Self-configuring — The system can integrate new and existing components without low-
level intervention from an administrator.

Self-optimizing — The system can continually try alternate configurations to determine
if the current one is optimal.

Self-healing — The system can detect, and recover from, failure of components, hard-
ware or software.

Self-protecting — The system can detect attempts to compromise it, perhaps from hack-
ers or viruses, and react accordingly.

A noticeable amount of research effort in autonomic computing has been placed on the
self-management of system infrastructure and business services. Examples of this include
self-configuration in patching management [101] and in Grid service composition [4],
self-optimisation in power management [158], business objectives management [7], and
resource management in dealing with network traffic spikes [237], and self-healing in
online service management [62] and distributed software systems [217].

Efforts have also been made to broaden the scope of autonomic computing, addressing
a wide range of related research issues, such as economic models [108], physiological
models [187], interaction law [216], preference specification [326], ontology [195, 307],
human-computer interaction [14], and so forth.

Though the development of generic software environments for autonomic applications is
still in its infancy, several attempts were made, which include projects such as QADPZ [80],
AUTONOMIA [98] and Almaden OptimalGrid [88].

QADPZ (Quite Advanced Distributed Parallel Zystem) [80] provides an open source
framework for managing heterogeneous distributed computation in a network of desk-
top computers using autonomic principles. In QADPZ, the system complexity is hidden
in the middleware layer, facilitating self-knowledge, self-configuration, self-optimisation
and self-healing.

AUTONOMIA [98] is a prototype software development environment that provides ap-
plication developers with tools for specifying and implementing autonomic requirements
in network applications and services. It features an application management editor for
requirements specification, a mobile agent system as a uniform execution interface to un-
derlying hardware and operating systems, an autonomic middleware service for managing
autonomic services, an application delegated manager as a broker between components
and resources in the context of Jini lookup service [240], and a fault handler for self-
healing.

OptimalGrid is a self-configuring, self-healing and self-optimizing grid middleware, us-
ing a set of distributed whiteboards for communication between the different nodes. A
computational problem is expressed using Original Problem Cells (OPCs), which de-
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scribe the connectivity of the cells with their neighbours and the calculations to be per-
formed using the neighbours information. OPCs are aggregated in collections which are
themselves part of Variable Problem Partitions (VPP), assigned to grid nodes. The Op-
timalGrid system is then able to self-configure, using a list of available compute nodes
with their characteristics, and can optimize the repartition of OPCs after each computa-
tion cycle. As the communication history between nodes is saved in the whiteboards,
if a node is lost the system is able to recover and catch up with the computation, rather
than restarting the entire problem. The use of these different autonomic features permits
to deliver a grid system more robust and easier to use. Future plans include integrating
support for the Open Grid Services Architecture (OGSA) [113].

By mimicking the behaviour of the human autonomic system especially in dealing with
homoeostasis, autonomic computing is believed to be a solution to the increasing ad-
ministrative complexity of computing infrastructures. Hence, no visual supercomputing
infrastructure can afford to ignore this emerging technology.

The above discussions have clearly indicated the need for encompassing a large collection
of infrastructural issues related to the management of visualisation tasks in a common
framework, for which we have introduced the subject domain of visual supercomputing.
The requirements from applications, such as visual data mining, computational steering,
mission-critical visualisation and mobile visualisation, have indicated a high research
priority to the infrastructure of visual supercomputing. While such an infrastructure can
benefit from the state of the art technologies in visualisation, we are still facing many new
challenges in order to realize a well-designed, serviceable and cost-effective infrastructure
for visual supercomputing.

Autonomic computing has provided some ideas which can be used for managing parts of
this infrastructure, such as the Laundromat Model [136], however the field is still young
and has far more ideas than concrete implementations at present.

Hoare outlined a set of criteria for a grand challenge in computer science [143]. Accord-
ing to these criteria, building a visual supercomputing infrastructure can be considered as
a grand challenge in the field of visualisation. It raises a series of scientific questions such
as:

Architectural Design — Would it be desirable or feasible to build an infrastructure for
visual supercomputing based on that of the Grid? How would it accommodate the
different needs for centralized, distributed or independent services from various
applications? How would such an infrastructure provide generic support to the
management of visualisation data, distributed visual data mining, very large scale
data visualisation, mission-critical visualisation and mobile visualisation?

Technology Deployment — Should special purpose graphics hardware form the central
core of a visual supercomputing environment? If so, what would be the relation-
ship between such central hardware and graphics hardware available on personal
computers? What would different hardware attributes impact upon visualisation
algorithms, and how would visualisation tasks are managed to take such attributes
into account?
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Quality of Service — How would a visual supercomputing infrastructure provide seam-
less services to many users and for many applications, instead of just another ‘re-
mote login’ service? What would be the role of the infrastructure in managing
interaction, data and knowledge about users’ experience? In what way could users
benefit from a knowledge-based infrastructure?

One emerging strategy for developing complex computing infrastructure is autonomic
computing [165] (see also Section 3.2), which seeks inspiration in self-adaptive biological
systems and self-governing social and economic systems.

Adapting the deployment model, proposed by IBM [150], for the gradual evolution of
complex system-wide self-managing environments, one can envisage a similar five-level
deployment model for visual supercomputing, which can be developed evolutionarily.

Level 1: Basic — At this level, a visual supercomputing infrastructure is an integrated
system platform that provides visualisation applications with necessary computa-
tion and communication resources. Typically, users are fully involved in identifying
appropriate tools, locating computation resources, and managing data distributions.
It is often necessary for users to navigate themselves through complicated technical
obstacles, such as networking, security, parallel computing, data replication, and so
forth.

Level 2: Managed — At this level, a visual supercomputing infrastructure will have a
managed service layer between the user interface and the system platform. The ser-
vice layer is aware of the availability and ontology of data and resources, and can
provide services to various visualisation applications according to dynamic require-
ments of users and applications as well as dynamic states of the system platform. To
a large extent, the development of the Grid technology is aiming at the delivery of a
general-purpose infrastructure. To managing visualisation applications effectively,
it is necessary to incorporate more advanced service features into the Grid technol-
ogy for supporting a variety of visualisation needs such as interactive, distributed,
mobile, and mission-critical applications in a more transparent manner.

Level 3: Predictive — At this level, a visual supercomputing infrastructure will have
an information layer between the user interface and the service layer, which col-
lects, monitors and correlates various user interaction data and system performance
data. It provides users with analytical data, which may indicate the quality of vi-
sualisation results, effectiveness of visualisation tools, and so on. In addition, this
layer can enable faster and better task specification by reporting potential problems
and recommending suitable tools and visual representations. It is at this level, the
infrastructure starts to manage users’ experience in carrying out visualisation tasks.

Level 4: Adaptive — At this level, a visual supercomputing infrastructure will have an
adaptation layer between the information layer and the service layer. Based on the
information collected, the adaptation layer has the functionality for self-configuring
and self-optimizing the computational requirements of a visualisation task, as well
as the functionality for self-managing the system platform and various visualisation
services dynamically. It is at this level, visualisation users can be largely freed
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Figure 3.2: developing new visualisation applications.

from software management, and are able to focus on their core business, that is,
visualisation.

Level 5: Autonomic — At this level, the traditional user interface in a visual supercom-
puting infrastructure will be replaced by an intelligent user interface, for instance ‘a
virtual secretary’, which is capable of transform information to knowledge and pro-
vides users with a wide range assistance. Such assistance may include specifying
visualisation tasks, scheduling inter-dependent jobs, organizing raw data and visu-
alisation results, managing security, checking the quality of the service and results,
and arranging the sharing of the data with other users.

Figure 3.2 illustrates evolutionary advance of the infrastructure through the five levels.
In this deployment model, each layer is merely a conceptual placeholder for a collection
of functional components (e.g., services, tools, agents, databases, knowledge-bases, and
so on). It is not necessary for the development and deployment of each level to follow
a temporal order. Nor is it desirable to make each layer a centralized bottleneck in the
process of visualisation. It is most likely that the infrastructure will be realised with a
large number of autonomous, interacting, self-governing functional components.

3.3 e-Viz

Building a visual supercomputing infrastructure is no doubt an ambitious grand chal-
lenge. However, a solid foothold already exists at Level 1, and developments are rapidly
approaching Level 2. A noticeable amount of research effort is being made to develop
system-level autonomic computing techniques in many fields, including distributed sys-
tems, data communications, Internet technology, Grid computing, agent technology, database
systems and business management systems. Some of such effort can be viewed as ‘hor-
izontal’ deployment of autonomic computing at the system layer and service layer of a
visual supercomputing infrastructure (Figure 3.2), while others can provide new concepts,
methods and tools for the development of the intelligent user interface, information and
knowledge layer and adaptation layer.

The e-Viz project [39, 260, 42], begun in 2005 intends to explore the needs of such an
infrastructure and begin developing solutions. This project is a collaborative endeavour
between four sites in the UK; Bangor, Leeds, Manchester and Swansea. This PhD was
conducted as part of the e-Viz project and this thesis presents work performed towards
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this overall goal.

It is understood that a complete solution to the problem of designing an infrastructure
for visual supercomputing is well beyond the scope of a single PhD. The work presented
here intends to provide some of the framework for such a system. Figure 3.3 shows an
overview of the e-Viz project. The project had three main components. The e-Viz system,
a prototype for an autonomic visualisation system, a set of applications to be evaluated
for deployment on this infrastructure, and a simulator for modelling the overall system.

Work on reactive user interfaces for this was system was conducted at Leeds and Manch-
ester [42] and applications were tested at all sites. For example, work was conducted at
Bangor on using an adaptive grid infrastructure for augmented reality tasks [146, 147].

One of the goals of the e-Viz project was to explore the application of autonomic concepts
to visualisation problems. Part II of this thesis describes one such application. Rendering
large datasets will be a problem that any visualisation infrastructure will have to address
and out-of-core rendering is a necessity for this. This part of the thesis will explore
an autonomic, knowledge-based, approach to data management in an external memory
context. Approaches such as this would need to be built in at the lowest levels of a truly
adaptive infrastructure for visualisation, such as that proposed by the e-Viz project and be
part of the system pipeline described in the diagram.

Other work conducted at Swansea as part of the e-Viz project dealt with an agent-based
system for defining this pipeline [262]. During the design phase, this work was simulated
using the SimEAC simulator described in Part III.
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SimEAC was originally entered in the e-Viz proposal as SimuVis, a system for simulating
a final e-Viz system. While working on the requirements for such a system, it became
clear that any system which met the needs of e-Viz would be more generally useful. The
final system, renamed to make this more apparent, is presented in detail in this thesis.

Once the pipeline is created, it is often important to interactively control the visualisation.
Work on this was conducted at Leeds [341] and the pollution modeller application used
was also simulated running on several different configurations by SimEAC.

The e-Viz project demonstrated the advantages of an autonomic infrastructure for visu-
alisation. Ongoing work should make this a reality. Other contributions to the research
community from this project include:

• The five-level deployment model for autonomic visualisation from Swansea [39].

• Interactive remote server-based visualization from Manchester [260].

• Adaptive user interfaces for visualisation and computational steering from Leeds
and Manchester [42].

• Agent-based management of visualisation pipelines from Swansea [262].

• Applications in augmented reality from Bangor [147, 146].

• An application in volume visualisation from Swansea [262].
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Chapter 4

Out-of-Core Techniques
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4.1 Motivation

Moore’s law specifies that the number of transistors it is possible to fit on an integrated
circuit for a fixed financial investment doubles roughly ever 18 months. Since the number
of transistors gives a rough indication of performance, we can claim that the speed of
commodity CPUs follows a similar trend.

Hard drive capacities have followed a similar pattern, however seek times have not. Hard
drive seek times are limited by the angular movement of the platter and the linear move-
ment of the head. The head speed has remained relatively constant for the last twenty
years (although the platter size has shrunk somewhat, meaning that the longest possible
movement has shrunk). Rotational speed has increased somewhat. The first graph in Fig-
ure 4.1 shows the number of millions of instructions per second of commodity x86 chips
over time along with the rotational speed of hard drives of equivalent eras.
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Figure 4.1: Disk and CPU speed over the last twenty years.

The maximum amount of time for a seek that doesn’t involve moving the head is given
by the reciprocal of the rotational speed (i.e. the time for one complete rotation). The
second graph in Figure 4.1 shows the number of instructions that a CPU can execute
in one revolution of a hard disk of the same vintage. Note that this follows a roughly
exponential curve. If an algorithm depends on data on the disk, then this gives an idea of
how much time the CPU will spend idle instead of doing useful work.

The data used to produce this graph is shown in Table 4.1. The CPU MIPS numbers are
taken from the speeds of commodity x86 chips. Within the same instruction set architec-
ture, MIPS is a relatively accurate reflection of speed. The disk RPMs for the correspond-
ing years are taken from a variety of sources, including manufacturer press releases and
adverts dating from the relevant year. These figures are not to be considered completely
reliable, however they give a good indication of the speed of consumer technology for a
given year.

The seek time for any hard disk may be approximated by the following formula:

average seek time = max(
1

2× rotational speed
, pivot time + settling time)

The settling time and pivot time are closely related; the faster (and further) the pivot
moves, the larger the settling time due to induced vibrations caused by sudden motions.
The pivot time is also influenced. The graph in Figure 4.1 assumes some locality of data,
and so that the pivot time will be negligible compared to the rotational latency. While this
is not always valid, it gives a sufficiently good approximation for demonstration purposes.

In many cases, seek time is already a significant bottleneck, and this is likely to increase.
Since the CPU is spending so much time waiting for data, a significant performance
increase is possible by using some of this spare CPU time to load the data before it is
needed. Note that sustained transfer rates of hard drives are proportional to the rotational
speed and the data density. Since the density has increased at a faster rate than CPU
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Year CPU MIPS Hard Drive RPM
1988 Intel 386SX (25MHz) 8.5 3524
1992 Intel 486DX (66MHz) 54 3524
1996 Intel Pentium Pro (200MHz) 541 5400
1999 Intel Pentium III (500MHz) 1354 5400
2000 AMD Athlon (1.2GHz) 3561 7200
2002 AMD Athlon XP (2GHz) 5935 7200
2003 Pentium 4EE (3.2GHz) 9726 7200
2006 AMD Athlon FX (2.6GHz) 18938 10000
2007 Intel Core 2 (3.33GHz) 57063 10000

Table 4.1: Disk rotational speed and CPU speeds.

speeds, sustained transfers are much less of a bottleneck1.

This bottleneck is even more apparent when the data is stored on a remote server; in this
case the latency can be 200ms or more, giving two orders of magnitude more wasted
cycles.

The next three chapters describe some approaches to alleviating the problem of latency.
An algorithm-specific approach is proposed for a specific rendering method, and then an
attempt to apply autonomic concepts to the problem is discussed.

4.2 The Anatomy of an Out-of-Core Algorithm

An out-of-core algorithm is divided into three components. These each deal with a dif-
ferent stage in the life cycle of cached data.

• A data layout strategy

• A prefetching strategy,

• An eviction strategy

The data layout strategy relates to how data is stored out-of-core. On a hard disk, sequen-
tial reads are significantly faster than random seeks. If data is organised in a way that
preserves locality then the entire working set for an algorithmic step can be loaded into
memory with a single contiguous read. Unfortunately, the inherent unstructured nature
of some data, such as the point sets described later, make it very difficult to gain any
performance benefit from layout.

Another problem with data layout strategies is that they rely on the user having access to
something approaching the physical structure of the underlying hardware. A modern hard
disk uses linear block addressing (LBA) giving the appearance of a sequential structure,
hiding the details of the cylinder and track layout from the operating system. The OS

1Whether sustained transfer speeds are actually a bottleneck depends on the processing algorithm under
discussion.
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will then split files for more efficient storage in different parts of the disk. Something that
appears to a userspace application to be a linear write has to pass through two layers of
abstraction and can end up being nothing like a sequential operation. This is ignoring the
fact that disk accesses by competing processes may end up being interleaved, moving the
disk head a significant distance in the middle of a large write. Any data layout strategy,
to work properly, has to be aware that it might be fighting against the operating system.
Research conducted at the University of Utah2 has attempted to build an adaptive data
management strategy into the physical device, automatically re-ordering data based on
access patterns, using the same principle as wear-leveling in Flash storage devices.

The next component of an out-of-core algorithm is the prefetching strategy. This deter-
mines which data should be loaded speculatively. It is important for performance that
this provides a good prediction accuracy, as discussed earlier. The average seek time
of a modern disk is of the order of 9ms. This means that every time the required data
is not pre-fetched the CPU has to stall for several thousand cycles waiting. As the size
of this gap grows, more complicated prediction algorithms can be implemented without
introducing a new bottleneck.

The final component is the eviction strategy. This defines which parts of the data should
be evicted to make room for the newly loaded components. A perfect eviction strategy
would evict the data that are not going to be used for the longest time. Usually, however,
this information is not available, and so it is necessary to make some educated guesses.
Common strategies for eviction include Not Recently Used (NRU), Least Recently Used
(LRU), and Least Frequently Used (LFU). A hinted LRU strategy is used by the algo-
rithms described herein. Each time our prediction algorithm is run, it provides a set of
(node, confidence) pairs. These are then used by the eviction code so that it will not evict
nodes that have been predicted with a high confidence value, and are not currently being
used.

While not part of the data management strategy for an out-of-core algorithm, the pro-
cessing algorithm used can also have an effect on the effectiveness of the approach. Some
algorithms are designed to minimise the size of the working set at any given time interval.
These tend to work better in an out-of-core context.

4.3 A Taxonomy of Approaches

A taxonomy of out-of-core approaches is proposed. This divides out-of-core algorithms
into three categories:

• Algorithm Based

• Data structure Based

• Knowledge Based

2Not yet published, at the time of writing.
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Knowledge Based

Algorithm Based

Data Structure Based

Figure 4.2: The continuum of out-of-core approaches.

Definition 4.1 (Knowledge Based). Using no a priori information; learning everything
required to make predictions from previous interactions.

These categories refer to where the algorithm acquires the information required to make
predictions, and are specific to the prefetching and eviction strategies of the algorithms.

An algorithm based strategy is one that is tied to a particular processing algorithm. These
rely on the algorithm to be able to make predictions about their future access patterns.
If the algorithm is able to make good predictions, then these will perform well. The
disadvantage is that they are not portable between problem domains; each instance of a
problem has to be extensively modified to work in an out-of-core setting.

A data structure based strategy is slightly more general. These are specific to the struc-
ture of the data, but not to the algorithm used for processing. Usually these work by
understanding some dataset-specific concept of locality, and prefetch data ’near’ the cur-
rently processed blocks. An example of this might work on regular structured volumes
and load every voxel adjacent to the ones being currently processed. Data structure based
approaches are typically closely tied to a specific data layout strategy; data is stored on
disk in a way that preserves the concept of locality specified by the prefetching strategy.

Knowledge based algorithms are the most general of the three. They do not require any
knowledge of the data being processed. These learn access patterns through the data
from previous interactions and use them for prediction. Most operating system virtual
memory implementations fall loosely into this category, although they are very simple
implementations. They have no knowledge of the structure of the data, or what is being
done to it and apply simple heuristics, such as ‘Not Recently Used’ to handle eviction and
linear read-ahead for pre-fetching.

In practice, most algorithms fit somewhere in the middle. This can be represented this
using a continuum as shown in Figure 4.2. This depiction will be used in later sections to
classify out-of-core strategies.
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4.4 Related Work

There is a close relationship among volume visualization, implicit modeling and point-
based techniques. Points, as modeling primitives, are extensively featured in all three
classes of techniques.

The advances in volume visualization have produced a collection of methods for render-
ing volume datasets, including isosurfacing [199], ray casting [191] and forward pro-
jection [329]. Though in most cases, point primitives, i.e., voxels, are organized into a
grid or a mesh, in some cases, volume modeling with scattered data is necessary, (e.g.,
[230]), though existing approaches mostly involve the construction of a mesh structure
connecting these points together.

Implicit modeling [34, 231, 344] facilitates the composition of complicated objects from
elemental field functions, each of which is often defined on a point primitive. The octree
method has been used for polygonizing implicit surfaces [35] and computing ray-surface
intersections [157]. Due to the computational costs of polygonization and ray tracing, the
emphasis has always been placed on the use of a small set of point primitives or elemental
field functions.

One of the major advances in recent years is point-based modeling and rendering. The
most significant examples of this development include Surfels [249] and QSplat [266].
Other important developments include [132, 9, 286, 347]. In addition to the splatting
approach commonly adopted in point-based rendering, ray tracing point clouds through
intersection has been examined [270].

Recently a number of researchers addressed the convergence of these techniques, for ex-
ample, approximating volume datasets with implicit models [145], building implicit sur-
faces upon point clouds, using the point-based approach for isosurfacing volume datasets
[347, 323, 198], and combining point clouds and volume datasets in volume scene graphs [59].

Many visualization processes involve datasets that are much too large to fit into the in-
ternal memory of a computer, and have to rely on external disk storage, usually under
the virtual memory management of an operating system. The external disk access can
become a serious bottleneck in terms of rendering speed. Out-of-core algorithms (also
known as external memory algorithms) [321] are designed to solve a variety of batch and
interactive computational problems by minimizing disk I/O overhead.

Various out-of-core visualization algorithms have been proposed to handle large struc-
tured and unstructured 3D data-sets, for instance, in the context of (i) isosurface extrac-
tion [75, 67, 68, 64, 295], (ii) terrain rendering [194], (iii) streamline visualization [308],
(iv) mesh simplification [193], (v) rendering time-varying volume data [277], (vi) ren-
dering unstructured volumetric grids [190, 109, 64], (vii) ray tracing [250], and (viii)
radiosity [301]. While some algorithms rely little on internal memory (e.g., [67, 109]),
others utilize preprocessed data structures, such as octree [308] and indexing [277] to op-
timize disk I/O operations. Use of Active Data Repository for visualizing large volume
datasets was also reported [176].



4.4 Related Work 53

While point datasets are usually excessively large, there has been little existing work on
out-of-core methods for handling point datasets [131]. This motivates us to investigate
the feasibility of multiple large point sets in the context of discrete ray tracing.

4.4.1 Out-of-core

The concept of External Memory is not unique to visualisation applications. Operating
systems have supported some form of virtual memory [92] for decades. The term virtual
memory is used to refer to the combination of two concepts; protected memory and out-
of-core storage. The term ‘out-of-core’ derives from the old systems which used ferrite
core memory. In these systems, there were two places data could be stored; in the ferrite
core, or out of it. Ferrite core memory was fast (for the time), but expensive. In a modern
system, the ‘in-core’ storage is no longer ferrite core, but the term remains.

Since the late 1960s, the most common way of implementing the external memory portion
of this has been through paging [81], a system whereby memory is divided into equal-
sized regions which are swapped between in-core and out-of-core existence. These pages
are loaded back into memory when they are accessed, using a process known as demand
paging [174].

Processes which exhibit a rapid change in the accessed memory can cause thrashing [91]
on systems which employ demand paging. Thrashing involves the computer spending
most of its time swapping data between internal and external memory, rather than doing
useful work. This is not a problem for a lot of uses. Modern operating systems are
typically designed on under the assumption that exhausting in-core storage is unusual, an
argument made by Prof. A. Tanenbaum for omitting support for swapping from Minix
3 [298]. While this is a valid assumption for general purpose computing, it does not hold
for a number of visualisation tasks.

Proposed solutions to this problem include allowing the application to control the opera-
tion of the demand paging system [84, 138]. This allows more intelligent decisions about
which data to swap to be made.

Beyond minor modifications to paging systems, a number of problem-specific approaches
have been proposed, including data structures designed for on-disk access [320, 110] and
algorithms that promote efficient access paths through the data [319, 65, 19, 140]. Much
of the literature in this area focusses on complete traversals of tree data structures. This is
not particularly applicable to many rendering algorithms, which rely on a partial traversal
of a tree in an order determined by the current viewport.

4.4.2 External Memory

Towards the end of the 1960s, it became clear that the larger storage capacity of out-of-
core devices, such as tapes, could allow computers to work on much larger problems.
Work from this era [90, 169] focussed largely on sorting problems. Research on sorting
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gives a number of streaming algorithms (such as [234]), based on a distribution sort,
conceptually similar to a generalised radix sort. In these, each pass over the data places
it into a number of bins on disk. Each of these is then read in, and further sub-divided,
finally giving a completely sorted set of files. Much research in this area hinges on finding
good partitioning mechanisms [95]. A number of merge-sort derivatives [120, 169, 235]
have also been developed, mainly aimed at systems with multiple disks.

Many of these approaches generally make use of the Parallel Disk Model [320], where
multiple, independent, external memory stores are available, although some assume a
single disk.

Beyond sorting, a number of areas such as matrix and grid computations [153, 233, 189],
computational geometry [125, 20, 22], and graph traversal [310, 66, 21]. While most
of this work deals with algorithms with low I/O complexity, some, particularly in the
field of graph manipulation [5, 232] focusses on efficient on-disk storage structures for a
particular form of access.

The work in this area measures algorithm performance using the traditional metrics of
spacial and temporal complexity, but also in terms of the number of I/O operations re-
quired. Much of the focus is on developing entirely new algorithms to solve existing
problems, rather than attempting to allow existing algorithms to achieve good perfor-
mance using external memory. This is not necessarily a good approach for visualisation,
where a considerable amount of work has been done in designing in-core algorithms with
good visual output.

4.5 The 5-Layer Model

A five tiered approach to out-of-core strategies is proposed, as shown in Figure 4.3. Each
of the layers is conceptually independent and needs only to communicate with those di-
rectly above and below it in the stack. For efficiency reasons, it is possible that some lay-
ers may be omitted or combined. An out-of-core stack running on a single machine might
not need the network layer, while many existing out-of-core systems lack the knowledge
layer.

In the implementation described earlier, the lines between the knowledge and data struc-
ture layers are often blurred. The block and record layers are discrete, and multiple im-
plementations of each were evaluated. In ascending order, the layers are:

1. Block Layer

2. Record Layer

3. Knowledge Layer

4. Network Layer

5. Data Structure Layer
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Data Structure Layer

Network Layer

Knowledge Layer

Record Layer

Block Layer

Operating System

Figure 4.3: The five layers in the model, in relation to the OS and application.

The remainder of this chapter will discuss the layers individually and the interactions
between them, as well as presenting an example implementation.

4.5.1 The Block Layer

The very bottom of the stack is the block layer. This is responsible for moving data
between in-core and out-of-core storage. This layer responds to messages from the next
layer up instructing it to load byte ranges from the external memory device, and to evict
(modified) data from the in-core cache.

It is advisable that the block layer operate asynchronously, even if the remainder of the
stack is synchronous. If I/O operations are performed synchronously then the only effect
is to move the delay from the usage phase to the prefetching phase; often increasing the
total delay, since the lower bound for the amount of data prefetched is the amount of
data used. The reference implementation described in 4.8 includes several block layers,
including one built on POSIX asynchronous I/O facilities which generally provides the
best performance. A synchronous version of the block layer is also provided for refer-
ence. This serves two purposes; it is easy to understand, and so can be used as a base
for building better ones, and it provides more deterministic results, making it useful for
algorithm evaluation. In real-world use, one of the other back-ends is likely to give better
performance.

The POSIX specifications provide a number of operating system facilities that can be used
to implement this layer including, but not limited to, asynchronous I/O and memory-
mapped files. Which provides the best performance can vary between platforms. For
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example, on Mac OS X, memory mapped file access is an order of magnitude slower
than asynchronous I/O, while the difference between the two is negligible on FreeBSD.
The rôle of the block layer is to provide an abstract interface to the underlying operating
system functionality, allowing the most efficient implementation for a particular scenario
to be used without modifying the higher-level code.

4.5.2 The Record Layer

The record layer is responsible for translating between abstract record number and byte-
ranges. In the case of fixed record sized data this is a simple multiplication. For other
data structures it may be more complicated. The record layer, in simple terms, can be
described by the following function:

r(n ∈ N)→ {O,L} (4.1)

This maps a record, n, to an offset/length pair ({O,L}) within the out-of-core storage.
Since this mapping can vary between data sets, the initialisation of this layer may involve
the passing of a higher-order function. The distributed implementation discussed later
uses this mechanism.

The record layer is also responsible for tracking which records are currently being used
by maintaining a reference count. When notified that a record is no longer required, the
record layer may retain a cached copy or evict it immediately.

4.5.3 Knowledge Layer

The knowledge layer is responsible for making predictions based on past actions. It re-
ceives prediction information from the higher layers, but is free to disregard speculative
prediction information; only non-speculative requests must be handled. This layer can be
viewed as being represented by the following function:

k({X0...Xn}, P, S)→ Xn+1 (4.2)

In this, X0 represents the first accessed record and Xn is the current record. S is a value
representing the initial conditions of the accessing process. In a visualisation context,
this may be the viewpoint position and direction, for example. The set of predictions, P ,
should be a set of pairs of the form {PXn+1, C}, where PXn+1 is the predicted value
of Xn+1 from the higher layers, and C is a confidence value. The only stipulation on the
nature of the implementation of this layer is that the following must hold:

k({X0...Xn}, {Xp, Cmax}, S)→ Xp (4.3)
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That is to say, any prediction passed into this layer with the maximum confidence value
(Cmax) must be returned as the prediction by this layer. This provides a mechanism for
a ‘pass through’ request; the client is totally sure of the record it requires (which always
happens as the record is used, and may happen before) and informs the knowledge layer
of this. In this case, the knowledge layer does not provide a prediction — it simply passes
on the existing prediction — but it can update its internal state based on the incoming
prediction.

In the existing implementation, C ∈ {0, 1, ..., 255}, and hence Cmax = 255. This was
an implementation decision to allow small, byte-indexed, hash tables, and should not
necessarily constrain future implementations.

The knowledge layer is situated below the network layer to enable it to take advantage
of the knowledge acquired by multiple different users. In these cases, inferences can be
made from similar values of C. If there is no network layer in a given implementation (i.e.
the out-of-core store is local), the knowledge and data structure layers may be merged.

4.5.4 Network Layer

The network layer is an optional layer that is only required in distributed implementations.
In cases where the data storage and processing are performed by different machines, the
network layer mediates between the two.

The network layer is responsible for maintaining a local cache of nodes that have been
received, the size of which is dependent on the amount of local storage space available. A
cluster node, for example, might not have a local hard drive. In this case, the local storage
would be limited by the amount of memory available. The same might hold for a PDA. A
workstation, conversely, might have enough local storage to cache a significant fraction
of the working set.

In addition to caching, the network layer is responsible for transferring data between
the data server and the processing machine. Timely delivery of data is important for
the network layer, since faults will cause a significant slow-down. Since more predicted
records are typically sent than are needed, reliable delivery is not as important. For this
reason, TCP is not a good match for the network protocol. On IP networks, UDP or
SCTP provide a better match. Of the two, SCTP is likely to better solution in the long
term. Unfortunately, support for SCTP is not at an ideal level in major operating systems
at the time of writing; while support generally does exist, at least in add-on form, for most
platforms, performance is not yet at a sufficiently high level for it to be usable.

4.5.5 Data Structure Layer

The data structure layer provides an abstract view of the data to the processing algorithm.
In the example given in the previous chapter, this view was of an octree data structure and
an indexed point set.
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This layer represents a concrete instance of an abstract compound data type. Each data
structure should have its own implementation. This layer is able to make predictions
based on an understanding of the structure of the data and the algorithm used to process
it.

It is possible to further subdivide this layer, and provide predictions based solely on the
processing algorithm or solely on the data structure. In the case of the ray tracing ex-
ample, a pure data-structure prediction may come from the locality of nodes in a spacial
partitioning system, while a pure algorithmic prediction might come from the point along
a ray path, with no reference to the node containing this. In practice, it is sufficiently
difficult to separate out these components that they are placed in the same layer.

4.6 Interaction Between Layers

Each layer in the hierarchy communicates with those directly above and below. Above
the top layer is the application, which delivers requests to the data structure layer. These
requests are often in an abstract form, such as ‘the voxels neighbouring coordinates x,y,z’
or ‘the octree node which is the parent of this one.’

The interface between the application and the data structure layer depends on the data
structure. A simple example data structure might be an array with get and set element
methods to set and get elements at a specified index. Listing 4.1 shows a C interface for
such a data structure. This is taken directly from the reference implementation, and the
line numbers reflect those in the source file (Array.h).

Listing 4.1: Interface to an out-of-core array.
 / / Create a new out−of−core ar ray
 o o c a r r a y t ooc ar ray ( char ∗ f i leName ,
 BOOL readOnly ,
 BOOL grows ,
 unsigned i n t nodeSize ,
 unsigned i n t size ,
 unsigned i n t inCore ) ;
 / / Add a new node to the ar ray
 void ∗ ooc array new node ( o o c a r r a y t array , unsigned i n t ∗ p o s i t i o n ) ;
 / / Precache a s p e c i f i c element
 void ooc array precache ( o o c a r r a y t array , unsigned i n t p o s i t i o n ) ;
 / / Get the s p e c i f i e d element from an ar ray
 void ∗ ooc ar ray get e lement ( o o c a r r a y t array ,
 unsigned i n t pos i t i on ,
 BOOL p r e d i c t ) ;
 / / Move the s p e c i f i e d element out o f core
 void ooc ar ray f ree e lement ( o o c a r r a y t array ,
 unsigned i n t p o s i t i o n ) ;
 / / Free an ar ray
 void ooc a r ray f r ee ( o o c a r r a y t ar ray ) ;
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4.6.1 Retaining an Element

In this example, the array appears to be a simple wrapper around the fixed-size record
layer. In addition to this function, it also attempts to predict linear accesses.

Application

Data Structure Layer

Network Layer

Record Layer

Block Layer

Operating System

Knowledge Layer

Retain Element

Retain Record

Retain Record

Record

Element

Load Byte Ranges

Read From 
Block Device Bytes

Bytes

Record

Messages always sent

Messages sent when the record is not in the local cache
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Figure 4.4: Message flow retaining an element in an out-of-core data structure.

Figure 4.4 shows the flow of messages through the system when retaining an element in
a data structure managed by an out-of-core system. The application sends a message3 to
the data structure layer instructing it to retain a specified element. The data structure layer
then translates this into a record request and passes it on to the network layer.

At the network layer, two outcomes are possible. If there is already a copy of the requested
record in the local cache then some of the next steps can be skipped. If not, then it must
be requested over the network.

3The term message is used here in the object oriented sense, and may be implemented by a function call
or a method invocation.
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The server’s record layer receives the request for a record. It first checks to see if it is
in the server’s cache. If it is not, then this layer maps the record number to a set of byte
ranges and instructs the block layer to fetch them.

The block layer provides an abstract interface to the operating system’s disk I/O facilities.
When it receives a request for a set of block ranges, it provides the data to the record layer.
This then percolates up to the top of the stack and is read by the application.

It should be clear from this example that best performance is achieved when the network
layer already has a cached copy of the requested record. As such, accurate predictors in
the data structure and knowledge layers are important.
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Figure 4.5: Message flow between an out-of-core client and server.

Figure 4.5 shows an example message flow between an out-of-core client and server.
This is a slightly simplified flow, omitting the data structure prediction mechanism and
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the caching.

The server in this example has access control features in its half of the network layer,
and so the first step is authentication of the client. At each iteration through this flow, the
client requests a group of records from the server. The server is then sends a set of records
in response to this request.

4.6.2 Predicting Usage

Predictions occur at two levels: the data structure and knowledge layers. Figure 4.6 shows
the flow of prediction-related messages between the layers in response to an application
retaining an element in an out-of-core managed data structure.
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The first predictions are made at the data-structure layer. These are based on an un-
derstanding of the structure of the data, and are then passed to the network layer. The
network layer determines if the predicted records are cached locally, and if not then it
requests them from the server.

When the server receives the caching request, it should then return some records. Note,
however, that the server is not required to return the records that were requested. The
knowledge layer takes these requests as input and uses them to predict which records the
client is likely to need next.

The records predicted by the knowledge layer are then loaded from the disk (if they are
not cached) and sent to the client.

4.7 Interface Specification for Layers

The algebras listed in this section depend on the String and Nat algebras which are omit-
ted for the sake of conciseness. These should be taken to represent strings and natural
numbers with their standard definitions. On some implementations, the range of natural
numbers may be restricted to machine words (or multiples thereof) for efficiency.

4.7.1 Block Layer

The algebraic specifications in this section depend on the existence of List, Nat and Bool
algebras (and associated sorts) corresponding to the standard definitions of lists, natural
numbers and Boolean values respectively. The List algebra is expected to implement head
and tail operations with their conventional meanings.

The block layer must conform to the specification shown in Algebra 4.2. The operations
described here allow the reading and writing of ranges of bytes from files on permanent
storage.

For efficiency reasons, a block layer implementation may provide the operations for
batching loads and stores (loadRanges and storeRanges) in a way that is not built from
the primitive operations, as long as they are semantically equivalent.

4.7.2 Record Layer

The record layer has two main functions; caching and mapping between records and byte
ranges.

Note that a record must be cached immediately after caching, but at no other times. The
semantics for evicting records from the cache are not defined, and the cache may be
implemented in any way that the developer chooses.
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Algebra 4.2: Interface specification for the block layer.
Algebra BlockLayer is

including S t r i n g Nat TypeLis t

sorts S t r i n g Nat TypeLis t B lockF i l e ByteRange Block Data

op openFi le : S t r i n g → B lockF i l e
op loadBytes : B lockF i l e ByteRange → Data
op storeBytes : B lockF i l e ByteRange Data → B lockF i l e
op loadRanges : B lockF i l e L i s t → Block
op storeRanges : B lockF i l e L i s t Block → B lockF i l e
op makeBlock : L i s t → Block
op blockData : Block → L i s t

var F : B lockF i l e
var D : Data
var B : Block
var R : ByteRange
var L : L i s t

eq loadBytes ( s toreBytes (F ,R,D) , R) = D
eq storeBytes (B, R, loadBytes (B, R) ) = B
eq loadRanges ( storeRanges (F , L , B) , L ) = B
eq storeRanges (F , L loadRanges (F , L ) ) = F
eq loadRanges ( storeRanges (F , L , B) , L ) = B

eq storeRanges (F , emptyL is t ( ByteRange ) , B) = F
eq storeRanges (F , L , B) = storeRanges ( s toreBytes (F , head ( L ) , head (

blockData (B) ) ) , t a i l ( L ) , t a i l ( blockData (B) ) )

eq makeBlock ( blockData (B) ) = B

end Algebra

4.7.3 Knowledge Layer

Algebra 4.4 shows the required semantics for the Knowledge Layer. Again, this specifi-
cation only describes the interface, leaving the mechanism for making knowledge-based
predictions up to the implementation. Some examples of algorithms that can be used at
this layer are evaluated in Chapter 6. Due to the large number of potential ways in which
this layer can be implemented, some of which were described in the last chapter, this is
specification is very generalised.

In this specification, note that there are two functions which alter the state of the knowl-
edge layer. The first is called whenever a record is accessed by the application, while
the second is used as input when the data structure layer makes predictions. Note that all
functions in this layer take a client as an argument. The type of the client is not specified,
all that is required is that it be a unique value for each user or application connected to
the system.
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Algebra 4.3: Interface specification for the record layer.
Algebra RecordLayer is

including BlockLayer Bool

sorts Nat B lockF i l e RecordFi le L i s t Cache Record Bool

op makeRecordFile : B lockF i l e → RecordFi le
op b l o c k F i l e : RecordFi le → B lockF i l e

op cacheRecord : RecordFi le Nat → RecordFi le
op isCached : RecordFi le Nat → Bool
op recordData : RecordFi le Nat → Record
op re ta inRecord : RecordFi le Nat → RecordFi le
op releaseRecord : RecordFi le Nat → RecordFi le

op recordRanges : RecordFi le Nat → L i s t
op makeRecord : RecordFi le Block → Record

var R : RecordFi le
var B : B lockF i l e
var I : Nat

eq b l o c k F i l e ( makeRecordFile (B) ) = B
eq isCached ( cacheRecord (R, N) , N) = t t
eq releaseRecord ( re ta inRecord (R, N) , N) = R
eq re ta inRecord (R, N) = reta inRecord ( cacheRecord (R, N) , N) i f ¬

isCached (R, N)

eq recordData (R, N) = makeRecord (R, loadRanges ( b l o c k F i l e (R) ,
recordRanges (R, N) ) )

end Algebra

4.7.4 Network Layer

The interface to the network layer is very similar to that of the record layer. It is respon-
sible for handling caching records on the local machine, as well as passing predictions
between the data structure and knowledge layers. The interface specification is described
in Algebra 4.5.

4.7.5 Data Structure Layer

The interface of the data structure layer depends on the data structure represented. It is
recommended that the public (i.e. application-side) interface to the data structure layer be
as abstract as possible to give the layer as much information as possible when performing
deterministic predictions.
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Algebra 4.4: Interface specification for the knowledge layer.
Algebra KnowledgeLayer is

including RecordLayer KnowledgeLayer

sorts Nat RecordFi le KnowledgeLayer C l i e n t

op newKnowledgeLayer : RecordLayer → KnowledgeLayer
op recordLayer : KnowledgeLayer → RecordLayer

op p r e d i c t : KnowledgeLayer C l i e n t Nat → KnowledgeLayer Nat
op accessed : KnowledgeLayer C l i e n t Nat → KnowledgeLayer
op pred ic ted : KnowledgeLayer C l i e n t Nat → KnowledgeLayer

op loadRecord : KnowledgeLayer Nat → Record
op storeData : KnowledgeLayer Nat Record → KnowledgeLayer

var K : KnowledgeLayer
var R : RecordLayer
var N : Nat

eq loadRecord (K, N) → recordData ( recordLayer (K) , N)
end Algebra

A data structure layer representing a spacial partitioning system, for example, could be
written so that the application requests individual nodes. A better solution would be for
the application to request the node at a specific depth corresponding to a given location.
This would allow the data structure layer to make predictions based on an understanding
of the relationships between the nodes.

In general, more complex data structures will encode more semantic information and
thus give better predictions. It would be possible to construct a data structure layer rep-
resenting a resizable array, for example, and use this for a wide variety of applications.
In practice, however, this would not be useful since accesses to an array either follow a
simple pattern or are very difficult to predict (with the majority of cases being the lat-
ter). It is, however, possible for an implementation to stack multiple data structure layer
components.

In the case studies in the previous chapter, different data structure layer implementations
were used for the point set and the spacial partitioning scheme. The point set was repre-
sented by a simple array, however predictions for point accesses were generated from the
octree rather than directly from the array.

4.8 Reference Implementation

Two implementations of the model have been constructed to date. The first omits the
network layer, and is intended for local use. The second implements a client-server ar-
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Algebra 4.5: Interface specification for the network record layer.
Algebra NetworkLayer is

including KnowledgeLayer KnowledgeLayer

sorts Nat Record KnowledgeLayer NetworkLayer

op cacheRecord : Nat → LocalCache
op

var N : NetworkLayer
var C : LocalCache
var I : Nat

op newNetworkLayer : KnowledgeLayer → NetworkLayer
op knowledgeLayer : NetworkLayer → KnowledgeLayer

op ne tP red i c t : NetworkLayer C l i e n t Nat → NetworkLayer Nat
op netAccessed : NetworkLayer C l i e n t Nat → NetworkLayer
op netPred ic ted : NetworkLayer C l i e n t Nat → NetworkLayer

op netLoadRecord : NetworkLayer Nat → Record
op netStoreData : NetworkLayer Nat Record → NetworkLayer

var W : NetworkLayer
var K : KnowledgeLayer
var C : C l i e n t
car R : Record
var N, M : Nat

eq knowledgeLayer ( newNetworkLayer (K) = K
eq knowledgeLayer ( ne tPred ic ted (W, C, N) ) = p red ic ted (

knowledgeLayer (W) , C, N)
eq knowledgeLayer ( netAccessed (W, C, N) ) = accessed ( knowledgeLayer (

W) , C, N)
eq knowledgeLayer ( ne tP red i c t (W, C, N) ) t imes M = p r e d i c t (

knowledgeLayer (W, C, N) ) t ime M

eq netLoadRecord (W, N) = loadRecord ( knowledgeLayer (W) , N)
eq knowledgeLayer ( netStoreData (W, N, R) ) = storeData (

knowledgeLayer (W) , N, R)

end Algebra
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chitecture, with the server written in Erlang and the client code in C. The remainder of
this chapter discusses the two implementations, and shows some results from the second
implementations.

4.8.1 Local Implementation

The implementation described here was used for the evaluation of prefetching algorithms
in the last two chapters of this part.

The API defines one scalar data type, BOOL, which can take values of YES or NO. This
type follows the C conventions for Boolean values, and so can be used in if statements
and similar. If compiling as C99, Objective-C, or C++ this will use the built-in boolean
type (bool, BOOL or bool respectively).

4.8.1.1 Block Layer

The block layer is the lowest layer above the kernel, responsible for moving bytes to and
from the disk. As described earlier, the rôle of this layer it to load and store ranges of
bytes in an on-disk file. There are a number of possible ways of doing this, and so several
implementations of the block layer were created. These all implement the same interface,
and so can easily be swapped.

block aio.c is a POSIX asynchronous I/O implementation. All file reads are performed
asynchronously, and grouped together into a single system-call when possible. This
is accomplished using the lio listio system call, which permits multiple AIO oper-
ations to be dispatched simultaneously. This implementation tends to provide the
best performance.

block fread.c uses the POSIX synchronous I/O calls. This may be faster than virtual
memory, since it will probably not require as many small reads, however all pre-
caching operations will block the calling process so it is not very efficient. This is
included as a relatively simple implementation on which others can be based, rather
than for production use.

block null.c is based on the synchronous implementation, however it ignores all pre-
caching requests. Using this is effectively the same as relying on virtual memory,
and so can be used to test the efficiency of out-of-core algorithms.

block mmap.c uses memory mapped I/O on files. This implementation provides hints to
the virtual memory subsystem in the kernel, rather than explicitly loading the data
itself. On 32-bit systems, this implementation is limited by the amount of address
space available to the process, which will be under 4GB. On 64-bit systems, this
should give high performance as long as the operating system respects the hints
given by the madvise system call.

Two opaque data types were defined for this layer. The ooc block file t type represents a
file mapped at the block layer, while the ooc cached fragment t type is used to represent a
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fragment which has been cached by the block layer. This is stored in the block layer, and
contains some meta-data relating to the cached fragment (exactly what varies between
implementations).

Listing 4.6: Two structures defined by the block layer.
 typedef struct
 {
 o f f t address ;
 i n t l eng th ;
 i n t count ;
 } ooc block ;


 typedef struct
 {

 ooc cached fragment t ∗ l i s t ;
 unsigned i n t f ragments ;
 }∗ o o c f r a g m e n t l i s t t ;

Listing 4.6 shows the two structures defined by the block layer. The ooc block structure
contains a request for a set of contiguous, constant-sized, blocks to be read; these are
specified by the address, length of a single block, and the number of blocks. This is used
to reduce the overhead of reading contiguous blocks from the disk. The ooc fragment list t
structure is used to return a list of fragments that have been cached.

The following functions provide the interface to the block layer:
 BOOL o o c b l o c k i n i t ( vo id )

This function must be called before any other block layer functions, and performs any
set-up required of the block layer. In general, this should only ever be called by imple-
mentations of the record layer, and should only be called once.

This function returns YES on success and NO on failure.
 o o c b l o c k f i l e t ooc map b lock f i l e ( char ∗ f i leName , BOOL

readOnly ) ;

This function maps the specified file to memory and returns a ooc block file t . The re-
turned value must be used with any subsequent calls to block-layer functions involving
this file.

A return value of OOC INVALID indicates that the call failed.

Parameters:

fileName The path to the file to be loaded.

readOnly Whether the file should be modifiable. If it is marked as read only, then
changes will not be flushed back to disk which can give higher performance.

 vo id ooc unmap f i le ( o o c b l o c k f i l e t f i l e )

This function is the inverse of ooc map block file(). It takes a file identifier and frees the
resources associated with it. Further calls to other functions using the same file are invalid.
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 o o c f r a g m e n t l i s t t ooc cache bytes ( o o c b l o c k f i l e t f i l e ,
ooc block bytes [ ] , unsigned i n t b locks )

Instruct the block layer to cache the specified blocks. The return value is a list of frag-
ments, which must be freed using ooc block free fragment list () . The arguments taken by
this function are:

file The relevant ooc block file t created by a call to ooc map block file().

bytes An array of ooc block structures containing the fragments to be cached.

blocks The number of elements in the array.

Note that the fragments returned in the fragment list by this function are likely to be
futures, rather than real instances of the fragments. This function should begin an asyn-
chronous operation to cache the data, and return immediately4. The ooc get bytes function
will block if the read operation has not completed by the time the data is actually required.

 vo id o o c b l o c k f r e e f r a g m e n t l i s t ( o o c f r a g m e n t l i s t t l i s t ) ;

Free an ooc fragment list t returned by ooc cache bytes(). This function must be called
to free these structures, they may not be freed manually. This function exists purely for
efficiency reasons, allowing the block layer to re-use ooc fragment list t s. Since one of
these is created every time a caching request is issued, re-using them eliminates a large
number of malloc() and free () calls.

 vo id o o c g r o w b l o c k f i l e ( o o c b l o c k f i l e t f i l e , s i z e t bytes ) ;

Increases the size of a mapped file. This will silently fail if the file was marked as read
only when it was mapped, as write to a read-only fail are invalid operations.

Arguments:

file The relevant ooc block file t created by a call to ooc map block file().

bytes The number of bytes by which the file size should be increased.
 vo id ∗ ooc get by tes ( o o c b l o c k f i l e t f i l e ,

ooc cached fragment t fragment ) ;

Retrieves the data associated with a fragment. This function will block if the underlying
caching operation on the fragment (e.g., aio read()) has not yet completed. In the case of
the null implementation, the caching operation is a no-op, and this function will perform
a synchronous load.

Arguments:

file The relevant ooc block file t created by a call to ooc map block file().

fragment The fragment, created with a call to ooc cache bytes().

4This is not the case in the synchronous and null implementations of this layer.



4.8 Reference Implementation 70

 vo id ooc uncache bytes ( o o c b l o c k f i l e t f i l e ,
ooc cached fragment t fragments [ ] , unsigned i n t
fragmentCount ) ;

Uncaches an array of fragments, freeing the memory associated with them and flushing
the changes back to disk if required. The exact operation of this function depends on
whether the file was opened read-only. If so, the in-core copy will be discarded. If not,
the data will be flushed back to disk. Note that some block-layer implementations use
memory protection mechanisms to prevent modification of data loaded from read-only
files, so the ability to modify data should not be assumed.

Arguments:

file The relevant ooc block file t created by a call to ooc map block file().

fragments The array of fragments to be flushed.

fragmentCount The number of fragments in the array.

4.8.1.2 Record Layer

Currently, a single implementation of the record layer is included. This is designed to be
efficient, and makes extensive use of object pools to eliminate overhead of allocating and
de-allocating memory (around twenty percent of run time in profiling).

One opaque data type is defined by the record layer. ooc record file t represents an in-
stance of the record layer, and is used to identify the file to the system. A small set of
functions provided to interface with this layer:

 BOOL o o c i n i t ( vo id )

This function must be called before any other record layer functions and performs any
initialisation required. A return value of YES. This is responsible for calling the matching
function in the block layer.

 o o c r e c o r d f i l e t ooc map f i l e ( char ∗ f i leName , unsigned i n t
recordSize , BOOL readOnly , unsigned i n t memorySize )

Designates a file used as out-of-core storage by the record layer. This function will create
a block layer instance corresponding to the specified file, and associate it with a new
instance of the block layer.

fileName The name of the file to open.

recordSize The size of a single record. Note that records at this layer are fixed size in
the current implementation.

readOnly A flag indicating whether this file should be read only. Read only out-of-core
files have significantly higher performance than read-write files, and so should be
used whenever possible.
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memorySize The amount of memory to allocate in-core as a cache for this file. Note that
this does not include the size of control structures.

 vo id o o c g r o w r e c o r d f i l e ( o o c r e c o r d f i l e t f i l e , unsigned i n t
growBy )

Increase the size of a previously mapped file. Note that in most implementations this is a
relatively expensive operation and so should be called as infrequently as possible.

The new part of the file is initialised with zeros.

file The file to increase in size.

growBy The number of bytes by which to increase the size of this file.
 BOOL ooc precache record ( o o c r e c o r d f i l e t f i l e , unsigned i n t

recordNumber , unsigned char p r i o r i t y )

Caches a single record with a specified priority. This is a convenience method for occa-
sions when a single record is required. Since caching a single record is not a very efficient
thing to do (assuming the out-of-core storage device is mechanical), it should be avoided
for performance reasons.

file The file containing the record.

recordNumber The index of the record to be cached.

priority The priority with which the record should be cached.

This is a convenience method, and is implemented as an inline function using
ooc precache records. Future implementations may use this to provide an optimised
method for caching a single record.

 vo id ooc precache records ( o o c r e c o r d f i l e t f i l e , unsigned i n t
records , unsigned i n t recordNumbers [ ] , unsigned char
p r i o r i t y )

Caches a group of records. For highest performance, the records should be sorted, al-
though this is not required. Adjacent records will be fetched with a single disk read,
allowing for more efficient use of disk bandwidth.

file The file containing the records.

records The number of records to be cached.

recordNumbers The indexes of the records to be cached.

priority The priority of the cached records.
 BOOL ooc in co re ( o o c r e c o r d f i l e t f i l e , unsigned i n t record )

Determines whether a particular record is in-core. Note that this only actually indicates
whether the block layer has been instructed to load a record, not whether the loading
actually succeeded in the current implementation.

file The file containing the record.
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record The index of the record to be inspected.
 vo id ∗ o o c r e t a i n r e c o r d ( o o c r e c o r d f i l e t f i l e , unsigned i n t

recordNumber )

Increments the reference count of the indicated record and returns a pointer to the record’s
data. A record whose reference count its non-zero will not be evicted from main memory,
so it is important that no more records are retained than fit in the memory allocated as a
cache for any given file. Records with a reference count of zero will gradually have their
priorities decayed until they are evicted.

The return value is a pointer to the data represented by this record.

Arguments:

file The file containing the record.

recordNumber The index of the record to be retained.
 vo id ooc re lease record ( o o c r e c o r d f i l e t f i l e , unsigned i n t

recordNumber )

Decrement the reference count of a record. Once the reference count reaches zero, a
record may be evicted from main memory (although this typically does not happen im-
mediately).

Arguments:

file The file containing the record.

recordNumber The record to be released.
 vo id o o c f r e e r e c o r d f i l e ( o o c r e c o r d f i l e t f i l e )

De-allocates a record-layer file and flushes all cached data back to disk. This must be
called after operations on a file are completed to ensure that resources are freed correctly
and data is written back to the disk. This function also frees the associated block layer
instance.

file The record-layer file to free.

4.8.1.3 Data Structure Layer

This layer presents higher level abstractions of data structures to the user, and must be
easily extensible by third party developers. Currently, an out-of-corearray implementation
is provided, which either generates predictions based on linear accesses, or takes them
from an external source. An octree implementation is also provided for point clouds. The
points are stored in an out-of-corearray, and hinting is provided based on which nodes are
loaded.

Four versions of the octree are provided, one for each of the prediction algorithms de-
scribed in the previous chapter.
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4.8.2 Client-Server Implementation

The client-server implementation consists of two components, a server written in Erlang
and a client interface written in C. The server component provides a mechanism for im-
plementing hierarchical structures of agents which generate predictions.

Location Memory Hard Disk Network
Latency 5ns 10ms 1-3000ms

Throughput 2GB/s 50MB/s 8KB/s-128MB/s

Table 4.2: Approximate timings for different storage locations

Considering the relative speeds of disk and network access (as shown in Table 4.2), a
significant speed benefit can potentially be obtained by using the hard disk as an interme-
diate cache of data, between the network and main memory. Disk accesses, however, are
much faster when sequential, so it is important to lay the data out on the disk sensibly,
and to minimise the amount of memory used to store translations between in-core and
disk addresses.

The protocol defined for this implementation uses UDP. The reason for this is that UDP
does not guarantee delivery or delivery order. This means that latency, the primary cause
of slow-down in out-of-core algorithms, will be kept to a minimum. Using TCP, or an-
other protocol which guarantees delivery order, would potentially increase latency dra-
matically since a single dropped packet would result in every subsequent packet being
delayed until the original packet had been re-sent. There are two possible cases for a
dropped packet. It is either speculatively transmitted based on predictions from either the
client or the server, or it is required immediately. If it is immediately required then the
dropped packet will cause the client to stall until it can be retransmitted. TCP will perform
this retransmission automatically, while UDP requires the retransmission to be performed
higher up the protocol stack. If the packet contains data that is not immediately required,
then TCP will buffer all subsequent packets until the retransmission has occurred. In this
case, the packet containing the data which is required immediately could be left waiting
in the client’s receive buffer until some speculatively requested data is received.

All strings in the following sections are encoded as UTF-8, and all integers encoded in
network byte order.

4.8.2.1 Message Types and Flow

Four types of message can be sent by a client:

1. A request for access to a file.

2. A request for a group of records.

3. A notification of use of records.

4. A notification that the file is no longer required
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Similarly, a server may send two messages in response to these requests:

1. An acknowledgement of a request for access to a file, either granting or denying
access.

2. A group of records from a file.

No data may be sent to a client which has not yet registered for access to a file, however
data may be sent as soon as a client has been authorised. For an out-of-core octree, for
example, it is certain that the first node any client would wish to access would be the root
node, and it is probably that the next node would be one of the children. If the knowledge
layer in the server has determined these trends then it is at liberty to pre-emptively send
un-requested data to a client.

4.8.2.2 Message Detail

This section includes detailed description of the internal layout of each of the message
types described in the previous section.

The first byte of each message shall be an identifier indicating the type of the message.
Since we are only defining 6 message types, this gives a significant amount of room for
expansion of the system.

Several message types apparently permit an arbitrary number of values. In these cases
that the total message size should always be less than 536 bytes. This, added to the 40-
bytes required for an IP header gives 576 bytes, the minimum packet size defined by
RFC 894 which all Internet nodes must be able to transmit without fragmentation. On
other networks, this size can be increased, for example a system deployed entirely over
ethernet should be aware that the MTU for ethernet is 1500 bytes and adjust the message
size accordingly.

Client Messages Upon initialisation, a client should send a message of the type defined
in Table 4.3 requesting access to a particular file. The user is identified by a combination
of their IP address and a 128-bit integer which is negotiated out of band. Each user ID is
only valid for a single connection, eliminating the possibility of replay attacks.

bytes value meaning
0 1 Message type
1 1→read, 2→write Values anded together to produce re-

quested access permissions.
2-17 User ID User ID negotiated out-of-band.
2-3 Length Length of the file identifier.
4- File ID UTF-8 encoded file identifier.

Table 4.3: A request for access to a file.
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A client requests records from a file by sending messages of the type defined in Table 4.4.
The server must transmit all records requested with a priority of 255. It may, at its own
discretion, ignore all others or use them as input for its own prediction mechanisms.

bytes value meaning
0 2 Message type

1-4 File ID A unique identifier returned when the
file is opened.

5 1-255 Priority of records.
6 1-255 Number of records requested.
7- Array of 32-bit values Indexes of the records requested.

Table 4.4: A request for a group of records.

Once the client actually makes use of a record, as opposed to speculatively caching it,
then it is required to send a notification to this effect of the form described in Table 4.5.
For efficiency reasons, it is recommended that the client batch these notifications. The
current implementation maintains a buffer of used records, and sends a notification of all
of them as soon as it has enough to efficiently fill a packet. The size of a packet is defined
by the MTUSIZE constant, which is tunable at compile time. Typical values of this would
be 576 bytes for the Internet, or 1500bytes for an ethernet network.

bytes value meaning
0 3 Message type

1-4 File ID A unique identifier returned when the
file is opened.

5 1-255 Number of records used.
6- Array of 32-bit values Indexes of the records used.

Table 4.5: A notification of use of records.

Once a client has finished with a particular file, it should send a notification to this effect,
in the form of a message of the type defined in Table 4.6. The server is then able to free
all resources associated with this client.

bytes value meaning
0 4 Message type

1-4 File ID A unique identifier returned when the
file is opened.

Table 4.6: A notification that the file is no longer required

Server Messages The server should return a client-unique, non-zero identifier for each
request where access is granted as shown in Table 4.7. A response with the identifier set
to 0 indicates that access was denied.
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bytes value meaning
0 5 Message type.

1-4 File ID A client-unique identifier.
5-8 File Size The number of records in this file

9-12 Record Size The size of a single record
13-16 Fragment Size The size of each transmitted fragment.

Equal to record size if
17-20 Record Fragments The number of fragments a record is

divided into for sending.
21-24 Last Fragment Size The size of the last fragment in a

record. This allows for record sizes
that are not divisible by the fragment
size.

Table 4.7: An acknowledgement of a request for access to a file, either granting or denying
access.

Records are sent to the client should be in the form described in Table 4.8. If the record
size is greater than the MTU size, then the Split Format value from the acknowledgement
packet will have been set. If this is the case, then the record count indicates the ordered
fragment of the message within the record, rather than the number of records (which will
always be less than one in these cases).

bytes value meaning
0 6 Message type

1-4 File ID A unique identifier returned when the
file is opened.

5-8 Record Count The number of records included in this
message

9-12 Record ID Index of first record.
13- Record The first record in raw format.
n- Records Subsequent records in the same format

as the first.

Table 4.8: A group of records from a file.

Security Message-level security is beyond the scope of this document. If it is required
then the connection should go via IPSec [163], which provides packet-level security.

4.8.2.3 Cache File Layout

In order to facilitate the efficient and fast use the local hard disk as an out-of-core cache, it
is important that the data is laid out in a way that closely mirrors the layout of the remote
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file. It is also important that the local file be smaller than the remote file, for obvious
reasons.

For this reason, the chosen approach is adapted from CPU caching strategies. A file is
created on disk of a fixed size that is r × 2a bytes, where r is the number of records and
a is an arbitrary value defined by the amount of on-disk space allocated. Record indexes
are split into two sections, the most significant n and the least significant m bits. n is used
as an index in a hash table to look up lines of the file, while m is the index within a line.

A count of all retained records within a line should be maintained at all times, and a line
only replaced with a different start index when this count is zero.

4.8.2.4 Client Interface

The client interface consists of the following functions:

Listing 4.7: Client interface to remote out-of-coreserver
 vo id ooc send packet ( s t r u c t o o c f i l e ∗ f i l e , s t r u c t ooc packet ∗

packet ) ;
 s t r u c t ooc record reques t packe t ∗ ooc reques t ge t reques t ( s t r u c t

o o c f i l e ∗ f i l e , unsigned char p r i o r i t y , unsigned i n t elements ) ;
 vo id ∗ o o c r e t a i n r e c o r d ( s t r u c t o o c f i l e ∗ f i l e , u i n t 3 2 t index ) ;
 vo id ooc re lease record ( s t r u c t o o c f i l e ∗ f i l e , u i n t 3 2 t index ) ;
 s t r u c t o o c f i l e ∗ ooc connect ( char ∗ server , u i n t 1 6 t por t , char ∗

f i lename ) ;
 vo id ooc close ( s t r u c t o o c f i l e ∗ f i l e ) ;

These are similar to the record layer in the local implementation, and correspond to the
top half of the network layer in the five layer model. There is no standard function for
requesting records defined, for efficiency reasons. Instead, the functions for creating
and sending request packets are exposed directly to data structure layer developers. The
SET RECORD INDEX macro can be used to easily create these packets. Listing 4.8 shows
an example of a series of 100 records being requested from record i to record i+99.

Listing 4.8: Example showing 100 records being requested
 struct ooc record reques t packe t ∗ request =

ooc reques t ge t reques t ( f i l e , 200 , precacheSize ) ;
 for ( unsigned i n t j =0 ; j <100 ; j ++)
 {
 SET RECORD INDEX( request , j , j + i ) ;
 }
 ooc send packet ( f i l e , ( struct ooc packet ∗ ) request ) ;

The retain and release functions work exactly as their local counterparts (in terms of
interface). Note that notifications of use do not have to be explicitly generated by devel-
opers using this interface. Instead, they are automatically created and set when the retain
function is invoked.
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4.8.2.5 Agent Interface

Agents are defined in the server by a set of four higher-order functions. The first take no
arguments and returns an value representing the initial state of the agent. For complex
agents, this will be the pid of a running (Erlang) process.

The next two functions change the state of the agent. These are called to update the state
when a message indicating that records have been used or requested is received. Both
take the state and a tuple containing the client, file and list of records as arguments, and
return a new state.

The final function is used to generate predictions. It takes the state and a tuple containing
the client, file and last set of records to be requested as arguments, and returns a tuple
containing a list of records and a confidence. This allows the agents to be combined into
trees using maximum or threshold operators; the combining agent will either return the
best prediction, or all predictions with a confidence over a certain threshold.

Agents are loaded from a configuration file when the server is started. When a new
connection occurs, agents in three categories are started:

Global Agents contain simple logic that can apply to any file (e.g., linear predictions).
These are shared between all files shared by the server.

File Agents predict file-related behaviour. Some of these might contain a priori informa-
tion about the structure of the file, others might be general knowledge-based agents
that learn access patterns based on previous uses.

File-User Agents are similar to File Agents, but are unique to the file and user pair. This
allows for user-specific knowledge to be used for prediction.

Note that agents in different rôles are able to share a knowledge base. A knowledge base
implementation is provided that permits concurrent access to a persistent tuple store.

4.8.2.6 Preliminary Results

The distributed implementation is the subject for future work and is not yet ready for
detailed evaluation, however preliminary results indicate that this approach has potential.

Linear access to a data set is fairly common in a number of applications. It is also trivial
to write a predictor which accurately predicts linear access, providing some calibration.
The results from this preliminary testing show the benefit of prefetching when applied to
a remote data server.

The linear access test program read each record in a remote data set in order. For each
record, the client process slept for one µs to simulate some computation before going on
to read the next. It performed two passes through the data set.

Three different tests were performed using sequential, linear accesses:

1. No prediction; records are requested as they are used.
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RTT (ms) Predictor Time (s) Cache Hit Rate
100 None 6136.59 0.005%
100 Knowledge-based 4864.29 21.17%
100 Perfect 4864.29 21.17%

Table 4.9: Results from linear read tests.

2. Knowledge-based prediction using an algorithm which attempts to predict linear
accesses.

3. Perfect prediction; records are requested by the client in blocks of 200 before they
are used.

The difference between the two prediction strategies is which end of the system performs
the prediction. In the 5-layer model, both the data structure layer and the knowledge layer
are allowed to perform predictions. In our second test (the ‘perfect’ predictor) the data
structure layer, on the client side, performs the prediction. In this case, it is guaranteed to
be accurate since our test program is purely deterministic.

In the third test, the client makes no predictions. The knowledge layer on the server
detects the presence of a sequential access pattern and begins sending data speculatively.
This has two advantages over performing predictions in the data structure layer. The first
is that, in the distributed setting, the knowledge layer can build a detailed knowledge base
from multiple users, enabling predictions to be refined more accurately. The second is that
moving the predictions to the server frees up the client to devote all of its processing power
to actually processing the data. The last point is particularly important when systems such
as PDAs are considered on the client side.

It can be seen from the results in Table 4.9 that the knowledge-based approach works well
on predictable data accesses and that accurate prediction provides a significant perfor-
mance increase on remote accesses. The results from both timings were identical in this
simple test since the access pattern was predicted with equal accuracy by the predictors at
both ends. In a more complex example, the knowledge-based implementation would be
expected to perform less well than a perfect predictor, however writing a perfect predictor
for more complex access patterns is less likely to be feasible. Future work on this system
will involve adding prediction agents which work on less obviously predictable access
patterns.

These results were collected over a 100Mbit network with an average round trip time
(RTT) of 100ms.

4.9 Conclusions

This chapter has presented a 5-layered model for out-of-core data management systems.
Two implementations of this model were described, indicating that it is a feasible model
for real-world use.
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The model incorporates network transparency as well as both algorithmic and knowledge-
based prediction. The self-optimising component required for an autonomic system is
provided in the knowledge layer.
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This chapter describes a sample problem where external memory is important, and dis-
cusses a prefetching strategy. The prefectching strategy described here fits predominantly
into the algorithm category, but has some data structure-specific elements. Work de-
scribed here was originally presented in The Visual Computer [74].

5.1 Introduction

Point-based modeling and rendering is a collection of techniques that enable direct pro-
cessing of complex geometric objects represented by large discretely sampled point
clouds [249, 266]. Point clouds are usually rendered directly, using forward projection
and image-space composition of point splats [329, 85, 224]. In terms of computational
costs, this approach is highly attractive, facilitating the use of graphics hardware and
stream-based data processing. However, by minimizing the interaction between points in
the object space, it does not easily permit the generation of some visual effects, such as
shadows, reflection and refraction, especially when considering a complex and arbitrary
scene composed of multiple point-based objects.

An alternative direct rendering approach is to organize point-based objects in a volume
screen graph and synthesize images using discrete ray tracing [59]. Not only does this ap-
proach address some of the shortcomings of splatting, but it also facilitates combinational
and comparative visualization of volume and point datasets by allowing both to co-exist in

81
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the same volume scene graph. For example, in Figure 5.1, a translucent bunny, built from
a digitized point set, is combined with a heart captured as a volume dataset. In Figure 5.2,
four dragons, also built from a digitized point set, are immersed in artificial clouds that
are modeled as a volume dataset. Despite these benefits, the approach is yet to deliver
a real-time solution. Nevertheless, it can no doubt bring benefits to some visualization
and graphics applications; and with the rapid advances in both hardware technology and
distributed computing, its usability will be further enhanced in the coming years.

The fundamental bottleneck of ray tracing a volume scene graph with multiple point
clouds is that it demands an overwhelming amount of memory to accommodate all point
datasets and their associate control structures such as octrees. Let {P1, P2, . . . , Pn} be
a set of point clouds contained in a volume scene graph, and {C1, C2, . . . , Cn} be their
corresponding control structures. To address the scalability of this approach, one needs
to consider the following issues:

• The size of each individual point cloud, |Pi|— With modern digitization technol-
ogy, Pi may easily contain millions, or even billions of points.

• The size of the control structure for each point cloud, |Ci|— A discrete ray tracer
benefits particularly from a spatial partitioning scheme, such as an octree. However,
to achieve optimal speed efficiency, it is not uncommon that the control structure
for partitioning a point cloud may consume more space than the corresponding raw
dataset, i.e., |Ci| > |Pi|.

• The number of point clouds in a volume scene graph, n — The growth of n has
a profound impact on the total space requirement for both point datasets and their
control structures.

• The complexity of ray path predication — For a simple ray-casting algorithm, it
is possible to preprocess a volume scene graph and predetermine a static data pre-
fetching strategy. The more visual effects the ray tracer incorporates, the more
difficult the ray path predication will be. With some complex visual effects, it is
likely that static preprocessing would not yield much benefit.

Figure 5.1: Combining the Stanford Bunny point set with a conventional volume dataset
(San Diego rabbit heart) in a volume scene graph. (Image courtesy of Prof. Min Chen)
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Figure 5.2: A volume scene graph consisting of four dragons modeled using a point-
set (Stanford Dragon) and artificial clouds represented by a volume dataset (Erlangen
Clouds). (Image courtesy of Prof. Min Chen)

This section describes an out-of-core approach for ray tracing volume scene graphs in a
scalable manner. A technique based on a dynamic, in-core working sets, is introduced,
which addresses the combined difficulties in pre-determining data mixing patterns and
ray paths, and hence data access patterns. It is assumed that the number of points in
each individual point cloud is much larger than the number of point datasets in a scene,
i.e., |Pi| >> n. Hence octrees are utilised to partition individual point datasets, and
use the bounding boxes of scene graph nodes to partition the scene. During ray tracing,
the point datasets and their octrees are stored out-of-core, and the required octree nodes
and point data are pre-fetched automatically according to access patterns predicted based
on captured knowledge of ray-data intersection. Testing results have shown that this
technique is scalable, and enables volume scene graphs composed multiple point clouds
to be rendered directly on desktop computers.

The remainder of this chapter is organized as follows. A brief review of point-based
modeling and rendering techniques, and out-of-core techniques, is given in Section 4.4.
In Section 5.2, the basic in-core method for modeling and rendering volume scene graphs
with multiple point clouds is outlined, and highlight the correlation between modeling
quality and memory consumption. In Section 5.3, a ray-driven technique for predicting
the working set automatically is presented, and the dynamic algorithms for predicting
octree access and for pre-caching octree nodes and the corresponding point data are out-
lined. In Section 5.4, experiments on the scalability of the technique are demonstrated
using working sets and datasets of different sizes, and qualitative and quantitative analy-
ses are presented. This is followed by concluding remarks in Section 5.5.

5.2 Modeling and Rendering Multiple Point Sets

5.2.1 Point-based Volume Object (PBVO)

Volume objects can be defined procedurally as well as built from discretely sampled
datasets such as CT and MRI scans. In particular, they can be defined on point clouds
using appropriate radial basis functions [59], and can therefore be integrated into a vol-
ume scene graph as elemental volume objects at terminal nodes. For example, consider a
discretely sampled point cloud P = {p1, p2, . . . , pm}, where each pi is associated with a
confidence value and an intensity value. We can map the confidence value to a radius ri,
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and the intensity value to an opacity value, oi. The former defines the radius of influence
of pi, and the latter contributes to the visibility of points within its radius of influence.

Consider a radial basis function, ω(q, pi, ri), such that,

ω(q, pi, ri) = 0,∀q, ‖ q − pi ‖> ri

where ‖ q − pi ‖ denotes the Euclidean distance between q and pi. For a collection of
opacity values, o1, o2, . . . , om, associated with p1, p2, . . . , pm respectively, a scalar field O
is therefore defined using a blending function as:

O(q) =
∑

1≤i≤m

ω(q, pi, ri)vi. (5.1)

Several blending functions were considered in [59]. Images in this chapter were rendered
using either the function proposed by Wyvill et al. [344]:

ωW (q, pi, ri) =

{
1− 4u6

i−17u4
i +22u2

i

9
if ‖ q − pi ‖< ri

0 if ‖ q − pi ‖≥ ri

,

or that proposed by Chen [59]:

ωC(q, pi, ri) =


(
1− 2u

2α1
i

1+u2
i

)α2

if ‖ q − pi ‖< ri

0 if ‖ q − pi ‖≥ ri

.

In both functions, ui =‖ q − pi ‖ /ri.

O(q) in Eq. (5.1) in effect defines the opacity of every point in a 3D volumetric domain
which is the union of the spherical bounding volumes of all points in P . Hence, O(q)
defines the essential component of a volume object and can be rendered using discrete
ray tracing. Such a volume object is called a point-based volume object (PBVO). We
can specify luminance properties of a PBVO using transfer functions, or by building the
relevant scalar fields in a similar manner to O(q). Figure 5.3 shows a PBVO defined on a
very large point cloud of over 14 million points. Its opacity field was constructed using a
radial basis function with ri = 2, oi = 1, i = 1, 2, . . . ,m.

5.2.2 Volume Scene Graphs

In the theoretic framework of Constructive Volume Geometry (CVG) [60], a volume scene
graph is an algebraic expression, called a CVG term, which involves a class of spatial ob-
jects and a family of constructive operations. In practice, a CVG term can be represented
by a tree, where constructive operations are defined at non-terminal nodes, and elemental
volume objects are defined at terminal nodes of the tree. Each subtree defines a composite
volume object, while the root represents the final composite volume object, or the scene.
To facilitate the sharing of low level object data, we allow a CVG term to be realized
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Figure 5.3: A point-based volume object defined on the the Stanford Lucy dataset of
14,027,872 points.

using a directed acyclic graph with a single root, hence resulting in a volume scene graph.
Geometrical transformations and transfer functions can be applied at each graph node.

Figure 5.4 shows the results of applying CVG operations to a PBVO, r, built from the
Stanford bunny point set, and a procedurally defined cylindrical object, c. The example
shown in Figure 5.1 involves the use of a union operation and a difference operation.
The latter is used, in conjunction with a cylindrical object, to remove part of bunny for
exposing the heart. The example in Figure 5.2 demonstrates that multiple PBVOs in a
volume scene graph can share the same point set.

5.2.3 Discrete Ray Tracing

So far, discrete ray tracing is still the most appropriate means for directly rendering a
volume scene graph which features multiple volume objects, solid or translucent. The
basic ray tracing mechanism is to sample at regular intervals along each ray cast from the
view position. At each sampling position s, we recursively determine if s is inside the
bounding box of the current CVG subtree, until we reach a terminal node. If s is inside
the bounding box of the terminal node which contains an elemental volume object, we
evaluate its opacity field O(s) and possible other luminance attributes.

When an opacity field is defined on a point cloud P = {p1, p2, . . . , pm}, it is necessary to
identify a subset of points, P ′ ⊆ P , such that

P ′ = {p′i | p′i ∈ P and ‖ s− p′i ‖≤ ri}.
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union ∪ (r, c) intersection ∩ (r, c)

difference −(r, c) difference −(c, r)

Figure 5.4: Applying three basic CVG operations to a PBVO r and a procedurally defined
cylindrical object c.

Given such a subset, we can sample the radial basis function of each p′i ∈ P ′, and obtain
a scalar value by using the above-mentioned blending function.

5.2.4 The Benefits and Costs of Using Octrees

For a large point cloud, the most expensive cost in rendering a point cloud P is the iden-
tification of the subset P ′, as it involves a distance calculation against every point pi ∈ P ,
thereby limiting the scalability when |P | increases.

For each large point cloud P in the volume scene graph, we therefore utilize an octree
structure for partitioning the points in the local data coordinate system of P . In each
level of the hierarchy, a subtree contains only those points, which have some influence in
the bounding box of the subtree. It is important to note that due to the non-zero radius
of influence of each point, and the likely overlaps among the ‘volumes of influence’ of
different points, a point element can belong to more than one leaf nodes. We therefore
store only indices, rather than the records of points, in the leaf nodes of an octree.

In comparison with a brute force ray tracer, an octree-based ray tracer can have almost lin-
ear speedup in relation to the sizes of point clouds, if there is sufficient space for an octree
that provides a sufficiently fine partition of a point cloud. Table 5.2.4 shows the speedup
pattern in rendering three point sets different sizes, where points are placed randomly on
a spherical surface.

However, Table 5.2.4 also shows that, for large point clouds, the amount of space con-
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height H # points I 1000 10000 100000
speedup 23.75 36.62 26.92

H = 3 space 20 MB 155 MB 1499 MB
ηmax 45 411 3895

speedup 49.91 318.84 446.81
H = 5 space 196 MB 741 MB 5708 MB

ηmax 15 89 739

speedup 46.61 429.01 1122.27
H = 7 space 901 MB 12189 MB 63634 MB

ηmax 9 48 348

Table 5.1: Testing results for ray casting three randomly generated point clouds. The
octree height is limited to 3, 5 and 7 respectively. ηmax is the highest number of points
that occupy a leaf node in the octree.

sumed by an octree can be quite noticeable, especially when points are densely placed,
the radius of influence is set to a relatively large value, or the limit for octree height is
generously set.

Note that the size of the octree can grow significantly faster than the point set. This is due
to the fact that each point must be present in every octree leaf node in which there exists a
point where its radial basis function evaluates to a number greater than zero. Depending
on the radial basis function, the point value, and threshold value used, a single point may
have a radius of effect spanning a large number of octree leaf nodes.

Figure 5.5 illustrates the effect of varying the radius of the radial basis function. It shows
a zoomed-in section from the neck of the statue shown in Figure 5.3. As the radius is
increased, the points blend together more smoothly to form the appearance of an iso-
surface, and at the same time, the octree structure consumes more space for dealing with
the increasing ‘volume of influence’ of each point. In fact, when we ran our in-core ray
tracer on a desktop computer with 1GB memory, any setting with r > 6 encountered
some difficulties, resulting in excessive virtual memory swapping and an unreasonable
amount of system time overhead. Additionally, the octrees used in this set of examples
are limited to only six levels, no where near the optimal depth for such a large dataset.
Often some leaf nodes of the octree contained over 100,000 indices to points.

It has often been suggested that a kD-tree [186] could be deployed instead of an octree
in this application as it has been successfully used in conjunction with many rendering
algorithms such as ray tracing (e.g., [324, 325]). We found that this application is not
able to take advantage of the kD-tree technique as easily as surface-based approaches,
for several reasons. Firstly a kD-tree is most effective when points are considered to be
unrelated or have the same small radius. Neither condition holds in this application, as it is
assumed that points may have different radii (see Section 5.2.1 and [59]). Secondly, a kD-
tree, like a BSP tree, focuses the precise order of primitives in relation to a given viewing
(or ray) direction. It relies on search to identify neighboring primitives, for instance,



5.3 Out-of-core Rendering 88

r = 0.25, m: 343MB r = 0.5, m: 350MB r = 1, m: 363MB

r = 2, m: 512MB r = 4, m: 676MB r = 6, m: 889MB

Figure 5.5: Rendering of Lucy’s neck with varying radii for the radial basis function,
from 0.25 to 6. One can observe the improvement of image fidelity proportionally to the
increase of the radius (r), which also leads to the additional consumption of memory (m).

in rendering point-based implicit surfaces [325]. Hence, the fast detection of an opaque
surface closest to the viewing position minimizes the need for the search, the cost of which
depends on the radius of points. In volume rendering, translucent objects are a common
feature, which do not benefit from the precise ordering as much as opaque surfaces. On
the other hand, minimal search requirement at each sampling point is better suited for
rendering point-based volume objects.

If a kD-tree, or similar structure, were to be designed to accommodate overlapping radial
basis functions, it would encounter the same space issue as an octree. Hence, this study
of out-of-core methods is also applicable to other spacial partitioning strategies.

5.3 Out-of-core Rendering

The problem of insufficient memory has been around for almost as long as stored-program
computers. Most operating systems provide some form of virtual memory [92] to help
alleviate this problem. Unfortunately, visualisation tasks where the working set [91]
changes rapidly do not mix well with the demand paging strategy used by most oper-
ating systems.

Cox and Elleworth [84] proposed a method by which the application could control the
demand paging strategy, allowing data to be evicted in an intelligent way. The authors
discovered in their analysis of demand paging systems in existing operating systems that
a significant performance increase could be gained by using smaller page sizes than are
common, increasing the granularity of their strategy.

An effective out-of-core, or external memory [321] strategy requires an efficient prefetch-
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ing algorithm such as that proposed by Varadhan and Manocha [315] in order to prevent
disk latency being the limiting factor in rendering. Traditionally such algorithms are de-
signed based heavily on a priori knowledge of access patterns. It is theorised that this is
not required for an efficient prefetching strategy.

All of the caching algorithms tested interact with the renderer by the same simple inter-
face. They sit between the rendering code and an abstract out-of-core file controller. The
renderer requests an octree node containing a specified point in 3D space. This request is
processed by the caching algorithm, which requests individual nodes from the controller.
The caching algorithm may also provide pre-caching hints to the controller, with an asso-
ciated priority. If there is enough cache space to fulfill these requests, then the requested
nodes will be loaded, with lower priority nodes being evicted to make space for higher
priority ones. The priority of loaded nodes is gradually decayed over time. This gives
slightly less-than-optimal performance, since there is a clear separation (preventing some
compiler optimisations such as aggressive inlining) between layers, but it allows for fair
evaluation of the different algorithms. Figure 5.6 shows how the various layers of the test
system interact.

The asynchronous I/O controller in this system implements the block layer, as described
in the previous chapter. The cache implements the record layer. The data structure layer
is implemented in the prediction algorithm component. This system does not implement
the knowledge or network layers from the five-layer model.

The LRU algorithm is the simplest of all. Every octree node that is requested is loaded if
not cached, and stored at the head of a queue. If the cache is full, then the oldest node is
evicted to make room.

The intelligent algorithm works on the assumption that access is going to be along the
path of a ray. Each pair of points accessed sequentially are used to extrapolate the line
of which the ray is a segment. The algorithm then determines a point on this line which
falls just outside of the current octree node. It then attempts to navigate the octree until
it reaches the required node. If, at any point on this navigation, it would need to enter a
node which is not already in the cache, it instructs the lower layer to cache it. The next
time a point is requested, it tries again to reach the next node.

This provides good cache hit rates, but often at the cost of a significant overhead in terms
of disk usage.

5.3.1 Algorithm Overview

The concept of working set was first introduced in the context of memory management in
operating systems [91]. The concept used in this work as an approach to the out-of-core
management in some way resembles many typical methods found in operating systems,
such as anticipatory paging.

Consider the running of an algorithm as a series of algorithmic steps {Λ1, Λ2, . . . , Λi, . . .},
and each step is merely a functional group of an arbitrary number of instructions. A work-
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ing set of an algorithm in execution is the subset of the associated data structures being
accessed during an algorithmic step Λi. Note that unlike the definition commonly used in
the context of operating systems, here the duration of a working set is not a constant time
window. In general, different algorithmic steps may require different execution time. If
an algorithmic step is taken to be the processing of a single octree leaf node, then the
running time will be O(n) in terms of the number of points contained within the node.

In the case of the discrete ray tracer, the primary algorithmic steps are sampling individual
volume objects in a volume scene graph. For an octree defined on a point-based volume
object (PBVO), the working set of a sampling operation is basically the leaf node of
the octree that contains the sampling point, and the points referenced by the leaf node.
Assuming that it is not possible to have all parts of the octree and the entire point set in-
core at all times, the aim of the data management strategy is therefore to ensure that the
working set for an algorithmic step Λi is located in-core, before and during Λi. Without
such a data management strategy, the renderer will quickly encounter a situation that the
working set for an incoming step Λj is out-of-core, stalling the renderer until it can be
swapped in.

Figure 5.7 gives an overview of the data environment of a volume scene graph to be
rendered by the out-of-core ray tracer. For each individual point cloud, there is a complete
out-of-core copy of the entire point dataset and the corresponding octree. Each out-of-
core point cloud has an in-core memory cache. The amount of in-core memory available
for each point cloud is set when an out-of-core copy is created, and can be modified by the
user. This allows the algorithm to be easily scaled down in highly constrained memory
situations.

Since it is assumed that the number of points in each individual point cloud is much
larger than the number of point datasets in a scene, comparatively the actual memory
requirement for storing a volume scene graph (without the actual data for its elemental
objects) is negligible. We thereby maintain the data structure for the volume scene graph
in-core. Note that it is possible for different PBVOs to share the same point clouds.

The implementation consists of three main functional components, namely the discrete
ray tracer, an out-of-core octree controller, and an out-of-core point set controller, con-
nected as shown in Figure 5.8. The ray tracer sends requests for discrete sampling points
to the octree controller. This then determines whether the node containing the requested
point is currently cached in-core. If it is, then it simply returns it, and attempts to predict
the next one to be accessed. The prediction strategy will be detailed in 5.3.3.

Once the octree controller has determined the next node or subtree most likely to be
accessed, it attempts to pre-emptively fetch it from disk. At the same time, it informs the
point set controller of the point list from the accessed leaf node. On receipt of the point
list, the point set controller checks that these are cached in-core, and if not attempts to
load them asynchronously.

The ray tracer then attempts to retrieve points identified by the octree node from the point
set. By this time, they should already be cached in-core. Hence, it is the octree controller
and point set controller that try to make sure the working set related to each sampling
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Figure 5.7: The data environment of a volume scene graph.

point is cached in-core before the ray tracer progresses to the sampling point.

5.3.2 I/O Management during Rendering

Most modern hard disks have a sufficiently high sustained transfer rate to keep the ray
tracer fed with data, if it could be read in a linear fashion. Consider a single point cloud.
In the described implementation, each octree node is composed of 244 bytes on disk1,
and references a set of points which are 24 bytes each. The maximum transfer rates for
hard disks usually rely on reads of consecutive blocks of 512 or more bytes, making the
required reads fairly inefficient.

The layout of the octree on disk is such that the child nodes of a single node are con-
tiguous, allowing them all to be read with a single disk read. Unfortunately, this does

1This space is required to store the bounds and extents of the node, as well as the addresses of the
parent, children and/or the points in each node, as well as some pre-computed values to speed up rendering
calculations. It also includes the indexes of the points referenced by the octree node.



5.3 Out-of-core Rendering 93

Ray Tracer

Out-of-core
Octree Controller

Disk

Sampling 
Point Point Indices 

Out-of-core
Point Set Controller

Octree node
containing

point indeces
Point List

In-core
Cache

In-core
Cache

Prediction
Instructions

Asynchronous Disk 
Accesses

Figure 5.8: The main components of the out-of-core renderer.

not give a significant benefit since navigation of an octree is performed by ascending and
descending the tree, rather than large lateral movements. Ordering the nodes on the disk
to allow linear reads to load paths to the leaf nodes is not feasible, since there are eight
possible paths down from each node.

In order to permit the fast traversal of the octree, the access of any non-leaf node causes
all of that node’s children to be pre-emptively swapped in. Additionally, the path between
a currently accessed node and the root node is locked in-core, allowing movement up
the tree to occur without requiring any disk accesses. The disadvantage of this approach
is that it locks more nodes into in-core memory than are strictly required, however for
discrete ray tracing applications, where adjacent octree nodes are frequently required, the
benefit is worthwhile.

Individual nodes in the octree are accessed using a reference counted retain-release mech-
anism. Retained nodes are locked in-core. Once a node is released, and its reference count
becomes zero, it is not immediately swapped out. Instead, its priority is decayed. No node
is evicted until the allocated in-core space is exhausted. Since the point set and octree data
are not modified during rendering, and hence does not need to be written back to disk, it
costs little to free in-core nodes individually.

Unfortunately, it is not possible to group the points together on disk for linear reads with-
out incurring a significant space penalty. The reason for this is that each individual point
can be referenced by several octree nodes, the number varying with the radius of the radial
basis function associated with each point.
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Figure 5.9: A performance comparison between the in-core only rendering and the out-
of-core approach with prefeching.

Various parts of the discrete ray tracer, such as opacity sampling and shadow sampling,
trigger the pre-caching of out-of-core data. Each of these assigns a priority value between
0 and 255 to the record, representing the confidence of its prediction algorithm. When the
allocated in-core space has been exhausted, records are swapped out based on priority,
with the least recently used record of the lowest priority being accessed first.

The method provides two major benefits over the built-in paging strategy in a conventional
operating system:

• Fine grained access — The operating system relies on the granularity of the paged
memory system, and will only swap entire pages in and out of main memory. This
means that, in order to load a single byte, an entire page (typically around 4KB)
must be swapped out to make room for it. We are able to swap out only the relevant
working sets actually needed.

• Lower latency — The operating system will typically wait until a page is accessed
which is currently out-of-core before acting. It will then issue a page fault, evict the
least recently used page, and then load the required page. The problems with this
are that the evicted page may be the one needed next, and that the process accessing
the page is stalled while it waits for the page to be loaded.

Figure 5.9 shows a comparison of the time taken to render a randomly generated point set
using both in-core and out-of-core approaches. The octree size is expressed as a multiple
of the amount of RAM space available to the rendering process. For example, from Table
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5.2.4, we can observe that with 100,000 points, a 7-level octree tree would require 60
times more space than typical RAM space available on a PC.

In the pure in-core case, once this value of multiples exceeded one, the demand-paging
subsytem in the operating system is automatically invoked to handle swapping. In fact,
most everyday systems are configured with the size of the swapping space set to between
50% and 100% of the RAM space. This means, when the value of multiples reaches
about 1.5 ∼ 2, the allocatable physical address space of the operating system will be
exceeded and rendering will be aborted. Thus relying on the demand-paging subsytem is
not scalable.

In order to observe the effectiveness of the prefetching strategy described in this paper
in comparison with the demand-paging subsytem, we reconfigured an operating system
by allowing significantly more swapping space than a typical configuration. It can be
clearly seen that the out-of-core approach performs better in terms of raw speed. The
in-core approach, using the operating system for paging takes more than twice as long to
complete in all cases.

5.3.3 Prediction Scheme

The prediction algorithm developed for the ray tracer requires two out-of-core data struc-
tures, one representing the octree and the other representing an array of points. The algo-
rithm detects octree access patterns based solely on its captured knowledge of previous
accesses. The array of points has an internal predictor which predicts regular accesses,
and additionally accepts hints from an external source. The first predictor is used when
performing pre-processing — the point set is streamed into in-core memory and each
point is processed in order. The second predictor is used during rendering, with the hints
being generated from the octree.

Algorithm 1 Predict Octree Access
Require: s: the new sampling point
Require: s1 and s2: the last two sampling points accessed
Require: c: a Boolean value indicating if the next cell for s′ is cached

N ← the leaf node containing s
if s1 and s2 are set then

if s, s1 and s2 are not on the same line then
s′ ← the next sampling point on the ray (s, s2) but not in N
M ← the node containing s′ {navigating from N to M}
c← conditional test if M is now in-core?

end if
else

s1 ← s2

s2 ← s
c← NO

end if
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Algorithm 1 shows the basic outline of the prediction algorithm. Accesses to nodes in the
octree from a discrete ray tracing algorithm are along the paths of rays. The algorithm
makes use of this fact, along with the fact that only two points are required to uniquely
identify a line.

Every time a point is accessed, the algorithm first determines whether it is on the same
line as a previous access. If this is the case, then it checks whether the last attempt to
pre-cache the node was successful. If not, then it tries again. The attempted pre-caching
is performed by Algorithm 2.

If the new point is not on the same line as previous ones, then it attempts to predict a new
line based on the last accesses. This works for a secondary ray from a point, but fails for
a new initial ray after the previous one terminates.

It is not difficult to extend this algorithm to record the start positions of rays and generate
new predictions based on rays originating at these points. However doing so with current
hardware results in performance degradation. The computation is relatively expensive,
and the special case covered is infrequent. If processing speeds continue to increase at
a rate faster than disk access times, then this may become a more attractive proposition
within a few years.

Algorithm 2 handles the pre-caching. It attempts to navigate to the required node, without
accessing any nodes stored out-of-core. First, it navigates up the tree until it finds a node
which contains the point. This is guaranteed not to require accessing any out-of-core
nodes, since the path between the root node and a currently retained leaf node is always
locked in-core.

Algorithm 2 Pre-cache an Octree Node
Require: s: the new sample point
Require: N : the starting node

while s is not in N do
N ← the parent of N

end while
while N is not a leaf node do

M ← the child of N containing s
if M is in-core then

N ←M
else

pre-cache M
return NO

end if
end while
return YES

The second phase navigates down the tree towards the node as far as it can without ac-
cessing a node that is not stored in-core. If it reaches an out-of-core node, then it stops,
and pre-caches the node.
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Figure 5.10 illustrates this pre-caching mechanism. The node marked as A is the original
node, containing s, and the node marked as B is the one containing the point s′. In other
words, the last search within the octree returned A, and the next search along the same
line which does not return A, will return B. This diagram indicates how the prefetching
algorithm will attempt to navigate from node A to node B. Nodes which are not accessed
in this navigation are omitted, or summarised with an ellipsis.

If no pre-caching were accomplished, this access would require three disk reads. To
make matters worse, there is no way of determining where each node is on disk until its
parent node has been read, and so none of these reads could be initiated until the previous
one has been completed. Given common hard drive seek times of 8ms, this would stall
the algorithm for 24ms — 24,000,000 clock cycles2 on a 1GHz CPU — when leaving
an octree node in this way. Even adjacent octree nodes would incur an 8,000,000 cycle
penalty.

The first time a point inside A is accessed, the prefetching algorithm will navigate along
the branches indicated by the number ‘1’. Once it reaches the first node that is not cached
in-core, it will issue a request that this node be pre-cached, and then return. The rendering
algorithm can then perform processing on the points in A while the node is loaded. The
second time a point in A is accessed, this node should be in-core, and so it will get two
levels down the tree, to the end of the arrow indicated by a ‘2’, before encountering an
out-of-core node. Again, this node will be marked for fetching and the predictor will
return. The third time, indicated by a ‘3’, it will get to node B and cache this.

5.3.4 Prefetching Scheme

Prefetching data efficiently is very important to the overall performance of the rendering.
Moving from a pure in-core implementation to an out-of-core approach caused a signifi-
cant, yet unavoidable, performance hit. Previously, moving to the next node in an octree
was as simple as de-referencing a pointer, something which can be accomplished in a very
small amount of time. In order to perform the same operation in an out-of-core setting,
the following steps are required:

1. Translate the record index to a disk location.

2. Calculate the hash of the location.

3. Determine whether the node is in-core.

4. Fetch it, if not.

The hashing technique is adapted from hardware cache implementations — the lowest
n bits of the record index (not the disk address) are taken and used as the hash. This
has the advantage that it is very computationally cheap to perform, and allows sequential
accesses to fill the in-core hash table without collisions.

2Note that modern CPUs complete more than one instruction per clock cycle
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With a fast and efficient hashing algorithm, the time taken to determine whether a record
is in-core is not high, however the access process still potentially takes several function
calls — each of which has a cost associated with it — making it far slower than a simple
pointer access.

If the prediction algorithm fails, then the cost is very high, since the data must be syn-
chronously accessed from disk. This may stall the process for several hundred clock
cycles while it waits for the disk access to return. In the case of the pure in-core imple-
mentation, this is the situation encountered whenever the required memory exceeds the
available physical memory — each access to out-of-core virtual memory creates a page
fault which stalls the process until a page is read from disk.

The prefetching process makes use of the operating system’s asynchronous I/O capa-
bilities. When a record is identified as requiring loading in-core, an asynchronous read
request is dispatched, and the rendering process continues. When the record is accessed,
or when the asynchronous I/O buffers have all been used, the request is completed. In
most cases, the prefetch requests are dispatched sufficiently far in advance that the asyn-
chronous read has completed by the time it is required.

In order to alleviate some of the system call overhead incurred from large number of
small reads, the POSIX lio list system call is used, which allows up to 163 asynchronous
reads to be initiated with a single system call. In many cases, this allows all of the points
contained within a single octree leaf node to be loaded with a single system call. An
additional benefit of this is that it allows the kernel to re-order the disk reads to reduce
seek time on the disk.

Both the point set and octree make use of the same underlying code for shifting data in
and out of core. This code receives the pre-caching requests and priority information from
the high level code, and evicts low-priority records when their space is needed.

5.4 Experimental Results

5.4.1 Scene Graph Complexity

We have run a number of tests on different desktop computers, including a legacy
Alhlon 1.4 PC (1.4GHz, 70MB), a Pentium 4 PC (3GHz, 1GB), a Pentium M 770 lap-
top (2.13GHz, 0.5GB), an PowerMac G5 (2×2.5GHz, 2GB) and an Apple G4 laptop
(1.5GHz, 0.5GB). The render used was a that presented in [59], modified to support out-
of-core storage of data.

Figure 5.11 demonstrates that this technique can be used to synthesize images from com-
plex volume scene graphs on a desktop computer. The volume scene graph is composed
of six point-based volume objects, built from two point sets (Stanford Lucy of 14,027,872
points, and Stanford Bunny of 35,947 points). They are partially immersed in artificial

3This number is implementation dependent, however 16 is common
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clouds represented by a volume dataset (Erlangen clouds of 512×512×32 voxels). The
scene is lit by three point light sources, casting shadows in different directions. From
Figure 5.11, we can observe hard shadows cast by the bunnies and the Lucy statue, soft
shadows by the clouds, and self-shadows by Lucy’s arm. As the radial basis function
used for the Lucy point set has a much smaller radius, it requires much finer sampling
intervals.

5.4.2 Memory Usage

The memory usage of the algorithm is entirely configurable, with the only constraint
being that there must be enough in-core space allocated to store the maximum number
of nodes which need to be processed at once. As discussed in 5.3.2, the path between a
current access node and the root node of each octree is locked, this maximum number is
thus related to height of the octree h and the number of individual point sets n. In terms
of space complexity, this is of Ospace(n · h) = Ospace(n · log m), where m is the average
number of leaf nodes in each octree, which is related the average size of each point set.

For example, in a single PBVO test with the Bunny point set, the total memory used
by the out-of-core ray tracer — including the in-core data cache and all other memory
allocated by the process — was under 20MB. In contrast, the in-core implementation
used around 300MB. For larger datasets, it is possible to keep the memory usage at a
similar level, however this comes at the expense of speed. In the following section, the
trade off between memory usage and performance is examined in more detail.

5.4.3 Performance

The performance of the algorithm is dependent on the amount of memory allocated to
it. This can be controlled in two ways — the amount allocated to each point set and the
amount allocated to each octree can be varied independently. Table 5.4.3 shows how the
performance varies as each of these is changed.

number of octree number of points in core
nodes in core 32768 16384 8192 4096

131072 94.59 98.67 100.31 107.15
65536 90.67 96.25 96.62 101.63
32768 88.28 95.20 94.89 100.91
16384 88.78 96.58 95.84 103.38
8192 92.39 98.56 100.31 108.25

Table 5.2: Performance (in seconds) as memory is constrained while rendering the Stan-
ford Bunny.

The timing data in Table 5.4.3 gives the time, in seconds, taken to render a scene con-
taining a single PBVO (Stanford Bunny of 35,947 points). It includes both preprocessing
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Figure 5.11: A volume scene graph composed of six PBVOs (built from two point sets,
Stanford Bunny and Lucy), a volume dataset (Artificial Clouds from Erlangen) and a
procedurally defined floor.
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Table 5.3: Performance for multiple point sets.
number of point sets 1 2 4 8 10

Preprocessing 57.0 114.8 230.9 470.7 589.0
Rendering 13.8 13.9 14.5 16.8 16.8

time and rendering. The preprocessing times vary between 55-65 seconds. The results
were taken from a PowerMac G5 with 2×2.5GHz CPUs. The current implementation
currently only makes use of a single CPU directly, however the second CPU is used to
process asynchronous I/O requests.

The results in Table 5.4.3 indicate that increasing the size of the point cache has a more
noticeable impact on performance than increasing the size of the octree cache. This is
due to the fact that the points required change dramatically over short octree traversals,
meaning that a small increase in the point cache size can dramatically cut down the total
amount of disk I/O required.

Increasing the amount of memory allocated to the octree cache does not always give a
performance benefit. The pre-fetching algorithm requires very little space to ensure that
all of the required nodes are in-core before they are accessed. Once the cache reaches
this size, increasing it delivers no benefit — the extra space is not required. Increasing
this amount further increases the length of time required to find a single cache record,
incurring a performance penalty. For larger cache sizes, this penalty is sufficient that
increasing the allocated memory results in a performance penalty.

An in-core ray tracer would have a great difficulty in dealing with multiple point sets,
such as the volume scene graph in Figure 5.11. The out-of-core ray tracer can easily
handle such a volume scene graph in terms of memory allocation, without experiencing
inefficient disk I/O managed by the operating system. The rendering process in this case
involves the full data environment as shown in Figure 5.7.

To evaluate the performance under the condition of multiple point sets, the volume scene
graph in Figure 5.12 was rendered by associating the twenty bunnies to different numbers
of point sets. Though the same point set is being used, for the purpose of scalability test,
repeated uses are treated as independent point sets. For example, in the first test, one point
set is used for all bunnies. In the second, half use one point set, and half use another.

The evaluation was performed in this manner to reduce the number of variables affecting
the results. For each test, the final scene was the same. The differences arise solely
from the way in which the scene graph was created. The only difference between each
rendering of the scene is how the points are accessed. In the simplest case, the scene
graph contained twenty references to the same point set (and octree). Each subsequent
test modified the scene graph to use new instances of the data set, increasing the memory
usage without modifying the rendered scene.

Table 5.3 gives both preprocessing (i.e., octree building) and rendering times in seconds.
The point set used to generate these results contains 35,947 points. The scene with 10
instances of this dataset thus contains 359,470 points. The preprocessing time scales lin-
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Figure 5.12: A volume scene graph composed twenty point-based volume objects (Stan-
ford bunny), ray traced with three light sources.

early as new point sets are added, but the actual rendering time changes little and remains
almost constant in relation to the increasing number of point sets from 1 to 10. Note that
the point sets are independent, and have separate octrees, and thus the preprocessing time
is lower than it would be with a single, larger point set.

The results are also shown graphically in Figure 5.13. It can be seen here that the pre-
processing time scales linearly as more points are added. The rendering time, however,
remains almost constant. Recall that adding point sets to the scene increases the mem-
ory requirements without modifying anything else in the rendering path. Increasing the
number of points by a factor of ten increased the rendering time by approximately 20%
without requiring an increase in in-core memory usage.
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Figure 5.13: Graph showing performance for multiple point sets.
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5.5 Conclusions

This chapter has presented an out-of-core solution to a difficult problem for rendering
multiple point-based volume objects using discrete ray tracing. The I/O management
involves a dynamic, in-core working set, and uses a ray-driven algorithm for predicting
the working set automatically. The results have shown that the algorithm scales well to
very low memory conditions. Performance increases can be gained by increasing the size
of the point cache up to the size of the point dataset, and by increasing the size of the
octree cache up to a limit dependant on the structure of the data and the number of in-
core nodes required at any given time. We have demonstrated that this approach allows
the rendering of multiple large PBVOs in a volume scene graph on common commodity
desktop computers.

The following chapter will use the algorithm described here as a bench-mark to deter-
mine whether it is possible to produce comparable results from a prefetching strategy that
doesn’t incorporate knowledge of the rendering algorithm. The algorithm described in
this chapter is evaluated in more detail and compared to other approaches.
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It is believed that it is possible (and practical) to design a generic knowledge-based
prefetching algorithm that achieves performance commensurate with algorithms specific
to the rendering method. This chapter attempts to demonstrate that a knowledge-based
algorithm can perform as well as one which uses problem-specific information. Work
described in this chapter was originally presented at EuroVis 2006 [73].

6.1 Introduction

In this chapter, four caching algorithms are compared. The first is a naive approach
employing no prefetching, the second uses domain-specific intelligence as described in
the previous chapter, and the remaining two are knowledge based.

The first algorithm uses a simple demand paging strategy coupled with least recently used
(LRU) eviction, and is used as a base-line for evaluation of all algorithms. The second,
the ray driven predictor (RDP) was described in more detail in the previous chapter. It
makes use of domain-specific intelligence to make predictions. The remaining two algo-
rithms use a knowledge-based approach - both make predictions based on previous access
patterns, and are described in the next section.

104
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(a) 5 × 1K points (b) 5 × 10K points

(c) 5 × 100K points (d) 5 × 1M points

Figure 6.1: Five iso-surfaces of a hyperbolic field are visualized using point sets that are
randomly placed on the surfaces with different resolutions. Each iso-surface is approxi-
mated by (a) 1,000, (b) 10,000, (c) 10,0000 and (d) 1,000,000 points respectively.

This chapter aims to demonstrate that it is possible to achieve good performance in a spe-
cific problem domain using an algorithm which does not exploit problem-domain specific
logic.

6.2 A Knowledge-based Approach

A knowledge-based system is one which functions using inferred knowledge. As the
system runs, it learns how to function efficiently, fulfilling the self optimising component
of the definition of an autonomic system. In this case, the inferred knowledge relates to
access patterns within the data. A good knowledge-based prefetching algorithm will learn
the order in which data is accessed and automatically fetch data accessed next.

The two knowledge-based algorithms in this chapter are aware of the structure of the data
to a limited degree. They (along with the other two predictors) make use of the fact that
the octree can be decomposed into individual nodes. The algorithms are not of the process
being used to render the data. They must infer knowledge of the access patterns within
the data based on previous accesses.

Two knowledge-based approaches are evaluated, and their performance compared with
two other algorithms. In this implementation, both knowledge-based algorithms work by
storing some extra data in the unused child node pointers in leaf nodes in the tree. The
advantage of this approach is that it does not change the data layout in RAM of the dataset
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Figure 6.2: Two Visible Human point sets, representing bones (1,218,973 points) and
skin (267,303 points) respectively, are combined together using a volume scene graph.
The point sets were part of the polygonal model provided by William E. Lorensen [200]
and made available by Georgia Institute of Technology.
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(a) 5 × 1K (b) 5 × 10K (c) 5 × 1M

Figure 1: Five iso-surfaces of a hyperbolic field are visual-

ized using point sets that are randomly placed on the sur-

faces with different resolutions. Each iso-surface is approxi-

mated by (a) 1K, (b) 10K and (c) 1M points respectively.

Figure 2: Two Visible Human point sets, representing bones

(1,218,973 points) and skin (267,303 points) respectively,

are combined together using a volume scene graph. The

point sets were part of the polygonal model provided by

William E. Lorensen [Lor95] and made available by Geor-

gia Institute of Technology.

ume scene graphs. For example, it allows creation of com-

binational visualization of point sets and volume datasets.

It opens the possibility of storing segments in a segmented

volume as individual point sets (e.g., Figures 1 and 2). It en-

ables the incorporation of advanced rendering features, such

as shadows and refraction, which can add additional visual

cues to a visualization (e.g., Figure 3).

(a) without shadows (b) with shadows

Figure 3: The David dataset (Stanford) contains 28,184,526

points, for which an octree with 10 levels takes about 64

GB space. The visualization with shadows gives extra visual

cues about the spatial relationship between the object and

its surrounding, and between different parts of the object.

As shown in [Che05], discrete ray tracing of a point cloud

by brute force requires the evaluation of all points in the

cloud, and it is hence not scalable in terms of the num-

ber of points. One can obtain significant speedup with a

data partitioning scheme such as an octree. For example,

tests in [Che05] indicated an average speedup at a factor of

around 140 for a set of 10000 points. Therefore, memory

becomes the fundamental bottleneck of ray tracing a volume

scene graph with very large point sets, as it would demand an

overwhelming amount of memory to accommodate all point

datasets and their associated control structures.

In this work, we adopt octrees as the main data partition-

ing scheme as in [Che05]. Although the efficiency of such a

data partitioning scheme is not the primary concern of this

paper, there are good reasons for using this scheme in our

example application. Firstly, it is one of the most commonly-

used schemes in graphics and visualization. It is general

enough for obtaining a fair comparison between different

out-of-core algorithms, without introducing distortion due to

some special algorithmic features, such as the assumption of

opaque surfaces or pre-determined ray directions.

In this example application, each point dataset defines a

point-based volume object (PBVO), where each point is as-

sociated with a radial basis function (RBF), and the RBFs

are blended to form a scalar field of the PBVO. Like con-

ventional volume objects, a PBVO can be associated with

transfer functions and can be combined with other volume

objects in a volume scene graph. The control structure of the

entire volume scene graph is a hierarchical set of bounding

boxes, in addition to the octree structure associated with ev-

ery point set. Further details can be found in [Che05].
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(a) without shadows (b) with shadows

Figure 6.3: The David dataset (Stanford) contains 28,184,526 points, for which an octree
with 10 levels takes about 64 GB space. The visualization with shadows gives extra visual
cues about the spatial relationship between the object and its surrounding, and between
different parts of the object.

Figure 6.4: A volume scene graph composed of twenty bunny objects, which is rendered
with shadow effects. The bunny dataset (Stanford) contains 35,947 points.
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between the different algorithms any more than is absolutely necessary, which helps to
prevent differences in CPU cache accesses skewing the evaluation.

This design decision limits the available space to 8 addresses. If the algorithms were to
be implemented in a purely general case, the extra data would be stored in a separate data
structure associated with the page table. It is believed that eight addresses per node is
an acceptable number for this situation, since the algorithm is required to search through
them every access to update the prediction, and is not allowed to take more time to run
than it saves by predicting accesses.

Algorithm 3 Knowledge-based access path predictor
Require: New sample point p, last two octree nodes Node, LastNode

if p is in Node then {If the new point is in the old node, we don’t need to do anything.}
NewNode← Node

else if LastNode previously visited before NewNode then {Try to predict along an
existing vector}

NextNode← node visited after Node previously.
if p in NextNode then

NewNode← NextNode
end if

end if
if NewNode unset then

if p in any of the four nodes visited after Node then {Use an historical next nodes
as a next guess}

NewNode← next node from Node containing p
else {Fall back to octree navigation}

NewNode← node reached navigating the octree from Node to p.
end if

end if
Replace oldest vector in Node with LastNode and NextNode {Update knowledge}
if Node previously visited before NewNode then

NextNode← node visited after NewNode previously.
Cache NextNode with a high priority

else
Cache all four nodes visited after NewNode with a low priority.

end if
return NewNode

When a node is requested, its associated knowledge is updated. In the case of the access
path predictor , described in Algorithm 3, the knowledge stored is comprised of two parts
describing a vector through the dataset. Note that this is a vector through the dataset itself,
not a vector through the three dimensional space represented by the dataset.

The access path predictor divides the eight available child addresses into four pairs. When
three nodes, a, b, and c, are accessed in sequence, node b is updated to contain the ad-
dresses of a and c. The next time b is accessed, if a were the last node then it pre-caches
c. If there is space in the cache, then the other nodes accessed afterward are also cached.
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Figure 6.5: First ray entering a node with access path predictor .

The eight addresses allow for the storage of four (predecessor, successor) pairs (actu-
ally, (predecessor, current, successor) tuples, but the current node is implicit) for each
node in the octree. The access path predictor orders these according to their most recent
access, and discards the oldest one whenever a new one is found. If the new pair is already
present, then it is simply promoted to the front of the queue.

Figure 6.5 shows a simplified version of the predictor in operation. Here, a two dimen-
sional grid is used to represent a segment of the dataset. Nine leaf nodes are shown, along
with a ray and the collected data at each point.

The ray is shown having past through nodes one and two and into node five. It then
continues into node five (presumably having hit an object and being reflected, or being a
secondary ray fired at a light source). Node one does not feature in this interaction, but
due to having been recently accessed it is presumed to still be in the cache. Node two is
the immediate predecessor and node four the immediate successor, so the tuple (2, 5, 4)
is stored for this node.

Figure 6.6 shows a second ray entering the same node. This one comes from node four,
and so there is no existing relation that can be used for prediction. At this point, the
algorithm would typically fall back to simply pre-fetching all of the successor nodes,
however the only successor node it has stored here is node four.

This ray is not deflected, and passes straight through the node. As it passes, the tuple
(4, 5, 6) is recorded into the node’s knowledge base for later predictions.

When the next ray enters, as shown in Figure 6.7, there is an existing tuple that can be
used to make a prediction. This uses the (4, 5, 6) tuple to predict node six will be accessed
next, and begins prefetching it.

The same mechanism would be used in every single node in the dataset, so once the ray
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Figure 6.6: Second ray entering a node with access path predictor .

Dataset

Ray

4

32

5

7 8 9

Stored Knowledge
In Node 5

Dataset

52 4( )
54 6( )

1

6

52 4( )
54 6( )

Ray

4

32

5

7 8 9

1

6

Figure 6.7: Third ray entering a node with access path predictor .
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Figure 6.8: First ray entering a node with history access predictor .

has entered node six, it would again have its next node predicted based on prior accesses.
Since the last node in the example exited via node nine, this would probably be pre-
cached, giving an two correct predictions in a row.

One important potential benefit of the access path predictor over the ray driven predictor is
that it is able to predict access patterns caused by secondary rays trivially. Predictors tied
to the ray tracing algorithm have some difficulty doing this, as the existence of secondary
rays is dependent on the contents of a particular node in the spacial partitioning scheme
(in this case, the octree). The access path predictor will miss the first secondary ray in
each direction, but then has a good chance of predicting future ones.

The history access predictor is simpler. It was designed due to concerns that the com-
putational cost of the access path predictor might be too high. Unlike the access path
predictor , the history access predictor simply stores (current, successor) pairs. Again,
the curent node is implicit, and so only the address of the eight successors are stored.
Every time a ray enters a node, all potential successors are loaded.

An example of the history access predictor in operation is shown in Figures 6.8 and 6.9.

In the first diagram, a ray enters a node in a similar two dimensional arrangement to
the last example. The ray enters from node two, having passed through node one. A
secondary ray is then fired towards a light source. The ray exits into node four which, as
before, has not been predicted and so causes a page (or, rather, node) fault and is loaded
from the disk, unless it was already in the cache for some other reason.

The second ray enters from the same direction, and has a similar experience. Again, the
secondary ray exists through node four, but this time it is pre-cached. A description of
the use of the history access predictor algorithm in this context is given in Algorithm 4.
Note that the mechanism used in history access predictor is also used as a fall-back in
access path predictor for cases where no the predecessor does not match any in the node’s
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knowledge base.

Algorithm 4 Knowledge-based history access predictor
Require: New sample point p, last octree node Node,

if p is in Node then {If the new point is in the old node, we don’t need to do anything.}
NewNode← Node

end if
if p in any of the eight nodes visited after Node then

NewNode← next node from Node containing p
else {Fall back to octree navigation}

NewNode← node reached navigating the octree from Node to p.
end if
Replace oldest successor in Node with NextNode {Update knowledge}
Cache all eight nodes visited after NewNode with a medium priority.
return NewNode

When looking at these examples, it is important to remember that they both represent
small segments of a much larger data set. In between two rays entering node five, a large
number of other nodes might be accessed. In the last example, two consecutive rays to
enter node five exited through node four, so it might be assumed that node four would
already be in the cache, and thus no prefetching would be needed. Unfortunately, these
two rays are likely to have traversed other parts of the data set before reaching node five,
and even more after leaving it. The two accesses to node five might be a long way apart,
and thus the second may not benefit from caching at all.

It is also important to remember that, while these examples were described in terms of
rays, this was to illustrate how the algorithms are used, not how they are designed. Neither
algorithm has any awareness of the rays, just the accesses. From the perspective of the
predictors, the rays are simply a sequence of node requests.

Both of these algorithms work solely by storing knowledge about leaf nodes. This means
that in both cases it is frequently possible to hop from one leaf node to another. In the
absence of this knowledge, it would frequently be necessary to navigate several nodes
up and then back down the tree, and each of these nodes could potentially require a disk
access.

The secondary advantage of the ability to move directly between leaf nodes in an octree
is that it reduces the size of the working set. There is a lower probability that non-leaf
nodes will be required, and so more cache space can be used to store the leaf nodes and
points.
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Figure 6.9: Second ray entering a node with history access predictor .

6.3 Algorithm Evaluation

The four algorithms evaluated are:

• The least recently used (LRU) strategy — This is a simple memory management
algorithm discussed extensively in many textbooks on operating systems. This is
the most generic among the four considered and contains a very limited amount of
application-specific logic. It is used in this work as a base-line for evaluating all
algorithms.

• The ray driven predictor (RDP) — This is the least generic among the four con-
sidered. It relies on a significant amount of hard-coded application-specific logic,
including both the data structures and the rendering algorithm, to make predictions.

• The access path preictor (APP) — This algorithm assumes that the most likely ac-
cess pattern is a predecessor-current-successor pattern. Unlike RDP, it does not at-
tempt to hard-code such logic mathematically, and instead makes predictions based
on previous access patterns. Hence, it is a knowledge-based algorithm.

• The history access predictor (HAP) — This algorithm also adopts a knowledge-
based approach, but is more generic than APP without the assumption about the
likelihood of any access pattern. It maintains a relatively fuller record of access
history.

All algorithms were evaluated with random point sets and with a small number of real
datasets. The random datasets contained 100, 1,000, 10,000, 100,000 and 1,000,000
points respectively. For each number of points, two different formations were generated;
one in which all of the points were on the surface of a sphere and the other in which all
points were in a volume.
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Least Recently Ray Driven Access Path History Access
Used Predictor Predictor Predictor

Best 1 0.4 0.3 0.8
Average 1 1.8 0.8 1.9

Worst 1 5.1(38) 1.4 4.9
Rank 2 3 1 4

Table 6.1: Summary of normalised disk access results over algorithm tests.

Least Recently Ray Driven Access Path History Access
Used Predictor Predictor Predictor

Best 99.9% 100% 99.9% 99.9%
Average 98.9% 99.8% 99.8% 99.7%

Worst 91.1% 99.3% 99.2% 99.0%
Rank 4 1 2 3

Table 6.2: Summary of cache hit rates over algorithm tests.

The surface point sets results indicate the performance when rendering an object created
by sampling a solid object, such as a statue. The volume point sets resemble the kind
of data found in a CT scan, or similar. Between the two different types of data, they
represent the majority of extant point data sets.

Tests were performed both with and without shadows for the point sets on the surface of
a sphere. The shadow rendering involves firing secondary rays through the data set. This
means that each octree node will have rays passing in multiple directions passing through
it.

In assessing these algorithms we use two metrics; cache hit rate and total disk reads.
Every time there is a cache miss, the renderer stalls while the data is fetched from disk.
Thus, every cache miss slows the system down. The hit ratio gives an idea of the num-
ber of false negatives generated by each algorithm; times when the algorithm failed to
accurately predict the data that was required.

Disk reads give an indication of the number of false positives of each algorithm. Without
an in-core cache or prefetching, the number of disk reads will equal the number of octree
node accesses. Caching will reduce the number, since some nodes will already be in-core
when they are needed. Prefetching is likely to increase the number of disk reads since data
will be speculatively moved from the disk to the cache. If an algorithm is speculatively
caching data that is not used, it will increase the number of disk reads.

A least recently used algorithm was used as a base-line. This is close to the strategy em-
ployed by modern operating systems, but finer grained. The least recently used strategy
employed here has a granularity of a single octree node, while OS-level implementa-
tions can be as course-grained as evicting entire process address spaces and then demand-
paging in the part that is actually used - in the best case they will work on 4K pages, each
of which can store around 16 octree nodes.
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Least Recently Ray Driven Access Path History Access
Used Predictor Predictor Predictor

Best 1 0.88 0.87 0.96
Average 1 0.91 0.90 1.01

Worst 1 1.05 1.03 1.05
Rank 3 2 1 4

Table 6.3: Summary of timing results over algorithm test.

Detailed results can be found in the final section in this chapter. Tables 6.1 and 6.2 contain
a summary of the information presented here.

Table 6.2 shows the cache hit ratios of the four algorithms on the random data sets (de-
tailed data can be found in Tables 6.4, 6.6, 6.8, and 6.10. The least recently used algorithm
falls short of the other three, while the ray driven predictor has the best results. Both of
the knowledge-based algorithms perform better than the naive approach, and come close
to the performance of the algorithm-specific approach in terms of hit ratios. Since hit ra-
tios indicate false negatives, this shows that all three prediction algorithms have roughly
the same number of accurate predictions. The average cases for the three are very similar,
however the history access predictor has the lowest worst-case performance.

Note that the values in the summary here are all over 98%. It may seem that there is
little variation between the algorithms. Keep in mind that each cache miss represents an
algorithm stall. In the last chapter it was shown that a modern CPU can execute around
350 million instructions in the time taken to process one in-core cache miss, and this
number is climbing rapidly. Within a few years, increases in CPU speed will have a
negligible impact on the performance of this kind of algorithm, since processing all in-
core nodes will take less long than fetching one from out-of-core. At this point, a cache
hit rate of 99% will (all other things being equal) equate to an overall performance of
twice that of a hit rate of 98%.

Looking at the detailed results it can be seen that all of the algorithms often get bet-
ter cache hit rates when a coarser sampling interval is used. This is quite apparent in
the stanford bunny and hyperboloid datasets (Table 6.4) where the cache hit rates at the
coarsest sampling interval are significantly worse than at other times. This is due to the
fact that as the sampling interval tends towards zero the probability of each step in the
rendering process using the same data as the previous one tends towards one. In a coarse
sampling, the distance between sampling points is greater and so the probability of new
data required for each sample is larger.

Table 6.3 shows some summarised timing results from these test runs. These are not
considered part of the evaluation since the test system was designed for fair evaluation
rather than performance. In spite of this, an average 10% performance increase can be
seen with the ray driven and access path predictors. An implementation designed for
higher performance would perform the prefetching asynchronously on a separate CPU
(or even a dedicated I/O controller) and would avoid a number of function calls in the
data loading by removing some of the abstraction between the layers.
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The most impressive improvements in the knowledge-based approach are highlighted
when looking at disk reads. These are summarised for the random datasets in Table
6.1 (detailed results can be found in Tables 6.5, 6.7, 6.9, and 6.11). The results are shown
in a normalised form. The number of disk reads is heavily dependent on the number of
points in the scene and the sampling interval. This means that the number of disk reads
in a 100 point scene can not be directly compared against the number in a 1,000,000
point scene in any meaningful way. To allow comparison, the number of disk reads
required when prefetching is not performed is used as a baseline. The number of disk
reads in each table gives the number required by each algorithm divided by the number
required without prefetching. An algorithm which predicts nodes which are not used
before being evicted from the cache (false negatives) will require more disk accesses than
a run without prefetching. An algorithm which predicts accesses to nodes which are still
in the cache, preventing them from being evicted just before they are used, can give much
better performance.

The disk access results contain one pathological result for the ray driven predictor, re-
quiring 38 times as many accesses as the uncached version in the smallest point set with
the coarsest sampling. A similar pathological case is apparent on all of the 100-point sets
with this algorithm. The result of 5.1 is the worst case discounting this pathological case.
When this pathological case is discounted, the ray driven predictor performs slightly bet-
ter than the history access predictor in terms of disk reads. The history access predictor
has the best performance by this metric.

6.4 Conclusions and Future Work

These results show that a knowledge-based algorithm can provide cache hit rates com-
mensurate with, and often exceeding an algorithm-specific one. In many cases, this im-
proved hit rate does not come at the expense of increased disk access. On average, the
access path predictor requires 20% fewer disk accesses than the LRU strategy while the
algorithm-specific predictor required between 80-90% more.

This chapter has shown that applying autonomic principles to a particular facet of visu-
alisation can have significant benefits. The knowledge-based algorithms described in this
chapter were simpler — both conceptually and in terms of implementation — than that
described in the last chapter. In spite of this, they achieved similar performance and had
a greater potential for re-use.

While not part of the evaluation, Figure 6.10 gives some quite interesting results. This
was generated by modifying the predictor slightly to log the outcome of each request.
Some were incorrectly predicted, some were predicted as the result of a last to current
to next relation, and some as a result of the fall-back mechanism that simply loaded the
next nodes. The graph shows the number that were predicted by either mechanism, those
predicted with the full mechanism, and those not predicted. It is interesting to note that
the performance of both components of the predictor quickly improves (showing that this
is a self-optimising algorithm), but also rapidly reaches a plateau. The plateau gives an
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Figure 6.10: Prediction percentages over a rendering run.

indication of the directions future work should take:

1. Attempting to reach the plateau faster, and

2. Attempting to raise the height of the plateau.

The rate at which the plateau is reached is a function of the rate at which knowledge
is acquired. When these algorithms begin running, they have no knowledge, and must
acquire it from the renderer as they run. Pre-seeding the knowledge base could provide
some better results, and this is the aim of ongoing work related to the multi-user variation
of this problem, since knowledge acquired from one user can be used by another.

The height of the plateau relates to the quality of the knowledge acquired. In a typical
rendering run, it is likely that more than four paths through a particular node exist. In-
creasing the size of the prediction cache is not (currently) feasible in the local setting,
since the extra cost of using it has an adverse effect on performance. In the remote con-
text, where latencies are typically one to two orders of magnitude larger, this is likely
to give some beneficial results. Note that the hit rates achieved in testing were higher
than the prediction peak on this graph. This is due to the fact that the graph only shows
whether the requested octree node was predicted as the next one, not whether it was in
the cache from a previous prediction.

These algorithms will also be used in the distributed system described in Chapter 4. In
this application, the predictors run on a data server and speculatively transmit information
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to the clients. In this setting, the predictors will be able to store knowledge accumulated
from multiple users. They will also be able to spend more processing time performing
predictions, since the overhead of a cache miss in the distributed setting is one or two
orders of magnitude more than in the local setting.

6.5 Detailed Results

This section contains the detailed results from the testing runs with the three predictors.
All disk read figures are normalised against the least recently used (no prefetching) num-
bers indicating relative performance for the specified data set.
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Dataset Sampling Least Recently Ray Driven Access Path History Access
Interval Used Predictor Predictor Predictor

Stanford Bunny 0.1 91.272% 98.218% 95.473% 95.901%
Stanford Bunny 0.01 97.579% 99.688% 97.795% 98.812%
Stanford Bunny 0.001 99.723% 99.968% 99.733% 99.857%
Twenty Bunnies 0.1 91.272% 98.218% 94.222% 95.896%
Twenty Bunnies 0.01 97.579% 99.688% 97.714% 98.813%
Twenty Bunnies 0.001 99.723% 99.968% 99.733% 99.857%

Hyperboloid 0.1 95.443% 98.865% 99.185% 99.302%
Hyperboloid 0.01 98.756% 99.880% 99.828% 99.855%
Hyperboloid 0.001 99.290% 99.910% 99.864% 99.890%

VH Bone 0.1 99.131% 99.967% 99.896% 99.904%
VH Bone 0.01 99.714% 99.997% 99.970% 99.974%
VH Bone 0.001 99.777% 99.995% 99.980% 99.983%
VH Skin 0.1 99.581% 99.986% 99.929% 99.941%
VH Skin 0.01 99.900% 99.999% 99.984% 99.988%
VH Skin 0.001 99.877% 99.997% 99.982% 99.987%

Mean 97.908% 99.623% 98.886% 99.197%
σ 2.857 0.618 1.755 1.350

Table 6.4: Cache hit rates from rendering real data sets
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Figure 6.11: Cache hit rates for different algorithms rendering various real datasets
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Dataset Sampling Least Recently Ray Driven Access Path History Access
Interval Used Predictor Predictor Predictor

Stanford Bunny 0.1 1 1.30 1.30 1.24
Stanford Bunny 0.01 1 1.46 1.20 1.64
Stanford Bunny 0.001 1 1.86 1.14 1.84
Twenty Bunnies 0.1 1 1.30 1.15 1.41
Twenty Bunnies 0.01 1 1.46 1.23 1.64
Twenty Bunnies 0.001 1 1.86 1.14 1.84

Hyperboloid 0.1 1 1.25 0.95 1.11
Hyperboloid 0.01 1 1.21 0.93 0.99
Hyperboloid 0.001 1 1.26 0.94 1.10

VH Bone 0.1 1 1.00 0.98 1.02
VH Bone 0.01 1 1.06 0.99 1.13
VH Bone 0.001 1 1.11 0.32 1.01
VH Skin 0.1 1 1.19 0.97 1.07
VH Skin 0.01 1 1.11 0.99 1.20
VH Skin 0.001 1 1.13 0.87 0.94

Mean: 1 1.30375 1.00635 1.28015
σ 0 0.251 0.229 0.301

Table 6.5: Normalised disk read values from rendering real data sets
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Figure 6.12: Normalized disk read rates for different algorithms rendering a various real
datasets
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Points Sampling Least Recently Ray Driven Access Path History Access
Interval Used Predictor Predictor Predictor

100 0.1 99.998% 99.996% 99.996% 99.997%
100 0.01 99.992% 99.999% 99.987% 99.992%
100 0.001 99.999% 100.000% 99.997% 99.997%

1000 0.1 99.528% 99.887% 99.967% 99.979%
1000 0.01 99.981% 100.000% 99.996% 99.997%
1000 0.001 99.961% 99.995% 99.971% 99.981%

10000 0.1 98.173% 99.362% 99.204% 99.374%
10000 0.01 99.663% 99.877% 99.589% 99.743%
10000 0.001 99.932% 99.934% 99.921% 99.950%

100000 0.1 98.173% 99.362% 99.204% 99.374%
100000 0.01 99.663% 99.877% 99.589% 99.743%
100000 0.001 99.932% 99.934% 99.921% 99.950%

1000000 0.1 91.056% 99.511% 99.166% 99.274%
1000000 0.01 98.215% 99.882% 99.859% 99.875%
1000000 0.001 99.644% 99.962% 99.969% 99.971%

Mean 98.927% 99.838% 99.756% 99.813%
σ 2.209 0.220 0.310 0.002

Table 6.6: Cache hit rates for different algorithms rendering a dataset containing points
on the surface of a sphere with shadows disabled
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Figure 6.13: Cache hit rates for different algorithms rendering a dataset containing points
in a volume with shadows enabled
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Points Sampling Least Recently Ray Driven Access Path History Access
Interval Used Predictor Predictor Predictor

100 0.1 1 381 1.01 1.00
100 0.01 1 1.29 0.64 2.36
100 0.001 1 4.44 1.44 4.80

1000 0.1 1 1.61 0.20 0.47
1000 0.01 1 0.38 0.40 0.84
1000 0.001 1 0.73 1.40 4.89

10000 0.1 1 1.62 0.34 0.80
10000 0.01 1 1.68 1.04 2.82
10000 0.001 1 4.29 0.72 2.13

100000 0.1 1 1.62 0.34 0.80
100000 .01 1 1.68 1.04 2.82
100000 0.001 1 4.29 0.72 2.13

1000000 0.1 1 1.07 0.98 1.05
1000000 0.01 1 1.13 0.95 0.98
1000000 0.001 1 1.27 0.89 0.96

Mean 1 1.80630 .80900 1.92449
σ 0 1.392 0.375 1.394

Table 6.7: Normalized disk read counts for different algorithms rendering a dataset con-
taining points on the surface of a sphere with shadows disabled

Points Sampling Least Recently Ray Driven Access Path History Access
Interval Used Predictor Predictor Predictor

100 0.1 99.999% 99.994% 99.997% 99.997%
100 0.01 99.992% 99.999% 99.987% 99.992%
100 0.001 99.999% 100.000% 99.997% 99.997%

1000 0.1 99.570% 99.895% 99.967% 99.979%
1000 0.01 99.981% 100.000% 99.996% 99.997%
1000 0.001 99.962% 99.996% 99.972% 99.981%

10000 0.1 98.250% 99.385% 99.095% 99.268%
10000 0.01 99.687% 99.884% 99.656% 99.784%
10000 0.001 99.928% 99.934% 99.927% 99.952%

100000 0.1 98.250% 99.385% 99.095% 99.268%
100000 0.01 99.687% 99.884% 99.656% 99.268%
100000 0.001 99.928% 99.934% 99.927% 99.952%

1000000 0.1 91.124% 99.510% 99.181% 99.284%
1000000 0.01 98.232% 99.884% 99.863% 99.878%

Mean 98.899% 99.834% 99.737% 99.757%
σ 2.229 0.219 0.389 0.312

Table 6.8: Cache hit for different algorithms rendering a dataset containing points on the
surface of a sphere with shadows enabled
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Figure 6.14: Normalized disk read rates for different algorithms rendering a dataset con-
taining points on the surface of a sphere with shadows disabled

Points Sampling Least Recently Ray Driven Access Path History Access
Interval Used Predictor Predictor Predictor

100 0.1 1 38.0 1.00 1.00
100 0.01 1 1.29 0.70 2.40
100 0.001 1 5.11 1.46 4.83

1000 0.1 1 1.59 0.19 0.45
1000 0.01 1 0.38 0.40 0.82
1000 0.001 1 0.73 1.37 4.74

10000 0.1 1 1.58 0.43 1.28
10000 0.01 1 1.75 0.99 2.57
10000 0.001 1 4.13 0.66 1.85

100000 0.1 1 1.58 0.43 1.28
100000 .01 1 1.75 0.99 2.57
100000 0.001 1 4.13 0.66 1.85

1000000 0.1 1 1.07 0.98 1.05
1000000 0.01 1 1.13 0.95 0.98

Mean 1 1.87308 .80173 1.97597
σ 0 1.452 0.357 1.313

Table 6.9: Normalized disk read counts for different algorithms rendering a dataset con-
taining points on the surface of a sphere with shadows enabled
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Figure 6.15: Cache hit rates for different algorithms rendering a dataset containing points
on the surface of a sphere with shadows disabled

Points Sampling Least Recently Ray Driven Access Path History Access
Interval Used Predictor Predictor Predictor

100 0.1 99.998% 99.996% 99.997% 99.997%
100 0.01 99.992% 99.999% 99.987% 99.992%
100 0.001 99.999% 100.00% 99.997% 99.997%

1000 0.1 99.528% 99.887% 99.967% 99.979%
1000 0.01 99.981% 100.00% 99.996% 99.997%
1000 0.001 99.961% 99.995% 99.971% 99.981%

10000 0.1 98.173% 99.362% 99.204% 99.374%
10000 0.01 99.663% 99.877% 99.589% 99.743%
10000 0.001 99.932% 99.934% 99.921% 99.950%

100000 0.1 99.190% 99.374% 99.653% 99.662%
100000 0.01 99.561% 99.873% 99.812% 99.842%
100000 0.001 99.924% 99.955% 99.975% 99.977%

Mean 99.6587% 99.8544% 99.8391% 99.8743%
σ 0.511123 0.222618 0.233923 0.185261

Table 6.10: Cache hit for different algorithms rendering a dataset containing points in a
spherical volume with shadows enabled
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Figure 6.16: Normalized disk read rates for different algorithms rendering a dataset con-
taining points on the surface of a sphere with shadows enabled

Points Sampling Least Recently Ray Driven Access Path History Access
Interval Used Predictor Predictor Predictor

100 0.1 1 33.2 1.00 1.00
100 0.01 1 1.28 2.35 2.35
100 0.001 1 4.44 4.79 4.79

1000 0.1 1 1.60 0.47 0.47
1000 0.01 1 0.38 0.84 0.84
1000 0.001 1 0.72 4.88 4.88

10000 0.1 1 1.62 0.80 0.80
10000 0.01 1 1.67 2.82 2.82
10000 0.001 1 4.29 2.13 2.13

100000 0.1 1 4.23 1.04 1.04
100000 0.01 1 1.60 0.98 0.98
100000 0.001 1 2.52 0.79 0.79

Mean 1 4.79583 1.9075 1.9075
σ 0 8.66716 1.48156 1.48156

Table 6.11: Normalized disk read counts for different algorithms rendering a dataset con-
taining points in a spherical volume with shadows enabled
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Figure 6.17: Cache hit rates for different algorithms rendering a dataset containing points
on the surface of a sphere with shadows enabled



6.5 Detailed Results 127

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

10
0 

/ 0
.1

10
0 

/ 0
.0

1

10
0 

/ 0
.0

01

10
00

 / 
0.

1

10
00

 / 
0.

01

10
00

 / 
0.

00
1

10
00

0 
/ 0

.1

10
00

0 
/ 0

.0
1

10
00

0 
/ 0

.0
01

10
00

00
 / 

0.
1

10
00

00
 / 

0.
01

10
00

00
 / 

0.
00

1

N
or

m
al

is
ed

 D
is

k 
R

ea
ds

Points / Sampling Interval

Least Recently Used
Ray Driven Predictor

Access Path Predictor
History Access Predictor

Figure 6.18: Normalized disk read rates for different algorithms rendering a dataset con-
taining points in a volume with shadows enabled
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Chapter 7

An Overview of SimEAC
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The next three chapters discuss the motivation behind the development of the SimEAC
system, the design and implementation of the simulator and some case studies of the
simulator in action. Work described in these chapters was presented at the International
Conference on Autonomic Computing 2006 [72].

SimEAC was originally conceived as part of the e-Viz project as a means of simulating
parts of the system that could not feasibly be developed within the project and for refining
the components that were built. In some e-Viz publications, SimEAC was described
as SimuVis (a simulated e-Viz). The name was changed when it became clear that a
simulator that met the requirements of the e-Viz project would also be applicable in a
more general context.

7.1 Introduction

The development of an autonomic system will inevitably involve the design, test, verifi-
cation, and optimization of a collection of autonomic elements. As pointed out by [164],
there is a significant engineering challenge in the development of such elements for large-
scale systems. It is hard to anticipate the combined effects of many autonomic elements
when they interact with the system, users, and one another. It is difficult to create a va-
riety of possible scenarios in which autonomic elements are expected to function, and to

129
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recreate a particular condition for the purpose of testing and optimization. It is risky to
install any autonomic element that has not been through an adequate engineering process.
It is costly to provide a replica of the live system in order to engineer autonomic elements.

In computer science and applications of scientific computation, the common wisdom is to
use simulation to aid the understanding and prediction of the behaviors of phenomena that
exhibit non-deterministic characteristics, and are too complex to model algorithmically.
This leads to the motivation for providing a simulation tool to support the engineering
of autonomic elements. The core of an autonomic element usually consists of one or
a few algorithms that encode strategies, methods and operations for self-management
in response to the dynamic environment where it functions. The simulation of an au-
tonomic system and its operational environment can thus feature different granularities,
with relatively fine-grained simulation for the core autonomic algorithms and strategies,
and coarse-grained simulation of the operational environment, including the various sys-
tem components, user tasks, and dynamic events that influence the behaviors of the auto-
nomic algorithms and strategies.

In this work, we focused on the provision of such software development support through
a simulation system, SimEAC (Simulated Environment for Autonomic Computing).
SimEAC enables a system designer to create a system infrastructure to be simulated
by specifying a collection of hardware components and performance attributes, and it
provides a degree of control over the operating systems and tasks, hence allowing new
autonomic algorithms to be prototyped, tested and optimized on a virtual system infras-
tructure. SimEAC supports modeling and simulation of a variety of system architectures,
including large scale networked systems, in a relatively abstract manner. It provides a user
interface for configuring a virtual system infrastructure to be simulated, and for specifying
the statistical and stochastic behavior of the system and running tasks, including hardware
and software failures, viruses and dynamic job loads. SimEAC allows an algorithm de-
signer to conduct experimentation on different virtual architectures without the risks of
bringing down a production system, and enables more scientific evaluation of autonomic
algorithms in analyzing typical attributes of an autonomic system such as scalability and
problem localization.

SimEAC is specially designed for simulating autonomic systems. Differing from con-
ventional system simulators, it places its emphasis on the fine-grained algorithmic spec-
ification of the autonomic algorithms through program code, while providing support to
modeling of the operational environment with different levels of granularities, includ-
ing abstract models and XML-based specification, build-in procedural models, interac-
tive parameterization, and programmable procedural models. It addresses the needs for
testing various self-* features of an autonomic system by allowing the specification of
dynamic behaviors, for instance, simulating system failures for testing self-healing, sim-
ulating viruses for testing self-protection, and simulating stochastic system reconfigura-
tion for testing self-optimization. In addition, it allows the core autonomic algorithms
and strategies to change the configuration of the operational environment for testing self-
reconfiguration. Nevertheless, SimEAC itself is not an autonomic system, because it is
essential to maintain a high degree of deterministic and predicable behaviors of the sim-
ulator, ensuring that the simulation results can be reproduced with the same parameter
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settings.

The chapter is organized as follows. Following a brief review of the related work in Sec-
tion 2, we discuss the motivation and requirements of a simulation system for autonomic
computing in Section 3. We present the abstract design model of SimEAC in Section 4.
In Section 5, we outline the main features of an extensible markup language (XML) based
Application Programming Interface (API) and the user interface for configuring a virtual
system. This is followed by a description of our implementation of the simulation engine
in Section 6. To demonstrate this feature, we present two case studies in Sections 7 and
8 respectively. One case study involves a simulation of a self-organization algorithm for
managing distributed computation in an ad hoc network. Another is a simulation of an
agent-driven resource manager in a virtual cluster-based visualization environment. We
give our concluding remarks and suggestions for future work in Section 9.

7.2 Related Work

Autonomic computing is a relatively new research area, and many of the tools required
for designing and building a fully autonomic system do not yet exist. The pioneering
attempts typically fall into the following categories:

Software development environments for agent-based systems Software agents are
commonly used in implementing autonomic components. Toolkits such as, [239], [77],
[152], [24], [33] have provided developers with tools for quickly developing agent sys-
tems by allowing agents to be created and used in a generic fashion. For example, [78]
describes an electronic marketplace system built atop ZEUS.

Generic software environments for autonomic applications Though the develop-
ment of such development tools is still in its infancy, several attempts were made,
which include projects such as QADPZ [80], AUTONOMIA [98] and Almaden Optimal-
Grid [88]. QADPZ [80], provides an open source framework for managing heterogeneous
distributed computation in a network of desktop computers using autonomic principles.
AUTONOMIA [98] is a prototype software development environment that provides ap-
plication developers with tools for specifying and implementing autonomic requirements
in network applications and services. OptimalGrid is a self-configuring, self-healing and
self-optimizing grid middleware, using a set of distributed whiteboards for communica-
tion between the different nodes.

New programming languages for semantic rules There are new developments of on-
tology languages for encoding knowledge and services on the Web, including RDF [28],
RDFS [37], OWL [210], and OWL-S [208]. Although such languages do not themselves
support directly the programming or evaluation of autonomic features of a system, they
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provided a means for encoding ontological representations of the rules that determin-
ing certain types of autonomic behaviors. More recently, [47] proposed the WSML rule
languages, which uses logical formalisms to describe the semantics of a semantic web
service.

Tools for protocol development Communication between autonomic components is
difficult to manage and its correctness is usually assured through correct communication
protocols. Examples of these include wireless testbeds [317, 306].

Other specialized development tools have also been designed for features such as secu-
rity and trust [63], context awareness [291], performance analysis [196] and business
support [7].

Dobson et al. [96] discussed the design and analysis of autonomic algorithms for com-
munication, while providing a comprehensive survey of a number of design techniques.
Their survey also highlighted the gap between the needs for testing and evaluating auto-
nomic algorithms, in terms of their stability and reliability.

To address the needs for testing and evaluation of autonomic algorithms, which exhibit
typically non-deterministic behaviors, simulation can play a vital part in the development
process, as it enables us to determine how well they would work without devoting signif-
icant time and effort to their creation.

Simulation is a vital part of the development process for these tools, as it enables us to
determine how well they would work without devoting significant time and effort to their
creation.

The majority of existing tools focus on emulating a particular kind of hardware. Al-
pha [93], PowerPC [15] and Itanium [309] simulators are available allowing code for
these platforms to be examined in great detail. Some systems, such as Bochs [185],
QEMU [29], Simics [205] and Xen [26, 71], provide a complete simulated (or virtual-
ized) system.

Outside the full-system simulation area are simulators such as the Emulab Network Em-
ulation Testbed [330]. This provides a highly accurate way of simulating a variety of
network conditions, and has been used in a number of activities related to Autonomic
Computing, including [13] and [52]. While a useful tool, Emulab has a limited range
of applicability; it focuses on simulating one aspect of a system — the network — very
accurately.

Tools such as Emulab, OPNET [57] and ns2 [245] are very important to development of a
large category of autonomic systems. They provide very accurate testbeds for analyzing
the interactions between components in a network. This is useful for a large subset of
autonomic computing research, for example routing strategies in mesh networks, but is of
limited use elsewhere. These simulators are very useful in the prototyping stage, but less
so in the design stage where only a high-level overview of the system is desired.

Such fine-grained systems are usually intended for the last stage in the development of
system-level software. This is not particularly relevant to Autonomic Computing in gen-
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eral, since a large number of autonomic systems involve the global behaviors of complex
systems and are often affected by — or rely on — emergent properties of these systems.

At a slightly higher level of abstraction are systems like CSIM [272] and GridSim [292].
CSIM is a relatively flexible simulation language based on C. It is designed to work at
a very fine granularity, giving the ability to evolve the simulated design into a finished
product. While a useful tool in a number of areas, it is not designed for testing the
applicability of high-level autonomic concepts.

GridSim works well in the Grid arena, but makes certain assumptions on the design and
structure of the underlying Grid infrastructure that may make it unsuitable for application
to Autonomic Computing problems. GridSim runs each simulated object in a separate
thread. The developers of MICSim [48] discovered that this introduces a degree of non-
determinism into the simulation due to scheduler interaction, which can make it difficult
to reproduce results.

At the most abstract end of the spectrum are theoretical models such as Communicat-
ing Sequential Processes (CSP) [46], [256] and systems such as CSP-CASL [265] and
Maude [214], [76], which allow the simulation of mathematical specifications for com-
plex systems. These are useful tools for evaluating algorithms in an abstract context, but
they are less good at indicating real-world performance.

7.3 Motivation

In theory, it is possible to build a composite simulation system for autonomic algorithms
and their operational environment by integrating a mixture of simulators into a single en-
vironment, providing a testbed for a variety of configurations. In practice, the interfaces
between different simulators will be costly to implement, and the granularity of different
simulators will determine the granularity of the autonomic system to be simulated, giving
little flexibility in varying the levels of granularity for different components of the auto-
nomic system. The level of details provided by these simulators is often neither required
nor beneficial in prototyping and testing autonomic systems, and the effort for specify-
ing various components in such details would render such a composite simulation system
totally cost-ineffective.

While [164] outlined the overall challenges in engineering autonomic systems, [273] ex-
pressed unequivocally the need for a simulation system in the context of Grid research
where autonomic computing has a great role to play. Such a simulation system, to be
useful in an Autonomic Computing context needs to meet a number of requirements.

The system must allow for fine-grained specification of core autonomic algorithms and
strategies to be simulated. It is the most natural way to provide a placeholder where
algorithms in the form of computer programs can be run by the simulation system. Since
the simulation system is designed to be used by designers and developers of autonomic
components of a system, a programming interface is not a burden but a necessity for
fine-grained simulation and tuning of autonomic algorithms and strategies.
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The system must enable the specification of the operational environment of an autonomic
component at different levels of granularity. It is most unlikely that a designer and devel-
oper of autonomic components is also a hardware architect, an operating system designer,
and a system, network and security manager. It is usually difficult and often unnecessary
to model the exact behaviors of the underlying system infrastructure, network traffic, job
loads, user interactions, and other dynamic features of a real world environment where an
autonomic component will operate. Hence, allowing some coarse-grained specification
of the operational environment is highly desirable, while providing a means for medium
to fine-grained specification whenever it is necessary. The simulation must support the
analysis of a variety of performance attributes of an autonomic system, specially, scalabil-
ity, stability, reliability, problem localization and efficiency. Hence, it should enable the
modeling of large and complex configuration of a variety of computing and networking
devices, without the burden of specifying every single component with the same level of
granularity.

The system should ideally provide tools for specifying building blocks of the operational
environment at an abstract level, allowing simulation of systems, which are highly the-
oretical or futuristic. Autonomic systems are frequently intended to be deployed on top
of systems and middleware that are still experimental. Any assumptions made based on
current system designs are likely to quickly become obsolete.

The system must provide support to testing and evaluation of various self-* features of
autonomic algorithms. While it is for the users of the simulation system to provide auto-
nomic solutions to various problems, it is for the simulation system to provide a platform
where such problems can be easily modeled and simulated, and to provide an interface
between the simulated problems and the solutions to be tested. Based the main self-*
features outlined in [164] and the numerous instances given in [96], one may consider the
following specific requirements for a simulation system.

To support self-configuration, the simulation system must allow the operational environ-
ment to be reconfigured dynamically under the influence of the autonomic components
being tested.

To support self-optimization, the simulation system must be easily re-configurable,
through simple specification interfaces. It should also allow the operational environment
to be reconfigured dynamically in response to various stochastic events beyond the in-
fluence of the autonomic components being tested. Thus, autonomic algorithms can be
tested in a variety of contexts against their capability of self-optimization. An autonomic
system is usually most useful in environments where there is little prior knowledge about
the structure of the operational environment available in advance (e.g., in ad hoc net-
works). Being able to quickly test the autonomic algorithm in a large number of situations
is important for robustness and reliability.

To support self-healing and self-protection, the simulation system much be able to create
a variety of failures (including hardware, network, system and application software), and
a variety of security threats and their impacts on system resources and running users tasks.

To support self-awareness, the simulation must provide an interface allowing the auto-
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nomic component to gather global and local information about the operational environ-
ment to be simulated. If it can, highlight this feature in the text.) It must provide dynamic
event (and message) capturing, and the event-driven (and message-driven) programming
paradigm.

SimEAC has thus been designed to fulfill these requirements.

7.3.1 Emergent Properties

One of the key features of Autonomic Computing is the design of systems based on
the concept of emergent behaviours. Autonomic systems are typically constructed from
simple components with a simple set of interactions. Complex behaviours evolve from
these simple rules, as with [267].

The problem comes from the fact that, while we have a plethora of theoretical models
for reasoning about software on a small scale, we do not have theoretical tools available
for designing systems to create a given emergent property. Ideally, we would like to be
able to first state the desired emergent behaviour, and then work backwards and develop
the simple rules that will allow create the desired outcome. The current state of the art,
however, relies significantly on the intuition of system designers in order to be able to
build such systems.

One of the goals of SimEAC is to create a system whereby designers can quickly imple-
ment models of their ideas for simple behaviours, and then see how they interact on a
large scale. While the system does not provide a theoretical model for designing the rules
from the behaviours, it does allow the current trial-and-error approach to be performed
much more quickly and easily.

7.4 An Abstract Model

SimEAC has been designed to meet the goals outlined above. The remainder of this
chapter discusses the design choices from a high-level perspective. The next chapter
covers some of the implementation detail, and how the system is used.

SimEAC is constructed in three layers as shown in Figure 7.1. The first layer describes
the capabilities of the hardware, including connections between individual components.

The second layer contains resource managers, which allocate access to hardware re-
sources from the first layer to tasks in the third layer. Resource managers can be ar-
ranged hierarchically, and represent operating systems and autonomic middleware. The
precise arrangement of resource managers is defined in a simulation specification, and
hence modifiable by a user of SimEAC.

The third layer represents userspace components of the system. Unlike resource man-
agers, these are not tied to a particular piece of hardware. This allows tasks to be mi-
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Figure 7.1: SimEAC architectural overview.

grated between hardware components, assuming the resource managers responsible for
them support this.

7.4.1 Hardware Simulation

SimEAC, at the lowest level, provides a mechanism for describing hardware grids. The
basic building blocks of these are:

• Storage Units represent anything that holds data.

• Processing Units represent anything that is capable of executing code, including
general purpose CPUs, GPUs and DSPs.

• Interconnects are used to join components together.

• Containers provide a mechanism for grouping objects.

• Routers allow multiple interconnects to be connected.

These are combined using an XML format described in Section 8.3.1. Each of the build-
ing blocks is described by an algebraic specification (similar to the one shown in Algebra
7.1) and a semantic definition.

The arrangement of these building blocks is hierarchical. All items, including other con-
tainers, can be contained within containers giving a simple inductive definition of the
entire system. Most of these building blocks can be configured in various ways. A pro-
cessing unit has a specified instruction set and speed, etc. An an overall interconnect has
a latency and a throughput as well as a maximum latency and throughput for each device.
This allows asymmetric links to be added easily.
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Algebra 7.1: Interface specification of a processing unit
Algebra I n s t r u c t i o n S e t is

sort I n s t r u c t i o n S e t

ops GPU PPC x86 SPARC IA64 MIPS DSP : → I n s t r u c t i o n S e t

end Algebra

Algebra Process ingUni t is

including Nat
including I n s t r u c t i o n S e t

sorts Nat Process ingUni t I n s t r u c t i o n S e t

op newProcessingUnit : I n s t r u c t i o n S e t Nat Nat Nat → Process ingUni t
op i n s t r u c t i o n S e t : Process ingUni t → I n s t r u c t i o n S e t
op f l o a t S i z e : Process ingUni t → Nat
op i n t S i z e : Process ingUni t → Nat
op vec torS ize : Process ingUni t → Nat

end Algebra

The container node is an abstract grouping of hardware components. It allows a collection
of hardware components to grouped at the granularity desired by the user of the system.
An individual computer would typically be represented by a computer. Components in
this computer might also be grouped in containers, for example a GPU and some VRAM
might be aggregated into a container representing a graphics card. Any container may
have a resource manager and an arbitrary number of tasks associated with it. Containers
may also be used for higher-level groupings, such as clusters or entire grids. Containers
used in this way provide a semantic grouping for the system’s user and allow resource
managers representing grid middleware or distributed operating systems to be simulated.

7.4.2 Resource Managers

Resource managers sit between the hardware and executing tasks. Resource managers
are generally divided into two categories, local and distributed. A distributed resource
manager may have children, while a local one may not. A local resource manager is re-
sponsible for scheduling tasks on the processing units under its control, while a distributed
resource manager may be responsible for process migration between nodes.

The lines between the two categories of resource manager can be blurred in some cases. A
resource manager for a computer containing some special purpose execution units might
directly handle the general purpose hardware (as a local resource manager would) but del-
egate the scheduling of tasks on the special-purpose hardware to another resource man-
ager (as a distributed resource manager would).
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While an operating system is usually implemented as a local resource manager, this is not
always the case. A system such as DragonFly BSD, which runs a kernel image on each
processor would be best implemented by a local resource manager on each processing
unit and a distributed resource manager mediating between them. As this example shows,
the division or responsibilities among resource managers does not have to directly reflect
the structure of the operating system in question.

The primary responsibility of a resource manager is to manage process scheduling; it
assigns time on the processing units under its control to running tasks. Part of this re-
sponsibility includes maintaining processor-affinity sets. When a scheduler determines
that it is overloaded, it can notify its parent in the resource manager hierarchy that it has
a set of under-scheduled processes which it wishes to migrate. Conversely, a distributed
resource manager can request that a child resource manager accept responsibility for a
migrated task.

Resource managers are responsible for mediating access to all hardware. This includes
reserving space on storage units. Space is reserved by name, allowing different processes
to request access to the same storage resource. Virtual memory is built on top of this
mechanism. Tasks request space on a volatile storage device. The resource manager
must then determine which device to allocate this space on, and optionally create some
backing space on a slower device. The task can then detect its in-core size and schedule
page faults. This mechanism also permits the creation of cache hierarchies.

All interaction between tasks, and between tasks and hardware, happens through a spec-
ified interface, and many of the functions of this are delegated to the resource manager
responsible for the task. As well as those already described, this functionality also in-
clude routing; a resource manager can replace the system’s default algorithm for finding
the path for messages, if required.

Any container may have a resource manager associated with it. As with other parts of the
system, resource managers are required to conform to a formal algebraic specification, a
reduced version of which is found in Algebra 7.2.

7.4.3 Tasks

Tasks can be created either when the system starts, or by other tasks as the system runs.
They may:

• Consume processing unit run time.

• Increase or decrease their virtual memory size.

• Issue page faults.

• Create and resize files on long-term storage devices.

• Read and write data from files.

• Create new tasks or acquire handles to named tasks.
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Algebra 7.2: Abridged specification for a resource manager
Algebra ResourceManager is

including Nat
including Process ingUni t
including Task
. . .

sorts Nat Bool Conta iner Process ingUni t . . . ResourceManager

op newResourceManager : Conta iner ResourceManager →
ResourceManager

op canRun : ResourceManager Task → Bool
op addTask : ResourceManager Task → ResourceManager
op removeTask : ResourceManager Task → ResourceManager
op parent : ResourceManager → ResourceManager
op setVMSizeForTask : ResourceManager Task Nat → ResourceManager
op run : ResourceManager Nat → ResourceManager
. . .

var R : ResourceManager
var C : Conta iner
var T : Task

eq parent ( newResourceManager (C,R) ) = R
eq removeTask ( addTask (R, T ) , T ) = R
. . .

end Algebra
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• Send and receive messages.

Algebra 7.3: Abridged specification for a task
Algebra Task is

including Nat
including Task
including S t r i n g
including Message
including TaskDelegate
. . .

sorts Nat Bool Conta iner Process ingUni t . . . ResourceManager

op n u l l → Task
op newTask : S t r i n g → Task
op setDelegate : Task Delegate → Task
op delegate : Task → Delegate
op run : Task Nat Process ingUn i tL i s t Nat → Task
op threads : Task → Nat
op r e t a i n : Task → Task
op re lease : Task → Task
. . .

var S : S t r i n g
var T : Task
var R : Task
var M : Message
var D : Delegate

eq re lease ( newTask (S) ) = n u l l
eq re lease ( r e t a i n (T ) ) = T
eq delegate ( setDelegate (T ,D) ) = D
. . .

end Algebra

This small set of operations allows the user to model the interaction of any computational
task with a wide variety of systems and gain feedback as to where bottlenecks might
occur. An abridged specification of a task is given in Algebra 7.3. Tasks in SimEAC
closely correspond to actors in the Actor Model [141] of concurrent computation. From
a certain perspective, SimEAC could be viewed as an implementation of this model with
the hardware and resource manager components providing some extra syntactic sugar for
mapping the results back on to real computational systems, but not affecting the expres-
sive power of the system.
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7.5 Simulating Failure

One of the key components of an autonomic system is that it should be self-healing. In
order for a system to heal, part of it must break. In general, any failure in a system can
be categorised as either a hardware or a software failure. Simulating software failure is
trivial; the simulated task simply terminates itself at a random (or specific, but undesired)
point in time. Alternatively, a task can enter a failure mode, consuming all CPU time
available to it, for example, or leaking memory, without doing any useful work.

Listing 7.4: Simulating failure in a task.
 − ( s i m t i m e t ) runFor : ( s i m t i m e t ) nanoseconds
 onProcessors : ( NSArray ∗ ) processors
 atTime : ( s i m t i m e t )now
 {
 switch ( fa i lu reMode )
 {
 case te rmina te :
 [ de legate te rmina te : se l f ] ;
 return 0;

 case i n f i n i t e L o o p :
 return nanoseconds ;
 defaul t :
 return [ super runFor : nanoseconds
 onProcessors : processors
 atTime : now ] ;
 }
 }

Listing 7.4 shows how a task could perform both of these forms of failure. This code
assumes that the task’s class has an instance variable failureMode, where terminate and
infiniteLoop are valid values. This can be set by any message handlers, or at a given
time, to either of the described failure modes. The first will result in the task terminating
immediately (and uncleanly). The second will result in the task consuming all CPU time
allocated to it and never performing any useful work. If no failure mode is set, the task
will use the superclass’s implementation of the run method. If this task inherits from
SimpleTask then this will use the dynamic dispatch mechanism to pass messages on to
different handlers.

In order to simulate hardware failures, SimEAC provides a mechanism for disabling and
re-enabling hardware components (software components can trivially disable and enable
themselves by simply stopping responding). While SimEAC provides the mechanism,
implementation of the policy is left up to users of the system. A task can cause individual
components to fail either at a specified time or in response to stimuli from within the
system. This allows failures to be configured as required.

Listing 7.5: Simulating hardware failure.
 HardwareNode ∗ node = [ [ delegate con ta ine r ] componentNamed : component ] ;
 [ node setEnabled : isEnabled ] ;
 isEnabled = ! isEnabled ;
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Listing 7.5 contains a snippet of code from the included DeterministicFailure task class.
This task is started with the name of a component and a list of times as arguments. As
each of the times is passed, it toggles the state of the named component. The first two
lines of this get a reference to the named component in the container, and toggle its state.
The final line updates an instance variable to the state of the piece of hardware after the
next time interval is reached.

Since this is a task, it can only run whenever it has CPU time. If you are simulating fail-
ure of a processing unit, then the easiest solution is likely to be run the task outside. For
complicated situations, you may wish to simply add a failure controller node to your grid.
Unlike every other interaction in the system, enabling and disabling hardware resources
can be done without a path to the target. A failure controller can be set up as a single con-
tainer with a single processing resource without the need for any interconnects between
it and the rest of the grid. As such, it will have no impact on the simulation other than to
enable and disable components.

Note that the setEnabled: method can be called from any piece of code that can get a
reference to the named hardware, including a resource manager.

7.6 Simulation Engine

The concepts of discrete time and message passing are central to the simulation engine.
The simulation system is a blend of two approaches, discrete time simulation and discrete
event simulation. At the lowest level, the system is able to act as a nanosecond-granularity
discrete time simulator. Time within the simulation elapses one nanosecond at a time.
This is not quite smaller than the smallest length of time in which a complete event can
happen on a modern computer; a 5GHz CPU will execute 5 cycles in this time, and a
1Gb/s network will transmit one bit. It is, however, a much finer granularity than is likely
to be needed for simulating large-scale autonomic systems. If finer granularity is needed
then it is more likely that an instruction-accurate CPU simulator would make sense as
a simulation environment, since the inaccuracies introduced by the kind of high-level
abstractions made by SimEAC are likely to introduce far more errors at this scale than the
lack of temporal detail. At this level, the system will behave in a manner similar to a real
time simulation.

On top of this system is built a discrete event system, where all independent components
communicate via message passing. This approach has been designed to meet the goal
of allowing the user to trade simulation accuracy for run time. The discrete time model
allows for varying detail, simply by adjusting the size of the time interval. By mapping
discrete events into discrete time slices, it is possible to use the same high-level simulation
at different granularities. Discrete events within the system are generated at the finest
temporal granularity, giving an approximation of a continuous-time model, but are then
propagated and handled at the user-defined discrete time slice granularity.

Each component maintains an event queue, as in any parallel discrete event simulation.
Unlike pure discrete event simulations, where the events in the queue would be han-
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dled individually, discrete time slices are allocated to them in which they may handle
the events. These slices may be long enough to process multiple events, or too short to
process an entire event. This may also vary depending on the size of the event. For exam-
ple, an event encapsulating the transmission of some data over an interconnect might be
completed in a single time slice if it represented a small packet, but take multiple slices
for larger packets. It is up to the individual components to track the completion of partial
events.

7.6.1 Messages

Most interaction between components in the system takes place through a message pass-
ing system. Accesses to storage devices and communication between tasks, for example,
are both accomplished via the same message passing mechanism.

Each message has an associated size, used to determine how long it takes to travel along
each interconnect on its path, and a set of properties. The properties are in the form of an
associative array, and are interpreted by the recipient.

Messages are delivered along interconnects, handled at the hardware layer. The same
mechanism is used both for interacting with hardware and for (distributed) IPC, allowing
accurate modelling of data flow.

Messages are guaranteed delivery in most cases, although unreliable mechanisms can be
implemented easily by randomly dropping messages. The delivery semantics guarantee
sequence between two parties. This is not guaranteed between more than two processes,
however. The exception to the rule of guaranteed delivery is the case in which no con-
nection between two tasks (or other message-sending components) exists. Note that this
disconnection may occur after the message is originally sent, if a hardware component
failure is simulated between the message being sent and arriving.

Consider the situation of two producer tasks, A and B, both send a sequence of messages
(A1, A2, . . . and B1, B2, . . . ) to a third task, C. In this case, A1 will always arrive before
A2, and B1 will always arrive before B2. The order in which A1 and B1 will arrive,
however, is undefined unless other factors come into play. If the connection between
A and C has a higher latency than the connection between B and C, for example, the
messages from A will arrive consistently later than those from B, assuming that they are
sent at the same time.

For simulating packet-switched networks, the resource manager can split a message into
a sequence of messages representing packets and then have them re-assembled by the
receiving resource manager before being passed to the task.

The simulation engine also includes support for sending link-local broadcast messages.
A broadcast message is delivered to every container on the network segment. The routing
of these beyond that is handled by the resource manager associated with the container.

The combination of point to point transmission and broadcast allows multicast routing to
be implemented at the resource manager level if required. Since the simulator’s transmis-
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sion mechanisms do not enforce strict layer separation at the OSI network layers, there is
no semantic difference between having it implemented at the hardware and the resource
manager layers. Adding support at the hardware layer for multicast was considered, how-
ever it was decided that it was not possible to anticipate all possible routing strategies.

Optimal routing in a multicast network requires knowledge of the structure of the net-
work. An autonomic routing algorithm would dynamically determine the structure of the
network and determine the best paths to the various endpoints in the multicast group,
while a simulation running on an existing multicast-capable network could assume that
this knowledge had been gathered before the simulation ran. If this were implemented at
the hardware level of the simulator, it would be harder for users to replace with their own
behavior.

By moving it in to the resource manager, users can add their own multicast capability
easily by adding secondary destinations in the message dictionary. This also makes it
possible for more complex routing systems, such as a system which uses a different mul-
ticast strategy depending on message types, which would be much harder on a simulation
environment which supported multicast as a “native” ability.

Messages are defined by a pair of C structures and a set of C functions. These are shown
in Listing 7.6. The Message type represents a message in transit. The QueuedMessage
type is used for convenience when a message has arrived, and simply associates a time
stamp with a message.

Listing 7.6: Structures representing messages
 typedef struct
 {
 NSString ∗ type ;
 NSDict ionary ∗ body ;
 double s ize ;
 id sender ;
 BOOL isBroadcast ;
 } Message ;


 Message ∗ newMessage ( void ) ;
 Message ∗ copyMessage ( Message∗ aMessage ) ;
 void freeMessage ( Message∗ aMessage ) ;


 typedef struct
 {
 Message ∗ message ;
 s i m t i m e t timestamp ;
 }
 QueuedMessage ;


 QueuedMessage∗ newQueuedMessage ( void ) ;
 void freeQueuedMessage ( QueuedMessage∗ queuedMessage ) ;

The functions for creating and destroying these structures pool freed ones. Since they
typically have a relatively short lifespan, the overhead of calling malloc() and free () found
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to be a performance problem in earlier versions of the system.

Most of the fields in the Message structure should be self-explanatory. The isBroadcast
attribute determines how the message is delivered when passed over an interconnect. If
this is set, the interconnect will pass the message to all connected endpoints. This allows
the implementation of multicast and broadcast networks on bus networks. Their imple-
mentation on switched networks can be handled by using a custom resource manager at
the switch to implement the required delivery strategy.
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Figure 7.2: The lifecycle of a message in the SimEAC system.

Figure 7.2 shows the life of a typical messages in the system. The first actor is the task
sending the message. This invokes a method in its delegate which assembles a message
from its principle components — the type, body, size and origin — and then begins the
process of sending it.

The MetaTask class shown here is the glue layer which mediates interactions between the
task layer and the resource manager layer of the system. It contains a default routing algo-
rithm for cases when the resource manager chooses not to implement one. The existence
of the MetaTask is transparent to users of the system.

The route and the message are then passed to the first interconnect in the sequence, and
then on to each subsequent one until they arrive at their destination. By default, they are
then added to the receiving task’s message queue. The message queue itself is imple-
mented in the Task class from which it is suggested that new tasks inherit. This allows
custom message queue implementations to be created if required.

For simulating packet-switched networks, the resource manager can split a message into
a sequence of messages representing packets and then have them re-assembled by the
receiving resource manager before being passed to the task.
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The simulation engine also includes support for sending link-local broadcast messages.
A broadcast message is delivered to every container on the network segment. The routing
of these beyond that is handled by the resource manager associated with the container.

The combination of point to point transmission and broadcast allows multicast routing to
be implemented at the resource manager level if required. This decision was made since
the relatively poor support for multicast on existing networks, particularly the Internet,
means that multicast is generally implemented at the application level, if it is used at all.

7.6.2 Time

The simulation engine guarantees that all events that happen in tick n will be processed
before events in tick n + 1. The order of two events at times t1 and t2 is not guaranteed if
both t1 and t2 fall within the same tick.

Time is represented in the system by the sim time t scalar quantity. This stores a 64-bit
value representing a number of nanoseconds, allowing a simulation to run for just under
600 years of simulation time before an overflow occurs.

Every time-dependent event has an associated time stamp. When a task is run, for exam-
ple, it is told the start time and the duration of the time slice. Any message it sends or
receives will, likewise, have a time stamp.

While time stamps provide a mechanism for dealing with time on a fine-grained level,
ticks exist at a coarser granularity. Each tick is an integer number of milliseconds. During
each tick, every single component in the system is guaranteed to be run a minimum of
once, unless disabled or not active for some other reason. Each resource manager will
be run once, and should then allocate the time give to it amongst the tasks for which it
is responsible. The tasks, in turn, should process any pending messages, or run their idle
loop if required.

The simulation engine runs using discreet time intervals, known internally as ticks. The
size of each tick is controlled by the user; shorter ticks produce a more accurate simulation
at the expense of requiring more processor run time for the simulator. Every message in
the system as a timestamp associated with it, as does each component. Incrementing of
time passes down the grid via the −tick: method, which is implemented by all hardware
nodes. Each container, including the root container, will call each child in turn.

The argument to this method is the time at the end of the next tick. For convenience,
the −tick: method in the HardwareNode class sets two instance variables, last and now,
containing the start and end of the current tick respectively.

Three of the standard hardware components have special behaviour when they receive
a tick: message; interconnects, containers, and storage units. Interconnects will pass as
many of the messages that they have enqueued as possible across their connection in the
available time. The container, as well forwarding the tick: message to all of its children,
sends a runFor: message to its resource manager. The resource manager then shares time
on processing units among running tasks.
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Storage units process their message queues when they receive the tick: message. All
communication with storage units happens via the message passing interface, over the
same interconnects as messages between tasks.

It is worth noting that increasing the tick time has only a minor effect on system through-
put, and so a small interval is only required when measuring the latency of various com-
ponents.

7.6.3 Output

As SimEAC runs, it displays summary usage for each component. This allows trouble
spots — places where resources are distributed unevenly — to be identified relatively
easily.

If more detailed analysis is required, it is possible to turn on logging for any hardware
component or task. This produces a log file, with a usage entry for each tick. The log for-
mat is compatible with gnuplot, allowing graphs such as those shown in the next chapter
to be generated directly by the system.

Additionally, any task or resource manager has access to the full C and OpenStep standard
libraries and so can perform extra logging independent of the main system, if this is
required. This mechanism is used in our first case study to produce logs of the structure
of the overlay grid at various time intervals.



Chapter 8
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8.1 Introduction

This chapter describes the implementation of the SimEAC system, and gives an overview
of how it can be used. The system is built in Objective-C, using the OpenStep frameworks,
and familiarity with both the language and library are assumed.

SimEAC is split into three components, from a build perspective. The SimEAC frame-
work contains classes that are used by the simulation engine and by externally developed
resource manager and task classes; the public interface to SimEAC. The simulation en-
gine is contained within the SimEAC application. Finally, a set of example resource
managers and tasks are contained within a loadable bundle.

It is envisaged that users of the system will create additional bundles for their own com-
ponents, and thus not need to recompile the system at any point. The example bundle
should be used as an example for this. Additional bundles placed in the Application
Support/SimEAC/PlugIns folder in any of the Library paths on the system will
be detected and loaded. No additional glue code is required; all task and resource man-
ager classes implemented within these bundles will be automatically exposed via the user
interface and can be referenced by name from XML grid descriptions.

148
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8.2 Requirements and Implementation

In the last chapter, the requirements for SimEAC were enumerated. This section, de-
scribes how they have been addressed and provides an overview of some of the specific
features of the system.

8.2.1 Abstract Operation

The design of SimEAC is intended to allow simulations to be conducted at different levels
of abstraction. At the highest level, a SimEAC simulation can be only slightly more
concrete than a CSP specification; sequential processes communicating via an abstract
message-passing mechanism.

Once a simulation at this level of abstraction has been shown to be functional, it is pos-
sible to progressively refine it until it closely mirrors the operation of a real system. The
messages being sent, for example, can be split into packets. These packets might then
take different routes through a grid, giving a more accurate simulation of throughput.

Similarly, it is possible to begin by running each task on a separate execution unit, then
gradually refine the model so that each will be pre-empted by other (unrelated) activities
for varying amounts of time, or will have to contend for other resources.

8.2.2 Easy Re-Configuration

Once the tasks have been created, they are assembled into a grid by the simulator. The
recipe for constructing the grid is an XML file. These files can be created from within the
simulator, or by an external tool.

XML was chosen because there already exist a large number of tools for manipulating
it. When evaluating an algorithm in a wide variety of settings, it might be convenient
to construct a set of building blocks (cluster nodes, workstations, etc.) in the SimEAC
user interface, and then combine them into a wide variety of permutations using a custom
program. XML allows this easily.

The schema (discussed in detail later) was designed to be human-readable and editable in
order to facilitate the rapid creation of programs to manipulate it. The publication of the
schema makes it possible for a schema validator to check the output of such a program
without requiring the simulator to load it.

8.2.3 Support for Large Systems

There are no artificial limitations imposed on the simulator. The size of the grid which
can be supported is limited only by the power of the machine running the simulation.
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In cases where the grid is particularly large, it is common that only a fairly coarse-grained
simulation is required. To this end, the granularity of the system has been made ad-
justable. Each tick represents a configurable number of nanoseconds. When the tick size
is large, the speed of the simulation increases dramatically at the expense of some accu-
racy. It is likely that many uses of the system will involve simulating a large grid with a
large tick size, and then simulating smaller sub-grids with a smaller tick-size.

The system has been designed in such a way that the trade between the resource require-
ments and the accuracy of the simulation can be tuned by the user.

8.2.4 Simple Development

Development of components for SimEAC is done according to the object oriented model.
A set of base classes are provided which handle all of the book-keeping work required for
interacting with the system transparently to the developer. By sub-classing one of these,
it is possible to quickly implement the required functionality, without needing to imple-
ment anything more. For example, implementing a task can be as simple as subclassing
SimpleTask and implementing one method for each kind of message the task can process.

Objective-C was chosen as an implementation language since it is simple to learn for
anyone familiar with C and provides a dynamic runtime framework well suited to fast
development. The first commercial Rapid Application Development tool, developed by
NeXT, used Objective-C, and the strengths of the language that made it appropriate for
this also apply in a simulation environment.

8.2.5 Extensible Design

It is hoped that the core components of SimEAC will be sufficient for their task. It may be,
however, that there at a future date some hardware that is not adequately representable will
be developed. In this case, it is relatively easy to add components to the system simply
by sub-classing the HardwareNode or InterconnectableNode class. This would, however,
require a modification to the XML schema used to describe grids.

More likely is the need to add new resource managers or tasks to the system. Both of these
are possible using the plug-in interface, and so can be done without having to re-compile
the simulator.

8.3 Application Programming Interfaces

This section describes the interfaces exposed to developers using the system and how they
are implemented.
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8.3.1 Hardware Simulation

Figure 8.1: SimEAC user interface

The layout of a simulated infrastructure, which can range from a large heterogeneous
network of computers to a single device, is defined in XML. In SimEAC, such a layout
is referred to as a grid. XML is particularly well suited to this task since it naturally
represents hierarchical structures. These XML grids can either be created manually or
via the SimEAC user interface.

Listing 8.1 shows a snippet of XML defining a handheld computer. The majority of
the listing outlines the hardware; a moderate speed ARM CPU and a small amount of
RAM and Flash storage. The container node specifies a PDA-oriented resource manager.
This resource manager has a simple round-robin scheduler, and does not provide virtual
memory. The PDAResourceManager is one of a small number included in SimEAC.

At the bottom of the listing is a task node. This instructs the simulator to create the
specified task running in this container. Any arguments specified in by the args attribute
would be processed by the task on start-up.

Each of the XML stanzas in this short snippet corresponds to an object in the system and
will cause it to be instantiated when the file is loaded.

Figure 8.2 shows the inheritance hierarchy of the hardware related classes. These classes
all inherit from the HardwareNode class, which defines the basic functionality of all hard-
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Listing 8.1: An XML description of a PDA
 <con ta ine r
 ResourceManager= ’ PDAResourceManager ’
 name= ’PDA ’>
 <processor
 name= ’CPU ’
 type= ’ARM ’
 i n t = ’ 32 ’
 f l o a t = ’ 32 ’
 vec to r= ’ 0 ’

 speed= ’ 200 ’ />
 <storage
 name= ’RAM ’
 s ize= ’ 64MB ’
 access= ’ 5ns ’
 p e r s i s t e n t = ’NO ’
 r a te = ’ 6 .4GB/ s ’ />
 <storage
 name= ’FLASH ’
 s ize= ’ 64MB ’
 access= ’ 5ms ’
 p e r s i s t e n t = ’NO ’
 r a te = ’ 40MB/ s ’ />
 < i n t e r connec t
 throughput= ’ 6 .4GB/ s ’
 l a tency= ’ 0ns ’>
 <node>CPU< / node>
 <node>RAM< / node>
 < / i n te r connec t>
 < i n t e r connec t
 throughput= ’ 100MB/ s ’
 l a tency= ’ 4ms ’>
 <node>CPU< / node>
 <node>FLASH< / node>
 < / i n te r connec t>
 <task
 c lass= ’ RemoteDisplayTask ’
 name= ’ d i sp lay ’
 args= ’ ’ />
 < / con ta ine r>
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Figure 8.2: Abridged class hierarchy diagram for hardware nodes.

ware nodes. Classes are then specialised into nodes that can be connected together and
interconnects. The full interfaces for these classes are given in Appendix B.

Only the leaf classes in this hierarchy should be instantiated. The various kinds of in-
terconnectable nodes all implement the MessageReceiver protocol. This protocol is also
implemented by all task classes, allowing the message delivery mechanism of the simu-
lator to work without knowing the type of the receiver.

8.3.2 Software Simulation

Resource manager and tasks are implemented in Objective-C. Each one is implemented as
a class conforming to a formal protocol. To aid implementation a number of classes have
been provided which perform the basic functionality required for a number of common
uses. These include:

• SimpleTask is a task which does nothing in the context of the simulation and is
intended for subclassing. This class places received messages in a queue which
can be easily accessed by subclasses. When the task is allocated run time, methods
of the class whose names correspond to the enqueued messages are invoked. This
provides a simple way of implementing event-driven tasks.

• LocalResourceManager handles the book-keeping tasks required for a local resource
manager.
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• DistributedResourceManager performs the equivalent functionality for a distributed
resource manager.

• LocalResourceManagerWithSimplePaging includes a simple virtual memory imple-
mentation. Creating a functional local resource manager from this requires nothing
more than implementing a process scheduling algorithm and (optionally) an I/O
scheduler. A small number of concrete subclasses of this are included with various
scheduling algorithms implemented.

Objective-C, being a dynamic language, allows these classes to be enumerated at run time
and so no changes outside of the file in which a new task or resource manager is defined
are necessary. Adding a new task to the system requires nothing more than writing and
compiling the class - it can then be added to a grid description file either manually or
via the SimEAC user interface (Figure 8.1). Since the resource managers and tasks are
written in a well-supported existing language, a range of debugging tools are available for
use during testing and calibration of simulated environments.

This process requires some calls to the underlying Objective-C runtime methods. The
process for doing so is shown in Listing 8.2.

Listing 8.2: The process for enumerating all resource managers.
 / / Find out how many classes are r e g i s t e r e d wi th the runt ime system
 i n t classes = o b j c g e t C l a s s L i s t (NULL, 0) ;
 / / A l l oca te enough space f o r the l i s t
 Class ∗ c l a s s L i s t = mal loc ( c lasses ∗ sizeof ( Class ) ) ;
 / / Create an ar ray o f a l l c lasses
 o b j c g e t C l a s s L i s t ( c l a s s L i s t , c lasses ) ;
 / / Find the ones we want
 NSMutableArray ∗ resourceManagers = [ NSMutableArray

arrayWi thCapac i ty : c lasses ] ;
 for ( i n t i =0 ; i <classes ; i ++)

 {
 Class c lass = c l a s s L i s t [ i ] ;
 i f ( c lass get InstanceMethod ( class , @selector ( conformsToProtocol

: ) ) != NULL)
 {
 NS DURING
 i f ( [ c lass conformsToProtocol : @protocol ( ResourceManager

) ] )
 {
 [ resourceManagers addObject : [ c lass className ] ] ;
 }
 NS HANDLER
 NS ENDHANDLER
 }
 }

This process involves requesting a list of all loaded classes from the runtime, then iterating
through them to determine which conform to the correct protocol. The names of those
that do are cached in an array for efficiency reasons. There are typically several thousand
classes known to the runtime library while a program is executing, and enumerating them
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Figure 8.3: Class hierarchy for Pollution Simulator example tasks.

every time the list of loaded resource managers or tasks is required would be very time-
consuming.

8.3.3 Tasks

Figure 8.3 shows the class hierarchy of the pollution simulator case study from the next
chapter. All of the classes implemented for this example inherit from the SimpleTask class.
This, in turn, inherits from the Task class.

The Task class implements the basic functionality for any task. Although any class that
conform to the Task protocol can be used as a class, it is recommended that subclasses of
the Task class be implemented, rather than duplicating existing functionality.

Listing 8.3: Two methods from the Task protocol
 − ( s i m t i m e t ) runFor : ( s i m t i m e t ) nanoseconds
 onProcessors : ( NSArray ∗ ) processors
 atTime : ( s i m t i m e t )now ;
 − (BOOL) runsOn : ( CPUType) an I ns t r u c t i on S e t ;
 − ( unsigned i n t ) threads ;
 − ( f l o a t ) usage ;

Listing 8.3 shows the most important methods that a task must implement. At the simplest
level, a task is a consumer of CPU time. The first three of these methods all relate to this;
the −threads method returns the degree of parallelism supported by the task. This is used
by the underlying resource manager to decide how many processing units to assign to
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the task. The −runsOn: method serves a similar process; it is used to determine what
architectures the task supports.

When a resource manager assigns run time to a task, it does so using the −
runFor:onProcessors:atTime: method. This tells the task which processing units to run on,
and for how long. The implementation of this method in the Task class does not consume
any CPU time.

The Task class has fairly simple handling of received messages. It simply adds them to
a queue, and allows subclasses to access them in a simple manner. The SimpleTask class
makes use of these methods.

Listing 8.4: Message handling code from the SimpleTask class.
 SEL messageSelector = NSSelectorFromStr ing ( [ aMessage−>message−>type

st r ingByAppendingSt r ing :@” : ” ] ) ;
 i f ( [ se l f respondsToSelector : messageSelector ] )
 {
 s i m t i m e t timeTaken = ( ( msg64) objc msgSend ) ( self , messageSelector

, aMessage ) ;
 i f ( timeTaken > 0)
 {
 timeTaken = MIN( timeTaken , spareRuntime ) ;
 currentTime += timeTaken ;
 spareRuntime −= timeTaken ;

 }
 }

Listing 8.4 shows part of the run loop from the SimpleTask class. The aMessage variable
is a C structure containing the enqueued message. This is used to store the message in a
queue, and contains the message and the time of arrival. The message itself is another C
structure, containing an Objective-C string as the type, and some other attributes, such as
the sender, size and a dictionary of other arbitrary values.

The type of the received message is used to generate a selector with the same name as the
message, and one parameter. This the message type @”foo” will be translated to @selector
(foo:). If the class responds to this selector, then it is invoked with the message as the
argument. The return value is taken to be the amount of time spent executing. The called
method can check that it doesn’t exceed the amount of available run time by reading
the spareRuntime instance variable. Several other instance variables of this nature are
set by the run loop, including currentTime and currentProcessorSet. If the called method
completes handling the message, it should remove it from the queue.

8.3.3.1 Adding Tasks

The complexity of adding new tasks scales with the complexity of the task being imple-
mented. It is intended that a simple task should be easy to implement. This is important
in the context of Autonomic Computing, since many autonomic systems are comprised
of simple autonomous components. These components would each be implemented as a
task within the framework of the simulation.
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Listing 8.5: A simple task implementation
 @interface ExampleTask : SimpleTask {
 }
 @end


 @implementation ExampleTask
 − ( s i m t i m e t ) Frame : ( QueuedMessage∗ ) aMessage
 {
 / / Work out t ime to decode a frame on the cu r ren t processing u n i t
 s i m t i m e t decodeTime = 10000000

 decodeTime /= [ [ cur rentProcessorSet ob jec tA t Index : 0 ] throughput ] ;
 / / Decode the frame
 s i m t i m e t timeTaken = MIN( decodeTime , spareRuntime ) ;
 i f ( timeTaken == decodeTime )
 {
 [ de legate sendMessage : n i l
 withType :@” DecodedFrame ”
 s ized :640∗480∗4
 to : [ aMessage−>message−>body objectForKey :@”

next ”
 atTime : now + timeTaken ] ;
 / / Remove the cu r ren t message from the message queue
 [ se l f removeMessageAtIndex : 0 ] ;
 }
 return timeTaken ;
 }
 @end

Listing 8.5 shows the full code required for implementing a simple task. This task under-
stands one message type, “Frame.”1 When it receives a message of this type, it consumes
some processing time and then passes on the decoded frame to the next task.

When a task receives a message, the −receiveMessage:atTime: method is called. The Task
base class provides a default implementation of this, which places the message in to a

queue. This can be overridden by subclasses if some other behaviour is required. Alterna-
tively, the queue can be directly inspected. Most tasks, however, simply process messages
in sequence. Since Objective-C inherits the Smalltalk object model, that of simplified
computers communicating by message passing, it fits this model well. SimEAC mes-
sages are mapped to Objective-C messages by the SimpleTask class, which inherits from
Task. Implementors thus create one message handler (method) for each kind of message
they expect to receive.

A subclass of SimpleTask may also implement a −handleUnrecognisedMessage: method. If
it chooses to do so, then all messages not otherwise handled will be passed to this method,
otherwise they will be ignored and a warning logged to the console.

The parameter passed to each of these methods is a QueuedMessage structure, which con-
tains a Message structure and a timestamp indicating when the message arrived. The
message itself contains a dictionary (associative array), which can contain any informa-

1The superclass uses the dynamic dispatch capabilities of the Objective-C language to invoke the sub-
class’s Frame: method when it receives a message with the type set to “Frame.”
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tion set by the sender, as well as some standard information such as the message type,
size and the sender.

The task in Listing 8.5 is a very simple example. It consumes CPU time, but does not
interact with the system in any other way (such as by using memory or disk space). Listing
8.6 shows the interface through which a task interacts with the system.

Each of these methods is implemented by a proxy class which provides a default imple-
mentation. This proxy delegates much of the functionality described here to a resource
manager, as long as the underlying resource manager implements it. Several features of
the resource manager, such as the ability to define a routing algorithm, are optional. In
these cases, the system will test for the implementation of a method in a resource manager
class, and substitute a default if one is not provided.

Listing 8.6: A task’s interface to the rest of the system
 @protocol TaskDelegate<NSObject>
 − ( StorageUni t ∗ ) newFileNamed : ( NSString ∗ ) f i leName
 WithSize : ( double ) bytes ;
 − (BOOL) r e s i z e F i l e : ( NSString ∗ ) f i leName
 on : ( StorageUni t ∗ ) s torage
 to : ( double ) bytes ;
 − (BOOL) s to re : ( double ) bytes
 t o F i l e : ( NSString ∗ ) f i leName
 on : ( StorageUni t ∗ ) s torage

 atTime : ( s i m t i m e t )now ;
 − (BOOL) load : ( double ) bytes
 f r omF i l e : ( NSString ∗ ) f i leName
 on : ( StorageUni t ∗ ) s torage
 atTime : ( s i m t i m e t )now ;
 − ( void ) sendMessage : ( NSDict ionary ∗ ) aMessage
 withType : ( NSString ∗ ) aType
 s ized : ( double ) bytes
 to : ( id<MessageReceiver>)process
 atTime : ( s i m t i m e t )now ;
 − (BOOL) setVMSize : ( double ) bytes ;
 − ( double ) vmSize ;
 − ( double ) inCoreMemorySize ;
 − ( double ) pageFault : ( double ) bytes ;
 − (BOOL) isComponentEnabled : ( NSString ∗ ) aComponent ;
 − ( void ) setComponent : ( NSString ∗ ) aComponent isEnabled : (BOOL) aFlag ;
 − ( id ) retainProcessNamed : ( NSString ∗ )name
 ofType : ( NSString ∗ ) className
 withArgs : ( NSString ∗ ) args
 create : (BOOL) f l a g ;
 − ( void ) re leaseProcess : ( id ) process ;
 − ( void ) te rmina te : ( id<Visua l i sa t ionTask >)process ;
 @end
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8.3.4 Creating New Resource Managers

Implementing a custom resource manager means creating a class which implements the
ResourceManager protocol. This is similar to the TaskDelegate protocol outlined in the
previous section, since it has similar functions. The principle difference is that each
method described by this protocol has an extra argument specifying the task to which it
applies.

Listing 8.7: Methods from the ResourceManager protocol related to process migration
 − ( double ) canRun : ( id<Visua l i sa t ionTask >) newTask ;
 − ( void ) underscheduledProcesses : ( NSArray ∗∗ ) processes
 weighted : ( NSArray ∗∗ ) weights ;
 − ( void ) addTask : ( MetaTask ∗ ) task ;
 − ( void ) removeTask : ( MetaTask ∗ ) task ;

Listing 8.7 shows some of the additional methods that can be implemented, related to
process migration. The first is called by its parent in the resource manager hierarchy to
enquire whether it is able to accept a currently running task. The return value of this
indicates how willing the resource manager is to accept it, and can be zero if it does not
support process migration or if it is not responsible for any hardware on which the running
task can execute.

The second method is the converse operation; it is used to retrieve a list of tasks that are
not receiving enough runtime. These are processes that the resource manager would like
to have migrated away from it. The weights argument should be used to return a pointer
to a weight for each returned process.

A resource manager written be sub-classing one of the standard classes will have default
implementations for these methods. The implementations of the last two methods add
and remove tasks from an internal list and assign the correct proxy objects to them. This
is the simplest way of creating a new resource manager, since the superclass will handle
all of the book-keeping tasks and allow the developer to focus on the algorithms they wish
to test.

In addition to its other rôles, the proxy class stores some metadata about the task with
which they are associated, such as the current set of processors on which the task is
running. This metadata can be accessed and used by the resource manager, making im-
plementing things like processor affinity easier.

The interface that must be implemented by all resource managers is given in full in
Appendix B. In addition to this, resource managers may also implement a pathFrom:to:
method. This takes two interconnectable nodes within the grid, and should return an ar-
ray of the nodes on the path. Support for this method will be determined at runtime. If it
does exist, then it will be called by the system to determine how to route messages. This
can be used to override the simple shortest path routing that is normally performed, for
example to provide some load balancing between links.
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8.3.5 Simulating Failure

One of the key components of an autonomic system is that it should be self-healing. In
order for a system to heal, part of it must break. In general, any failure in a system can
be categorised as either a hardware or a software failure. Simulating software failure is
trivial; the simulated task simply terminates itself at a random (or specific, but undesired)
point in time. Alternatively, a task can enter a failure mode, consuming all CPU time
available to it, for example, or leaking memory, without doing any useful work.

In order to simulate hardware failures, SimEAC provides tasks with a pair of methods
for determining whether a particular piece of hardware is enabled in the system and for
enabling or disabling it. Any hardware component in the system can be disabled in this
way.

To make life easier for users of the system, two special tasks are provided;
DeterministicFailure and NonDeterministicFailure. The first of these allows the simulation
of hardware failures at specific time intervals. It takes the name of a component and a list
of times as arguments. At each time interval, it toggles the enabled state of a specified
component.

The second class takes a name of a component and a probability of failure per second as
arguments. It will randomly cause the named component to fail with the specified prob-
ability. In general, this task is more useful for simulating highly unreliable components.
When using this task, it is a good idea to log it. Each of the failure tasks will log a value
of 1 while the component they are responsible for is active and a value of 0 when it is
not. This makes it easier, when examining the simulation results, to determine whether
a particular behaviour was correlated with (and thus likely to be caused by) a component
failure.

Note that this mechanism can also be used for simulating power management scenarios,
for example the shutting down and restarting of nodes in a datacenter or cluster at times of
reduced load. It can also be used for simulating dynamic networks; individual intercon-
nects can be enabled and disabled at run time allowing nodes to leave and join networks
dynamically.

8.3.6 Output

As SimEAC runs, it displays summary usage for each component. This allows trouble
spots — places where resources are distributed unevenly — to be identified relatively
easily.

This is done via the −usage method. Classes that require logging should implement this
method, returning a float . The system will call it periodically, expecting a value between
0 and 1 indicating the load on a particular component.

The SimEAC user interface is updated periodically with load values for each component.
Any component marked for logging will have the value returned at the end of every tick
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logged to a file, which can be used to generate graphs of system performance.

Since the −usage method can be called either as a result of logging or because the user
interface requires updating, it should not modify the component’s internal state. The
implementation in the SimpleTask class simply returns the usage instance variable. The
recommended way of using the logging facility from a custom task is to set this to a
meaningful value when the class receives run time.

If more advanced logging is required, the OpenStep and C standard libraries are available.
Mechanisms such as NSLog can be used to produce detailed output. In the Organic Grid
case study, the structure of the overlay network was written to the console in this way.

The mechanism by which components report their output to the system is described in
the previous chapter. Once the system has these results, it uses a C interface, described in
Listing lst:logfile .

Listing 8.8: The log file interface
 typedef struct LogF i le LogFi le ;
 / / SimEAC log f i l e i n t e r a c t i o n


 LogFi le ∗ newLog ( NSString ∗ f i leName ) ;
 unsigned i n t addLogObjectWithName ( LogFi le ∗ l o gF i l e , NSObject∗ ob jec t ,

NSString ∗ Name) ;
 void t i ckLog ( LogFi le ∗ l o gF i l e , s i m t i m e t timeStamp ) ;
 void logValueForObject ( LogFi le ∗ l o gF i l e , f l o a t value , unsigned i n t

ob jec t ) ;
 void endLogging ( LogFi le ∗ l o g F i l e ) ;

This interface can be used to implement new logging back-ends, if required. The current
log file format is compatible with gnuplot, and allows quick generation of graphs in a
variety of formats.

The newLog() and endLogging() functions are used to open and close log files. The
addLogObjectWithName() function is called by an object that wishes to have its values
logged. In the default implementation, it reserves a column for the logged object and
prints its name in a comment at the top of the log file. The logValueForObject() function
sets an object’s value for the current tick, while the tickLog() function begins a new tick.

8.4 SimEAC API Details

Listings 8.9 and 8.10 show the interfaces that must be implemented by Resource Man-
agers and Tasks respectively. Classes providing implementations of these methods are
included; implementing a new task or resource manager is usually a matter of subclassing
one of these and overriding a subset of the listed methods to provide new functionality.

Listing 8.9: The interface for SimEAC resource managers
 @protocol ResourceManager<NSObject>
 − ( double ) canRun : ( id<Task>) newTask ;
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 − ( void ) underscheduledProcesses : ( NSArray ∗∗ ) processes
 weighted : ( NSArray ∗∗ ) weights ;
 − ( void ) addTask : ( MetaTask ∗ ) task ;
 − ( void ) removeTask : ( MetaTask ∗ ) task ;
 − ( s i m t i m e t ) processingUnitTimeUsedBy : ( id<Task>) task ;
 − (BOOL) i s D i s t r i b u t e d ;
 + ( id ) resourceManagerForContainer : ( id ) aContainer
 wi thParent : ( id<ResourceManager>)

aResourceManager ;
 − ( id ) i n i t F o r C o n t a i n e r : ( id ) aContainer
 wi thParent : ( id<ResourceManager>)aResourceManager ;
 − (BOOL) addChi ld : ( id<ResourceManager>) aChi ld ;
 − ( void ) runFor : ( s i m t i m e t ) nanoseconds ;


 − (BOOL) setVMSizeForProcess : ( MetaTask ∗ ) task to : ( double ) bytes ;
 − ( void ) pageFault : ( double ) bytes forTask : ( MetaTask ∗ ) aTask ;
 − ( StorageUni t ∗ ) newFileNamed : ( NSString ∗ ) f i leName
 WithSize : ( double ) bytes ;
 − (BOOL) r e s i z e F i l e : ( NSString ∗ ) f i leName
 on : ( StorageUni t ∗ ) s torage
 to : ( double ) bytes ;
 − (BOOL) s to re : ( double ) bytes
 t o F i l e : ( NSString ∗ ) f i leName
 onDevice : storage
 forTask : ( MetaTask ∗ ) task
 atTime : ( s i m t i m e t )now ;
 − (BOOL) load : ( double ) bytes
 f r omF i l e : ( NSString ∗ ) f i leName
 onDevice : storage
 forTask : ( MetaTask ∗ ) task
 atTime : ( s i m t i m e t )now ;
 − ( void ) log ;
 @end

These functions can be grouped into a few broad categories:

Process migration methods let the resource manager decide whether it should accept
a running task for migration, and whether it wishes to have any of its own tasks migrated
away. The isDistributed: method falls into this category, since it is used to determine if
the resource manager should treat resource managers associated with child containers as
children, and thus permit migration between them. If a resource manager returns NO to
this method, then it must also return NO to any call to its addChild: method.

Storage management methods include writing to files and consuming memory. A
simple model is used for the contents of storage devices; a task may create named files,
which have a size and a location associated with them. Writing data simply causes some
of the storage device’s transfer bandwidth to be used up. A task can not create a file on a
specific device (although if it has received a filename and a pointer to the storage device
by some other mechanism, it may right to the file). It is the responsibility of the resource
manager to decide which devices are used for persistent storage.
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The top parts of the storage hierarchy contain main memory (and potentially caches, if
they are being modeled). The task may set its virtual memory requirements using the −
setVMSizeForProcess:to: method (indirectly, via its delegate). The resource manager must
then attempt to allocate this much space in some storage units. If this changes the amount
of in-core (processing-unit local) space allocated to the task, then the resource manager
must call the task’s −setInCoreMemorySize: method. The task may then issue page faults
to the resource manager. When this occurs, the resource manager should not schedule the
task again until the page fault has been handled.

Processing time allocation is handled by a single message; −runFor:, which tells the
resource manager how many nanoseconds it should schedule tasks for.

Logging is handled by the −log method. This must pass a −log message to all tasks in
a local resource manager. It may also use the logging interface to output its own usage in
some way, if this is relevant.

Listing 8.10: The interface for SimEAC tasks
 @protocol Task<NSObject , MessageReceiver>
 − ( id ) in i tWi thArguments : ( NSString ∗ ) arguments Name : ( NSString ∗ )aName;
 − ( void ) setDelegate : ( id ) aDelegate ;
 − ( id ) delegate ;
 − ( s i m t i m e t ) runFor : ( s i m t i m e t ) nanoseconds
 onProcessors : ( NSArray ∗ ) processors
 atTime : ( s i m t i m e t )now ;
 − (BOOL) runsOn : ( CPUType) an I ns t r u c t i on S e t ;
 − ( unsigned i n t ) threads ;
 − ( void ) re ta inTask ;
 − ( void ) releaseTask ;
 − ( f l o a t ) usage ;
 @end

Listing 8.10 shows the interface for tasks in the system. This is designed to be simple,
since it is imagined that most uses for the system will require the development of several
tasks. Most of the methods listed are handled by the Task class. The default implemen-
tation, in several cases makes use of an instance variable that should be set by a custom
− init method, if the default is not acceptable. Table 8.1 shows these values. The last one
is implemented in the SimpleTask class, although this is generally more useful to subclass
than Task. The defaults for these are all supported general purpose instruction sets, one
and zero respectively.

If a task needs to parse its arguments, the −initWithArguments:Name: method should be
overridden. Tasks wishing to implement their own message queues should override the
methods in the <MessageReveiver> protocol.

Most of the task implementation is likely to be within the −runFor:onProcessors:atTime:
method. This is adequate for trivial tasks, however for more complex tasks it is recom-
mended that the dynamic dispatch provided by SimpleTask be used, as described in the
previous chapter.
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Method Instance Variable Description
−runsOn: instructionSets Bitwise-OR’d set of instruction sets

supported by the task
−threads: threads Maximum number of processing

units the task can make use of.
−usage: usage Utilisation of the task, for logging

purposes.

Table 8.1: Variables used by convenience methods in the Task class.

The XML schema used for describing grids is given in Appendix B. This can be used
to validate an XML grid file for use in SimEAC. It is not possibly to capture all of the
required semantics for such a grid in XML Schema, however. Restrictions such as the fact
that a task or resource manager name must correspond to a class implementing the correct
interfaces that has been loaded into the system will not be checked when validating a grid
file against the schema.
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One of the design goals of SimEAC was that it should be easy to use. The most com-
mon use of SimEAC will involve creating one or more new tasks and running them in a
simulated grid environment.

This last chapter gave a brief overview of how new tasks and resource managers can be
added to the system. This chapter will describe two scenarios in which SimEAC has been
used.

Part of the purpose of the case studies was to demonstrate the usability of the system.
Table 9.1 gives an overview of the parts that were tested by each study.

Both made use of the core engine, including all of the different types of hardware node, in
a variety of configurations. Both extended the standard task classes and used the standard
resource managers. The second case study introduced a new resource manager, although
this has since been moved into the core system.

Compnent Organic Grid Autonomic Visualisation
Core Engine

√ √

Standard Tasks
√ √

Standard Resource Managers
√ √

Custom Tasks
√ √

Custom Resource Managers ×
√

Matching Published Results
√

×
Matching Experimental Results ×

√

Table 9.1: A summary of the components tested by each case study.
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The first case study was an implementation of a published algorithm. Attempts were made
to match the published results as closely as possible. It was not possible to be entirely
sure that this was successful, since the published description of the test system was quite
vague, grouping CPU and network speeds into a small number of categories. Within these
bounds, however, the simulation was judged to be a success.

The second case study involved the use of a the simulator in conjunction with a prototype
system. Results from the prototype were used to callibrate the simulation, then modi-
fications were made to both in an attempt to judge the accuracy of the simulation. In
the evaluated cases, it was shown that the simulation was able to correctly model a real
system.

9.1 Case Study: The “Organic Grid”

Our first case study demonstrates the implementation of an existing algorithm within the
context of the simulator, and shows some results from this process.

The “Organic Grid” [56] describes an organizational system for distributed computation.
The principle behind the design is an autonomic algorithm that allows a hierarchy of
nodes to evolve as the system runs, allowing the easy distribution of a parallel computa-
tion over a large number of nodes in an ad-hoc network.

The nodes are configured into an overlay network, a logical hierarchy used for task dis-
tribution. This is an abstract layer on top of the physical hierarchy. The “Organic Grid”
automatically promotes fast nodes to near the top of this tree, and demotes slow nodes
towards the leaves.

We implemented a version of the described algorithm and evaluated its performance in
a number of different initial configurations, two of which are described in the results
section.

For this simulation a single additional task was written. The task took the name of another
task as an argument, and used this as its initial parent in the overlay network. Work units
are sent down the overlay network from the root node and distributed by branch nodes.
Both branch and leaf nodes perform the computations.

Each node in the overlay network was a single instance of the newly created task class,
assembled into a tree structure on initialization. On launch, each node acquires a handle
to the parent node in the tree. This is done via the task delegate, which implements a basic
name server for the simulator, allowing connections to be bootstrapped. It then sends an
initial join message and a work request message to the parent.

When the parent node receives a work request message, it forwards it up the tree until
it receives a block of data. This is then passed down to the original requesting node,
which consumes CPU time until it is finished. The amount of CPU time to consume is
determined by dividing a constant by the speed of the processing units available to the task
(supplied by the simulator in an argument to the run loop method, as described earlier).
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The speed of a node was determined by the time taken for a job to be processed added to
the time taken to transmit a single work unit from a parent to its child. Each node logs the
time it sends a work unit to a child and the time at which it receives the processed reply.
This means that the speed of a node is dependent on its position in the overlay network;
moving a node to become a child of a node with a slow Internet connection will make it
slower.

This task used the native message passing facilities of the simulator. Each received mes-
sage was implemented as a separate method and called automatically by the code in the
superclass.

Since only a single task, the “Organic Grid” task, was running on each hardware node,
a simple resource manager was all that was required. We chose a simple round-robin
scheduler without preemption, since this placed a light computational load on the simu-
lator without compromising accuracy.

9.1.1 Configurations
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Figure 9.1: Physical topology of the first “Organic Grid” test

The results of testing the algorithm in two configurations will be presented in the next
section. The first configuration is a simple WAN configuration, while the second is a
more unusual topology.

The first physical configuration we will describe is shown in Figure 9.1. This is a fairly
standard arrangement for a relatively small grid. Two small clusters are connected via
relatively fast Internet connections, and two individual nodes are connected to compara-
tively slow links. The controller is connected via a very high-speed link — all of the data
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must flow from here originally, and so we can not effectively evaluate the algorithm if
this causes a bottleneck.
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Figure 9.2: Physical topology of the second “Organic Grid” test

The second example we will demonstrate used a somewhat more unusual configuration.
This example involves a hypothetical Autonomic Martian Explorer. Such a system would
be required to take samples of the Martian surface and make decisions about the direction
to explore based on the results. Since the analysis of these samples would require a
considerable amount of processing power, the lander would be unlikely to be able to do
this itself.

The main feature of interest in this configuration is the very high latency between the
Mars Orbiter and the Terran resources. It is assumed that the orbiter will have some
computational resources, and that mission control will have significantly more (including
a cluster of high-speed machines). In addition, machines connected to the Internet are
able to donate run-time to the program. The physical topology of this hardware grid is
shown in Figure 9.2.

9.1.2 Results

Figs. 9.3 and 9.4 show the initial and final configurations of the networks. It is worth not-
ing that the simulation task itself logs the tree structures in a form that can be rendered by
a LATEXpackage, allowing easy visualization of the results. The overlay networks shown in
this section were created by pasting the simulation output into the paper source. The code
for generating this output was periodically invoked by the standard logging mechanism.

Agent 7 remains a leaf node in this configuration, in spite of the fact that it is running on
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Figure 9.4: Stable overlay network for the first “Organic Grid” test.

one of the fastest machine in the network. This is due to the fact that it has a comparatively
slow Internet connection, which causes a bottleneck.

The initial and final configurations of the overlay network for this configuration are shown
in Figs. 9.5 and 9.6. As can be seen from this example, the algorithm scales well to
systems containing very high latencies. The smallest latency link in this configuration
is a few milliseconds, while the largest is almost an hour; a difference of six orders of
magnitude between the smallest and largest latency. In spite of this, the algorithm gives a
sensible configuration.

Note in particular how the arrangement of the terrestrial nodes is heavily dependent on
their CPU speed, since this becomes a limiting factor once the interplanetary bottleneck
has been surpassed. This can be seen from the overlay network layout in the stable con-
figuration, where the slowest resources are grouped below Agent 7 while the fast cluster
nodes on the high-speed network have migrated up the tree.

This test highlights the advantage of using a simulator to test autonomic systems. Launch-
ing a Mars mission simply to provide test data for an autonomic algorithm would most
certainly not be economically feasible. Our system allowed simulated periods of several
days to be run in a few minutes. The results could then be used to refine the algorithm
before real-world deployment. Using the simulator as a refinement tool is covered more
in Section 9.2.
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9.2 Case Study: An Autonomic Visualization System

Our second case study was an agent-driven distributed visualization system. Autonomic
computing has an important role in managing large-scale visualization systems [41].
Work on this simulation was conducted as part of the e-Viz project, which aims to develop
a fully autonomic visualization environment. The e-Viz system [261, 263] is designed to
be self-healing, self-optimizing, and self-configuring system for scientific visualization.
SimEAC was used to simulate several components of the system. This section will de-
scribe two of them.

The first component of the system was designed to transparently handle the creation of a
visualization pipeline and allow a user to navigate a volume dataset. The system should
automatically optimize itself by distributing the rendering tasks to the nodes with the
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highest performance. It should also be self-healing—if a renderer failed then the load
should be shifted elsewhere. SimEAC was initially calibrated against a prototype of the
system running on a small number of machines and then run on a larger, simulated, scale.

The second component of the system simulated was a tightly-coupled scientific computa-
tion and visualization application. This application consists of three discrete components.
The computation application feeds a 3D data structure to the renderer component, which
feeds rendered frames to the client. Each component was implemented as a visualization
task in SimEAC. The objective of the simulation was to determine how the system would
function in different network configurations.

9.2.1 Simulated Tasks

A small number of custom tasks were written for these simulations, three for each. In
the first simulation, one task represented a user of the system. This task would send
messages to a controller requesting an image for a given viewpoint. The controller would,
on receipt of this message, attempt to start renderers to fulfill the request. If renderers had
already been created on all available cluster nodes then the requests were dispatched to
the existing ones. Each cluster node would run an agent which could create a renderer,
and the renderer itself. The agent was responsible for automatically restarting the renderer
itself.

The three tasks in the second simulation represented the three components of the system.
The computation task fed data to the renderer task, which fed frames to the client task.
The latter two tasks also provided feedback messages telling the earlier stages in the
pipeline when they had completed processing (either rendering or displaying) a step.

9.2.2 Resource Managers

No new resource managers needed to be written for this simulation. The existing GPU
Resource Manager would, if given a task which could run on a GPU or a general purpose
CPU, attempt to run it on the GPU. This allowed us to write a single task representing
both the hardware and software renderers.

The same render task could be started on all cluster nodes, and would run on the GPU
on those in which a GPU was present. This is a fairly reasonable choice to make in the
general case, since a GPU processing path is usually only provided for algorithms that
are well suited to running on large vector processors and will therefore run faster on the
GPU than any CPU of equivalent age.

9.2.3 Hardware

We simulated a small rendering cluster of thirty two nodes, eight of which were equipped
with GPUs. The cluster was internally connected with a switched gigabit Ethernet, and
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connected to the outside world via a 100Mbit/s uplink. This configuration was selected
as a reasonable size for a departmental cluster.

Outside the cluster was a small network of six machines running the client task. Each
client was connected by a 100Mbit/s network connection to a switch, which was con-
nected to the visualization cluster.

For the second simulation, a variety of different network conditions between the three
components were evaluated, modifying both the speed and latency of the link. The initial
configuration, present in our lab setting (100Mbit networks between each component),
was used as a base-line for calibration. Different combinations of fast and slow links
between the pollution modeler, renderer, and client were tried.

9.2.4 Results
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Figure 9.7: Network and GPU usage for the first test run.

Figure 9.7 shows an obvious bottleneck in our original configuration for the first simu-
lation. All rendered frames are assembled by the controller node, and this completely
saturates the node’s network connection. As the graph shows, the GPU usage on the
nodes spikes periodically as a frame is rendered, but this does not happen very often.
The reason for this is that the messages requesting new frames are being delayed by the
rendered frames being relayed through the controller node. This problem had not been
exhibited by our small-scale real-world tests, since we had only a single client and fewer
renderers.

A solution to this is to instruct each renderer to send the resulting image1 directly to
1Note that images in this context are simply messages with their type set to the string “image”.
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the client to assemble. Doing this moved the bottleneck to the external network. Our
next strategy was to compress the images and ‘upgrade’ the cluster’s external Ethernet
connection to gigabit Ethernet. We determined that a compression ratio of approximately
80:1 was required to prevent network congestion is causing dropped frames with our
system. A fully autonomic system should automatically increase the compression ratio as
congestion increases. This was noted for inclusion into our final system.
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Figure 9.8: Selected component usage for the final test run.

Figure 9.8 shows the results after the described modifications. It can be seen from these
results that no single component causing a bottleneck. In the first plot, the controller node
Ethernet connection is saturated at 100% for the entire run while the cluster node GPU
is idle for most of the time. In the second plot, no single component is at full utilization
for more than an instant. If any of the lines on this plot were the 100% mark, this would
represent a bottleneck. As such, we can observe that no single component is providing a
bottleneck and the controller is distributing the rendering work amongst the cluster nodes
in such a way that none is overloaded.

Note that not all components are plotted. During the simulation run, the summary display
in the simulator was observed to decide which to display in more detail. During the first
run the level indicator next to the controller node Ethernet was displaying full usage (and
colored red) indicating that it was the trouble spot, while all of the other components
showed little or no use. The cluster node GPU was selected as an example of another
component which we would expect to be doing some work. In the second test, no specific
components showed a bottleneck and so a representative sample were chosen.

For the second simulation, we began by conducting a primary simulation running in near-
optimal conditions. Figure 9.9 shows some results collected from this simulation. Each
component of the system was run on a different (simulated) machine, connected with a
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100Mbit/s network connection. It can be seen from this graph that the application is able
to meet the target frame rate without saturating either network; something we already
knew experimentally.

This test was used to calibrate the simulation model. Instrumentation was added to the
application to determine the CPU load, simulation and rendering times, and network us-
age in this configuration. Once these values had been collected, they were applied to
the simulation, and validated by modifying other values such as the granularity of the
simulation.
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Figure 9.9: Calibration run for the simulated scientific visualization system.

Based on the calibrated simulation model, we evaluated the performance of the system
working under different conditions by modifying various parts of the specification, re-
sulting in a performance profile for the distributed system. Figure 9.10 shows the result
of one such simulation. In this example, the renderer and the client are separated by a
comparatively low-bandwidth Internet link.

In this case, there is not enough bandwidth available to deliver the required frame rate.
To overcome this problem, we added a new autonomic feature to the simulated model.
The simulated renderer task detects a long delay between sending a frame and receiving
an acknowledgment, and increases the amount of compression applied (indicated by the
blue line on the graph). This autonomic feature is adaptive, and the compression ratio
stabilizes relatively quickly to a value which allows both the desired frame rate and an
effectively utilized network.
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Figure 9.10: Simulated scientific visualization system with an Internet link.

9.3 Summary and Conclusions

SimEAC is a versatile platform for simulating autonomic systems. It can be used to pro-
totype and evaluate algorithms and designs for autonomic systems without the expense,
in terms of both money and time, of developing a fully working system on real hardware.

The implemented technical features of SimEAC have addressed most of the requirements
outlined in Section 3. In particular, the provision of multi-granularity specifications for
simulation is a novel design feature of SimEAC and is critical for cost-effective modeling
of autonomic components and their operational environments. The provision of a variety
of specification methods (e.g., XML, programmatic, and user interface) and many built-
features (e.g., reconfiguration, failures and viruses) also makes the simulation specifically
suited for autonomic computing.

Through our case studies, we have shown that SimEAC is capable of simulating widely
different systems within the same framework. The ease of use of our system is such
that simulations of comparable or greater complexity than those demonstrated in the case
studies could be constructed with very little effort.

The most important lesson that we have learned through the development of SimEAC is
that one needs to constantly review the design decisions for a software system to address
an emerging and changing topic such as Autonomic Computing. The system has been re-
vised for many times since the commencing of its development in 2004 inspired by [164].
The case studies, the publication of [96] and the reviews of the original submission all
made important contributions to the enhancement of SimEAC.

While the core simulator is stable, the current SimEAC is only the first chapter of its
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development. We have plans to add many important features in part of the future work.
We would like to build a large collection of reusable tasks and resource managers in the
form of domain-specific libraries (e.g., agents, networking, Grid, visualization). A con-
siderable amount of work has been performed in recent years on scheduling techniques
for large and heterogeneous systems. We would like to introduce a more sophisticated
mechanism for programming tasks and resource managers, and integrating such programs
through parameter passing. We would like to investigate into a more flexible mechanism
for reconfiguration allowing the autonomic components to create arbitrary new configu-
ration. We would like to introduce some basic optimization functions for easy calibration
with real world data, and for supporting users’ needs for self-optimization.
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Chapter 10

Conclusions

Contents
10.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Building a fully autonomic system for visualisation in a distributed environment is a chal-
lenging proposition. Creating a fully autonomic infrastructure for visualisation is likely
to take many years, if not decades, for large numbers of people. This thesis has begun the
process, and it is hoped that others will continue to work towards this goal.

At the simplest level, it has been shown that an autonomic approach to problems can yield
useful results. Part II discussed a specific visualisation problem, namely that of rendering
point data. This application was chosen as a typical example of a problem for out-of-core
rendering, since it had some fairly complex data access patterns.

It was shown that this rendering strategy benefited from a custom data management strat-
egy for point sets whose octrees did not fit into memory, rather than relying on the op-
erating system’s hardware. An algorithm-specific strategy was developed, giving better
performance, and this was then evaluated in comparison with two adaptive strategies.
Aim 11, to create a prefetching strategy for this application, was met, and it was shown in
Chapter 5 that this strategy provided a significant performance and scalability improve-
ment over delegating the management of external memory to the operating system.

The two adaptive strategies were intended to exemplify the self-optimising part of auto-
nomic computing. They both worked by acquiring data about the access patterns of a run,
and then use this captured knowledge to make predictions. Aim 2 was to determine if
such a strategy could achieve results commensurate with the algorithm-specific strategy.
This was the first attempt to apply knowledge-based strategies to out-of-core prefetching,
and showed the potential of autonomic data management strategies, as well as provid-
ing algorithms that can be used now. The knowledge-based approach was evaluated and
found to give equivalent or better performance than an algorithm-based approach with a
smaller investment in development time. The results of this quantitative testing were pre-

1The aims were enumerated in Section 1.3.
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sented in Chapter 6, indicating that a knowledge-based approach is feasible and provides
benefits over a more traditional approach.

Some preliminary work was presented in Chapter 4 on extending this concept to the
distributed context, and further work in this area is expected to yield beneficial results.

A new framework for implementing out-of-core algorithms was presented. The frame-
work allowed the evaluation of out-of-core algorithms in a fair setting. While the clean
isolation between the layers meant that the framework did not give the best possible per-
formance, it could still be used in real-world applications.

The results of testing within the framework showed that knowledge-based approaches
could provide equivalent or superior performance to those relying on a priori information.
This confirmed the hypothesis stated earlier. Future work will include expanding this to
the multi-user context, where there is a much richer source of potential knowledge that
can be acquired. Each user of a particular dataset can have their access patterns recorded,
and used to infer patterns for others.

In addition to the framework for out-of-core applications, a remote data server and client
interface was discussed. Both the local framework and client-server implementation act as
examples of the proposed five-layer model for out-of-core applications (although the local
implementation only includes a subset of the layers, since it does not support networked
access).

The five-layer model for out-of-core applications is, itself, another contribution of this
thesis. The five layers provide the first systematic model for designing out-of-core sys-
tems, in accordance with Aim 3. This promotes code-reuse, since the boundaries between
the layers are well-defined and different implementations of a given layer for a different
application can be used. This was demonstrated in the case of the bottom (block) layer
with the sample implementation, where a number of different (interchangeable) versions
were provided. External memory systems to date have been developed in an ad hoc man-
ner, designed to solve a specific problem. The new model proposed in this thesis will
permit the re-use of concepts and algorithms from one implementation in another by pro-
viding a clear layering that allows better reasoning about out-of-core systems.

Aim 4 was to demonstrate the feasibility of this model by providing an implementation of
it. This was done, and the results in Chapters 5 and 6 were collected by using this imple-
mentation. The improvement in performance given over a pure in-core approach showed
that this implementation, while intended purely for experimental purposes, achieved good
performance in real data management tasks.

Data management is an important problem, but is only a small part of building an au-
tonomic infrastructure for visualisation. In order to facilitate the development of these
ideas further, the first simulation environment aimed at the rapid evaluation of autonomic
algorithms was developed. This environment, SimEAC, is based on a hybrid discrete-
time and discrete-event model designed for the needs of autonomic system simulation,
and fulfills Aim 5.

The system makes it easy to model new tasks and resource managers in a variety of
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situations. Some case studies were presented in Chapter 9, highlighting the flexibility
of the system. In addition to demonstrating the use of the system, and providing some
results that were used in the development of the e-Viz system, these studies contributed
to the evaluation of the system (Aim 6), and demonstrated that it met the stated design
goals.

In summary:

1. An out-of-core prefetching algorithm tailored to point-based volume ray tracing
was designed, and shown to faster and more scalable than relying on the operating
system. (Aim 1)

2. Two general knowledge-based out-of-core prefetching algorithms were created.
(Aim 2)

3. The three prefetching algorithms were evaluated in comparison with each other and
with a pure demand paging approach. The results showed that all three algorithms
performed better than demand paging. (Aims 1 and 2)

4. A five-layer model for out-of-core systems was proposed. This is the first proposed
model for systematic design and classification of external memory systems. (Aim
3)

5. The five-layer model was shown to be feasible with two prototype implementations.
(Aim 4)

6. It was shown that a knowledge-based approach can achieve equivalent performance
to a tailored approach. These results indicate a significant amount of potential in
knowledge-based algorithms for prefetching. (Aim 2)

7. The first simulation architecture tailored to the demands of autonomic computing
was designed. (Aim 5)

8. The proposed simulation environment was developed. (Aim 6)

9. The simulation environment was evaluated in a variety of uses and shown to be
sufficiently accurate and flexible to meet the requirements. (Aim 6)

10.1 Future Work

The field of autonomic computing in general is still very young, and very little work has
been done at all in the context of visualisation applications. There is a great deal of scope
for further work in this area.

Large scale remote visualisations are particularly important in the context of virtual
worlds. The out-of-core techniques described in this thesis could be extended to the
distributed context, and work has begun in this area. The five layer model includes sup-
port for remote access, and a prototype client-server implementation has been developed.
There is scope for future work adapting this to existing problem domains.
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Virtual worlds are an obvious example, since they already have the requirement that the
rendering be performed on the client and the world stored on the server. To achieve
interactive framerates, pre-fetching of data is required. A number of heuristics are applied
to these in existing systems to perform this prefetching, but a self-optimising approach
could benefit the development of such systems considerably.

On the simulation side, there is always room for further work. Modern operating sys-
tems use some quite complicated strategies for scheduling (particularly in multiprocessor
contexts), and memory management. The simulator could be improved by detailed re-
implementation of some more of these algorithms in resource managers, allowing differ-
ent operating systems to be simulated. This is less important in the context of autonomic
computing in the setting of ubiquitous computing, since micro-scheduling concerns are
much less important than macro-scheduling, but it would allow the simulator to be used
in some other contexts.

Beyond this, the simulator should be used to design additional components of an auto-
nomic visualisation infrastructure.
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Appendix A

The SimEAC User Interface

Contents
A.1 Loading Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.2 User Interface Overview . . . . . . . . . . . . . . . . . . . . . . . 184

A.3 Running The Simulation . . . . . . . . . . . . . . . . . . . . . . . 188

SimEAC is designed to be able to take advantage of existing development tools. Users
can use their favourite text editor or IDE to write tasks and their favourite debugger to
inspect their operation in detail. The SimEAC application is designed to run either in a
debugger, for developing new tasks, or outside for performing simulations.

A.1 Loading Bundles

While the core system comes with a number of tasks and resource managers, it is antic-
ipated that any use of the system will involve writing more. In order to implement new
tasks and resource managers, a user of the system will need access to the header files and
object code used to define the interfaces. These are in the SimEAC framework, which is
linked to by the application and should also be linked to by any bundles containing user
code.

Bundles placed in the Application Support/SimEAC/PlugIns sub-folder of
the any of the Library folders on the system will be automatically loaded when the
system runs.

As mentioned previously, no glue code is required. The classes can be accessed by name
once they have been loaded from the user interface, and will be used to populate various
components in the system interface.
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A.2 User Interface Overview

Figure A.1: SimEAC grid construction view.

Figure A.1 shows a grid being constructed. The main view shows the hierarchy of com-
ponents. Each container in the system can hae children. Pressing the button with a +
icon will add a new component within the currently selected container (if the currently
selected object is not a container, the new component will be created in the parent con-
tainer). Components can, similarly, be removed by selecting them and pressing the −
button.

The start and stop buttons, and the speed control are used to control the simulation. The
speed control alters the size of each tick, which controls the granularity of the simulation.
Moving it to the right will make the simulation run faster at the expense of some accuracy.

Each component in the system can be further configured via its inspector. The inspector
can be accessed by either selecting ’Get Info’ from the menu, or hitting meta-I. The
inspectors for the various components will be discussed in the remainder of this section.
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A.2.1 Containers

Figure A.2: Container Inspector.

The container inspector, shown in Figure A.2 is used to set the resource manager associ-
ated with a given container.

The drop-down list box in this inspector is populated with the resource manager classes
found by the system. Any class which implements the correct protocol will be displayed
in this list. If you have added a bundle which contains a resource manager then you can
check it was loaded correctly by looking in this list.

Containers play an important rôle in the system, but they are not particularly customisable.
Their job is simply to act as groupings of other objects.

A.2.2 Processing Units

Figure A.3: Processing Unit Inspector.

Processing units are the components of the system which represent anything that can run
tasks. Their run time is consumed by tasks and (optionally) resource managers. Figure
A.3 shows the inspector displayed when one of these components is inspected.

The most fundamental attribute of a processing unit is the instruction set. The system
understands PowerPC (PPC), Itanium (IA64), SPARC and x86 as general purpose CPU
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types, as well as DSPs and GPUs as more specialised functions. The primary purpose
of these is processor-affinity; a process will not be migrated from one CPU architecture
to another once it has been started by default (although individual tasks can override this
behaviour).

The next three options define the register sizes of the processing resource. These are used
by tasks to provide scaling factors allowing them to match the speed attribute to their
specific workload.

A.2.3 Storage Units

Figure A.4: Storage Unit Inspector.

Storage units are repositories of data. They can represent anything that stores data, from
high-speed RAM to tape drives. The primary attribute is their capacity, which defines the
amount of data that can be stored on them.

The throughput and latency are used when passing messages to and from the storage
units. Latency adds a delay to messages, while throughput gives a maximum amount of
data that can be moved to and from the storage unit in a given time period. The discrete
time simulation calculates available bandwidth every tick.

The final attribute is the amount of the storage unit that is being used when the system
starts. It is common, for example, for a hard disk to have some data stored on it by
system files. This can be configured here. This has no real effect on the system that could
not be simulated by simply reducing the size of the storage unit, but it does allow more
user-friendly output from a simulation to be generated.

A.2.4 Interconnects

Interconnects are used to join up components. Each interconnect is modelled as a bus,
with the option of imposing an extra limit on the amount of data that can be transferred
in each direction by each component.
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Figure A.5: Interconnect Inspector.

The inspector, shown in Figure A.5, provides two global parameters, throughput and
latency. These affect the delivery of messages across the Interconnect, by imposing a
delay (latency) and a limit on the amount of data that can be transferred in a single tick
(calculated from the throughput).

The endpoints display contains a list of nodes that are connected to this Interconnect.
They can be added and removed with the + and − buttons at the bottom of the inspector.
The node column contains the name of the endpoint, and if clicked will display a drop-
down box of all possible endpoints1.

Each of these can have limits on the amount of data they transfer imposed in each direc-
tion. In the example shown, the Interconnect is modelling a USB 2 bus. One device on
this Interconnect only supports USB 1, and so is limited to 12Mb/s.

A.2.5 Tasks

Tasks can be added to the system in the same way as any other object; by adding a new
node and selecting ‘Task’ as its type in the main view.

1Recall that only nodes in the same container as the Interconnect can be connected
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Figure A.6: Task Inspector.

When inspected, something like Figure A.6 will be displayed. As with the resource man-
ager inspector, this gives a drop down list box which contains all tasks in the system,
populated at run time.

In addition to this, arguments can be provided for each task running in the system. When
the simulation runs, the string entered here will be passed to the task, and can be parsed
in any way the class desires. This screen shot is from the Organic Grid case study, where
each task of this class takes the name of a node as the argument. This node is then used
as the parent node in the overlay network.

A.3 Running The Simulation

When the simulation is started (by pressing the start button), the display updates as shown
in Figure A.7, to show the instantaneous usage of each component.
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Figure A.7: SimEAC running grid view.



Appendix B

SimEAC Interface Summary

The XML schema used to describe SimEAC grids is shown in Listing B.1. XML Schema
is not expressive enough to describe all of the restrictions on a valid grid file. In addition
to the syntax described here, the following conditions must be upheld:

• Names of elements must be unique within their parent container.

• Resource manager and task classes must reference classes available to the system.

Listing B.1: The XML schema used for describing SimEAC grids.
 <xsd:schema xmlns:xsd= ” h t t p : / /www.w3 . org /2001/XMLSchema”>


 <xsd :anno ta t ion>
 <xsd:documentat ion xml:lang= ” en ”>
 Grid d e s c r i p t i o n schema f o r SimEAC.
 < / xsd:documentat ion>
 < / xsd :anno ta t ion>


 < !−− Root element must be a con ta ine r . Only one al lowed . −−>
 <xsd:element name= ” con ta ine r ” type= ” conta inerType ” />




 <xsd:complexType name= ” conta inerType ”>
 < !−−
 Any hardware node may be i n a conta iner , i n c l u d i n g nested
 con ta ine rs . The order does not mat ter .
 Tasks may also be found i n con ta ine rs .
 −−>
 <xsd:sequence minOccurs= ” 0 ” maxOccurs= ” 1 ” >
 <xsd:sequence minOccurs= ” 0 ” maxOccurs= ” unbounded ” >
 <xsd:element name= ” con ta ine r ” type= ” conta inerType ”

minOccurs= ” 0 ” />
 <xsd:element name= ” processor ” type= ” processorType ”

minOccurs= ” 0 ” />
 <xsd:element name= ” s torage ” type= ” storageType ”

minOccurs= ” 0 ” />
 <xsd:element name= ” r o u t e r ” type= ” routerType ” minOccurs

= ” 0 ” />
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 <xsd:element name= ” re ference ” type= ” referenceType ”
minOccurs= ” 0 ” />

 <xsd:element name= ” task ” type= ” taskType ” minOccurs= ” 0 ”
/>

 < / xsd:sequence>
 <xsd:sequence minOccurs= ” 0 ” maxOccurs= ” unbounded ” >
 < !−−
 I n te rconnec ts must be declared a f t e r the elements they

connect .
 Tasks are declared anywhere , but are usua l l y put a t

the end f o r c l a r i t y
 −−>
 <xsd:element name= ” i n te r connec t ” type= ”

in terconnectType ” minOccurs= ” 0 ” />
 <xsd:element name= ” task ” type= ” taskType ” minOccurs= ” 0 ”

/>
 < / xsd:sequence>
 < / xsd:sequence>
 <x s d : a t t r i b u t e name= ”name” type= ” x s d : s t r i n g ” />
 < !−−
 The resource manager d e f a u l t s to ResourceManager , a n u l l

implementat ion
 −−>
 <x s d : a t t r i b u t e name= ” ResourceManager ” type= ” x s d : s t r i n g ” use= ”

o p t i o n a l ” />
 < / xsd:complexType>


 <xsd:complexType name= ” processorType ”>
 <x s d : a t t r i b u t e name= ”name” type= ” x s d : s t r i n g ” />
 <x s d : a t t r i b u t e name= ” type ” type= ” p rocessor Ins t ruc t ionSetType ”

/>
 <x s d : a t t r i b u t e name= ” i n t ” type= ” xsd:nonNegat ive In teger ” />
 <x s d : a t t r i b u t e name= ” f l o a t ” type= ” xsd:nonNegat ive In teger ” />
 <x s d : a t t r i b u t e name= ” vec to r ” type= ” xsd:nonNegat ive In teger ” />
 <x s d : a t t r i b u t e name= ” speed ” type= ” xsd:nonNegat ive In teger ” />
 < / xsd:complexType>




 <xsd:complexType name= ” storageType ”>
 <x s d : a t t r i b u t e name= ”name” type= ” x s d : s t r i n g ” />
 <x s d : a t t r i b u t e name= ” s i ze ” type= ” capaci tyType ” />
 <x s d : a t t r i b u t e name= ” access ” type= ” timeType ” />
 <x s d : a t t r i b u t e name= ” r a te ” type= ” speedType ” />
 <x s d : a t t r i b u t e name= ” p e r s i s t e n t ” type= ” boolType ” use= ” o p t i o n a l

” />
 <x s d : a t t r i b u t e name= ” usage ” type= ” percentageType ” use= ”

o p t i o n a l ” />
 < / xsd:complexType>


 <xsd:complexType name= ” in terconnectType ”>
 <xsd:cho ice>
 <xsd:element name= ” node ” type= ” interconnectNodeType ”

maxOccurs= ” unbounded ” />
 < / xsd:cho ice>
 <x s d : a t t r i b u t e name= ”name” type= ” x s d : s t r i n g ” />
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 <x s d : a t t r i b u t e name= ” throughput ” type= ” speedType ” />
 <x s d : a t t r i b u t e name= ” l a tency ” type= ” timeType ” />
 < / xsd:complexType>




 <xsd:complexType name= ” routerType ”>
 <x s d : a t t r i b u t e name= ”name” type= ” x s d : s t r i n g ” />
 < / xsd:complexType>


 <xsd:complexType name= ” taskType ”>
 < !−−
 The c lass a t t r i b u t e must correspond to the name of a c lass

which
 implements the Task p ro toco l .
 −−>
 <x s d : a t t r i b u t e name= ”name” type= ” x s d : s t r i n g ” />
 <x s d : a t t r i b u t e name= ” c lass ” type= ” x s d : s t r i n g ” />
 <x s d : a t t r i b u t e name= ” args ” type= ” x s d : s t r i n g ” />
 < / xsd:complexType>


 <xsd:complexType name= ” interconnectNodeType ”>
 < !−−
 Each node may have o p t i o n a l r e s t r i c t i o n s placed on i t s

connect ion
 speed i n both d i r e c t i o n s . This i s ignored i f l a r g e r than the
 i n te rconnec t ’ s t o t a l bandwidth .
 −−>
 <xsd:s impleContent>
 <xsd:ex tens ion base= ” x s d : s t r i n g ”>
 <x s d : a t t r i b u t e name= ”name” type= ” x s d : s t r i n g ” />
 <x s d : a t t r i b u t e name= ” upstream ” type= ” speedType ” use= ”

o p t i o n a l ” />
 <x s d : a t t r i b u t e name= ” downstream ” type= ” speedType ” use=

” o p t i o n a l ” />
 < / xsd :ex tens ion>
 < / xsd:s impleContent>

 < / xsd:complexType>


 <xsd:complexType name= ” referenceType ”>
 < !−−
 Must r e f e r to the name a t t r i b u t e i n a node i n the cu r ren t

l e v e l
 −−>
 <xsd:s impleContent>
 <xsd:ex tens ion base= ” x s d : s t r i n g ”>
 <x s d : a t t r i b u t e name= ”name” type= ” x s d : s t r i n g ” />
 < / xsd :ex tens ion>
 < / xsd:s impleContent>
 < / xsd:complexType>


 <xsd:simpleType name= ” capaci tyType ”>
 <x s d : r e s t r i c t i o n base= ” x s d : s t r i n g ”>
 < !−−
 A capac i t y i n b i t s or Bytes suppor t ing standard SI

p r e f i x e s
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 −−>
 <xsd :pa t t e rn value= ” \d ∗ ( . \ d∗ ) ?(K |M|G|T |P |E) ?(B | b ) ” />
 < / x s d : r e s t r i c t i o n>
 < / xsd:simpleType>


 <xsd:simpleType name= ” timeType ”>
 <x s d : r e s t r i c t i o n base= ” x s d : s t r i n g ”>
 < !−−
 A time s p e c i f i e d i n nano−, m i l l i −, or Mega−seconds .
 −−>
 <xsd :pa t t e rn value= ” \d ∗ ( . \ d∗ ) ?(n |m|M) ?s ” />
 < / x s d : r e s t r i c t i o n>
 < / xsd:simpleType>


 <xsd:simpleType name= ” speedType ”>
 <x s d : r e s t r i c t i o n base= ” x s d : s t r i n g ”>
 < !−−
 Any speed of the form 12.34B/ s , suppor t ing both b ( i t s ) and

B( ytes )
 and standard SI p r e f i x e s and an a r b i t r a r y numeric

p r e c i s i o n
 −−>
 <xsd :pa t t e rn value= ” \d ∗ ( . \ d∗ ) ?(K |M|G|T |P |E) ?(B | b ) / ( n |m|M) ?

s ” />
 < / x s d : r e s t r i c t i o n>
 < / xsd:simpleType>


 <xsd:simpleType name= ” percentageType ”>
 <x s d : r e s t r i c t i o n base= ” x s d : s t r i n g ”>
 < !−−
 Any number o f the form x . y%, w i th a r b i t r a r y p r e c i s i o n
 −−>
 <xsd :pa t t e rn value= ” \d ∗ ( . \ d∗ )?%” />
 < / x s d : r e s t r i c t i o n>
 < / xsd:simpleType>


 <xsd:simpleType name= ” p rocessor Ins t ruc t ionSetType ”>
 <x s d : r e s t r i c t i o n base= ” x s d : s t r i n g ”>
 < !−−
 The cu r ren t implementat ion t r e a t s these as being case

i n s e n s i t i v e .
 −−>
 <xsd:enumerat ion value= ” x86 ” />
 <xsd:enumerat ion value= ” gpu ” />
 <xsd:enumerat ion value= ” ppc ” />
 <xsd:enumerat ion value= ” sparc ” />
 <xsd:enumerat ion value= ” dsp ” />
 < / x s d : r e s t r i c t i o n>
 < / xsd:simpleType>


 <xsd:simpleType name= ” boolType ”>
 < !−−
 The standard xsd:boolean type was not used because t h i s i s

more
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 cons i s ten t w i th the Object ive−C BOOL type , which a l lows values
o f YES

 and NO, making i t eas ie r f o r users dea l ing wi th both the XML
and

 Object ive−C values .
 −−>
 <x s d : r e s t r i c t i o n base= ” x s d : s t r i n g ”>
 <xsd:enumerat ion value= ”YES” />
 <xsd:enumerat ion value= ”NO” />
 < / x s d : r e s t r i c t i o n>
 < / xsd:simpleType>


 < / xsd:schema>

The interfaces that must be implemented by task and resource manager classes are shown
in Listings B.3 and B.2 respectively. Once classes that implement these interfaces have
been loaded into the system, they can be referenced from XML grids.

Listing B.2: Interface for resource managers.
 @protocol routingResourceManager
 − ( NSArray ∗ ) pathFrom : ( InterconnectableNode ∗ ) source to : (

InterconnectableNode ∗ ) d e s t i n a t i o n ;
 @end


 @protocol ResourceManager<NSObject>
 − ( double ) canRun : ( id<Task>) newTask ;
 − ( void ) underscheduledProcesses : ( NSArray ∗∗ ) processes
 weighted : ( NSArray ∗∗ ) weights ;
 − ( void ) addTask : ( MetaTask ∗ ) task ;
 − ( void ) removeTask : ( MetaTask ∗ ) task ;
 − ( s i m t i m e t ) processingUnitTimeUsedBy : ( id<Task>) task ;
 − (BOOL) i s D i s t r i b u t e d ;
 + ( id ) resourceManagerForContainer : ( id ) aContainer
 wi thParent : ( id<ResourceManager>)

aResourceManager ;
 − ( id ) i n i t F o r C o n t a i n e r : ( id ) aContainer
 wi thParent : ( id<ResourceManager>)aResourceManager ;
 − (BOOL) addChi ld : ( id<ResourceManager>) aChi ld ;
 − ( void ) runFor : ( s i m t i m e t ) nanoseconds ;


 − (BOOL) setVMSizeForProcess : ( MetaTask ∗ ) task to : ( double ) bytes ;
 − ( void ) pageFault : ( double ) bytes forTask : ( MetaTask ∗ ) aTask ;
 − ( StorageUni t ∗ ) newFileNamed : ( NSString ∗ ) f i leName
 WithSize : ( double ) bytes ;
 − (BOOL) r e s i z e F i l e : ( NSString ∗ ) f i leName
 on : ( StorageUni t ∗ ) s torage
 to : ( double ) bytes ;
 − (BOOL) s to re : ( double ) bytes
 t o F i l e : ( NSString ∗ ) f i leName
 onDevice : storage
 forTask : ( MetaTask ∗ ) task
 atTime : ( s i m t i m e t )now ;
 − (BOOL) load : ( double ) bytes
 f r omF i l e : ( NSString ∗ ) f i leName
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 onDevice : storage
 forTask : ( MetaTask ∗ ) task
 atTime : ( s i m t i m e t )now ;
 − ( void ) log ;
 @end

Listing B.3: Interface to be implemented by tasks.
 @protocol Task<NSObject , MessageReceiver>
 − ( id ) in i tWi thArguments : ( NSString ∗ ) arguments Name : ( NSString ∗ )aName;
 − ( void ) setDelegate : ( id ) aDelegate ;
 − ( id ) delegate ;
 − ( s i m t i m e t ) runFor : ( s i m t i m e t ) nanoseconds
 onProcessors : ( NSArray ∗ ) processors
 atTime : ( s i m t i m e t )now ;
 − (BOOL) runsOn : ( CPUType) an I ns t r u c t i on S e t ;
 − ( unsigned i n t ) threads ;
 − ( void ) re ta inTask ;
 − ( void ) releaseTask ;
 − ( f l o a t ) usage ;
 @end

Listings B.4 to B.10 show the interfaces to the hardware components within the system.

Listing B.4: Interface to the HardwareNode class.
 @interface HardwareNode : NSObject<ETXMLParserDelegate , Logging> {
 s i m t i m e t now ;
 s i m t i m e t l a s t ;
 NSString ∗ name ;
 id parent ;
 id parser ;
 BOOL isLogged ;
 BOOL isEnabled ;
 unsigned i n t log Index ;
 LogFi le ∗ l o g F i l e ;
 }
 − ( id ) in i tWi thXMLParser : ( id ) parser parent : ( id<NSObject ,

ETXMLParserDelegate>) parent ;
 − ( id ) in i tWi thXML : ( ETXMLNode∗ ) xml wi thParent : ( HardwareNode ∗ ) pa ren t ;
 − ( NSString ∗ ) name ;
 − ( void ) name : ( NSString ∗ ) name ;
 − (ETXMLNode∗ ) toXML ;
 − (BOOL) canHaveChildren ;
 − ( void ) se tConta iner : ( id ) pa ren t ;
 − ( id ) con ta ine r ;
 − (BOOL) i s V a l i d C h i l d : ( id ) c h i l d ;
 − ( void ) t i c k : ( s i m t i m e t ) newTime ;
 − ( f l o a t ) usage ;
 − ( void ) s t a r t ;
 − (BOOL) isEnabled ;
 − ( void ) setEnabled : (BOOL) aFlag ;
 − ( NSComparisonResult ) compare : ( HardwareNode ∗ )aNode ;
 @end
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Listing B.5: Interface to the InterconnectableNode class.
 @interface In terconnectableNode : HardwareNode<MessageReceiver> {
 NSMutableArray ∗ connect ions ;
 NSMutableDict ionary ∗ knownRoutes ;
 NSMutableSet ∗ knownAbsensesOfRoutes ;
 }
 − ( NSArray ∗ ) pathTo : ( InterconnectableNode ∗ ) d e s t i n a t i o n alongRoute : (

NSArray ∗ ) path ;
 − ( NSArray ∗ ) pathTo : ( InterconnectableNode ∗ ) d e s t i n a t i o n from : (

InterconnectableNode ∗ ) o r i g i n alongRoute : ( NSArray ∗ ) path ;
 − ( void ) addConnection : ( In te rconnec t ∗ ) path ;
 − ( void ) removeConnection : ( In te rconnec t ∗ ) path ;
 @end

Listing B.6: Interface to the Interconnect class.
 @interface I n te rconnec t : HardwareNode {
 double throughput ;
 double l a tency ;
 double spareBandwidthLastQuantum ;
 double spareBandwidthThisQuantum ;
 double bandwidthThisQuantum ;
 double bandwidthLastQuantum ;
 double parsedUpstream ;
 double parsedDownstream ;
 double dataTransferredSinceLog ;
 f l o a t usage ;
 s i m t i m e t las tLog ;
 NSMutableSet ∗ connectedObjects ;
 NSArray ∗ sor tedEndpoints ;
 TRArray packets ;
 }


 + ( id ) in te rconnectWi thLatency : ( double ) l a t e n c y throughput : ( double )
th roughput ;

 − ( id ) i n i tW i t hLa tency : ( double ) l a t e n c y throughput : ( double ) th roughput
;

 + ( id ) in terconnectWi thLatencyFromStr ing : ( NSString ∗ ) l a t e n c y
throughput : ( NSString ∗ ) th roughput ;

 − ( id ) i n i tWi thLa tencyFromSt r ing : ( NSString ∗ ) l a t e n c y throughput : (
NSString ∗ ) th roughput ;

 + ( id ) interconnectWithXML : ( ETXMLNode∗ ) xml wi thParent : ( HardwareNode ∗ )
con ta i ne r ;

 − (BOOL) connect ;
 − ( double ) throughput ;
 − ( NSString ∗ ) t h roughpu tS t r i ng ;
 − ( void ) throughput : ( double ) th roughput ;
 − ( void ) throughputFromStr ing : ( NSString ∗ ) th roughput ;
 − ( double ) l a tency ;
 − ( NSString ∗ ) l a t e n c y S t r i n g ;
 − ( void ) l a tency : ( double ) l a t e n c y ;
 − ( void ) la tencyFromStr ing : ( NSString ∗ ) l a t e n c y ;
 − ( void ) addEndPointNamed : ( NSString ∗ )aName;
 − ( void ) addEndPoint : ( id ) node ;
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 − ( void ) addEndPoint : ( id ) node withUpstream : ( double ) upstream downstream
: ( double ) downstream ;

 − ( void ) removeEndPoint : ( id ) node ;
 − ( void ) send : ( Message∗ ) aMessage to : ( id<MessageReceiver>) d e s t i n a t i o n

alongRoute : ( NSArray ∗ ) aRoute atTime : ( s i m t i m e t ) s ta r tT ime ;
 − ( void ) broadcastMessage : ( Message∗ ) aMessage from : ( HardwareNode ∗ )

anOr ig in atTime : ( s i m t i m e t ) s ta r tT ime ;
 − ( NSSet∗ ) endPoints ;


 − ( unsigned i n t ) endPointCount ;
 − ( id ) endpointAt Index : ( unsigned i n t ) index ;
 @end

Listing B.7: Interface to the Container class.
 @interface Container : InterconnectableNode {
 NSMutableDict ionary ∗ s to rageUn i ts ;
 NSMutableDict ionary ∗ process ingUni ts ;
 NSMutableDict ionary ∗ i n te rconnec ts ;
 NSMutableDict ionary ∗ in terconnectableNodes ;
 NSMutableDict ionary ∗ con ta ine rs ;
 NSArray ∗ a l l In te rconnec tab leNodes ;
 NSArray ∗ a l l I n t e r c o n n e c t s ;
 NSMutableSet ∗ upstreamRouters ;
 NSMutableSet ∗ names ;
 id resourceManager ;
 NSString ∗ resourceManagerName ;
 NSMutableArray ∗ tasks ;
 NSMutableDict ionary ∗ tasksByName ;
 }
 + ( id ) conta inerFromFi le : ( NSString ∗ ) f i l e ;
 + ( id ) containerWithXML : ( ETXMLNode∗ ) xml wi thParent : ( id ) g r i d ;
 − ( InterconnectableNode ∗ ) nodeNamed : ( NSString ∗ ) name ;
 − ( id ) ch i l dA t Index : ( unsigned i n t ) index ;
 − ( void ) addProcessor : ( id ) aProcessingUni t ;
 − ( void ) addStorage : ( id ) aStorageUni t ;
 − ( void ) addContainer : ( id ) aContainer ;
 − ( void ) addRouter : ( id ) aRouter ;
 − ( void ) addIn terconnect : ( id ) an In terconnect ;
 − ( void ) removeChild : ( id ) c h i l d ;
 − ( unsigned i n t ) ch i ldCount ;
 − ( unsigned i n t ) in terconnectCount ;
 − ( unsigned i n t ) taskCount ;
 − ( NSString ∗ ) getUnusedName ;
 − ( I n te rconnec t ∗ ) i n te rconnec tA t Index : ( unsigned i n t ) index ;
 − ( MetaTask ∗ ) taskAt Index : ( unsigned i n t ) index ;
 − (BOOL) addChi ld : ( id ) c h i l d ;
 − ( id ) in i tWi thXML : ( ETXMLNode∗ ) xml wi thParent : ( HardwareNode ∗ ) pa ren t ;
 − ( HardwareNode ∗ ) componentNamed : ( NSString ∗ )aName;
 − ( void ) addDefau l tCh i ld ;
 − ( void ) runFor : ( s i m t i m e t ) nanoseconds ;
 − (BOOL) conta insIn terconnectab leNode : ( InterconnectableNode ∗ )aNode ;
 − ( NSDict ionary ∗ ) p rocess ingUn i t s Inc lud ingCh i l d ren : (BOOL) f l a g ;
 − ( NSDict ionary ∗ ) s t o rageUn i t s I nc lud ingCh i l d ren : (BOOL) f l a g ;
 − ( HardwareNode ∗ ) componentNamed : ( NSString ∗ )aName;
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 − ( void ) s t a r t ;
 − ( void ) addTask : ( MetaTask ∗ ) task ;
 − ( void ) removeTask : ( MetaTask ∗ ) task ;
 − ( MetaTask ∗ ) taskNamed : ( NSString ∗ ) taskName ;
 − ( id ) resourceManager ;
 − ( void ) setResourceManager : ( NSString ∗ ) aResourceManagerName ;
 − ( NSString ∗ ) resourceManagerName ;
 − (BOOL) conta ins : ( InterconnectableNode ∗ ) node ;
 − ( NSArray ∗ ) interconnectableNodeNames ;
 − ( MetaTask ∗ ) getTaskNamed : ( NSString ∗ ) taskName ;
 − ( MetaTask ∗ ) getTaskNamed : ( NSString ∗ ) taskName checkParent : (BOOL) f l a g ;
 @end

Listing B.8: Interface to the ProcessingUnit class.
 @interface Process ingUni t : In terconnectableNode {
 CPUType i n s t r u c t i o n S e t ;
 i n t i n tege rS i ze ;
 i n t f l o a t S i z e ;
 i n t vec torS ize ;
 i n t throughput ;
 f l o a t usage ;
 }
 + ( id ) p rocess ingUn i tW i th Ins t ruc t i onsSe t : ( CPUType) i n s t r u c t i o n S e t

i n tege rS i ze : ( i n t ) i n t e g e r S i z e f l o a t S i z e : ( i n t ) f l o a t S i z e vec torS ize
: ( i n t ) vec to rS ize throughput : ( i n t ) th roughput ;

 − ( id ) i n i t U n i t W i t h I n s t r u c t i o n s S e t : ( CPUType) i n s t r u c t i o n S e t
i n tege rS i ze : ( i n t ) i n t e g e r S i z e f l o a t S i z e : ( i n t ) f l o a t S i z e vec torS ize
: ( i n t ) vec to rS ize throughput : ( i n t ) th roughput ;

 + ( id ) processingUnitWithXML : ( ETXMLNode∗ ) xml wi thParent : ( HardwareNode
∗ ) pa ren t ;

 − (CPUType) i n s t r u c t i o n S e t ;
 − ( void ) i n s t r u c t i o n S e t : ( CPUType) i n s t r u c t i o n S e t ;
 − ( i n t ) i n tege rS i ze ;
 − ( void ) i n tege rS i ze : ( i n t ) i n t e g e r S i z e ;
 − ( i n t ) f l o a t S i z e ;
 − ( void ) f l o a t S i z e : ( i n t ) f l o a t S i z e ;
 − ( i n t ) vec to rS ize ;
 − ( void ) vec to rS ize : ( i n t ) vec to rS ize ;
 − ( i n t ) throughput ;
 − ( void ) throughput : ( i n t ) th roughput ;
 − ( f l o a t ) usage ;
 − ( void ) setUsage : ( f l o a t ) newUsage ;
 @end

Listing B.9: Interface to the StorageUnit class.
 @interface StorageUni t : InterconnectableNode {
 double s ize ; / / Capaci ty i n bytes
 double access ; / / Access t ime i n ns
 double r a te ; / / T rans fer ra te i n B / s
 double spareCapaci ty ; / / Unused storage capac i t y
 double spareBandwidth ; / / Unused i n t e r f a c e bandwidth .
 double bytesOfCurrentMessageSent ;
 double i n i t i a l U s a g e ;
 BOOL p e r s i s t e n t ; / / i s the storage device v o l a t i l e ?
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 NSMutableDict ionary ∗ f i l e s ;
 TRArray messageQueue ;
 }
 + ( StorageUni t ∗ ) s torageUni tWi thSize : ( double ) s i z e access : ( double )

access ra te : ( double ) r a t e p e r s i s t e n t : (BOOL) f l a g ;
 − ( id ) i n i t W i t h S i z e : ( double ) s i z e access : ( double ) access ra te : ( double )

r a t e p e r s i s t e n t : (BOOL) f l a g ;
 + ( StorageUni t ∗ ) s torageUni tWi thSizeFromStr ing : ( NSString ∗ ) s i z e access

: ( NSString ∗ ) access ra te : ( NSString ∗ ) r a t e p e r s i s t e n t : ( NSString ∗ )
f l a g ;

 − ( id ) i n i tW i thS izeFromSt r i ng : ( NSString ∗ ) s i z e access : ( NSString ∗ )
access ra te : ( NSString ∗ ) r a t e p e r s i s t e n t : ( NSString ∗ ) f l a g ;

 + ( id ) storageUnitWithXML : ( ETXMLNode∗ ) xml wi thParent : ( HardwareNode ∗ )
pa ren t ;

 − ( void ) s t a r t ;
 − ( double ) s i ze ;
 − ( NSString ∗ ) s i z e S t r i n g ;
 − ( void ) s i ze : ( double ) s i z e ;
 − ( void ) s izeFromStr ing : ( NSString ∗ ) s i z e ;
 − ( double ) access ;
 − ( NSString ∗ ) accessStr ing ;
 − ( void ) access : ( double ) access ;
 − ( void ) accessFromString : ( NSString ∗ ) access ;
 − ( double ) r a te ;
 − ( NSString ∗ ) r a t e S t r i n g ;
 − ( void ) r a te : ( double ) r a t e ;
 − ( void ) ra teFromStr ing : ( NSString ∗ ) r a t e ;
 − (BOOL) i s P e r s i s t e n t ;
 − ( void ) p e r s i s t e n t : (BOOL) f l a g ;
 − ( void ) f r ee : ( double ) bytes ;
 − ( void ) setUsageFromString : ( NSString ∗ ) usageStr ing ;
 − (BOOL) setS ize : ( double ) bytes f o r F i l e : ( NSString ∗ ) f i leName ;
 − ( double ) s i z e O f F i l e : ( NSString ∗ ) f i leName ;
 − ( double ) i n i t i a l U s a g e ;
 − ( double ) freeSpace ;
 @end

Listing B.10: Interface to the Router class.
 }
 + ( Router ∗ ) routerWithXML : ( ETXMLNode∗ ) xml wi thParent : ( HardwareNode ∗ )

pa ren t ;
 − (BOOL) i s U p l i n k ;
 − ( void ) se tUp l ink : (BOOL) f l a g ;
 @end
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