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Introduction

Self-management in VC and in other distributed
systems

Self-management

Refers to the capability of a system to reconfigure or adapt itself without
direct human intervention.
Self management in distributed systems provides:

@ Resilience to resource volatility and workload changes.

@ Minimum turnaround time of jobs and maximum throughput .
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Diversity of goals in VC scientific applications
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Astronomical applications: ~ Earthquake detection: Building a global model for Biochemical applications:
exploring as many regions  returning readings as  climate prediction: modeling finding a single global
of the sky as possible fast as possible accurately every single region accurate solution

Taxonomy of VC applications based on their goals:

@ Coverage-oriented require higher throughput.

@ Latency-oriented require reduced time to solution.

@ Accuracy-oriented require accurate individual results.

@ Convergence-oriented require finding a global solution regardless of
throughput.
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Introduction

From system to application goals

Traditional performance metrics such as throughput and latency,
cannot capture application-specific needs

How do we provide self-management from the application perspective in a
way that is general and covers all the different types of applications?
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Native Structure.

Biochemical applications:
finding a single global
accurate solution

Earthquake detection: Building a global model for
returning readings as  climate prediction: modeling
fast as possible accurately every single region

Astronomical applications:
exploring as many regions
of the sky as possible
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e Motivation
@ Challenges of parametric scientific applications
@ Need for application-aware self-managed systems




Challenges of parametric scientific applications
Parametric VC applications

The general case

Input Application Output

—
Black-box _> Metrics

—

Data »
Parameters »

Scientific applications can be expressed as parametric functions J

f(data, parameters) — metrics
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Parametric application
A protein-ligand docking application
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Scientific applications can be expressed as parametric functions

f(data, parameters) — metrics
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Challenges of parametric scientific applications
Parametric application

The general case: optimizing parameter selection
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Parameters affect differently the application metrics.
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Challenges of parametric scientific applications
Parametric application

The general case: optimizing parameter selection
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Finding optimal parameter values depends on application-specific goals.
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Challenges of parametric scientific applications
Parametric application

The general case: optimizing parameter selection
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Finding optimal parameter values depends on application-specific goals.

Method — Evaluation

iversity of Delaware



Challenges of parametric scientific applications
Parametric application

The general case: optimizing parameter selection

Convergency
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Finding optimal parameter values depends on application-specific goals.
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Need for application-aware self-managed systems
Manual parameter reconfiguration

Requires an expert analysing the application, continuously monitoring
results, and tuning parameters

Input Application Output
(parameters) (black-box) (metrics)

W CPU time
>
Parameter p Error
Storage a
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Need for application-aware self-managed systems
Manual parameter reconfiguration

It could be done for the simplest case, but ...
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Manual parameter reconfiguration

What if we need to predict additional metrics?
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Need for application-aware self-managed systems
Manual parameter reconfiguration

What if we need to include additional parameters?

CPU time

Error
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Need for application-aware self-managed systems
Manual parameter reconfiguration

What if we need to change or add software modules?
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Need for application-aware self-managed VC systems

Manual reconfiguration is error-prone, inefficient, and promotes

resource wasting.
Thus, we need to provide self-management from the application
perspective.
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Need for application-aware self-managed systems
Need for application-aware self-managed VC systems

Manual reconfiguration is error-prone, inefficient, and promotes
resource wasting.

Thus, we need to provide self-management from the application
perspective.

Definition

We define application-aware self-management as the ability of a system
to guarantee the accomplishment of application-specific goals without
direct human intervention. )
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© Method
@ Towards a general application-aware self-managed VC system

@ Using KOtrees for parameter prediction and exploration
@ Integrated modular framework




Towards a general application-aware self-managed VC system
Requirements of a self-managed VC system

Example: A replica exchange application with 3 parameters

Millions of jobs

®
g 15 Job metrics
@
E- CPU time
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s N i-2hrs
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3

2 )
0 ! Lattice granularity

Job parameter’s search space

@ A job x; is a tuple of N parameters.

® When a job is collected, we obtain a tuple y; with M metrics
representing measures relevant to the application.
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Towards a general application-aware self-managed VC system
Requirements of a self-managed VC system

Collect jobs
Build/update
model

Model

Initial temperature

Use model

Generate jobs
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Method requirements:
© Building and updating the model at runtime

@ Making predictions of up to M metrics in near real time

© Learning from observed data in one pass

© Identifying sets of parameter combinations that can advance the
application goal




Towards a general application-aware self-managed VC system
Matching requirements to existing algorithms

© Building and updating the

model at runtime
@ Lazy learning and nearest

neighbors
Clustering

Neural networks
Bayesian learning

Decision trees

¢ © ¢ ¢ ¢

Hoeffding trees
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Towards a general application-aware self-managed VC system
Matching requirements to existing algorithms

© Building and updating the
model at runtime

© Making predictions of up
to M metrics in near real

time Clustering

Neural networks

°
°
@ Bayesian learning
@ Decision trees

°

Hoeffding trees

— Introduction ivati — Method — Evaluation — Discussion —

Trilce Estrada and Michela University of Delaware



Towards a general application-aware self-managed VC system
Matching requirements to existing algorithms

© Building and updating the
model at runtime

© Making predictions of up
to M metrics in near real
time

© Learning from observed @ Neural networks

data in one pass @ Bayesian learning

@ Hoeffding trees
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Towards a general application-aware self-managed VC system
Matching requirements to existing algorithms

© Building and updating the
model at runtime

© Making predictions of up
to M metrics in near real
time

© Learning from observed
data in one pass

© Identifying sets of
parameter combinations
that can advance the
application goal
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Using KOtrees for parameter prediction and exploration
Knowledge organization trees (KOTrees)

Our contribution:

A statistical data structure, in the form of a tree, that enables prediction
of multiple application metrics and exploration of the multi-dimensional
parameter space effectively, while being built incrementally at runtime.

Our data structure/algorithm can:
© Learn from observed data in one pass
@ Build and update the model at runtime
© Make predictions of up to M metrics in near real time

© Identify sets of parameter combinations that can advance the
application goal
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Method Using KOtrees for parameter prediction and exploration

Knowledge organization trees (KOTrees)

Partition of parameter space Statistical structure

Collect jobs

Initial temperature
Initial temperature

Generate jobs

@ We partition the parameter space recursively and build a tree-like
structure of statistical knowledge.

@ We use the statistical knowledge embedded in this structure to drive
job generation
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Using KOtrees for parameter prediction and exploration
Knowledge organization trees (KOTrees)

Tree organization
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Knowledge organization trees (KOTrees)

Tree organization

— ’ [0, 1]

0, 1
Constant root : : {O, 1}
height TN

p
no n2
| I
nO0 n21
Il |
no00 211

KQOTree is parametric and requires that the user inputs the height of the
tree (p) and N sets of parameter ranges.
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Using KOtrees for parameter prediction and exploration
Knowledge organization trees (KOTrees)

Tree organization

root
& torage
@é’\ curacy
CPU time
no n2 n21
Counters:
l *Number of samples (k)
Observed values:
n00 n21 Minimum
A *Maximum
l l X Statistics:
*Expected value
n000 n211 _| *Standard deviation
' *Variance
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Method Using KOtrees for parameter prediction and exploration

Requirement 1: One-pass learning

‘ n0 \j ‘ n2 U
Counters:
I *Number of samples (k)
Observed values:
n n21 «Minimum
A *Maximum

| l N Statistics:
\ *Expected value
n000 n211 B \ +Standard deviation
*Variance

We use the Welford algorithm for the running variance and mean of each

node. This allows us to aggregate information of the samples without
actually storing them.




Method Using KOtrees for parameter prediction and exploration

Requirement 2: Building a KOTree at run time
Calculating the path of a job in the tree

Rhigh3 Hypercubes

X.
1 Rhight
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Using KOtrees for parameter prediction and exploration
Requirement 2: Building a KOTree at run time

Online training

Adding example x;

root [o el kR root o
k=10, std=2.1 £ Time =1.6 4 k=11 £
mean: 3.4, ... B mean: 2.9, ...
n0 o n o n0 ° n2 o
k=4, std=2.4 |E k=6, std=1.1 |E k=4 £ k=7 E
mean: 4.3, ... mean: 2.8, ... mean: 4.3, ... mean: 2.6, ..
n00 e n21 e n00 |o n21 o n23 |o
k=4, std=0.9 |E k=6, std=0.8 £ k=4 £ k=6 £ k=1 £
mean: 4.3, ... mean: 2.8, ... mean: 4.3, ... mean: 2.8, .. mean: 1.6, ...
n000 o [ n211 [ n000 [ n21T o [ n232
k=4, std=09 |E k=6, std=0.4 |E k=4 £ k=6 E k=1 E
mean: 4.3, ... mean: 2.8, ... mean: 4.3, ... mean: 2.8, .. mean: 1.6, ...
KOTree before adding xi KOTree after adding xi

The computational cost of updating a tree of height p with a new sample
is O(p+1) = O(1)
Method
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Using KOtrees for parameter prediction and exploration
Requirement 3: Metric prediction in near-real time

Predicting time for

new job x; root ]
Path= 216 k=10, std=2.1 .E
mean: 3.4, ...
n0 o n2 o
k=4, std=2.4 |E k=6, std=1.1 £
mean: 4.3, ... mean: 2.8, ...
I | Select deepest node
noo n21 8 with smaller variance
o .
k=4, std=0.9 |E k=6, std=0.8 £ o il 2716,
mean: 4.3, ... mean: 2.8, ... Predict time = 2.8
n o n211 |
k=4, std=1.1 |E k=6, std=0.4 |E
mean: 4.3, ... mean: 2.8, ...

Node n216 does not exist and
cannot be used for prediction

The computational cost of making a prediction for a tree of height p is
O(p+1) = 0(1)
Method
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Using KOtrees for parameter prediction and exploration
Requirement 4: Parameter space exploration

The statistical structure in KOTree can find sweet-spots of parameters
whose jobs can potentially advance application goals

(V
v

el
VA
o

Vi
£
WA
\ A
TR

&
7

37)

)
A
7_\:\

Initial temperature
A

‘?}%/
A

/\ )

[\] ew

dae
\f
&Y

R

\ Vb

A
V

AA

A ‘,k\,
V)
A

L/

G
A/
e
bl
v

V

Evaluation — Discussion —




Using KOtrees for parameter prediction and exploration
Requirement 4: Parameter space exploration

The statistical structure in KOTree can find sweet-spots of parameters
whose jobs can potentially advance application goals

Initial temperature
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Requirement 4: Parameter space exploration

Selection of hypercubes to be explored

1/1.0+11.0+11.2+1/1.4+1/1.6 =4.16

n6 n657 ni n62 n120
E:1.0 E:1.0 E:1.2 E:1.4 E:1.6
100/(1*4.16) 100/(1*4.16) | 100/(1.2*4.16) | 100/(1.4*4.16) | 100/(1.6*4.16)
24 24 20 17 15
100 Jobs

@ Keep a sorted list of nodes whose values optimize application goal
@ Generate jobs within the node ranges proportionately to the node

score
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Method Using KOtrees for parameter prediction and exploration

Requirement 4: Parameter space exploration
Generation of job parameters within hypercubes

For each node in the list, generate the corresponding
number of jobs within the specific octant ranges

- 145 jobs

For each node, we generate job parameters in one of three ways:

Top promotes exploitation of a parameter that has proved to
advance application goal

Uniform promotes exploration of new regions and avoids getting
trapped in local minima
Chebyshev promotes a more extensive exploration near to the edges of
an hypercube




Method Integrated modular framework

Modular framework

Exploration and Prediction

jobs Job x.,y’| Learning engine
i — a
New jobs generation
Exploration:
i and |KOTree
uE> ; prediction
- . logs lops
@ | Computing —s Hesource —>
<3| Resources assessment Online training
= -7 ‘[Xi’ Yi
______ l g N o
Collected Jobs, metrics Result
results collection

Online training

More implementation details on the paper
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Evaluation

3 case studies

|
1

Execution Accuracy of
time of individual
individual jobs solutions

(-) Relevance for the application goal (+)

/

1
1
1
1
1
1
1
|
|
1
1
1
|

T
1

L |
Case study 1 Case study 3 Case study 2 I

Application goal

Case study 1 Assumes a latency-oriented application.
Case study 2 Assumes an accuracy-oriented application.
Case study 3 Assumes a convergence-oriented application.




Evaluation

14 implementation scenarios

Evaluation

Description

Time
S

Time
S

3
g
2

Time
-

Time

Method

Using 4 building
blocks per metric
(CPU time and
error), we constructed
14 functions
representing 14
different application
implementations with
1 to 4 parameters
each
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Evaluation

Comparing KOtrees vs. other methods

KOTrees

KOM Generation of parameters per job using a KOTree driven by
minimum values.

KOE Generation of parameters per job using a KOTree driven by
expected values.

Other
RND Generation of parameters per job using a random value
within specified ranges per parameter.
SAN Generation of parameters per job using a simulated annealing
approach

o
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Evaluation

Experimental set-up

@ BOINC server (version 6.11.1) - default scheduling policy and default
daemons for generation and validation of jobs.

@ EmBOINC (version v.1.2)
@ Same set of 12,470 hosts obtained from traces of Docking@Home
@ 168 simulated hours (1 week).

Total:

3 case studies * 14 scenarios * 4 algorithms per scenario * 5 simulations
per algorithm = 840 simulations
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Evaluation Results

Comparison of scenarios

Kolmorgorov-Smirnov test for dist(X) < dist(SAN), where X is RND, KOM, and
KOE respectively.

Percentage (%)

100

Case Study 1

Minimize CPU Time

Case Study 2
Maximize Accuracy

Case Study 3
Balance CPU Time and Accuracy

RND

KOE KOM

RND KOE KOM

RND KOE KOM

|:| Better than SAN

. Similar than SAN

|:| Worse than SAN ‘




Comparison of throughput
Normalized throughput with respect to SAN.

Case Study 1 Case Study 2 Case Study 3
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Analysis

Random

Initial temperature
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Simulated Annealing

Initial temperature

KOTree

Initial temperature

KOTree highlights
@ Space exploration

@ Relevant metric prediction
(expected job length)
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Related work

@ Build and update a tree-like model at runtime, which is able to learn
from observed data in a single pass, can be used to predict multiple
application metrics and explore parameter spaces efficiently.

@ Stream mining algorithms [Guha et.al., Zhang et.al., Yang et.al., Ueno
et.al., He et.al., Leng et.al., Raahemi et.al., Kawashima et.al., Qing
et.al., Machot et.al., Domingos et.al.]

@ Build a modular framework allowing integration of application-aware
self-management in VC.

@ MindModeling@Home propose the Cell mechanism to explore
parameter space [Moore Jr. et.al.]
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Discussion Conclusion

Conclusion

We present an autonomic, modular framework for providing
application-aware self-management for VC applications

KOTree is a fully automatic method that can be built and updated at
runtime. At any point in time, we have an organized data structure that

can predict multiple metrics of interest and explore the N-dimensional
space of parameters effectively.

@ This framework can effectively provide application-aware
self-management in VC systems.

@ The KOTree algorithm is able to predict expected length of new jobs

accurately, resulting in an average of 85% increased throughput with
respect to other algorithms.
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Future work

@ Adding a range expansion mechanism that allows just a rough
estimate of the initial parameter space.

@ Extending our application-aware self-management framework to other
distributed systems.

@ Extending KOTrees to perform multi-classification in the context of a
general stream mining algorithm
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Limitations

Parametric nature of KOTree

@ Space requirements. For a KOTree with N dimensions and height p,
the maximum number of nodes is:

total_nodes = O(2N°) (1)

o Few parameters N < 10
o Height of the tree p <6

@ Parameter ranges
@ Runtime structural modification, allowing parameter space expansion
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Range expansion
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Range expansion

(a) Updated 2-dimensional representation of KOTree (b) Updated KOtree structure
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Parametric application of protein-ligand docking
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Parametric application of protein-ligand docking
Data o »

& Build a lattice with the given 7
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£ pocket e
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ﬁstorage space

Finer lattices:
@ Increase storage space of the application
@ Increase accuracy of the solution, but just up_to a_point
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Parametric application of protein-ligand docking

Data et »
X Build a lattice with the given a
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& Docking method GPU fime of
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ﬁ Storage space

Number of MD steps:
@ Increase accuracy of the solution non-monotonically and just up to a
point
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Parametric application of protein-ligand docking

Data et »
T Build a lattice with the given 7
A? granularity within the docking 7 /
X pocket

7 S

&2 ey
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© Use the given docking method .

§ Number of MD steps to clacluate atomic interactions Metrics

Accuracy of

) the solution

@

& Docking method CPU time of

2 ) the simulation

2 Scoring function

ﬁstorage space

Docking methods:
@ Produce more or less accurate solutions
@ Take different amounts of CPU time
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Parametric application of protein-ligand docking
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< Granularity lattice
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S Number of MD steps to clacluate atomic interactions Docked etrics
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’ \(
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] " S i =
c n docked into the protein using g
2 Docking method the scoring function <2 S 2> d ) CPU time of
2 ZX the simulation
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ﬁstorage space

Scoring functions:
@ Have different sensitivity to rank correctly accurate solutions
@ Take different amounts of CPU time per simulation
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Simulating multiscale applications with EmBOINC

scale 1 scale 2 scale 3 Application
metrics

Application P _/ P (\ P v-\/\ y1 >

parameters
f1(p, .p,..p,)+ gl(p, .p,..p,)+ h1(p, .pP,...P,

P, P, Py
‘ P P P
(\/‘\, —_—— \

f2(p, .p,. Py ) + 92(p, P, Py ) + h2(p, P, . Py

fM(p, .p,. P, ) +gM(p, .p,,..p,) + hM(p, .p,. . P,)

¥

Given a specification provided by the user, our framework parses this
specification and builds the functions into a Perl module that is used at
runtime to provide information of each job to EmBOINC.
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Simulating multiscale applications with EmBOINC

An example of an EmBOINC specification file looks like this:

Q@application replica_exchange

Gmetric time

Gmetric accuracy

O@parameter number_replicas
$time=2+(sin($number_replicas**3);
$accuracy=0.6+sin($number_replicas*2);

O@parameter initial_velocity
$time=0.5+sin($initial_velocity);
$accuracy=0.5+tan($initial_velocity)/100;

O@parameter exchange_temperature
$time=log($exchange_temperature+l)*2;
$accuracy=(exp(-$exchange_temperature) *2;

— Limitations — Motivation — EmBOINC — Framework — Evaluation
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Parameter space exploration example 1

Goal: minimum expected error
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Parameter space exploration example 2

Goal: minimum expected time
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Modular framework

Job generation module

@ Provides a specification for parameter generation to the learning
engine.

A Replica Exchange (RE) simulation can be expressed as follows:

OGapplication replica_exchange

@parameter num_replicas integer [512 1024]
@parameter init_temp integer [1000 10000]
OGmetric specific_heat real

Ometric total_time integer

OGmetric expected_flops

Q@goal var(specific_heat)*exp(total_time)
@predict exp(expected_flops)

— Limitations — Motivation — EmBOINC — Framework — Evaluation —
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Modular framework

Job generation module

@ Communicates parameters in a format that is understandable by the
application.

@ Provides the application with specifications of the workload such as
number of replicas to be executed, and quorum.

Communication with the application is done through XML files

<params> 64, 3000, 5000 </params>
<expected_flops> 2155683199 </expected_flops>
<quorum> 3 </quorum>

— Limitations — Motivation — EmBOINC — Framework — Evaluation
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Framework

Modular framework

System assessment module

Determines the expected CPU time (CPU;) that the resources can
successfully process based on:
@ the 85th quantile of distributed jobs (in flops)
@ the number of unsatisfied requests times the average assigned
workload per request

@ the 85th quantile of distributed jobs whose execution latency has
exceeded a time-out bound
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Modular framework

System assessment module

This module receives three files from the distributed system:

Log 1 : Time of request, amount of flops requested, amount of
flops assigned

Log 3 : Job id, flops, CPU time, distributed time, collected time

Log 3 : Timed-out job id, estimated flops, distribution time,
time-out bound

— Limitations — Motivation — EmBOINC — Framework — Evaluation
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Framework

Modular framework

Result evaluation module

Extracts and formats metrics from collected results, then communicates
the output to the learning engine.

Following with our RE example, an output file looks like this:

<out params="64, 3000"> 3456.78, 986, 24563</out>

— Limitations — Motivation — EmBOINC — Framework — Evaluation
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Evaluation

14 scenarios
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Evaluation

SAN is better than KOtree when

error
°

The application has a single parameter with a small domain, and the
application has a well defined global minimum, such as in p4

— Limitations ivati EmBOIN
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SAN is better than KOtree when

error

There are only two parameters, one of them dominates the metric of
interest and has a quasi-random behavior, such as in plp2




SAN is better than KOtree when

error
error
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time
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Similar parameter values do not cluster naturally, and appear to be scatter
all over the landscape , such as in plp2p4




Comparison of scenarios

Case study 1 - minimizing time

Kolmorgorov-Smirnov test with respect to GRE
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Better Similar Worse

@ KOM is better than SAN in 57% of the cases and increases
throughput in average 75%.

@ KOE is better than SAN in 64% of the cases and increases
throughput in average 132%.




Comparison of scenarios

Case study 1 - minimizing time
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12— H 3.5 3.4
10 i ] @
— 1 2
28 | z
(@) p3p4 2 ¢ o
F o4 E E g
20y I & =
 TRND  GRE  KOM  KOE RND  GRE  KOM  KOE
10
1 -
b +
8 i 3 b P
- i ; + } £
£ 8 | | 2
(c) p2 g 4 i | | °
RN
2 2
0

University of Delaw



Comparison of scenarios

Case study 2 - maximizing accuracy

Kolmorgorov-Smirnov test with respect to GRE
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® KOM is better than SAN in 78% of the cases and increases
throughput in average 73%.

@ KOE is better than SAN in 86% of the cases and increases
throughput in average 61%.




Comparison of scenarios

Case study 2 - maximizing accuracy

Result distrbution Throughput
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Comparison of scenarios

Case study 3 - balancing time and accuracy

Kolmorgorov-Smirnov test with respect to GRE
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Better Similar Worse

® KOM is better than SAN in 86% of the cases and increases
throughput in average 85%.

@ KOE is better than SAN in 93% of the cases and increases
throughput in average 107%.




Comparison of scenarios

Case study 3 - balancing time and accuracy
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