
THE UNIVERSITY OF CHICAGO

TAKING ADVANTAGE OF USAGE SERVICE LEVEL AGREEMENTS FOR

BETTER GRID RESOURCE SCHEDULING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

CATALIN LUCIAN DUMITRESCU

CHICAGO, ILLINOIS

JUNE 2007

Copyright @ 2007

Catalin Lucian Dumitrescu

To my family and friends

 iv

Abstract

Challenging issues concerning resource usage can arise within virtual

organizations (VOs) that integrate participants and resources spanning multiple

physical institutions. Participants may wish to delegate to one or more VOs the right to

use certain resources subject to local policy and service level agreements; each VO

then wishes to use those resources subject to VO policy. In this dissertation I propose,

design, build, and evaluate a different approach for controlled resources sharing in

large distributed systems based on usage service level agreements (uSLAs). The

proposed model is targeted for large and dynamic distributed environments and is

itself distributed in order to cope with large communities of users that reside in

different administrative domains. Agreements and Service level Agreements are not

new concepts at this time. However, applying these concepts in a large scale Grid that

makes scheduling and resource sharing effective is difficult. Without such an

agreement based resource sharing mechanism in place, existing Grid scheduling,

centralized or distributed, either do not scale well, or are not effective due to a high

overhead of gathering up-to-date resource availability information. My thesis is that

the explicit representation, enforcement, and management of uSLAs can serve as an

objective organizing principle for such systems. uSLAs express how resources must

be used over time intervals and represent a novelty for the Grids. The concept comes

from the networking domain, where bandwidth is allocated based on specific rules.

v

The main objective is resources neither to remain idle when there are available

workloads for execution, nor a VO to consume more computing resources than

provided. In support of this thesis, my contributions are as follows. First, I propose

new mechanisms for uSLA specification and enforcement at various levels and

perform experimental measurements of the improvements that these mechanisms can

enable in different environments and for different workloads. Second, based on the

real deployments, I introduce a method for determining uSLAs via observation rather

than specification, that is, an algorithm that a client can use to determine automatically

the uSLA that is delivered by a resource in practice. Third, I introduce GangSim, a

simulator for Grid scheduling studies that allows uSLAs to be specified and simulated

at different levels, as well as automated performance measurements. And fourth, I

present GRUBER, a Grid resource scheduling prototype and architecture that allows

uSLAs to be specified by site, VO, and, group administrators.

The results show that uSLAs can be implemented with success and I provide

insights into the performance and utility of the uSLA mechanisms. For example, I

show that for real workloads on a real Grid, the measured response time is 2.67 times

higher and site utilization is up to ten times higher than a simple round robin strategy.

In the same case, the response time is 1.16 times higher and site utilization is equal

compared to an “optimistic” approach that sends jobs to recently responsive sites.

vi

Committee Members

Ian Foster, Director

Mathematics and Computer Science

Argonne National Laboratory and The University of Chicago

Anne Rogers, Professor

Computer Science Department

The University of Chicago

Asit Dan, Ph.D.

IBM Software Group

Somers, NY

vii

Acknowledgments

Firstly, I would like to thank my committee members. Ian Foster, my PhD advisor,

provided the best support for my endeavor during all this time. Also, every time I

doubted myself Ian gave me good reasons to continue. During the past two years,

Anne provided focus and guidance and gently pushed me to extend the work presented

in this dissertation. During the internship at IBM and in the years afterwards, Asit had

an important role in shaping the work described in this dissertation. Moreover, Ian,

Anne, and Asit have had a major impact on this piece of research and on shaping my

life during the past years.

Secondly, I would like to thank Robert Gardner, Marco Mambelli, Michael Wilde,

Jens-S. Vöckler, and Ioan Raicu for their insights and discussions in support of this

work. I also thank the Grid3 project. This work was supported in part by the NSF

Information Technology Research GriPhyN project, under contract ITR-0086044.

Thirdly, I would like to thank Dick Epema, Alexandru Iosup, Lex Woulters, and

Hui Li for the help on better understanding the importance and size of the traces

analyzed in this dissertation. Some of the results and observations reported here were

possible only with the support from the CoreGRID IST project n
0
004265, funded by

the European Commission.

Some of the graphs in this thesis were created using the RRDtool [1, 2].

viii

Table of Contents

Abstract... iv

Committee Members ... vi

Acknowledgments ... vii

List of Figures... xi

List of Tables .. xiii

CHAPTER ONE INTRODUCTION ..1
1.1 Envisaged Scenarios ..5

1.2 Refining the Research Problem ...9

1.3 Supporting Frameworks and Experiments...11

1.3.1. Frameworks..11

1.3.2. Results..13

1.4 Contributions..14

1.5 Metrics ...15

CHAPTER TWO RELATED WORK..19
2.1. Introduction..19

2.2. Resource Management Solutions for Grids: A Survey........................24

2.2.1 Community Authorization Service (CAS)..24

2.2.2 GARA: End-to-End Quality of Service for High-end Applications and

G-QoSM...26

2.2.3 SNAP: A Protocol for Negotiating Service Level Agreements and

Coordinating Resource Management in Distributed Systems27

2.2.4 WS-Agreement ...28

2.2.5 Commercial Workload Management Systems......................................28

2.2.6 Other Systems ...29

2.3. Simulators ..30

2.3.1 Bricks ..30

2.3.2 SimGrid...31

2.3.3 GridSim and ChicSim...32

2.4. Taxonomy of Policies for Access Control ...32

2.5. Discussion ..35

CHAPTER THREE USAGE SERVICE LEVEL AGREEMENTS IN GRID

ENVIRONMENTS ..36
3.1. Scenarios Revisited..37

3.1.1. Grid3 Scenario ...37

ix

3.1.2. Multi-Market Company Scenario ..43

3.1.3. Outsourcing Scenario...45

3.1.4. Requirements for uSLAs..47

3.2. Monitoring Approach...49

3.2.1. Monitoring Requirements ..50

3.2.2. Implementation Approaches and Technical Solutions51

3.3. uSLA Semantics...54

3.3.1. CPU Resource Support ..54

3.3.2. Disk Space Support..58

3.3.3. Higher-Level Services Support..61

3.4. uSLA Syntax..64

3.5. uSLA Derivation from Local Site Usage Policies81

3.5.1. uSLAs Translation from Site Resource Manager Configurations ...83

3.5.2. Disk Space Extensions...84

3.5.3. High Level Service Considerations ...84

3.6. Summary..85

CHAPTER FOUR GANGSIM: A SIMULATOR FOR GRID SCHEDULING

STUDIES ..86
4.1. Simulator Model ..87

4.1.1. Simulated Components ..88

4.1.2. Scenario Example ..90

4.1.3. Implemented Strategies..92

4.2. Implementation Details ..95

4.2.1. Main Components and Their Functionalities...................................95

4.2.2. Simulation Approach and its Limitations ..98

4.3. GangSim Output ..100

4.3.1. Experimental Setup..101

4.3.2. Performance Metric Examples...102

4.3.3. Graph Output Examples...104

4.3.5. Instantaneous Results...113

4.3.6. Simulation Step Value Influence ...115

4.3.7. Simulated Architecture Variations...118

4.3.8. Simulator Performance ..121

4.4. Summary and Future Work..126

CHAPTER FIVE GRUBER: A GRID uSLA-BASED BROKER................127
5.1 Implementation Details..127

5.1.1 The GRUBER Engine...131

5.1.2 uSLA Enforcers and Observers ..133

5.1.3 Queue Managers and VO-level uSLA Enforcement136

5.1.4 Site Selectors...137

5.1.5 Grid Service Brokering ...137

5.1.6 GRUBER Extensions..143

x

5.1.6.1 DI-GRUBER (DIstributed GRUBER)...................................143

5.1.6.2 Verifiers ...147

5.2 The Performance of GRUBER ..149

5.2.1 Experimental Setup...149

5.2.2 Scalability Test Results...152

5.2.3 Comparison with a Peer-to-Peer Service ..155

5.2.4 Accuracy Performance Results ...157

5.2.4.1 Accuracy with Mesh Connectivity...157

5.2.4.2 Accuracy with Exchange Time Intervals158

5.2.4.3 Accuracy with the Number of Decision Points...................159

5.2.5 Service Brokering Example on an Ad-hoc Grid159

5.3 Summary..161

CHAPTER SIX USAGE SERVICE LEVEL AGREEMENT RESOURCE

MANAGEMENT ...163
6.1. OSG/Grid3 Evolution ..164

6.2. Site-level uSLA Verification on OSG/Grid3.....................................165

6.2.1. Monitored Configuration ...165

6.2.2. Results and Analysis ..165

6.3. S-PEP vs. S-POP Analysis...168

6.3.1. Synthetic Workload Description..168

6.3.2. Emulated Environment and Settings..169

6.3.3. S-PEP-based uSLA Enforcement ..170

6.3.4. RM-based uSLA Enforcement...172

6.3.5. Quantitative comparisons...174

6.3.6. Conclusions..175

6.4. OSG/Grid3 Experiments..175

6.4.1. Workloads ..176

6.4.2. Configurations..177

6.4.3. GRUBER-based Scheduling on OSG/Grid3180

6.4.4. Statistical Results for GRUBER Scheduling on OSG/Grid3.............186

6.5. Conclusions..191

CHAPTER SEVEN CONCLUSIONS AND FUTURE WORK192
7.1. Lessons...192

7.2. Future Research Directions..193

REFERENCES...195

xi

List of Figures

Figure 1.1: Resource Allocation Schematic. VO A’s computing power is aggregated

from Sites X and Y, while VO B’s computing power is aggregated from Sites X, Y

and Z. Similarly for disk space. ..6

Figure 1.2: uSLA Introductory Example ..8

Figure 2.1: Grid Computing Overview...23

Figure 3.1: Grid3 Sites and Instantaneous Utilizations - The Grid Catalog Monitoring

System (GridCat) snapshot ...38

Figure 3.2: Virtual Organizations Operating on Grid3...40

Figure 3.3: Graphical View of the UChicago Resource Sharing..................................42

Figure 3.4: Graphical View of Multi-Market Company Resource Utilization.............44

Figure 3.5: Service Outsourcing Scenario ..46

Figure 3.6: VO-Ganglia Prototype..52

Figure 3.7: VO-Ganglia Reporting Example ..53

Figure 3.8: Correlations MP, SC, and AP...83

Figure 4.1: Simulator Overview ...96

Figure 4.2: No-limit uSLA Simulation Example..106

Figure 4.3: Fixed-limit uSLA Simulation Example..108

Figure 4.4: Extensible-limit uSLA Simulation Example..110

Figure 4.5: Commitment-limit uSLA Simulation Example..112

Figure 4.6: The ‘Schedulers’ View Exemplified ..114

Figure 4.7: Simulation Results for a 30s Simulation Step with Fixed-limit uSLA116

Figure 4.8: Simulation Results for a 60s Simulation Step with Fixed-limit uSLA117

Figure 4.9: Observational Approach (no-memory) for uSLA Discovery...................119

Figure 4.10: Observational Approach (with memory) for uSLA Discovery..............120

Figure 4.11: Average Requirement Metric Function of the Environment Size..........122

Figure 4.12: Overload Metric Function of the Number of Sites during Executions...123

Figure 4.13: Average Requirement Metric Function of the Workload Size...............124

Figure 4.14: Average Requirement Metric with the Number of VOs for Three

Environment Sizes ..125

Figure 5.1. GRUBER Resource Brokering...130

Figure 5.2. ARESRAN Architecture ..139

Figure 5.3. GRUBER Service Brokering..141

Figure 5.4. GRUBER Resource and Service Brokering ...142

Figure 5.5. DI-GRUBER Architecture ...144

Figure 5.6. DPs Allocation Interface (PlanetLab experimental testbed)146

Figure 5.7. Resource Allocation Scenario ..148

Figure 5.8. DI-GRUBER Performance Metrics..153

xii

Figure 5.9. Response Time (left axis) and Throughput (right axis) for a variable Load

(left axis * 10) for DI-GRUBER and PAST Network on 120 PlanetLab Nodes........156

Figure 6.1. Resource Allocations at the University of Chicago’s Site over an Interval

of 15 days and 4 hours (time is expressed in days and hours)....................................167

Figure 6.2. S-PEP with Condor (VO0)..170

Figure 6.3. S-PEP with Condor (VO1)..170

Figure 6.4. S-PEP with Maui/Open-PBS (VO0) ...171

Figure 6.5. S-PEP with Maui/Open-PBS (VO1) ...171

Figure 6.6. Condor as S-PEP (VO0)..172

Figure 6.7. Condor as S-PEP (VO1)..173

Figure 6.8. Open-PBS/Maui as S-PEP (VO0)...173

Figure 6.9. Open-PBS/Maui as S-PEP (VO1)...173

Figure 6.10. OSG/Grid3 Architecture...178

Figure 6.11. Speedup Comparisons among Workloads..189

xiii

List of Tables

Table 4.1. Job Requirements (the numbers represent required number of CPUs per job

and its utilization per site in percentages for the second column, and required number

of files per job and space requirements in percentages for the third column)91

Table 4.2: Response and Util Value Results...103

Table 4.3: Response and Util Value Results (fix-limit uSLA scenario).....................121

Table 5.1. Accuracy Function of the Infrastructure Mesh Connectivity157

Table 5.2. Accuracy Function of the Exchange Time Interval for Three and Ten DPs

...158

Table 5.3. Accuracy Function of the Number of DPs...159

Table 5.4. Service Brokering Performance Results (Metrics: Number of Request,

GRUBER infrastructure Response time, Tested Service Response Time and Tested

Service Reject Time)...161

Table 6.1. Possible uSLAs Scenarios for the VOs introduced in Chapter 3, Target

represents the VO’s burst limit, Current represents the VO’s utilization, Demand,

represents the VO’s instantaneous request, and Level represents an uSLA violation

indicator) ...168

Table 6.2. Synthetic Workloads’ Composition...169

Table 6.3. Quantitative Comparison Results ..174

Table 6.4. OSG/Grid3 Resource Sharing Example ..179

Table 6.5. Performance Metrics for one 1k BLAST workload...................................180

Table 6.6. Performance Metrics one 10k BLAST Workload182

Table 6.7. Performance Metrics for four Concurrent 1k BLAST Workloads183

Table 6.8. Error Percentages of 15k BLAST jobs submitted as 1k workloads

(Percentages are computed as the ratio of current errors to the total number of errors)

...185

Table 6.9. Average Results and 90% Confidence Intervals of Four GRUBER

Strategies for a 10 job BLAST Workload (each workload was run 10 times and

confidence intervals are based on these 10 runs)..187

Table 6.10. Average Results and 90% Confidence Intervals of Four GRUBER

Strategies for 50 BLAST Workloads (each workload was run 50 times and confidence

intervals are based on these 50 runs) ..187

Table 6.11. Average Results and 90% Confidence Intervals of Four GRUBER

Strategies for 100 BLAST Workloads (each workload was run 100 times and

confidence intervals are based on these 100 runs)..188

Table 6.12. Average Results and 90% Confidence Intervals of Four GRUBER

Strategies for 500 BLAST Workloads (each workload was run 500 times and

confidence intervals are based on these 500 runs)..188

xiv

Table 6.13. Error Percentages of 28k BLAST jobs submitted as small and medium

workloads (Percentages are computed as the ratio of current errors to the total number

of errors)..190

1

CHAPTER ONE

INTRODUCTION

In this dissertation I propose, design, build, and evaluate an approach for controlled

resources sharing in large distributed systems. The proposed model is targeted for large

and dynamic distributed environments and is itself distributed in order to cope with

large communities of users that reside in different administrative domains. Grids [3, 4]

and Peer-to-Peer systems [5-11], as real-world examples, provide the requirements for

this work and serve as testbeds to evaluate potential solutions in realistic settings. I

focus on Grid computing because it enables participants to share many types of

resources: CPUs, disk, network or other complex services.

The thread shared by most Grid systems is cooperative computing [12]. The goal of

these systems is to provide large-scale, flexible, and secure resource sharing among

dynamic collections of individuals, institutions, and resources, also referred as virtual

organizations (VOs) [4]. In such settings, users from multiple administrative domains

pool available resources to harness their aggregate power and to benefit from the

increased computing power and the diversity of these resources, especially when their

applications are customized for a specific computing configuration (i.e., 64-bit

architectures vs. 32-bit architectures, ring vs. star network topology).

2

Resource sharing within large distributed systems that integrate participants and

resources spanning multiple physical institutions raises challenging issues [13].

Physical institutions may wish to delegate to one or more participants the right to use

certain resources subject to local preferences and various agreements; each participant

then wishes to enable those resources subject to their own policy. Mechanisms for

supporting controlled resource sharing must be designed to allow cooperative systems

to provision resources based on pre-negotiated agreements and on providers’

preferences.

The increased scale of distributed systems calls for minimizing the needs for human

supervision and for automating as many management tasks as possible. For example, in

a system with over 10,000 nodes, new settings may occur thousands of times more

often than when no resources are shared. At the same time, the complexity of necessary

services will increase with the scale of the system. For example large and distributed

systems require resource discovery and brokering services.

Increasing scale in cooperative computing also makes performance and reliability

challenging. Centralized systems are unlikely to rise to this challenge of serving as a

single unified management decision point for hundreds to thousands of jobs and sites,

and they can become a bottleneck in terms of both reliability and performance.

Additionally, in a wide area network, where short and transient failures often occur, a

single decision point can become inaccessible for varying time periods. Distributed

services can alleviate these challenges and improve availability.

3

 Current solutions for controlling resource access in large scale distributed systems

focus mainly on access control [14, 15], but other groups have started pursuing various

paths for controlled resource sharing [16-22]. Finer access control mechanisms focus

on allowing resource providers to express additional conditions about access and

delegate partial control to other entities. For example, a Community Authorization

Service (CAS) for access control policy management allows resource providers to

maintain ultimate authority over their resources, but spares them from day-to-day

policy administration tasks (e.g. adding and deleting users, modifying user privileges)

[14]. Access control dictates the operations an entity is entitled to perform on certain

resource without any further restrictions once access is granted. Other methods focus on

economic models or matchmaking for controlled resource provisioning. In such cases,

mini-markets are built for resource brokering and provisioning [16]. Another approach,

Service level agreements (SLAs) [22, 23], focuses on establishing consumer-provider

relationships concerning how resources must be consumed. Such relationships can be

designed by bi-lateral rules that are driven by the internal policies that govern an

institution.

The difference of my work from access control mechanisms consists in its support

for finer control about what fraction of resources a user can use after access was

granted. Currency-based mechanisms also allow for such finer access control, but they

offer instead a homogeneous access mechanism without enforcing any other rules

pertaining to user characteristics (like physical location or a supporting VO).

Agreements and Service level Agreements are not new concepts at this time [21, 24,

4

25]. However, applying these concepts in a large scale Grid environment (multi-

domain resource sharing) that makes scheduling and resource sharing effective is

difficult. Without such an agreement based resource sharing mechanism in place,

existing Grid scheduling, centralized or distributed [18, 19, 37, 59, 60, 137], either do

not scale well, or are not effective due to a high overhead of gathering up-to-date

resource availability information. Agreement-based sharing focuses on establishing bi-

lateral consumer-provide relations. When many players are involved, the establishment

of bilateral agreements among all parties is difficult. Thus, after a provider has

established all the agreements he wants, he could use uSLA mechanisms to express

them and ensure their enforcement at the Grid level.

In the networking domain, usage service level agreements (uSLAs) are used to

address the problem of bandwidth allocation based on specific rules. Such policies are

specified by network administrators and contain the rules for handling different types of

traffic. In this domain, a simple usage policy example is “Email traffic is only allowed

from outside the company’s servers only from a special mail gateway.” [26-29] This

technique cannot be applied directly to Grids without addressing the problem of multi-

type resources (CPU, disk, services). In this dissertation I address how a refined and

extended concept of usage policy can be applied with success in a Grid setting.

In this chapter I provide an initial scenario for the resource sharing problem, a

description of the research problem and a succinct introduction to the supporting

frameworks and results achieved during this work. I finish this chapter with a

discussion of my contributions and a roadmap of how I explore the explicit

5

representation, enforcement, and management of uSLAs in large distributed

environments.

1.1 Envisaged Scenarios

The environments I target comprise potentially large numbers of resources, resource

providers, and virtual organizations (VOs) [30, 31]. For example, in the sciences,

hundreds of institutions and thousands of individual investigators may collectively

control tens or hundreds of thousands of computers and associated storage systems.

Each individual investigator and institution may participate in, and contribute resources

to, multiple collaborative projects that can vary widely in scale, lifetime, and formality.

At one end of the spectrum, two collaborating scientists may want to pool resources for

the purposes of a single analysis. At the other extreme, the major physics collaborations

associated with the Large Hadron Collider [32] encompass thousands of physicists at

hundreds of institutions, and need to manage workloads comprising dynamic mixes of

work of varying priority, some requiring the efficient aggregation of large quantities of

computing and storage.

Figure 1.1 shows a high-level model of resource allocation. In the two VOs

(squares) and three sites (circles), shaded elements indicate the compute (C) and storage

(S) resources allocated to each VO at each site. Sites and VOs share resources by

defining how resource usage takes place in terms of who, what, where, and when it is

allowed. VOs and SLAs can, of course, be nested [33].

6

Figure 1.1: Resource Allocation Schematic. VO A’s

computing power is aggregated from Sites X and Y, while

VO B’s computing power is aggregated from Sites X, Y and

Z. Similarly for disk space.

7

 Users submit workloads that may comprise many thousands of independent or

loosely coupled tasks [13, 34-37]. I use an introductory example (see Figure 1.2) to

show how an uSLA can be used to guide resource allocations in such scenarios, and to

illustrate some of the issues that must be addressed when implementing uSLAs.

Assume that provider P has R computing resources available and wants to provide a

portion of these resources (R1) to consumer C1 for a period of one month. The provider

must be able to express and enforce this agreement. We must also be concerned with

exactly how this agreement is to be interpreted. The resources in question might be

dedicated to C1 or, alternatively, P might make them available to others when C1 is not

using them. In addition, if C1 is allowed to acquire more than its allocation when

resources are not being used for other purposes, then this “over allocation” may or may

not result in C1’s allocation being reduced later in the month [33]. C1, in turn, wants to

discover the allocation made by P, to interpret this agreement in terms of its semantics,

and to use the resulting information when making scheduling decisions: it may, for

example, choose to send tasks to another provider rather than P, if its allocation at P is

exhausted. C1 may also want to monitor the resources that it obtains from P, to verify

that P is adhering to the uSLA that has been negotiated. (In other contexts, monitoring

can also be used to infer the uSLA that is place, when this information is not made

available, or proves to be incorrect).

8

Figure 1.2: uSLA Introductory Example

9

Thus, an uSLA [38, 39] expresses a relationship between a resource provider (a site

or VO) and a resource consumer (a VO or user). Brokers, or directly, consumers

aggregate resources acquired from different providers, and orchestrate distributed

computations to use those aggregated resources efficiently. In this context, a broker

represents an entity that aggregates resources from various providers and advertises

them to other consumers.

Starting from the above example, I define an uSLA as representing a provider

statement about a contract that governs how its resources are to be allocated to a

specific resource consumer. In a typical scenario, individual resource providers

negotiate uSLAs with relevant consumers or brokers to establish what resources are

available for use. Policy makers who participate in such collaborations define usage

policies involving various levels of resource sharing. A VO in its role as both resource

consumer (from sites or other VOs) and provider (to its consumers: users or groups

within the VO) acts as a broker for a set of resources.

1.2 Refining the Research Problem

Running workloads in a Grid environment without any knowledge about the

employed resource sharing policies can be a challenging problem. For example, Grid3

[13] represents a multi-virtual organization environment, is composed of 30 sites

around US and sustains production level services required by various physics

experiments [40]. Usually, these participating sites are the OSG/Grid3 resource

providers and their resources are made available under various conditions not captured

10

by any monitoring tool (i.e., VO priorities, local usage policies, etc). In this

environment, users often face the problem of high latencies for their jobs even though

various monitoring tools show the selected sites as partially available. Thus, the

question “How should usage policies for scheduling be represented and used?”

becomes important to address. Important challenges range from the lack of automated

mechanisms for uSLA discovery, publication, or interpretation [13] to the complexity

of the uSLA operations to be performed to satisfy the requirements [10, 41] of many

resources and users. Additionally, controlled resource sharing mechanisms may

introduce too much overhead to justify their deployment in real environments.

I make two assumptions in this dissertation. First, providers have local policies

about how their resources are used, while also focusing on achieving higher gains for

these resources (i.e., utilization). Second, consumers want to achieve better

performance for their applications and to acquire as many resources as possible when

their applications require a lot of computational power (for example, the physicists

participating in the LCG project [32]).

In a large distributed environment, both computing resources and site management

solutions are heterogeneous. Thus, determining the usage policies at each individual

site might not be trivial. Also, these policies are always specified in terms of specific

local resource manager syntax and semantics. In cases where such policies are not even

specified, local sites would require new usage policy mechanisms for enforcement

when joining a large computing collaboration. Thus we must answer the question “How

11

can a system determine and enforce providers’ policies, if these policies not specified

explicitly?”

The last question, “What benefit can be derived from relying on uSLAs for

controlled resource sharing?” captures the notion that the participants in a cooperative

environment are interested in maximizing their own benefits. Thus, the sharing

mechanisms must provide real gains for all participants to be successful.

1.3 Supporting Frameworks and Experiments

This dissertation describes a novel approach to controlling resource sharing in large

distributed systems. To demonstrate the practicality of this model, I have designed a

notation for uSLA specification and defined four uSLA semantics; simulated the four

uSLA semantics using a resource scheduling simulator named GangSim [42]);

evaluated a decentralized solution for uSLA management based on the GRUBER [43]

framework for large distributed and dynamic environments; and demonstrated in

practice how uSLA-based resource sharing works using the GRUBER framework.

In the rest of this section I introduce the two supporting tools developed specifically

to evaluate uSLA-based model and present an overview of the results that support this

dissertation.

1.3.1. Frameworks

The first tool, GangSim [42], is a VO-centric Grid simulator I developed for the

scheduling studies presented in this dissertation. GangSim simulates a context where

12

hundreds of institutions and thousands of individuals collectively control hundreds to

thousands of computers and associated storage systems.

GangSim is a discrete simulator that periodically evaluates the state of all simulated

components: sites, VOs, schedulers (internal, external and data), monitoring data

points, site policy enforcement points and VO policy enforcement points. GangSim also

evaluates costs associated with the simulated components: time to enter the scheduling

queues, time for site assignment, time for site transfer (network allocation and transfer

for the executable), time for node assignment, and time for job transfer (network

allocation and transfer for the executable and data) [44].

The main purpose of GangSim is to provide support for simulating the combination

of uSLAs, scheduling policies and various workloads on certain Grid architectures and

to measure various metrics, such as: resource utilization, response times, local and VO

policy violations, and queue times when failures and costs are simulated.

The second tool, GRUBER [43], is a framework for uSLA discovery, resource

management and job routing that I developed for deployment in Grid environments. It

discovers and uses sites’ uSLAs for better resource scheduling. GRUBER focuses on

computing resources such as computers, storage, and networks; providers may be either

individual scientists or sites; and VOs are collaborative groups, such as scientific

collaborations. GRUBER adds to the classical Grid concrete support for discovering,

specification, and enforcement of uSLAs. Also, GRUBER supports uSLA management

at several levels in a Grid, from the site level up to the end user level [43]. Whenever a

management decision must be performed, the uSLAs from several levels are composed

13

to compute the actual resource allocation for the requesting user. To cope with large

and dynamic Grids, several decision points can be deployed in a distributed manner and

they cooperate for accurate decision making [45]. When a Grid scheduler is missing,

GRUBER can also play the role of a basic Grid scheduling infrastructure.

1.3.2. Results

The results presented in this dissertation can be grouped into three main categories:

analyses by means of simulations of uSLA semantics and infrastructure models,

analyses of uSLA-based resource sharing and models with support for decentralization

and dynamic Grids, and analyses of previous concepts for job submission over

OSG/Grid3 [13].

I performed extensive experiments using GangSim to evaluate alternative uSLAs,

architecture models, and mechanisms for collecting, publishing, expressing, and

enforcing policies at various levels in a Grid. I also devised and analyzed the behavior

of four uSLAs semantics — no-limit, fixed-limit, extensible-limit, and commitment-limit

— in conjunction with several scheduling policies. The simulation results showed that

the commitment-limit semantics performs best in terms of both resource utilization and

response time.

My results obtained with GRUBER demonstrate that taking into account usage

policies where they exist and performing uSLAs-based scheduling allow both resource

consumers and providers to achieve higher performance (smaller response times and

better resource utilization, respectively). I used this framework to simulate a Grid ten

times larger than OSG/Grid3 on PlanetLab [46] under a constant workload of at least

14

one job per second from 120 submission hosts. These experiments show that three to

five decision points are sufficient to handle the decisions required for such a Grid [45].

Finally, I use the BLAST workloads [43] over OSG/Grid3 [13] to show that uSLAs

can be used successfully in practice and to show the expected performance for such

situations [40], as reported in Section 6.4.3 of this dissertation. In the OSG/Grid3 case,

the measured response time is 2.67 times higher and site utilization is up to ten times

higher than a simple round robin strategy. In the same case, the measured response time

is 1.16 times higher and site utilization equal compared to an “optimistic” approach that

simply sends jobs to recently responsive sites.

1.4 Contributions

This dissertation introduces an uSLA-based resource sharing model for large

distributed environments. The contributions of this work are:

1. New mechanisms for uSLA specification and enforcement at various levels and

experimental measurements that demonstrate the performance improvements that

these mechanisms can enable in different environments and for different workloads.

2. A method for determining uSLAs via observation rather than specification, that is,

an algorithm that a client can use to determine automatically and dynamically the

uSLA that is delivered by a resource in practice.

3. A Grid resource scheduling architecture that allows uSLAs to be specified by site,

VO, and, group administrators. Also, a software framework, called GRUBER, that

15

implements that architecture and permits experimentation with alternative

implementations of different functions.

4. A simulator, GangSim, for Grid scheduling studies that allows uSLAs to be

specified and simulated at different levels (sites, VOs, and groups), as well as

automated performance measurements.

The contributions for each chapter are outlined next. First, I discuss related work in

Chapter 2. Second, I introduce the uSLAs problem and discuss representations for

uSLAs in the Grid environment (Chapter 3). Third, I present detailed descriptions of the

GangSim simulator and the GRUBER framework (Chapter 4 and 5). Fourth, I present

experimental results gathered for two main scenarios, site level uSLA-based resource

management and those gathered using GRUBER on the OSG/Grid3 testbed (Chapter

6). The dissertation ends with conclusions and future research directions (Chapter7).

1.5 Metrics

This section defines metrics used in this dissertation to evaluate and compare

different mechanisms for controlled resource sharing.

Aggregated resource utilization (Util) is defined as the ratio of the CPU time

actually consumed by the N jobs executed during the period considered (Σ
N

i=1 ETi) to

the total CPU time available over that time:

Util = Σ
N

i=1 ETi / (#_of_CPUs * ∆t)

Util is designed to capture both the enforcement of consumers’ preferences and how

well a provider’s resources were used.

16

Total job completion per site, VO or overall (Comp), measures the total number of

jobs from a given set that are completed in a certain interval:

Comp = Completed_Jobs / #_of_Jobs * 100.00

This metric is designed to quantify the imbalance introduced by a given scheduling

policy. It is useful for assessing the overall performance of the scheduling strategy.

Average site response time (Delay) represents the average time, per job (DTi), that

elapses from when the job arrives at a resource provider’s queue until it starts (the time

between when a request is made and when the job starts at the site level):

Delay = Σ
N

i=1 DTi / #_of_Jobs

This metric is designed to order sites in a Grid function of their responsiveness in

scheduling jobs.

Average Grid response time (Response) is computed as the average time per job

that elapses from the job submission to an external scheduler queue until it starts (RTi),

in other words, the time between when a request is made at the Grid level and when the

job starts on a site:

Response = Σ
N

i=1 RTi / N

Response combined with the number of completed jobs is designed to allow users to

quantify their satisfaction.

Average starvation factor (Starv) represents the ratio of the resources requested and

available, but not provided to a user, to the resources consumed by the user (ETi),

where i represents a site number (N). I compute this quantity as follows, where STi is

17

the CPU resource requested by a user but not provided, and RTi is the total resources

available:

Starv = Σ
N

i=1 (MIN (STi, RTi)) / Σ
N

i=1 ETi

This metric is designed to measure how well a scheduling approach provides resources

when available.

uSLA violation ratio (Violation) represents the ratio of the CPUs consumed by

users (BETi) over the allocation interval to total the CPU power:

Violation = Σ
N

i=1 BETi / (#_of_CPUs * ∆t)

This metric is designed to quantify a users’ satisfaction under a specific uSLA over a

given time interval ∆t.

I define the scheduling accuracy (Accuracy) for a specific job (SAi) as the ratio of

free resources at the selected site to the total free provided resources over the entire

Grid. Accuracy is then the aggregated value of all scheduling accuracies measured for

each individual job:

Accuracy = Σ
N

i=1 SAi / N

Accuracy is designed to measure how well a distributed brokering system deals with

partial information.

Error per job (EPJ) is the number of failures per job. This metric is used to quantify

the improvement in job execution over OSG/Grid3 between the two sets of experiments

presented in Chapter 6.

Throughput is defined as the number of requests completed successfully by the

service per unit time.

18

Replan is the number of re-scheduling operations performed during a considered

workload execution or time interval.

Time is the total execution time for a workload considered for any of the

experiments in this dissertation.

Speedup is the serial execution time to the grid execution time for a workload, and,

finally, Spdup75 is the serial execution time to the Grid execution time for 75% of a

workload.

19

CHAPTER TWO

RELATED WORK

In this chapter I introduce in more detail the Grid computing domain, as defined by

Foster et al. [3, 4, 47], and, next, I describe the main approaches and available systems

for controlled resource sharing in such environments. The chapter also includes a

survey of existing Grid simulators and their limitations that supported the necessity for

building GangSim, a means for uSLA-based scheduling studies. The chapter ends with

taxonomy of the policies used for controlled resource sharing in this domain.

2.1. Introduction

The term Grid was coined in the mid 1990s to denote a distributed computing

infrastructure for advanced science and engineering. Grid computing defined through a

series of excerpts introduced by Foster et al. [4]:

1. “Grid computing has emerged as an important new field, distinguished from

conventional distributed computing by its focus on large-scale resource

sharing, innovative applications, and, in some cases, high-performance

orientation.”

20

2. “... the ‘Grid problem, which I define as flexible, secure, coordinated

resource sharing among dynamic collections of individuals, institutions, and

resources — what I refer to as virtual organizations. In such settings, I

encounter unique authentication, authorization, resource access, resource

discovery, and other challenges. It is this class of problem that is addressed

by Grid technologies.”

3. “The real and specific problem that underlies the Grid concept is coordinated

resource sharing and problem solving in dynamic, multi-institutional VOs.

The sharing that we are concerned with is not primarily file exchange but

rather direct access to computers, software, data, and other resources, as is

required by a range of collaborative problem-solving and resource brokering

strategies emerging in industry, science, and engineering. This sharing is,

necessarily, highly controlled, with resource providers and consumers

defining clearly and carefully just what is shared, who is allowed to share,

and the conditions under which sharing occurs. A set of individuals and/or

institutions defined by such sharing rules form what we call a virtual

organization (VO).”

In a nutshell, Grid computing is about large scale resource sharing, innovative

applications, and high performance computing [4]. It is meant to offer flexible, secure,

coordinated resource sharing among dynamic collections of individuals, institutions,

and resources, namely VOs. Figure 2.1 below gives a glimpse into the complex nature

of Grid environments; it depicts VOs (blue clouds) interconnected at both the physical

21

layer (via networks) and at the abstract layer (via service layer agreements). Each VO

has resources (i.e. direct access to computers, software, and data) and users. Based on

the agreements among the various VOs, users can locate and share resources that are

part of different VOs and could be physically located anywhere in the world.

The Grid provides a means for resource sharing distributed in different

administrative domains. The main topics of research are:

Resource Management: Developing uniform and scalable mechanisms for naming,

locating, and allocating computational and communication resources in distributed

systems is a difficult problem. Usually, resources are hidden by various layers of

software management and offering a transparent interface for utilization becomes a

difficult problem to address in practice.

Data Management and Access: An important element is the design and production

of infrastructure-level architecture for data management, which are called the data grid.

Many applications that are intended for grids are data intensive, in the sense that they

require large amount of input and output data for normal execution. Data placement is a

difficult problem; because it has to take in account also the network link capacities and

local CPU power. Also, data scheduling must proceed (or complement) job scheduling

to avoid job starvations due to missing data.

Information Services: Requirements, designs, and prototypes of Grid information

service are critical in large environments. Such services provide useful information

about what resources are available or how resources must be used and allocated. Also,

22

these services become an enabler for dynamic application configuration and adaptation

in dynamic environments where resources join and leave the environment at a fast rate.

Security: Secure group communications, management of trust relationships, and

developing new mechanisms for fine-grained access control are important for grid

applications. To ensure authenticity without the physical necessity of holographic

signatures, signing cryptographic mechanisms are developed and provided for

messages and documents. Encrypting the entire document with a receiver's public key

assures that only the receiver might be able to read the document's content. The purpose

of such signing / encrypting, then, is to guarantee that any attempt to modify / read the

content of a document becomes practically impossible. Thus, key possession and

protection become an important issue in a world that lives in digital environments and

needs confidentiality or/and privacy.

23

Figure 2.1: Grid Computing Overview

24

Motivated by a desire to support better resource management and access services,

more and more effort is invested in research and development of systems for delivering

management services over national and global scopes [48]. Current solutions for

controlling resource utilization in large scale distributed systems focus mainly on

access control [14, 15], but other groups have started pursuing various paths for

controlled resource sharing [16-22]. Next, I detail some of the most common Grid

technologies for resource management and access.

2.2. Resource Management Solutions for Grids: A Survey

I describe in this section four well known efforts for controlled resource

management in Grids, plus three additional infrastructures targeted at resource

management. Each of these solutions is pursued by different communities or groups

and have large acceptance for the Grid community [31, 49].

2.2.1 Community Authorization Service (CAS)

Community Authorization Service (CAS [14, 15]) represents one of the efforts

pursued by the Globus team for providing controlled access to Grid resources. CAS

builds on X.509 and Certificate Authority (CA) concepts in order to support controlled

resource sharing for resource providers that specify course-grained access control

policies, and delegating fine-grained access control policy management to the

community itself.

X.509 [50, 51] defines a centralized control framework for providing authentication

services by using cryptographic techniques. There are three main roles required by this

25

approach: Certificate Authorities, Subscribers and Users. An additional entity is

represented by a Naming Authority (NA). CA [52] is the entity recognized by several

principals that controls authentication mechanisms and the management of certificates.

Principals trust a CA by knowing (correct: believe they know) its correct public key

and accepting unconditionally as authentic all certificates signed with this key. Because

the verification process requires as information only the public key of the signing CA

and certificates, the entire process can be completed without the permanent presence of

the CA online. The only issue is the acquisition of the correct public key of the trusted

CA.

By means of CAS, resource providers maintain ultimate authority over their

resources but are spared from day-to-day policy administration tasks (e.g. adding and

deleting users, modifying user privileges). CAS is designed as a centralized server that

is initiated for a community: a community representative acquires a GSI credential to

represent that community as a whole, and then runs a CAS server using that community

identity. Later, resource providers grant privileges to the community. Each resource

provider verifies that the holder of the community credential represents that community

and that the community's policies are compatible with the resource provider's own

policies. Once a trust relationship has been established, the resource provider then

grants rights to the community identity, using normal local mechanisms. Also, a user

uses the credentials from the CAS to connect to the resource with any normal Globus

tool (e.g., GridFTP [53]). The resource then applies its local policy to determine the

amount of access granted to the community, and further restricts that access based on

26

the policy in the CAS credentials. This serves to limit the user's privileges to the

intersection of those granted by the CAS to the user and those granted by the resource

provider to the community. CAS is distributed with the Globus Toolkit [15].

2.2.2 GARA: End-to-End Quality of Service for High-end Applications and

G-QoSM

GARA [18] represents a modular and extensible architecture for resource

reservations to support end-to-end application quality of service (QoS) in Grids. It

offers a single interface for reserving different types of resources (network, CPU, disk),

and focuses on provisioning generic solutions and algorithms for different types

resource managers (the heart of GARA). Reservations (and QoS) are specified through

a specialized C-API, composed of client and Globus [54] modules for admission

control. GARA is built on three levels: low-level QoS RMs, a QoS component for

interfacing with the low-level RMs and provisioning the common interface, and high-

level libraries (at the user level) for leveraging reservation synchronizations for user-

level applications. The prototype supports only finite reservations, with three main

classes of elements: reservations, resources, and QoS elements. All communications

client - agreement provider are done through a specific API, and the underlying

language for messages is RSL, with only one QoS quantitative parameter per

reservation request [18].

G-QoSM [55] builds on top of GARA in order to provide support for applications

utilizing Grid computing infrastructure and requiring the simultaneous allocation of

resources, such as compute servers, networks, memory, disk storage and other

27

specialized resources. Collaborative working and visualization are examples of such

applications. G-QoSM is a framework for QoS management and allows Grid users to

specify, locate and execute Grid jobs with QoS constraints on Grid enabled resources.

The framework provides three particular features: 1) support for resource and service

discovery based on QoS properties; 2) support for providing QoS guarantees at

middleware and network level, and establishing SLAs to enforce these; and 3)

providing QoS management on allocated resources based on a pre-negotiated SLA.

2.2.3 SNAP: A Protocol for Negotiating Service Level Agreements and

Coordinating Resource Management in Distributed Systems

SNAP [19] tries to overcome previous resource managements by providing a

generic framework instead of considering specialized classes of resources. The

generalized framework maps resource interactions onto a well defined set of platform

independent service level agreements. SNAP represents the instantiation of this

generalized framework, which provides a management infrastructure for such SLAs.

However, the entire approach is generic enough and can be used beyond the Grid

domain and Globus Toolkit in particular [19, 56, 57].

The SLAs are categorized as: task service level agreements, resource level

agreements, and binding service level agreements. A minimal number of scenarios are

also introduced, to provide a basic understanding how SNAP should be used in

practice: file transfer service, job staging with transfer service, resource virtualization.

Also, for agreements realization, a supporting protocol is introduced that supports the

SLA management. [58]

28

2.2.4 WS-Agreement

WS-Agreement is a specification for resource reservations in grid environments. It

is a second version of the OGSI-Agreement, developed in the GGF context. Cremona is

a project developed at IBM as a part of the ETTK framework [21, 24, 25], which

represents an implementation of the WS-Agreement specification. Its architecture

separates multiple layers of agreement management, orthogonal to the agreement

management functions: the Agreement Protocol Role Management, the Agreement

Service Role Management, and the Strategic Agreement Management. Cremona

focuses on advance reservations, automated SLA negotiation and verification, as well

as advanced agreement management.

2.2.5 Commercial Workload Management Systems

IBM WebSphere Extended Deployment (XD) is a good example of a commercial

workload management system. It offers a dynamic environment for running mixed

application types, while also comparing business values for various allocations in order

to maximize the business value. Business requirements on the common infrastructure

include quantifying and satisfying service level agreements (SLAs) for external

customers. This component can and will interact with other services to obtain necessary

information. Its primary goal is to interact with the external customer and identify the

specific characteristics [137]. At the provider level, a policy-based management

component imposes optimal allocations and maintains the integrity of the provider’s

29

environment. The engine examines the policies to determine a configuration with the

best “score,” which represents the optimal resource configuration [138, 139].

2.2.6 Other Systems

Other groups have pursued similar paths for resource sharing. The most notable ones

are the SPHINX framework, developed at the University of Florida, and the Grid

Service Broker. SPHINX is policy based scheduling framework for Grid-enabled

resource allocations [59]. This framework provides scheduling strategies that (a)

control the request assignment to grid resources by adjusting resource usage accounts

or request priorities; (b) manage efficiently resources assigning usage quotas to

intended users; and (c) supports reservation based grid resource allocation.

The Grid Service Broker, a part of the GridBus Project, mediates access to

distributed resources by (a) discovering suitable data sources for a given analysis

scenario, (b) suitable computational resources, (c) optimally mapping analysis jobs to

resources, (d) deploying and monitoring job execution on selected resources, (e)

accessing data from local or remote data source during job execution, and (f) collating

and presenting results. The broker supports a declarative and dynamic parametric

programming model for creating grid applications [60].

KOALA [37] has been designed and implemented by the PDS group in Delft in the

context of the Virtual Lab for e-Science (VL-e) project. The main feature of KOALA is

its support for co-allocation; that is, the simultaneous allocation of resources in multiple

clusters comprising a Grid to a single application consisting of multiple stages.

Currently, KOALA supports processor and memory co-allocation and makes use of the

30

SGE local resource managers. KOALA makes use of the Close-to-File policy (CF) or

the Incremental Claiming policy (IC) for scheduling jobs. The most important feature

that enables this work is its capability to perform co-allocations. However, KOALA

does not support controlled resource sharing while work is under progress to include an

uSLA-based resource allocation similarly to the one proposed in this thesis [48].

2.3. Simulators

Here I describe succinctly several Grid simulators that target similar problems in

Grid as GangSim, the tool proposed in this thesis for uSLA-based scheduling studies.

2.3.1 Bricks

Bricks [61] was the first proposed Grid simulator designed to investigate scheduling

issues. Its motivations were the proposal and design of an adequate tool for studies and

comparisons of scheduling algorithms and frameworks, under various structural and

workload conditions, in the objective of providing reproducible results. Bricks

scheduling research focus on multi-client, multi-server Grid scenarios. Bricks allows

the simulation of various behaviors: resource scheduling algorithms, programming

modules for scheduling, network topology of clients and servers in global computing

systems, and processing schemes for networks and servers.

It considers the following interacting constituents the global computing system and

the scheduling unit: The global computing system consists in clients submitting jobs,

servers executing the jobs and the network. Servers and networks are characterized by

their performance, workload or congestion, and their variance over time. Servers and

31

networks are modeled as queuing systems. Jobs are characterized by the size of their

parameters/results and the number of computing operations they require. The

scheduling unit contains a network monitor measuring network bandwidth and latency,

a server monitor measuring performance, load, and availability of servers, a resource

data base module storing the all measurements results and serving as a scheduling-

specific database, a predictor reading the measured information and predicting resource

availability and a scheduler allocating tasks on server based on the resource data base

and predictor information [44].

2.3.2 SimGrid

SimGrid [62] is among the most popular simulation tools for Grid research. The

main motivation behind the design and development of SimGrid was the necessity of

simulation tools to study single-client multi-servers scheduling in the context of

complex, distributed, dynamic, heterogeneous environments. Since in its general form,

the scheduling problem is NP complete, most of the proposed scheduling algorithms are

heuristics. SimGrid provides a set of abstractions and functionalities to build a

simulator corresponding to the applications and infrastructures characteristics. In

SimGrid resources are modeled by their latency and service rate. These characteristics

may be set as constants or evolve according to previously collected traces. The

topology is fully configurable. SimGrid considers execution time prediction errors

allowing the user to understand the behavior of the scheduling algorithms under

complex situations where execution time cannot be accurately predicted [44].

32

2.3.3 GridSim and ChicSim

Like SimGrid, GridSim [63] is a simulator to investigate scheduling issues in Grids.

GridSim was proposed and designed after SimGrid. Its motivations are quite similar.

One main difference concerns its focus on Grid economy, where the scheduling

involves the notions of producers (resources owners), consumers (end-users) and

brokers discovering and allocating resources to users [44].

ChicSim is a modular and extensible discrete event Data Grid simulation system

built over Parsec that has been used to evaluate a wide variety of scheduling and

replication algorithms [64]. Like GangSim, ChicSim models a Grid as a collection of

sites. However, ChicSim does not include notions of VOs or groups and has no support

for site usage policies. Similar comments apply to MONARC [65], a simulator

developed to evaluate the performance of data processing architectures for physics data

analysis, and GridSim, which models various components of distributed systems, but

does not address the representation and evaluation of policies.

2.4. Taxonomy of Policies for Access Control

A policy is the statement expressed by one or more owners or administrators of a

resource about how the resource can be accessed and used. Policies can be either stored

in attribute certificates that extend the authorization mechanism or specialized services

that provide on demand these policies. Policies are parsed when required by various

inference engines or schedulers, having as result what actions should be performed in

response to the resource request.

33

Authorization Policies: An authorization policy specifies actions that subjects are

permitted or prohibited to invoke on managed objects [66]. The entire set of policies

that refers to a single resource forms the authorization set that must be enforced, and

which must be passed in order to be granted resource access. By using policy

statements, an application may address the changing requirements of each resource and

session independently. Policies governing resources have been traditionally expressed

using access control lists (ACL). This model assumes a centralized control where the

owner grants and revokes manually authorizations using lists of rights or other simple

associations between names and rights (see previous discussion).

Obligation Policies: In contrast to authorization policies, an obligation policy

specifies which actions a subject should (or should not) perform.[66] Subjects can be

trusted to perform them, but also monitoring and enforcing mechanisms should be

deployed to check how a subject respects obligation policies. Negative obligations are

not equivalent with negative authorizations. They act only at the subject part as filters

and there are no restrains for the managers to implement them (e.g., instructors must

not disclose student evaluations, while students are not forced to implement the same

obligation).

Delegation Policies: Authority delegation is essential for automated and scalable

operations. It is the way how virtually many modern organizations work. The main

authority delegates portions of its authority, portions that become more specific as the

delegation chain increases. The person at the end of such a delegation chain has the

actual responsibility to act for signing a contract, for operating an equipment, etc. This

34

authority delegation is traditionally accomplished through a collection of policies and

procedures and defines how employees should conduct their activities inside the

organization.[66] Secure delegation occurs when one object authorizes another object

to perform some task using some of the rights of the initiator. The possibility to verify

that an object claims to be acting on another's behalf is somehow a requirement in

modern systems. The authorization lasts as long as the target object provides the service

or until the delegation authorization expires or is withdrawn.

Roles: Roles are defined as organizational identities composed of rights and duties

for an authorized user. A role can be assigned to a single user, to another role, to a

group of users or to all users in a system (using special keywords). It is also important

to note that roles are not defined in isolation, but in social-like environments. The

notion of role does not add any power to a security context, but instead improves

manageability by adding an optional level of indirection. A high-level criterion to

distinguish roles is to differentiate between elementary roles, just roles, and aggregate

roles. In order to define a finer model, it is useful to make distinction also between

various types, to define role models (how roles are specified and which relations can be

established), administrative models (where the authority for creating and assigning

roles resides), assignment models (how roles are assigned), task representations

(relation between roles), to define consistency requirements and to specify

implementations [66].

35

2.5. Discussion

Resource access policies typically enforce authorization rules. They specify the

privileges of a specific user to access a specific resource or resource class, such as

submitting a job to a specific site, running a particular application, or accessing a

specific file. Resource access policies are typically binary: they either grant or deny

access. In contrast, uSLAs as proposed in this dissertation govern the sharing of

specific resources among multiple groups of users. Once a user is permitted to access a

resource via a resource access policy, then other mechanisms can step in to govern how

much of the resource the user is permitted to consume. Such mechanisms can be QoS

rules [18], currencies [60, 63], or uSLAs [67], as introduced in this dissertation for Grid

resources.

Resource uSLAs can be sensitive to the demand for the resource: the policy may

allow a user to use large quantities of a resource in the absence of contention, and lesser

quantities in the presence of contention [38, 48], as detailed later in this dissertation.

36

CHAPTER THREE

USAGE SERVICE LEVEL AGREEMENTS IN GRID

ENVIRONMENTS

In the Grid domain [68], I envisage a three-layer structure in which sites provide

resources (computers, storage, networks, and high-level services) to virtual

organizations (VOs), which in turn provide those resources to their own members.

These participants are either resource owners, resource consumers or both. Owners

represent the class of participants that provide either outsourcing services or direct

access to their computing resources, while consumers represent the class of participants

interested in harnessing the aggregate power of shared resources.

In this resource sharing environment, owners and consumers negotiate uSLAs to

establish what resources are made available for use by others. Owners want to express

(and to enforce) the uSLAs under which resources are made available to consumers.

Consumers want to access and to interpret such uSLAs statements to monitor their

agreements and to guide their activities. These activities involve the allocation of

aggregate resources provided by different owners for different internal purposes, and to

orchestrate distributed computation to use those aggregated resources efficiently. Both

owners and consumers want to verify that these agreements are applied correctly.

37

Owners and consumers may be nested: an owner may function as a middleman,

providing access to resources to which the owner has itself been granted access by

some other owners. Thus, uSLAs issues can arise at multiple levels in such scenarios.

The main question addressed is: “How should uSLAs be represented and handled in

Grid environments in order to act as an organizing principle for resource

management?” In addressing this question, I build on previous work concerning the

specification of local resource scheduling policies[59, 69-73]; the negotiation of SLAs

with remote resource sites [19, 21, 22, 39], and the expression and management of VO

usage policies [38, 59, 74].

3.1. Scenarios Revisited

In Chapter 1, I provide an introductory scenario for scientific collaborations that

vary widely in size and scale. In this chapter, I present concrete details based on

Grid3/OSG. In addition, I discuss a scenario for a large company acting in several

countries (and in several markets) and one for a high level service from an external

provider. In each scenario, some common uSLA examples are also provided.

3.1.1. Grid3 Scenario

In the first scenario, the Grid3/OSG comprises tens of institutions and hundreds to

thousands of individual investigators that collectively control thousands of computers

and associated storage systems [31, 75]. Each individual investigator and institution

participates in, and contributes resources to multiple collaborative projects that vary in

scale and formality. Figure 3.1 depicts a graphical representation of the Grid3 sites.

38

Figure 3.1: Grid3 Sites and Instantaneous Utilizations - The

Grid Catalog Monitoring System (GridCat) snapshot

In this environment, several VOs exist that are composed of users with various

common interests and applications. The most common ones are the USATLAS [76],

Sloan Digital Sky Survey (SDSS) [77] and iVDGL [78] VOs (see Figure 3.2).

USATLAS users simulate the collisions of protons on protons at 14 TeV at the LHC for

the CMS experiment – applications are composed of hundreds of embarrassingly

parallel programs with large input/output files. The SDSS VO users measure the

distance to, and the masses of, clusters of galaxies in the SDSS data set – applications

39

are composed again of many components, but in this case they have input/output

dependencies [79] that can be represented using direct acyclic graphs (DAGs). The

iVDGL VO performs protein sequence comparisons at increasingly larger scales. This

application uses various size workflows in which a single BLAST job has an execution

time of about an hour - the exact duration depends on the CPU, reads about 10-33

kilobytes of input, and generates about 0.7-1.5 megabytes of output.

Grid3 sites are sponsored either by different VOs or directly by the hosting

institutions. Each site has usage policies (expressed sometimes as “provide 30% of

resources to USATLAS”) that are enforced by means of a local resource manager

(RM). The sites we used for local usage policy analysis are located at Lawrence

Berkeley National Laboratory (PDSF), the University of Buffalo (UBuffalo), the

University of Chicago (UChicago) and the University of Milwaukee (UMN). At PSDF,

the RM is LSF; at UChicago the RM is Condor; at UMN the RM is PBSPro, and at

UBuffalo is Maui with PBS. On each of these sites, the Grid3 settings are as follows:

all users from a VO are mapped to a local common ID, and the local RM is either

configured to provide that local ID some predefined quantities or a specific fair-share

priority relative to other users. With so many different resource managers, it is

important to express them in a common language.

40

Figure 3.2: Virtual Organizations Operating on Grid3

For the Grid3 scenario, some of the requirements include the provisioning of fair

share allocation policies capable of expressing situations both with and without

contention. Usually, resource providers (universities and laboratories) and resource

consumers (scientists from different domains) want access to these resources pooled

together according to various needs. For example, before important conferences we

have observed that Grid utilization increases and higher job contention occurs, while

during holidays most resources are free for long time intervals [80]. These observations

presented by Iosup et al. [80] motivate our introduction of a uSLA that ensures

41

“whenever there is no contention users can use as many resources as possible, while

when contention occurs, the resources are allocated according to pre-defined rules that

provide the incentives for Grid participation.” The following sharing example is

widely accepted by each individual site (or with different variations in terms of the

amount of resources provided) [81]: “there are three types of incoming jobs to balance:

one from CMS, one from ATLAS, and one from iVDGL. We call them USCMS-Prod,

USATLAS-Prod, and IVDGL. We want USCMS-Prod and USATLAS-Prod to get an

equal share of available CPUs, but IVDGL should get a small fraction, of the

resources, if there is contention (a 4th of what the others get).” Figure 3.3 shows this

controlled resource sharing scenario for the University of Chicago resources.

42

Figure 3.3: Graphical View of the UChicago Resource

Sharing

43

3.1.2. Multi-Market Company Scenario

The second scenario I consider comes from the business world. In this case, a

company active in multiple financial markets owns computational resources in each

country where it operates [23]. These resources are used primarily for trading screens

(see Figure 3.4). Since traders are active only during the day, the company allows other

business-related applications (e.g., portfolio risk evaluation - a compute and data

intensive application; market prediction - another compute and data intensive

application) to run on these resources at night instead of deploying an additional

specialized computing farm. The company has two usage policies: the pooled resources

must be used according to each local market’s usage policies and the computing nodes

must be available to traders from 7:00 to 22:00, during the local trading day.

At the company level, the aggregated resources can be further sub-allocated by

means of company wide uSLAs based on the current importance of each business

application. For example, in our scenario the market prediction application might be

more important, thus the company provides 70% of the aggregated resources from each

individual market for its computations whenever resources are not used by local users

(which becomes a VO level uSLA).

44

Figure 3.4: Graphical View of Multi-Market Company

Resource Utilization

45

Each local center also imposes its own local policies. At the lowest level, such usage

policies include detailed resource sharing information (they describe the physical

resources to be shared): “16 out of 32 processors are provided on cluster X for 9 hours

starting at 22:00 local time” or “24 machines with at least 512 MB of memory and at

least 2 GHz CPU-speed, interconnected with a 10 Gb/s switch are provided from 22:00

to 7:00.” The second example captures a multi-resource uSLA, which are important in

complex distributed systems.

3.1.3. Outsourcing Scenario

In the third scenario, I envisage that a community out-sources some high level

services to reduce deployment and operational costs. Community members acquire

resources and services from independent utility providers that specialize in providing

those services (see Figure 3.5). Service examples include scheduling prediction

services, monitoring services (MonaLisa [65]), or community authorization services

(e.g., DOE certificate authority [82]).

46

Figure 3.5: Service Outsourcing Scenario

47

In this scenario, the service provider requires usage policies to express the amount of

resources or services he is willing to provide: I provide 1000 requests for service A

from 7:00 to 16:00 for 1 month for any remote user from Grid3 or I accept 1000

requests for service A from 7:00 to 16:00 on date X for any remote user from Grid3

[83].

3.1.4. Requirements for uSLAs

Usage policies in all the above scenarios provide support for controlled sharing

from raw resources (CPU, disk space or network bandwidth) to complex services (such

as various Grid-level services). They express simple usage conditions (“30% for a

month for consumer A”) to complex ones (see previous examples). These uSLAs affect

only specific sets of resources. For example, site-level or center-level requests must

affect only local resources, while VO-level or company-level resources affect

aggregated virtual resources and, thus, the site resources pooled together.

The Grid3 scenario requires support for simple uSLAs that any current cluster

management tool enforces at the site level, but it is important to insure that Grid-level

schedulers and brokers have access to these uSLAs to achieve higher resource usage.

At the VO level, similar uSLA support is required to ensure that Grid entities get a

certain percent of the aggregated resources when there is contention. The multi-market

company scenario represents a different case, a business environment where resources

are allocated to various activities and group functions based on the business rewards

these activities or entities generate. Resources might not be completely allocated for

other purposes even if they are available, thus the uSLA must capture such situations.

48

In this scenario, uSLAs are dependent also on time. I do not consider an additional

mechanism for time, because it can be incorporated into the uSLA language

specification as a normal precondition. Now, for the last scenario, the out-sourcing

company, no additional mechanisms are required, but it represents an interesting study

case from a different angle: to show that uSLAs can be used with success for sharing

controlled higher-level resource (services) as well as raw-resources (CPU, network,

disk).

In the above scenarios, when multiple concurrent requests are present and sufficient

resources are not available, contention cases must be handled. This process is referred

to as arbitration or conflict resolution [84]. The uSLA mechanisms must distinguish

among various situations that can occur in practice and treat them accordingly. Usually,

in a non-contention case, resources can be acquired as a function of availability and the

uSLA specification, while in the contention case several sub-cases can occur.

As the examples make clear, both producers and consumers need to specify various

types of uSLAs using an agreed upon syntax and semantics. To support such uSLAs, a

system must provide the mechanisms for:

1. Monitoring of utilization and provisioning to ensure that agreements are honored.

These mechanisms represent the supporting layer for uSLAs: various guarantees are

expressed in terms of how many resources are provided and used, thus correct

monitoring can ensure the expressiveness of the uSLAs.

49

2. Expressing uSLAs for situations both with and without contention and providing

clear semantics for each ensures that both consumers and providers can establish

well defined agreements upon which resources are used.

3. Identifying legal users to ensure users and resource owners’ identities and to

identify legal users, uSLA makers and requests. For these mechanisms, we rely on

the Grid technologies that provide support for authentication and authorization

inside large distributed infrastructures [54, 85, 86].

We provide support for monitoring by introducing notions of and mechanisms for

aggregated consumer-based monitoring at the raw or abstract resource provider-level

(for example, VO-level monitoring at the site level in Grids; fair share rules by

specifying the semantics of four possible levels of sharing [33, 87]; and finally, a model

for identifying legal users in large and dynamic environments [33].

3.2. Monitoring Approach

Adequate monitoring is important if we want our uSLA mechanisms to be

successful. Thus, I developed mechanisms for measuring how resources are used by

each resource consumer (VOs and groups) and by the Grid, overall. My goals were to

provide mechanisms to monitor Grid-level resource activity, utilization, and

performance; to provide VO-level resource activity and resource utilization monitoring;

to create customized views of monitoring data including hardware resources (clusters,

sites, and Grids) and VO and group usage (in terms of the number of jobs and their

characteristics) and workflow types. Ultimately, the monitoring techniques must

50

provide uSLA-driven support for Grid-resource scheduling. The mechanisms also need

to support a large number of resources and uSLA-enabled metrics.

I have both identified key requirements for monitoring and provided solutions for

incorporating these new requirements into existing monitoring infrastructures (such as

Ganglia [88] and the VO-Ganglia extension [67], GRUBER-SiteMonitor [43],

MonALISA [65] and ARESRAN [83]).

3.2.1. Monitoring Requirements

A joint project among GriPhyN, iVDGL, and US ATLAS focused on “Grid-Level”

monitoring for research into uSLA-driven scheduling and usage [31]. During this work,

we identified several monitoring requirements:

1. Grid-enabled tagging of monitoring data for:

a. Resource consumer-oriented monitoring data collection, and

b. Scheduling characteristics and allocation rules collection and publishing;

2. Monitoring data flow: from consumers to uSLA brokering systems, workflow

steering mechanisms, or any other automated agents, and

3. Monitoring data aggregation at various levels (raw resources / abstract resources);

In addition to these monitoring mechanisms, our system must also support complex

queries, such queries that involved scaling (current time + 2:00) or composition (used

CPUs / total number of CPUs).

51

3.2.2. Implementation Approaches and Technical Solutions

We integrated VO components within the Ganglia monitoring software [31, 67].

Initially, I extended the Ganglia monitoring toolkit to meet the above requirements (the

so called VO-Ganglia) and later migrated these mechanisms to other systems, most

notably MonALISA and ACDC Monitoring Dashboard. The final technical solution

required supporting mechanisms for:

1. Added support for site, VO and group enabled monitoring:

a. Grid-enabled monitoring data collection and local scheduler type, characteristics

and allocation rules publishing. For example, in the Grid3 scenario

“configuration knobs”, “allocations per VO”, “usages per VO” were added to

the list of monitored characteristics.

b. Introduced provisioning of detailed utilizations and allocations;

2. Introduced support for monitoring data aggregation at various levels / finer

information about sites configurations;

3. Added support for automated querying of monitoring information and

integration with the uSLA system developed in this dissertation (the GRUBER

Grid broker);

4. Introduced support for advanced querying mechanisms to provide the necessary

monitoring data used by the GRUBER broker (e.g., GRUBER-SiteMonitor).

5. Introduced support for automated translation from raw quantities to percentages

(%) and common descriptions as required for the uSLA monitored metrics.

52

My technical infrastructure is composed of host sensor collectors, summation meta-

daemons and cluster/host automated query interfaces. The infrastructure is able to

collect information about hardware usage, VO-related usage, and uSLAs [33]. The

architecture and a sample display are shown in Figure 3.6 and Figure 3.7, respectively.

Figure 3.6: VO-Ganglia Prototype

53

Figure 3.7: VO-Ganglia Reporting Example

54

3.3. uSLA Semantics

As already stated, uSLAs [29, 38, 39] express a relationship between a resource

provider and a resource consumer, and represent provider statements about a contract

that governs how its resources are to be allocated to a specific resource consumer.

However, without a well-established semantic and syntactic foundation for these

uSLAs, their interpretation may become misleading.

I focus in the rest of this section on my proposed semantics and syntax in the Grid

context. I have applied this method for specifying uSLAs with success in the

OSG/Grid3 context [43, 89-91]. I consider semantics for specifying CPU usage

constraints and requests and give examples for the proposed schemas for the three

scenarios introduced above. I also present approaches for controlled resources of disk

space and higher level services. My design of uSLA semantics matches the

requirements identified before, and supports ease of uSLA expression, automated

discovery and management of these uSLAs, and multiple resource types. Complete

examples for expressing different uSLAs are provided in the next Section.

3.3.1. CPU Resource Support

The uSLA semantics proposed in this section express how controlled resource sharing

is performed in the scenarios described in section 3.1. They are generic enough to be

also applied at the VO and VO group levels. Next, I provide an algorithmic description

about when and how new requests should be admitted in each of the four cases. The

55

proposed semantics are named after their goals: no-limit, fixed-limit, extensible-limit, and

commitment-limit [43, 89-91].

The no-limit uSLA is a statement that specifies no limit. Resources are acquired on a

first come first executed basis.

The fixed-limit uSLA specifies a hard upper limit on the fraction of resources Ri

available to a VOi. A request to run a job is granted if this limit is not exceeded, and

rejected otherwise. More precisely, a job requiring J resources is admitted if and only if

Ci + J ≤ Ri, where Ci denotes the resources currently consumed by VOi at the site. Note

that an admitted job will always be able to run immediately, unless the resource owner

oversubscribes resources, i.e., ΣiRi > 1.

The extensible-limit uSLA also specifies an upper limit, but this limit is enforced only

under contention. Thus, under this SLA a job requiring J resources is admitted if Ci + J

≤ Ri or ≤ Cfree, where Ci and Ri have the same meaning as before, and Cfree denotes the

site’s current unused resources. Note that because this policy allows VOs to consume

more than their allocated resources, whether or not an admitted job can run immediately

may depend on the site’s preemption policy.

While the fixed or extensible uSLA are sufficiently expressive for the Grid3

scenarios, their limitations become obvious when moving to more complex ones. For

example, the multi-market company case introduces the need for ways to differentiate

among usage policies at various levels (center-wide or company-wide ones) and to

support different usage policies for different times of day.

56

Our last uSLA, the Commitment-limit SLA supports these more complex queries. It

specifies two upper limits, an epoch limit Repoch and a burst limit Rburst, and specifies

for each an associated interval, Tepoch and Tburst respectively. A job is admitted if and

only if (a) the average resource utilization for its VO is less than the corresponding

Repoch over the preceding Tepoch, or (b) there are idle nodes and the average resource

utilization for the VO is less than Rburst over the preceding Tburst. Both periods are

modeled here as recurring within fixed time slots. A provider may grant requests above

the epochal allocation if sufficient resources are available, but these resources can be

preempted if other parties with appropriate allocations request those resources at a later

stage. More precisely, any job accepted by the following algorithm is admitted, with the

following definitions:

Repoch = Epoch Usage Policy for VOi

Rburst = Burst Usage Policy for VOi

BAi = Burst Resource Usage for VOi

EAi = Epoch Resource Usage for VOi

TOTAL = upper limit allocation on the site

procedure commitment-AP

 returns accept/reject

Case 1: site over-used by VOi

1. if EAi > Repoch then

57

2. reject job from VOi

Case 2: sub-allocated site

3. else if Σk(BAk) + J < TOTAL and BAi + J < Rburst then

4. run job from VOi

Case 3: over-allocated site

5. else if Σk(BAk) = TOTAL and BAi + J < Repoch then

6. schedule job from VOi

7. else

8. reject job from VOi

Thus, for simplification purposes, I have considered an instantaneous limit (burst)

as well as a long term limit (epoch) that capture how resources are allocated over two

time intervals. This uSLA can be extended further by introducing an unlimited number

of sharing intervals, which makes it generic enough to express any requirements in

practice. I note that the fixed limit and extensible limit can be expressed as particular

cases of the commitment uSLA. I work on enriching this set of policies [92], but they

represent a minimal set of solutions that meet our requirements and can be implemented

easily by means of current site resource managers.

I exemplify next for each of the three scenarios from Section 3.1 how the above

uSLAs should be used. The OSG/Grid3 sample policies can be expressed by the

extensible uSLA. A site shares its resources among three VOs and allows any of them to

acquire more resources when there is no contention. When there is contention, the exact

58

allocations in this case are 40% for USATLAS, 40% for USCMS and 20% for iVDGL.

Also, the specification is instantaneous, in the sense that at any moment this sharing

policy should be respected.

In the second scenario, the first company rule which states that local rules should be

taken in account, does not need to be specified because it is performed automatically.

The second rule can be translated into an extensible uSLA, where all resources are

provided 100% to traders. The third rule can be translated as a commitment uSLA, under

which at any moment in time 70% of the company resources are provided for remote

users’ usage, while in the long term there is no guarantee.

In the final scenario, the allowed number of requests must be translated into

percentages to be expressed as allocations. Such rules can be expressed easily as fixed

uSLAs with fixed time constraints that are captured by the uSLA syntax.

3.3.2. Disk Space Support

Disk space management introduces additional complexity to job management [43]. If

an entitled-to-resource job becomes available, it is usually possible to delay scheduling

of other jobs, or to preempt them if they are already running. In contrast, a file that has

been staged to a site cannot be “delayed,” it can only be deleted. Yet deleting a file that

has been staged for a job can result in livelock, if a job’s files are deleted repeatedly

before the job runs. As a concrete example, a site can become heavily loaded with one

VO’s jobs which cause other jobs to be held in the local queue awaiting their turn. But

these waiting jobs do not stop the submission of more jobs. As a result, there may be lots

of other input data on the site and the disk space used will continue to grow. On the other

59

hand, some jobs are not getting a turn to finish and delete their files. If the rate of input

data being copied to the site is higher than the rate of job completion, then the disk space

will fill.

Based on the UNIX quota system, the same four uSLAs can be implemented with

success. However, in this case once a file is saved at a site and the allocation is higher

than the uSLA limit allows (extensible-limit and commitment limit cases), the space

cannot be preempted without evicting the violating files to other sites. Our approach

builds on the UNIX quota system, which prevents one user on a static basis from using

more than his hard limit (but it still considers soft and hard limits similarly to the

commitment limit). More precisely, for scheduling decisions a list of site candidates that

are available for use by a VOi for a job with disk requirements J is built by executing the

following logic, with the following definitions:

S = Site Set

k = index for any VO != VOi

IPi = Epoch uSLA for VOi

ISPi = Instantaneous uSLA for VOi

IAi = Instantaneous Resource Usage for VOi

TOTAL = upper limit allocation on the site

procedure commitment-AP_disk

 returns S (list of available sites)

60

1. for each site s in site list G do

Case 1: over hard-limit site by VOi

3. if IAi > IPi for VO i at site s

4. next

Case 2: over soft-limit site by VOi

5. if IAi > ISPi and time < grace period for VO i at

site s

6. if Σk(IAk) < s.TOTAL - J && IAi + J < IPi then

7. add (s, S)

8. next

Case 3: un-allocated site

9. else

10. if Σk(IAk) < s.TOTAL - J && IAi + J < IPi then

11. add (s, S)

12. next

13. return S

61

3.3.3. Higher-Level Services Support

The final type of resource I consider is a Grid service (or s high-level resource).

Again, I use the same uSLAs as in the CPU case to encode resource availability from a

provider’s point of view [93]. However, Grid services are difficult to quantify in term

of their utilization - a weather service and a matrix multiplication service are difficult to

compare in terms of resource consumption without a through service performance

model analysis. Thus, there is no uniform way for expressing how much computing

power a certain service may require to serve a certain request. To overcome this

complexity and provide a simple solution to this problem, I maintain the CPU

semantics unchanged for the uSLAs, but with different utilization metrics; thus, instead

of CPU utilization, the number of requests a client can perform on a certain service is

considered for the uSLA algorithms. While this approach may seem an over-

simplification, the end result is similar: a service provider states by means of the uSLAs

how many requests a certain consumer can perform on its resources. Based on this

approach, the algorithm to supports controlled Grid service sharing is identical with the

one for controlled CPU sharing.

However, we present next a variation that allows advance service reservations (a

request can be made well in advance of its starting time). It applies a pre-specified

uSLA on each “future” sub-interval that results from a variation in terms of either

service requests or allocations. The algorithm for accepting new advance reservations is

introduced next, where:

62

R = resource request

Aj = allocated resources

Rj = requested resources

Allocations = set of accepted allocations

Requests = set of already accepted requests

procedure request_check (R) returns response

1. response = true

Stores availability on the considered interval

2. S = empty

Identify all requests overlapping current request

(save their start/end times and requested quantities)

3. foreach Rj in Requests do

4. if Rj time overlaps R time then

5. save S, Rj.start, + Rj.attributes

6. save S, Rj.stop, - Ri.attributes

7. fi

8. done

Identify all allocations overlapping current request

(update accordingly previous values with these

allocations)

63

9. foreach Aj in Allocations do

10. foreach Tj in S do

11. if Aj overlaps Tj then

12. save S, Tj, + Aj.attributes

13. fi

14. done

15. done

Check constraints (available resources)

16. compute Request = R.attributes

17. foreach Availability in S do

Apply the appropiate uSLA algorithm (hard limit

example here)

18. response = uSLA_fixed-limit (Request,

Availability)

19. done

20. if response == true then

21. update accordingly one of the overlapping uSLAs

22. add R to Requests

23. fi

24. return response

In this simple way, the controlled resource sharing mechanisms devised in this

chapter can be applied with success not only to raw resources but also to service-like

64

types of resources and also for advance service reservations. I must also note that such

a service manager is already available for Grid services (e.g., ARESRAN or SAML).

3.4. uSLA Syntax

I have considered two syntaxes for uSLAs: a simpler one based on allocations and

one based on WSLA. My starting point for the first approach is the Maui [94] syntax

for specifying allocations. Maui supports three types of fair share limits: “at least

limit,” “average limit” and “at most specification.” In the first case, when the utilization

for a group goes below the limit, the mechanism increases the priority of the jobs from

that group (expressed as a real number preceded by a “+“). In the second case,

whenever the utilization for a group is different from the limit, the fair share

mechanism either increases the priority (for under-utilization) or decreases the priority

(for over-utilization) of jobs from that group. In the final case, when the utilization for a

group goes above the limit, the fair share mechanism decreases the priority of jobs from

that group (expressed as a real number preceded by a “-”). Our first syntactic form is

represented as a set of allocations of the form:

65

<resource-type, provider, consumer, start, epoch-

allocation, burst-allocation>

where:

resource-type ::= [CPU | NET | STORAGE]

provider ::= [site-name | vo-name]

consumer ::= [vo-name | (vo-name, group-name) | ANY]

start ::= date-time | time | *

epoch-allocation ::= (interval | *, percentage) | -

burst-allocation ::= (interval | *, percentage) | -

ANY ::= matches any name

* ::= means instantaneous

- ::= means not specified

To show the capacity of the above syntax, I show next how it can be used for the

three scenarios introduced before. The uSLAs of the OSG/Grid3 environment are

expressed under this syntax as a set of three rules with values only for the instantaneous

allocations (where the burst period is considered a 5 seconds interval):

<CPU, UChicago, USATLAS-Prod, *, -, (5, +40) >

<CPU, UChicago, USCMS-Prod, *, -, (5, +40)>

<CPU, UChicago, iVDGL, *, -, (5, +20)>

66

In the second case multi-market scenario, I distinguish between two types of rules:

company-wide rules and center-wide ones – a simple analogy could be drawn between

the site and VO level as proposed by Foster et al. [4]. The company-wide uSLAs are

expressed under our first syntax as a set of two rules:

<CPU, Company, ANY, 22:00, (9*3600, 100), (5, 100)>

<CPU, Company, Prediction, 22:00, (9*3600, -70), (5, -

70)>

while, at the center level, the first rule is expressed as (after translating the 16 CPU

power into a percentage of the total available computing power):

<CPU, Company, ANY, 22:00, (9*3600, 50), (5, 50)>

However, this syntax has its limitations for expressing sharing rules about resources

of different types. First, this syntax does not provide a mechanism for specifying

monitoring requirements. Second, it does not support the specification of complex

conditions (AND, OR, etc.).

Thus, I propose a uSLA syntax based on the WS-Agreement specification, to take

advantage of its high-level structure SLA specification and of available parsers. The

objective of a WS-Agreement specification is to provide standard means for

establishing and monitoring service agreements. The specification draft comprises three

67

major elements: a description format for agreement templates, a basic protocol for

establishing agreements, and an interface for monitoring agreements at runtime.

For the uSLA syntax, I use a schema that includes from the WS-Agreement

specification support for resource monitoring metrics and goal specifications [21, 24,

43]. The resource monitoring metrics describe how various utilizations must be

measured or how these quantities should be collected from an underlying monitoring

system. A goal specification provides support for describing the targeted allocations in

a form that can be parsed by automated agents. The other elements (i.e., obligations and

handlings violation) were considered beyond the scope and capacity of current site and

VO resource managers.

The schema of this grammar is described next. First, the monitoring metric element

defines how a certain resource metric required for a guarantee should be measured.

<!-- MonitoredMetric -->

<xsd:complexType name="MonitoredMetricType">

 <xsd:attribute name="name" type="xsd:string" />

 <xsd:attribute name="method" type="xsd:string" />

 <xsd:attribute name="type" type="xsd:string" />

 <xsd:attribute name="interval" type="xsd:integer" />

 <xsd:attribute name="notification" type="xsd:boolean"

/>

</xsd:complexType>

68

The next element of the grammar, MonitoredType, describes the entire list of

monitored metrics required in enabling the considered uSLA. This list can have zero or

more of required metrics that must be monitored.

<!-- Monitored Type -->

<xsd:complexType name="MonitoredType">

 <xsd:sequence>

 <xsd:element name="MonitoredMetric"

 type="MonitoredMetricType" minOccurs="0" />

</xsd:sequence>

 <xsd:attribute name="name"

 type="xsd:string" use="optional" />

</xsd:complexType>

The precondition element identifies of the entity for which the uSLA is defined and

the name of the provider:

 <!-- Precondition -->

<xsd:complexType name="PreconditionType">

 <xsd:sequence>

 <xsd:element name="consumer"

69

 type="xsd:string" minOccurs="0" />

 <xsd:element name="provider"

 type="xsd:string" minOccurs="0" />

 </xsd:sequence>

</xsd:complexType>

The goal element describes the conditions under which a resource is provided. It

uses the constraint element for defining conditions (with LessEqual, Equal and

GreaterEqual corresponding to the semantics introduced earlier for -, <space>, +

signs, while Range has a special meaning for time specifications):

<!-- Goal -->

<xsd:complexType name="GoalType">

 <xsd:sequence>

 <xsd:element type="ConstraintType" minOccurs="0" />

 </xsd:sequence>

</xsd:complexType>

<!-- Constraint -->

<xsd:complexType name="ConstraintType">

 <xsd:attribute name="type" type="xsd:string"

70

values="LessEqual, Equal, GreaterEqual, Range" />

 <xsd:element name="Metric" type="xsd:string" />

 <xsd:element name="Value" type="xsd:literal" />

</xsd:complexType>

Similarly to a MonitoringType element, a GuaranteeElement contains a list of all

guarantees that a resource provider agrees to when providing the resources.

<!-- Guarantee Type -->

<xsd:complexType name="GuaranteeType">

 <xsd:sequence>

 <xsd:element name="Precondition"

type="PreconditionType"

 minOccurs="0" maxOccurs="1" />

 <xsd:element name="Goal" type="GoalType"

minOccurs="0"

 maxOccurs="1" />

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string"

use="required" />

</xsd:complexType>

71

The final element of the grammar is the uSLA element, which is composed of

several monitored and guarantee elements.

<!-- usage SLA -->

<xsd:complexType name="uSLA">

 <xsd:attribute name="Monitored" type="MonitoredType"

 minOccurs="1" />

 <xsd:attribute name="Guarantee" type="GuaranteeType"

 minOccurs="1" />

 <xsd:attribute name="name" type="xsd:string"

 use="required" />

</xsd:complexType>

Now, I show next how it can be used for the three scenarios introduced before. The

first OSG/Grid3 example is represented using this syntax as follows. Three metrics are

monitored (by means of MonaLisa, for example, and these values are retrieved from a

certain URL): CPUBurst-Met-USATLAS, CPUBurst-Met-USCMS and CPUBurst-Met-

iVDGL.

72

<uSLA name=”Grid3 uSLA (Scenario 1)”>

 <!-- Define Monitored Metrics (and acquisition

mechanism) -->

 <Monitored>

 <MonitoredMetric name="CPUBurst-Met-USATLAS"

 method="http://URL/CPU?vo=USATLAS&t=5"

 interval="5" type="%" notification="true" />

 <MonitoredMetric name="CPUBurst-Met-USCMS"

 method="http://URL/CPU?vo=USCMS&t=5"

 interval="5" type="%" notification="true" />

 <MonitoredMetric name="CPUBurst-Met-iVDGL"

 method="http://URL/CPU?vo=iVDGL&t=5"

 interval="5" type="%" notification="true" />

 </Monitored>

 <!-- USTALAS minimal allocation -->

 <Guarantee name="CPUBurst-G-USATLAS">

 <precondition usage="required">

 <consumer name="USATLAS-Prod" />

 <provider name="UChicago" />

 </precondition>

73

 <goal usage="required">

 <Constraint type="GreaterEqual">

 <Metric value="CPUBurst-Met-USATLAS" />

 <Value value="40" />

 </Constraint>

 </goal>

 </Guarantee>

 <!-- USCMS minimal allocation -->

 <Guarantee name="CPUBurst-G-USCMS">

 <precondition usage="required">

 <consumer name="USCMS-Prod" />

 <provider name="UChicago" />

 </precondition>

 <goal usage="required">

 <Constraint type="GreaterEqual">

 <Metric value="CPUBurst-Met-USCMS" />

 <Value value="40" />

 </Constraint>

 </goal>

 </Guarantee>

74

 <!-- iVDGL minimal allocation -->

 <Guarantee name="CPUBurst-G-iVDGL">

 <precondition usage="required">

 <consumer name="iVDGL" />

 <provider name="UChicago" />

 </precondition>

 <goal usage="required">

 <Constraint type="GreaterEqual">

 <Metric value="CPUBurst-Met-iVDGL" />

 <Value value="20" />

 </Constraint>

 </goal>

 </Guarantee>

</uSLA>

Now, for the multi-market company example that could not be expressed completely

in our first syntax (company level: the computing nodes must be available to traders

from 7:00 to 22:00, during the local trading day and 70% of the aggregated resources

from each individual market for Prediction computations whenever resources are not

used by local users; center level: 24 processors with at least 512 MB of memory and at

least 2 GHz CPU-speed, interconnected with a 10 Gb/s switch are provided from 22:00

75

to 7:00) is represented as follows (note in this example that time is collected as time +

2:00 and the comparison is then a simple Less):

<uSLA name=”Multi-Market Company uSLA (Scenario 2)”>

 <!-- Define Monitored Metrics (and acquisition

mechanism) -->

 <Monitored>

<!-- Time tracking -->

 <MonitoredMetric name="Time"

method="exec:/bin/date+2"

 interval="5" type="#" notification="true" />

<!-- Company-wide monitoring -->

 <MonitoredMetric name="CPU-Prediction" interval="5"

 method="http://URLCompany/CPU?t=5&App-

Prediction"

 type="%" notification="true" />

 <MonitoredMetric name="CPU" interval="5"

 method="http://URLCompany/CPU?t=5"

 type="%" notification="true" />

<!-- Center-wide monitoring -->

 <MonitoredMetric name="CPUType" interval="5"

76

 method="http://URLCompany/CPUType?t=5"

 type="%" notification="true" />

<MonitoredMetric name="MemorySize" interval="5"

 method="http://URLCompany/MemorySize?t=5"

 type="%" notification="true" />

<MonitoredMetric name="Net" interval="5"

 method="http://URLCompany/Network?t=5"

 type="%" notification="true" />

 </Monitored>

<!-- Company-wide allocations -->

 <!-- Any-application allocation rule -->

<Guarantee name="CPUBurst-CW">

 <precondition usage="required">

 <consumer name="ANY" />

 <provider name="Company-Name" />

 </precondition>

 <goal usage="required">

 <Constraint type="Less">

 <Metric value="Time" />

 <Value value="9:00" />

 </Constraint>

77

 <Constraint type="Less">

 <Metric value="CPU" />

 <Value value="100" />

 </Constraint>

 </goal>

 </Guarantee>

 <!-- Prediction-application allocation rule -->

 <Guarantee name="CPUBurst-CW-Prediction">

 <precondition usage="required">

 <consumer name="Prediction-App" />

 <provider name="Company-Name" />

 </precondition>

 <goal usage="required">

 <Constraint type="Less">

 <Metric value="Time" />

 <Value value="9:00" />

 </Constraint>

 <Constraint type="Less">

 <Metric value="CPU-Prediction" />

 <Value value="70" />

 </Constraint>

78

 </goal>

 </Guarantee>

<!-- Center-wide allocations (24 machines) -->

<Guarantee name="24 Machines">

 <precondition usage="required">

 <consumer name="ANY" />

 <provider name="Center-Name" />

 </precondition>

 <goal usage="required">

 <Constraint type="Less">

 <Metric value="Time" />

 <Value value="9:00" />

 </Constraint>

 <Constraint type="Equal">

 <Metric value="CPUType" />

 <Value value="24*2.0" />

 </Constraint>

 <Constraint type="Equal">

 <Metric value="MemorySize" />

 <Value value="24*512" />

 </Constraint>

79

 <Constraint type="Equal">

 <Metric value="Net" />

 <Value value="24*10" />

 </Constraint>

 </goal>

 </Guarantee>

</uSLA>

Now, I turn my attention to show how the one example from the service outsourcing

scenario is represented using the WS-Agreement like syntax:

<uSLA name=”Service Outsourcing uSLA (Scenario 3)”>

 <!—Monitored Metrics (and acquisition mechanism) -->

 <Monitored>

<!-- Time tracking -->

 <MonitoredMetric name="Time" method="exec:/bin/date"

 interval="5" type="#" notification="true" />

<!-- Service monitoring -->

 <MonitoredMetric name="A-Requests"

 method="http://URL/A?metric=requests&t=5"

 interval="5" type="%" notification="true" />

 </Monitored>

80

 <!-- USTALAS minimal allocation -->

 <Guarantee name="CPUBurst-G-USATLAS">

 <precondition usage="required">

 <consumer name="Grid3-Monitoring" />

 <provider name="Company-Name" />

 </precondition>

 <goal usage="required">

 <Constraint type="GreaterEqual">

 <Metric value="Time" />

 <Value value="7:00" />

 </Constraint>

 <Constraint type="LessEqual">

 <Metric value="Time" />

 <Value value="16:00" />

 </Constraint>

 <Constraint type="LessEqual">

 <Metric value="A-Requests" />

 <Value value="1000" />

 </Constraint>

 </goal>

81

 </Guarantee>

</uSLA>

3.5. uSLA Derivation from Local Site Usage Policies

While in the above section we provide a precise description for the uSLA

syntax/semantics, usually usage policies at the provider/site level are expressed in terms

of local RM configurations. Such usage policies are specified by resource policy

makers; these uSLAs must be automatically discovered and translated for automated

consumption at the other levels. To achieve this goal, I start and add methods and tools

for automated translation to the high-level model for uSLAs described earlier in this

chapter.

At the RM level (sites), owners state how their resources must be allocated and used

by different consumers. This statement represents the high-level GOAL an owner (MP)

wants to achieve. Site administrators map MPs to different software RMs’

semantics/syntaxes. The end product is a set of RM configuration files, named the local

POLICY or system configuration (SC). For automated consumption, site policies are

translated from SCs by automated tools into an abstract usage policy (AP) set, i.e., the

uSLA syntax/semantic described above. SC descriptions are collected from the site RM

configurations, filtered and, after translation, published through a specific monitoring

system, e.g., VO-Ganglia [67], MonALISA [13, 65] or GRUBER-SiteMonitor [43, 87].

I have identified three levels of description for the statement "site X gives ATLAS

30% over a month":

82

� MP: a description of a site manager’s policy for the site, e.g., MP (VOs) = "give

ATLAS 30% over a month." I assume that simple English statements describe

the MP set (site level);

� SC: an RM configuration: SC (VO) = <number of nodes, scheduler-type,

scheduler-config>, which is written by the site administrators during the RM

configuration process (site level);

� AP: An SC (VO) translated into a uSLA representation: AP (VO, Site) expresses

SC (VO) in a scheduler-independent format and is published through a

monitoring tool for resource brokering or other automated tools (Grid level).

The key point is determining how an SC maps to an AP. I have achieved this part

by providing specialized SC-translators for each type of SC supported by a specific

RM. The translator parses the configuration files or queries the resource provider RM,

and outputs the resulting configuration directly into AP form. The information flow for

this process is captured in a graphical way in Figure 3.8.

83

Figure 3.8: Correlations MP, SC, and AP

3.5.1. uSLAs Translation from Site Resource Manager Configurations

I provide now a concrete uSLA example, expressed in all the three forms, namely

MP, SC and AP. I assume the following MP set for a site X:

• we have a cluster with 380 CPUs;

• at any time: USCMS-Prod has 40%; USATLAS-Prod has 40%; IVDGL has just 20%

of these resources;

• when additional resources are available, Grid3’s VOs can grab these resources;

The Condor priorities (SC) used to realize the above description is:

• condor_userprio -setfactor cms 3

• condor_userprio -setfactor atlas 3

84

• condor_userprio -setfactor ivdgl 8

In these settings, the AP description becomes:

• RM type: Condor

• RM allocations: CMS: 40% ATLAS: 40% IVDGL: 20%

• Usage SLAs type: extensible-uSLA

3.5.2. Disk Space Extensions

For disk space, the same allocations would be translated into the following rules

(UNIX quota):

• edquota -u cms

• edquota -u atlas

• edquota -u ivdgl

The AP for disk becomes:

• DM type: quota

• DM allocations: CMS: 40% ATLAS: 40% iVDGL: 20%

• UP type: extensible-uSLA

This simple specification categorizes the storage into two types as a function of their

data duration permanent storage (the hard limit quota limit), and volatile storage (the

soft limit quota limit), as also introduced within the SRM project [95].

3.5.3. High Level Service Considerations

Next, I move to other types of services – more precisely Grid services. In this case,

the service manager is either ARESRAN (a GT4 based prototype for complex resource

85

uSLA and reservation in Grids [83]) or any other similar management infrastructure

[96, 97].

In this case, the uSLAs are collected directly from the authorization service and

published at the Grid level. For the ARESRAN case, the uSLAs are already in a form

that is compatible with the approach proposed in this dissertation, while for the other

examples (SAML or the PDP policy service) they must be translated to a Grid level

definition. I focus on the ARESRAN service, because they target a simpler kind of

authorization mechanism – similar to the CAS system [14], mainly a flexible access

control mechanism.

3.6. Summary

In summary, I have detailed in this section the scenarios in which uSLAs are

required, the goals and requirements for these uSLAs, as well as supporting

mechanisms (monitoring, syntax and semantics) to implement them in large and

distributed environments. The results presented in this section can be grouped into three

main categories: the identification of scenarios, the requirement for monitoring and

uSLA mechanisms, and the uSLA proposed syntax and semantics.

86

CHAPTER FOUR

GANGSIM: A SIMULATOR FOR GRID

SCHEDULING STUDIES

GangSim is a tool developed for Grid scheduling studies, capable of supporting

studies for controlled resource sharing based on scheduling policies and uSLAs. I

present, in this chapter, its design and simulation environment, and the kinds of studies

it permits.

The starting point for this work was an exploration of distributed system monitoring

conducted within the context of the GriPhyN/iVDGL projects [13, 98]. I started by

developing the VO-Ganglia Monitoring Toolkit to gather resource characteristics,

utilization data, and usage limits for a collection of sites in order to meet the monitoring

requirements for uSLA-based resource provisioning described in Chapter 3. The final

result was an enhancement of the Ganglia Monitoring Toolkit [88], the VO-Ganglia

monitoring toolkit for large Grid environments. The Ganglia Monitoring Toolkit is a

cluster monitoring tool that uses a multi-cast approach for monitoring various

characteristics of a cluster and the availability of each individual host [88].

87

From Ganglia and VO-Ganglia, it was relatively easy to replace “real sites” with

“simulated sites,” and thus to enable the evaluation of a wider range of possibilities for

Grid scheduling than it is possible in a real system. The new name, GangSim [42],

reflects both the origins of the implementation and the fact that it can be used to

simulate “gangs” of users and resources.

GangSim’s novelty comes from its modeling not only of sites but also of VO users

and schedulers, and its ability to model uSLAs at both the site and VO levels. The

resulting simulation system allows various task assignment policies to be tested in

conjunction with different uSLAs for a range of different Grid configurations and

workloads.

This chapter is structured as follows. First, I present a short history about

GangSim’s conception and describe the simulated environment. A scenario example is

provided for better understanding of GangSim’s approach. Second, the implementation

details and GangSim’s output types are presented. I end the chapter with a short

analysis of its performance and the future work required to improve its results.

4.1. Simulator Model

GangSim simulates a uSLA-driven management infrastructure in which uSLAs for

the allocation of resources within communities (VOs) and the allocation of resources

across VOs at individual sites interact to determine the ultimate allocation of individual

computing resources (CPU, disk, and network). uSLAs are expressed using the tuple

88

syntax introduced in Chapter 3 for rules associated with sites, VOs, groups, and users

for different aggregations of available resources.

GangSim models a Grid as comprising a collection of sites, VOs and users, a job

submission infrastructure, data files, a monitoring infrastructure, scheduling

infrastructure, and an uSLA management infrastructure. The principal GangSim

components are external schedulers (ES), local schedulers (LS), data schedulers (DS

[75]), monitoring distribution points (MDP [33]), site policy enforcement points (S-

PEP [33]), and VO policy enforcement points (V-PEP [33]). I describe each of these

components in more detail in the next subsection.

4.1.1. Simulated Components

A site is characterized by the capacity and number of its CPUs, disk resources, and

network capacities. Each characteristic is described through a configuration file that is

loaded during startup. Both intra- and inter-site network capacities are defined. A site

specifies a set of usage policies, defined by the uSLAs imposed by the site owner, for

how much CPU time, disk space, and network bandwidth each VO may use.

A VO is composed of a set of groups of users. Users submit jobs, which may be

grouped into sets called workloads. A VO specifies an uSLA that defines the resources

that will be made available to each group.

External Schedulers, Data Scheduler, and Local Schedulers (ES, DS, and LS)

represent points where various scheduling decisions are performed. An ES, such as

Pegasus [99] and Euryale [100], queues user jobs and selects the best site candidate for

each job. An LS, such as Condor [101], PBS [102] and LSF [103], queues jobs

89

associated with a site and schedules them on a suitable node for execution. A DS, such

as Kangaroo [64, 102, 104, 105], schedules the required files to the candidate execution

site. The ES interacts with LS in order to submit jobs to a specific site. A DS transfer

files transparently to ESs and LSs, such that all required files for a job are in place

when a job is ready for execution.

Monitoring Data Points (MDPs) represent the monitoring infrastructure “nodes”

that compute various metrics for Grid components’ consumption. Such information is

gathered from local and external schedulers, filtered, and delivered in a uniform

manner.

Policy enforcement points (PEPs) are responsible for enforcing uSLAs. They gather

monitoring metrics and other information relevant to their operations, and then use this

information to steer resource allocations as specified by the uSLA [26]. I distinguish

two PEP types, S-PEPs and V-PEPs.

Site policy enforcement points (S-PEPs) reside at all sites and enforce site-specific

uSLAs. S-PEPs operate in a continuous manner, in the sense that jobs are immediately

preempted or removed when uSLA requirements are no longer met. However, jobs are

not necessarily restricted from entering site queues just because an uSLA would

prevent them from running.

VO policy enforcement points (V-PEPs) interact with S-PEPs and schedulers to

enforce VO-level SLA specifications. They make decisions on a per-job basis to

enforce VO uSLAs regarding resource allocations to VO groups or types of work

executed by the VO. V-PEPs are invoked when VO schedulers make job scheduling

90

decisions to select which jobs to run, when to send them to a site scheduler, and where

to run them.

4.1.2. Scenario Example

This section describes a scenario for how GangSim simulates job execution. In this

scenario, there are three sites A, B, and C and one VO, V. Site A has no allocations for

VO V, site B has a fixed-limit uSLA that provides 30% of its resources to V, and C has

an extensible-limit uSLA that provides 40% of its resources to V. Let’s assume that the

current utilizations of the two sites providing resources to V at time t are as follows:

site B executes jobs from VO V that sum up to 25% of the site CPUs and 10% of the

disk space is used, and all jobs running at B sum up to 60% and 20% of the disk space;

site C executes jobs from VO V that sum up to 35% of the site CPUs and 30% of the

disk space, and all jobs running at C sum up to 70% and 80% of the disk space. In this

environment, we consider the submission of three jobs with the requirements

(expressed in percentages) as described in Table 4.1. I also assume that all the three

input files are stored at site A initially (the percentages are expressed in the total

resource capacities).

91

Table 4.1. Job Requirements (the numbers represent

required number of CPUs per job and its utilization per site

in percentages for the second column, and required number

of files per job and space requirements in percentages for

the third column)

CPUs [#, %] Disk Space [#, %] Job Number

Site B Site C Site B Site C

1 1, 5 1, 8 1, 5 1, 6

2 1, 4 1, 7 1, 3 1, 5

3 1, 3 1, 4 1, 1 1, 1

The first job for VO V submitted to this environment at time t would be scheduled

to either site B or site C. Let’s assume that a first-fit scheduling policy is in place (the

first matching site is selected for the next job execution). Under this policy, the new job

would be sent to site B, and its utilization would go to 30% for CPUs and 15% for disk

space for VO V. The required file is transferred by the DS from site A to site B before

site B starts the execution.

The second job from VO V submitted at time t + dt (where dt is 1 second, for

example) can be scheduled only on site C, because it is the only site still available for

VO V, and its utilization goes to 42% for CPUs and 35% for disk. The required input

file is also transferred from site A before the job starts its execution.

The last job for VO V submitted at time t + 2*dt can be scheduled only on site C

(the extensible-limit uSLA allows more jobs as long as free resources are available; I

assume that dt is small enough to ensure that jobs 1 and 2 are still running).

92

4.1.3. Implemented Strategies

During each simulation step, various algorithms and strategies are used to update

the state of different components of the framework. There are algorithms for job

selection, job assignment, and data file replication. There are also algorithms for

computing the costs associated with different operations and for steering job flows

through the framework. These algorithms are grouped in a single implementation

module, and invoked whenever a decision regarding the state of a component needs to

be made. Next, I describe GangSim’s approach to handling the main elements of a

simulated Grid environment.

Job flow: Jobs are submitted by users to ES queues according to its specific uSLA.

Following site selection, jobs are moved to LS queues. A job may be rejected at the LS

(e.g., because of lack of available disk space or the local policy for the submitting VO),

in which case the job is returned to the ES queue to re-enter the scheduling process. If

the job requires larger files that the capacity of any of the sites, it is rejected from the

ES queue.

Costs: The simulator associates different time costs with each successful or failed

operation. Thus, a job that starts after two rejections will incur the costs of two

rejections and one successful submission, plus the time for input (no more than two

files in our current implementation) and executable files’ movement among sites and

VO schedulers. The two input files are placed initially on a site node at random while

the executable file is placed on the scheduler node when a new job is scheduled.

Overall, the following time intervals are counted during a job submission:

93

- time to enter the scheduler queue (one simulator step);

- time for site assignment: ES queue computations (one simulator step plus time to

wait for an available site);

- time for node assignment: LS queue computations (one simulator step plus time to

wait for an available node);

- transfer time for job input files to the execution node: network allocation and

transfer costs for the input files (if a job has an image of size S that is larger than the

available bandwidth B for one simulator step, (n+1)*B > S > n*B, then the job will be

transferred in (n+1) simulator steps);

- time for job transfer (job file image) to the node: network allocation and transfer

for the executable.

For example, for the scenario introduced in the previous subsection, the first job

will require one simulator step to enter the scheduler queue for VO V. Once the job is

in the scheduler queue, it will be scheduled to site B in one simulator step. The required

input files and job image are transferred (let’s assume) in two simulator steps. Once this

step is finished, the job waits at cluster B for local scheduling on an available node. The

scheduling operation incurs another simulator step and the local transfer (let’s assume)

requires only one simulator step, because of better network connectivity. Now, the job

is ready for execution. The total amount of time required for its startup was 6 simulator

steps. The same steps are repeated for the second and third jobs, but these steps overlap

for the three jobs because they are submitted within a short time of each other (dt

smaller than half of a simulator step).

94

Simulator steps: GangSim is a discrete simulator, which means that every X

seconds the simulator evaluates the state of all components in the system (jobs, queues,

resource status, allocations, utilizations, etc). Operations take place only during

evaluation steps. If a job has a running time (n+1)*X > t > n*X, then the job occupies a

resource for (n+1)*X seconds, but the utilization accounted against the job owner will

still be t seconds (by accounting only the job’s required execution time). The

consequence is the smaller the value of X, the higher the accuracy of the simulator. I

have typically used a value of 5 to 10 seconds in my experiments, except the scenarios

of Sections 4.8 as detailed later. Such a value for parameter X appears to be acceptable

as long as the average running time for jobs is greater than or equal to a few hundred

seconds (see section 4.3.5 for more analyses).

VO and Site uSLAs: uSLAs are expressed as tuples as was described in Chapter 3.

Task assignment strategies: The effectiveness of a specific uSLA may also depend

on the strategies used by ESs and LSs. Based on De Jongh’s [106] scheduling

taxonomy, we distinguish between static and dynamic scheduling policies. Static

policies use only a priori information about a system and workload. For instance, such

policies either ignore utilizations or consider them known before hand. On the ES level,

I focused on dynamic scheduling policies, such as least-used, least-recently-used, that

take into account site loads, and on static scheduling policies, such as round-robin,

random-assignment [106]. The input to these policies is filtered by uSLAs to use only

sites providing allocations. For the LS level, GangSim simulates a first-come-first-

served and space-shared scheduling. Space-shared denotes a scheduling policy under

95

which only one job runs on a node until either completion or migration to another one.

The best analogy for the current UNIX OS is the memory resource (the space allocated

to a process can not provided to other processes).

4.2. Implementation Details

In this section I describe both GangSim’s main modules and their interactions in

order to perform a simulation scenario. I start with first the description of the main

modules, followed by the description how they are invoked for execution.

4.2.1. Main Components and Their Functionalities

VO-Ganglia uses several reporters (UNIX tools that provide different system

monitoring metrics) for information gathering. In GangSim these reporters are replaced

with modules that simulate a Grid environment. Because the GangSim’s reporters need

a description of the simulated environment, I have developed additional tools for Grid

environment generation and workload specification. The environment generators create

configuration files that describe the number of sites and the configuration of these sites

based on a high-level description of the Grid. The workload generators create

configuration files describing, in detail, workloads based on the Grid configuration files

and a description of job distributions. Site uSLAs can be either specified through a web

interface in a centralized manner (once per simulator instance), or described in a

configuration file with a higher level of granularity (one per site). The internal modules

of GangSim are presented in Figure 4.1.

96

Figure 4.1: Simulator Overview

97

Each component has the following purpose. The environment simulation module is

a set of Perl libraries that maintain the Grid environment status for workloads and

generate appropriate metrics to feed GangSim. This module simulates ESs, submitting

hosts, LSs, and sites. MDP data is provided to the module instead of (or, in a mix-mode

execution, as well as) real ESs, LS, S-PEPs, and V-PEPs. Task assignment policies

represent a set of algorithms that can be invoked for scheduling jobs to sites, scheduling

jobs to nodes, or for selecting jobs to run. These algorithms are used by S-PEPs, LSs,

V-PEPs, and ESs. Similarly, the uSLAs module provides a set of already identified

uSLAs algorithms for environment controlled sharing.

The metric aggregators are a set of routines that aggregate metrics based on rules

such as, string concatenation, integer median computation, or integer averaging. Grid

components represent a set of functions and data structures for simulating Grid

components. For example, queues are represented by arrays of structures for various

metrics about jobs; sites are modeled as a list of physical node capabilities and

instantaneous states; workloads are also maintained under various queue structures as

they pass from one stage to another in the simulated environment.

Environment State Keeper maintains a set of data structures that hold data used for

system simulation, including: workload status, Grid component status, and current

utilization. The user interfacing module is composed of a set of CGI scripts that gather

GangSim status information and present it in HTML form. The last module, logging

module, represents the connection of the entire simulator with an underlying technology

for logging simulated environment states. Currently, it allows only RRD-based [1, 88]

98

interfacing for saving historical environment data, and text files for tracking the

operations performed by the simulator.

While simulating various size Grids under different uSLAs, scheduling policies, and

workloads would be sufficient in most cases, I have also introduced the possibility of

simulating different Grid system types. Specifically, I mean Grids that use different

approaches in how the uSLAs are managed. At present, GangSim can model two types

of Grid systems: uSLA analytical-based scheduling and uSLA observational-based

scheduling.

In the first case, uSLAs from all participants are available to ESs. In this case, job

scheduling decisions are based on direct knowledge of the uSLA.

In the second model, job scheduling is determined by observing the scheduling

operations at each site. Because no knowledge about allocated resources is available at

the ES level, each ES monitors the number of jobs that can be run by a site. Further, two

variations of this model were pursued: no-memory and memory-based. For the no-

memory approach, whenever new jobs can no longer be scheduled at a site, ESs stop

submitting jobs to that site. For the memory-based variation, GangSim maintains the

observed limits over the time. Whenever jobs from a given VO no longer start at a site,

the burst limit is inferred. As soon as the number of jobs from a given VO running at a

site drops to zero and no other job is started, the epoch limit is inferred as well.

4.2.2. Simulation Approach and its Limitations

From an execution point of view, GangSim uses two threads for achieving its goals.

One thread, the collector, is used for serving external queries based on the state and

99

instantiates the interfacing module, while the other thread, the executor, is used for:

(a) computing the next environment state, (b) updating by means of the logging module,

the historical environment trace, and (c) providing the environment state to the collector

thread. While the collector is reduced in technical complexity and implements an event

driven mechanism (provides answers when external queries are performed or updates its

environment view when signaled by the executor), the executor performs the three main

operations described above for every simulated step in order to update the simulated

environment state at a given time.

GangSim, like Ganglia, stores logged data in RRDs [1]. The RRDs are created with a

pre-specified data update time interval for each simulation run, and in the current

implementation GangSim, the RRD interface requires input data for every update

interval [1, 88]. Because of this RRD logging implementation, to calculate accurate

results GangSim must perform each environment state computation in a time interval,

which I call the required time, lower than or equal to the simulated time step. In other

words, if the executor requires more time than the time step, then under the current

historical logging technology the simulator will produce inaccurate results. Given the

following notation:

t – time step

s – time step size

r – required time

S – start time for time step t (S = s * t)

the following two scenarios are possible when simulating large Grid environments:

100

� Accurate: when the executor is not overloaded at time S (r <= s), the RRDs are

updated and the computation for the next step (t + 1) will begin at time S + s; for the

remaining time (s - r), the executor will sleep;

� Overload: when the executor is overloaded (r > s), the computation for the next step

(t + 1) will begin at time S + r. The RRDs for the current step (t) will be updated at

step t + 1.

Because of incomplete information in the RRDs due to overloading gaps are

introduced in the graphical results, and the performance metrics have discrepancies. In

the overloading scenarios, the simulated time (Grid environment time) differs from the

real time (GangSim environment time).

4.3. GangSim Output

In this section, I explain the simulator features of GangSim using several examples.

I assume that each site has a predefined number of CPUs, and each VO a predefined

number of groups that submit workloads. I use synthetic workloads to validate the

simulator, evaluate its performance, and provide examples of its capacities. Each

workload is composed of jobs, each corresponding to a certain amount of work and

with precedence constraints (job ordering in a workload) determining the order in

which jobs can be executed [38, 106].

The output of GangSim is represented by three types of information: performance

metrics, graphs illustrating simulation history, and instantaneous display environment

pages (HTML and XML documents). Performance metrics are important because they

101

provide support for qualitative analysis of how workloads are executed in a specific

scenario. The graphs represent a means for tracking the correctness of uSLA

enforcement. Finally, the instantaneous display pages allow for combining the

simulator with other tools (like real Grid schedulers) and quick user verification.

4.3.1. Experimental Setup

The scenario and experimental setup considered in the rest of this chapter is as

follows. Three VOs each submit a workload to a single site. The VOs’ workloads are

composed of 28, 34 and 39 jobs, respectively, under a Poisson distribution; the length of

the jobs is around 200s based on a Gaussian distribution (the length of jobs in a

workload is distributed with the average equal to 200s); the input files have size between

1kb and 5kb. For all the simulations, each job requires as input 2 files from a set of 5 to

20 (a random number) files placed (randomly) on a site's node. Also, for the analysis of

uSLA-based resource sharing, job precedence constraints do not have any impact on

how resources are provided; these precendences will just postpone the execution of later

jobs, while my focus is on how actually resources are shared. The site has 28 machines

shared under one of the four uSLA semantics introduced in Chapter 3, with the

simplification for the commitment-limit uSLA that a burst can last as much as the epoch

limit is not reached.

The simulation interval is 10 minutes in all scenarios with a simulator step of 5

seconds. The job scheduling strategy for both the VO and the site levels is first-come-

first-served (FCFS). The job assignment at the VO level is round robin while at the site

level is round robin combined with the close-to-file policy. When at least one of the two

102

input files is already at a node, and the node is free, then this node is selected. The close-

to-file scheduling policy influences workload executions by lowering the time for input

file acquisitions. When a file is already at a site due to previous executed job

dependencies, there is no need for a subsequent movement as long as the file is still at

the node; it can be reused by subsequent jobs that require it. However, a file can be

deleted from a node if the node runs out of space and it is not the initial source where the

file was firstly created.

As a final note, all simulations are performed on an AMD Athlon™ XP 3000+ with 1

GB of memory, and the epoch allocation is considered the simulation interval (10

minutes).

4.3.2. Performance Metric Examples

Performance metrics provide support for quantitative analysis. GangSim supports

the following six metrics: aggregated resource utilization (Util), job completion per

site, VO or overall (Comp), average site response time (Delay), average Grid response

time (Response), average starvation factor (Starv), and uSLA violation ratio

(Violation).

Table 4.2 captures the six metric values captured for the four scenarios introduced in

the previous sub-section. As can be observed, the no-limit uSLA offers the lowest

Response under the FCFS scheduling policy employed. At the same time, it is the

second best uSLA in terms of the total system utilization, but the difference between no-

limit and commitment-limit uSLAs is minimal (2.1%). This difference is explained by

the need for different input files in the no-limit case: more jobs from a single VO start

103

and thus more bandwidth is needed to transfer a file from the node where it resides to

multiple destinations (nodes in the same cluster). The other two uSLAs have lower

average resource utilizations and higher average response times for this scenario,

because fewer jobs are scheduled due to the uSLA limits.

Table 4.2: Response and Util Value Results

Metric\uSLA no-limit fix-limit extensible-limit commit-limit

Response (s) 9.18 14.16 13.53 10.91

Util (%) 68.55 61.19 65.85 70.71

Comp (%) 80% 80% 80% 82%

Delay (s) 6.97 6.11 6.58 6.85

Starv (%) 8.49 12.32 10.38 7.82

Violation (%) 17.15
*
 0.0 6.90 12.01

*
With the assumption that resources are equally shared among the VOs (each should get a 33%of these

resources)

104

I introduce two additional metrics to measure GangSim’s overloading. Simulated

step requirements (Required) represents the ratio of required time to the time step size

for completing the computations required by the Grid environment state update. In

addition, average required is defined as the average of the required metric over an entire

simulation interval. Whenever the required metric is smaller than or equal to one, the

simulator is not overloaded.

System overloading metric (Overload) captures the level of inaccuracy introduced

into the simulator by the limitations of the logging facility:

Overload = 1 – n * s / t

where t is the GangSim environment time, s is the time step size, and n is the number of

steps successfully simulated at time t. A small overload time indicates that Grid

environment time is close to the GangSim environment time; whereas a large value

indicates that the Grid environment time is well behind GangSim’s environment time.

4.3.3. Graph Output Examples

In this section, I provide an example of GangSim’s graph output. For each uSLA,

four figures are presented: the first three represent CPU utilizations (burst and epoch) for

VO0, VO1, and VO2, respectively. The fourth figure represents the aggregated CPU

utilization (again, burst and epoch) for the three VOs. In addition, the uSLAs are

represented for the last three scenarios as lines that express either burst or epoch

allocations. The two axes are CPU utilization (expressed as percentages on the vertical

axis) and simulated time (expressed as seconds on the horizontal axis). In addition, when

a limit is enforced, it is also represented on the left axis as a percentage.

105

The first simulation represents the execution of the sample workloads on the site’s

resources for a no-limit uSLA. Each VO acquires CPU resources as it submits jobs into

the schedulers’ queues. Figure 4.2 shows that VO2 acquires fewer resources in the

beginning (at simulated time 120s), even though the various VOs’ workloads have

comparable resource requirements (20% for VO2 compared with 42% for VO0 and 37%

for VO1, thus there is over 100% imbalance between VO0 and VO2). The explanation is

that in absence of any limitations, VO2’s submitted jobs are scheduled only after the

other VO’s jobs submitted earlier are finished, because the third VO starts submitting in

jobs at a later time.

106

Figure 4.2: No-limit uSLA Simulation Example

107

The second simulation represents the execution of the sample workloads on the site’s

resources for a fixed-limit uSLA. The uSLA imposed in this scenario allows at most

30% for each VO and a total of at most 90% for all the VOs. In this scenario, each VO

acquires at most its allocated share of the CPUs as can be observed from Figure 4.3. For

this scenario, each VO acquires an equal share, 30%, of the total CPU resources.

However, even though additional resources were available, they remained unused,

because the fixed-limit uSLA allowed the three VOs to consume only 90% of the site

resources.

108

Figure 4.3: Fixed-limit uSLA Simulation Example

109

The third simulation represents the execution of the sample workloads using an

extensible-limit uSLA. The uSLA imposed in this scenario allows each VO to use as

many resources as possible when there is no contention, but at most 30% when

contention occurs. In this scenario, each VO acquires at most its allocated share of CPUs

over the epoch, as can be observed from Figure 4.4. The difference with the previous

scenario is that while all VOs acquire at least their entitled share, the VOs that submit

their jobs earlier get additional resources. Each of the three VOs acquire, at different

intervals, more resources than their allocations: VO0 has spikes up to 41%, VO1 up to

37% and VO2 up to 37%. However, the epoch CPU allocation is comparable for the

three VOs (each VO acquires utilizations in the 20% - 25% range over the 10 minute

interval).

110

Figure 4.4: Extensible-limit uSLA Simulation Example

111

The final simulation represents the execution of the workloads using the

commitment-limit uSLA. The uSLA imposed in this scenario allows VO0 at most 30%

for the entire period with spikes up to 60%, VO1 at most 30% with spikes up to 60% and

VO2 at most 30% for the 10 minute simulation interval with spikes up to 50%. In all

cases the spikes can last until the epoch allocation is consumed. In this scenario, the VO

with the most jobs in the queue can have spikes in its instantaneous allocation, but will

never exceed its burst limit.

112

Figure 4.5: Commitment-limit uSLA Simulation Example

113

In conclusion, I have presented GangSim graphical output for the four uSLAs

introduced in Chapter 3 and the scenario of section 4.3.1. From these results, the

commitment-limit uSLA is the best sharing approach of the four methods, because it

achieves the highest resource utilization. This conclusion is also supported by the values

from Table 4.2, which shows that the VOs achieve the lowest starvation, second smallest

response time, and the highest overall resource utilization, under this uSLA.

4.3.5. Instantaneous Results

Simulation results are accessible instantaneously through a web interface. This web

interface offers a simple and easy way to browse and view statistics about various

components in the simulated environment. There are three main screens, the site view,

the VO uSLA view, and the scheduler level view. Each view has many associated sub-

views for monitoring a particular component. For example, a user can inspect how a

scheduler assigns jobs to a site.

Figure 4.6 shows an example of the external schedulers’ interface for the fixed-limit

scenario at simulated time 120s. For each VO scheduler, the scheduled and pending

jobs are represented on the left column. The VOs and their jobs are represented on the

second column. The right column represents the scheduled and waiting jobs for each

VO’s group. The numbers for the first line on the bars have the following meanings: 7

stands for the total jobs in execution scheduled by means of Scheduler0-0, 19 for the

total jobs scheduled by means of the same Scheduler0-0, while 29.16 stands for the burst

percentage of resources consumed by the jobs scheduled by means of the same

114

scheduler from the entire Grid. Further, the numbers have the same meaning per VO

and VO group.

Figure 4.6: The ‘Schedulers’ View Exemplified

115

4.3.6. Simulation Step Value Influence

The last element of the analysis is the influence of the simulation step value on the

performance of the simulator. We performed additional runs for the scenario described

in Section 4.3.1 with two different values: 30s and 60s vs. the 5s setting used before. The

new simulation results (graphs) are captured in Figure 4.7 and Figure 4.8. It is clear that

the increase in the simulator step affects the delay in job scheduling within the simulated

environment. The difference is quantifiable as three simulator steps, based on the

GangSim cost descriptions provided in Section 4.1.3. For each scheduling operation, at

least one simulator step is required, and because the steps are 6 and 12, respectively,

times larger, the jobs startup is delayed accordingly.

116

Figure 4.7: Simulation Results for a 30s Simulation Step

with Fixed-limit uSLA

117

Figure 4.8: Simulation Results for a 60s Simulation Step

with Fixed-limit uSLA

118

4.3.7. Simulated Architecture Variations

Figure 4.9 and Figure 4.10 represent two simulations of the scenario presented

Section 4.3.3 based on uSLA observational scheduling for a fixed-limit uSLA, which is

the easiest uSLA to compare from a reader’s view-point. In both cases uSLAs are not

available: in the first case, the ESs try to maintain at least one job waiting in the local

site queue; in the second case, the ESs observe the number of jobs running concurrently

for each site and each VO and infer the uSLA at the site. These extra jobs increase the

queue load at the execution site without actually starting to execute. As a consequence,

the other VOs (VO2 and VO0, in our scenario) schedule fewer jobs on the site and

resources remain partially unused.

119

Figure 4.9: Observational Approach (no-memory) for uSLA

Discovery

120

Figure 4.10: Observational Approach (with memory) for

uSLA Discovery

121

While the two figures provide meaningful visual information for quantifying the

behavior of the two observational approaches, I provide the Response and Util values

for the three scenarios in Table 4.3 for comparisons purposes. As the results show, the

analytical approach outperforms the other two approaches in our simulation scenario.

While the simple observational approach cannot detect all the available resources based

only on monitoring information, the memory-based approach comes closer to learning

these limits (the consumption of the three VOs never gets to the point where it spikes up

to the 90% limit).

Table 4.3: Response and Util Value Results (fix-limit uSLA

scenario)

Metric\uSLA analytical observational (no-memory) observational (memory)

Response (s) 14.16 18.21 17.02

Util (%) 61.19 49.92 55.21

4.3.8. Simulator Performance

In this subsection I show by experimentation that the required time for a simulation

is dependent on three factors: number of participating sites, workflow sizes and number

of participating VOs. I consider next three scenarios for evaluating GangSim scalability

and performance, one for each of the above mentioned factors. In all three scenarios,

the scheduling policy is random assignment, the uSLA is the extensible-limit uSLA

(50% for each VO), while the simulation step is 5 seconds. A variable number of VOs

122

submit workloads composed of pre-defined number of jobs (200 per VO if not stated),

with a constant arrival rate (2 jobs per second) for a 1200 seconds time interval.

To measure the impact of the environment size on the quality of results, six

simulations were performed for 15 VOs with workloads composed of 200 jobs each,

and for different environment sizes: 100, 125, 150, 175, 200, and 225 sites. Figure 4.11

captures the average required metric for each environment size. The first figure shows

that in average GangSim still copes with the computation requirements for 100 sites, 15

VOs and 200 jobs size workloads per VO, but the required time increases substantially

as the size of the environment grows.

Figure 4.11: Average Requirement Metric Function of the

Environment Size

123

Figure 4.12 presents the average overload metric as a function of the number of

sites (100, 125, 150, 175, 200, and 225) at four GangSim environment times: 300s,

600s, 900s, and 1200s. While its value is close to 0 for 100 sites (low overload), it

increases quickly as the environment size grows.

Figure 4.12: Overload Metric Function of the Number of

Sites during Executions

124

To evaluate the impact of the workload size, four simulations were performed on a

Grid of 225 sites and with 15 VOs for different workload sizes: 100, 200, 300, and 400

jobs per VO. Figure 4.13 captures the average required metric. It can be easily observed

that the required metric increases more slowly with the number of jobs than with the

number of sites. Thus, handling a single extra-job is less computationally intensive than

handling an additional site.

Figure 4.13: Average Requirement Metric Function of the

Workload Size

125

Figure 4.14 represents the variation of the average required metric for different

numbers of VOs (10, 15 and 20) for three Grid environments (100, 150 and 200 sites).

The total number of jobs in the system was constant, 1500 jobs, that were distributed

evenly over the simulated VOs. I note that in the current GangSim implementation it is

more expensive to add VOs to the simulated environment than increase the VO

workload sizes (previous figure). This result is expected, because additional data

structures must be maintained and processed for additional VOs.

Figure 4.14: Average Requirement Metric with the Number

of VOs for Three Environment Sizes

126

To summarize, adding either sites or VOs to the simulated Grid environment is

computationally more expensive in the GangSim current implementation than

increasing workload sizes.

4.4. Summary and Future Work

In summary, in this chapter I have detailed GangSim, a simulator developed for

controlled resource sharing studies in Grid environments. I have also described the type

of comparisons that can be made by means of a specific scenario. Other task

assignment policies can be combined with various uSLAs for analyses. The simulation

results show that commitment-limit uSLA performs the best for our sample scenario

compared with the other three uSLAs introduced in Chapter 3 in terms of the computed

performance metrics. GangSim has been used for several simulations studies and

comparison studies regarding current Grid status [33, 38, 44, 107, 108].

As future work, I plan to in validate GangSim against real Grids. Preliminary

simulator validation studies show inconclusive results. Grids introduce latencies and

failures that are not captured by GangSim, which was developed as an ideal study

environment. Second, a language-based uSLA specification represents an important

step for extending GangSim’s capabilities in simulating various scenarios. And third,

GangSim can be configured to run in a distributed mode in which several simulator

instances run on different hosts, with sites and computational load distributed

appropriately. This feature has the potential to provide greater, but I have not yet

evaluated whether this potential can be achieved in practice.

127

CHAPTER FIVE

GRUBER: A GRID uSLA-BASED BROKER

GRUBER is an infrastructure for uSLAs specification, management and

enforcement in Grid environments. The current implementation has been successfully

deployed, tested and used in the OSG/Grid3 environment [13]. GRUBER provides a

means for uSLA discovery, management, and translation to allow Grid schedulers in

order to perform uSLA-based scheduling. It addresses the issues of how uSLAs can be

automatically discovered, retrieved, stored, and disseminated. The targeted entities are

computing resources such as computers, storage, and networks, and computing

services, such as Grid services.

The rest of this chapter is organized as follows. Section 2 presents the

implementation details and enhancements required to handle large distributed Grid

environments. Section 3 covers GRUBER’s infrastructure performance. The chapter

ends with my conclusions.

5.1 Implementation Details

GRUBER is composed of five software components (see Figure 5.1):

128

1. The GRUBER engine implements uSLA semantics, detects available resources,

and maintains an overall view of resource utilization in the Grid. My

implementation is a Grid service that is capable of serving multiple requests. It is

based on the Globus Toolkit [85] and provides authentication, authorization,

state or state-less interaction, etc.

2. The uSLA language parser provides support for translating the two specification

languages introduced in Chapter 3 to an internal representation for the engine;

3. The GRUBER site monitors and uSLA enforcers (S-PEP) are the data providers

for the GRUBER engine. They are composed of a set of UNIX and Globus tools

for collecting Grid status information and enforcing uSLAs for resource

managers that do not have means for controlled resource sharing;

4. The GRUBER queue manager (QM) and VO uSLA enforcers (V-PEP) are

complex GRUBER clients that reside on submitting hosts. They enforce VO

uSLAs and decide how many jobs to start and when;

5. The GRUBER site selectors, which reside on submitting hosts, are tools that

communicate with the GRUBER engine to determine the best site for a job.

Currently, there are two implementations of GRUBER available, one based on Grid

Services (OGSI [109]), and one on Web Services (WS [85]) - the two main versions of

the Globus Toolkit (GT3 and GT4, respectively).

In this infrastructure, components exchange information under the following rules.

The GRUBER engine periodically receives information about available resources on

the Grid by means of the GRUBER SiteMonitor (Figure 5.1 - arrows 1 and 2). The

129

GRUBER SiteMonitor collects raw data from each local resource manager and

translates it into the semantics of Chapter 3. Jobs are submitted to the local queue at

each submission site and the GRUBER QM instructs the external scheduler (ES: Figure

5.1 - arrow 4), based interactions with the GRUBER engine (Figure 5.1 - arrow 3),

when and how jobs can be released. As soon jobs are released, the ES interacts with

one of the GRUBER SiteSelectors for selecting a specific site for each individual job

(Figure 5.1 - arrow 5). A SiteSelector can be selected for each individual job. The

SiteSelector uses information provided by the GRUBER engine (Figure 5.1 - arrow 6).

The last step is the job submission (Figure 5.1 - arrow 7).

130

Figure 5.1. GRUBER Resource Brokering

131

5.1.1 The GRUBER Engine

The GRUBER engine represents the main component of the brokering infrastructure.

I use the term decision point (DP) for an engine instance. A DP maintains a view of the

available resources at each Grid site and invokes one of the four uSLA algorithms

described in Chapter 3 (no-uSLA, fixed-uSLA, extensible-uSLA, and commitment-

uSLA) for determining resource availability. All the other components in the brokering

infrastructure communicate with a DP to perform their operations.

GRUBER decides which providers are available for a request using monitoring data

and published uSLAs. The GRUBER engine’s logic for managing CPU and disk

requests is captured by the following algorithm, which returns the set S of available

sites for use of job J, where J represents the job characteristics as well the job name,

from the VOi:

G = Grid Site Set ;

J = resource requirements for job J;

S = Matching Site Set;

algorithm get-avail-sites_cpu inputs (G, VOi, J) returns S

1. S = empty

2. for each site s in G do

Apply one of the algorithms introduced in chapter 3

132

3. if uSLA (s) == none and

 no-uSLA (J, VOi, s) == accept then

4. add (s, S)

5. else if uSLA (s) == fixed and

 fixed-uSLA (J, VOi, s) == accept then

6. add (s, S)

7. else if uSLA (s) == extensible and

 extensible-uSLA (J, VOi, s) == accept then

8. add (s, S)

9. else if uSLA (s) == commitment and

 commitment-uSLA (J, VOi, s) == accept then

10. add (s, S)

11. else

12. next

13. return S

133

5.1.2 uSLA Enforcers and Observers

In this section, I describe two solutions for uSLA management and enforcement

provided by GRUBER. The first solution considers the case of simple RMs that are

unable to arbitrate among concurrent requests for resources, in which case complete

policy enforcement points (PEPs) are required. The second solution supports advanced

site RMs capable of enforcing complex uSLAs, in which case only policy observation

points are required (POPs).

Solution 1 (Stand-alone resource S-PEP): The first solution works with any

primitive batch system, for example Q
2
ADPZ [110], that provides at least the

following: accurate usage and hardware status information, basic job management

(start, stop, held, remove operations), and job prioritization capabilities (increase,

decrease operations). The S-PEP interacts with the RM(s). It continuously checks the

status of all the jobs being managed by the RM and invokes management operations

when required to enforce uSLAs. This functionality is accomplished by gathering site

uSLAs as described in Section 3.5, collecting monitoring information about cluster

usage from the local schedulers, computing CPU-usage parameters, and sending

commands to schedulers to start, stop, restart, hold, and prioritize jobs. As an example,

the processing logic of the S-PEP based on the commitment-uSLA is presented below:

134

EPi = Epoch allocation policy for VOi

BPi = Burst allocation policy for VOi

Qi = set of queues with jobs from VOi

BAi = Burst Resource Allocation for VOi

EAi = Epoch Resource Allocation for VOi

Utilization = current utilization on the site

TOTAL = possible allocation on the site

procedure s-pep_commitment

1. while (true) do

2. sleep 10 # (seconds)

3. foreach VOi

Case 1: resource exhausted on this site

4. if EAi > EPi then

5. suspend jobs for VOi from all Qi

Case 2: available and BAi < BPi

6. else if Utilization < TOTAL

 & BAi < BPi & Qi has jobs then

7. start job J from some Qi # (e.g., FIFO sched)

Case 3: resource contention: fill EPi

8. else if Utilization == TOTAL

135

 & BAi< EPi & Qi has jobs then

9. if j exists & BAj >= EPj then

10. suspend an over-quota job Qj

11. start job J from some Qi # (e.g., FIFO sched)

For further clarification, BA or EA represents the share actually used by a VO. BP or

EP represents upper limits for these shares. If BP or EP increases, then the VO receives

additional resources. An important novelty of this approach over a cluster RM is its

capability to keep track of jobs scheduled by several RMs on a single cluster, and to

allow the specification of complex uSLAs without the need to change the RM

implementations.

Solution 2 (Stand-alone resource S-POP): The second solution was developed and

implemented with success in the context of the OSG/Grid3 environment. I decoupled

the functionalities of the S-PEP by introducing a standalone site policy observation

point (S-POP) and by allowing the RM to manage how local resources are shared. In

this case, the assumption is that in addition to the functionalities enumerated for

solution 1, the RM can enforce the desired uSLA. Examples of such cluster RMs are

Condor [101], Portable Batch System [111], and Load Sharing Facility [103], which are

widely used on OSG/Grid3 [31]. The S-POP translates to/from the RM usage policies

to the common uSLA language described in Chapter 3, monitors resource utilization,

and communicates this information to the GRUBER engine. This approach eliminates

the requirement to deploy additional Grid elements for site management.

136

5.1.3 Queue Managers and VO-level uSLA Enforcement

GRUBER queue managers reside at the submission hosts and are responsible for

determining how many jobs per VO or VO group can be scheduled at a certain moment in

time. Usually, a VO planner is composed of a job queue, a scheduler, and job assignment

and enforcement components. These last two components are part of GRUBER. A queue

manager answers the question: “How many jobs should group Gm of VOn be allowed to

run?” and “When can these jobs start?” The queue manager is important for uSLA

enforcement at the VO’s level because it specifies, based on the VO uSLAs, how many

jobs to run simultaneously for each VO’s group. This mechanism also avoids site and

resource overloading due to un-controlled submissions. The GRUBER queue manager

implements the following algorithm (with the assumption that all jobs are held initially at

the submission host):

J = Job Id ;

Q = Job Queue ;

S = Site Set ;

G = All Site Set ;

VO = Mapping Function jobId -> VO

procedure v-pep

1. while (true) do

2. sleep 10 # (seconds)

3. if Q != empty then

137

4. get J from Q

5. else

6. next

7. S = get-avail-sites(G, Vo(J), J)

8. if S != empty then

9. release J from Q

5.1.4 Site Selectors

While GRUBER targets the provisioning of brokering services in Grid environments,

I have also included scheduling mechanisms. By introducing site selectors, GRUBER

can determine the best site for a running job in terms of uSLAs and current utilization.

They are invoked directly by Grid schedulers (e.g., Euryale [100], KOALA [37], or

WMS) in order to get site recommendations.

Currently, the four standard scheduling policies implemented by GRUBER are

random selection (G-RA), round-robin selection (G-RR), most-recently-used selection

(G-MRU), and least-used selection (G-LU). A fifth scheduling policy is provided by

the GRUBER observant site selector (G-Obs), which associates a job with the site

where the most recent job was started. In effect, this fifth site selector fills a site by

assigning jobs to it until site’s limit is reached.

5.1.5 Grid Service Brokering

GRUBER addresses resources and services differently, conditioned mainly by the

local site managers in each case (i.e., Condor [112], PBS [102] for low-level resources,

138

ARESRAN [83], SAML [113] for services). For Grid services at the site level,

GRUBER adopts the uSLA management approach from the ARESRAN prototype.

ARESRAN is a GT4 service for uSLA and reservation management, specification

and enforcement at the level of a single site based on the Globus technology [85]. The

ARESRAN prototype is based on the authorization schemes implemented by GT4, the

so called Policy Decision Point (PDP). GT4 allows a chain of PDPs to be configured

for each service, with each PDP evaluating to an independent decision [96]. The final

answer is a logical AND operation of all these independent decisions. The ARESRAN

authorization engine provides one of independent decisions to the GT4 authorization

engine based on uSLAs enforced at the site level. I have developed two specific

ARESRAN PDPs - one for managing service reservations and one for lower level

resource reservations such as compute nodes that are managed by the WS-GRAM

service [114].

The overall ARESRAN architecture is described in Figure 5.2. Whenever a service

request arrives for a service managed through ARESRAN, the service’s PDP steps in

and verifies whether the request is acceptable. At the Grid level, GRUBER collects

uSLAs from all individual ARESRAN services and provides brokering services for

consumers.

139

Figure 5.2. ARESRAN Architecture

140

The main components of these mechanisms are the ARESRAN Service, the

ARESRAN PDPs and the ARESRAN Reservation Database. These three components

communicate to ensure that requested resources or services are used appropriately. The

specific details of these components are:

• Service: represents the reservation and uSLA engine of my prototype. Every time

a new reservation is requested, the engine is invoked to verify whether the new

reservation can be honored. The verification procedure uses information from the

ARESRAN database and returns either ACCEPT, DENY or PROBABLY. If the

reservation request is accepted, it is saved in the ARESRAN database;

• Database: stores reservations, uSLAs, and information about requests in

progress. In this manner, ARESRAN has a complete view of the utilization of the

services and resources that it manages. So far, the database is implemented in

memory only, but future enhancements target the usage of a persistent database.

Whenever a reservation is served, various statistics are also saved, such as:

request time, running time, remote client, etc;

• PDPs: authorizes requests based on the rules stored in the database for various

services and resources. Each PDP returns either REJECT or ACCEPT.

To accomplish service brokering, GRUBER collects the uSLAs enforced by each site

and builds an overall view of the services’ availability in the Grid, as is done in the

resource brokering case. It collects current allocations and utilizations directly from

ARESRAN (Figure 5.3 - arrow 2) and, based on this information, instructs the

consumer about available alternatives (Figure 5.3 - arrow 3). GRUBER applies the

141

service brokering algorithm described in Chapter 3 to build the list of available

alternatives for each individual client and service request.

Figure 5.3. GRUBER Service Brokering

142

Because ARESRAN was developed from the beginning based on uSLAs for service

sharing, the overall architecture is simpler and fewer component interactions are

required. The complete GRUBER is presented in Figure 5.4.

Figure 5.4. GRUBER Resource and Service Brokering

143

5.1.6 GRUBER Extensions

I implemented several extensions to GRUBER. The most important ones are

described in this section: distributed uSLA management, multiple scheduling policies

for associating clients with DPs, and a graphical verification interface for human

operators.

5.1.6.1 DI-GRUBER (DIstributed GRUBER)

Managing uSLAs within environments that integrates participants and resources

spanning many physical institutions is a challenging problem in practice. A single DP

providing brokering decisions for hundreds to thousands of jobs and sites can become a

bottleneck in terms of reliability as well as performance. I extended GRUBER with a

distributed Grid uSLA-based resource broker, called DI-GRUBER that allows multiple

DPs to coexist and cooperate in real-time.

DI-GRUBER aims to provide a scalable management service with the same

functionality as GRUBER [45]. It is a two layer resource brokering service (see Figure

5.5), able to handle large Grid environments by extending GRUBER with support for

multiple brokering DPs. The ability to integrate new DPs into an already existing

brokering infrastructure is important in large and dynamic Grids.

144

Figure 5.5. DI-GRUBER Architecture

145

DPs learn the brokering infrastructure based on a rendezvous mechanism. A human

operator provides a rendezvous point and each DP queries and retrieves the list of the

other DPs acting in the brokering mesh.

DI-GRUBER currently uses a rendezvous mechanism based on WS-Index Service

[115] to integrate new DPs into the infrastructure. WS-Index Service [116] is a standard

component of the Globus Toolkit that provides specialized functions for resource and

service monitoring and discovery. WS-Index Service's main function in DI-GRUBER

is to act as a specialized directory of all DI-GRUBER DPs for both clients and other

DPs. Each DI-GRUBER DP registers with a predefined WS-Index Service at startup

and is automatically deleted when it vanishes. Clients use this registry, based on a pre-

defined scheduling policy, to select the most appropriate DP for usage. The scheduling

policy could take into account metrics like load and number of clients already

connected. So far, I have implemented the least-used policy based on the number of

clients already connected to a DP. Figure 5.6 presents an example of the allocation of

available DPs to the brokering clients and shows the method used for DP’s address

specifications (URI) and load (# of connected clients).

146

Figure 5.6. DPs Allocation Interface (PlanetLab experimental testbed)

147

When the infrastructure becomes overloaded, DI-GRUBER should start new DPs.

Such dynamic bootstrapping is difficult to automate in a generic environment. The

solution I have devised a semi-automatic method for the Grid3 scenario. When a client

fails to communicate or to connect to a DP, it registers a request fault with the WS-

Index Service. These faults are then used by a human operator to bring up new DI-

GRUBER instances and re-stabilize the brokering infrastructure.

5.1.6.2 Verifiers

Monitoring of a brokering infrastructure is important in order to understand why

certain decisions were performed and how the framework actually performs in different

situations (the verifier concept introduced by Dumitrescu et al. [33]). As a first step

towards this goal, I introduced a graphical-based verification mechanism that describes

how resources are used by each client and presents the current allocations and uSLAs

for each DP. This interface connects to DPs, collects the local or generic view of how

resources are being managed, and presents it in an easy to visualize mode (see Figure

5.7).

148

Figure 5.7. Resource Allocation Scenario

149

From a verifier point of view, the interface provides a means for addressing the

following two questions: “Are uSLAs adequately enforced by each DP?” and “What

are the utilizations and allocations of different resource in the Grid?”

5.2 The Performance of GRUBER

In this section, I focus on experimental results that illustrate GRUBER’s capabilities

in terms of both scalability and brokering accuracy. These results evaluate the

performance of both the centralized and distributed versions of GRUBER.

5.2.1 Experimental Setup

In this section, I introduce my experimental setup and the performance metrics used

for analysis. For each scenario, I describe the setup and workloads used to perform the

experiment.

All the experiments described in this chapter were performed using the DiPerF

performance testing framework [117]. DiPerF coordinates several machines in

executing a performance testing client and collects metrics for the performance of the

tested service. The framework is composed of a controller/collector, several submitter

modules, and a tester component. In my experiments, testers run DI-GRUBER clients

against the brokering infrastructure. Each such tester is launched with a predefined time

interval between consecutive testers – 25 seconds for the experiments described in this

chapter.

150

DiPerF collects metrics, described in section 5.1.2, as a function of either test

execution time or the number of running testers. The advantages of using DiPerF are its

capacity to coordinate large scale distributed tests involving 500+ clients and its

automated performance metric collection.

I used PlanetLab as the testbed for all the experiments of this chapter. PlanetLab

nodes are RedHat-based PCs connected to the PlanetLab overlay network with

worldwide distribution. They are connected via 10 Mb/s network links (with 100Mb/s

on some nodes), and have processor speeds exceeding 1.0 GHz (IA32 PIII class

processor), and at least 512 MB RAM.

Each experiment consisted of a set of clients requiring brokering decisions from one,

three or ten DPs. The DPs maintained a view of the entire Grid environment and

periodically exchanged information with other DPs concerning recent job or request

dispatch operations. Each experiment specifies its particular exchange period is

specified for each experiment. DPs were connected in a mesh with various degrees of

connectivity, as described for each experiment.

From 1 to 120 clients were used for performance testing. These clients ran on the

PlanetLab nodes and each maintained a connection with one DI-GRUBER DP. Clients

can select a DP under either a random or least-used scheduling policy, but for all the

experiments in this chapter clients use the least-used policy. Each client was configured

to apply a 60s timeout to the requests that it dispatched to a DI-GRUBER DP. If the

timeout occurs, then the client’s site selector recommends a site according to the local

scheduling policy without considering site uSLAs. This requirement is introduced by

151

the need to provide a brokering decision in a predefined time interval. The Euryale

scheduler [100] used for job submission on OSG/Grid3 had a fixed timeout equal to 60s

for brokering decisions. The experiments were one hour in all cases. Clients submitted

jobs once per second.

For the scalability and brokering accuracy experiments, the DPs maintained a

complete view of an emulated Grid that was composed of 300 sites with a total of

40,000 nodes (a Grid approximately ten times larger than OSG/Grid3 today). The

clients simulated brokering requests for 60 VOs and ten groups. Each GRUBER client

randomly chose a VO id and group id under which the request was made. This selection

process was repeated for each additional request.

The emulated Grid configuration was based on OSG/Grid3 configuration settings

(spring of 2005) in terms of CPU counts, network connectivity, etc. The uSLAs also

were derived from OSG/Grid3 settings: no-limit is used at the VOs' level, 50 sites share

resources under commitment-limit, 170 sites share under extensible-limit, 70 under

fixed-limit, and 10 under no-limit.

I note that this emulated environment is already as big as some existing P2P

networks. There are two layers of communication in this environment; the sites can be

thought of as super-nodes from a P2P network, while the resource nodes can be thought

of as leaves from the P2P network.

For the service brokering scenario, the environment was composed of ten

ARESRAN-managed WSRF services deployed on PlanetLab nodes and the DPs

provided brokering services for this ad-hoc service-oriented Grid. Each service ran

152

inside a GT4 container on a PlanetLab node, except DI-GRUBER and WS-Index

Service, which ran inside the same container on a node at the University of Chicago

having an Intel Pentium 2.0 GHz processor, 1 GB of memory, 100MBit/s network

connectivity, and Linux-SuSe9.1 OS.

5.2.2 Scalability Test Results

Figure 5.8 reports the results for the experiments performed to measure DI-GRUBER

scalability for one, three and ten DI-GRUBER DPs based on the emulated environment

described in section 5.3.1. When three or ten DPs were used, they exchanged

information about recently scheduled jobs every three minutes. The graph in Figure 5.8

plots the number of simultaneous active clients against the response time, while the

graph in Figure 5.9 plots the number of simultaneously active clients against

throughput.

As can be observed, the results show improvement in terms of Throughput and

Response Time when moving from one DP to ten DPs. The Throughput metric’s value

increases almost linearly with the number of DPs, reaching a constant value of five

queries per seconds for three DPs, while rising to 16 queries per second for ten DPs.

153

(A) Response Time Metric for one, three and ten DI-GRUBER DPs

(B) Throughput Metric for one, three, and ten DI-GRUBER DPs

 Figure 5.8. DI-GRUBER Performance Metrics

154

The above results suggest that adding DPs increases performance, but they do not

identify the number of DPs required to support a given level of performance. To

evaluate this question, I extracted traces of the brokering requests made in the previous

experiment. I also built the GRUB-SIM extension of DI-GRUBER, a trace-based

simulator that is capable of simulating additional DPs for brokering requests, of

identifying saturation moments, and of generating the optimal number of DPs needed

for a given Grid environment. I used GRUB-SIM on these traces to compute the

minimal number of DPs required to provide a 15 seconds response time for the

considered environment.

The analysis is based on the Response metric and the moments when a client does

not receive an answer in less than 15 seconds from the DP. It showed that a total of five

DPs are sufficient to achieve a response time lower than 15 seconds for all 120 clients

in the simulated environment.

As a final note, the performance results presented above will remain un-changed for

other uSLAs configurations. The four uSLAs have similar computation complexities

for the same site: for a given brokering request the computational cost can be expressed

as O (N+M), where N is the number of sites, and M the number of groups from a VO.

If N is much larger than M, then the computational cost is just O (N). Even more, the

cost introduced by communication surpasses the computational cost - to perform a

request to a DI-GRUBER DP takes on the order of seconds to 10s of seconds, while the

decision making operation is on the order of 100s of milliseconds.

155

5.2.3 Comparison with a Peer-to-Peer Service

To evaluate DI-GRUBER’s performance relative to other systems, I have studied the

PAST application, built on top of the PASTRY substrate [8], using DiPerF on

PlanetLab.

The setup used for the experiment was very similar to the one used for DI-GRUBER:

five PlanetLab nodes for running permanent PAST nodes and 120 clients that joined

and left the network in a controlled manner using the same 25 seconds delay. One

PAST node played the role of the main rendezvous point (a node situated at UChicago).

The remaining ones were maintained as backups. Each joining node requested a lookup

and an insert operation every second (or, if the previous operation took more than one

second, at soon as the previous operation ended).

The performance results are presented in Figure 5.9. In this case, the results are

plotted as a function of the experiment execution time versus load/throughput and

throughput. Figure 5.9 also includes results for ten DI-GRUBER DPs for easier

comparison. They show that for insert and lookup operations, the PAST’s response

time is around 2.5 seconds (two to three times lower than for a ten DP instances of DI-

GRUBER) with a higher variance in the beginning (the stabilization of the P2P

network), while the throughput goes as up much as 27 transaction per second in average

(1.6 higher than for DI-GRUBER). Finally, note that all operations were performed and

measured on the local nodes (insertion followed by lookup); in the background the P2P

network propagated the new elements in the network, which provides one partial

explanation for DI-GRUBER’s higher response time and lower throughput.

156

(A) PAST Network

(B) Ten DP DI-GRUBER

Figure 5.9. Response Time (left axis) and Throughput (right

axis) for a variable Load (left axis * 10) for DI-GRUBER

and PAST Network on 120 PlanetLab Nodes

157

5.2.4 Accuracy Performance Results

To evaluate the accuracy DI-GRUBER achieves, I consider three dimensions in the

analysis space: mesh connectivity (defined as the number of peers used for exchanging

data about recent brokering decisions), synchronization time interval among DPs, and

the total number of DPs in the infrastructure.

The experiments are performed for each dimension by keeping two of the parameters

constant, while performing the tests for different values of the third.

5.2.4.1 Accuracy with Mesh Connectivity

First, I measure Accuracy for brokering as a function of the DPs’ average

connectivity using ten DPs that exchange data every three minutes. I consider three

cases: full connectivity (a DP sends its state to all the others), half connectivity (a DP

sends its state only to half of the others), and one-fourth connectivity (a DP sends its

state only to one quarter of all the others). Table 5.1 contains the results achieved by the

DI-GRUBER infrastructure for configurations.

Table 5.1. Accuracy Function of the Infrastructure Mesh

Connectivity

Connectivity (N=10) Accuracy (%)

N-1 75

N/2 62

N/4 55

I note that the accuracy of the brokering infrastructure drops substantially as the

connectivity decreases.

158

5.2.4.2 Accuracy with Exchange Time Intervals

Second, I measure the accuracy as a function of exchange intervals. I use three and

ten DPs fully connected that exchange information every one, three, ten, and 30

minutes. The results in Table 5.2 show that, for a three DP infrastructure, a three to ten

minutes exchange interval is sufficient for achieving Accuracy over 85%, while one to

three minutes is required for achieving over 75% Accuracy for ten DPs. However, this

accuracy value depends also on the number of the jobs scheduled by the DPs, but one

job/s considered is sufficiently high for any Grid environment [13, 40, 80].

Table 5.2. Accuracy Function of the Exchange Time

Interval for Three and Ten DPs

Exchange Interval

(mins)

Accuracy for three DPs

(%)

Accuracy for ten DPs

(%)

1 89 80

3 87 75

10 86 68

30 83 61

159

5.2.4.3 Accuracy with the Number of Decision Points

Third, I analyze the performance of DI-GRUBER and its strategies for providing

accurate scheduling decisions as a function of the number of DPs in the infrastructure. I

use one, three, five and ten DPs that exchange data every three minutes under a full

mesh connectivity. Table 5.3 depicts the accuracy performance and I note that the

accuracy drops to 84% in the five DP case and 75% in the ten DP case, thus, having

fewer DPs yields better accuracy.

Table 5.3. Accuracy Function of the Number of DPs

Number of DPs Accuracy (%)

1 98

3 89

5 84

10 75

5.2.5 Service Brokering Example on an Ad-hoc Grid

In this section I focus on experiments for measuring service brokering performance. I

consider three scheduling strategies, GRUBER, Round-Robin, and Random and two

resource availability scenarios, fully available (FA) and partially available (PA). By

partially available I mean that only two out of ten sites had resources available for

consumption. The analysis is based on the Response metric, with the following

160

refinements: GRUBER Response represents the Response metric for GRUBER,

Service Response represents the Response metric for the tested service, and Reject

Response represents the Response metric for the authorization mechanism when a

request is rejected due to uSLA constraints.

The fully available scenario represents the worst case performance for GRUBER.

This scenario will favor simple scheduling approaches, such as the random or round

robin assignment, because of the abundance of available resources. Furthermore, this

scenario also shows the overhead incurred by using GRUBER in relation to the simpler

assignments.

The partially available scenario represents the best situation for the GRUBER engine.

This scenario will favor a scheduling approach that can make good and informed

scheduling decisions. Table 5.4 depicts the results for clients situated on the same

network as the GRUBER engine using two different scenarios for each scheduling

strategy.

For the fully available scenario, I first observe that the total number of request

completed in one hour differs greatly between the first third scheduling strategies (177

vs. 321 and, respectively, 312). As expected, these results show that brokering requests

take up a significant fraction of the total execution time without an improvement in the

assignments.

The partially available scenario demonstrates the potential benefits of GRUBER,

which was able to obtain many more assignments than the random or round robin

assignment strategies (150 vs. 59 and 52). I conclude that the utility of the GRUBER

161

service brokering engine occurs only when the number of services is large, custom

advance reservations are performed in the system or the number of the requests is large

and can potentially exhaust the available allocations.

Table 5.4. Service Brokering Performance Results (Metrics:

Number of Request, GRUBER infrastructure Response

time, Tested Service Response Time and Tested Service

Reject Time)

Scheduling

Strategy

GRUBER

Assg

(FA)

GRUBER

Assg (PA)

Random

Assg

(FA)

Random

Assg

(PA)

Round

Robin

(FA)

Round

Robin

(PA)

of Request 177 150 321 59 312 52

GRUBER

Resp.

8.98 9.78 0 0 0 0

Service

Resp.

11.45 16.55 10.84 17.45 11.04 17.0

6

Reject Resp. 0 0 8.89 10.18 9.28 9.85

5.3 Summary

In this chapter I presented GRUBER, a Grid resource broker, capable of uSLA

resource management in a multi-site, multi-VO environment. It supports the uSLA-

based Grid management infrastructure required by the scenarios presented in Chapter 3.

I note that GRUBER is a complex service: a query to a DP may include multiple

message exchanges between the submitting client and the DP, and multiple message

exchanges between the DPs and the job manager in the Grid environment.

162

Managing uSLAs within large virtual organizations that integrate participants and

resources spanning multiple physical institutions is a challenging problem. Maintaining

a single unified DP for uSLA management is a problem that arises when many users

and sites need to be managed. I provide a solution, namely the GRUBER infrastructure

and the distributed version, to address the question on how uSLAs can be stored,

retrieved and disseminated efficiently in a large distributed environment.

In summary, while GRUBER’s performance is sufficient for today’s Grids, the

increase in scale of these environments will require scalable solutions [118]. DI-

GRUBER is, in my view, such a scalable solution, powerful enough to handle world-

scale Grids.

As an additional note, LCG [32] currently uses a solution based on several schedulers

that rely solely on monitoring information gathered from provisioning sites. I believe

that by incorporating some of the mechanisms developed for DI-GRUBER, the

performance of LCG’s scheduling infrastructure will increase substantially [80].

163

CHAPTER SIX

USAGE SERVICE LEVEL AGREEMENT

RESOURCE MANAGEMENT

In this chapter I present experimental results on uSLA-based resource management.

The main purpose of these experiments is to show that uSLA-based management can be

achieved with success in real Grid environments. The results are grouped into three

sections: the first set demonstrates that uSLAs are already enforced at the site level in

Grids, the second set contains a comparison of the S-PEP and S-POP solutions

proposed in Chapter 3, and the third set presents my evaluation of GRUBER, my

solution for uSLA-based resource management on the OSG/Grid3 testbed. This last set

of experiments also shows that GRUBER is scalable enough to support large workloads

(at the limit of the other Grid technologies, i.e., in this case Condor-G).

164

6.1. OSG/Grid3 Evolution

The Grid2003 Project has deployed a multi virtual-organization, application-driven

grid laboratory (OSG/Grid3
1
) that, for almost two years, has sustained the production-

level services required by physics experiments of the Large Hadron Collider at CERN

(ATLAS and CMS), the Sloan Digital Sky Survey project, the gravitational wave

search experiment LIGO, the BTeV experiment at FermiLab, as well as applications in

molecular structure analysis and genome analysis, and computer science research

projects in such areas as job and data scheduling. This infrastructure has been operating

since November 2003 with 32 sites, a peak of 4500 processors, work loads from 10

different applications exceeding 1300 simultaneous jobs, and data transfers among sites

of greater than 2 TB/day [31].

The infrastructure has evolved continuously during this interval to provide better

services to its consumers. Also, resource providers joined constantly in the beginning.

The software stack that supports this infrastructure, the Virtual Data Toolkit (VDT

[119]), had a new release almost every two or three months. The VDT release

documentation [119] contains a complete list of the system’s software.

My experiments used the Virtual Data System (VDS [120]), which provides a

means to describe a desired data product and to produce it in the Grid environment. The

VDS provides a catalog that can be used by application environments to describe a set

1
 The first version of this environment was called WorldGrid.

165

of application programs (transformations), and then track all the data files produced by

executing those applications (derivations).

6.2. Site-level uSLA Verification on OSG/Grid3

In order to verify that uSLAs are not only specified, but also enforced at the site

level on OSG/Grid3’s sites, I monitored site CPU utilization over a period of two weeks

during July 2004 at the University of Chicago site.

6.2.1. Monitored Configuration

The resource pool was managed by means of Condor, but other OSG/Grid3 RMs

(e.g., OpenPBS [102], LSF [102, 103]) behave similarly [121]. Two VOs, USATLAS

and GridExerciser, competed for resources on this site. This site’s CPU utilization is

captured in Figure 6.1. The uSLA enforced locally was extensible-uSLA with burst

allocations of 35% for USATLAS and of 0.1% for GRIDEX, based on Condor’s

extensible fair share policy, and reported by the GRUBER’s site monitor.

The software installed at the University of Chicago site was VDT 1.1.7 [119, 122],

composed of Globus 2.0 [54, 123] for remote execution, and Condor-G 6.4.3 [124] –

the software that supports workload submission to the Grid. The local site runs Condor

6.7.1 as site manager [20].

6.2.2. Results and Analysis

USATLAS’s larger allocation means that whenever it has jobs queued locally, they

acquire all resources. But as soon as the USTALAS load decreases (from time = 4
th

166

day, 8
th

 hour to time = 10
th

 day, 20
th

 hour), Grid-Exerciser’s jobs take over and get all

the resources they request. When the USATLAS jobs start to use all resources of the

site again (X = end of 15
th

 day), Grid-Exerciser’s jobs are throttled back. Note that

when USATLAS’ load increases but does not fill the site’s resources completely, the

Grid-Exerciser jobs are not throttled back (from time = 6
th

 day to time = 8
th

 day and

16
th

 hour).

167

Figure 6.1. Resource Allocations at the University of

Chicago’s Site over an Interval of 15 days and 4 hours (time

is expressed in days and hours)

168

6.3. S-PEP vs. S-POP Analysis

The main purpose of the experiments in this section is to compare the two solutions

proposed in Chapter 3 for uSLA-based resource management at the site level. A good

uSLA scheduler will maximize delivered resources and meet owner policies. Table 6.1

contains an example where resources are not allocated according to the local owner

policies [33, 125].

Table 6.1. Possible uSLAs Scenarios for the VOs introduced

in Chapter 3, Target represents the VO’s burst limit,

Current represents the VO’s utilization, Demand,

represents the VO’s instantaneous request, and Level

represents an uSLA violation indicator)

VO Target Current Demand Level

USCMS 60 50 50 OK

USATLAS 20 15 30 Under

IVDGL 10 10 100 OK

SDSS 5 22 50 Over

6.3.1. Synthetic Workload Description

I used synthetic workloads for this comparison. The two workloads overlay work

entering a single site for two VOs, with the number of jobs and their average durations

described in Table 6.2. Job arrival times and their durations have Poisson and Gaussian

distributions, respectively. They mimic the workloads running on OSG/Grid3 [13], but

169

at a lower time scale (minutes instead of days) [121]. For each experiment, the

execution period was 3000 seconds.

Table 6.2. Synthetic Workloads’ Composition

VO ID Number of Jobs Average Job Duration [s]

0 400 250

1 480 200

6.3.2. Emulated Environment and Settings

This section describes the configurations used to perform the experiments. Two

RMs are used for comparison: Condor [104] and Open-PBS [102, 126] in conjunction

with Maui [126]. In each case, two VOs submit the workloads described above to a

single 20-node site (Site0) that is managed under either the S-PEP or S-POP solutions.

CPU resources are allocated 20% to VO0 and 80% to VO1. The two VOs are allowed

30 second burst utilizations of 60% and 90% of the site’s CPU resources, which can be

expressed using the first syntax described in Chapter 3 as follows:

< CPU, Site0, VO0, *, (3000, -20), (30, -60) >

< CPU, Site0, VO1, *, (3000, -80), (30, -90) >

The experiments were performed during January 2004. Jobs were submitted via the

Globus Toolkit

2.0 [3, 123], while the versions of the other components were Condor

170

6.6.3 [127], Open-PBS 2.3 [128], and Maui 1.0 [94, 129, 130]. The test site was

monitored by collecting status information every ten seconds.

6.3.3. S-PEP-based uSLA Enforcement

The first set of experiments uses my S-PEP implementation, which performs uSLAs

enforcement actions every 30 seconds. Figures 6.2-6.5 show instantaneous and total

CPU utilization per VO as a function of time for the two VOs under the commitment-

uSLA.

Figure 6.2. S-PEP with Condor (VO0)

Figure 6.3. S-PEP with Condor (VO1)

171

Figure 6.4. S-PEP with Maui/Open-PBS (VO0)

Figure 6.5. S-PEP with Maui/Open-PBS (VO1)

I note that the uSLAs enforcement module has similar effects for both RMs. In the

ideal case the burst allocation is never surpassed and resources are shared among the

VOs according to their epoch allocation when contention occurs. This ideal behavior

cannot be achieved due to latencies incurred in job control, and the subsequent

172

scheduling delay. In addition, the monitoring sub-component achieves different

behaviors based on the capacity of the tested RMs to return job information in a timely

fashion, for example, in Figures 6.4-6.5, from second 900 to second 1800, OpenPBS

stops providing information due to system overloading; OpenPBS has higher

computing requirements than Condor under the same testing scenario [129].

6.3.4. RM-based uSLA Enforcement

The second solution is entirely based on the local schedulers’ ability to enforce

uSLAs. uSLAs are specified as RM configuration rules, collected by the S-POP without

any interference in the resource sharing process. Figures 6.6-6.9 show instantaneous

and total CPU utilization per VO as a function of time for the two VOs and the two

different local schedulers.

Figure 6.6. Condor as S-PEP (VO0)

173

Figure 6.7. Condor as S-PEP (VO1)

Figure 6.8. Open-PBS/Maui as S-PEP (VO0)

Figure 6.9. Open-PBS/Maui as S-PEP (VO1)

174

For the S-POP solution, I observe a better balance of the jobs in execution by the

RMs, thus the continuous utilization lines. The disadvantage of this approach is that it

can only enforce the pre-programmed site uSLAs of each individual RM.

6.3.5. Quantitative comparisons

Finally, I present a quantitative comparison between the two solutions, which is

captured in Table 6.3. I observe that for the scenarios considered, which are similar to

the OSG/Grid3 environment presented later in this chapter, the S-PEP solution achieves

better enforcement of an epoch uSLA than do the local resource managers; for the burst

uSLA, there is no clear winner. Also, PBS/MAUI is better at enforcing burst uSLAs

than Condor. The differences are within 10%, except the burst limit enforcement, where

Open-PBS enforces the uSLA limits better.

Table 6.3. Quantitative Comparison Results

Configuration Burst

Accuracy (%)

Epoch

Accuracy (%)

Util (%)

S-PEP/Condor 88 99 70.2

S-PEP/Open-PBS 90 92 88.5

S-POP/Condor 84 84 73.2

S-POP/Open-PBS 97 83 67.6

175

6.3.6. Conclusions

In this section I showed that uSLA-based resource management is possible at the

site level by means of both a custom S-PEP solution and an S-POP based one. The

experimental results show that in practice the S-POP alternative achieves a better

balance of the execution of jobs, while the S-PEP solution offers similar behavior and

provides uSLAs for any RM in general.

Also, while a stand-alone S-PEP alternative offers flexibility in uSLA specification

and enforcement, it is not easy to develop a generic solution that interoperates with all

available RMs in a real Grid deployment. In addition, the extra-burden on site

administrators to deploy and learn such an S-PEP is not a viable alternative in practice

[125]. In contrast, the S-POP approach has the advantage of being non-intrusive and

overhead-free for a site administrator.

6.4. OSG/Grid3 Experiments

The experiments in this section show that, first, uSLA-based scheduling is possible in

a real environment; second, GRUBER is scalable enough to support large workloads

(1k to 10k - which were at the limit of the other technologies involved - e.g., Condor-G

[101]); third, the performance achieved using GRUBER with its four site-selectors

(both sequentially and parallel for the site-selectors for large workloads); and fourth, a

comparison of GRUBER’s brokering performance with two other approaches (G-

Observant and Random).

176

These two experiments used two types of workloads for evaluating uSLA-based

management of Grid resources. First, large workload executions on OSG/Grid3 were

performed to stress GRUBER performance on a real environment and to compare its

performance with other available techniques. Second, small and medium workload

executions on OSG/Grid3 are designed to measure the performance a user should

expect when uSLA-based scheduling is employed. The experimental section also

presents failure analysis based on the metrics collected during above experiments.

6.4.1. Workloads

For the OSG/Grid3 scheduling experiments, I used the bioinformatics sequence

analysis program called BLAST [131]. A BLAST job, in my configuration, executes

for 40 minutes on average, reads about 10-33 KBs of input, and generates about 0.7-1.5

MBs of output, that is, an insignificant amount of I/O.

I used this BLAST workload in three different configurations: (1) small workloads

of 10, 50, and 100 jobs that are scheduled all at once; (2) medium and large workloads

of 500 to 1000 jobs that are submitted in several steps according to the VOs and sites’

uSLAs; and (3) very large workloads of 10k jobs that are placed in execution according

to the sites’ uSLAs. All workloads are composed of independent BLAST jobs. These

workloads are of significant size; they are about 1/10
th

 the size of the traces analyzed by

Iosup et al. in their work on four Grids around the world [80].

On a second dimension, I submitted the BLAST workload under two policies. In the

single-run-five-retries case, I run a workload only once with a maximum of five retries

177

per job. In the ten-runs-ten-retries case, I submitted each workload ten times with a

maximum of ten retries per job. A Grid environment introduces many points of failure

due to the complexity of the technology involved, thus this final experiment offers a

statistical view of what a user should expect a workload in such environments.

All the workloads were submitted under one iVDGL group, COADD, except for the

case when the four BLAST workloads were submitted in parallel. In that case,

workloads were submitted under BNR, COADD, FMRI and VDS-dev.

6.4.2. Configurations

This section describes the configurations used to perform the experiments on

OSG/Grid3. I used 15 of 30 possible sites across the United States from the middle of

August 2004 through the end of May 2005, with the single-run-five-retries case ending

at the end of December 2004, and the ten-run-ten-retries case starting in January 2005.

The sites are autonomous, have heterogeneous resources (which explains the

discrepancies between Util and Time metrics in a few cases), and are managed by

different local resource managers, such as Condor [101], PBS or OpenPBS [94, 128],

and LSF [105]. Each site enforces different uSLAs, which are collected by GRUBER’s

SiteMonitor and further used in scheduling workloads.

The software stack deployed during the experiments changed on a constant basis,

due to the continuous improvements and bug fixes required by different partners.

During the single-run-five-retries experiments reported in Section 6.4.3 VDT versions

1.2.2-1.2.4 were deployed and used on the OSG/Grid3 sites, while the window to the

178

Grid was VDS version 1.2.3. During the ten-runs-ten-retries experiments reported in

Section 6.4.4 VDT versions 1.3.1-1.3.3 were deployed at the participating sites, while

the window to the Grid was VDS version 1.3.4 [119, 120]. In all scenarios, GRUBER

and Euryale were used as schedulers for running the workloads over OSG/Grid3.

Figure 6.10 presents a model of OSG/Grid3 and GRUBER’s interactions [43, 87]. A

single GRUBER DP is used for resource brokering by all the submission sites (from

one to five as a function of the number of VO groups submitting workloads in parallel).

Figure 6.10. OSG/Grid3 Architecture

179

All jobs were submitted within the iVDGL VO, under specific VO uSLAs that

allowed a maximum of 600 CPUs to be acquired.

For VO’s, CPUs, storage and networks are the shared resources. Table 6.4 captures

the VO CPU resource allocations in force on July 9, 2004 on several sites in

OSG/Grid3. The same uSLAs were in place for disk utilization, while network was

provided by all sites under a no-limit uSLA.

Table 6.4. OSG/Grid3 Resource Sharing Example

Shares per VO (in %) Site Name # of

CPUs iVDGL USATLAS USCMS

t2cms0.sdsc.edu 76 (60, +1) (60, +24) (60, +1)

nest.phys.uwm.edu 305 (60, -0) (60, +7) (60, -0)

uscmst0.ucsd.edu 3 (60, +12) (60, +12) (60, +12)

xena.hamptonu.edu 1 (60, +25) (60, +25) (60, +25)

garlic.hep.wisc.edu 101 (60, +3) (60, +3) (60, +3)

For VO groups, the resources to be shared are virtual CPUs, storage, and networks,

as provided and aggregated at the VO level. The uSLAs for these resources among VO

groups were specified and enforced through GRUBER and were no-limit uSLA for

storage and networks and as follows for CPUs:

< CPU, OSG/Grid3, IVDGL, *, -, (60, -20) >

< CPU, IVDGL, VDS, *, -, (60, -20) >

< CPU, IVDGL, FMRI, *, -, (60, -20) >

180

< CPU, IVDGL, BNR, *, -, (60, -20) >

< CPU, IVDGL, COADD, *, -, (60, -20) >

The re-planning interval was 20 minutes. A job is considered to have failed if it has

been submitted five (single-run-five-retries case) or ten times (ten-runs-ten-retries

case) unsuccessfully or if it is reported as having an application level “failure.”

6.4.3. GRUBER-based Scheduling on OSG/Grid3

I present next, my results that show uSLA-based scheduling is possible and that

GRUBER is scalable enough to support large workloads on OSG/Grid3. Four BLAST

workloads of 1k and 10k jobs each were run sequentially under each of the four

GRUBER’s site recommenders (Tables 5 and 6) and then in parallel (Table 6.7).

Table 6.5. Performance Metrics for one 1k BLAST

workload

Selector G-RA G-RR G-MRU G-LU G-Observant S-RA

Comp (%) 97 96.7 85.6 99.3 97.3 60.2

Replan 1396 1679 1440 1326 284 1501

Util (%) 12.85 12.28 10.63 14.56 13.59 0.57

Delay (s) 49.07 53.75 54.69 50.50 62.01 121.02

Time (s) 12044 7096 11461 11382 14073 32165

Sequential Site Selection Results: These results show that the various site

scheduling policies offer different performance, and also provide a comparison with

two non-uSLA enabled policies, G-Observant and S-RA. The total running time (Time)

181

was approximately five hours in each case. The Re-plans metric results are explained

by GRUBER’s approach for removing starved jobs after 20 minutes of starvation. In

many cases jobs had to wait at slower responding or CPU-overloaded sites or wait for

jobs running over the uSLA limit (under the extensible-limit uSLA) when pre-emption

was not in place on the Grid3’s sites. Also, some of the sites had software problems or

insufficient resources on some of their nodes (see Table 6.9 for a detailed error list).

The total time for workload completion also varied under various site selectors. The

best time was achieved for G-RR, Time < 7500s. Taking in account that a job runs to

completion on average 40 minutes, the workload took 30% more than the ideal case

when all jobs start and run as soon as slots are available.

Next, I compare GRUBER’s performance in scheduling jobs with a basic random

assignment technique and the observational approach in job scheduling. The G-

Observant site selector submits jobs to a site as soon as the latest job sent to the same

site was started. It fills up a site by sending jobs until site’s quota is reached.

The results also show that G-RA achieves comparable performance in terms of time

with the G-Observant site selector, while G-RR gets twice the performance of G-

Observant. Compared with these two site selectors, the naive random assignment site

selector, S-RA, performs two to three times worse in terms of the measured metrics. An

important metric to observe is the number of re-planning operations. While the G-

Observant site selector had around 300 such operations, G-LU performed around 1300

re-scheduling operations and the naive site selector around 1500. The explanation for

the good performance of G-Observant on this metric is that a few sites scheduled jobs

182

much faster, and this site selector took also advantage of this characteristic in

scheduling jobs.

Table 6.6. Performance Metrics one 10k BLAST Workload

Selector G-RA G-RR G-MRU G-LU

Comp (%) 91.75 91.88 73.58 77.88

Replan 18000 23900 24350 27718

Util (%) 2.43 1.32 1.76 3.31

Delay (s) 86.63 85.17 90.45 89.01

Time (s) 156437 152844 167092 127874

GRUBER’s Scalability: To demonstrate GRUBER’s scalability over OSG/Grid3, I

used larger BLAST workloads composed of 10k jobs. These results are gathered in

Table 6.6. Round-robin and random-assignment achieved the best performance in the

case of 10k BLAST workload as well.

Concurrent Site Selection Results: While the above results are meaningful when

only one workload is run under GRUBER’s control, for this set of experiments I focus

on measuring the scheduling performance of GRUBER’s four site selectors when used

in parallel for different workloads.

My results show that under higher resource contention, only G-LU does not perform

as well as before in terms of Time, while GRUBER’s the other three site selectors

behave similarly relative one to another. Higher resource contention imposed by the

four simultaneous workloads cause G-LU to prefer sites with fewer resources. In this

183

case, the G-RR and G-RA provide the best job completion rate with the smallest Delay

and highest Util. Note that the Time metric has increased by a factor varying between

4.5 and 7.8 compared to the sequential case.

Table 6.7. Performance Metrics for four Concurrent 1k

BLAST Workloads

Selector G-RA G-RR G-MRU G-LU

Comp (%) 98.7 98.2 87.9 87.9

Replan 1815 1789 1421 2409

Util (%) 14.02 13.51 11.05 11.52

Delay (s) 64.41 66.62 68.97 63.96

Time (s) 54735 55350 72275 64558

Failure Analysis: In this section, I discuss the sources of failure in the version of

OSG/Grid3 used for this experiment. There are many cases in which a service may fail

in a dynamic, heterogeneous, and large-scale environment. For example, failures may

occur in a Grid at the infrastructure, middleware, application, and user levels, and may

be transient or permanent. Due to the natural heterogeneity of Grids and their sheer

size, failures appear much more often than in traditional parallel and distributed

environments [80]. I analyze the most common errors I have faced in running large

BLAST workloads. There are two types of failures: a job failure occurs when a job fails

to run at a certain site, an error that results in job rescheduling, and workload failure

occurs when under 100% of a workload completes.

A job error occurs when it failed to complete after a fixed number of retries. A

failed job is not scheduled to the same site a second time, because Euryale tracks bad

184

sites for each job, but a different job could be. Euryale’s re-submission operation keeps

track of site failures only for the current job, but does not provide specific feedback to

GRUBER about the execution result. Thus, the GRUBER engine does not have direct

knowledge of site failures; instead, it traces differences between how many jobs run

versus how many slots the site reports and tries to reconcile these numbers (what we

call - automated uSLA violation management). The causes of workload failures are, in

most cases, the small number of retries used during these tests and a few cases the

DAGMan, a Condor-G tool for workflow management [132], crashed during workload

management. The failure for the last try of the first failing job of a workload represents

the workload failure error.

Job failures are due to the temporary failure of the Replica Location Service (RLS

[133]) server used to stage data in and out (overloading issues), gatekeeper overloading

and transient different authentication errors, transient RLS errors, etc. Table 6.8

captures error data for a sample of 15k BLAST job runs over OSG/Grid3.

185

Table 6.8. Error Percentages of 15k BLAST jobs submitted

as 1k workloads (Percentages are computed as the ratio of

current errors to the total number of errors)

Error Description EPJ Workload

failure (#, %)

Job failure

(#, %)

Remote Local Scheduling Timeout 0.68 3 (20) 10204 (29)

Remote Application Execution

Failure

0.46 2 (13) 6846 (19)

Remote Transient Authentication

Error

0.02 0 (0) 361 (1)

Transient Database Failure (RLS) 0.14 1 (6) 2158 (6)

Remote Unset Environment 0.82 4 (26) 13034 (38)

Remote Transient GridFTP Failure 0.02 5 (33) 1141 (3)

Remote GRAM Environment Error 0.034 0 (0) 526 (1)

Others 0.0 0 (0) 8 (0)

Totals 2.28 15 (100) 342768 (100)

186

6.4.4. Statistical Results for GRUBER Scheduling on OSG/Grid3

In this section I present the results for ten-runs-ten-retries performed using the same

settings as before. While previous section proves GRUBER’s scalability for scheduling

large workloads, this section shows the performance of GRUBER for various small and

medium workload sizes, and is intended to show the behavior a user could expect.

Note, these experiments were started in January 2005, one month after the end of the

experiments reported in Section 6.4.3 (January 2005), and most of the sources of

failure identified during those experiments were fixed by upgrading to newer versions

of the VDT [122] and VDS [100] software packages.

Small Workload Results: Table 6.9 shows the results for the 10 BLAST jobs. As

can be seen, the speedup earlier sequential execution of the jobs is 2.5 to 3.5 smaller

than the optimal due to the probability of a job ending on a site with a local resource

manager that does not behave as expected (i.e., has higher latencies for starting jobs, is

overloaded due to numerous subsequent submissions, etc.). However, 75% of the jobs

completed in a time interval closer to the ideal case.

187

Table 6.9. Average Results and 90% Confidence Intervals

of Four GRUBER Strategies for a 10 job BLAST Workload

(each workload was run 10 times and confidence intervals

are based on these 10 runs)

Selector Seq. G-RA G-RR G-MRU G-LU

Comp 100 100 100 100 100

Replan 0 34.1 ± 5.51 47.5 ± 9.26 13.6 ± 2.18 8.6 ± 1.83

Util (%) 0.15 0.36 ± 0.05 0.31 ± 0.07 0.50 ± 0.04 0.55± 0.10

Delay (s) 0 3262 ± 548 4351 ± 824 801 ± 313 1162 ± 376

Time (s) 28975 12436±1191.4 13966±2208.8 7653±1205 8787±158

Speedup 1 2.33 ± 0.25 2.21 ± 0.35 3.46 ± 0.45 3.6 ± 0.6

Spdup75 1 3.72 ± 0.59 3.46 ± 0.51 5.66 ± 0.55 5.32± 0.67

Table 6.10 shows the results for a workload with 50 BLAST jobs. As before, several

jobs starved and their execution time affected the overall speedup. The speedup of 75%

is more than the half of the ideal speedup (i.e., 70% for the G-RR), showing that most

jobs complete in close to the optimal time (37 of the total jobs).

Table 6.10. Average Results and 90% Confidence Intervals

of Four GRUBER Strategies for 50 BLAST Workloads

(each workload was run 50 times and confidence intervals

are based on these 50 runs)

Selector Seq. G-RA G-RR G-MRU G-LU

Comp 100 100 100 100 100

Replan 0 35 ± 14 51.1 ± 28 78.8 ± 9.51 48.8 ±10.8

Util (%) 0.07 1.18 ± 0.25 1.44 ± 0.27 1.76 ± 0.18 1.89 ±0.43

Delay (s) 0 1420 ± 713 583 ± 140.4 1260 ± 528.7 653.8 ±202

Time (s) 131372 8035 ± 990.4 9654 ± 603.5 9702 ±1247.3 8549 ±898

Speedup 1 16.35 ± 1.17 14.12 ± 0.90 12.76 ± 0.71 15.16±2.42

Spdup75 1 30.84 ± 5.70 35.36 ± 2.79 24.36 ± 2.28 35.41±2.48

188

Table 6.11 shows the results for a workload of 100 BLAST jobs. Again, similarly to

the 50 BLAST jobs, the execution performance is half for 75% of the jobs and drops

further for the entire workload.

Table 6.11. Average Results and 90% Confidence Intervals

of Four GRUBER Strategies for 100 BLAST Workloads

(each workload was run 100 times and confidence intervals

are based on these 100 runs)

Selector Seq. G-RA G-RR G-MRU G-LU

Comp 100 100 100 100 100

Replan 0 228.7 ± 21 39.9 ± 13.8 230 ± 20.3 124.7 ± 17

Util (%) 0.12 2.86 ± 0.30 3.48 ± 0.59 1.87 ± 0.46 3.51 ± 0.7

Delay (s) 0 1691 ± 198 529 ± 92.67 1244 ± 387.9 640 ± 93.4

Time (s) 232150 10350 ± 565.9 9013 ± 1025.1 7507±2325.1 9716±1130

Speedup 1 22.43 ± 1.55 30.15 ± 3.43 19.24 ± 1.56 28.02 ± 5.4

Spdup75 1 47.38 ± 3.24 77.19 ± 3.26 35.86 ± 3.72 73.54 ± 2.0

Medium Workload Results: Table 6.12 shows the results for the 500 BLAST jobs.

The size of the workload allows the execution performance to increase. For example,

75% of the workload matches the ideal speedup and it is half for the overall workload.

Table 6.12. Average Results and 90% Confidence Intervals

of Four GRUBER Strategies for 500 BLAST Workloads

(each workload was run 500 times and confidence intervals

are based on these 500 runs)

Selector Seq. G-RA G-RR G-MRU G-LU

Comp 100 100 100 100 100

Replan 0 925 ±103.5 816 ±245.6 1024 ± 154.2 680 ± 139.3

Util (%) 0.50 34.04 ± 4.55 33.19 ± 2.39 25.41 ± 5.6 30.3 ± 4.7

Delay (s) 0 9202 ± 1716.8 6700 ± 816.6 9125 ± 6117.8 6169 ± 407

Time (s) 1892769 28116 ± 2881 24225 ±1035.9 20434 ± 4100 21362 1250

Speedup 1 67.32 ± 5.6 60.22 ± 3.26 51.77 ± 5.94 63.12 ±3.41

Spdup75 1 98.43 ± 8.7 111.69 ± 9.81 101.48 ± 10.05 113.2 ±8.82

189

Figure 6.11 presents the speedup performance over all runs with 90% confidence

intervals. Note the very small confidence intervals, which expresses the low standard

deviation, and hence the strength of my results across all the runs and all the

configurations used in this section. I consider that these results to offer of a good

prediction of the performance that can be achieved for a Grid environment like

OSG/Grid3.

Figure 6.11. Speedup Comparisons among Workloads

190

Failure Analysis: In this section, I discuss failure results for the version of

OSG/Grid3 used for the small and medium workloads (presented in Table 6.13). As can

be observed, most of the errors are due to various transient errors in the infrastructure

(RLS database, GridFTP servers) or due to the more than 20 minute queue times.

OSG/Grid3 performance in executing BLAST workloads increased between the large

workload experiments and the small and medium workload experiments: the average

EPJ of 2.28 for the first set of workloads decreased to 1.3 in this second set of

experiments. The largest improvement was achieved for the environment setup (RUE).

Other errors increased. For example, RLS errors increased due to new bugs in the

newer releases.

Table 6.13. Error Percentages of 28k BLAST jobs

submitted as small and medium workloads (Percentages are

computed as the ratio of current errors to the total number

of errors)

Error Description EPJ Workload

failure (#, %)

Job failure

(#, %)

Remote Local Scheduling Timeout 0.56 [-] 5 (3) 15810 (42)

Remote Application Execution

Failure

0.21 [-] 0 (0) 5820 (15)

Remote Transient Authentication

Error

0.11 [+] 0 (0) 3152 (8)

Transient Database Failure (RLS) 0.19 [+] 0 (0) 5416 (14)

Remote Unset Environment 0.0 [-] 0 (0) 1 (0)

Remote Transient GridFTP Failure 0.18 [+] 0 (0) 5202 (14)

Remote GRAM Environment Error 0.06 [+] 0 (0) 1769 (4)

Others 0.0 [-] 0 (0) 39 (0)

Totals 1.3 [-] 5 (3) 37209 (100)

191

6.5. Conclusions

Running workloads in Grid environments is often a challenging problem due the

scale of the environment and to the resource participation that is based on various

sharing strategies. In addition, a resource may be taken down during job execution, be

improperly setup, or just fail in job execution. Such elements must be taken in account

when targeting a grid environment.

In this chapter, I showed the results that can be achieved for running workloads

under an uSLA-enabled scheduling infrastructure and explored some of the issues that

occur in practice. During these experiments I faced various problems as described

above, as well as quantified what performance a Grid user should expect. In addition, I

observed for my brokering solution that for medium workloads, G-RA performs best

with a 90% confidence interval, while G-LU performs best for smaller workloads. I

also note that G-MRU performed worst for all tested workloads.

192

CHAPTER SEVEN

CONCLUSIONS AND FUTURE WORK

This dissertation focuses on controlled resource sharing in distributed

environments, more specifically in Grid environments. The characteristics of this target

environment, a large number of participants, namely resources and resource providers

on one side and users and user communities on the other part, require solutions that are

both scalable and decentralized. In addition, there are situations when privacy and

reliability are important. I designed a solution for controlled resource sharing starting

from previous work in the networking domain and extended it for aggregated and

complex resources that participate in large and dynamic environments.

7.1. Lessons

The most important lesson to draw from this work is that controlled resource

sharing is difficult in practice, due to the number and the complexity of participants,

their local preferences and software, but possible. Also, the four uSLA semantics

proposed in Chapter 3 proved sufficient for the OSG/Grid3 resource sharing scenario

plus two other generic scenarios [31, 67].

193

The experimental results of Chapter 6 are one of the weak points of this

dissertation. Even though the number of experiments presented is large compared to

other similar work [80, 134], additional applications and runs would have made the

analysis much stronger. Unfortunately, OSG/Grid3 availability and its permanent

evolution made it impossible to obtain of more detailed results.

As a final note, while GangSim simulator and GRUBER broker [42, 43] could be

used or deployed for a large set of similar scenarios and environments, the generality of

the uSLA idea make appealing for application to new scenarios that require controlled

resource sharing. For example, I have explored the possibility of enabling a specialized

Grid scheduler developed for DAS-2 [135], the Dutch Grid system, with support for

uSLA-based resource provisioning in multi-virtual domain environments [48, 136].

In conclusion, I believe that uSLA-based resource sharing provides a strong starting

point for building environments in which resources are shared under owner preferences.

This approach can be augmented to allow for additional mechanisms for finer resource

control [22, 39].

7.2. Future Research Directions

As future work, I am interested in expanding the set of possible uSLA semantics,

improving GangSim, perform future validation studies on GRUBER, and exploring

other mechanisms for controlled resource sharing in large cooperative environments.

While the uSLAs proposed in this thesis are comprehensive, I expect that in the

future new semantics will be required. An immediate scenario that requires such

194

enhancements is represented by the current effort pursued by various Grids in Europe to

interoperate. I am analyzing decay-based and utilization-based uSLAs [48].

I plan to validate GangSim against real Grids. Preliminary simulator validation

studies show inconclusive results, in part, because Grids introduce latencies and failures

that are not captured by GangSim. Second, I plan to extend GangSim with a language-

based uSLA specification and support for scheduling studies for virtual domain

resource sharing [48]. And third, I intend to study whether running GangSim in a

distributed mode in which several simulator instances run on different hosts, with sites

and computational load distributed appropriately, can support larger scenarios than the

ones presented in Chapter 4.

I would like to deploy the DI-GRUBER framework in a real Grid. Also, I am

interested in large Grid environments because of the unexpected challenges that such

environment might present in practice.

I plan to compare economy-based models for resource sharing with this work. For

example, I am interested in pursuing lottery scheduling where currency and ticket

abstractions serve as a means of flexible allocations [16]. Such an approach will not

replace the uSLA-based scheduling, but can support the leveraging of some parts pf the

current proposed infrastructure (i.e., verifiers’ elimination), and finer granularity for

resource sharing [39].

195

REFERENCES

1. Oetiker, T., Tobi Oetiker's MRTG - The Multi Router Traffic Grapher. 2004.

2. Oetiker, T., RRDtool: A system to store and display time series. 2005.

3. Foster, I., The Grid: A New Infrastructure for 21st Century Science. Physics

Today. 55(2): p. 42-47.

4. Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of Supercomputer

Applications, 2001. 15(3): p. 200-222.

5. Crowcroft, J., et al., Peer-to-Peer Technologies, in The Grid: Blueprint for a

New Computing Infrastructure (2nd Edition). 2004, Morgan-Kaufmann.

6. Ripeanu, M. and I. Foster. Mapping the Gnutella Network: Macroscopic

Properties of Large-Scale Peer-to-Peer Systems. in 1st International Workshop

on Peer-to-Peer Systems. 2002.

7. Ripeanu, M. and I. Foster. A Decentralized, Adaptive, Replica Location Service.

in 11th IEEE International Symposium on High Performance Distributed

Computing. 2002. Edinburgh, Scotland: IEEE Computer Society Press.

8. Rowstron, A. and P. Druschel. Pastry: Scalable, Distributed Object Location

and Routing for Large-Scale Peer-to-Peer Systems. in IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware). 2001.

9. Rowstron, A.I.T. and P. Druschel. Storage Management and Caching in PAST,

a Large-Scale, Persistent P2P Storage Utility. in Symposium on Operating

Systems Principles. 2001.

10. Stonebraker, M., et al., Mariposa: A Wide-Area Distributed Database System.

VLDB Journal, 1996. 5(1): p. 48-63.

11. Ghemawat, S., H. Gobioff, and S.T. Leung. The Google File System. in SOSP.

2003.

196

12. Foster, I. Grid Computing. in Advanced Computing and Analysis Techniques in

Physics Research (ACAT). 2000: AIP Conference Proceedings.

13. Foster, I. and others. The Grid2003 Production Grid: Principles and Practice.

in IEEE International Symposium on High Performance Distributed Computing.

2004: IEEE Computer Science Press.

14. Pearlman, L., et al. A Community Authorization Service for Group

Collaboration. in IEEE 3rd International Workshop on Policies for Distributed

Systems and Networks. 2002.

15. Globus Project, Community Authorization Service (CAS). 2002.

16. Zhao, T. and V. Karamcheti, Expressing and Enforcing Distributed Resource

Agreements. 2000, Department of Computer Science, Courant Institute of

Mathematical Sciences: New York.

17. Raman, R., Matchmaking Frameworks for Distributed Resource Management.

2000, University of Wisconsin.

18. Foster, I., et al., End-to-End Quality of Service for High-end Applications.

Computer Communications, 2004. 27(14): p. 1375-1388.

19. Czajkowski, K., et al. SNAP: A Protocol for Negotiating Service Level

Agreements and Coordinating Resource Management in Distributed Systems. in

8th Workshop on Job Scheduling Strategies for Parallel Processing. 2002.

Edinburgh, Scotland.

20. Thain, D., T. Tannenbaum, and M. Livny, Condor and the Grid, in Grid

Computing: Making The Global Infrastructure a Reality, A. Hey, Editor. 2003,

John Wiley.

21. Ludwig, H., A. Dan, and B. Kearney. Cremona: An Architecture and Library

for Creation and Monitoring WS-Agreements. in ACM International Conference

on Service Oriented Computing (ICSOC'04). 2004. New York.

22. Dan, A., et al., Web Services on Demand: WSLA-driven automated

management, S. Journal, Editor. 2004, IBM. p. 136.

23. Dan, A., C. Dumitrescu, and M. Ripeanu. Connecting Client Objectives with

Resource Capabilities: An Essential Component for Grid Service Management

Infrastructures. in ACM International Conference on Service Oriented

Computing (ICSOC'04). 2004. New York.

197

24. Keller, A. and H. Ludwig, The WSLA Framework: Specifying and Monitoring

Service Level Agreements for Web Services. Journal of Network and Systems

Management, 2003. 11(1).

25. IBM, IBM, Globus announce open grid services. 2002.

26. Verma, D.C., Policy Based Networking, Architecture and Algorithm. November

2000: New Riders Publishing.

27. Dumitrescu, C. INTCTD: A Peer-to-Peer Approach for Intrusion Detection. in

Cluster Computing and Grids (CCGrid'06). 2006. Singapore.

28. Verma, D.C., Simplifying Network Administration using Policy based

Management. 2004, IBM.

29. Lamanna, D., J. Skene, and W. Emmerich. SLang: A Language for Defining

Service Level Agreements. in the 9th IEEE Workshop on Future Trends in

Distributed Computing Systems. 2003: IEEE Computer Society Press.

30. Chervenak, A., et al., The Data Grid: Towards an Architecture for the

Distributed Management and Analysis of Large Scientific Data Sets. J. Network

and Computer Applications, 2001(23): p. 187-200.

31. Foster, I. and e. al. The Grid2003 Production Grid: Principles and Practice. in

13th International Symposium on High Performance Distributed Computing

(HPDC). 2004.

32. LHC Computing Project. 2004.

33. Dumitrescu, C., M. Wilde, and I. Foster. A Model for Usage Policy-based

Resource Allocation in Grids. in Proceedings of the Sixth IEEE International

Workshop on Policies for Distributed Systems and Networks (POLICY'05).

2005. Stockholm, Sweden: IEEE Computer Society.

34. Chervenak, A., E. Deelman, P. Kunszt, E. Laure, A. Shoshani, H. Stockinger,

K. Stockinger, D. Thain,, Data Grid Architecture (Draft). 2002.

35. Foster, I., Data Grids, in Databasing the Brain. 2005, Wiley.

36. Iosup, A., et al. Synthetic Grid Workloads with Ibis, KOALA, and GrenchMark.

in CoreGRID Integrated Research in Grid Computing. 27-30 November 2005.

Pisa, Italy.

198

37. Mohamed, H.H. and D.H.J. Epema. Experiences with the KOALA Co-Allocating

Scheduler in Multiclusters. in 5th IEEE/ACM Int'l Symp. on Cluster Computing

and the GRID (CCGrid2005). May 2005. Cardiff, UK.

38. Dumitrescu, C. and I. Foster. Usage Policy-based CPU Sharing in Virtual

Organizations. in 5th International Workshop on Grid Computing. 2004.

Pittsburgh, PA.

39. Gimpel, H., et al. PANDA: Specifying Policies for Automated Negotiations of

Service Contracts. in The 1st International Conference on Service Oriented

Computing. 2003. Trento, Italy.

40. Dumitrescu, C., I. Raicu, and I. Foster. Experiences in Running Workloads over

Grid3. 2005. Beijing, China: GCC 2005.

41. Mueller, E.T., J.D. Moore, and G.J. Popek. A Nested Transaction Mechanism

for LOCUS. in The Ninth ACM Symposium on Operating System Principles

(SOSP). 1983. Bretton Woods, New Hampshire.

42. Dumitrescu, C. and I. Foster. GangSim: A Simulator for Grid Scheduling

Studies. in Cluster Computing and Grid. 2005. Cardiff, UK.

43. Dumitrescu, C. and I. Foster. GRUBER: A Grid Resource SLA Broker. in Euro-

Par. 2005. Portugal.

44. Quétier, B. and F. Cappello. A survey of Grid research tools: simulators,

emulators and real life platforms. in IMACS'2005 - the 17th IMACS World

Congress on Scientific Computation, Applied Mathematics and Simulation.

2005. Paris, France.

45. Dumitrescu, C., I. Raicu, and I. Foster. DI-GRUBER: A Distributed Approach

for Grid Resource Brokering. in SC'05. 2005. Seattle.

46. Chun B., D.C., T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M.

Bowman, PlanetLab: An Overlay Testbed for Broad-Coverage Services. ACM

Computer Communications Review, 3, July 2003. 33(3).

47. Foster, I., et al., The Physiology of the Grid: An Open Grid Services

Architecture for Distributed Systems Integration (extended version of Grid

Services for Distributed System Integration). 2002, Open Grid Service

Infrastructure WG, Global Grid Forum.

48. Dumitrescu, C., et al., Virtual Domain Sharing in e-Science based on Usage

Service Level Agreements. 2006: Delft.

199

49. Chervenak, A., et al., The Data Grid: Towards an Architecture for the

Distributed Management and Analysis of Large Scientific Data Sets. J. Network

and Computer Applications, 2000. 23(3): p. 187-200.

50. Welch, V., et al., X.509 Proxy Certificates for Dynamic Delegation. 2004,

Globus Alliance.

51. ITU-T, X.509 (03/00): Information Technology - Open Systems Interconnection

- The Directory: Authentication Framework. 2002, ITU.

52. Thompson, M., et al., Certificate-based Access Control for Widely Distributed

Resources, in Proc. 8th Usenix Security Symposium. 1999.

53. Allcock, W., GridFTP: Protocol Extensions to FTP for the Grid. 2003, Global

Grid Forum.

54. Foster, I. and C. Kesselman, The Globus Project: A Status Report, in Proc.

Heterogeneous Computing Workshop. 1998, IEEE Press. p. 4-18.

55. AL-ALI, R., et al., G-QOSM: Grid service discovery using QOS properties.

Computing and informatics (Comput. inform.) ISSN 1335-9150, 2002. 21(4):

p. 363-382.

56. Czajkowski, K., I. Foster, and C. Kesselman, Resource and Service

Management, in The Grid: Blueprint for a New Computing Infrastructure (2nd

Edition). 2004.

57. Czajkowski, K., et al., Grid Service Level Agreements, in Grid Resource

Management. 2003, Kluwer.

58. Czajkowski, K., et al., Agreement-Based Grid Service Management (WS-

Agreement). 2003, Global Grid Forum.

59. In, J. and P. Avery. Policy Based Scheduling for Simple Quality of Service in

Grid Computing. in International Parallel & Distributed Processing Symposium

(IPDPS). April '04. Santa Fe, New Mexico.

60. Buyya, R., GridBus: A Economy-based Grid Resource Broker. 2004, The

University of Melbourne: Melbourne.

61. Xia, H., et al. The microgrid: Using emulation to predict application

performance in diverse grid network environments. in Workshop on Challenges

200

of Large Applications in Distributed Environments (CLADE’04). June 2004.

Honolulu, Hawaii.

62. Casanova, H. SimGrid: a toolkit for the simulation of application scheduling. in

IEEE International Symposium on Cluster Computing and the Grid

(CCGrid’01). May 2001. Brisbane, Australia.

63. Buyya, R. and M. Murshed. Gridsim: A toolkit for the modeling and simulation

of distributed resource management and scheduling for grid computing. in The

Journal of Concurrency and Computation: Practice and Experience (CCPE).

2002.

64. Ranganathan, K. and I. Foster, Simulation Studies of Computation and Data

Scheduling Algorithms for Data Grids. Journal of Grid Computing, 2003. 1(1).

65. Legrand, I.C., et al. MonALISA: A Distributed Monitoring Service Architecture.

in Computing in High Energy Physics. 2003. La Jolla, CA.

66. Lupu, E., A Role-based Framework for Distributed Systems Management, in

Department of Computing. 1998, University of London: London.

67. Dumitrescu, C., Policy Research for iVDGL. 2004, The University of Chicago /

NSF Review: Chicago, IL.

68. Foster, I., et al. The Virtual Data Grid: A New Model and Architecture for

Data-Intensive Collaboration. in Conference on Innovative Data Systems

Research. 2003.

69. Global Grid Forum, Scheduling and Resource Management Area. 2002.

70. Lumb, I. and C. Smith, Scheduling Attributes and Platform LSF, J. Weglarz,

Editor. 2003, Kluwer Academic Publishers.

71. Legrand, A., L. Marchal, and H. Casanova. Scheduling Distributed

Applications: The SimGrid Simulation Framework. in 3rd IEEE International

Symposium on Cluster Computing and the Grid. 2003. Tokyo, Japan.

72. Henry, G.J., A Fair Share Scheduler. AT&T Bell Laboratory Technical Journal,

October 1984. 3(8).

73. Schroeder, B. and M. Harchol-Balter. Evaluation of Task Assignment Policies

for Super Computing Servers: The Case for Load Unbalancing and Fairness. in

Cluster Computing. April 2004.

201

74. IBM, Microsoft, and VeriSign, Web Services Security Language (WS-Security).

2002.

75. Ranganathan, K. and I. Foster. Decoupling Computation and Data Scheduling

in Distributed Data-Intensive Applications. in 11th IEEE International

Symposium on High Performance Distributed Computing. 2002. Edinburgh,

Scotland: IEEE Computer Society Press.

76. Mambelli, M., Capone and VDS. 2005, The University of Chicago and Argonne

National Laboratory: Chicago.

77. Annis, J., S. Kent, and A. Szalay, The SDSS-GriPhyN Challenge Problems:

Cluster Finding, Correlation Functions and Weak Lensing. 2001, FermiLab.

78. Sulakhe, D., Genome Analysis Research Environment. 2005, Argonne National

Laboratory: Chicago.

79. Foster, I., et al. Chimera: A Virtual Data System for Representing, Querying,

and Automating Data Derivation. in 14th Intl. Conf. on Scientific and Statistical

Database Management. 2002. Edinburgh, Scotland.

80. Iosup, A., et al. How are Real Grids Used? The Analysis of Four Grid Traces

and Its Implications. in Grid Conference. 2006. Barcelona, Spain: IEEE

Communication Society.

81. Open Science Grid (OSG). 2004.

82. DOE Science Grid PKI Certificate Policy and Certification Practice Statement.

2002.

83. Dumitrescu, C., ARESRAN: A WSRF-based Resource Reservation Service for

Grid Service. 2005.

84. Dan, A., et al., A Layered Framework for Connecting Client Objectives and

Resource Capabilities. International Journal of Cooperative Information

Systems, 2006(2006).

85. M. Humphrey, G.W., K. Jackson, J. Boverhof, M. Rodriguez, Joe Bester, J.

Gawor, S. Lang, I. Foster, S. Meder, S. Pickles, and M. McKeown. State and

Events for Web Services: A Comparison of Five WS-Resource Framework and

WS-Notification Implementations. in 4th IEEE International Symposium on

High Performance Distributed Computing (HPDC-14). 24-27 July 2005.

Research Triangle Park, NC.

202

86. Foster, I. and C. Kesselman, eds. The Grid: Blueprint for a New Computing

Infrastructure (2nd Edition). 2004, Morgan Kaufmann.

87. Dumitrescu, C., M. Wilde, and I. Foster, Usage Policies at the Site Level In

Grid. 2004, iVDGL/GriPhyN Project: Chicago.

88. Massie, M., B. Chun, and D. Culler. The Ganglia Distributed Monitoring:

Design, Implementation, and Experience. in Parallel Computing. May 2004.

89. Wisconsin, O.-U.o., UWMadisonCMS Open Science Grid Site Policy Page.

2006, University of Wisconsin, Madison.

90. FNAL, O.-. FNAL_GPFARM Site Policy for OSG. 2006, FNAL.

91. USCMS, O.-V., USCMS - OSG Policy Pages. 2006, USCMS.

92. Keahey, K., T. Araki, and P. Lane. Agreement-Based Interactions for

Experimental Science. in Europar. 2004.

93. Wolf, L.C. and R. Steinmetz, Concepts for Reservation in Advance. Kluwer

Journal on Multimedia Tools and Applications, May 1997. 4(3).

94. Team, M., Maui Scheduler, Center for HPC Cluster Resource Management and

Scheduling.

95. Perelmutov, L., J. Bakken, and D. Petravick. Storage Resource Manager. in

CHEP04. 2004. Interlaken, Switzerland.

96. Constandache, I., Policy Based Dynamic Negotiation for Grid Services

Authorization, in L3S Research Center. 2005, University of Hannover:

Hannover, Germany. p. 13.

97. Freeman, T., R. Ananthakrishnan, Authorization processing for Globus Toolkit

Java Web services. October 2005, IBM: New York.

98. Deelman, E., et al. GriPhyN and LIGO, Building a Virtual Data Grid for

Gravitational Wave Scientists. in 11th IEEE International Symposium on High

Performance Distributed Computing. 2002. Edinburgh, Scotland.

99. Deelman, E., et al. Pegasus : Mapping Scientific Workflows onto the Grid. in

Across Grids Conference 2004. 2004. Nicosia, Cyprus.

100. Vöckler, J.-S., M. Wilde, and I. Foster, The GriPhyN Virtual Data System.

2002.

203

101. Litzkow, M., M. Livny, and M. Mutka, Condor - A Hunter of Idle Workstations,

in Proc. 8th Intl Conf. on Distributed Computing Systems. 1988. p. 104-111.

102. PBS website. 2004.

103. LSF 2.2 User's Guide. February 1996.

104. Livny, M. and e. al, Condor.

105. Zhou, S. LSF: Load Sharing in Large-Scale Heterogeneous Distributed

Systems. in Workshop on Cluster Computing. 1992.

106. De Jongh, J.F.C.M., Share Scheduling in Distributed Systems, in Delft

Technical University. 2002.

107. Dumitrescu, C., et al., User-Transparent Scheduling of Higher Order

Components in Grid Environments. 2006, CoreGrid Network of Excellence:

Delft/Muenster.

108. Lee, R. and J. Skovronski, Grid Simulators: A Survey Of Various Simulators

And An Outlook On The Future Of Grid Simulation. 2005, Cornell University:

New York.

109. Foster, I., et al., Grid Services for Distributed Systems Integration. IEEE

Computer, 2002. 35(6): p. 37-46.

110. Constantinescu, Z., P. P., and P. A. Q2ADPZ: An Open system for distributed

computing. in The fourth Nordic EurOpen/USENIX Conference, NordU2002.

2002. Norway.

111. Henderson, R. and D. Tweten, Portable Batch System: External Reference

Specification. 1996.

112. Litzkow, M.J., M. Livny, and M.W. Mutka, Condor - A Hunter of Idle

Workstations, in 8th International Conference on Distributed Computing

Systems. 1988. p. 104-111.

113. Foster, I., C. Kesselman, and S. Tuecke, The Globus Toolkit and Grid

Architecture. 2001, In preparation.

114. Foster, I., et al., Modeling Stateful Resources with Web Services. 2004:

www.globus.org/wsrf.

204

115. Foster, I., C. Kesselman, and S. Tuecke, The Open Grid Services Architecture,

in The Grid: Blueprint for a New Computing Infrastructure (2nd Edition). 2004,

Morgan Kaufmann.

116. Czajkowski, K., et al. Grid Information Services for Distributed Resource

Sharing. in 10th IEEE International Symposium on High Performance

Distributed Computing. 2001: IEEE Computer Society Press.

117. Dumitrescu, C., et al. DiPerF: Automated DIstributed PERformance testing

Framework. in 5th International Workshop in Grid Computing. 2004.

118. Dumitrescu, C. Problems for Resource Brokering in Large and Dynamic Grid

Environments. in European Conference on Distributed Systems (Euro-Par).

2006. Dresden, Germany: LNCS.

119. Team, V., VDT Release Documentation. 2006, The University of Wisconsin:

Wisconsin.

120. Team, V., GriPhyN - The Virtual Data System. 2006, The University of Chicago

/ GriPhyN Project: Chicago.

121. Dumitrescu, C., I. Raicu, and I. Foster, Usage SLA-based Scheduling in Grids.

Journal of Concurrency and Computation: Practice and Experience (GCC05-

Special Issue), 2006.

122. The GriPhyN/PPDG Virtual Data Toolkit (VDT). 2004.

123. Team, T.G., The Globus Toolkit. 2006, Globus Consortium: Chicago.

124. Frey, J., et al., Condor-G: A Computation Management Agent for Multi-

Institutional Grids. Cluster Computing, 2002. 5(3): p. 237-246.

125. Avery, P. and I. Foster, The GriPhyN Project: Towards Petascale Virtual Data

Grids. 2001.

126. Maui Scheduler: http://supercluster.org/maui.

127. Condor Project, Personal Condor and Globus Glide-In. 2002.

128. Team, O.-P., A Batching Queuing System, Software Project, Altair Grid

Technologies, LLC.

129. Cluster Resources, I., Maui - PBS Integration Guide. 2006, Cluster Resources,

Inc.

205

130. Foster, I. and C. Kesselman, Globus: A Toolkit-Based Grid Architecture, in

\citeGridBook. p. 259--278.

131. Collaboration, T.G., The GriPhyN Project. 2000, www.griphyn.org.

132. Livny, M., DAGMAN reference.

133. Chervenak, A., et al., A Scalable Replica Location Service. 2001, Work in

progress.

134. Iosup, A. and D. Epema. GrenchMark: A Framework for Analyzing, Testing,

and Comparing Grids. in the 6th IEEE/ACM Int'l Symposium on Cluster

Computing and the Grid (CCGrid'06). 2006. Singapore: IEEE Computer

Science Society.

135. Backbone, D.U., DAS-2 (Distributed ASCI Supercomputer). 2006: Amsterdam.

136. Dumitrescu, C., et al. Reusable Cost-based Scheduling for Higher-Order

Components over the Grid. in The 2nd e-Science Conference 2006. 2006.

Amsterdam, the Netherlands.

137. Hill N., Watson A., Stone P., Friedman J., EMEA High Performance On Demand

Solutions Team, Case study: SOA-based On Demand Service Delivery Solution

at Star Technology Services Ltd., March 13, 2006 Online:

ftp://ftp.software.ibm.com/software/dw/wes/hipods/Star-WhitePaper3-13-2006.pdf

138. IBM - High Performance on Demand Solutions, On Demand Service Delivery

forSOA Environments, Online:

ftp://ftp.software.ibm.com/software/dw/wes/hipods/SOA_summit_wp9Mayf.pdf,

Last accessed: March 8, 2007.

139. R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. Tantawi, and A. Youssef,

"Performance management for cluster based web services," in Proceedings of the

IFIP/IEEE International Symposium on Integrated Network Management,

(Colorado Springs, CO), March 2003.

