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Abstract  

Challenging issues concerning resource usage can arise within virtual 

organizations (VOs) that integrate participants and resources spanning multiple 

physical institutions. Participants may wish to delegate to one or more VOs the right to 

use certain resources subject to local policy and service level agreements; each VO 

then wishes to use those resources subject to VO policy. In this dissertation I propose, 

design, build, and evaluate a different approach for controlled resources sharing in 

large distributed systems based on usage service level agreements (uSLAs). The 

proposed model is targeted for large and dynamic distributed environments and is 

itself distributed in order to cope with large communities of users that reside in 

different administrative domains. Agreements and Service level Agreements are not 

new concepts at this time.  However, applying these concepts in a large scale Grid that 

makes scheduling and resource sharing effective is difficult. Without such an 

agreement based resource sharing mechanism in place, existing Grid scheduling, 

centralized or distributed, either do not scale well, or are not effective due to a high 

overhead of gathering up-to-date resource availability information. My thesis is that 

the explicit representation, enforcement, and management of uSLAs can serve as an 

objective organizing principle for such systems. uSLAs express how resources must 

be used over time intervals and represent a novelty for the Grids. The concept comes 

from the networking domain, where bandwidth is allocated based on specific rules. 
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The main objective is resources neither to remain idle when there are available 

workloads for execution, nor a VO to consume more computing resources than 

provided. In support of this thesis, my contributions are as follows. First, I propose 

new mechanisms for uSLA specification and enforcement at various levels and 

perform experimental measurements of the improvements that these mechanisms can 

enable in different environments and for different workloads. Second, based on the 

real deployments, I introduce a method for determining uSLAs via observation rather 

than specification, that is, an algorithm that a client can use to determine automatically 

the uSLA that is delivered by a resource in practice. Third, I introduce GangSim, a 

simulator for Grid scheduling studies that allows uSLAs to be specified and simulated 

at different levels, as well as automated performance measurements. And fourth, I 

present GRUBER, a Grid resource scheduling prototype and architecture that allows 

uSLAs to be specified by site, VO, and, group administrators.  

The results show that uSLAs can be implemented with success and I provide 

insights into the performance and utility of the uSLA mechanisms. For example, I 

show that for real workloads on a real Grid, the measured response time is 2.67 times 

higher and site utilization is up to ten times higher than a simple round robin strategy. 

In the same case, the response time is 1.16 times higher and site utilization is equal 

compared to an “optimistic” approach that sends jobs to recently responsive sites. 
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CHAPTER ONE  

INTRODUCTION 

 

In this dissertation I propose, design, build, and evaluate an approach for controlled 

resources sharing in large distributed systems. The proposed model is targeted for large 

and dynamic distributed environments and is itself distributed in order to cope with 

large communities of users that reside in different administrative domains. Grids [3, 4] 

and Peer-to-Peer systems [5-11], as real-world examples, provide the requirements for 

this work and serve as testbeds to evaluate potential solutions in realistic settings. I 

focus on Grid computing because it enables participants to share many types of 

resources: CPUs, disk, network or other complex services.  

The thread shared by most Grid systems is cooperative computing [12]. The goal of 

these systems is to provide large-scale, flexible, and secure resource sharing among 

dynamic collections of individuals, institutions, and resources, also referred as virtual 

organizations (VOs) [4]. In such settings, users from multiple administrative domains 

pool available resources to harness their aggregate power and to benefit from the 

increased computing power and the diversity of these resources, especially when their 

applications are customized for a specific computing configuration (i.e., 64-bit 

architectures vs. 32-bit architectures, ring vs. star network topology). 
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Resource sharing within large distributed systems that integrate participants and 

resources spanning multiple physical institutions raises challenging issues [13]. 

Physical institutions may wish to delegate to one or more participants the right to use 

certain resources subject to local preferences and various agreements; each participant 

then wishes to enable those resources subject to their own policy. Mechanisms for 

supporting controlled resource sharing must be designed to allow cooperative systems 

to provision resources based on pre-negotiated agreements and on providers’ 

preferences.  

The increased scale of distributed systems calls for minimizing the needs for human 

supervision and for automating as many management tasks as possible. For example, in 

a system with over 10,000 nodes, new settings may occur thousands of times more 

often than when no resources are shared. At the same time, the complexity of necessary 

services will increase with the scale of the system. For example large and distributed 

systems require resource discovery and brokering services.  

Increasing scale in cooperative computing also makes performance and reliability 

challenging. Centralized systems are unlikely to rise to this challenge of serving as a 

single unified management decision point for hundreds to thousands of jobs and sites, 

and they can become a bottleneck in terms of both reliability and performance. 

Additionally, in a wide area network, where short and transient failures often occur, a 

single decision point can become inaccessible for varying time periods. Distributed 

services can alleviate these challenges and improve availability.  
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 Current solutions for controlling resource access in large scale distributed systems 

focus mainly on access control [14, 15], but other groups have started pursuing various 

paths for controlled resource sharing [16-22]. Finer access control mechanisms focus 

on allowing resource providers to express additional conditions about access and 

delegate partial control to other entities. For example, a Community Authorization 

Service (CAS) for access control policy management allows resource providers to 

maintain ultimate authority over their resources, but spares them from day-to-day 

policy administration tasks (e.g. adding and deleting users, modifying user privileges) 

[14].  Access control dictates the operations an entity is entitled to perform on certain 

resource without any further restrictions once access is granted. Other methods focus on 

economic models or matchmaking for controlled resource provisioning. In such cases, 

mini-markets are built for resource brokering and provisioning [16]. Another approach, 

Service level agreements (SLAs) [22, 23], focuses on establishing consumer-provider 

relationships concerning how resources must be consumed. Such relationships can be 

designed by bi-lateral rules that are driven by the internal policies that govern an 

institution.  

The difference of my work from access control mechanisms consists in its support 

for finer control about what fraction of resources a user can use after access was 

granted. Currency-based mechanisms also allow for such finer access control, but they 

offer instead a homogeneous access mechanism without enforcing any other rules 

pertaining to user characteristics (like physical location or a supporting VO). 

Agreements and Service level Agreements are not new concepts at this time [21, 24, 
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25].  However, applying these concepts in a large scale Grid environment (multi-

domain resource sharing) that makes scheduling and resource sharing effective is 

difficult. Without such an agreement based resource sharing mechanism in place, 

existing Grid scheduling, centralized or distributed [18, 19, 37, 59, 60, 137], either do 

not scale well, or are not effective due to a high overhead of gathering up-to-date 

resource availability information. Agreement-based sharing focuses on establishing bi-

lateral consumer-provide relations. When many players are involved, the establishment 

of bilateral agreements among all parties is difficult. Thus, after a provider has 

established all the agreements he wants, he could use uSLA mechanisms to express 

them and ensure their enforcement at the Grid level.  

In the networking domain, usage service level agreements (uSLAs) are used to 

address the problem of bandwidth allocation based on specific rules. Such policies are 

specified by network administrators and contain the rules for handling different types of 

traffic. In this domain, a simple usage policy example is “Email traffic is only allowed 

from outside the company’s servers only from a special mail gateway.” [26-29] This 

technique cannot be applied directly to Grids without addressing the problem of multi-

type resources (CPU, disk, services). In this dissertation I address how a refined and 

extended concept of usage policy can be applied with success in a Grid setting.  

In this chapter I provide an initial scenario for the resource sharing problem, a 

description of the research problem and a succinct introduction to the supporting 

frameworks and results achieved during this work. I finish this chapter with a 

discussion of my contributions and a roadmap of how I explore the explicit 
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representation, enforcement, and management of uSLAs in large distributed 

environments.  

1.1 Envisaged Scenarios  

The environments I target comprise potentially large numbers of resources, resource 

providers, and virtual organizations (VOs) [30, 31]. For example, in the sciences, 

hundreds of institutions and thousands of individual investigators may collectively 

control tens or hundreds of thousands of computers and associated storage systems. 

Each individual investigator and institution may participate in, and contribute resources 

to, multiple collaborative projects that can vary widely in scale, lifetime, and formality. 

At one end of the spectrum, two collaborating scientists may want to pool resources for 

the purposes of a single analysis. At the other extreme, the major physics collaborations 

associated with the Large Hadron Collider [32] encompass thousands of physicists at 

hundreds of institutions, and need to manage workloads comprising dynamic mixes of 

work of varying priority, some requiring the efficient aggregation of large quantities of 

computing and storage.  

Figure 1.1 shows a high-level model of resource allocation. In the two VOs 

(squares) and three sites (circles), shaded elements indicate the compute (C) and storage 

(S) resources allocated to each VO at each site. Sites and VOs share resources by 

defining how resource usage takes place in terms of who, what, where, and when it is 

allowed. VOs and SLAs can, of course, be nested [33].  
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Figure 1.1: Resource Allocation Schematic. VO A’s 

computing power is aggregated from Sites X and Y, while 

VO B’s computing power is aggregated from Sites X, Y and 

Z. Similarly for disk space.  
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 Users submit workloads that may comprise many thousands of independent or 

loosely coupled tasks [13, 34-37]. I use an introductory example (see Figure 1.2) to 

show how an uSLA can be used to guide resource allocations in such scenarios, and to 

illustrate some of the issues that must be addressed when implementing uSLAs. 

Assume that provider P has R computing resources available and wants to provide a 

portion of these resources (R1) to consumer C1 for a period of one month. The provider 

must be able to express and enforce this agreement. We must also be concerned with 

exactly how this agreement is to be interpreted. The resources in question might be 

dedicated to C1 or, alternatively, P might make them available to others when C1 is not 

using them. In addition, if C1 is allowed to acquire more than its allocation when 

resources are not being used for other purposes, then this “over allocation” may or may 

not result in C1’s allocation being reduced later in the month [33].  C1, in turn, wants to 

discover the allocation made by P, to interpret this agreement in terms of its semantics, 

and to use the resulting information when making scheduling decisions: it may, for 

example, choose to send tasks to another provider rather than P, if its allocation at P is 

exhausted. C1 may also want to monitor the resources that it obtains from P, to verify 

that P is adhering to the uSLA that has been negotiated. (In other contexts, monitoring 

can also be used to infer the uSLA that is place, when this information is not made 

available, or proves to be incorrect).  
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Figure 1.2: uSLA Introductory Example  
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Thus, an uSLA [38, 39] expresses a relationship between a resource provider (a site 

or VO) and a resource consumer (a VO or user). Brokers, or directly, consumers 

aggregate resources acquired from different providers, and orchestrate distributed 

computations to use those aggregated resources efficiently. In this context, a broker 

represents an entity that aggregates resources from various providers and advertises 

them to other consumers.  

Starting from the above example, I define an uSLA as representing a provider 

statement about a contract that governs how its resources are to be allocated to a 

specific resource consumer. In a typical scenario, individual resource providers 

negotiate uSLAs with relevant consumers or brokers to establish what resources are 

available for use. Policy makers who participate in such collaborations define usage 

policies involving various levels of resource sharing. A VO in its role as both resource 

consumer (from sites or other VOs) and provider (to its consumers: users or groups 

within the VO) acts as a broker for a set of resources.  

1.2 Refining the Research Problem  

Running workloads in a Grid environment without any knowledge about the 

employed resource sharing policies can be a challenging problem. For example, Grid3 

[13] represents a multi-virtual organization environment, is composed of 30 sites 

around US and sustains production level services required by various physics 

experiments [40]. Usually, these participating sites are the OSG/Grid3 resource 

providers and their resources are made available under various conditions not captured 
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by any monitoring tool (i.e., VO priorities, local usage policies, etc). In this 

environment, users often face the problem of high latencies for their jobs even though 

various monitoring tools show the selected sites as partially available. Thus, the 

question “How should usage policies for scheduling be represented and used?” 

becomes important to address. Important challenges range from the lack of automated 

mechanisms for uSLA discovery, publication, or interpretation [13] to the complexity 

of the uSLA operations to be performed to satisfy the requirements [10, 41] of many 

resources and users. Additionally, controlled resource sharing mechanisms may 

introduce too much overhead to justify their deployment in real environments.  

I make two assumptions in this dissertation. First, providers have local policies 

about how their resources are used, while also focusing on achieving higher gains for 

these resources (i.e., utilization). Second, consumers want to achieve better 

performance for their applications and to acquire as many resources as possible when 

their applications require a lot of computational power (for example, the physicists 

participating in the LCG project [32]).  

In a large distributed environment, both computing resources and site management 

solutions are heterogeneous. Thus, determining the usage policies at each individual 

site might not be trivial. Also, these policies are always specified in terms of specific 

local resource manager syntax and semantics. In cases where such policies are not even 

specified, local sites would require new usage policy mechanisms for enforcement 

when joining a large computing collaboration. Thus we must answer the question “How 
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can a system determine and enforce providers’ policies, if these policies not specified 

explicitly?”   

The last question, “What benefit can be derived from relying on uSLAs for 

controlled resource sharing?” captures the notion that the participants in a cooperative 

environment are interested in maximizing their own benefits. Thus, the sharing 

mechanisms must provide real gains for all participants to be successful. 

1.3 Supporting Frameworks and Experiments  

This dissertation describes a novel approach to controlling resource sharing in large 

distributed systems. To demonstrate the practicality of this model, I have designed a 

notation for uSLA specification and defined four uSLA semantics; simulated the four 

uSLA semantics using a resource scheduling simulator named GangSim [42]); 

evaluated a decentralized solution for uSLA management based on the GRUBER [43] 

framework for large distributed and dynamic environments; and demonstrated in 

practice how uSLA-based resource sharing works using the GRUBER framework.  

In the rest of this section I introduce the two supporting tools developed specifically 

to evaluate uSLA-based model and present an overview of the results that support this 

dissertation.  

1.3.1. Frameworks 

The first tool, GangSim [42], is a VO-centric Grid simulator I developed for the 

scheduling studies presented in this dissertation. GangSim simulates a context where 



 

12 

 

hundreds of institutions and thousands of individuals collectively control hundreds to 

thousands of computers and associated storage systems.  

GangSim is a discrete simulator that periodically evaluates the state of all simulated 

components: sites, VOs, schedulers (internal, external and data), monitoring data 

points, site policy enforcement points and VO policy enforcement points. GangSim also 

evaluates costs associated with the simulated components: time to enter the scheduling 

queues, time for site assignment, time for site transfer (network allocation and transfer 

for the executable), time for node assignment, and time for job transfer (network 

allocation and transfer for the executable and data) [44].  

The main purpose of GangSim is to provide support for simulating the combination 

of uSLAs, scheduling policies and various workloads on certain Grid architectures and 

to measure various metrics, such as: resource utilization, response times, local and VO 

policy violations, and queue times when failures and costs are simulated. 

The second tool, GRUBER [43], is a framework for uSLA discovery, resource 

management and job routing that I developed for deployment in Grid environments. It 

discovers and uses sites’ uSLAs for better resource scheduling. GRUBER focuses on 

computing resources such as computers, storage, and networks; providers may be either 

individual scientists or sites; and VOs are collaborative groups, such as scientific 

collaborations. GRUBER adds to the classical Grid concrete support for discovering, 

specification, and enforcement of uSLAs. Also, GRUBER supports uSLA management 

at several levels in a Grid, from the site level up to the end user level [43]. Whenever a 

management decision must be performed, the uSLAs from several levels are composed 
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to compute the actual resource allocation for the requesting user. To cope with large 

and dynamic Grids, several decision points can be deployed in a distributed manner and 

they cooperate for accurate decision making [45]. When a Grid scheduler is missing, 

GRUBER can also play the role of a basic Grid scheduling infrastructure.  

1.3.2. Results   

The results presented in this dissertation can be grouped into three main categories: 

analyses by means of simulations of uSLA semantics and infrastructure models, 

analyses of uSLA-based resource sharing and models with support for decentralization 

and dynamic Grids, and analyses of previous concepts for job submission over 

OSG/Grid3 [13].  

I performed extensive experiments using GangSim to evaluate alternative uSLAs, 

architecture models, and mechanisms for collecting, publishing, expressing, and 

enforcing policies at various levels in a Grid. I also devised and analyzed the behavior 

of four uSLAs semantics — no-limit, fixed-limit, extensible-limit, and commitment-limit 

— in conjunction with several scheduling policies. The simulation results showed that 

the commitment-limit semantics performs best in terms of both resource utilization and 

response time.  

My results obtained with GRUBER demonstrate that taking into account usage 

policies where they exist and performing uSLAs-based scheduling allow both resource 

consumers and providers to achieve higher performance (smaller response times and 

better resource utilization, respectively). I used this framework to simulate a Grid ten 

times larger than OSG/Grid3 on PlanetLab [46] under a constant workload of at least 
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one job per second from 120 submission hosts. These experiments show that three to 

five decision points are sufficient to handle the decisions required for such a Grid [45].  

Finally, I use the BLAST workloads [43] over OSG/Grid3 [13] to show that uSLAs 

can be used successfully in practice and to show the expected performance for such 

situations [40], as reported in Section 6.4.3 of this dissertation. In the OSG/Grid3 case, 

the measured response time is 2.67 times higher and site utilization is up to ten times 

higher than a simple round robin strategy. In the same case, the measured response time 

is 1.16 times higher and site utilization equal compared to an “optimistic” approach that 

simply sends jobs to recently responsive sites.  

1.4 Contributions  

This dissertation introduces an uSLA-based resource sharing model for large 

distributed environments. The contributions of this work are:  

1. New mechanisms for uSLA specification and enforcement at various levels and 

experimental measurements that demonstrate the performance improvements that 

these mechanisms can enable in different environments and for different workloads.  

2. A method for determining uSLAs via observation rather than specification, that is, 

an algorithm that a client can use to determine automatically and dynamically the 

uSLA that is delivered by a resource in practice. 

3. A Grid resource scheduling architecture that allows uSLAs to be specified by site, 

VO, and, group administrators. Also, a software framework, called GRUBER, that 
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implements that architecture and permits experimentation with alternative 

implementations of different functions.  

4. A simulator, GangSim, for Grid scheduling studies that allows uSLAs to be 

specified and simulated at different levels (sites, VOs, and groups), as well as 

automated performance measurements.  

The contributions for each chapter are outlined next. First, I discuss related work in 

Chapter 2. Second, I introduce the uSLAs problem and discuss representations for 

uSLAs in the Grid environment (Chapter 3). Third, I present detailed descriptions of the 

GangSim simulator and the GRUBER framework (Chapter 4 and 5). Fourth, I present 

experimental results gathered for two main scenarios, site level uSLA-based resource 

management and those gathered using GRUBER on the OSG/Grid3 testbed (Chapter 

6). The dissertation ends with conclusions and future research directions (Chapter7).  

1.5 Metrics 

This section defines metrics used in this dissertation to evaluate and compare 

different mechanisms for controlled resource sharing.  

Aggregated resource utilization (Util) is defined as the ratio of the CPU time 

actually consumed by the N jobs executed during the period considered (Σ
N

i=1 ETi) to 

the total CPU time available over that time:  

Util = Σ
N

i=1 ETi / (#_of_CPUs * ∆t) 

Util is designed to capture both the enforcement of consumers’ preferences and how 

well a provider’s resources were used.  
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Total job completion per site, VO or overall (Comp), measures the total number of 

jobs from a given set that are completed in a certain interval:  

Comp = Completed_Jobs / #_of_Jobs * 100.00 

This metric is designed to quantify the imbalance introduced by a given scheduling 

policy. It is useful for assessing the overall performance of the scheduling strategy.  

Average site response time (Delay) represents the average time, per job (DTi), that 

elapses from when the job arrives at a resource provider’s queue until it starts (the time 

between when a request is made and when the job starts at the site level):  

Delay = Σ
N

i=1 DTi / #_of_Jobs  

This metric is designed to order sites in a Grid function of their responsiveness in 

scheduling jobs.  

Average Grid response time (Response) is computed as the average time per job 

that elapses from the job submission to an external scheduler queue until it starts (RTi), 

in other words, the time between when a request is made at the Grid level and when the 

job starts on a site:  

Response = Σ
N

i=1 RTi / N 

Response combined with the number of completed jobs is designed to allow users to 

quantify their satisfaction.  

Average starvation factor (Starv) represents the ratio of the resources requested and 

available, but not provided to a user, to the resources consumed by the user (ETi), 

where i represents a site number (N). I compute this quantity as follows, where STi is 
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the CPU resource requested by a user but not provided, and RTi is the total resources 

available:  

Starv = Σ
N

i=1 ( MIN (STi, RTi) ) / Σ
N

i=1 ETi 

This metric is designed to measure how well a scheduling approach provides resources 

when available.  

uSLA violation ratio (Violation) represents the ratio of the CPUs consumed by 

users (BETi) over the allocation interval to total the CPU power:  

Violation = Σ
N

i=1 BETi / (#_of_CPUs * ∆t) 

This metric is designed to quantify a users’ satisfaction under a specific uSLA over a 

given time interval ∆t.  

I define the scheduling accuracy (Accuracy) for a specific job (SAi) as the ratio of 

free resources at the selected site to the total free provided resources over the entire 

Grid. Accuracy is then the aggregated value of all scheduling accuracies measured for 

each individual job:  

Accuracy = Σ
N

i=1 SAi / N 

Accuracy is designed to measure how well a distributed brokering system deals with 

partial information.  

Error per job (EPJ) is the number of failures per job. This metric is used to quantify 

the improvement in job execution over OSG/Grid3 between the two sets of experiments 

presented in Chapter 6. 

Throughput is defined as the number of requests completed successfully by the 

service per unit time.  
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Replan is the number of re-scheduling operations performed during a considered 

workload execution or time interval.  

Time is the total execution time for a workload considered for any of the 

experiments in this dissertation.  

Speedup is the serial execution time to the grid execution time for a workload, and, 

finally, Spdup75 is the serial execution time to the Grid execution time for 75% of a 

workload. 
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CHAPTER TWO  

RELATED WORK 

 

In this chapter I introduce in more detail the Grid computing domain, as defined by 

Foster et al. [3, 4, 47], and, next, I describe the main approaches and available systems 

for controlled resource sharing in such environments. The chapter also includes a 

survey of existing Grid simulators and their limitations that supported the necessity for 

building GangSim, a means for uSLA-based scheduling studies. The chapter ends with 

taxonomy of the policies used for controlled resource sharing in this domain.  

2.1.  Introduction  

The term Grid was coined in the mid 1990s to denote a distributed computing 

infrastructure for advanced science and engineering.  Grid computing defined through a 

series of excerpts introduced by Foster et al. [4]:  

1. “Grid computing has emerged as an important new field, distinguished from 

conventional distributed computing by its focus on large-scale resource 

sharing, innovative applications, and, in some cases, high-performance 

orientation.” 
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2. “... the ‘Grid problem, which I define as flexible, secure, coordinated 

resource sharing among dynamic collections of individuals, institutions, and 

resources — what I refer to as virtual organizations. In such settings, I 

encounter unique authentication, authorization, resource access, resource 

discovery, and other challenges. It is this class of problem that is addressed 

by Grid technologies.”  

3. “The real and specific problem that underlies the Grid concept is coordinated 

resource sharing and problem solving in dynamic, multi-institutional VOs. 

The sharing that we are concerned with is not primarily file exchange but 

rather direct access to computers, software, data, and other resources, as is 

required by a range of collaborative problem-solving and resource brokering 

strategies emerging in industry, science, and engineering. This sharing is, 

necessarily, highly controlled, with resource providers and consumers 

defining clearly and carefully just what is shared, who is allowed to share, 

and the conditions under which sharing occurs. A set of individuals and/or 

institutions defined by such sharing rules form what we call a virtual 

organization (VO).”   

In a nutshell, Grid computing is about large scale resource sharing, innovative 

applications, and high performance computing [4].  It is meant to offer flexible, secure, 

coordinated resource sharing among dynamic collections of individuals, institutions, 

and resources, namely VOs.  Figure 2.1 below gives a glimpse into the complex nature 

of Grid environments; it depicts VOs (blue clouds) interconnected at both the physical 
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layer (via networks) and at the abstract layer (via service layer agreements).  Each VO 

has resources (i.e. direct access to computers, software, and data) and users.  Based on 

the agreements among the various VOs, users can locate and share resources that are 

part of different VOs and could be physically located anywhere in the world.   

The Grid provides a means for resource sharing distributed in different 

administrative domains. The main topics of research are:  

Resource Management: Developing uniform and scalable mechanisms for naming, 

locating, and allocating computational and communication resources in distributed 

systems is a difficult problem. Usually, resources are hidden by various layers of 

software management and offering a transparent interface for utilization becomes a 

difficult problem to address in practice.  

Data Management and Access: An important element is the design and production 

of infrastructure-level architecture for data management, which are called the data grid. 

Many applications that are intended for grids are data intensive, in the sense that they 

require large amount of input and output data for normal execution. Data placement is a 

difficult problem; because it has to take in account also the network link capacities and 

local CPU power. Also, data scheduling must proceed (or complement) job scheduling 

to avoid job starvations due to missing data.  

Information Services: Requirements, designs, and prototypes of Grid information 

service are critical in large environments. Such services provide useful information 

about what resources are available or how resources must be used and allocated. Also, 
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these services become an enabler for dynamic application configuration and adaptation 

in dynamic environments where resources join and leave the environment at a fast rate.  

Security: Secure group communications, management of trust relationships, and 

developing new mechanisms for fine-grained access control are important for grid 

applications. To ensure authenticity without the physical necessity of holographic 

signatures, signing cryptographic mechanisms are developed and provided for 

messages and documents. Encrypting the entire document with a receiver's public key 

assures that only the receiver might be able to read the document's content. The purpose 

of such signing / encrypting, then, is to guarantee that any attempt to modify / read the 

content of a document becomes practically impossible. Thus, key possession and 

protection become an important issue in a world that lives in digital environments and 

needs confidentiality or/and privacy. 
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Figure 2.1: Grid Computing Overview 
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Motivated by a desire to support better resource management and access services, 

more and more effort is invested in research and development of systems for delivering 

management services over national and global scopes [48]. Current solutions for 

controlling resource utilization in large scale distributed systems focus mainly on 

access control [14, 15], but other groups have started pursuing various paths for 

controlled resource sharing [16-22]. Next, I detail some of the most common Grid 

technologies for resource management and access.  

2.2.  Resource Management Solutions for Grids: A Survey  

I describe in this section four well known efforts for controlled resource 

management in Grids, plus three additional infrastructures targeted at resource 

management. Each of these solutions is pursued by different communities or groups 

and have large acceptance for the Grid community [31, 49].  

2.2.1 Community Authorization Service (CAS) 

Community Authorization Service (CAS [14, 15]) represents one of the efforts 

pursued by the Globus team for providing controlled access to Grid resources. CAS 

builds on X.509 and Certificate Authority (CA) concepts in order to support controlled 

resource sharing for resource providers that specify course-grained access control 

policies, and delegating fine-grained access control policy management to the 

community itself.  

X.509 [50, 51] defines a centralized control framework for providing authentication 

services by using cryptographic techniques. There are three main roles required by this 
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approach: Certificate Authorities, Subscribers and Users. An additional entity is 

represented by a Naming Authority (NA). CA [52] is the entity recognized by several 

principals that controls authentication mechanisms and the management of certificates. 

Principals trust a CA by knowing (correct: believe they know) its correct public key 

and accepting unconditionally as authentic all certificates signed with this key. Because 

the verification process requires as information only the public key of the signing CA 

and certificates, the entire process can be completed without the permanent presence of 

the CA online. The only issue is the acquisition of the correct public key of the trusted 

CA.  

By means of CAS, resource providers maintain ultimate authority over their 

resources but are spared from day-to-day policy administration tasks (e.g. adding and 

deleting users, modifying user privileges). CAS is designed as a centralized server that 

is initiated for a community: a community representative acquires a GSI credential to 

represent that community as a whole, and then runs a CAS server using that community 

identity. Later, resource providers grant privileges to the community. Each resource 

provider verifies that the holder of the community credential represents that community 

and that the community's policies are compatible with the resource provider's own 

policies. Once a trust relationship has been established, the resource provider then 

grants rights to the community identity, using normal local mechanisms. Also, a user 

uses the credentials from the CAS to connect to the resource with any normal Globus 

tool (e.g., GridFTP [53]). The resource then applies its local policy to determine the 

amount of access granted to the community, and further restricts that access based on 
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the policy in the CAS credentials. This serves to limit the user's privileges to the 

intersection of those granted by the CAS to the user and those granted by the resource 

provider to the community. CAS is distributed with the Globus Toolkit [15].  

2.2.2 GARA: End-to-End Quality of Service for High-end Applications and 

G-QoSM 

GARA [18] represents a modular and extensible architecture for resource 

reservations to support end-to-end application quality of service (QoS) in Grids. It 

offers a single interface for reserving different types of resources (network, CPU, disk), 

and focuses on provisioning generic solutions and algorithms for different types 

resource managers (the heart of GARA). Reservations (and QoS) are specified through 

a specialized C-API, composed of client and Globus [54] modules for admission 

control. GARA is built on three levels: low-level QoS RMs, a QoS component for 

interfacing with the low-level RMs and provisioning the common interface, and high-

level libraries (at the user level) for leveraging reservation synchronizations for user-

level applications. The prototype supports only finite reservations, with three main 

classes of elements: reservations, resources, and QoS elements. All communications 

client - agreement provider are done through a specific API, and the underlying 

language for messages is RSL, with only one QoS quantitative parameter per 

reservation request [18].  

G-QoSM [55] builds on top of GARA in order to provide support for applications 

utilizing Grid computing infrastructure and requiring the simultaneous allocation of 

resources, such as compute servers, networks, memory, disk storage and other 
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specialized resources. Collaborative working and visualization are examples of such 

applications. G-QoSM is a framework for QoS management and allows Grid users to 

specify, locate and execute Grid jobs with QoS constraints on Grid enabled resources. 

The framework provides three particular features: 1) support for resource and service 

discovery based on QoS properties; 2) support for providing QoS guarantees at 

middleware and network level, and establishing SLAs to enforce these; and 3) 

providing QoS management on allocated resources based on a pre-negotiated SLA. 

2.2.3 SNAP: A Protocol for Negotiating Service Level Agreements and 

Coordinating Resource Management in Distributed Systems 

SNAP [19] tries to overcome previous resource managements by providing a 

generic framework instead of considering specialized classes of resources. The 

generalized framework maps resource interactions onto a well defined set of platform 

independent service level agreements. SNAP represents the instantiation of this 

generalized framework, which provides a management infrastructure for such SLAs. 

However, the entire approach is generic enough and can be used beyond the Grid 

domain and Globus Toolkit in particular [19, 56, 57].  

The SLAs are categorized as: task service level agreements, resource level 

agreements, and binding service level agreements. A minimal number of scenarios are 

also introduced, to provide a basic understanding how SNAP should be used in 

practice: file transfer service, job staging with transfer service, resource virtualization. 

Also, for agreements realization, a supporting protocol is introduced that supports the 

SLA management. [58] 
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2.2.4 WS-Agreement 

WS-Agreement is a specification for resource reservations in grid environments. It 

is a second version of the OGSI-Agreement, developed in the GGF context. Cremona is 

a project developed at IBM as a part of the ETTK framework [21, 24, 25], which 

represents an implementation of the WS-Agreement specification. Its architecture 

separates multiple layers of agreement management, orthogonal to the agreement 

management functions: the Agreement Protocol Role Management, the Agreement 

Service Role Management, and the Strategic Agreement Management. Cremona 

focuses on advance reservations, automated SLA negotiation and verification, as well 

as advanced agreement management.  

2.2.5 Commercial Workload Management Systems  

IBM WebSphere Extended Deployment (XD) is a good example of a commercial 

workload management system. It offers a dynamic environment for running mixed 

application types, while also comparing business values for various allocations in order 

to maximize the business value.  Business requirements on the common infrastructure 

include quantifying and satisfying service level agreements (SLAs) for external 

customers. This component can and will interact with other services to obtain necessary 

information. Its primary goal is to interact with the external customer and identify the 

specific characteristics [137]. At the provider level, a policy-based management 

component imposes optimal allocations and maintains the integrity of the provider’s 
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environment. The engine examines the policies to determine a configuration with the 

best “score,” which represents the optimal resource configuration [138, 139].  

2.2.6 Other Systems  

Other groups have pursued similar paths for resource sharing. The most notable ones 

are the SPHINX framework, developed at the University of Florida, and the Grid 

Service Broker. SPHINX is policy based scheduling framework for Grid-enabled 

resource allocations [59]. This framework provides scheduling strategies that (a) 

control the request assignment to grid resources by adjusting resource usage accounts 

or request priorities; (b) manage efficiently resources assigning usage quotas to 

intended users; and (c) supports reservation based grid resource allocation.  

The Grid Service Broker, a part of the GridBus Project, mediates access to 

distributed resources by (a) discovering suitable data sources for a given analysis 

scenario, (b) suitable computational resources, (c) optimally mapping analysis jobs to 

resources, (d) deploying and monitoring job execution on selected resources, (e) 

accessing data from local or remote data source during job execution, and (f) collating 

and presenting results. The broker supports a declarative and dynamic parametric 

programming model for creating grid applications [60].  

KOALA [37] has been designed and implemented by the PDS group in Delft in the 

context of the Virtual Lab for e-Science (VL-e) project. The main feature of KOALA is 

its support for co-allocation; that is, the simultaneous allocation of resources in multiple 

clusters comprising a Grid to a single application consisting of multiple stages. 

Currently, KOALA supports processor and memory co-allocation and makes use of the 
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SGE local resource managers. KOALA makes use of the  Close-to-File policy (CF) or 

the Incremental Claiming policy (IC) for scheduling jobs. The most important feature 

that enables this work is its capability to perform co-allocations. However, KOALA 

does not support controlled resource sharing while work is under progress to include an 

uSLA-based resource allocation similarly to the one proposed in this thesis [48].  

2.3.  Simulators 

Here I describe succinctly several Grid simulators that target similar problems in 

Grid as GangSim, the tool proposed in this thesis for uSLA-based scheduling studies.  

2.3.1 Bricks 

Bricks [61] was the first proposed Grid simulator designed to investigate scheduling 

issues. Its motivations were the proposal and design of an adequate tool for studies and 

comparisons of scheduling algorithms and frameworks, under various structural and 

workload conditions, in the objective of providing reproducible results. Bricks 

scheduling research focus on multi-client, multi-server Grid scenarios. Bricks allows 

the simulation of various behaviors: resource scheduling algorithms, programming 

modules for scheduling, network topology of clients and servers in global computing 

systems, and processing schemes for networks and servers.  

It considers the following interacting constituents the global computing system and 

the scheduling unit: The global computing system consists in clients submitting jobs, 

servers executing the jobs and the network. Servers and networks are characterized by 

their performance, workload or congestion, and their variance over time. Servers and 
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networks are modeled as queuing systems. Jobs are characterized by the size of their 

parameters/results and the number of computing operations they require. The 

scheduling unit contains a network monitor measuring network bandwidth and latency, 

a server monitor measuring performance, load, and availability of servers, a resource 

data base module storing the all measurements results and serving as a scheduling-

specific database, a predictor reading the measured information and predicting resource 

availability and a scheduler allocating tasks on server based on the resource data base 

and predictor information [44]. 

2.3.2 SimGrid 

SimGrid [62] is among the most popular simulation tools for Grid research. The 

main motivation behind the design and development of SimGrid was the necessity of 

simulation tools to study single-client multi-servers scheduling in the context of 

complex, distributed, dynamic, heterogeneous environments. Since in its general form, 

the scheduling problem is NP complete, most of the proposed scheduling algorithms are 

heuristics. SimGrid provides a set of abstractions and functionalities to build a 

simulator corresponding to the applications and infrastructures characteristics. In 

SimGrid resources are modeled by their latency and service rate. These characteristics 

may be set as constants or evolve according to previously collected traces. The 

topology is fully configurable. SimGrid considers execution time prediction errors 

allowing the user to understand the behavior of the scheduling algorithms under 

complex situations where execution time cannot be accurately predicted [44]. 
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2.3.3 GridSim and ChicSim 

Like SimGrid, GridSim [63] is a simulator to investigate scheduling issues in Grids. 

GridSim was proposed and designed after SimGrid. Its motivations are quite similar. 

One main difference concerns its focus on Grid economy, where the scheduling 

involves the notions of producers (resources owners), consumers (end-users) and 

brokers discovering and allocating resources to users [44]. 

ChicSim is a modular and extensible discrete event Data Grid simulation system 

built over Parsec that has been used to evaluate a wide variety of scheduling and 

replication algorithms [64]. Like GangSim, ChicSim models a Grid as a collection of 

sites. However, ChicSim does not include notions of VOs or groups and has no support 

for site usage policies. Similar comments apply to MONARC [65], a simulator 

developed to evaluate the performance of data processing architectures for physics data 

analysis, and GridSim, which models various components of distributed systems, but 

does not address the representation and evaluation of policies. 

2.4.  Taxonomy of Policies for Access Control  

A policy is the statement expressed by one or more owners or administrators of a 

resource about how the resource can be accessed and used. Policies can be either stored 

in attribute certificates that extend the authorization mechanism or specialized services 

that provide on demand these policies. Policies are parsed when required by various 

inference engines or schedulers, having as result what actions should be performed in 

response to the resource request.  
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Authorization Policies: An authorization policy specifies actions that subjects are 

permitted or prohibited to invoke on managed objects [66]. The entire set of policies 

that refers to a single resource forms the authorization set that must be enforced, and 

which must be passed in order to be granted resource access. By using policy 

statements, an application may address the changing requirements of each resource and 

session independently. Policies governing resources have been traditionally expressed 

using access control lists (ACL). This model assumes a centralized control where the 

owner grants and revokes manually authorizations using lists of rights or other simple 

associations between names and rights (see previous discussion). 

Obligation Policies:  In contrast to authorization policies, an obligation policy 

specifies which actions a subject should (or should not) perform.[66] Subjects can be 

trusted to perform them, but also monitoring and enforcing mechanisms should be 

deployed to check how a subject respects obligation policies. Negative obligations are 

not equivalent with negative authorizations. They act only at the subject part as filters 

and there are no restrains for the managers to implement them (e.g., instructors must 

not disclose student evaluations, while students are not forced to implement the same 

obligation).  

Delegation Policies: Authority delegation is essential for automated and scalable 

operations. It is the way how virtually many modern organizations work. The main 

authority delegates portions of its authority, portions that become more specific as the 

delegation chain increases. The person at the end of such a delegation chain has the 

actual responsibility to act for signing a contract, for operating an equipment, etc. This 



 

34 

 

authority delegation is traditionally accomplished through a collection of policies and 

procedures and defines how employees should conduct their activities inside the 

organization.[66] Secure delegation occurs when one object authorizes another object 

to perform some task using some of the rights of the initiator. The possibility to verify 

that an object claims to be acting on another's behalf is somehow a requirement in 

modern systems. The authorization lasts as long as the target object provides the service 

or until the delegation authorization expires or is withdrawn.  

Roles: Roles are defined as organizational identities composed of rights and duties 

for an authorized user. A role can be assigned to a single user, to another role, to a 

group of users or to all users in a system (using special keywords). It is also important 

to note that roles are not defined in isolation, but in social-like environments. The 

notion of role does not add any power to a security context, but instead improves 

manageability by adding an optional level of indirection. A high-level criterion to 

distinguish roles is to differentiate between elementary roles, just roles, and aggregate 

roles. In order to define a finer model, it is useful to make distinction also between 

various types, to define role models (how roles are specified and which relations can be 

established), administrative models (where the authority for creating and assigning 

roles resides), assignment models (how roles are assigned), task representations 

(relation between roles), to define consistency requirements and to specify 

implementations [66].  
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2.5.  Discussion  

Resource access policies typically enforce authorization rules. They specify the 

privileges of a specific user to access a specific resource or resource class, such as 

submitting a job to a specific site, running a particular application, or accessing a 

specific file. Resource access policies are typically binary: they either grant or deny 

access. In contrast, uSLAs as proposed in this dissertation govern the sharing of 

specific resources among multiple groups of users. Once a user is permitted to access a 

resource via a resource access policy, then other mechanisms can step in to govern how 

much of the resource the user is permitted to consume. Such mechanisms can be QoS 

rules [18], currencies [60, 63], or uSLAs [67], as introduced in this dissertation for Grid 

resources.  

Resource uSLAs can be sensitive to the demand for the resource: the policy may 

allow a user to use large quantities of a resource in the absence of contention, and lesser 

quantities in the presence of contention [38, 48], as detailed later in this dissertation.  
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CHAPTER THREE  

USAGE SERVICE LEVEL AGREEMENTS IN GRID 

ENVIRONMENTS 

 

In the Grid domain [68], I envisage a three-layer structure in which sites provide 

resources (computers, storage, networks, and high-level services) to virtual 

organizations (VOs), which in turn provide those resources to their own members. 

These participants are either resource owners, resource consumers or both. Owners 

represent the class of participants that provide either outsourcing services or direct 

access to their computing resources, while consumers represent the class of participants 

interested in harnessing the aggregate power of shared resources.  

In this resource sharing environment, owners and consumers negotiate uSLAs to 

establish what resources are made available for use by others. Owners want to express 

(and to enforce) the uSLAs under which resources are made available to consumers. 

Consumers want to access and to interpret such uSLAs statements to monitor their 

agreements and to guide their activities. These activities involve the allocation of 

aggregate resources provided by different owners for different internal purposes, and to 

orchestrate distributed computation to use those aggregated resources efficiently. Both 

owners and consumers want to verify that these agreements are applied correctly. 
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Owners and consumers may be nested: an owner may function as a middleman, 

providing access to resources to which the owner has itself been granted access by 

some other owners. Thus, uSLAs issues can arise at multiple levels in such scenarios.  

The main question addressed is: “How should uSLAs be represented and handled in 

Grid environments in order to act as an organizing principle for resource 

management?” In addressing this question, I build on previous work concerning the 

specification of local resource scheduling policies[59, 69-73]; the negotiation of SLAs 

with remote resource sites [19, 21, 22, 39], and the expression and management of VO 

usage policies [38, 59, 74].   

3.1.  Scenarios Revisited  

In Chapter 1, I provide an introductory scenario for scientific collaborations that 

vary widely in size and scale. In this chapter, I present concrete details based on 

Grid3/OSG. In addition, I discuss a scenario for a large company acting in several 

countries (and in several markets) and one for a high level service from an external 

provider. In each scenario, some common uSLA examples are also provided.  

3.1.1. Grid3 Scenario  

In the first scenario, the Grid3/OSG comprises tens of institutions and hundreds to 

thousands of individual investigators that collectively control thousands of computers 

and associated storage systems [31, 75]. Each individual investigator and institution 

participates in, and contributes resources to multiple collaborative projects that vary in 

scale and formality. Figure 3.1 depicts a graphical representation of the Grid3 sites.  
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Figure 3.1: Grid3 Sites and Instantaneous Utilizations - The 

Grid Catalog Monitoring System (GridCat) snapshot  

 

In this environment, several VOs exist that are composed of users with various 

common interests and applications. The most common ones are the USATLAS [76], 

Sloan Digital Sky Survey (SDSS) [77] and iVDGL [78] VOs (see Figure 3.2). 

USATLAS users simulate the collisions of protons on protons at 14 TeV at the LHC for 

the CMS experiment – applications are composed of hundreds of embarrassingly 

parallel programs with large input/output files. The SDSS VO users measure the 

distance to, and the masses of, clusters of galaxies in the SDSS data set – applications 
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are composed again of many components, but in this case they have input/output 

dependencies [79] that can be represented using direct acyclic graphs (DAGs). The 

iVDGL VO performs protein sequence comparisons at increasingly larger scales. This 

application uses various size workflows in which a single BLAST job has an execution 

time of about an hour - the exact duration depends on the CPU, reads about 10-33 

kilobytes of input, and generates about 0.7-1.5 megabytes of output.   

Grid3 sites are sponsored either by different VOs or directly by the hosting 

institutions. Each site has usage policies (expressed sometimes as “provide 30% of 

resources to USATLAS”) that are enforced by means of a local resource manager 

(RM). The sites we used for local usage policy analysis are located at Lawrence 

Berkeley National Laboratory (PDSF), the University of Buffalo (UBuffalo), the 

University of Chicago (UChicago) and the University of Milwaukee (UMN). At PSDF, 

the RM is LSF; at UChicago the RM is Condor; at UMN the RM is PBSPro, and at 

UBuffalo is Maui with PBS. On each of these sites, the Grid3 settings are as follows: 

all users from a VO are mapped to a local common ID, and the local RM is either 

configured to provide that local ID some predefined quantities or a specific fair-share 

priority relative to other users. With so many different resource managers, it is 

important to express them in a common language.  
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Figure 3.2: Virtual Organizations Operating on Grid3  

 

For the Grid3 scenario, some of the requirements include the provisioning of fair 

share allocation policies capable of expressing situations both with and without 

contention. Usually, resource providers (universities and laboratories) and resource 

consumers (scientists from different domains) want access to these resources pooled 

together according to various needs. For example, before important conferences we 

have observed that Grid utilization increases and higher job contention occurs, while 

during holidays most resources are free for long time intervals [80]. These observations 

presented by Iosup et al. [80] motivate our introduction of a uSLA that ensures 
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“whenever there is no contention users can use as many resources as possible, while 

when contention occurs, the resources are allocated according to pre-defined rules that 

provide the incentives for Grid participation.” The following sharing example is 

widely accepted by each individual site (or with different variations in terms of the 

amount of resources provided) [81]: “there are three types of incoming jobs to balance: 

one from CMS, one from ATLAS, and one from iVDGL. We call them USCMS-Prod, 

USATLAS-Prod, and IVDGL. We want USCMS-Prod and USATLAS-Prod to get an 

equal share of available CPUs, but IVDGL should get a small fraction, of the 

resources, if there is contention (a 4th of what the others get).” Figure 3.3 shows this 

controlled resource sharing scenario for the University of Chicago resources.  
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Figure 3.3: Graphical View of the UChicago Resource 

Sharing 
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3.1.2. Multi-Market Company Scenario  

The second scenario I consider comes from the business world. In this case, a 

company active in multiple financial markets owns computational resources in each 

country where it operates [23]. These resources are used primarily for trading screens 

(see Figure 3.4). Since traders are active only during the day, the company allows other 

business-related applications (e.g., portfolio risk evaluation - a compute and data 

intensive application; market prediction - another compute and data intensive 

application) to run on these resources at night instead of deploying an additional 

specialized computing farm. The company has two usage policies: the pooled resources 

must be used according to each local market’s usage policies and the computing nodes 

must be available to traders from 7:00 to 22:00, during the local trading day. 

At the company level, the aggregated resources can be further sub-allocated by 

means of company wide uSLAs based on the current importance of each business 

application. For example, in our scenario the market prediction application might be 

more important, thus the company provides 70% of the aggregated resources from each 

individual market for its computations whenever resources are not used by local users 

(which becomes a VO level uSLA).  
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Figure 3.4: Graphical View of Multi-Market Company 

Resource Utilization 
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Each local center also imposes its own local policies. At the lowest level, such usage 

policies include detailed resource sharing information (they describe the physical 

resources to be shared): “16 out of 32 processors are provided on cluster X for 9 hours 

starting at 22:00 local time” or “24 machines with at least 512 MB of memory and at 

least 2 GHz CPU-speed, interconnected with a 10 Gb/s switch are provided from 22:00 

to 7:00.” The second example captures a multi-resource uSLA, which are important in 

complex distributed systems.  

3.1.3. Outsourcing Scenario  

In the third scenario, I envisage that a community out-sources some high level 

services to reduce deployment and operational costs. Community members acquire 

resources and services from independent utility providers that specialize in providing 

those services (see Figure 3.5). Service examples include scheduling prediction 

services, monitoring services (MonaLisa [65]), or community authorization services 

(e.g., DOE certificate authority [82]).  
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Figure 3.5: Service Outsourcing Scenario  
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In this scenario, the service provider requires usage policies to express the amount of 

resources or services he is willing to provide: I provide 1000 requests for service A 

from 7:00 to 16:00 for 1 month for any remote user from Grid3 or I accept 1000 

requests for service A from 7:00 to 16:00 on date X for any remote user from Grid3 

[83].  

3.1.4. Requirements for uSLAs  

Usage policies in all the above scenarios provide support for controlled sharing 

from raw resources (CPU, disk space or network bandwidth) to complex services (such 

as various Grid-level services). They express simple usage conditions (“30% for a 

month for consumer A”) to complex ones (see previous examples). These uSLAs affect 

only specific sets of resources. For example, site-level or center-level requests must 

affect only local resources, while VO-level or company-level resources affect 

aggregated virtual resources and, thus, the site resources pooled together. 

The Grid3 scenario requires support for simple uSLAs that any current cluster 

management tool enforces at the site level, but it is important to insure that Grid-level 

schedulers and brokers have access to these uSLAs to achieve higher resource usage. 

At the VO level, similar uSLA support is required to ensure that Grid entities get a 

certain percent of the aggregated resources when there is contention. The multi-market 

company scenario represents a different case, a business environment where resources 

are allocated to various activities and group functions based on the business rewards 

these activities or entities generate. Resources might not be completely allocated for 

other purposes even if they are available, thus the uSLA must capture such situations. 
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In this scenario, uSLAs are dependent also on time. I do not consider an additional 

mechanism for time, because it can be incorporated into the uSLA language 

specification as a normal precondition. Now, for the last scenario, the out-sourcing 

company, no additional mechanisms are required, but it represents an interesting study 

case from a different angle: to show that uSLAs can be used with success for sharing 

controlled higher-level resource (services) as well as raw-resources (CPU, network, 

disk).  

In the above scenarios, when multiple concurrent requests are present and sufficient 

resources are not available, contention cases must be handled. This process is referred 

to as arbitration or conflict resolution [84]. The uSLA mechanisms must distinguish 

among various situations that can occur in practice and treat them accordingly. Usually, 

in a non-contention case, resources can be acquired as a function of availability and the 

uSLA specification, while in the contention case several sub-cases can occur.  

As the examples make clear, both producers and consumers need to specify various 

types of uSLAs using an agreed upon syntax and semantics. To support such uSLAs, a 

system must provide the mechanisms for:  

1. Monitoring of utilization and provisioning to ensure that agreements are honored.  

These mechanisms represent the supporting layer for uSLAs: various guarantees are 

expressed in terms of how many resources are provided and used, thus correct 

monitoring can ensure the expressiveness of the uSLAs.  
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2. Expressing uSLAs for situations both with and without contention and providing 

clear semantics for each ensures that both consumers and providers can establish 

well defined agreements upon which resources are used. 

3. Identifying legal users to ensure users and resource owners’ identities and to 

identify legal users, uSLA makers and requests. For these mechanisms, we rely on 

the Grid technologies that provide support for authentication and authorization 

inside large distributed infrastructures [54, 85, 86]. 

We provide support for monitoring by introducing notions of and mechanisms for 

aggregated consumer-based monitoring at the raw or abstract resource provider-level 

(for example, VO-level monitoring at the site level in Grids; fair share rules by 

specifying the semantics of four possible levels of sharing [33, 87]; and finally, a model 

for identifying legal users in large and dynamic environments [33].  

3.2.  Monitoring Approach  

Adequate monitoring is important if we want our uSLA mechanisms to be 

successful. Thus, I developed mechanisms for measuring how resources are used by 

each resource consumer (VOs and groups) and by the Grid, overall. My goals were to 

provide mechanisms to monitor Grid-level resource activity, utilization, and 

performance; to provide VO-level resource activity and resource utilization monitoring; 

to create customized views of monitoring data including hardware resources (clusters, 

sites, and Grids) and VO and group usage (in terms of the number of jobs and their 

characteristics) and workflow types. Ultimately, the monitoring techniques must 
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provide uSLA-driven support for Grid-resource scheduling. The mechanisms also need 

to support a large number of resources and uSLA-enabled metrics.  

I have both identified key requirements for monitoring and provided solutions for 

incorporating these new requirements into existing monitoring infrastructures (such as 

Ganglia [88] and the VO-Ganglia extension [67], GRUBER-SiteMonitor [43], 

MonALISA [65] and ARESRAN [83]).  

3.2.1. Monitoring Requirements  

A joint project among GriPhyN, iVDGL, and US ATLAS focused on “Grid-Level” 

monitoring for research into uSLA-driven scheduling and usage [31]. During this work, 

we identified several monitoring requirements:  

1. Grid-enabled tagging of monitoring data for:  

a. Resource consumer-oriented monitoring data collection, and 

b. Scheduling characteristics and allocation rules collection and publishing;  

2. Monitoring data flow: from consumers to uSLA brokering systems, workflow 

steering mechanisms, or any other automated agents, and  

3. Monitoring data aggregation at various levels (raw resources / abstract resources);  

In addition to these monitoring mechanisms, our system must also support complex 

queries, such queries that involved scaling (current time + 2:00) or composition (used 

CPUs / total number of CPUs). 
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3.2.2. Implementation Approaches and Technical Solutions 

We integrated VO components within the Ganglia monitoring software [31, 67]. 

Initially, I extended the Ganglia monitoring toolkit to meet the above requirements (the 

so called VO-Ganglia) and later migrated these mechanisms to other systems, most 

notably MonALISA and ACDC Monitoring Dashboard. The final technical solution 

required supporting mechanisms for:  

1. Added support for site, VO and group enabled monitoring:  

a. Grid-enabled monitoring data collection and local scheduler type, characteristics 

and allocation rules publishing. For example, in the Grid3 scenario 

“configuration knobs”, “allocations per VO”, “usages per VO” were added to 

the list of monitored characteristics. 

b. Introduced provisioning of detailed utilizations and allocations;  

2. Introduced support for monitoring data aggregation at various levels / finer 

information about sites configurations;  

3. Added support for automated querying of monitoring information and 

integration with the uSLA system developed in this dissertation (the GRUBER 

Grid broker);  

4. Introduced support for advanced querying mechanisms to provide the necessary 

monitoring data used by the GRUBER broker (e.g., GRUBER-SiteMonitor).  

5. Introduced support for automated translation from raw quantities to percentages 

(%) and common descriptions as required for the uSLA monitored metrics.  
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My technical infrastructure is composed of host sensor collectors, summation meta-

daemons and cluster/host automated query interfaces. The infrastructure is able to 

collect information about hardware usage, VO-related usage, and uSLAs [33]. The 

architecture and a sample display are shown in Figure 3.6 and Figure 3.7, respectively.  

 

 

 

Figure 3.6: VO-Ganglia Prototype  
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Figure 3.7: VO-Ganglia Reporting Example  
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3.3.  uSLA Semantics  

As already stated, uSLAs [29, 38, 39] express a relationship between a resource 

provider and a resource consumer, and represent provider statements about a contract 

that governs how its resources are to be allocated to a specific resource consumer. 

However, without a well-established semantic and syntactic foundation for these 

uSLAs, their interpretation may become misleading.  

I focus in the rest of this section on my proposed semantics and syntax in the Grid 

context. I have applied this method for specifying uSLAs with success in the 

OSG/Grid3 context [43, 89-91]. I consider semantics for specifying CPU usage 

constraints and requests and give examples for the proposed schemas for the three 

scenarios introduced above. I also present approaches for controlled resources of disk 

space and higher level services. My design of uSLA semantics matches the 

requirements identified before, and supports ease of uSLA expression, automated 

discovery and management of these uSLAs, and multiple resource types. Complete 

examples for expressing different uSLAs are provided in the next Section.  

3.3.1. CPU Resource Support 

The uSLA semantics proposed in this section express how controlled resource sharing 

is performed in the scenarios described in section 3.1. They are generic enough to be 

also applied at the VO and VO group levels. Next, I provide an algorithmic description 

about when and how new requests should be admitted in each of the four cases. The 
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proposed semantics are named after their goals: no-limit, fixed-limit, extensible-limit, and 

commitment-limit [43, 89-91].  

The no-limit uSLA is a statement that specifies no limit. Resources are acquired on a 

first come first executed basis.  

The fixed-limit uSLA specifies a hard upper limit on the fraction of resources Ri 

available to a VOi. A request to run a job is granted if this limit is not exceeded, and 

rejected otherwise. More precisely, a job requiring J resources is admitted if and only if 

Ci + J ≤ Ri, where Ci denotes the resources currently consumed by VOi at the site. Note 

that an admitted job will always be able to run immediately, unless the resource owner 

oversubscribes resources, i.e., ΣiRi > 1.  

The extensible-limit uSLA also specifies an upper limit, but this limit is enforced only 

under contention. Thus, under this SLA a job requiring J resources is admitted if Ci + J 

≤ Ri or ≤ Cfree, where Ci and Ri have the same meaning as before, and Cfree denotes the 

site’s current unused resources. Note that because this policy allows VOs to consume 

more than their allocated resources, whether or not an admitted job can run immediately 

may depend on the site’s preemption policy.  

While the fixed or extensible uSLA are sufficiently expressive for the Grid3 

scenarios, their limitations become obvious when moving to more complex ones. For 

example, the multi-market company case introduces the need for ways to differentiate 

among usage policies at various levels (center-wide or company-wide ones) and to 

support different usage policies for different times of day.   
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Our last uSLA, the Commitment-limit SLA supports these more complex queries. It 

specifies two upper limits, an epoch limit Repoch and a burst limit Rburst, and specifies 

for each an associated interval, Tepoch and Tburst respectively. A job is admitted if and 

only if (a) the average resource utilization for its VO is less than the corresponding 

Repoch over the preceding Tepoch, or (b) there are idle nodes and the average resource 

utilization for the VO is less than Rburst over the preceding Tburst. Both periods are 

modeled here as recurring within fixed time slots. A provider may grant requests above 

the epochal allocation if sufficient resources are available, but these resources can be 

preempted if other parties with appropriate allocations request those resources at a later 

stage. More precisely, any job accepted by the following algorithm is admitted, with the 

following definitions: 

 

Repoch  = Epoch Usage Policy for VOi  

Rburst = Burst Usage Policy for VOi  

BAi  = Burst Resource Usage for VOi 

EAi  = Epoch Resource Usage for VOi 

TOTAL = upper limit allocation on the site 

 

procedure commitment-AP  

     returns accept/reject  

# Case 1: site over-used by VOi 

1. if EAi > Repoch then 



 

57 

 

2.   reject job from VOi  

# Case 2: sub-allocated site 

3. else if Σk(BAk) + J < TOTAL and BAi + J < Rburst then  

4.   run job from VOi 

# Case 3: over-allocated site 

5. else if Σk(BAk) = TOTAL and BAi + J < Repoch then  

6.   schedule job from VOi  

7. else  

8.  reject job from VOi 

 

Thus, for simplification purposes, I have considered an instantaneous limit (burst) 

as well as a long term limit (epoch) that capture how resources are allocated over two 

time intervals. This uSLA can be extended further by introducing an unlimited number 

of sharing intervals, which makes it generic enough to express any requirements in 

practice. I note that the fixed limit and extensible limit can be expressed as particular 

cases of the commitment uSLA. I work on enriching this set of policies [92], but they 

represent a minimal set of solutions that meet our requirements and can be implemented 

easily by means of current site resource managers.  

I exemplify next for each of the three scenarios from Section 3.1 how the above 

uSLAs should be used. The OSG/Grid3 sample policies can be expressed by the 

extensible uSLA. A site shares its resources among three VOs and allows any of them to 

acquire more resources when there is no contention. When there is contention, the exact 
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allocations in this case are 40% for USATLAS, 40% for USCMS and 20% for iVDGL. 

Also, the specification is instantaneous, in the sense that at any moment this sharing 

policy should be respected.  

In the second scenario, the first company rule which states that local rules should be 

taken in account, does not need to be specified because it is performed automatically. 

The second rule can be translated into an extensible uSLA, where all resources are 

provided 100% to traders. The third rule can be translated as a commitment uSLA, under 

which at any moment in time 70% of the company resources are provided for remote 

users’ usage, while in the long term there is no guarantee.  

In the final scenario, the allowed number of requests must be translated into 

percentages to be expressed as allocations. Such rules can be expressed easily as fixed 

uSLAs with fixed time constraints that are captured by the uSLA syntax.  

3.3.2. Disk Space Support 

Disk space management introduces additional complexity to job management [43]. If 

an entitled-to-resource job becomes available, it is usually possible to delay scheduling 

of other jobs, or to preempt them if they are already running. In contrast, a file that has 

been staged to a site cannot be “delayed,” it can only be deleted. Yet deleting a file that 

has been staged for a job can result in livelock, if a job’s files are deleted repeatedly 

before the job runs. As a concrete example, a site can become heavily loaded with one 

VO’s jobs which cause other jobs to be held in the local queue awaiting their turn. But 

these waiting jobs do not stop the submission of more jobs. As a result, there may be lots 

of other input data on the site and the disk space used will continue to grow. On the other 
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hand, some jobs are not getting a turn to finish and delete their files. If the rate of input 

data being copied to the site is higher than the rate of job completion, then the disk space 

will fill.  

Based on the UNIX quota system, the same four uSLAs can be implemented with 

success. However, in this case once a file is saved at a site and the allocation is higher 

than the uSLA limit allows (extensible-limit and commitment limit cases), the space 

cannot be preempted without evicting the violating files to other sites. Our approach 

builds on the UNIX quota system, which prevents one user on a static basis from using 

more than his hard limit (but it still considers soft and hard limits similarly to the 

commitment limit). More precisely, for scheduling decisions a list of site candidates that 

are available for use by a VOi for a job with disk requirements J is built by executing the 

following logic, with the following definitions:  

 

S     = Site Set 

k     = index for any VO != VOi 

IPi    = Epoch uSLA for VOi 

ISPi    = Instantaneous uSLA for VOi 

IAi   = Instantaneous Resource Usage for VOi 

TOTAL  = upper limit allocation on the site 

 

procedure commitment-AP_disk  

 returns S (list of available sites)   
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1. for each site s in site list G do  

# Case 1: over hard-limit site by VOi 

3.    if IAi > IPi for VO i at site s 

4.      next  

# Case 2: over soft-limit site by VOi 

5.    if IAi > ISPi and time < grace period for VO i at 

site s 

6.      if Σk(IAk) < s.TOTAL - J && IAi + J < IPi then   

7.        add (s, S) 

8.      next 

# Case 3: un-allocated site  

9.    else  

10.      if Σk(IAk) < s.TOTAL - J && IAi + J < IPi then   

11.        add (s, S) 

12.      next  

13. return S 
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3.3.3. Higher-Level Services Support 

The final type of resource I consider is a Grid service (or s high-level resource). 

Again, I use the same uSLAs as in the CPU case to encode resource availability from a 

provider’s point of view [93]. However, Grid services are difficult to quantify in term 

of their utilization - a weather service and a matrix multiplication service are difficult to 

compare in terms of resource consumption without a through service performance 

model analysis. Thus, there is no uniform way for expressing how much computing 

power a certain service may require to serve a certain request. To overcome this 

complexity and provide a simple solution to this problem, I maintain the CPU 

semantics unchanged for the uSLAs, but with different utilization metrics; thus, instead 

of CPU utilization, the number of requests a client can perform on a certain service is 

considered for the uSLA algorithms. While this approach may seem an over-

simplification, the end result is similar: a service provider states by means of the uSLAs 

how many requests a certain consumer can perform on its resources. Based on this 

approach, the algorithm to supports controlled Grid service sharing is identical with the 

one for controlled CPU sharing.  

However, we present next a variation that allows advance service reservations (a 

request can be made well in advance of its starting time). It applies a pre-specified 

uSLA on each “future” sub-interval that results from a variation in terms of either 

service requests or allocations. The algorithm for accepting new advance reservations is 

introduced next, where:  
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R           = resource request 

Aj           = allocated resources  

Rj           = requested resources  

Allocations = set of accepted allocations  

Requests    = set of already accepted requests  

 

procedure request_check (R) returns response  

1. response = true  

# Stores availability on the considered interval  

2. S = empty   

# Identify all requests overlapping current request  

# (save their start/end times and requested quantities)  

3. foreach Rj in Requests do  

4.   if Rj time overlaps R time then  

5.    save S, Rj.start, + Rj.attributes  

6.    save S, Rj.stop, - Ri.attributes  

7.   fi  

8. done  

# Identify all allocations overlapping current request 

# (update accordingly previous values with these 

allocations)  
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9. foreach Aj in Allocations do  

10. foreach Tj in S do  

11.      if Aj overlaps Tj then  

12.      save S, Tj, + Aj.attributes  

13.      fi  

14. done  

15. done  

# Check constraints (available resources)  

16. compute Request = R.attributes 

17. foreach Availability in S do  

# Apply the appropiate uSLA algorithm (hard limit 

example here) 

18.      response = uSLA_fixed-limit (Request, 

Availability)  

19. done  

20. if  response == true then  

21.      update accordingly one of the overlapping uSLAs  

22.      add R to Requests  

23. fi  

24. return response  

In this simple way, the controlled resource sharing mechanisms devised in this 

chapter can be applied with success not only to raw resources but also to service-like 
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types of resources and also for advance service reservations. I must also note that such 

a service manager is already available for Grid services (e.g., ARESRAN or SAML).  

3.4.  uSLA Syntax 

I have considered two syntaxes for uSLAs: a simpler one based on allocations and 

one based on WSLA. My starting point for the first approach is the Maui [94] syntax 

for specifying allocations. Maui supports three types of fair share limits: “at least 

limit,” “average limit” and “at most specification.” In the first case, when the utilization 

for a group goes below the limit, the mechanism increases the priority of the jobs from 

that group (expressed as a real number preceded by a “+“). In the second case, 

whenever the utilization for a group is different from the limit, the fair share 

mechanism either increases the priority (for under-utilization) or decreases the priority 

(for over-utilization) of jobs from that group. In the final case, when the utilization for a 

group goes above the limit, the fair share mechanism decreases the priority of jobs from 

that group (expressed as a real number preceded by a “-”). Our first syntactic form is 

represented as a set of allocations of the form:  
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<resource-type, provider, consumer, start, epoch-

allocation, burst-allocation> 

where:  

resource-type ::= [ CPU | NET | STORAGE ] 

provider ::= [ site-name | vo-name ] 

consumer ::= [vo-name | (vo-name, group-name) | ANY] 

start ::= date-time | time | * 

epoch-allocation ::= (interval | *, percentage) | - 

burst-allocation ::= (interval | *, percentage) | -  

ANY ::= matches any name 

* ::= means instantaneous  

- ::= means not specified 

 

 

To show the capacity of the above syntax, I show next how it can be used for the 

three scenarios introduced before. The uSLAs of the OSG/Grid3 environment are 

expressed under this syntax as a set of three rules with values only for the instantaneous 

allocations (where the burst period is considered a 5 seconds interval):  

<CPU, UChicago, USATLAS-Prod, *, -, (5, +40) > 

<CPU, UChicago, USCMS-Prod, *, -, (5, +40)> 

<CPU, UChicago, iVDGL, *, -, (5, +20)> 
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In the second case multi-market scenario, I distinguish between two types of rules: 

company-wide rules and center-wide ones – a simple analogy could be drawn between 

the site and VO level as proposed by Foster et al. [4]. The company-wide uSLAs are 

expressed under our first syntax as a set of two rules:  

 

<CPU, Company, ANY, 22:00, (9*3600, 100), (5, 100)> 

<CPU, Company, Prediction, 22:00, (9*3600, -70), (5, -

70)> 

 

 

while, at the center level, the first rule is expressed as (after translating the 16 CPU 

power into a percentage of the total available computing power):  

 

<CPU, Company, ANY, 22:00, (9*3600, 50), (5, 50)> 

 

However, this syntax has its limitations for expressing sharing rules about resources 

of different types. First, this syntax does not provide a mechanism for specifying 

monitoring requirements. Second, it does not support the specification of complex 

conditions (AND, OR, etc.).  

Thus, I propose a uSLA syntax based on the WS-Agreement specification, to take 

advantage of its high-level structure SLA specification and of available parsers. The 

objective of a WS-Agreement specification is to provide standard means for 

establishing and monitoring service agreements. The specification draft comprises three 
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major elements: a description format for agreement templates, a basic protocol for 

establishing agreements, and an interface for monitoring agreements at runtime.  

For the uSLA syntax, I use a schema that includes from the WS-Agreement 

specification support for resource monitoring metrics and goal specifications [21, 24, 

43]. The resource monitoring metrics describe how various utilizations must be 

measured or how these quantities should be collected from an underlying monitoring 

system. A goal specification provides support for describing the targeted allocations in 

a form that can be parsed by automated agents. The other elements (i.e., obligations and 

handlings violation) were considered beyond the scope and capacity of current site and 

VO resource managers.  

The schema of this grammar is described next. First, the monitoring metric element 

defines how a certain resource metric required for a guarantee should be measured.  

 

<!-- MonitoredMetric -->  

<xsd:complexType name="MonitoredMetricType">  

   <xsd:attribute name="name" type="xsd:string" />  

   <xsd:attribute name="method" type="xsd:string" />  

   <xsd:attribute name="type" type="xsd:string" />  

   <xsd:attribute name="interval" type="xsd:integer" />  

   <xsd:attribute name="notification" type="xsd:boolean" 

/>  

</xsd:complexType>  
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The next element of the grammar, MonitoredType, describes the entire list of 

monitored metrics required in enabling the considered uSLA. This list can have zero or 

more of required metrics that must be monitored.  

 

<!-- Monitored Type -->  

<xsd:complexType name="MonitoredType">  

  <xsd:sequence>  

    <xsd:element name="MonitoredMetric"  

 type="MonitoredMetricType" minOccurs="0" />     

</xsd:sequence>  

   <xsd:attribute name="name"  

        type="xsd:string" use="optional" />  

</xsd:complexType>  

 

The precondition element identifies of the entity for which the uSLA is defined and 

the name of the provider:  

 

 <!-- Precondition -->  

<xsd:complexType name="PreconditionType">  

  <xsd:sequence>  

 <xsd:element name="consumer"  
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    type="xsd:string" minOccurs="0" />  

    <xsd:element name="provider"  

    type="xsd:string" minOccurs="0" />  

  </xsd:sequence>  

</xsd:complexType>  

 

The goal element describes the conditions under which a resource is provided. It 

uses the constraint element for defining conditions (with LessEqual, Equal and 

GreaterEqual corresponding to the semantics introduced earlier for -, <space>, + 

signs, while Range has a special meaning for time specifications):   

 

<!-- Goal -->  

<xsd:complexType name="GoalType">  

  <xsd:sequence>  

 <xsd:element type="ConstraintType" minOccurs="0" />  

  </xsd:sequence>  

</xsd:complexType>  

 

<!-- Constraint -->  

<xsd:complexType name="ConstraintType">  

   <xsd:attribute name="type" type="xsd:string"  
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values="LessEqual, Equal, GreaterEqual, Range" />  

   <xsd:element name="Metric" type="xsd:string" />  

   <xsd:element name="Value" type="xsd:literal" />  

</xsd:complexType>  

 

Similarly to a MonitoringType element, a GuaranteeElement contains a list of all 

guarantees that a resource provider agrees to when providing the resources.  

 
<!-- Guarantee Type -->  

<xsd:complexType name="GuaranteeType"> 

   <xsd:sequence> 

       <xsd:element name="Precondition" 

type="PreconditionType"  

   minOccurs="0" maxOccurs="1" />  

       <xsd:element name="Goal" type="GoalType" 

minOccurs="0"  

   maxOccurs="1" />  

   </xsd:sequence>  

   <xsd:attribute name="name" type="xsd:string" 

use="required" />  

</xsd:complexType> 
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The final element of the grammar is the uSLA element, which is composed of 

several monitored and guarantee elements.  

 

<!-- usage SLA -->  

<xsd:complexType name="uSLA">  

    <xsd:attribute name="Monitored" type="MonitoredType"  

      minOccurs="1" />  

    <xsd:attribute name="Guarantee" type="GuaranteeType"  

      minOccurs="1" />  

    <xsd:attribute name="name" type="xsd:string"  

      use="required" />  

</xsd:complexType>  

 

Now, I show next how it can be used for the three scenarios introduced before. The 

first OSG/Grid3 example is represented using this syntax as follows. Three metrics are 

monitored (by means of MonaLisa, for example, and these values are retrieved from a 

certain URL): CPUBurst-Met-USATLAS, CPUBurst-Met-USCMS and CPUBurst-Met-

iVDGL.  
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<uSLA name=”Grid3 uSLA (Scenario 1)”>  

    

   <!-- Define Monitored Metrics (and acquisition 

mechanism) --> 

   <Monitored>  

  <MonitoredMetric name="CPUBurst-Met-USATLAS"  

  method="http://URL/CPU?vo=USATLAS&t=5" 

   interval="5" type="%" notification="true" />  

 <MonitoredMetric name="CPUBurst-Met-USCMS"  

  method="http://URL/CPU?vo=USCMS&t=5" 

   interval="5" type="%" notification="true" />  

 <MonitoredMetric name="CPUBurst-Met-iVDGL"  

  method="http://URL/CPU?vo=iVDGL&t=5" 

   interval="5" type="%" notification="true" />  

   </Monitored>  

 

   <!-- USTALAS minimal allocation --> 

   <Guarantee name="CPUBurst-G-USATLAS">  

      <precondition usage="required">  

    <consumer name="USATLAS-Prod" />  

    <provider name="UChicago" />  

      </precondition>  
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      <goal usage="required">  

          <Constraint type="GreaterEqual">  

             <Metric value="CPUBurst-Met-USATLAS" />  

             <Value value="40" />  

          </Constraint>  

      </goal>  

   </Guarantee>  

 

   <!-- USCMS minimal allocation --> 

   <Guarantee name="CPUBurst-G-USCMS">  

      <precondition usage="required">  

    <consumer name="USCMS-Prod" />  

    <provider name="UChicago" />  

      </precondition>  

      <goal usage="required">  

          <Constraint type="GreaterEqual">  

             <Metric value="CPUBurst-Met-USCMS" />  

             <Value value="40" />  

          </Constraint>  

      </goal>  

    </Guarantee>  
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   <!-- iVDGL minimal allocation --> 

   <Guarantee name="CPUBurst-G-iVDGL">  

      <precondition usage="required">  

    <consumer name="iVDGL" />  

    <provider name="UChicago" />  

      </precondition>  

      <goal usage="required">  

          <Constraint type="GreaterEqual">  

             <Metric value="CPUBurst-Met-iVDGL" />  

             <Value value="20" />  

          </Constraint>  

      </goal>  

    </Guarantee>  

</uSLA>   

 

Now, for the multi-market company example that could not be expressed completely 

in our first syntax (company level: the computing nodes must be available to traders 

from 7:00 to 22:00, during the local trading day and 70% of the aggregated resources 

from each individual market for Prediction computations whenever resources are not 

used by local users; center level: 24 processors with at least 512 MB of memory and at 

least 2 GHz CPU-speed, interconnected with a 10 Gb/s switch are provided from 22:00 
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to 7:00) is represented as follows (note in this example that time is collected as time + 

2:00 and the comparison is then a simple Less):  

 

<uSLA name=”Multi-Market Company uSLA (Scenario 2)”>  

 

   <!-- Define Monitored Metrics (and acquisition 

mechanism) --> 

   <Monitored>  

<!-- Time tracking --> 

  <MonitoredMetric name="Time" 

method="exec:/bin/date+2" 

   interval="5" type="#" notification="true" />  

<!-- Company-wide monitoring --> 

 <MonitoredMetric name="CPU-Prediction" interval="5" 

  method="http://URLCompany/CPU?t=5&App-

Prediction"  

   type="%" notification="true" />  

 <MonitoredMetric name="CPU" interval="5" 

  method="http://URLCompany/CPU?t=5" 

   type="%" notification="true" />  

<!-- Center-wide monitoring --> 

  <MonitoredMetric name="CPUType" interval="5" 
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  method="http://URLCompany/CPUType?t=5" 

   type="%" notification="true" />  

<MonitoredMetric name="MemorySize" interval="5" 

  method="http://URLCompany/MemorySize?t=5" 

   type="%" notification="true" />  

<MonitoredMetric name="Net" interval="5" 

  method="http://URLCompany/Network?t=5" 

   type="%" notification="true" />  

   </Monitored>  

 

<!-- Company-wide allocations --> 

  <!-- Any-application allocation rule --> 

<Guarantee name="CPUBurst-CW">  

      <precondition usage="required">  

    <consumer name="ANY" />  

    <provider name="Company-Name" />  

      </precondition>  

      <goal usage="required">  

          <Constraint type="Less">  

             <Metric value="Time" />  

             <Value value="9:00" />  

          </Constraint>  
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          <Constraint type="Less">  

             <Metric value="CPU" />  

             <Value value="100" />  

          </Constraint>  

      </goal>  

   </Guarantee> 

      <!-- Prediction-application allocation rule --> 

   <Guarantee name="CPUBurst-CW-Prediction">  

      <precondition usage="required">  

    <consumer name="Prediction-App" />  

    <provider name="Company-Name" />  

      </precondition>  

      <goal usage="required">  

          <Constraint type="Less">  

             <Metric value="Time" />  

             <Value value="9:00" />  

          </Constraint>  

          <Constraint type="Less">  

             <Metric value="CPU-Prediction" />  

             <Value value="70" />  

          </Constraint>  
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      </goal>  

   </Guarantee>  

 

<!-- Center-wide allocations (24 machines) --> 

<Guarantee name="24 Machines">  

   <precondition usage="required">  

    <consumer name="ANY" />  

    <provider name="Center-Name" />  

      </precondition>  

      <goal usage="required">  

          <Constraint type="Less">  

             <Metric value="Time" />  

             <Value value="9:00" />  

          </Constraint>  

          <Constraint type="Equal">  

             <Metric value="CPUType" />  

             <Value value="24*2.0" />  

          </Constraint> 

     <Constraint type="Equal">  

             <Metric value="MemorySize" />  

             <Value value="24*512" />  

          </Constraint> 
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     <Constraint type="Equal">  

             <Metric value="Net" />  

             <Value value="24*10" />  

          </Constraint> 

      </goal>  

   </Guarantee>  

</uSLA>   

 

Now, I turn my attention to show how the one example from the service outsourcing 

scenario is represented using the WS-Agreement like syntax:   

<uSLA name=”Service Outsourcing uSLA (Scenario 3)”>  

 

   <!—Monitored Metrics (and acquisition mechanism) --> 

   <Monitored>  

<!-- Time tracking --> 

  <MonitoredMetric name="Time" method="exec:/bin/date" 

   interval="5" type="#" notification="true" />  

<!-- Service monitoring --> 

  <MonitoredMetric name="A-Requests"  

  method="http://URL/A?metric=requests&t=5" 

   interval="5" type="%" notification="true" />  

   </Monitored>  
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   <!-- USTALAS minimal allocation --> 

   <Guarantee name="CPUBurst-G-USATLAS">  

      <precondition usage="required">  

    <consumer name="Grid3-Monitoring" />  

    <provider name="Company-Name" />  

      </precondition>  

      <goal usage="required">  

       <Constraint type="GreaterEqual">  

             <Metric value="Time" />  

             <Value value="7:00" />  

          </Constraint> 

      <Constraint type="LessEqual">  

             <Metric value="Time" />  

             <Value value="16:00" />  

          </Constraint> 

          <Constraint type="LessEqual">  

             <Metric value="A-Requests" />  

             <Value value="1000" />  

          </Constraint>  

      </goal>  
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   </Guarantee>      

</uSLA>   

 

3.5.  uSLA Derivation from Local Site Usage Policies 

While in the above section we provide a precise description for the uSLA 

syntax/semantics, usually usage policies at the provider/site level are expressed in terms 

of local RM configurations. Such usage policies are specified by resource policy 

makers; these uSLAs must be automatically discovered and translated for automated 

consumption at the other levels. To achieve this goal, I start and add methods and tools 

for automated translation to the high-level model for uSLAs described earlier in this 

chapter.  

At the RM level (sites), owners state how their resources must be allocated and used 

by different consumers. This statement represents the high-level GOAL an owner (MP) 

wants to achieve. Site administrators map MPs to different software RMs’ 

semantics/syntaxes. The end product is a set of RM configuration files, named the local 

POLICY or system configuration (SC). For automated consumption, site policies are 

translated from SCs by automated tools into an abstract usage policy (AP) set, i.e., the 

uSLA syntax/semantic described above. SC descriptions are collected from the site RM 

configurations, filtered and, after translation, published through a specific monitoring 

system, e.g., VO-Ganglia [67], MonALISA [13, 65] or GRUBER-SiteMonitor [43, 87].  

I have identified three levels of description for the statement "site X gives ATLAS 

30% over a month":  
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� MP: a description of a site manager’s policy for the site, e.g., MP (VOs) = "give 

ATLAS 30% over a month." I assume that simple English statements describe 

the MP set (site level);  

� SC: an RM configuration: SC (VO) = <number of nodes, scheduler-type, 

scheduler-config>, which is written by the site administrators during the RM 

configuration process (site level);  

� AP: An SC (VO) translated into a uSLA representation: AP (VO, Site) expresses 

SC (VO) in a scheduler-independent format and is published through a 

monitoring tool for resource brokering or other automated tools (Grid level).  

The key point is determining how an SC maps to an AP. I have achieved this part 

by providing specialized SC-translators for each type of SC supported by a specific 

RM. The translator parses the configuration files or queries the resource provider RM, 

and outputs the resulting configuration directly into AP form. The information flow for 

this process is captured in a graphical way in Figure 3.8.  
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Figure 3.8: Correlations MP, SC, and AP  

 

 

3.5.1. uSLAs Translation from Site Resource Manager Configurations  

I provide now a concrete uSLA example, expressed in all the three forms, namely 

MP, SC and AP. I assume the following MP set for a site X:  

• we have a cluster with 380 CPUs;  

• at any time: USCMS-Prod has 40%; USATLAS-Prod has 40%; IVDGL has just 20% 

of these resources;  

• when additional resources are available, Grid3’s VOs can grab these resources;  

The Condor priorities (SC) used to realize the above description is:  

• condor_userprio -setfactor cms 3  

• condor_userprio -setfactor atlas 3  
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• condor_userprio -setfactor ivdgl 8  

In these settings, the AP description becomes:  

• RM type: Condor  

• RM allocations: CMS: 40% ATLAS: 40% IVDGL: 20%  

• Usage SLAs type: extensible-uSLA  

3.5.2. Disk Space Extensions  

For disk space, the same allocations would be translated into the following rules 

(UNIX quota):  

• edquota -u cms  

• edquota -u atlas  

• edquota -u ivdgl  

The AP for disk becomes:  

• DM type: quota  

• DM allocations: CMS: 40% ATLAS: 40% iVDGL: 20%  

• UP type: extensible-uSLA  

This simple specification categorizes the storage into two types as a function of their 

data duration permanent storage (the hard limit quota limit), and volatile storage (the 

soft limit quota limit), as also introduced within the SRM project [95].  

3.5.3. High Level Service Considerations  

Next, I move to other types of services – more precisely Grid services. In this case, 

the service manager is either ARESRAN (a GT4 based prototype for complex resource 
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uSLA and reservation in Grids [83]) or any other similar management infrastructure 

[96, 97].  

In this case, the uSLAs are collected directly from the authorization service and 

published at the Grid level. For the ARESRAN case, the uSLAs are already in a form 

that is compatible with the approach proposed in this dissertation, while for the other 

examples (SAML or the PDP policy service) they must be translated to a Grid level 

definition. I focus on the ARESRAN service, because they target a simpler kind of 

authorization mechanism – similar to the CAS system [14], mainly a flexible access 

control mechanism.  

3.6.  Summary  

In summary, I have detailed in this section the scenarios in which uSLAs are 

required, the goals and requirements for these uSLAs, as well as supporting 

mechanisms (monitoring, syntax and semantics) to implement them in large and 

distributed environments. The results presented in this section can be grouped into three 

main categories: the identification of scenarios, the requirement for monitoring and 

uSLA mechanisms, and the uSLA proposed syntax and semantics.  
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CHAPTER FOUR  

GANGSIM: A SIMULATOR FOR GRID 

SCHEDULING STUDIES 

 

GangSim is a tool developed for Grid scheduling studies, capable of supporting 

studies for controlled resource sharing based on scheduling policies and uSLAs. I 

present, in this chapter, its design and simulation environment, and the kinds of studies 

it permits.  

The starting point for this work was an exploration of distributed system monitoring 

conducted within the context of the GriPhyN/iVDGL projects [13, 98]. I started by 

developing the VO-Ganglia Monitoring Toolkit to gather resource characteristics, 

utilization data, and usage limits for a collection of sites in order to meet the monitoring 

requirements for uSLA-based resource provisioning described in Chapter 3. The final 

result was an enhancement of the Ganglia Monitoring Toolkit [88], the VO-Ganglia 

monitoring toolkit for large Grid environments. The Ganglia Monitoring Toolkit is a 

cluster monitoring tool that uses a multi-cast approach for monitoring various 

characteristics of a cluster and the availability of each individual host [88]. 
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From Ganglia and VO-Ganglia, it was relatively easy to replace “real sites” with 

“simulated sites,” and thus to enable the evaluation of a wider range of possibilities for 

Grid scheduling than it is possible in a real system. The new name, GangSim [42], 

reflects both the origins of the implementation and the fact that it can be used to 

simulate “gangs” of users and resources. 

GangSim’s novelty comes from its modeling not only of sites but also of VO users 

and schedulers, and its ability to model uSLAs at both the site and VO levels. The 

resulting simulation system allows various task assignment policies to be tested in 

conjunction with different uSLAs for a range of different Grid configurations and 

workloads.  

This chapter is structured as follows. First, I present a short history about 

GangSim’s conception and describe the simulated environment. A scenario example is 

provided for better understanding of GangSim’s approach. Second, the implementation 

details and GangSim’s output types are presented. I end the chapter with a short 

analysis of its performance and the future work required to improve its results.  

4.1.  Simulator Model 

GangSim simulates a uSLA-driven management infrastructure in which uSLAs for 

the allocation of resources within communities (VOs) and the allocation of resources 

across VOs at individual sites interact to determine the ultimate allocation of individual 

computing resources (CPU, disk, and network). uSLAs are expressed using the tuple 
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syntax introduced in Chapter 3 for rules associated with sites, VOs, groups, and users 

for different aggregations of available resources.  

GangSim models a Grid as comprising a collection of sites, VOs and users, a job 

submission infrastructure, data files, a monitoring infrastructure, scheduling 

infrastructure, and an uSLA management infrastructure. The principal GangSim 

components are external schedulers (ES), local schedulers (LS), data schedulers (DS 

[75]), monitoring distribution points (MDP [33]), site policy enforcement points (S-

PEP [33]), and VO policy enforcement points (V-PEP [33]). I describe each of these 

components in more detail in the next subsection.  

4.1.1. Simulated Components 

A site is characterized by the capacity and number of its CPUs, disk resources, and 

network capacities. Each characteristic is described through a configuration file that is 

loaded during startup. Both intra- and inter-site network capacities are defined. A site 

specifies a set of usage policies, defined by the uSLAs imposed by the site owner, for 

how much CPU time, disk space, and network bandwidth each VO may use.  

A VO is composed of a set of groups of users. Users submit jobs, which may be 

grouped into sets called workloads. A VO specifies an uSLA that defines the resources 

that will be made available to each group.  

External Schedulers, Data Scheduler, and Local Schedulers (ES, DS, and LS) 

represent points where various scheduling decisions are performed. An ES, such as 

Pegasus [99] and Euryale [100], queues user jobs and selects the best site candidate for 

each job. An LS, such as Condor [101], PBS [102] and LSF [103], queues jobs 
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associated with a site and schedules them on a suitable node for execution. A DS, such 

as Kangaroo [64, 102, 104, 105], schedules the required files to the candidate execution 

site. The ES interacts with LS in order to submit jobs to a specific site. A DS transfer 

files transparently to ESs and LSs, such that all required files for a job are in place 

when a job is ready for execution.  

Monitoring Data Points (MDPs) represent the monitoring infrastructure “nodes” 

that compute various metrics for Grid components’ consumption. Such information is 

gathered from local and external schedulers, filtered, and delivered in a uniform 

manner.  

Policy enforcement points (PEPs) are responsible for enforcing uSLAs. They gather 

monitoring metrics and other information relevant to their operations, and then use this 

information to steer resource allocations as specified by the uSLA [26]. I distinguish 

two PEP types, S-PEPs and V-PEPs. 

Site policy enforcement points (S-PEPs) reside at all sites and enforce site-specific 

uSLAs. S-PEPs operate in a continuous manner, in the sense that jobs are immediately 

preempted or removed when uSLA requirements are no longer met. However, jobs are 

not necessarily restricted from entering site queues just because an uSLA would 

prevent them from running.  

VO policy enforcement points (V-PEPs) interact with S-PEPs and schedulers to 

enforce VO-level SLA specifications. They make decisions on a per-job basis to 

enforce VO uSLAs regarding resource allocations to VO groups or types of work 

executed by the VO. V-PEPs are invoked when VO schedulers make job scheduling 
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decisions to select which jobs to run, when to send them to a site scheduler, and where 

to run them.  

4.1.2. Scenario Example  

This section describes a scenario for how GangSim simulates job execution. In this 

scenario, there are three sites A, B, and C and one VO, V. Site A has no allocations for 

VO V, site B has a fixed-limit uSLA that provides 30% of its resources to V, and C has 

an extensible-limit uSLA that provides 40% of its resources to V. Let’s assume that the 

current utilizations of the two sites providing resources to V at time t are as follows: 

site B executes jobs from VO V that sum up to 25% of the site CPUs and 10% of the 

disk space is used, and all jobs running at B sum up to 60% and 20% of the disk space; 

site C executes jobs from VO V that sum up to 35% of the site CPUs and 30% of the 

disk space, and all jobs running at C sum up to 70% and 80% of the disk space. In this 

environment, we consider the submission of three jobs with the requirements 

(expressed in percentages) as described in Table 4.1. I also assume that all the three 

input files are stored at site A initially (the percentages are expressed in the total 

resource capacities).  
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Table 4.1. Job Requirements (the numbers represent 

required number of CPUs per job and its utilization per site 

in percentages for the second column, and required number 

of files per job and space requirements in percentages for 

the third column)  

CPUs [#, %] Disk Space [#, %] Job Number  

Site B Site C Site B Site C 

1 1, 5 1, 8 1, 5 1, 6 

2 1, 4 1, 7 1, 3 1, 5 

3 1, 3 1, 4 1, 1 1, 1 

 

 

The first job for VO V submitted to this environment at time t would be scheduled 

to either site B or site C. Let’s assume that a first-fit scheduling policy is in place (the 

first matching site is selected for the next job execution). Under this policy, the new job 

would be sent to site B, and its utilization would go to 30% for CPUs and 15% for disk 

space for VO V. The required file is transferred by the DS from site A to site B before 

site B starts the execution.  

The second job from VO V submitted at time t + dt (where dt is 1 second, for 

example) can be scheduled only on site C, because it is the only site still available for 

VO V, and its utilization goes to 42% for CPUs and 35% for disk. The required input 

file is also transferred from site A before the job starts its execution.  

The last job for VO V submitted at time t + 2*dt can be scheduled only on site C 

(the extensible-limit uSLA allows more jobs as long as free resources are available; I 

assume that dt is small enough to ensure that jobs 1 and 2 are still running).  
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4.1.3. Implemented Strategies  

During each simulation step, various algorithms and strategies are used to update 

the state of different components of the framework. There are algorithms for job 

selection, job assignment, and data file replication. There are also algorithms for 

computing the costs associated with different operations and for steering job flows 

through the framework. These algorithms are grouped in a single implementation 

module, and invoked whenever a decision regarding the state of a component needs to 

be made. Next, I describe GangSim’s approach to handling the main elements of a 

simulated Grid environment.  

Job flow: Jobs are submitted by users to ES queues according to its specific uSLA. 

Following site selection, jobs are moved to LS queues. A job may be rejected at the LS 

(e.g., because of lack of available disk space or the local policy for the submitting VO), 

in which case the job is returned to the ES queue to re-enter the scheduling process. If 

the job requires larger files that the capacity of any of the sites, it is rejected from the 

ES queue. 

Costs: The simulator associates different time costs with each successful or failed 

operation. Thus, a job that starts after two rejections will incur the costs of two 

rejections and one successful submission, plus the time for input (no more than two 

files in our current implementation) and executable files’ movement among sites and 

VO schedulers. The two input files are placed initially on a site node at random while 

the executable file is placed on the scheduler node when a new job is scheduled. 

Overall, the following time intervals are counted during a job submission: 
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- time to enter the scheduler queue (one simulator step);  

- time for site assignment: ES queue computations (one simulator step plus time to 

wait for an available site);  

- time for node assignment: LS queue computations (one simulator step plus time to 

wait for an available node);  

- transfer time for job input files to the execution node: network allocation and 

transfer costs for the input files (if a job has an image of size S that is larger than the 

available bandwidth B for one simulator step, (n+1)*B > S > n*B, then the job will be 

transferred in (n+1) simulator steps);  

- time for job transfer (job file image) to the node: network allocation and transfer 

for the executable. 

For example, for the scenario introduced in the previous subsection, the first job 

will require one simulator step to enter the scheduler queue for VO V. Once the job is 

in the scheduler queue, it will be scheduled to site B in one simulator step. The required 

input files and job image are transferred (let’s assume) in two simulator steps. Once this 

step is finished, the job waits at cluster B for local scheduling on an available node. The 

scheduling operation incurs another simulator step and the local transfer (let’s assume) 

requires only one simulator step, because of better network connectivity. Now, the job 

is ready for execution. The total amount of time required for its startup was 6 simulator 

steps. The same steps are repeated for the second and third jobs, but these steps overlap 

for the three jobs because they are submitted within a short time of each other (dt 

smaller than half of a simulator step).  
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Simulator steps: GangSim is a discrete simulator, which means that every X 

seconds the simulator evaluates the state of all components in the system (jobs, queues, 

resource status, allocations, utilizations, etc). Operations take place only during 

evaluation steps. If a job has a running time (n+1)*X > t > n*X, then the job occupies a 

resource for (n+1)*X seconds, but the utilization accounted against the job owner will 

still be t seconds (by accounting only the job’s required execution time). The 

consequence is the smaller the value of X, the higher the accuracy of the simulator. I 

have typically used a value of 5 to 10 seconds in my experiments, except the scenarios 

of Sections 4.8 as detailed later. Such a value for parameter X appears to be acceptable 

as long as the average running time for jobs is greater than or equal to a few hundred 

seconds (see section 4.3.5 for more analyses).  

VO and Site uSLAs: uSLAs are expressed as tuples as was described in Chapter 3.   

Task assignment strategies: The effectiveness of a specific uSLA may also depend 

on the strategies used by ESs and LSs. Based on De Jongh’s [106] scheduling 

taxonomy, we distinguish between static and dynamic scheduling policies. Static 

policies use only a priori information about a system and workload. For instance, such 

policies either ignore utilizations or consider them known before hand. On the ES level, 

I focused on dynamic scheduling policies, such as least-used, least-recently-used, that 

take into account site loads, and on static scheduling policies, such as round-robin, 

random-assignment [106]. The input to these policies is filtered by uSLAs to use only 

sites providing allocations. For the LS level, GangSim simulates a first-come-first-

served and space-shared scheduling.  Space-shared denotes a scheduling policy under 
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which only one job runs on a node until either completion or migration to another one. 

The best analogy for the current UNIX OS is the memory resource (the space allocated 

to a process can not provided to other processes). 

4.2.  Implementation Details  

In this section I describe both GangSim’s main modules and their interactions in 

order to perform a simulation scenario. I start with first the description of the main 

modules, followed by the description how they are invoked for execution.  

4.2.1. Main Components and Their Functionalities 

VO-Ganglia uses several reporters (UNIX tools that provide different system 

monitoring metrics) for information gathering. In GangSim these reporters are replaced 

with modules that simulate a Grid environment. Because the GangSim’s reporters need 

a description of the simulated environment, I have developed additional tools for Grid 

environment generation and workload specification. The environment generators create 

configuration files that describe the number of sites and the configuration of these sites 

based on a high-level description of the Grid. The workload generators create 

configuration files describing, in detail, workloads based on the Grid configuration files 

and a description of job distributions. Site uSLAs can be either specified through a web 

interface in a centralized manner (once per simulator instance), or described in a 

configuration file with a higher level of granularity (one per site). The internal modules 

of GangSim are presented in Figure 4.1.  
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Figure 4.1: Simulator Overview  
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Each component has the following purpose. The environment simulation module is 

a set of Perl libraries that maintain the Grid environment status for workloads and 

generate appropriate metrics to feed GangSim. This module simulates ESs, submitting 

hosts, LSs, and sites. MDP data is provided to the module instead of (or, in a mix-mode 

execution, as well as) real ESs, LS, S-PEPs, and V-PEPs. Task assignment policies 

represent a set of algorithms that can be invoked for scheduling jobs to sites, scheduling 

jobs to nodes, or for selecting jobs to run. These algorithms are used by S-PEPs, LSs, 

V-PEPs, and ESs. Similarly, the uSLAs module provides a set of already identified 

uSLAs algorithms for environment controlled sharing.  

The metric aggregators are a set of routines that aggregate metrics based on rules 

such as, string concatenation, integer median computation, or integer averaging. Grid 

components represent a set of functions and data structures for simulating Grid 

components. For example, queues are represented by arrays of structures for various 

metrics about jobs; sites are modeled as a list of physical node capabilities and 

instantaneous states; workloads are also maintained under various queue structures as 

they pass from one stage to another in the simulated environment.  

Environment State Keeper maintains a set of data structures that hold data used for 

system simulation, including: workload status, Grid component status, and current 

utilization. The user interfacing module is composed of a set of CGI scripts that gather 

GangSim status information and present it in HTML form. The last module, logging 

module, represents the connection of the entire simulator with an underlying technology 

for logging simulated environment states. Currently, it allows only RRD-based [1, 88] 
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interfacing for saving historical environment data, and text files for tracking the 

operations performed by the simulator.   

While simulating various size Grids under different uSLAs, scheduling policies, and 

workloads would be sufficient in most cases, I have also introduced the possibility of 

simulating different Grid system types. Specifically, I mean Grids that use different 

approaches in how the uSLAs are managed. At present, GangSim can model two types 

of Grid systems: uSLA analytical-based scheduling and uSLA observational-based 

scheduling.  

In the first case, uSLAs from all participants are available to ESs. In this case, job 

scheduling decisions are based on direct knowledge of the uSLA.  

In the second model, job scheduling is determined by observing the scheduling 

operations at each site. Because no knowledge about allocated resources is available at 

the ES level, each ES monitors the number of jobs that can be run by a site. Further, two 

variations of this model were pursued: no-memory and memory-based. For the no-

memory approach, whenever new jobs can no longer be scheduled at a site, ESs stop 

submitting jobs to that site. For the memory-based variation, GangSim maintains the 

observed limits over the time. Whenever jobs from a given VO no longer start at a site, 

the burst limit is inferred. As soon as the number of jobs from a given VO running at a 

site drops to zero and no other job is started, the epoch limit is inferred as well.  

4.2.2. Simulation Approach and its Limitations 

From an execution point of view, GangSim uses two threads for achieving its goals. 

One thread, the collector, is used for serving external queries based on the state and 
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instantiates the interfacing module, while the other thread, the executor, is used for: 

(a) computing the next environment state, (b) updating by means of the logging module, 

the historical environment trace, and (c) providing the environment state to the collector 

thread. While the collector is reduced in technical complexity and implements an event 

driven mechanism (provides answers when external queries are performed or updates its 

environment view when signaled by the executor), the executor performs the three main 

operations described above for every simulated step in order to update the simulated 

environment state at a given time.  

GangSim, like Ganglia, stores logged data in RRDs [1]. The RRDs are created with a 

pre-specified data update time interval for each simulation run, and in the current 

implementation GangSim, the RRD interface requires input data for every update 

interval [1, 88]. Because of this RRD logging implementation, to calculate accurate 

results GangSim must perform each environment state computation in a time interval, 

which I call the required time, lower than or equal to the simulated time step. In other 

words, if the executor requires more time than the time step, then under the current 

historical logging technology the simulator will produce inaccurate results. Given the 

following notation:   

t – time step 

s – time step size 

r – required time 

S – start time for time step t ( S = s * t ) 

the following two scenarios are possible when simulating large Grid environments: 
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� Accurate: when the executor is not overloaded at time S (r <= s), the RRDs are 

updated and the computation for the next step (t + 1) will begin at time S + s; for the 

remaining time (s - r), the executor will sleep;  

� Overload: when the executor is overloaded (r > s), the computation for the next step 

(t + 1) will begin at time S + r. The RRDs for the current step (t) will be updated at 

step t + 1. 

Because of incomplete information in the RRDs due to overloading gaps are 

introduced in the graphical results, and the performance metrics have discrepancies. In 

the overloading scenarios, the simulated time (Grid environment time) differs from the 

real time (GangSim environment time).   

4.3.  GangSim Output  

In this section, I explain the simulator features of GangSim using several examples. 

I assume that each site has a predefined number of CPUs, and each VO a predefined 

number of groups that submit workloads. I use synthetic workloads to validate the 

simulator, evaluate its performance, and provide examples of its capacities. Each 

workload is composed of jobs, each corresponding to a certain amount of work and 

with precedence constraints (job ordering in a workload) determining the order in 

which jobs can be executed [38, 106].  

The output of GangSim is represented by three types of information: performance 

metrics, graphs illustrating simulation history, and instantaneous display environment 

pages (HTML and XML documents). Performance metrics are important because they 
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provide support for qualitative analysis of how workloads are executed in a specific 

scenario. The graphs represent a means for tracking the correctness of uSLA 

enforcement. Finally, the instantaneous display pages allow for combining the 

simulator with other tools (like real Grid schedulers) and quick user verification.  

4.3.1. Experimental Setup  

The scenario and experimental setup considered in the rest of this chapter is as 

follows. Three VOs each submit a workload to a single site. The VOs’ workloads are 

composed of 28, 34 and 39 jobs, respectively, under a Poisson distribution; the length of 

the jobs is around 200s based on a Gaussian distribution (the length of jobs in a 

workload is distributed with the average equal to 200s); the input files have size between 

1kb and 5kb. For all the simulations, each job requires as input 2 files from a set of 5 to 

20 (a random number) files placed (randomly) on a site's node. Also, for the analysis of 

uSLA-based resource sharing, job precedence constraints do not have any impact on 

how resources are provided; these precendences will just postpone the execution of later 

jobs, while my focus is on how actually resources are shared. The site has 28 machines 

shared under one of the four uSLA semantics introduced in Chapter 3, with the 

simplification for the commitment-limit uSLA that a burst can last as much as the epoch 

limit is not reached.  

The simulation interval is 10 minutes in all scenarios with a simulator step of 5 

seconds. The job scheduling strategy for both the VO and the site levels is first-come-

first-served (FCFS). The job assignment at the VO level is round robin while at the site 

level is round robin combined with the close-to-file policy. When at least one of the two 
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input files is already at a node, and the node is free, then this node is selected. The close-

to-file scheduling policy influences workload executions by lowering the time for input 

file acquisitions. When a file is already at a site due to previous executed job 

dependencies, there is no need for a subsequent movement as long as the file is still at 

the node; it can be reused by subsequent jobs that require it. However, a file can be 

deleted from a node if the node runs out of space and it is not the initial source where the 

file was firstly created. 

As a final note, all simulations are performed on an AMD Athlon™ XP 3000+ with 1 

GB of memory, and the epoch allocation is considered the simulation interval (10 

minutes).  

4.3.2. Performance Metric Examples 

Performance metrics provide support for quantitative analysis. GangSim supports 

the following six metrics:  aggregated resource utilization (Util), job completion per 

site, VO or overall (Comp), average site response time (Delay), average Grid response 

time (Response), average starvation factor (Starv), and uSLA violation ratio 

(Violation).  

Table 4.2 captures the six metric values captured for the four scenarios introduced in 

the previous sub-section. As can be observed, the no-limit uSLA offers the lowest 

Response under the FCFS scheduling policy employed. At the same time, it is the 

second best uSLA in terms of the total system utilization, but the difference between no-

limit and commitment-limit uSLAs is minimal (2.1%). This difference is explained by 

the need for different input files in the no-limit case: more jobs from a single VO start 
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and thus more bandwidth is needed to transfer a file from the node where it resides to 

multiple destinations (nodes in the same cluster). The other two uSLAs have lower 

average resource utilizations and higher average response times for this scenario, 

because fewer jobs are scheduled due to the uSLA limits.  

Table 4.2: Response and Util Value Results  

Metric\uSLA no-limit  fix-limit  extensible-limit commit-limit  

Response (s) 9.18  14.16 13.53 10.91 

Util (%) 68.55 61.19 65.85 70.71 

Comp (%) 80% 80% 80% 82% 

Delay (s) 6.97 6.11 6.58 6.85 

Starv (%) 8.49 12.32 10.38 7.82 

Violation (%) 17.15
*
 0.0 6.90 12.01 

 

* 
With the assumption that resources are equally shared among the VOs (each should get a 33%of these 

resources) 
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I introduce two additional metrics to measure GangSim’s overloading. Simulated 

step requirements (Required) represents the ratio of required time to the time step size 

for completing the computations required by the Grid environment state update. In 

addition, average required is defined as the average of the required metric over an entire 

simulation interval. Whenever the required metric is smaller than or equal to one, the 

simulator is not overloaded.  

System overloading metric (Overload) captures the level of inaccuracy introduced 

into the simulator by the limitations of the logging facility:  

Overload = 1 – n * s / t 

where t is the GangSim environment time, s is the time step size, and n is the number of 

steps successfully simulated at time t. A small overload time indicates that Grid 

environment time is close to the GangSim environment time; whereas a large value 

indicates that the Grid environment time is well behind GangSim’s environment time.  

4.3.3. Graph Output Examples 

In this section, I provide an example of GangSim’s graph output. For each uSLA, 

four figures are presented: the first three represent CPU utilizations (burst and epoch) for 

VO0, VO1, and VO2, respectively. The fourth figure represents the aggregated CPU 

utilization (again, burst and epoch) for the three VOs. In addition, the uSLAs are 

represented for the last three scenarios as lines that express either burst or epoch 

allocations. The two axes are CPU utilization (expressed as percentages on the vertical 

axis) and simulated time (expressed as seconds on the horizontal axis). In addition, when 

a limit is enforced, it is also represented on the left axis as a percentage. 
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The first simulation represents the execution of the sample workloads on the site’s 

resources for a no-limit uSLA. Each VO acquires CPU resources as it submits jobs into 

the schedulers’ queues. Figure 4.2 shows that VO2 acquires fewer resources in the 

beginning (at simulated time 120s), even though the various VOs’ workloads have 

comparable resource requirements (20% for VO2 compared with 42% for VO0 and 37% 

for VO1, thus there is over 100% imbalance between VO0 and VO2). The explanation is 

that in absence of any limitations, VO2’s submitted jobs are scheduled only after the 

other VO’s jobs submitted earlier are finished, because the third VO starts submitting in 

jobs at a later time.  
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Figure 4.2: No-limit uSLA Simulation Example 
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The second simulation represents the execution of the sample workloads on the site’s 

resources for a fixed-limit uSLA. The uSLA imposed in this scenario allows at most 

30% for each VO and a total of at most 90% for all the VOs. In this scenario, each VO 

acquires at most its allocated share of the CPUs as can be observed from Figure 4.3. For 

this scenario, each VO acquires an equal share, 30%, of the total CPU resources. 

However, even though additional resources were available, they remained unused, 

because the fixed-limit uSLA allowed the three VOs to consume only 90% of the site 

resources.  
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Figure 4.3: Fixed-limit uSLA Simulation Example 
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The third simulation represents the execution of the sample workloads using an 

extensible-limit uSLA. The uSLA imposed in this scenario allows each VO to use as 

many resources as possible when there is no contention, but at most 30% when 

contention occurs. In this scenario, each VO acquires at most its allocated share of CPUs 

over the epoch, as can be observed from Figure 4.4. The difference with the previous 

scenario is that while all VOs acquire at least their entitled share, the VOs that submit 

their jobs earlier get additional resources. Each of the three VOs acquire, at different 

intervals, more resources than their allocations: VO0 has spikes up to 41%, VO1 up to 

37% and VO2 up to 37%. However, the epoch CPU allocation is comparable for the 

three VOs (each VO acquires utilizations in the 20% - 25% range over the 10 minute 

interval).  
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Figure 4.4: Extensible-limit uSLA Simulation Example 
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The final simulation represents the execution of the workloads using the 

commitment-limit uSLA. The uSLA imposed in this scenario allows VO0 at most 30% 

for the entire period with spikes up to 60%, VO1 at most 30% with spikes up to 60% and 

VO2 at most 30% for the 10 minute simulation interval with spikes up to 50%. In all 

cases the spikes can last until the epoch allocation is consumed. In this scenario, the VO 

with the most jobs in the queue can have spikes in its instantaneous allocation, but will 

never exceed its burst limit.  
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Figure 4.5: Commitment-limit uSLA Simulation Example 
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In conclusion, I have presented GangSim graphical output for the four uSLAs 

introduced in Chapter 3 and the scenario of section 4.3.1. From these results, the 

commitment-limit uSLA is the best sharing approach of the four methods, because it 

achieves the highest resource utilization. This conclusion is also supported by the values 

from Table 4.2, which shows that the VOs achieve the lowest starvation, second smallest 

response time, and the highest overall resource utilization, under this uSLA.  

4.3.5. Instantaneous Results  

Simulation results are accessible instantaneously through a web interface. This web 

interface offers a simple and easy way to browse and view statistics about various 

components in the simulated environment. There are three main screens, the site view, 

the VO uSLA view, and the scheduler level view. Each view has many associated sub-

views for monitoring a particular component. For example, a user can inspect how a 

scheduler assigns jobs to a site.  

Figure 4.6 shows an example of the external schedulers’ interface for the fixed-limit 

scenario at simulated time 120s. For each VO scheduler, the scheduled and pending 

jobs are represented on the left column. The VOs and their jobs are represented on the 

second column. The right column represents the scheduled and waiting jobs for each 

VO’s group. The numbers for the first line on the bars have the following meanings: 7 

stands for the total jobs in execution scheduled by means of Scheduler0-0, 19 for the 

total jobs scheduled by means of the same Scheduler0-0, while 29.16 stands for the burst 

percentage of resources consumed by the jobs scheduled by means of the same 
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scheduler from the entire Grid. Further, the numbers have the same meaning per VO 

and VO group.  

 

 

 

 
Figure 4.6: The ‘Schedulers’ View Exemplified 
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4.3.6. Simulation Step Value Influence  

The last element of the analysis is the influence of the simulation step value on the 

performance of the simulator. We performed additional runs for the scenario described 

in Section 4.3.1 with two different values: 30s and 60s vs. the 5s setting used before. The 

new simulation results (graphs) are captured in Figure 4.7 and Figure 4.8. It is clear that 

the increase in the simulator step affects the delay in job scheduling within the simulated 

environment. The difference is quantifiable as three simulator steps, based on the 

GangSim cost descriptions provided in Section 4.1.3. For each scheduling operation, at 

least one simulator step is required, and because the steps are 6 and 12, respectively, 

times larger, the jobs startup is delayed accordingly. 
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Figure 4.7: Simulation Results for a 30s Simulation Step 

with Fixed-limit uSLA 
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Figure 4.8: Simulation Results for a 60s Simulation Step 

with Fixed-limit uSLA 
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4.3.7. Simulated Architecture Variations  

Figure 4.9 and Figure 4.10 represent two simulations of the scenario presented 

Section 4.3.3 based on uSLA observational scheduling for a fixed-limit uSLA, which is 

the easiest uSLA to compare from a reader’s view-point. In both cases uSLAs are not 

available: in the first case, the ESs try to maintain at least one job waiting in the local 

site queue; in the second case, the ESs observe the number of jobs running concurrently 

for each site and each VO and infer the uSLA at the site. These extra jobs increase the 

queue load at the execution site without actually starting to execute. As a consequence, 

the other VOs (VO2 and VO0, in our scenario) schedule fewer jobs on the site and 

resources remain partially unused.  
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Figure 4.9: Observational Approach (no-memory) for uSLA 

Discovery 
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Figure 4.10: Observational Approach (with memory) for 

uSLA Discovery 
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While the two figures provide meaningful visual information for quantifying the 

behavior of the two observational approaches, I provide the Response and Util values 

for the three scenarios in Table 4.3 for comparisons purposes. As the results show, the 

analytical approach outperforms the other two approaches in our simulation scenario. 

While the simple observational approach cannot detect all the available resources based 

only on monitoring information, the memory-based approach comes closer to learning 

these limits (the consumption of the three VOs never gets to the point where it spikes up 

to the 90% limit).  

 

Table 4.3: Response and Util Value Results (fix-limit uSLA 

scenario) 

Metric\uSLA analytical  observational (no-memory) observational (memory) 

Response (s) 14.16 18.21 17.02 

Util (%) 61.19 49.92 55.21 

 

4.3.8. Simulator Performance  

In this subsection I show by experimentation that the required time for a simulation 

is dependent on three factors: number of participating sites, workflow sizes and number 

of participating VOs. I consider next three scenarios for evaluating GangSim scalability 

and performance, one for each of the above mentioned factors. In all three scenarios, 

the scheduling policy is random assignment, the uSLA is the extensible-limit uSLA 

(50% for each VO), while the simulation step is 5 seconds. A variable number of VOs 
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submit workloads composed of pre-defined number of jobs (200 per VO if not stated), 

with a constant arrival rate (2 jobs per second) for a 1200 seconds time interval. 

To measure the impact of the environment size on the quality of results, six 

simulations were performed for 15 VOs with workloads composed of 200 jobs each, 

and for different environment sizes: 100, 125, 150, 175, 200, and 225 sites. Figure 4.11 

captures the average required metric for each environment size. The first figure shows 

that in average GangSim still copes with the computation requirements for 100 sites, 15 

VOs and 200 jobs size workloads per VO, but the required time increases substantially 

as the size of the environment grows.   

 

 

Figure 4.11: Average Requirement Metric Function of the 

Environment Size 
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Figure 4.12 presents the average overload metric as a function of the number of 

sites (100, 125, 150, 175, 200, and 225) at four GangSim environment times: 300s, 

600s, 900s, and 1200s. While its value is close to 0 for 100 sites (low overload), it 

increases quickly as the environment size grows.  

 

 
Figure 4.12: Overload Metric Function of the Number of 

Sites during Executions 
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To evaluate the impact of the workload size, four simulations were performed on a 

Grid of 225 sites and with 15 VOs for different workload sizes: 100, 200, 300, and 400 

jobs per VO. Figure 4.13 captures the average required metric. It can be easily observed 

that the required metric increases more slowly with the number of jobs than with the 

number of sites. Thus, handling a single extra-job is less computationally intensive than 

handling an additional site.  

 

 
Figure 4.13: Average Requirement Metric Function of the 

Workload Size 
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Figure 4.14 represents the variation of the average required metric for different 

numbers of VOs (10, 15 and 20) for three Grid environments (100, 150 and 200 sites). 

The total number of jobs in the system was constant, 1500 jobs, that were distributed 

evenly over the simulated VOs. I note that in the current GangSim implementation it is 

more expensive to add VOs to the simulated environment than increase the VO 

workload sizes (previous figure). This result is expected, because additional data 

structures must be maintained and processed for additional VOs. 

 

 
Figure 4.14: Average Requirement Metric with the Number 

of VOs for Three Environment Sizes 
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To summarize, adding either sites or VOs to the simulated Grid environment is 

computationally more expensive in the GangSim current implementation than 

increasing workload sizes.  

4.4.  Summary and Future Work 

In summary, in this chapter I have detailed GangSim, a simulator developed for 

controlled resource sharing studies in Grid environments. I have also described the type 

of comparisons that can be made by means of a specific scenario. Other task 

assignment policies can be combined with various uSLAs for analyses. The simulation 

results show that commitment-limit uSLA performs the best for our sample scenario 

compared with the other three uSLAs introduced in Chapter 3 in terms of the computed 

performance metrics. GangSim has been used for several simulations studies and 

comparison studies regarding current Grid status [33, 38, 44, 107, 108].  

As future work, I plan to in validate GangSim against real Grids. Preliminary 

simulator validation studies show inconclusive results. Grids introduce latencies and 

failures that are not captured by GangSim, which was developed as an ideal study 

environment. Second, a language-based uSLA specification represents an important 

step for extending GangSim’s capabilities in simulating various scenarios. And third, 

GangSim can be configured to run in a distributed mode in which several simulator 

instances run on different hosts, with sites and computational load distributed 

appropriately. This feature has the potential to provide greater, but I have not yet 

evaluated whether this potential can be achieved in practice.  
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CHAPTER FIVE  

GRUBER: A GRID uSLA-BASED BROKER 

 

GRUBER is an infrastructure for uSLAs specification, management and 

enforcement in Grid environments. The current implementation has been successfully 

deployed, tested and used in the OSG/Grid3 environment [13]. GRUBER provides a 

means for uSLA discovery, management, and translation to allow Grid schedulers in 

order to perform uSLA-based scheduling. It addresses the issues of how uSLAs can be 

automatically discovered, retrieved, stored, and disseminated. The targeted entities are 

computing resources such as computers, storage, and networks, and computing 

services, such as Grid services.  

The rest of this chapter is organized as follows. Section 2 presents the 

implementation details and enhancements required to handle large distributed Grid 

environments.  Section 3 covers GRUBER’s infrastructure performance. The chapter 

ends with my conclusions.  

5.1 Implementation Details 

GRUBER is composed of five software components (see Figure 5.1): 
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1. The GRUBER engine implements uSLA semantics, detects available resources, 

and maintains an overall view of resource utilization in the Grid. My 

implementation is a Grid service that is capable of serving multiple requests. It is 

based on the Globus Toolkit [85] and provides authentication, authorization, 

state or state-less interaction, etc.  

2. The uSLA language parser provides support for translating the two specification 

languages introduced in Chapter 3 to an internal representation for the engine;  

3. The GRUBER site monitors and uSLA enforcers (S-PEP) are the data providers 

for the GRUBER engine. They are composed of a set of UNIX and Globus tools 

for collecting Grid status information and enforcing uSLAs for resource 

managers that do not have means for controlled resource sharing;  

4. The GRUBER queue manager (QM) and VO uSLA enforcers (V-PEP) are 

complex GRUBER clients that reside on submitting hosts. They enforce VO 

uSLAs and decide how many jobs to start and when;  

5. The GRUBER site selectors, which reside on submitting hosts, are tools that 

communicate with the GRUBER engine to determine the best site for a job.  

Currently, there are two implementations of GRUBER available, one based on Grid 

Services (OGSI [109]), and one on Web Services (WS [85]) - the two main versions of 

the Globus Toolkit (GT3 and GT4, respectively).  

In this infrastructure, components exchange information under the following rules. 

The GRUBER engine periodically receives information about available resources on 

the Grid by means of the GRUBER SiteMonitor (Figure 5.1 - arrows 1 and 2). The 
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GRUBER SiteMonitor collects raw data from each local resource manager and 

translates it into the semantics of Chapter 3. Jobs are submitted to the local queue at 

each submission site and the GRUBER QM instructs the external scheduler (ES: Figure 

5.1 - arrow 4), based interactions with the GRUBER engine (Figure 5.1 - arrow 3), 

when and how jobs can be released. As soon jobs are released, the ES interacts with 

one of the GRUBER SiteSelectors for selecting a specific site for each individual job 

(Figure 5.1 - arrow 5). A SiteSelector can be selected for each individual job. The 

SiteSelector uses information provided by the GRUBER engine (Figure 5.1 - arrow 6). 

The last step is the job submission (Figure 5.1 - arrow 7).   
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Figure 5.1. GRUBER Resource Brokering 
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5.1.1 The GRUBER Engine 

The GRUBER engine represents the main component of the brokering infrastructure. 

I use the term decision point (DP) for an engine instance. A DP maintains a view of the 

available resources at each Grid site and invokes one of the four uSLA algorithms 

described in Chapter 3 (no-uSLA, fixed-uSLA, extensible-uSLA, and commitment-

uSLA) for determining resource availability. All the other components in the brokering 

infrastructure communicate with a DP to perform their operations.  

GRUBER decides which providers are available for a request using monitoring data 

and published uSLAs. The GRUBER engine’s logic for managing CPU and disk 

requests is captured by the following algorithm, which returns the set S of available 

sites for use of job J, where J represents the job characteristics as well the job name, 

from the VOi:  

 

G  = Grid Site Set ;  

J = resource requirements for job J;  

S  = Matching Site Set; 

 

algorithm get-avail-sites_cpu inputs (G, VOi, J) returns S 

1. S = empty  

2. for each site s in G do  

# Apply one of the algorithms introduced in chapter 3 
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3.      if uSLA (s) == none and  

   no-uSLA (J, VOi, s) == accept then  

4.         add (s, S) 

5.      else if uSLA (s) == fixed and  

   fixed-uSLA (J, VOi, s) == accept then  

6.         add (s, S) 

7.      else if uSLA (s) == extensible and  

   extensible-uSLA (J, VOi, s) == accept then  

8.         add (s, S) 

9.      else if uSLA (s) == commitment and  

   commitment-uSLA (J, VOi, s) == accept then  

10.         add (s, S) 

11.     else  

12.         next  

13. return S 
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5.1.2 uSLA Enforcers and Observers  

In this section, I describe two solutions for uSLA management and enforcement 

provided by GRUBER. The first solution considers the case of simple RMs that are 

unable to arbitrate among concurrent requests for resources, in which case complete 

policy enforcement points (PEPs) are required. The second solution supports advanced 

site RMs capable of enforcing complex uSLAs, in which case only policy observation 

points are required (POPs).  

Solution 1 (Stand-alone resource S-PEP): The first solution works with any 

primitive batch system, for example Q
2
ADPZ [110], that provides at least the 

following: accurate usage and hardware status information, basic job management 

(start, stop, held, remove operations), and job prioritization capabilities (increase, 

decrease operations). The S-PEP interacts with the RM(s). It continuously checks the 

status of all the jobs being managed by the RM and invokes management operations 

when required to enforce uSLAs. This functionality is accomplished by gathering site 

uSLAs as described in Section 3.5, collecting monitoring information about cluster 

usage from the local schedulers, computing CPU-usage parameters, and sending 

commands to schedulers to start, stop, restart, hold, and prioritize jobs. As an example, 

the processing logic of the S-PEP based on the commitment-uSLA is presented below:  
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EPi = Epoch allocation policy for VOi  

BPi = Burst allocation policy for VOi 

Qi  = set of queues with jobs from VOi 

BAi = Burst Resource Allocation for VOi 

EAi = Epoch Resource Allocation for VOi 

Utilization = current utilization on the site  

TOTAL = possible allocation on the site  

 

procedure s-pep_commitment  

1. while (true) do 

2.   sleep 10 # (seconds) 

3.   foreach VOi  

# Case 1: resource exhausted on this site 

4.    if EAi > EPi then  

5.      suspend jobs for VOi from all Qi  

# Case 2: available and BAi < BPi 

6.    else if Utilization < TOTAL  

 & BAi < BPi & Qi has jobs then  

7.       start job J from some Qi # (e.g., FIFO sched) 

# Case 3: resource contention: fill EPi 

8.    else if Utilization == TOTAL  
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 & BAi< EPi & Qi has jobs then  

9.       if j exists & BAj >= EPj then 

10.          suspend an over-quota job Qj 

11.      start job J from some Qi # (e.g., FIFO sched) 

 

For further clarification, BA or EA represents the share actually used by a VO. BP or 

EP represents upper limits for these shares. If BP or EP increases, then the VO receives 

additional resources. An important novelty of this approach over a cluster RM is its 

capability to keep track of jobs scheduled by several RMs on a single cluster, and to 

allow the specification of complex uSLAs without the need to change the RM 

implementations.  

Solution 2 (Stand-alone resource S-POP): The second solution was developed and 

implemented with success in the context of the OSG/Grid3 environment. I decoupled 

the functionalities of the S-PEP by introducing a standalone site policy observation 

point (S-POP) and by allowing the RM to manage how local resources are shared. In 

this case, the assumption is that in addition to the functionalities enumerated for 

solution 1, the RM can enforce the desired uSLA. Examples of such cluster RMs are 

Condor [101], Portable Batch System [111], and Load Sharing Facility [103], which are 

widely used on OSG/Grid3 [31]. The S-POP translates to/from the RM usage policies 

to the common uSLA language described in Chapter 3, monitors resource utilization, 

and communicates this information to the GRUBER engine. This approach eliminates 

the requirement to deploy additional Grid elements for site management.  
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5.1.3 Queue Managers and VO-level uSLA Enforcement  

GRUBER queue managers reside at the submission hosts and are responsible for 

determining how many jobs per VO or VO group can be scheduled at a certain moment in 

time. Usually, a VO planner is composed of a job queue, a scheduler, and job assignment 

and enforcement components. These last two components are part of GRUBER. A queue 

manager answers the question: “How many jobs should group Gm of VOn be allowed to 

run?” and “When can these jobs start?” The queue manager is important for uSLA 

enforcement at the VO’s level because it specifies, based on the VO uSLAs, how many 

jobs to run simultaneously for each VO’s group. This mechanism also avoids site and 

resource overloading due to un-controlled submissions. The GRUBER queue manager 

implements the following algorithm (with the assumption that all jobs are held initially at 

the submission host):  

 

J = Job Id ;    

Q = Job Queue ;    

S = Site Set ;  

G = All Site Set ;   

VO = Mapping Function jobId -> VO 

 

procedure v-pep 

1. while (true) do  

2.      sleep 10 # (seconds) 

3.     if Q != empty then  
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4.         get J from Q  

5.     else  

6.         next  

7.  S = get-avail-sites(G, Vo(J), J)  

8. if S != empty then  

9.        release J from Q 

 

5.1.4 Site Selectors 

While GRUBER targets the provisioning of brokering services in Grid environments, 

I have also included scheduling mechanisms. By introducing site selectors, GRUBER 

can determine the best site for a running job in terms of uSLAs and current utilization. 

They are invoked directly by Grid schedulers (e.g., Euryale [100], KOALA [37], or 

WMS) in order to get site recommendations.  

Currently, the four standard scheduling policies implemented by GRUBER are 

random selection (G-RA), round-robin selection (G-RR), most-recently-used selection 

(G-MRU), and least-used selection (G-LU). A fifth scheduling policy is provided by 

the GRUBER observant site selector (G-Obs), which associates a job with the site 

where the most recent job was started. In effect, this fifth site selector fills a site by 

assigning jobs to it until site’s limit is reached.  

5.1.5 Grid Service Brokering 

GRUBER addresses resources and services differently, conditioned mainly by the 

local site managers in each case (i.e., Condor [112], PBS [102] for low-level resources, 
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ARESRAN [83], SAML [113] for services). For Grid services at the site level, 

GRUBER adopts the uSLA management approach from the ARESRAN prototype.  

ARESRAN is a GT4 service for uSLA and reservation management, specification 

and enforcement at the level of a single site based on the Globus technology [85]. The 

ARESRAN prototype is based on the authorization schemes implemented by GT4, the 

so called Policy Decision Point (PDP). GT4 allows a chain of PDPs to be configured 

for each service, with each PDP evaluating to an independent decision [96]. The final 

answer is a logical AND operation of all these independent decisions. The ARESRAN 

authorization engine provides one of independent decisions to the GT4 authorization 

engine based on uSLAs enforced at the site level. I have developed two specific 

ARESRAN PDPs - one for managing service reservations and one for lower level 

resource reservations such as compute nodes that are managed by the WS-GRAM 

service [114].  

The overall ARESRAN architecture is described in Figure 5.2. Whenever a service 

request arrives for a service managed through ARESRAN, the service’s PDP steps in 

and verifies whether the request is acceptable. At the Grid level, GRUBER collects 

uSLAs from all individual ARESRAN services and provides brokering services for 

consumers.  
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Figure 5.2. ARESRAN Architecture 
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The main components of these mechanisms are the ARESRAN Service, the 

ARESRAN PDPs and the ARESRAN Reservation Database. These three components 

communicate to ensure that requested resources or services are used appropriately. The 

specific details of these components are:   

• Service: represents the reservation and uSLA engine of my prototype. Every time 

a new reservation is requested, the engine is invoked to verify whether the new 

reservation can be honored. The verification procedure uses information from the 

ARESRAN database and returns either ACCEPT, DENY or PROBABLY. If the 

reservation request is accepted, it is saved in the ARESRAN database;  

• Database: stores reservations, uSLAs, and information about requests in 

progress. In this manner, ARESRAN has a complete view of the utilization of the 

services and resources that it manages. So far, the database is implemented in 

memory only, but future enhancements target the usage of a persistent database. 

Whenever a reservation is served, various statistics are also saved, such as: 

request time, running time, remote client, etc;  

• PDPs: authorizes requests based on the rules stored in the database for various 

services and resources. Each PDP returns either REJECT or ACCEPT.  

To accomplish service brokering, GRUBER collects the uSLAs enforced by each site 

and builds an overall view of the services’ availability in the Grid, as is done in the 

resource brokering case. It collects current allocations and utilizations directly from 

ARESRAN (Figure 5.3 - arrow 2) and, based on this information, instructs the 

consumer about available alternatives (Figure 5.3 - arrow 3). GRUBER applies the 
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service brokering algorithm described in Chapter 3 to build the list of available 

alternatives for each individual client and service request.  

 

 

 

 

Figure 5.3. GRUBER Service Brokering 
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Because ARESRAN was developed from the beginning based on uSLAs for service 

sharing, the overall architecture is simpler and fewer component interactions are 

required. The complete GRUBER is presented in Figure 5.4.  

 

 

 

Figure 5.4. GRUBER Resource and Service Brokering  
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5.1.6 GRUBER Extensions  

I implemented several extensions to GRUBER. The most important ones are 

described in this section: distributed uSLA management, multiple scheduling policies 

for associating clients with DPs, and a graphical verification interface for human 

operators.   

5.1.6.1 DI-GRUBER (DIstributed GRUBER) 

Managing uSLAs within environments that integrates participants and resources 

spanning many physical institutions is a challenging problem in practice. A single DP 

providing brokering decisions for hundreds to thousands of jobs and sites can become a 

bottleneck in terms of reliability as well as performance. I extended GRUBER with a 

distributed Grid uSLA-based resource broker, called DI-GRUBER that allows multiple 

DPs to coexist and cooperate in real-time.  

DI-GRUBER aims to provide a scalable management service with the same 

functionality as GRUBER [45]. It is a two layer resource brokering service (see Figure 

5.5), able to handle large Grid environments by extending GRUBER with support for 

multiple brokering DPs. The ability to integrate new DPs into an already existing 

brokering infrastructure is important in large and dynamic Grids.   
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Figure 5.5. DI-GRUBER Architecture  
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DPs learn the brokering infrastructure based on a rendezvous mechanism. A human 

operator provides a rendezvous point and each DP queries and retrieves the list of the 

other DPs acting in the brokering mesh.  

DI-GRUBER currently uses a rendezvous mechanism based on WS-Index Service 

[115] to integrate new DPs into the infrastructure. WS-Index Service [116] is a standard 

component of the Globus Toolkit that provides specialized functions for resource and 

service monitoring and discovery. WS-Index Service's main function in DI-GRUBER 

is to act as a specialized directory of all DI-GRUBER DPs for both clients and other 

DPs.  Each DI-GRUBER DP registers with a predefined WS-Index Service at startup 

and is automatically deleted when it vanishes. Clients use this registry, based on a pre-

defined scheduling policy, to select the most appropriate DP for usage. The scheduling 

policy could take into account metrics like load and number of clients already 

connected. So far, I have implemented the least-used policy based on the number of 

clients already connected to a DP. Figure 5.6 presents an example of the allocation of 

available DPs to the brokering clients and shows the method used for DP’s address 

specifications (URI) and load (# of connected clients).  
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Figure 5.6. DPs Allocation Interface (PlanetLab experimental testbed) 
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When the infrastructure becomes overloaded, DI-GRUBER should start new DPs. 

Such dynamic bootstrapping is difficult to automate in a generic environment. The 

solution I have devised a semi-automatic method for the Grid3 scenario. When a client 

fails to communicate or to connect to a DP, it registers a request fault with the WS-

Index Service. These faults are then used by a human operator to bring up new DI-

GRUBER instances and re-stabilize the brokering infrastructure.  

5.1.6.2 Verifiers  

Monitoring of a brokering infrastructure is important in order to understand why 

certain decisions were performed and how the framework actually performs in different 

situations (the verifier concept introduced by Dumitrescu et al. [33]). As a first step 

towards this goal, I introduced a graphical-based verification mechanism that describes 

how resources are used by each client and presents the current allocations and uSLAs 

for each DP. This interface connects to DPs, collects the local or generic view of how 

resources are being managed, and presents it in an easy to visualize mode (see Figure 

5.7).  
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Figure 5.7. Resource Allocation Scenario 
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From a verifier point of view, the interface provides a means for addressing the 

following two questions: “Are uSLAs adequately enforced by each DP?” and “What 

are the utilizations and allocations of different resource in the Grid?”  

5.2 The Performance of GRUBER  

In this section, I focus on experimental results that illustrate GRUBER’s capabilities 

in terms of both scalability and brokering accuracy. These results evaluate the 

performance of both the centralized and distributed versions of GRUBER.  

5.2.1 Experimental Setup  

In this section, I introduce my experimental setup and the performance metrics used 

for analysis. For each scenario, I describe the setup and workloads used to perform the 

experiment.  

All the experiments described in this chapter were performed using the DiPerF 

performance testing framework [117]. DiPerF coordinates several machines in 

executing a performance testing client and collects metrics for the performance of the 

tested service. The framework is composed of a controller/collector, several submitter 

modules, and a tester component. In my experiments, testers run DI-GRUBER clients 

against the brokering infrastructure. Each such tester is launched with a predefined time 

interval between consecutive testers – 25 seconds for the experiments described in this 

chapter.  
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DiPerF collects metrics, described in section 5.1.2, as a function of either test 

execution time or the number of running testers. The advantages of using DiPerF are its 

capacity to coordinate large scale distributed tests involving 500+ clients and its 

automated performance metric collection.  

I used PlanetLab as the testbed for all the experiments of this chapter. PlanetLab 

nodes are RedHat-based PCs connected to the PlanetLab overlay network with 

worldwide distribution. They are connected via 10 Mb/s network links (with 100Mb/s 

on some nodes), and have processor speeds exceeding 1.0 GHz (IA32 PIII class 

processor), and at least 512 MB RAM.  

Each experiment consisted of a set of clients requiring brokering decisions from one, 

three or ten DPs. The DPs maintained a view of the entire Grid environment and 

periodically exchanged information with other DPs concerning recent job or request 

dispatch operations. Each experiment specifies its particular exchange period is 

specified for each experiment. DPs were connected in a mesh with various degrees of 

connectivity, as described for each experiment.  

From 1 to 120 clients were used for performance testing. These clients ran on the 

PlanetLab nodes and each maintained a connection with one DI-GRUBER DP. Clients 

can select a DP under either a random or least-used scheduling policy, but for all the 

experiments in this chapter clients use the least-used policy. Each client was configured 

to apply a 60s timeout to the requests that it dispatched to a DI-GRUBER DP. If the 

timeout occurs, then the client’s site selector recommends a site according to the local 

scheduling policy without considering site uSLAs. This requirement is introduced by 
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the need to provide a brokering decision in a predefined time interval. The Euryale 

scheduler [100] used for job submission on OSG/Grid3 had a fixed timeout equal to 60s 

for brokering decisions. The experiments were one hour in all cases. Clients submitted 

jobs once per second.  

For the scalability and brokering accuracy experiments, the DPs maintained a 

complete view of an emulated Grid that was composed of 300 sites with a total of 

40,000 nodes (a Grid approximately ten times larger than OSG/Grid3 today). The 

clients simulated brokering requests for 60 VOs and ten groups. Each GRUBER client 

randomly chose a VO id and group id under which the request was made. This selection 

process was repeated for each additional request.  

The emulated Grid configuration was based on OSG/Grid3 configuration settings 

(spring of 2005) in terms of CPU counts, network connectivity, etc. The uSLAs also 

were derived from OSG/Grid3 settings: no-limit is used at the VOs' level, 50 sites share 

resources under commitment-limit, 170 sites share under extensible-limit, 70 under 

fixed-limit, and 10 under no-limit.  

I note that this emulated environment is already as big as some existing P2P 

networks. There are two layers of communication in this environment; the sites can be 

thought of as super-nodes from a P2P network, while the resource nodes can be thought 

of as leaves from the P2P network.  

For the service brokering scenario, the environment was composed of ten 

ARESRAN-managed WSRF services deployed on PlanetLab nodes and the DPs 

provided brokering services for this ad-hoc service-oriented Grid. Each service ran 
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inside a GT4 container on a PlanetLab node, except DI-GRUBER and WS-Index 

Service, which ran inside the same container on a node at the University of Chicago 

having an Intel Pentium 2.0 GHz processor, 1 GB of memory, 100MBit/s network 

connectivity, and Linux-SuSe9.1 OS.  

5.2.2 Scalability Test Results  

Figure 5.8 reports the results for the experiments performed to measure DI-GRUBER 

scalability for one, three and ten DI-GRUBER DPs based on the emulated environment 

described in section 5.3.1. When three or ten DPs were used, they exchanged 

information about recently scheduled jobs every three minutes. The graph in Figure 5.8 

plots the number of simultaneous active clients against the response time, while the 

graph in Figure 5.9 plots the number of simultaneously active clients against 

throughput.  

As can be observed, the results show improvement in terms of Throughput and 

Response Time when moving from one DP to ten DPs. The Throughput metric’s value 

increases almost linearly with the number of DPs, reaching a constant value of five 

queries per seconds for three DPs, while rising to 16 queries per second for ten DPs.  
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(A) Response Time Metric for one, three and ten DI-GRUBER DPs 

 
(B) Throughput Metric for one, three, and ten DI-GRUBER DPs 

  Figure 5.8. DI-GRUBER Performance Metrics 
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The above results suggest that adding DPs increases performance, but they do not 

identify the number of DPs required to support a given level of performance. To 

evaluate this question, I extracted traces of the brokering requests made in the previous 

experiment. I also built the GRUB-SIM extension of DI-GRUBER, a trace-based 

simulator that is capable of simulating additional DPs for brokering requests, of 

identifying saturation moments, and of generating the optimal number of DPs needed 

for a given Grid environment. I used GRUB-SIM on these traces to compute the 

minimal number of DPs required to provide a 15 seconds response time for the 

considered environment.  

The analysis is based on the Response metric and the moments when a client does 

not receive an answer in less than 15 seconds from the DP. It showed that a total of five 

DPs are sufficient to achieve a response time lower than 15 seconds for all 120 clients 

in the simulated environment.  

As a final note, the performance results presented above will remain un-changed for 

other uSLAs configurations. The four uSLAs have similar computation complexities 

for the same site: for a given brokering request the computational cost can be expressed 

as O (N+M), where N is the number of sites, and M the number of groups from a VO. 

If N is much larger than M, then the computational cost is just O (N). Even more, the 

cost introduced by communication surpasses the computational cost - to perform a 

request to a DI-GRUBER DP takes on the order of seconds to 10s of seconds, while the 

decision making operation is on the order of 100s of milliseconds.  
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5.2.3 Comparison with a Peer-to-Peer Service 

To evaluate DI-GRUBER’s performance relative to other systems, I have studied the 

PAST application, built on top of the PASTRY substrate [8], using DiPerF on 

PlanetLab.  

The setup used for the experiment was very similar to the one used for DI-GRUBER: 

five PlanetLab nodes for running permanent PAST nodes and 120 clients that joined 

and left the network in a controlled manner using the same 25 seconds delay. One 

PAST node played the role of the main rendezvous point (a node situated at UChicago). 

The remaining ones were maintained as backups. Each joining node requested a lookup 

and an insert operation every second (or, if the previous operation took more than one 

second, at soon as the previous operation ended).  

The performance results are presented in Figure 5.9. In this case, the results are 

plotted as a function of the experiment execution time versus load/throughput and 

throughput. Figure 5.9 also includes results for ten DI-GRUBER DPs for easier 

comparison. They show that for insert and lookup operations, the PAST’s response 

time is around 2.5 seconds (two to three times lower than for a ten DP instances of DI-

GRUBER) with a higher variance in the beginning (the stabilization of the P2P 

network), while the throughput goes as up much as 27 transaction per second in average 

(1.6 higher than for DI-GRUBER). Finally, note that all operations were performed and 

measured on the local nodes (insertion followed by lookup); in the background the P2P 

network propagated the new elements in the network, which provides one partial 

explanation for DI-GRUBER’s higher response time and lower throughput.  
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(A) PAST Network 

 

(B) Ten DP DI-GRUBER 

Figure 5.9. Response Time (left axis) and Throughput (right 

axis) for a variable Load (left axis * 10) for DI-GRUBER 

and PAST Network on 120 PlanetLab Nodes 
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5.2.4 Accuracy Performance Results 

To evaluate the accuracy DI-GRUBER achieves, I consider three dimensions in the 

analysis space: mesh connectivity (defined as the number of peers used for exchanging 

data about recent brokering decisions), synchronization time interval among DPs, and 

the total number of DPs in the infrastructure.  

The experiments are performed for each dimension by keeping two of the parameters 

constant, while performing the tests for different values of the third.  

5.2.4.1 Accuracy with Mesh Connectivity  

First, I measure Accuracy for brokering as a function of the DPs’ average 

connectivity using ten DPs that exchange data every three minutes. I consider three 

cases: full connectivity (a DP sends its state to all the others), half connectivity (a DP 

sends its state only to half of the others), and one-fourth connectivity (a DP sends its 

state only to one quarter of all the others). Table 5.1 contains the results achieved by the 

DI-GRUBER infrastructure for configurations.  

Table 5.1. Accuracy Function of the Infrastructure Mesh 

Connectivity 

Connectivity (N=10) Accuracy (%) 

N-1 75 

N/2 62 

N/4 55 
 

I note that the accuracy of the brokering infrastructure drops substantially as the 

connectivity decreases. 
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5.2.4.2 Accuracy with Exchange Time Intervals 

Second, I measure the accuracy as a function of exchange intervals. I use three and 

ten DPs fully connected that exchange information every one, three, ten, and 30 

minutes. The results in Table 5.2 show that, for a three DP infrastructure, a three to ten 

minutes exchange interval is sufficient for achieving Accuracy over 85%, while one to 

three minutes is required for achieving over 75% Accuracy for ten DPs. However, this 

accuracy value depends also on the number of the jobs scheduled by the DPs, but one 

job/s considered is sufficiently high for any Grid environment [13, 40, 80].  

 

Table 5.2. Accuracy Function of the Exchange Time 

Interval for Three and Ten DPs 

Exchange Interval 

(mins) 

Accuracy for three DPs 

(%) 

Accuracy for ten DPs 

(%) 

1  89 80 

3 87 75 

10 86 68 

30 83 61 

 



 

159 

 

 

5.2.4.3 Accuracy with the Number of Decision Points 

Third, I analyze the performance of DI-GRUBER and its strategies for providing 

accurate scheduling decisions as a function of the number of DPs in the infrastructure. I 

use one, three, five and ten DPs that exchange data every three minutes under a full 

mesh connectivity.  Table 5.3 depicts the accuracy performance and I note that the 

accuracy drops to 84% in the five DP case and 75% in the ten DP case, thus, having 

fewer DPs yields better accuracy.  

 

Table 5.3. Accuracy Function of the Number of DPs 

Number of DPs Accuracy (%) 

1  98 

3 89 

5 84 

10 75 

 

 

5.2.5 Service Brokering Example on an Ad-hoc Grid  

In this section I focus on experiments for measuring service brokering performance. I 

consider three scheduling strategies, GRUBER, Round-Robin, and Random and two 

resource availability scenarios, fully available (FA) and partially available (PA). By 

partially available I mean that only two out of ten sites had resources available for 

consumption. The analysis is based on the Response metric, with the following 
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refinements: GRUBER Response represents the Response metric for GRUBER, 

Service Response represents the Response metric for the tested service, and Reject 

Response represents the Response metric for the authorization mechanism when a 

request is rejected due to uSLA constraints.  

The fully available scenario represents the worst case performance for GRUBER. 

This scenario will favor simple scheduling approaches, such as the random or round 

robin assignment, because of the abundance of available resources. Furthermore, this 

scenario also shows the overhead incurred by using GRUBER in relation to the simpler 

assignments.   

The partially available scenario represents the best situation for the GRUBER engine. 

This scenario will favor a scheduling approach that can make good and informed 

scheduling decisions. Table 5.4 depicts the results for clients situated on the same 

network as the GRUBER engine using two different scenarios for each scheduling 

strategy.  

For the fully available scenario, I first observe that the total number of request 

completed in one hour differs greatly between the first third scheduling strategies (177 

vs. 321 and, respectively, 312). As expected, these results show that brokering requests 

take up a significant fraction of the total execution time without an improvement in the 

assignments.  

The partially available scenario demonstrates the potential benefits of GRUBER, 

which was able to obtain many more assignments than the random or round robin 

assignment strategies (150 vs. 59 and 52).  I conclude that the utility of the GRUBER 
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service brokering engine occurs only when the number of services is large, custom 

advance reservations are performed in the system or the number of the requests is large 

and can potentially exhaust the available allocations. 

 

Table 5.4. Service Brokering Performance Results (Metrics: 

Number of Request, GRUBER infrastructure Response 

time, Tested Service Response Time and Tested Service 

Reject Time) 

Scheduling 

Strategy 

GRUBER 

Assg  

(FA) 

GRUBER 

Assg  (PA) 

Random 

Assg  

(FA) 

Random 

Assg 

(PA) 

Round 

Robin  

(FA) 

Round 

Robin  

(PA) 

# of Request 177 150 321 59 312 52 

GRUBER 

Resp. 

8.98 9.78 0 0 0 0 

Service 

Resp. 

11.45 16.55 10.84 17.45 11.04 17.0

6 

Reject Resp. 0 0 8.89 10.18 9.28 9.85 

 

 

5.3 Summary  

In this chapter I presented GRUBER, a Grid resource broker, capable of uSLA 

resource management in a multi-site, multi-VO environment. It supports the uSLA-

based Grid management infrastructure required by the scenarios presented in Chapter 3. 

I note that GRUBER is a complex service: a query to a DP may include multiple 

message exchanges between the submitting client and the DP, and multiple message 

exchanges between the DPs and the job manager in the Grid environment.  
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Managing uSLAs within large virtual organizations that integrate participants and 

resources spanning multiple physical institutions is a challenging problem. Maintaining 

a single unified DP for uSLA management is a problem that arises when many users 

and sites need to be managed. I provide a solution, namely the GRUBER infrastructure 

and the distributed version, to address the question on how uSLAs can be stored, 

retrieved and disseminated efficiently in a large distributed environment.  

In summary, while GRUBER’s performance is sufficient for today’s Grids, the 

increase in scale of these environments will require scalable solutions [118]. DI-

GRUBER is, in my view, such a scalable solution, powerful enough to handle world-

scale Grids.  

As an additional note, LCG [32] currently uses a solution based on several schedulers 

that rely solely on monitoring information gathered from provisioning sites. I believe 

that by incorporating some of the mechanisms developed for DI-GRUBER, the 

performance of LCG’s scheduling infrastructure will increase substantially [80]. 
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CHAPTER SIX  

USAGE SERVICE LEVEL AGREEMENT 

RESOURCE MANAGEMENT 

 

In this chapter I present experimental results on uSLA-based resource management. 

The main purpose of these experiments is to show that uSLA-based management can be 

achieved with success in real Grid environments. The results are grouped into three 

sections: the first set demonstrates that uSLAs are already enforced at the site level in 

Grids, the second set contains a comparison of the S-PEP and S-POP solutions 

proposed in Chapter 3, and the third set presents my evaluation of GRUBER, my 

solution for uSLA-based resource management on the OSG/Grid3 testbed. This last set 

of experiments also shows that GRUBER is scalable enough to support large workloads 

(at the limit of the other Grid technologies, i.e., in this case Condor-G).  



 

164 

 

6.1. OSG/Grid3 Evolution  

The Grid2003 Project has deployed a multi virtual-organization, application-driven 

grid laboratory (OSG/Grid3
1
) that, for almost two years, has sustained the production-

level services required by physics experiments of the Large Hadron Collider at CERN 

(ATLAS and CMS), the Sloan Digital Sky Survey project, the gravitational wave 

search experiment LIGO, the BTeV experiment at FermiLab, as well as applications in 

molecular structure analysis and genome analysis, and computer science research 

projects in such areas as job and data scheduling. This infrastructure has been operating 

since November 2003 with 32 sites, a peak of 4500 processors, work loads from 10 

different applications exceeding 1300 simultaneous jobs, and data transfers among sites 

of greater than 2 TB/day [31].  

The infrastructure has evolved continuously during this interval to provide better 

services to its consumers. Also, resource providers joined constantly in the beginning. 

The software stack that supports this infrastructure, the Virtual Data Toolkit (VDT 

[119]), had a new release almost every two or three months. The VDT release 

documentation [119] contains a complete list of the system’s software.  

My experiments used the Virtual Data System (VDS [120]), which provides a 

means to describe a desired data product and to produce it in the Grid environment. The 

VDS provides a catalog that can be used by application environments to describe a set 

                                                 

1
 The first version of this environment was called WorldGrid. 
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of application programs (transformations), and then track all the data files produced by 

executing those applications (derivations). 

6.2. Site-level uSLA Verification on OSG/Grid3 

In order to verify that uSLAs are not only specified, but also enforced at the site 

level on OSG/Grid3’s sites, I monitored site CPU utilization over a period of two weeks 

during July 2004 at the University of Chicago site.  

6.2.1. Monitored Configuration  

The resource pool was managed by means of Condor, but other OSG/Grid3 RMs 

(e.g., OpenPBS [102], LSF [102, 103]) behave similarly [121]. Two VOs, USATLAS 

and GridExerciser, competed for resources on this site. This site’s CPU utilization is 

captured in Figure 6.1. The uSLA enforced locally was extensible-uSLA with burst 

allocations of 35% for USATLAS and of 0.1% for GRIDEX, based on Condor’s 

extensible fair share policy, and reported by the GRUBER’s site monitor.  

The software installed at the University of Chicago site was VDT 1.1.7 [119, 122], 

composed of Globus 2.0 [54, 123] for remote execution, and Condor-G 6.4.3 [124] – 

the software that supports workload submission to the Grid. The local site runs Condor 

6.7.1 as site manager [20].  

6.2.2. Results and Analysis 

USATLAS’s larger allocation means that whenever it has jobs queued locally, they 

acquire all resources. But as soon as the USTALAS load decreases (from time = 4
th
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day, 8
th

 hour to time = 10
th

 day, 20
th

 hour), Grid-Exerciser’s jobs take over and get all 

the resources they request. When the USATLAS jobs start to use all resources of the 

site again (X = end of 15
th

 day), Grid-Exerciser’s jobs are throttled back. Note that 

when USATLAS’ load increases but does not fill the site’s resources completely, the 

Grid-Exerciser jobs are not throttled back (from time = 6
th

 day to time = 8
th

 day and 

16
th

 hour).  
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Figure 6.1. Resource Allocations at the University of 

Chicago’s Site over an Interval of 15 days and 4 hours (time 

is expressed in days and hours) 
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6.3. S-PEP vs. S-POP Analysis 

The main purpose of the experiments in this section is to compare the two solutions 

proposed in Chapter 3 for uSLA-based resource management at the site level. A good 

uSLA scheduler will maximize delivered resources and meet owner policies. Table 6.1 

contains an example where resources are not allocated according to the local owner 

policies [33, 125].  

 

Table 6.1. Possible uSLAs Scenarios for the VOs introduced 

in Chapter 3, Target represents the VO’s burst limit, 

Current represents the VO’s utilization, Demand, 

represents the VO’s instantaneous request, and Level 

represents an uSLA violation indicator) 

VO Target Current  Demand Level 

USCMS 60 50 50 OK 

USATLAS 20 15 30 Under 

IVDGL 10 10 100 OK 

SDSS 5 22 50 Over 

 

 

6.3.1. Synthetic Workload Description 

I used synthetic workloads for this comparison. The two workloads overlay work 

entering a single site for two VOs, with the number of jobs and their average durations 

described in Table 6.2. Job arrival times and their durations have Poisson and Gaussian 

distributions, respectively. They mimic the workloads running on OSG/Grid3 [13], but 
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at a lower time scale (minutes instead of days) [121]. For each experiment, the 

execution period was 3000 seconds.  

 

 

Table 6.2. Synthetic Workloads’ Composition 

VO ID Number of Jobs Average Job Duration [s] 

0 400 250 

1 480 200 

 

 

6.3.2. Emulated Environment and Settings 

This section describes the configurations used to perform the experiments. Two 

RMs are used for comparison: Condor [104] and Open-PBS [102, 126] in conjunction 

with Maui [126]. In each case, two VOs submit the workloads described above to a 

single 20-node site (Site0) that is managed under either the S-PEP or S-POP solutions. 

CPU resources are allocated 20% to VO0 and 80% to VO1. The two VOs are allowed 

30 second burst utilizations of 60% and 90% of the site’s CPU resources, which can be 

expressed using the first syntax described in Chapter 3 as follows:  

< CPU, Site0, VO0, *, (3000, -20), (30, -60) >  

< CPU, Site0, VO1, *, (3000, -80), (30, -90) > 

The experiments were performed during January 2004. Jobs were submitted via the 

Globus Toolkit
 
2.0 [3, 123], while the versions of the other components were Condor 
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6.6.3 [127], Open-PBS 2.3 [128], and Maui 1.0 [94, 129, 130]. The test site was 

monitored by collecting status information every ten seconds.  

6.3.3. S-PEP-based uSLA Enforcement 

The first set of experiments uses my S-PEP implementation, which performs uSLAs 

enforcement actions every 30 seconds. Figures 6.2-6.5 show instantaneous and total 

CPU utilization per VO as a function of time for the two VOs under the commitment-

uSLA.  

 

 

 

 
Figure 6.2. S-PEP with Condor (VO0) 

 

 

 
Figure 6.3. S-PEP with Condor (VO1) 
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Figure 6.4. S-PEP with Maui/Open-PBS (VO0) 

 

 

 

 
Figure 6.5. S-PEP with Maui/Open-PBS (VO1) 

 

 

I note that the uSLAs enforcement module has similar effects for both RMs. In the 

ideal case the burst allocation is never surpassed and resources are shared among the 

VOs according to their epoch allocation when contention occurs. This ideal behavior 

cannot be achieved due to latencies incurred in job control, and the subsequent 
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scheduling delay. In addition, the monitoring sub-component achieves different 

behaviors based on the capacity of the tested RMs to return job information in a timely 

fashion, for example, in Figures 6.4-6.5, from second 900 to second 1800, OpenPBS 

stops providing information due to system overloading; OpenPBS has higher 

computing requirements than Condor under the same testing scenario [129].  

6.3.4. RM-based uSLA Enforcement 

The second solution is entirely based on the local schedulers’ ability to enforce 

uSLAs. uSLAs are specified as RM configuration rules, collected by the S-POP without 

any interference in the resource sharing process. Figures 6.6-6.9 show instantaneous 

and total CPU utilization per VO as a function of time for the two VOs and the two 

different local schedulers.  

 

 

 

 
Figure 6.6. Condor as S-PEP (VO0) 
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Figure 6.7. Condor as S-PEP (VO1) 

 

 

 

 
Figure 6.8. Open-PBS/Maui as S-PEP (VO0) 

 

 

 
Figure 6.9. Open-PBS/Maui as S-PEP (VO1) 
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For the S-POP solution, I observe a better balance of the jobs in execution by the 

RMs, thus the continuous utilization lines. The disadvantage of this approach is that it 

can only enforce the pre-programmed site uSLAs of each individual RM.  

6.3.5. Quantitative comparisons 

Finally, I present a quantitative comparison between the two solutions, which is 

captured in Table 6.3. I observe that for the scenarios considered, which are similar to 

the OSG/Grid3 environment presented later in this chapter, the S-PEP solution achieves 

better enforcement of an epoch uSLA than do the local resource managers; for the burst 

uSLA, there is no clear winner. Also, PBS/MAUI is better at enforcing burst uSLAs 

than Condor. The differences are within 10%, except the burst limit enforcement, where 

Open-PBS enforces the uSLA limits better.  

 

 

Table 6.3. Quantitative Comparison Results  

Configuration Burst  

Accuracy (%) 

Epoch  

Accuracy (%) 

Util (%) 

S-PEP/Condor 88 99 70.2 

S-PEP/Open-PBS 90 92 88.5 

S-POP/Condor 84 84 73.2 

S-POP/Open-PBS 97 83 67.6 
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6.3.6. Conclusions 

In this section I showed that uSLA-based resource management is possible at the 

site level by means of both a custom S-PEP solution and an S-POP based one. The 

experimental results show that in practice the S-POP alternative achieves a better 

balance of the execution of jobs, while the S-PEP solution offers similar behavior and 

provides uSLAs for any RM in general. 

Also, while a stand-alone S-PEP alternative offers flexibility in uSLA specification 

and enforcement, it is not easy to develop a generic solution that interoperates with all 

available RMs in a real Grid deployment. In addition, the extra-burden on site 

administrators to deploy and learn such an S-PEP is not a viable alternative in practice 

[125]. In contrast, the S-POP approach has the advantage of being non-intrusive and 

overhead-free for a site administrator.  

6.4. OSG/Grid3 Experiments 

The experiments in this section show that, first, uSLA-based scheduling is possible in 

a real environment; second, GRUBER is scalable enough to support large workloads 

(1k to 10k - which were at the limit of the other technologies involved - e.g., Condor-G 

[101]); third, the performance achieved using GRUBER with its four site-selectors 

(both sequentially and parallel for the site-selectors for large workloads); and fourth, a 

comparison of GRUBER’s brokering performance with two other approaches (G-

Observant and Random).  
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These two experiments used two types of workloads for evaluating uSLA-based 

management of Grid resources. First, large workload executions on OSG/Grid3 were 

performed to stress GRUBER performance on a real environment and to compare its 

performance with other available techniques. Second, small and medium workload 

executions on OSG/Grid3 are designed to measure the performance a user should 

expect when uSLA-based scheduling is employed. The experimental section also 

presents failure analysis based on the metrics collected during above experiments. 

6.4.1. Workloads  

For the OSG/Grid3 scheduling experiments, I used the bioinformatics sequence 

analysis program called BLAST [131]. A BLAST job, in my configuration, executes 

for 40 minutes on average, reads about 10-33 KBs of input, and generates about 0.7-1.5 

MBs of output, that is, an insignificant amount of I/O.  

I used this BLAST workload in three different configurations: (1) small workloads 

of 10, 50, and 100 jobs that are scheduled all at once; (2) medium and large workloads 

of 500 to 1000 jobs that are submitted in several steps according to the VOs and sites’ 

uSLAs; and (3) very large workloads of 10k jobs that are placed in execution according 

to the sites’ uSLAs. All workloads are composed of independent BLAST jobs. These 

workloads are of significant size; they are about 1/10
th

 the size of the traces analyzed by 

Iosup et al. in their work on four Grids around the world [80].  

On a second dimension, I submitted the BLAST workload under two policies. In the 

single-run-five-retries case, I run a workload only once with a maximum of five retries 
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per job. In the ten-runs-ten-retries case, I submitted each workload ten times with a 

maximum of ten retries per job. A Grid environment introduces many points of failure 

due to the complexity of the technology involved, thus this final experiment offers a 

statistical view of what a user should expect a workload in such environments.  

All the workloads were submitted under one iVDGL group, COADD, except for the 

case when the four BLAST workloads were submitted in parallel. In that case, 

workloads were submitted under BNR, COADD, FMRI and VDS-dev.  

6.4.2. Configurations 

This section describes the configurations used to perform the experiments on 

OSG/Grid3. I used 15 of 30 possible sites across the United States from the middle of 

August 2004 through the end of May 2005, with the single-run-five-retries case ending 

at the end of December 2004, and the ten-run-ten-retries case starting in January 2005. 

The sites are autonomous, have heterogeneous resources (which explains the 

discrepancies between Util and Time metrics in a few cases), and are managed by 

different local resource managers, such as Condor [101], PBS or OpenPBS [94, 128], 

and LSF [105]. Each site enforces different uSLAs, which are collected by GRUBER’s 

SiteMonitor and further used in scheduling workloads.  

The software stack deployed during the experiments changed on a constant basis, 

due to the continuous improvements and bug fixes required by different partners. 

During the single-run-five-retries experiments reported in Section 6.4.3 VDT versions 

1.2.2-1.2.4 were deployed and used on the OSG/Grid3 sites, while the window to the 
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Grid was VDS version 1.2.3.  During the ten-runs-ten-retries experiments reported in 

Section 6.4.4 VDT versions 1.3.1-1.3.3 were deployed at the participating sites, while 

the window to the Grid was VDS version 1.3.4 [119, 120]. In all scenarios, GRUBER 

and Euryale were used as schedulers for running the workloads over OSG/Grid3. 

Figure 6.10 presents a model of OSG/Grid3 and GRUBER’s interactions [43, 87]. A 

single GRUBER DP is used for resource brokering by all the submission sites (from 

one to five as a function of the number of VO groups submitting workloads in parallel).  

 

 
Figure 6.10. OSG/Grid3 Architecture  
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All jobs were submitted within the iVDGL VO, under specific VO uSLAs that 

allowed a maximum of 600 CPUs to be acquired.  

For VO’s, CPUs, storage and networks are the shared resources. Table 6.4 captures 

the VO CPU resource allocations in force on July 9, 2004 on several sites in 

OSG/Grid3. The same uSLAs were in place for disk utilization, while network was 

provided by all sites under a no-limit uSLA.  

 

Table 6.4. OSG/Grid3 Resource Sharing Example 

Shares per VO (in %) Site Name # of 

CPUs iVDGL USATLAS USCMS 

t2cms0.sdsc.edu 76 (60, +1) (60, +24) (60, +1) 

nest.phys.uwm.edu 305 (60, -0) (60, +7) (60, -0) 

uscmst0.ucsd.edu 3 (60, +12) (60, +12) (60, +12) 

xena.hamptonu.edu 1 (60, +25) (60, +25) (60, +25) 

garlic.hep.wisc.edu 101 (60, +3) (60, +3) (60, +3) 

 

 

 

For VO groups, the resources to be shared are virtual CPUs, storage, and networks, 

as provided and aggregated at the VO level. The uSLAs for these resources among VO 

groups were specified and enforced through GRUBER and were no-limit uSLA for 

storage and networks and as follows for CPUs:  

 

< CPU, OSG/Grid3, IVDGL, *, -, (60, -20) > 

< CPU, IVDGL, VDS, *, -, (60, -20) > 

< CPU, IVDGL, FMRI, *, -, (60, -20) > 
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< CPU, IVDGL, BNR, *, -, (60, -20) > 

< CPU, IVDGL, COADD, *, -, (60, -20) > 

 

The re-planning interval was 20 minutes. A job is considered to have failed if it has 

been submitted five (single-run-five-retries case) or ten times (ten-runs-ten-retries 

case) unsuccessfully or if it is reported as having an application level “failure.”  

6.4.3. GRUBER-based Scheduling on OSG/Grid3 

I present next, my results that show uSLA-based scheduling is possible and that 

GRUBER is scalable enough to support large workloads on OSG/Grid3. Four BLAST 

workloads of 1k and 10k jobs each were run sequentially under each of the four 

GRUBER’s site recommenders (Tables 5 and 6) and then in parallel (Table 6.7).  

 

Table 6.5. Performance Metrics for one 1k BLAST 

workload 

Selector G-RA G-RR G-MRU G-LU  G-Observant S-RA 

Comp (%) 97 96.7 85.6 99.3  97.3 60.2 

Replan 1396 1679 1440 1326  284 1501 

Util (%) 12.85 12.28 10.63 14.56  13.59 0.57 

Delay (s) 49.07 53.75 54.69 50.50  62.01 121.02 

Time (s) 12044 7096 11461 11382  14073 32165 
 

 

Sequential Site Selection Results: These results show that the various site 

scheduling policies offer different performance, and also provide a comparison with 

two non-uSLA enabled policies, G-Observant and S-RA. The total running time (Time) 
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was approximately five hours in each case. The Re-plans metric results are explained 

by GRUBER’s approach for removing starved jobs after 20 minutes of starvation. In 

many cases jobs had to wait at slower responding or CPU-overloaded sites or wait for 

jobs running over the uSLA limit (under the extensible-limit uSLA) when pre-emption 

was not in place on the Grid3’s sites. Also, some of the sites had software problems or 

insufficient resources on some of their nodes (see Table 6.9 for a detailed error list).  

The total time for workload completion also varied under various site selectors. The 

best time was achieved for G-RR, Time < 7500s. Taking in account that a job runs to 

completion on average 40 minutes, the workload took 30% more than the ideal case 

when all jobs start and run as soon as slots are available.  

Next, I compare GRUBER’s performance in scheduling jobs with a basic random 

assignment technique and the observational approach in job scheduling. The G-

Observant site selector submits jobs to a site as soon as the latest job sent to the same 

site was started. It fills up a site by sending jobs until site’s quota is reached.  

The results also show that G-RA achieves comparable performance in terms of time 

with the G-Observant site selector, while G-RR gets twice the performance of G-

Observant. Compared with these two site selectors, the naive random assignment site 

selector, S-RA, performs two to three times worse in terms of the measured metrics. An 

important metric to observe is the number of re-planning operations. While the G-

Observant site selector had around 300 such operations, G-LU performed around 1300 

re-scheduling operations and the naive site selector around 1500. The explanation for 

the good performance of G-Observant on this metric is that a few sites scheduled jobs 
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much faster, and this site selector took also advantage of this characteristic in 

scheduling jobs.  

 

Table 6.6. Performance Metrics one 10k BLAST Workload 

Selector G-RA G-RR G-MRU G-LU 

Comp (%) 91.75 91.88 73.58 77.88 

Replan 18000 23900 24350 27718 

Util (%) 2.43 1.32 1.76 3.31 

Delay (s) 86.63 85.17 90.45 89.01 

Time (s) 156437 152844 167092 127874 

 

 

GRUBER’s Scalability: To demonstrate GRUBER’s scalability over OSG/Grid3, I 

used larger BLAST workloads composed of 10k jobs. These results are gathered in 

Table 6.6. Round-robin and random-assignment achieved the best performance in the 

case of 10k BLAST workload as well.  

 

Concurrent Site Selection Results: While the above results are meaningful when 

only one workload is run under GRUBER’s control, for this set of experiments I focus 

on measuring the scheduling performance of GRUBER’s four site selectors when used 

in parallel for different workloads.  

My results show that under higher resource contention, only G-LU does not perform 

as well as before in terms of Time, while GRUBER’s the other three site selectors 

behave similarly relative one to another. Higher resource contention imposed by the 

four simultaneous workloads cause G-LU to prefer sites with fewer resources. In this 
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case, the G-RR and G-RA provide the best job completion rate with the smallest Delay 

and highest Util. Note that the Time metric has increased by a factor varying between 

4.5 and 7.8 compared to the sequential case.  

 

Table 6.7. Performance Metrics for four Concurrent 1k 

BLAST Workloads 

Selector G-RA G-RR G-MRU G-LU 

Comp (%) 98.7 98.2 87.9 87.9 

Replan 1815 1789 1421 2409 

Util (%) 14.02 13.51 11.05 11.52 

Delay (s) 64.41 66.62 68.97 63.96 

Time (s) 54735 55350 72275 64558 

 

 

Failure Analysis: In this section, I discuss the sources of failure in the version of 

OSG/Grid3 used for this experiment. There are many cases in which a service may fail 

in a dynamic, heterogeneous, and large-scale environment. For example, failures may 

occur in a Grid at the infrastructure, middleware, application, and user levels, and may 

be transient or permanent. Due to the natural heterogeneity of Grids and their sheer 

size, failures appear much more often than in traditional parallel and distributed 

environments [80]. I analyze the most common errors I have faced in running large 

BLAST workloads. There are two types of failures: a job failure occurs when a job fails 

to run at a certain site, an error that results in job rescheduling, and workload failure 

occurs when under 100% of a workload completes.  

A job error occurs when it failed to complete after a fixed number of retries. A 

failed job is not scheduled to the same site a second time, because Euryale tracks bad 
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sites for each job, but a different job could be. Euryale’s re-submission operation keeps 

track of site failures only for the current job, but does not provide specific feedback to 

GRUBER about the execution result. Thus, the GRUBER engine does not have direct 

knowledge of site failures; instead, it traces differences between how many jobs run 

versus how many slots the site reports and tries to reconcile these numbers (what we 

call - automated uSLA violation management). The causes of workload failures are, in 

most cases, the small number of retries used during these tests and a few cases the 

DAGMan, a Condor-G tool for workflow management [132], crashed during workload 

management. The failure for the last try of the first failing job of a workload represents 

the workload failure error.  

Job failures are due to the temporary failure of the Replica Location Service (RLS 

[133]) server used to stage data in and out (overloading issues), gatekeeper overloading 

and transient different authentication errors, transient RLS errors, etc. Table 6.8 

captures error data for a sample of 15k BLAST job runs over OSG/Grid3. 
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Table 6.8. Error Percentages of 15k BLAST jobs submitted 

as 1k workloads (Percentages are computed as the ratio of 

current errors to the total number of errors) 

Error Description  EPJ Workload  

failure (#, %) 

Job failure  

(#, %) 

Remote Local Scheduling Timeout  0.68 3 (20) 10204 (29) 

Remote Application Execution 

Failure 

0.46 2 (13) 6846 (19) 

Remote Transient Authentication 

Error 

0.02 0 (0) 361 (1) 

Transient Database Failure (RLS) 0.14 1 (6) 2158 (6) 

Remote Unset Environment  0.82 4 (26) 13034 (38) 

Remote Transient GridFTP Failure  0.02 5 (33) 1141 (3) 

Remote GRAM Environment Error 0.034 0 (0) 526 (1) 

Others 0.0 0 (0) 8 (0) 

Totals 2.28 15 (100) 342768 (100) 
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6.4.4. Statistical Results for GRUBER Scheduling on OSG/Grid3 

In this section I present the results for ten-runs-ten-retries performed using the same 

settings as before. While previous section proves GRUBER’s scalability for scheduling 

large workloads, this section shows the performance of GRUBER for various small and 

medium workload sizes, and is intended to show the behavior a user could expect. 

Note, these experiments were started in January 2005, one month after the end of the 

experiments reported in Section 6.4.3 (January 2005), and most of the sources of 

failure identified during those experiments were fixed by upgrading to newer versions 

of the VDT [122] and VDS [100] software packages.  

 

Small Workload Results: Table 6.9 shows the results for the 10 BLAST jobs. As 

can be seen, the speedup earlier sequential execution of the jobs is 2.5 to 3.5 smaller 

than the optimal due to the probability of a job ending on a site with a local resource 

manager that does not behave as expected (i.e., has higher latencies for starting jobs, is 

overloaded due to numerous subsequent submissions, etc.). However, 75% of the jobs 

completed in a time interval closer to the ideal case.  
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Table 6.9. Average Results and 90% Confidence Intervals 

of Four GRUBER Strategies for a 10 job BLAST Workload 

(each workload was run 10 times and confidence intervals 

are based on these 10 runs) 

Selector Seq. G-RA G-RR G-MRU G-LU 

Comp  100 100  100 100  100  

Replan 0 34.1 ±  5.51 47.5 ± 9.26 13.6 ± 2.18 8.6 ± 1.83 

Util (%) 0.15 0.36 ± 0.05 0.31 ± 0.07 0.50 ± 0.04 0.55± 0.10 

Delay (s) 0 3262 ± 548 4351 ± 824 801 ± 313 1162 ± 376 

Time (s) 28975 12436±1191.4 13966±2208.8 7653±1205 8787±158 

Speedup 1 2.33 ± 0.25 2.21 ± 0.35 3.46 ± 0.45 3.6 ± 0.6 

Spdup75 1 3.72 ± 0.59 3.46 ± 0.51 5.66 ± 0.55 5.32± 0.67 

 

 

Table 6.10 shows the results for a workload with 50 BLAST jobs. As before, several 

jobs starved and their execution time affected the overall speedup. The speedup of 75% 

is more than the half of the ideal speedup (i.e., 70% for the G-RR), showing that most 

jobs complete in close to the optimal time (37 of the total jobs).  

 

Table 6.10. Average Results and 90% Confidence Intervals 

of Four GRUBER Strategies for 50 BLAST Workloads 

(each workload was run 50 times and confidence intervals 

are based on these 50 runs) 

Selector Seq. G-RA G-RR G-MRU G-LU 

Comp  100 100 100 100 100  

Replan 0 35 ± 14 51.1 ± 28 78.8 ± 9.51 48.8 ±10.8 

Util (%) 0.07 1.18 ± 0.25 1.44 ± 0.27 1.76 ± 0.18 1.89 ±0.43 

Delay (s) 0 1420 ± 713 583 ± 140.4 1260 ± 528.7 653.8 ±202 

Time (s) 131372 8035 ± 990.4 9654 ± 603.5 9702 ±1247.3 8549 ±898 

Speedup 1 16.35 ± 1.17 14.12 ± 0.90 12.76 ± 0.71  15.16±2.42 

Spdup75 1 30.84 ± 5.70 35.36  ± 2.79 24.36 ± 2.28 35.41±2.48 
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Table 6.11 shows the results for a workload of 100 BLAST jobs. Again, similarly to 

the 50 BLAST jobs, the execution performance is half for 75% of the jobs and drops 

further for the entire workload.  

Table 6.11. Average Results and 90% Confidence Intervals 

of Four GRUBER Strategies for 100 BLAST Workloads 

(each workload was run 100 times and confidence intervals 

are based on these 100 runs) 

Selector Seq. G-RA G-RR G-MRU G-LU 

Comp  100 100 100 100 100 

Replan 0 228.7 ± 21 39.9 ± 13.8 230 ± 20.3 124.7 ± 17 

Util (%) 0.12 2.86 ± 0.30 3.48 ± 0.59 1.87 ± 0.46 3.51 ± 0.7 

Delay (s) 0 1691 ± 198 529 ± 92.67 1244 ± 387.9 640 ± 93.4  

Time (s) 232150 10350 ± 565.9 9013 ± 1025.1 7507±2325.1 9716±1130 

Speedup 1 22.43 ± 1.55 30.15 ± 3.43  19.24 ± 1.56 28.02 ± 5.4 

Spdup75 1 47.38 ± 3.24 77.19 ± 3.26 35.86 ± 3.72 73.54 ± 2.0 

 

Medium Workload Results: Table 6.12 shows the results for the 500 BLAST jobs. 

The size of the workload allows the execution performance to increase. For example, 

75% of the workload matches the ideal speedup and it is half for the overall workload.  

Table 6.12. Average Results and 90% Confidence Intervals 

of Four GRUBER Strategies for 500 BLAST Workloads 

(each workload was run 500 times and confidence intervals 

are based on these 500 runs) 

Selector Seq. G-RA G-RR G-MRU G-LU 

Comp 100 100 100  100 100 

Replan 0 925 ±103.5 816 ±245.6 1024 ± 154.2 680 ± 139.3 

Util (%) 0.50 34.04 ± 4.55 33.19 ± 2.39 25.41 ± 5.6 30.3 ± 4.7 

Delay (s) 0 9202 ± 1716.8 6700 ± 816.6 9125 ± 6117.8 6169 ± 407 

Time (s) 1892769 28116 ± 2881 24225 ±1035.9 20434 ± 4100 21362 1250 

Speedup 1 67.32 ± 5.6 60.22 ± 3.26 51.77 ± 5.94 63.12 ±3.41 

Spdup75 1 98.43 ± 8.7 111.69 ± 9.81 101.48 ± 10.05 113.2 ±8.82 
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Figure 6.11 presents the speedup performance over all runs with 90% confidence 

intervals.  Note the very small confidence intervals, which expresses the low standard 

deviation, and hence the strength of my results across all the runs and all the 

configurations used in this section. I consider that these results to offer of a good 

prediction of the performance that can be achieved for a Grid environment like 

OSG/Grid3.  

 

 

 

 

 
Figure 6.11. Speedup Comparisons among Workloads 
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Failure Analysis: In this section, I discuss failure results for the version of 

OSG/Grid3 used for the small and medium workloads (presented in Table 6.13). As can 

be observed, most of the errors are due to various transient errors in the infrastructure 

(RLS database, GridFTP servers) or due to the more than 20 minute queue times. 

OSG/Grid3 performance in executing BLAST workloads increased between the large 

workload experiments and the small and medium workload experiments: the average 

EPJ of 2.28 for the first set of workloads decreased to 1.3 in this second set of 

experiments. The largest improvement was achieved for the environment setup (RUE). 

Other errors increased. For example, RLS errors increased due to new bugs in the 

newer releases.  

 

Table 6.13. Error Percentages of 28k BLAST jobs 

submitted as small and medium workloads (Percentages are 

computed as the ratio of current errors to the total number 

of errors) 

Error Description  EPJ Workload 

failure (#, %) 

Job failure 

(#, %) 

Remote Local Scheduling Timeout  0.56 [-] 5 (3) 15810 (42) 

Remote Application Execution 

Failure 

0.21 [-] 0 (0) 5820 (15) 

Remote Transient Authentication 

Error 

0.11 [+] 0 (0) 3152 (8) 

Transient Database Failure (RLS) 0.19 [+] 0 (0) 5416 (14) 

Remote Unset Environment  0.0 [-] 0 (0) 1 (0) 

Remote Transient GridFTP Failure  0.18 [+] 0 (0) 5202 (14) 

Remote GRAM Environment Error 0.06 [+] 0 (0) 1769 (4) 

Others 0.0 [-] 0 (0) 39 (0) 

Totals 1.3 [-]  5 (3) 37209 (100) 
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6.5. Conclusions  

Running workloads in Grid environments is often a challenging problem due the 

scale of the environment and to the resource participation that is based on various 

sharing strategies. In addition, a resource may be taken down during job execution, be 

improperly setup, or just fail in job execution. Such elements must be taken in account 

when targeting a grid environment.  

In this chapter, I showed the results that can be achieved for running workloads 

under an uSLA-enabled scheduling infrastructure and explored some of the issues that 

occur in practice. During these experiments I faced various problems as described 

above, as well as quantified what performance a Grid user should expect. In addition, I 

observed for my brokering solution that for medium workloads, G-RA performs best 

with a 90% confidence interval, while G-LU performs best for smaller workloads. I 

also note that G-MRU performed worst for all tested workloads.  
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CHAPTER SEVEN  

CONCLUSIONS AND FUTURE WORK 

 

This dissertation focuses on controlled resource sharing in distributed 

environments, more specifically in Grid environments. The characteristics of this target 

environment, a large number of participants, namely resources and resource providers 

on one side and users and user communities on the other part, require solutions that are 

both scalable and decentralized. In addition, there are situations when privacy and 

reliability are important. I designed a solution for controlled resource sharing starting 

from previous work in the networking domain and extended it for aggregated and 

complex resources that participate in large and dynamic environments.  

7.1.  Lessons 

The most important lesson to draw from this work is that controlled resource 

sharing is difficult in practice, due to the number and the complexity of participants, 

their local preferences and software, but possible. Also, the four uSLA semantics 

proposed in Chapter 3 proved sufficient for the OSG/Grid3 resource sharing scenario 

plus two other generic scenarios [31, 67].  
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The experimental results of Chapter 6 are one of the weak points of this 

dissertation. Even though the number of experiments presented is large compared to 

other similar work [80, 134], additional applications and runs would have made the 

analysis much stronger. Unfortunately, OSG/Grid3 availability and its permanent 

evolution made it impossible to obtain of more detailed results.  

As a final note, while GangSim simulator and GRUBER broker [42, 43] could be 

used or deployed for a large set of similar scenarios and environments, the generality of 

the uSLA idea make appealing for application to new scenarios that require controlled 

resource sharing. For example, I have explored the possibility of enabling a specialized 

Grid scheduler developed for DAS-2 [135], the Dutch Grid system, with support for 

uSLA-based resource provisioning in multi-virtual domain environments [48, 136].  

In conclusion, I believe that uSLA-based resource sharing provides a strong starting 

point for building environments in which resources are shared under owner preferences. 

This approach can be augmented to allow for additional mechanisms for finer resource 

control [22, 39].  

7.2.  Future Research Directions  

As future work, I am interested in expanding the set of possible uSLA semantics, 

improving GangSim, perform future validation studies on GRUBER, and exploring 

other mechanisms for controlled resource sharing in large cooperative environments.  

While the uSLAs proposed in this thesis are comprehensive, I expect that in the 

future new semantics will be required. An immediate scenario that requires such 
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enhancements is represented by the current effort pursued by various Grids in Europe to 

interoperate. I am analyzing decay-based and utilization-based uSLAs [48]. 

I plan to validate GangSim against real Grids. Preliminary simulator validation 

studies show inconclusive results, in part, because Grids introduce latencies and failures 

that are not captured by GangSim. Second, I plan to extend GangSim with a language-

based uSLA specification and support for scheduling studies for virtual domain 

resource sharing [48]. And third, I intend to study whether running GangSim in a 

distributed mode in which several simulator instances run on different hosts, with sites 

and computational load distributed appropriately, can support larger scenarios than the 

ones presented in Chapter 4.  

I would like to deploy the DI-GRUBER framework in a real Grid. Also, I am 

interested in large Grid environments because of the unexpected challenges that such 

environment might present in practice.  

I plan to compare economy-based models for resource sharing with this work. For 

example, I am interested in pursuing lottery scheduling where currency and ticket 

abstractions serve as a means of flexible allocations [16]. Such an approach will not 

replace the uSLA-based scheduling, but can support the leveraging of some parts pf the 

current proposed infrastructure (i.e., verifiers’ elimination), and finer granularity for 

resource sharing [39].  
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