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Abstract

The research topic of this PhD concerns the production of intelli-
gent adaptive behaviour from the embodied perspective.

The intelligence seen in biological organisms arises as an emergent
property of a complex system displaying multiple levels of adaptive
mechanisms. At the bottom, slow changes to the genotype structure
are mediated by natural selection. At the top, to cope with more
transient factors, faster lifetime transformations are found.

Lifetime adaptation also takes place at various levels, from the
processes that are responsible for the organism construction and
maintenance, to the regulation of behaviour based on instinctive
responses, cognitive abilities and social interactions.

The traditional GOFAI (Good Old Fashion Artificial Intelligence)
stand is based on the view of intelligence as computation taking
place on a internal symbolic representations of the outside world.
Powered by deductive logic, the classical artificial reasoner is cen-
tered on the possibility to describe reality within a symbolic frame-
work. Unfortunately, this approach fails to cope with the ambigu-
ous nature of reality, where good decisions are often based on partial
and inconsistent knowledge. In these cases, reasoning could appear
irrational, while its rationale is actually found in the necessity to
take action.

To solve this problem, New AI hypothesizes that intelligent be-
haviour must be understood within the framework provided by the
agent’s physical interactions with the environment: subjective sen-
sations and bodily interactions.

The result is a bottom-up exploration, which starts from the low-
est adaptive mechanisms to reach the topmost cognitive abilities.
The work presented in this thesis follows this hypothesis, analyzing
multiple levels of adaptive mechanisms: evolution, development,
learning and culture.
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Chapter 1

Introduction

Among the characteristics that separate humans from most animals is our ability to
design and use proper tools to delegate, at least partially, the burden of our work
needs. Artificial Intelligence and Robotics are among the latest steps in this direc-
tion. In this case, the object of design is the design mechanism itself, as algorithms
and machines are constructed so that they can manufacture and invent.

As the two fields evolve and tools are being constructed, new challenges for the
applicability of known techniques emerge. Robotic applications require a robustness
toward incomplete and inconsistent knowledge that makes the classical approach to
artificial intelligence unpractical.

The classical view in artificial intelligence is based on logic and symbolic manip-
ulation. Its shortcomings emerge when symbols are hard to recognize in a physical
world made of real sensors, noise and hardware failures.

The standard solution is to restrict the operational conditions of these devices,
in order to make the sensors capable of making all the necessary knowledge visible
to the robot’s brain. Unfortunately, when taken out of their context, these devices
not only might fail to operate correctly but will fail to detect the source of their
errors.

Opposed to this top-down design, embodied artificial intelligence proceeds from
the bottom. Its basic assumption is that intelligence as we know it, must be con-
ceived within a world of physical and social interactions. Results in this field have
proven how relatively simple reactive mechanisms can produce complicated and in-
telligent behaviour.

Still, when faced with insufficient sensory information, reactive mechanisms are
no longer sufficient. In this case, the decision making process must rely on internal
mechanisms to provide additional contextual knowledge. Yet, the achievement of
embodied artifacts capable of proactive and cognitive responses has proven challeng-
ing. These artificial cognizers need to be able to cope with problems that require
the induction of unknown but relevant information (Beer 2003; Tani 2003; Ziemke
2005). The problem lies in the fact that induction is in general ill-posed1.

1since it might have more than one solution
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The work presented engages in this still open problem. Long from putting the
final word on the subject, this thesis is the author’s attempt to design scalable
methodologies that can be used to design intelligent, autonomous and embodied
agents.

To achieve this goal, the author has formulated three implicit requirements:

1. learning algorithms must be able to operate online and in real time.

2. even if preliminary tests may be performed on problems of reduced complexity,
the methods are designed to scale up to realistic settings.

3. operation must be based on subjective sensory-motor experience

The remainder of the paper is organized in three sections. This first section
contains a brief introduction to artificial intelligence and to common sub-symbolic
techniques focusing on those adopted in the work presented: neural networks and ge-
netic algorithms. The second section summarizes the contributions of the collection
of papers, putting them in the perspective of the long term research goal. The third
section includes the conclusions and the author’s vision for further development.

1-1 Research statement

The research issues covered by this thesis are linked to the synthesis of autonomous
robot controllers from the embodied perspective. In other words, about the adaptive
mechanisms that agents interacting with their environment could use to produce
intelligent behaviour.

The collected papers are seen as successive steps of problem definition refinement
and analysis of various techniques that could bring to viable solutions, spanning over
several layers of adaptive mechanisms: evolution, development, learning and cultural
transmission.
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1-2 Robots and intelligent behaviour

Robots are situated agents: they have a particular position in the environment
and perceive the outside world only through their sensors. In this respect they are
confronted by the same challenges as all living animals, humans included.

The fact is that, no matter how good the robot’s sensors are, they can only
provide a partial view of the environment. Without access to complete knowledge,
each decision must rely on some apriori assumption about the world. The proper
choice and exploitation of these assumptions is fundamental for the production of
‘intelligent’ behavior, and it is one of the biggest issues that arises in the design of
situated agents.

Reactive and Deliberative agents

Imagine that we have to construct a robot for a packaging company. The robot
will be placed next to a conveyor belt carrying empty boxes, its task to insert a
manufactured product and close the box.

A first possibility is to design a robot equipped with two sensors. The first one
detects the presence of a box (IsBoxPresent) and is used to trigger the ‘fill-and-close-
the-box’ behavior. After completing this action, the package will be full, but as it
is still lying in front of the robot, it will activate again the IsBoxPresent sensor for
at least some time. Without memory, the activated sensor will immediately trigger
the ‘fill-and-close-the-box’ behavior, and the robot will attempt to insert a second
product, and a third, until the conveyor belt will eventually manage to drag away
the (abused) package.

To overcome this problem, the second sensor is provided. It detects whether the
box is open or closed (IsOpen), allowing the robot to recognize packages that have
already been processed. For the task it has to fulfill, the robot has now complete
knowledge of the environment and its program must just react to the information
provided by its sensors:

1: repeat forever
2: if (IsBoxPresent and IsOpen) → fill and close the box;

Figure 1.1: The program of a reactive packaging robot

Instead of providing a new sensor, another solution is to equip the robot with a
memory storage. In this way, the robot can be made to remember if the package
laying in front of it has been previously closed. The robot will then wait to insert
a new product until a new (supposedly) empty box arrives. The program of this
deliberative agent would be as shown in Figure 1-2.

With the use of an internal state (BoxOpen) the deliberative robot is capable
of working with an otherwise incomplete perception of the environment. Adding
contextual information, the memory provides the same functionality as an ad-hoc
sensor.
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1: memory: BoxOpen ← true;
2: repeat forever
3: if (IsBoxPresent and BoxOpen) → fill and close the box;
4: BoxOpen ← false;
5: if (not IsBoxPresent) → BoxOpen ← true;

Figure 1.2: The program of a deliberative packaging robot

On the other hand, the design of the robot has made additional assumptions
about the environment structure: the contextual information provided by the robot’s
memory will be valid as long as these assumptions hold. These apriori postulates
are formalized at lines 1 and 5 in the program of the deliberative agent, stating
that all incoming packages are open. If a package were to arrive already closed, the
deliberate agent could not tell.

Inductive Bias

If on one hand, internal contextual information is necessary to disambiguate oth-
erwise perceptually identical states of the environment (aliasing), on the other, it
could end up containing incorrect information of the outside world.

In addition, the latter is just a corollary of the far reaching inductive problem.
First, as Kant pointed out, the phenomenic experience is logically segregated from
the knowledge of the noumenon2. Therefore nothing can rigorously be affirmed
about the real nature of the world and of its state. Additionally, Hume contested,
any inference derived from current experience (induction) could always be proved
wrong when additional evidence is collected. As a consequence, any attempt to
explain how reality works is rationally based on an ‘act of faith’ that anything that
will happen in the future shares the same properties of what happened in the past.

With the same conclusions, in machine learning, the ‘act of faith’ is replaced by
the more formal concept of inductive bias:

(...) a learner that makes no a priori assumptions re-
garding the identity of the target concept has no ratio-
nal basis for classifying any unseen instances.
((Mitchell 1997), pg 42)

At first, this analysis would discourage the use of reasoning. In reality, it rec-
ognizes that in order to take a decision in a novel situation assumptions must be
made.

If on the conveyor belt example, the range of possible situations were very lim-
ited, in realistic settings it is the exact opposite. As the context around us is in
perpetual change, without ‘reason’ any situation would appear novel. It is the (bi-
ased) attribution of abstract properties to the current unique situation that allows
the reuse of previous experience.

2noumenon: the thing as it is, opposed to phenomenon: the thing as it is perceived by the
senses.
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Abstractions and their relationships with the environment are the cornerstone of
every decision making process. Representing the subjective knowledge of the envi-
ronmental structure, these internal representations are necessarily segregated from
the outside world and their quality can only be ascertained with the understanding
of the process that created them.

Artificial Intelligence

The classical view of intelligence is that of a rational and analytical mental process:
an abstract manipulation of information akin to symbolic computation performed
by a computer program.

As a consequence, intelligence is understood largely as the ability to solve prob-
lems defined on internal representations that ‘stand in’ for the real external world.

Unfortunately, there is no universally accepted definition of intelligence. Most
definitions tend to be tautologies, a sort of “intelligence is what intelligent does”.
In the middle of it stands the human brain, the only artefact which is globally
recognized for being intelligent. From this, derives the (mistaken) acceptance of
intelligence as an exclusive property of the human being. Not coincidentally the
famous Turing test proposes to measure a computer’s intelligence with its ability to
be ‘mistaken’ as a human.

From the engineering perspective, intelligent artifacts are interesting for their
ability to find good solutions to problems, i.e. to (rapidly) perform appropriate
decisions given the available information. After all, this is what I.Q. tests seem to
evaluate.

Unfortunately, intelligence then takes a teleological connotation, since its evalu-
ation requires speculation of the subject’s currently available information, goals and
internal states. In other words, intelligence seems to lie in the observer’s eyes.

For example, a short movie from the “Twilight Zone” series told a futuristic story
in which all kids upon reaching age 15 were obliged to take an intelligence test. This
helped decide what kind of future education was most appropriate for each of them.
What was hidden from these kids under examination was that those achieving genius
scores were actually going to be killed (to preserve the equilibrium of society!). In
this context, who knows if some of the low scores are actually produced by the
smartest kids?

Intelligence is a property of an information system, which receives various sensory
data to produce overt behaviour. Intelligent behaviour is commonly interpreted as
a result of the conjunction of external (sensory) and internal information sources.

The use and construction of the internal sources of information (goals, emotions,
memories, etc.) is what defines cognition. It is very well known that without the
central nervous system, or with specific damage to it, cognitive abilities can be lost,
to the point that animals can be left in a vegetative state.

Somehow the mind emerges from the processes taking place inside the brain.

The classical approach to the synthesis of intelligence A computer works
following the instructions contained in its program. It usually takes some inputs,
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transforms them following its program and produces corresponding outputs. For an
artificial intelligence (AI), the computer hardware plays the role of the brain while
the program is its mind.

The classical approach to AI (GOFAI) concentrated on the inner symbolic ma-
nipulation that apparently takes place in the highest levels of consciousness. These
include logic and inferences such as those based on deduction and induction. The
reason behind this first choice is quite straightforward, since, in first analysis, logic
and inference are what differentiate cognitive beings (humans) from the other less
intelligent animals.

This approach sees the mind as a computation over internal representations of
the real-world. As such, representations are abstract entities whose meaning can be
arbitrarily attributed.

Early research concentrated on pure problems which did not require physical
interactions (mainly because that was impractical at the time). For example, these
problems included ‘brain intensive’ games such as Chess, Checkers and Go, and
stochastic ones like Backgammon. Apart from the game of Go, computer programs
have since managed to beat the current human world champions.

These systems are based on logic and symbolic manipulation. Symbols are ac-
cessible through the game interface, and are computed with to produce optimal
winning strategies.

The grounding problem Unfortunately, when these AI techniques were applied
to the domain of robot control, a general weakness associated with the ascertainment
of the symbols being manipulated was highlighted (Harnad 1990).

A symbol is just an inner image of the world. Its insubstantial nature is what
makes it appealing for internal manipulations, but the possibility to think about
the world at a symbolic level requires an understanding (i.e. ‘ grounding’) of the
symbols being manipulated.

Without grounding, symbols are meaningless entities, empty tokens isolated from
physical reality. Tokens can be computationally manipulated, but for a robot, the
problem of resolving the gap between the internal mirror world and the external
one, accessible only to actuators and sensors, remains unsolved.

Without being able to ground a symbol to its phenomenological counterpart,
symbols are useless for interaction with the environment: it is like the robot asking
“what makes the re-charging station a re-charging station?”.

The frame problem The classic formulation of the frame problem expresses a
technical difficulty for the use of mathematical logic as a modeling tool (McCarthy
and Hayes 1969): how is it possible to formalize the effects of actions without also
having to specify the large number of non-effects of these actions?

More general is the definition found in (Dennett 1978, pg 125), where the question
is: how can a cognitive agent keep track of all its beliefs about the environment as
it acts in it?

The frame problem also reminds the engineer that not only internal representa-
tions must be phenomenologically grounded, but they must be manipulated in re-



Robots and intelligent behaviour 7

altime. If symbols are represented by independent structures (e.g. predicate logic),
the frame problem can very easily become computationally intractable and logical
inconsistencies cannot be ruled out (Pfeifer and Scheier 1999, pg 65-69).

But situated agents may often not have the time to sit down and think thoroughly
about every possibility. The reasoner must be able to act based on incomplete and
inconsistent knowledge, possibly reaching irrational conclusions, while their rationale
is actually the necessity to take some immediate action.

Nouvelle Artificial Intelligence Especially directed to the solution of these
problems, Nouvelle AI (Brooks 1991) understands intelligence through situatedness
and physical embodiment, i.e. the physical interaction with the environment.

In its strongest definition it claims that internal representations are superfluous
and costly: instead of concentrating on ungrounded processes, Nouvelle AI should
follow the incremental evolution of intelligence as seen in nature, i.e. from simpler
reactive agents to more complex cognitive ones.

In fact, starting from the topmost abstract processes, AI risks to loose touch
with real-world constrains and forget that intelligent behaviour must be based on
sensors, actuators and timely responses.

To support this view, Nouvelle AI was set to produce complex intelligent be-
haviour with very simple control systems. Examples include systems producing
phototaxis and phonotaxis (Webb 2002), clustering and routing (Bonabeau, Dorigo,
and Theraulaz 1999).

In all the aforementioned examples, intelligent behaviour appears from the in-
teraction of simple reactive agents with their environment. Apart for the current
applications of these techniques, it is also very interesting that when looking at the
agents’ controllers, it is hard to identify exactly what constitutes intelligence: the
behaviour looks intelligent but the robot brains, in the classical sense, do not.

Embodiment While GOFAI concentrates on abstract symbolic manipulation,
Nouvelle AI highlights the importance of environmental interaction: intelligent
agents must be situated so that they can manipulate and be manipulated by the
external world.

This notion is usually referred to as weak or minimal embodiment. Strong em-
bodiment requires a deeper coupling with the environment like the physical one
displayed by living organisms.

It is argued that without strong embodiment, agents might be excluded from
certain types of cognitive processes typical of living beings. This argument follows
the central one about the grounding of abstract concepts by direct (bodily) inter-
actions: can a robot without a gripper understand what it means to grip? (Ziemke
2001).

In other words, the agent’s understanding of the external world depends on its
physical embodiment, i.e. its sensory and actuator coupling with the environment.

Internal representations Focusing on embodiment and on reactive controllers,
Nouvelle AI emphasizes how intelligence can emerge without the need of costly
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representations. On the other hand, it is well known that cognitive beings possess
the ability to represent the world internally and reason about it.

The distinction between Cognizers and non-Cognizers is more complex that the
one between reactive and deliberative agents. Deliberative agents possess internal
states but these are not necessarily representations of the world. A notable definition
is found in (Clark and Grush 1999), where the authors distinguish between weak
and strong internal representations.

Weak representations are internal states that play part in behaviour with a con-
tinuous linkage to perceptual inputs, similar to sensory enhancers as the BoxOpen
variable of the deliberative agent of section 1-2. Weak representations are those that
would allow ‘minimally cognitive tasks’ (Beer 2003) by storing information necessary
for proper behaviour.

Also weak appear the representations produced by social interactions and lan-
guage games (Steels 2003; Cangelosi 2004) and (Sugita and Tani, in press). In this
case, agents must develop suitable internal states which link the language tokens to
behaviour. The focus here is more on the information exchange process and not on
internal simulation.

Strong representations are stand-ins which recapitulate external reality and are
capable of playing their roles in the absence of on-going input. With these inner
images, the cognitive agent can reason (recursively) about the world and anticipate
the consequences of possible course of actions.

Examples of strong internal representations can be found in (Tani 2003) and
(Ziemke 2005, in press) and in paper A. In these cases representations are con-
structed following the “simulation theory” (see for example (Hesslow 2002)) which
is based on the assumption that cognition is based on the anticipation of conse-
quences of covert (imagined) actions.
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Figure 1.3: A simple Artificial Neural Network (ANN) with three input neurons
(sensors) and a single output neuron. The inputs (I) are processed by the synapses
(W) and integrated (

∑
) by the output neuron. The neuron state is determined by

its transfer function (TF) which is typically used to shrink the activation range into
an appropriate interval.

1-3 AI Tools for Bottom-Up Design

With its focus on emergent behavior, New AI methods are often based on automated
design tools. In particular, Artificial Neural Networks (Section 1-3.1) are extremely
diffused both for their generality (function approximation), and for the large number
of existing adaptive algorithms.

Among these, Genetic Algorithms (Section 1-3.2) are a frequent choice since
they can be applied, as it is often the case, with minimal knowledge of the problem
domain.

1-3.1 Neural Networks

More than as an algorithm, Artificial Neural Networks (ANN) should be regarded
as a different paradigm for computing. Opposed to the Von Neumann vision of
computation as the manipulation of a central memory module, ANNs are based on
a high number of parallel and simple processing elements. Each neuron is intercon-
nected to a set of neighbors with a set of synapses (often referred as weights), which
indirectly specify its functionality.

The features that make ANNs interesting for computing are related to their
generality, adaptivity and massive parallelism.

ANNs are often organized in layers, with inputs activating a hierarchy of hidden
layers. The activity of a set of hidden layers (the output layers) specifies the output
of the network. Connected in a cascade, several hidden layers increase the expres-
siveness of the ANN. Also, it is common to allow recurrent connections among the
same or different layers. Recurrent connections enable history-dependent dynamics
which can be regarded as a short term contextual memory.

Figure 1.3 shows a simple neural network. The output of neuron i is computed
as follows:
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Oi = TFi

( ∑
j ∈ inputs of i

Wj(Ij)
)

(1.1)

where Ij is the activation of input neuron j, and Oi the activation (output) of neuron
i. The synaptic contribution to the net input of a neuron (Wj) is often modeled by
a simple multiplication of a specific synaptic efficacy (weight) and the input neuron
activity. In other cases the synaptic efficacy can contain a memory of recent activity.
The transfer function (TF) takes the neuron’s net input to produce its activation.
Traditionally sigmoid functions, such as the hyperbolic tangent, are used. Radial
basis function networks (see (Haykin 1999, pg 256-281)) use symmetrical transfer
functions, such as a Gaussian, to model receptive fields. In other cases, it is possible
to obtain more complex activation dynamics by embedding a short term memory or
recent activation, this is the case for the Leaky Spiking Neural Networks (Gerstner
and Kistler 2002; Maass and Bishop 1998) and Continuous Time Recurrent Neural
Networks (Beer 1995).

supervised learning

Supervised learning allows the proper configuration of an ANN (usually by assigning
its weights) by providing training examples in the form of an input set and its
correspondent output set. During training, the network functionality converges to
one among the continuum of functions implicitly defined by the training examples.

A powerful supervised learning method for ANN without recursive connections,
is provided by the back-propagation algorithm (see (Werbos 1989) and (Haykin 1999,
pg 161-174)). The algorithm operates by setting up an ANN with random weights
and altering their value to minimize the expected error. The error is computed as
the distance between the network and expected outputs. For layers other than the
output one, an estimate of the error is computed by propagating the error backward
through the synapses. Since the method is based on gradient descent over the error
surface, it can be trapped in local optima.

For recursive connections, the error back-propagation cannot be computed ex-
actly and some estimate must be used instead. This may lead to instabilities and
prevent convergence (see paper A for a broader discussion).

Other forms of supervised learning are based on Hebbian learning. Hebb’s rule
sets the efficacy of a synapse as the correlation between the activities of the pre-
synaptic and post-synaptic neurons. This method is often used to produce asso-
ciative memories, like in the Hopfield net, Correlation Matrix Memories and the
Predicate Network (see paper B). Hebbian learning is more biologically plausible
(Markram et al. 1997) but does not solve the weight assignment problem of inter-
mediate layers (other than input and output layers). More details about ANNs can
be found in (Haykin 1999).

reinforcement learning

Sometimes a quality assessment of a network performance can only be obtained at
the end of a sequence of inputs and outputs. This makes supervised techniques
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difficult to use.
Algorithms based on Temporal Difference Learning (Sutton and Barto 1998) can

be used to bridge the gap between the moment of reinforcement and the application
of changes, for example see (Tesauro 1995).

It is also possible to apply supervised techniques to this problem. By storing
all the network’s history, the error gradient calculated at the moment of the rein-
forcement can be propagated backward in time (Back Propagation Through Time,
see (Werbos 1990) and (Haykin 1999, pg 751-761)). This and similar methods have
been applied with promising albeit quite limited results, see for example (Kwansy
and Kalman 1994).

Another possibility is provided by Evolutionary Computation (EC, see Section
1-3.2), using the collected reinforcement as a measure of implicit fitness. ANN pa-
rameters are stored in a genotype subjected to selection. Selection allows genotypes
that produce better performing networks to survive and eventually produce new
fitter variants.

unsupervised learning

A different class of algorithms work in an unsupervised fashion. In this case no
evaluation of the system behavior is necessary. These methods produce intermediate
representations based on some statistical information contained in the input set.

For example, Self Organized Maps (Kohonen 2001) can produce topological maps
of high dimensionality input vectors. Back-propagation networks trained as Auto
Associative Memories can efficiently extract the principal components of the input
set in a hidden bottleneck layer, providing a projection to a lower dimensionality
space which maximizes information content.

Unsupervised learning is often used as a paradigm to explain and reproduce how
implicit learning in biological organisms takes place. This includes structures in the
cortex such as phonetic and orientation maps.
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1-3.2 Genetic Algorithms

Inspired by the Darwinian theory of evolution by natural selection, Genetic Algo-
rithms (GA, (Holland 1992; Goldberg 1989)) were proposed to the AI community
as a versatile and general search algorithm.

Selection

Rep
ro

d
u

ctio
n

Mutation

Initialization

Offspring

Population

Parents

Figure 1.4: The cycle of evolutionary search in Genetic Algorithms (GA). At the
beginning, the population is initialized at random. The best individuals are selected
in base of their performance and reproduce. Their offspring can be mutated to
produce the next generation’s population.

GAs search solutions to a problem with a recursive process of exploration and
evaluation. Exploration of the search space is based upon the assumption that the
characteristics that make good solutions can be (1) inherited and (2) refined by
small incremental changes (mutations).

Good solutions are bred to generate new, slightly different, variants. Since all
solutions compete for survival, the best will replace the worst performing ones.
Overall, as generations go by, better solutions will be generated until a suitable one
is found.

The most interesting aspect of GAs is that they do not require any in-depth
knowledge about the problem they are set to solve. They require only (1) a measure
of the fitness of the solutions at hand and (2) a way to encode them in a replicating
persistent medium (e.g. DNA, bit string, etc.). This makes GAs particularly suited
for the automatic generation of artifacts, optimal parameters or whole computer
programs in domains in which analytical methods are either unpractical or unknown.

This is possible because creativity in GAs is obtained by random changes of
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Figure 1.5: Depiction of the crossover and mutation. Crossover shuffles the parents’
building blocks spreading ‘good’ genes in the population. Mutation introduces new
genotype variants.

selected solutions. With creativity proceeding blindfolded, directedness is provided
by fitness based selection.

Genotype

Solutions must be described in a language which makes them suitable for search.
As for biological organisms, these descriptions are called genotypes.

In nature, genotypes are physical entities. The DNA is a double helix of deoxyri-
bonucleic acids in which specific sequences of bases indirectly specify the organism’s
structure and behavior. Similarly, artificial genotypes are a sequence of numbers (a
data structure). As DNA bases are translated to amino-acids and proteins, geno-
types are used in GAs to synthesize the solutions under scrutiny.

While for biological organisms fitness is implicitly defined by the sustained ability
to survive and reproduce; for GAs fitness is usually some direct measure of the
quality of the solutions.

In GA, to allow the exploration of new solutions, replicated genotypes are sub-
jected to random crossover and mutations (Figure 1.5).

Crossover is a recombination of the genetic material of two parents. With
crossover the genotype’s building blocks (genes) are exchanged and their contri-
bution to the overall fitness can be implicitly estimated. It can be shown (Schema
Theorem, (Goldberg 1989)) that, with low epistasis3, good genes will geometrically
proliferate (stochastically) in the population. Since epistasis reduces the perfor-

3the interaction between two or more genes to control a single phenotypic trait
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G P
S

F

Figure 1.6: Transformations from genotype space to fitness values. The space of
possible genotypes (G) is mapped to the phenotype space (P) which, in general, is
a subset of the solution space (S). Solutions are then evaluated to produce a fitness
value (F). While crossover and mutation operate in the G space, selection operates
on fitness.

mance of the evolutionary search, the design of the genotype must take care to
minimize its impact.

Optimal genotype representations are problem specific and require domain spe-
cific knowledge. Unfortunately, it is the lack of domain knowledge that makes evo-
lutionary search interesting in the first place.

It is also interesting to notice that, in nature, crossover is one of the major
sources of gene duplication. Because of a misplaced crossover insertion, entire sec-
tions of DNA can be replicated from parent to offspring. In these cases, duplicated
genes increase the size of the genotype, often without altering the organism they
produce. On the other hand, duplicated paralogous genes offer a redundancy that
can eventually be exploited to produce organisms of increasing sophistication. It is
currently estimated that 90% of eukaryote genes were introduced by gene duplication
(Teichmann and Babu 2004), see also paper G.

Crossover does not introduce new alleles in the population. This role is covered
by the mutation operator, which stochastically alters the chemistry of a gene. It is
mutation that prevents the search from stagnating, counterbalancing the homoge-
nization of selection.

From genotype to phenotype

In order to evaluate their fitness, genotypes must be converted to phenotypes. The
evolutionary task requires the exploration of the space of possible genotypes (g ∈ G)
in order to find the phenotype (P( . )) with optimal fitness value (F( . )):

arg max
g∈G

F
(
P( g )

)
(1.2)

As a result, the task requires the resolution of two levels of indirection: the
genotype to phenotype map (G-P map) and the fitness evaluation (see also Figure
1.6).

It is generally assumed that little is known about the relationship between fitness
values and solutions; otherwise direct search methods could be applied. Therefore,
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great care must be taken in the design of the G-P map. Without additional knowl-
edge, it is generally assumed that similar phenotypes will produce similar fitness
values. Therefore good G-P maps are those that preserve a good correlation be-
tween the phenotype and genotype spaces. With small changes to the genotype
often producing small changes to the phenotype, evolution can proceed by small
differential refinements and optimal performance is expected.

G-P maps can be as simple as bijective transformations (e.g. encoding the vari-
ables for function optimization), or very complex constructs requiring stochastic
learning phases and environment interaction (e.g. robot controllers).
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Chapter 2

Research Description

The papers collected in this thesis can be partitioned in four successive phases,
characterized by a common research sub-topic and methods.

Overall, the work has touched all three types of adaptive mechanisms: learn-
ing, genetic evolution and development. Because of its relationship with knowledge
acquisition, cultural evolution, which is usually considered a sub-class of life-time
adaptation, has also been explored.

Figure 2.1 depicts the path followed in the production of this thesis from the
point of view of the relevant adaptive mechanisms.

Initially the problem regarding the scalable development of intelligent behaviour
for situated and embodied agents was formulated as a long term objective. The
objective includes overcoming two well known obstacles: the Frame and the Symbol
Grounding problems.

Phase 1: Online learning Aimed at the prediction of sensory consequences
of performed actions, anticipatory learning methods are based on the acquisition
of contextual information trough the interaction of an agent with its environment.
Sub-symbolic methods, such as the Simple Recursive Network (Elman 1990), seem to
offer a viable solution to the grounding and frame problems, but the shortcomings
of known training techniques make them unpractical for our goal (see paper A).
Current techniques either show poor on line acquisition, or unfeasible space and
time requirements. The attempts to produce a novel training technique based on
associative memory capable of compressing information during operation (see paper
B) lead to the realization that only with a loss of generality, in other words with a
stronger learning bias, could the requirements be met.

Phase 2: Cultural transmission In order to reach a better understanding of
what can be considered a minimal and yet useful unit of behavioral knowledge, in a
following phase, we produced a model containing communicating agents undergoing
evolution (see section 2-2). Agents had to perform a simple harvesting task, also
being capable of exchanging minimalistic functional information about the world.
These memes (Dawkins 1976) are acquired by Operant Conditioning and are shown
to instantiate a process of cultural evolution atop of the genetic one (see papers C
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Figure 2.1: The four successive phases that lead to the production of this thesis,
plotted over an evolution, learning and development space

and D). On the other hand, in these papers the agent episodic knowledge is stored
in a localistic memory model. With a neuron dedicated to each meme, such model
can not be applied to more realistic settings because of its space requirements.

Phase 3 and 4 In mammals, episodic memory is believed to be stored in specific
structures of the brain. For example, the Hippocampus is associated with spatial
and short term memory retention (Carew 2000, 382-399), while the Basal Gan-
glia performs reinforcement and anticipatory sequence learning, see (Downing 2005,
submitted), (Kandel, Schwartz, and Jessell 2000, pg 853-867) and (Gazzaniga, Ivry,
and Mangun 2002, pg 449-451). The exact way that these structures operate is
still matter of debate, and although mathematical models have been proposed, the
complexity at the neural level makes actual implementations very difficult.

As a possible tool for the design of such structures Evolutionary Computation
(EC) could be used. Unfortunately, even if artificial evolution has been shown to
solve minimally cognitive tasks requiring the use of memory (Beer 2003), (Ziemke
2005, in press), such solutions are not believed to be feasible for problems requir-
ing rich contextual information. Evolutionary techniques are often good at finding
minimalist solutions, but also show poor scalability.

Brains of biological organisms are indeed very complex. On the other hand,
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they also show a good degree of modularity. For example, the neocortex shows two
levels of organization with repeated local micro-circuits (see (Gazzaniga, Ivry, and
Mangun 2002, pg 635-636)). In EC, indirect encoding methods can take advantage
of modularity to increase scalability. In order to develop large neural structures,
the third research phase (section 2-3), investigated an indirect encoding based on
multi-cellular development. A first analysis concentrated on the evolution of the
ontogeny of simple multi-cellular patterns (see papers E, F and G). In the following
phase (section 2-4) plastic neuro-controllers were also evolved (see papers H, I and
J).
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2-1 Anticipatory learning

Considered from an algorithmic perspective, animal are unsupervised learners. Even
when they show the ability to learn from reinforcements and supervision, the brain
still operates autonomously within an unsupervised framework.

Adaptive mechanisms based on reinforcement, such as Classical and Operant
conditioning, are quite well understood at the microscopic level as processes based
on Hebbian learning (Markram et al. 1997; Abbott and Nelson 2000) and (Kandel,
Schwartz, and Jessell 2000, pg 1260-1262). But since synaptic plasticity operates
within small time frames (10-100ms), from the system perspective, the problem of
memory retention is still open. How does the brain select what is important to
remember to drive the learning process?

Also challenging is bridging the gap between unsupervised and supervised learn-
ing. The problem is that supervision requires the ability to interpret third-person
behaviors in correlation to self behaviors. In other words, in order to be able to con-
struct causal relationships from goals to actions, the learner must interpret other’s
behaviors and assign them a motivational frame of reference.

In the primate brains, the “mirror neurons” structure (Rizzolatti et al. 1996) is
supposed to be responsible to fill the imitational gap. Yet its organization, set up
and exact role is still a subject of debate.

One common characteristic among the neural structures that supposedly imple-
ment these mechanisms is that they show many recursive connections (see Figure
2.2).

A first possible application of feedback is to allow the compensation of the noise
of sensors and actuators (Delcomyn 1998, 263-272). This would be similar to the use
of retroaction in PID controllers (Haykin 2001), as found in the coupling between
muscles and spindles (stretch sensors), see Figure 2.2A.

At a higher level, feedback can be used to refine partially unknown motor tasks.
A good example is provided by experiments on song learning in birds (Carew 2000,
231-265), where the recurrent connection from vocalization to hearing is mediated
by the environment (Figure 2.2B). Birds are capable of learning how to produce
proper songs by (1) listening to other birds, (2) producing their own chirping and
(3) comparing their melody with the one they heard form others. In this case, this
type of tuning mechanism could resemble the one provided by supervised learning
neural networks or equivalent Kalman filters (Haykin 2001).

The role of the cerebellum as a shortterm predictor of action consequences can
be seen as direct extension of the song-tuning mechanism, with tuning being focused
on the anticipation of sensory feedback (Figure 2.2C).

With a properly tuned anticipatory system, it is then possible to create grounded
sensory motor simulations that can be used for planning, for example see (Tani 1996;
Meeden, McGraw, and Blank 1993) and (Ziemke, Jirenhed, and Hesslow 2005, to
appear).

Neural networks can be trained with standard supervised techniques (i.e. back-
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Figure 2.2: Adaptation through retroaction. A) the spindle immediately regulates
the actual stretching of muscles (Delcomyn 1998, 263-272). B) tuning of bird singing
is based on the sensory feedback from vocalization to hearing (Carew 2000, 231-
265). C) anticipatory learning is based on the comparison of expected and observed
consequences of motor actions (see for example Paper A).

propagation) in auto-associative tasks (Figure 2.3 on the left). With neural activa-
tion proceeding layer by layer, all the information necessary for the reconstruction of
the current input is forced through a bottleneck layer (PC). The activation pattern
of the bottleneck is a unique internal description of the input. Such method is often
used to compute the principal components of a set, providing a projection of each
member of the set to a lower dimensional space.

Analogous but used to produce the next input vector, anticipatory associative
neural networks (Figure 2.3 on the right) can extract the principal components
from a set of sequences. In this case, the activation of the bottleneck layer (C)
provides contextual information useful to disambiguate similar sub-sequences. This
contextual information is considered a first level of functional grounded represen-
tation (Elman 1990; Pollack 1990; Chalmers 1990; Chrisman 1991; Stoianov 2000).
Also, using these internal representations as abstract sensors, additional layers of
anticipatory networks can be stacked to produce higher level representations.

An interesting aspect of these representations is that they emerge through the
exploration of causal relationships in the input sequences: they are a consequence
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Figure 2.3: Auto-Associative Neural Networks (left) and a Simple Recursive Network
as an implementation of an anticipatory associative neural network (right). The
middle bottleneck layer contains all the available information for the auto-associative
(PC) and anticipatory (C) tasks. For the auto-associative network, these internal
representations contain the principal components (descriptions) of the specific input
in relation with all the other possible inputs. For the recursive anticipatory network
the internal representations provide a suitable context to uniquely predict future
inputs.

of the function implicitly defined in the sequence itself. From this perspective, they
attempt a theory building task, to represent the causal links between input sub-
sequences.

Concerning the problem of memory retention, such internal representations have
the advantage of being compact and conserving all the functionally relevant infor-
mation. Additionally the anticipatory system can be used recursively to recreate a
whole sequence from a starting seed-context. In this aspect, it would match the the-
ory of constructive memory recollection (Suddendorf and Corballis 1997; Schacter
1996).

In a similar way but used backward, the anticipatory system can be used to
reconstruct preconditions from consequences. As such, it can be used to recursively
recover the set of assumptions that led to an unexpected event or, in other words,
the motivations of a sequence of actions. As a consequence it could drive a process
of learning by imitation.
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Limitations of sequence learning

A widespread approach to the implementation of anticipatory systems for sequence
learning is based on an extension of the back-propagation algorithm. Because of
the presence of recursive connections, back-propagation can only produce a partial
estimation of the error surface. As a consequence training is both very slow and it
typically gets stuck in local optima (Kwansy and Kalman 1994). Both limitations
make the system infeasible for real world applications.

As pointed out in Paper A, the problem is that the back-propagation algorithm
does not make an appropriate use of the knowledge that is already stored in the
network.

A second approach is based on one-shot associative memories, capable of retain-
ing input-output patterns without losses. Unfortunately, as far as we know, there
is no such memory that can produce compact representations. This excludes the
possibility to obtain holistic representations (Chrisman 1991), and with the conse-
quence that space and time requirements necessary for robot implementations are
not met.

To solve this problem, the memory model described in paper B was produced.
The Predicate Network is capable of storing on line and in real-time an arbitrary
function F : Bn → B, compressing the content of the hidden layer as patterns are
being presented. Its extension to outputs of arbitrary size, unfortunately does not
appear trivial.

Conclusions

The design of a constructive memory system suffers form the lack of an online
memory retention which is both scalable and general.

The scalability constraint is fundamental toward the deployment of real world
applications, which should deal with both complex environments and high dimen-
sionality inputs and outputs.

The generality constraint derives from the fact that the patterns that need to
be stored do not have features that are known beforehand. If such features were
present, the memory system could exploit them to reduce the complexity of the
acquisition task.

For example, there is abundant biological evidence that confirms the presence
of topological maps both at the sensory and motor levels. Also, recordings of hip-
pocampal activity suggest the presence of a hierarchical structure in the organization
of place cells.

Therefore, limiting the operation to structured instead of totally distributed
activity patterns, an ad hoc retention system could be made that is both sufficiently
general and capable of online acquisition.
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2-2 Cultural Transmission

Without considering the imitation mechanism, but giving it for granted, it is possible
to allow the horizontal transmission of information among a group of agents. By
imitation, agents can learn to replicate behaviors without having to go through a
trial and error phase: a phase which can be long and possibly dangerous.

An horizontal exchange of traits in a population goes against the basic principles
of Darwinian inheritance, allowing an epidemic spread of information. This process
is usually referred to as cultural evolution.

In (Dawkins 1976) it was suggested that individual’s knowledge would be trans-
mitted by discrete entities named memes. Memes are defined as the basic units of
cultural transmission in the same way as genes are for genetic transmission.

Memes are subjected to a selection process, with characteristics that are both en-
dogenous (its own ability to be transmitted) and exogenous (the host preference for
a meme). New meme variants are generated with first hand experience, transmission
errors and internal creative processes. With selection, replication and innovation it
is argued that an evolutionary (cultural) process is created.

From our perspective, memes are interesting since they carry subjective knowl-
edge from one host to another. Therefore, a simulation of cultural evolution based on
memetic transmission can provide clues about (1) a minimal grounded knowledge
representation model, (2) the eventual advantage of memes from an evolutionary
perspective.

Characteristics of cultural evolution

Even if models have already been produced, there is still little agreement on their
validity as there is strong criticism regarding the memetic approach (Gould 1991;
Fog 1999; Boyd and Richerson 2000).

We find that it is possible to summarize the most common critiques in the fol-
lowing:

• Selection is irrelevant since cultural innovation is not stochastic as genetic
mutation but complex and directed. Without a complex substrate, i.e. the
human mind, there cannot be cultural evolution.

• Unlike the biological one, cultural evolution is not powered by natural selec-
tion.

The first critique is connected to creativity. New ideas, memes, are formed by
some directed and systematic process of intelligence (Cavalli-Sforza and Feldman
1981; Hull 1982). With innovation having little or no stochasticity, selection is
irrelevant. Without selection, no real evolutionary process can take place.

Still, it is argued that as long as variation is present selection is relevant (Gil-
White 2004). The characteristics of the specific innovation process affect the dy-
namics of evolution but do not rule it out, since memes that replicate better will
still diffuse better.
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Regarding the complexity of the innovation process, it is possible to use simple
algorithms and still provide a directed innovation process. For example in papers C
and D we used operant conditioning.

In reality, the argument seems to revolve around the opportunity to refer to these
as models of ‘Human Culture’. To this respect any model is necessarily reductionist,
but still can capture some basic properties of the real system.

Also, we are not only interested in human culture, and we believe that cul-
tural evolution does not only occur in humans. Other primates also show cultural
inherited traits and even bacteria conjugation has strong similarities to memetic
transmission.

The second argument derives from the observation that selection in cultural
evolution is subjected to the host’s decision making (Cavalli-Sforza and Feldman
1981). Therefore, it is not enough for a meme to be transmitted for it to be able to
replicate. Replication is accomplished only if the receiver accepts the content of the
meme.

Acceptance is a non trivial mechanism that works as a filter against novel in-
formation. It can be seen as a mechanism of defense against the spread of harmful
traits and it constitutes a second level of selection distinct from the natural one.

There are several psychological mechanisms that characterize memetic accep-
tance. First of all age is a crucial factor, since at earlier ages imprinting is easier.
At a second level memes are accepted with higher degrees if they come from au-
thoritative sources. Third, already possessed memes have regulatory effects on the
acquisition of novel ones.

Interesting enough, conjugating bacteria also possess an enzymatic acceptance
mechanism. This filtering process has evolved to provide a line of defense against
the spread of malicious genes.

We will not discuss each of these in further detail since it will be beyond the
scope of this thesis, but we will argue that acceptance does not rule out selection.
Acceptance must be seen as an inclusive aspect of fitness and, as such, it just imposes
a different scenario on the evolution of memes.

In addition, meme-meme and gene-meme arms races will also be present. In fact,
not only memes can compete and exclude each other, but also, since acceptance has
genetic components, it allows the control of memetic acquisition at the genetic level.
The result is that, on one hand, good memes can increase the reproductive chance
of the genotype and, on the other, good genes will try to inhibit the acquisition of
malicious memes (Dennett 1995).

Memes

In the work we have presented, memes are simple behavioral entities in the form
{precondition ⊕ action → consequence}. A meme could be mapped directly to an
agent’s internal representation as defined in the anticipatory system of Figure 2.3.

Also, it can be used as a training exemplar. Still, missing precise contextual
preconditions, which are necessarily subjective and therefore cannot be contained
in a meme (C(t− 1) in Figure 2.3), the instructions will be loosely grounded. This
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could be interpreted as the difference between knowing in theory and knowing in
practice.

With such meme implementation, a process of cultural evolution is shown to
take place on a heterogeneous population of harvesting agents (paper C). When, in
terms of fitness, the ‘value’ of culture reaches a certain critical point, agents tend to
evolve a genetic learning/social strategy as opposed to the harvesting one. In this
sense, the evolutionary advantage of the cultural process is self sustaining.

Also, with memes being discovered by Operant Conditioning, culture is shown
to acquire fit behaviors faster even if its learning bias prevents it from developing
the optimal harvesting strategy (paper D).

Conclusions

Given a population of communicating agents it is shown that a grounded cultural
process can produce populations of genetic learners. This effect appears modulated
by, but quite independent from, the cost of learning.

These results suggest that within a similar framework, it is possible that genetic
evolution will produce, or at least refine, a memetic acquisition system with realistic
constraints of simulation time and complexity.

On the other hand, when considering neural networks, evolution must be able to
search in a space of adaptive networks of variable topologies and interconnectedness.
Such spaces have already proved challenging and often produced limited results
(Cangelosi, Nolfi, and Parisi 1994; Gruau 1994). A major constraint appears linked
to the evolvability of large networks.
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2-3 Evolution of development

The ontogeny of the human brain involves the accurate setup of about 100 billion
neurons and 100 trillions synapses. Traditional evolutionary approaches are based
on the direct encoding of the phenotype, requiring the use of one gene for each
phenotype trait. With the dimension of the search space given by the size genotype
space (G-space), the direct evolution of neural structures comparable to the human
brain is clearly intractable.

Even for humbler tasks, Artificial Neural Networks (ANNs) contain a number of
connections which typically grows quadratically with the size of the layers, while the
possible connections among layers grows combinatorially. As a result the phenotype
space (P-space) grows rapidly to intractable sizes.

In nature, organisms’ ontogeny is the resultant of an evolved development process
and its interactions with the environment. Instead of a blueprint, the genotype
appears as a developmental recipe of DNA sequences. DNA bases, interacting with
in a physical world made of polymerases, ribosomes and proteins, only indirectly
generates the mature organism.

If on one hand, the level of indirection between genotype and phenotype adds
complexity to ontogeny, on the other it allows the reuse of genetic information. With
reuse, the number of genes can be much smaller than the number of phenotypic
traits.

The effect of these indirect encodings is that search proceeds in a space of com-
pressed genotypes. As a result, generated phenotypes are bound to lower levels
of Kolmogorov complexity1 since, in general, the ‘shortest program lengths’ that
represent them cannot be bigger than the genotype (see Equation below).

CKolmogorov (phenotype) ≤ ‖genotype‖ ≤ ‖phenotype‖

This does not prevent indirect encoding from producing interesting phenotypes.
For example, all Cellular Automata (CA) have very simple generative rules and
therefore low Kolmogorov complexity. Still Wolfram class 4 (complex) CA are still
produced (see (Wolfram 2002) or Paper G for an example of such a CA).

The fact is that Kolmogorov complexity defines an ‘algorithmic complexity’
which does not directly relate to the ‘interesting complexity’ displayed by living
organisms.

The hope is that indirect encoding can produce interestingly complex phenotypes
within a tractable space of short genotypes. As long as a better definition is not
found, indirect encoding will require empirical tests.

Evolvability of development

The factors that allow good evolvability for indirect encodings are still quite unclear.
Here, we will focus on four characteristics that describe the quality of the mapping,
the genetic search, and the level of sophistication of the phenotype.

1the Kolmogorov complexity of a sequence s in a language L is defined as the length of the
shortest L-program which produces s
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Uniform Coverage
The indirection introduced by development allows for smaller search spaces but also
transforms them into spaces that could be more difficult to search.

For example, the transformation M from genotype to phenotype is generally not
injective:

∃ g1, g2 ∈ G-space | g1 6= g2 ∧M(g1) = M(g2)

If this genetic redundancy is not uniform across the P-space, phenotypes that
have more genotype expressions will be, on average more easy to reach. The result
is a search bias that can favor the evolution of only a restricted set of phenotypes.

Correlation
A second issue regards the correlation between G-space and P-space. The correla-
tion is a property of the transformation M, as a measure of the expected difference
between the distance of two genotypes and the distance of their respective pheno-
types (Lehre and Haddow 2003). Since we are searching by moving in G-space,
the basic evolutionary hypothesis is that small changes to a genotype induce small
changes to the fitness values. As discussed in section 1-3.2, care must be taken to
produce a genotype to phenotype map with high correlation.

More specifically we are interested in good correlation between G-space and P-
space during search, as a direct effect of the innovation operators. For example,
taking the stochastic mutation operator mut and the transformation M, we can
define a statistical (average) measure of correlation as:

CorrelationM,mut(n) = 1− E
[
δ
(
M(g), M(mutn(g))

)]
(2.1)

where mutn(g) is the genotype obtained by the application of n mutations to geno-
type g, and δ is a distance metric of the P-space. The measure of correlation can be
used in a exploratory phase to design good innovation operators, e.g. showing self-
organized criticality: frequent minor changes that infrequently lead to intermittent
changes of all sizes.

Incrementality of Innovation
Also, with development being de facto a recursive process of rewriting, it is easy
to imagine that alterations affecting early phases of epigenesis will produce bigger
phenotypic consequences. This leads to a conservative search, in which innovations
that integrate over existing traits, as opposed to those replacing them, will have a
higher probability to be benign. Supporting this view, in nature it is observed that
‘ontogeny recapitulates phylogeny’, i.e. the similarity of two species’ embryogenesis
is proportional to their phylogenetic relatedness (see also Paper G pg. 2), proving
that ontogeny is mostly conserved during evolution.

As a consequence, evolvability could benefit from mechanisms that allow a pro-
tection of the genes that are activated early during development.

For example, using the best evolved group 1 32x32 French-flag individual from
Paper G, in Figure 2.4 we plot the correlation as defined in Eq. (3) with mutation
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Figure 2.4: Phenotypic correlation as a function of the number of mutations. Av-
erage and maximum correlations from 100 repetitions of random mutations to the
best 32x32 French Flag individual evolved with 12 embryonal stages (see Paper G for
details). Correlation is lower for mutations affecting earlier phases of development.

being applied at different phases of development. In this case the metric δ is defined
as the Hamming distance:

δ(PhenA, PhenB) = 1

‖Phen‖

∑
∀Ti∈traits

(
1− equals(TA,i, TB,i)

)
equals ( a, b )

{
0 if a 6= b
1 if a = b

Phenotypic Sophistication
A final aspect concerns the issue of gene reuse. With a gene potentially controlling
several aspects of the phenotype, the optimization carried on by evolution must deal
with the eventuality that several independent phenotypic traits are bound by the
expression of the same gene. Linked trait expressions introduce dependencies which
may preclude the expression of optimal solutions.

In this perspective, the biological mechanism of gene duplication (Ohno 1970)
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is understood as a neutral projection to higher dimensional G-spaces, allowing a
stochastic disassociation of linked phenotypic traits.

Also, related to the concept of sophistication, genotypes that allow a timely
regulation of developmental rules can achieve higher levels of differentiation over
time (heterochrony) and space (heterotopy).

Model and first results

With the objective to eventually develop large ANNs, we have designed a develop-
ment system based on cellular automata.

The system starts from a zygote cell that in a given number of developmental
steps, replicates and differentiates to produce a mature multi-cellular organism (see
Figure 2.5 for an example). Cells are immersed in a 2D Cartesian space, where
released simulated chemicals diffuse and local membrane interactions take place.
From this perspective, it is similar to the models found in (Bentley and Kumar
1999) and (Miller 2003; Miller 2004).

Differences lie in the fact that ontogeny is controlled by a recursive ANN, which
serves as a model of a gene regulatory system. Also, the development program is
allowed to complexify incrementally during evolution: new recursive ANN duplicates
can be created, each one controlling different phases of development (embryonal
stages).

For different developmental steps, embryonal stages make possible: (1) different
genetic expressions, and (2) a differential sensitivity to innovation. Overall these
methods are proved to increase evolvability of development.

Simulations also proved that the proposed developmental model scales well to
large phenotypes, with average performance converging to values highly independent
of the organisms’ size. Additionally, the ontogeny displays emergent regeneration
capabilities, which can be used to produce highly resilient fault-tolerant organisms.
All the simulations detail can be found in Papers E, F and G.

Conclusions

The results obtained in this phase demonstrated that when compared to direct
encoding, developmental systems appear more suited for the evolution of large phe-
notypes. This seems valid also for targets of ‘interesting complexity’ which are
commonly considered very hard for ontogeny.

Our next objective is to apply the development system to the domain of neural
networks.
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Zygote

Figure 2.5: An example of development of 64x64 organism. In this case fitness is
proportional to the resemblance of the mature organism to a Norwegian flag.
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2-4 Evolution, development and neural networks

The evolved multi-cellular organisms produced in the work contained in Papers E,
F and G are selected only after their topological properties. In other words, fitness
evaluated the growth program only for the cellular structure it produced.

Conversely, neural structures require an additional process, a translation of the
phenotype in a functional organism. To produce good results, the transformation
from phenotype to network must be carefully designed to take advantage of what
development can offer.

One straight-forward implementation of this ‘network encoding’, is to grow the
weight matrices for a standard layered neural network. In this case, the cell types,
internal metabolic and external chemical concentrations are translated one by one
to produce each synaptic efficacy of the evaluated network. We will refer to the
phenotype as the Kitano weight matrix encoding, since it was adopted in his matrix
rewriting scheme (Kitano 1990).

Unfortunately, with the development model we have produced, the Kitano en-
coding in practice produces poor results. The problem is that weights matrices do
not appear to have topological structures that can be exploited by development. For
example, in Figure 2.6 we show how a typical weight matrix looks like when plotted
as bitmap. If such a complexity is fundamental to solve the task properly, than we
might expect a performance similar to the one of Wolfram CA 2D targets used in
Papers F and G.

Spiking neural networks

Standard ANNs models were designed with supervised training in mind. Thus, it is
possible that other models may be better suited for evolutionary purposes.

Recently, some new experiments have started to clarify the internal working
of neural structures. One interesting conclusion of these experiments is that the
assumption that information is encoded by the post-synaptic firing rate contradicts
some biological evidence.

For example, acoustic localization in owls is shown to operate on phase informa-
tion of train of post-synaptic potential pulses (Carr and M.Konishi 1990). Similarly
evidence is collected from experiments on bats’ echo detection, human skin sen-
sors, and visual processing in flies (Rieke et al. 1997). This evidence produced an
alternative ANN model based on pulsed information encoding (spikes).

For modeling purposes, Spiking neural networks (SNN) are interesting because
they are shown to be more expressive than standard analog neurons (Maass and
Bishop 1998; Maass 1995), and to maximize information transmission (Rieke et al.
1997). Also the internal dynamics of the leaky integrate and fire models can be used
to produce interesting response dynamics (Gerstner and Kistler 2002).

From the perspective of evolutionary computation SNN, as well as Continuous
Time Recurrent Neural Networks (CTRNN, (Beer 1995)), often produce simpler
circuits for tasks requiring time-dependent pattern generation (e.g. locomotion).
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Figure 2.6: The output weights of an ANN used for a character recognition task.
The ANN is a standard sigmoid network with one hidden layer evolved with direct
encoding. The weight matrix connecting the single hidden layer to the output is
plotted as a gray-scale bitmap. The fact that little structure appears evident in
this high fitness solution, suggests a possible reason for the poor performance of the
development system with the Kitano network encoding.

Compared to CTRNN, spiking networks are computationally more efficient but still
allow rich non-linear dynamics. From the hardware point of view, spikes are easily
implemented as voltage pulses, minimizing the effects of signal noise and reducing
the complexity of the electronic circuits. Hardware implementations are clearly very
interesting since ANN computation is extremely distributed.

Also, plasticity provides an additional motivation for the choice of pulsed models.
When working with rate coding, correlation based synaptic plasticity usually takes
the form of Hebbian or anti-Hebbian learning rules. There is other evidence that,
probably, a large number of other rules exists (Abbott and Nelson 2000). With
spikes, these rules can be easily produced with minimal computational requirements
and few learning constants (see Paper I).

Multi-cellular neural encoding

Shifting away from the weight-centric Kitano network encoding, it is possible to use
the local variables of a cell to encode neurons instead. Each cell type, metabolism
and the chemical concentrations at its position are used do specify the network
encoding, see Figure 2.7.
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type

metab.

chem.

type
{-1, 0, 1}

[-1,1]

[-1,1]

Cell Variables Range

Figure 2.7: Depiction of the multi-cellular neural encoding. Each cell of the evolved
multi-cellular organism is specified by a set of variables. The type of the cell is
a vector of discrete ternary value. The metabolism and diffusing chemicals are
vectors of real-valued concentrations in the range [-1,1]. Each cell variable is used
to produce a distinct spiking neuron. The position of the cells defines the topology
of the network.

The first implementation of this method is introduced in Paper H. In that case
the network contains tripolar cells (one axon and two dendrite trees), with affer-
ent connections coming from a single sensory input and the neurons in the local
neighborhood, and the axon projecting to a specif output.

The cell type specifies the input and output connections, and their signs. Overall
the network encoding requires 243 cell types, represented by a 5-dimensional vector
of ternary values: 2 for the input and output signs (+,-,0), 2 for the input selection
(one of the available 9 sensors) and the last for the output selection. An additional
metabolic concentration is instead used to encode the neuron threshold, while the
efficacies of the synapses to the neighboring neurons was computed as the difference
in the local concentrations of diffusing chemicals.

The system was used to produce a network of integrate and fire neurons, applied
to a harvesting task similar to the one used in Paper C and D. The results are
summarized in Figure 2.8 showing that 75% of the runs produced nearly optimal
controllers. The remaining 25% either lacked the ability to avoid poison or collect
food.

The analysis of the best evolved neurocontrollers showed that the horizontal
connections hardly ever influenced behaviour. The problem is that, based on the
concentrations of diffusing chemicals, synaptic efficacies tend to vary very little
across the network. As a consequence lateral processing was very limited (Paper
H).

Another problem of this network encoding is the way that input and output
connections are represented. Increasing the number of inputs and outputs also
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Figure 2.8: Harvesting behaviour of heterogeneous populations of evolved develop-
ing neuro-controllers (see Paper H). 30 out of 40 populations have a performance
comparable to the one of a homogeneous population of optimal hand-written con-
trollers. Notice that selection was handled at the individual level, so that competitive
behavior was not excluded.

increases the number of required cell types. As a consequence, the number of inputs
and outputs of the growth program also increase, and so does the search space.
This would result in a limitation to the evolvability of networks with large input
and output vectors.

In biological organisms, neuro-genesis is handled in a different way. Neurons do
not encode their synaptic efficacies directly. There is increasing evidence that the
proper configuration of many pathways involve plasticity. A well studied example is
offered by the configuration of afferent connections to the lateral geniculate nuclei
(LGN (Delcomyn 1998, pg 541-542)). In the LGN the information about the visual
field is segregated so that the left side of field is processed and sent to the right
side of the cortex and vice-versa. Although the connections from the retina to the
LGN are well ordered and apparently would not require plastic mechanisms, it has
been shown that the process goes through a prenatal Hebbian-based learning phase.
Inhibition of synaptic plasticity blocks the development of the proper connections.

At first, it might seems that the introduction of unnecessary plastic mechanisms
will just make the evolutionary task harder. On the other hand, if plasticity can be
used to produce sufficient synaptic structures, by encoding each neuron’s learning
rule, the information of each single weight can be pruned away, decreasing dramati-
cally the size of the genotype. It is not unusual, in fact, to find neurons having more
than 104 synapses.
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The specific topological structure of the neural assemblies, and their slight vari-
ations in terms of learning rules, internal dynamics and activation patterns, are
exploited during the interaction with the environment to produce fine-tuned con-
nections.

These effects have also been reported in the evolutionary computation commu-
nity. In (Floreano and Mondada 1996) a Khepera robot was evolved in two different
environments. In that case, plasticity was exploited in the earliest steps of fitness
evaluation to affect the navigation strategy of the robot. A similar effect is shown
in Paper I, where horizontal adaptive connections are used to produce subtle behav-
ioral changes that increase the quality of the navigation task. It is also interesting
to notice that in the latter case, plastic connections are totally unnecessary for the
evolutionary task. Nevertheless, adaptivity causes an increase in evolutionary speed.

Concerning the connection to afferent inputs, neurons mostly connect to neigh-
boring cells. For example, in the retina, the ganglions whose axons project to the
optical nerve, receive inputs from the bipolar cells immediately below and from
amacrine and other ganglion cells around them. This evidence suggests that the
position of each cell can be used to determine its input-output connectivity.

The network encoding presented in Paper I therefore uses cell types only to
encode the signs of the input and output connections. Metabolic concentrations
are used to encode the value of the threshold and of the learning constants. The
position of each cell is finally used to determine the synaptic connections.

Obtained results suggest that this topological encoding is both more efficient and
scalable.

Self-Healing

As observed in (Miller 2004) and in Papers F and G, developing organisms display
a sustained resistance to faults: ontogeny appears able to deal with inconsistencies
in the phenotype.

In this cases, the resilience of developing organisms appears as an intrinsic prop-
erty of ontogeny. On one hand this would help shred light on the amazing regen-
erative capabilities of living organisms. On the other, it offers a methodology to
design fault-tolerant devices based on a self-healing process. With the regenera-
tion of faulty components, self-healing artifacts could operate for very long periods
without external technical assistance.

Previous related work concentrated on non functional organisms. In Paper J we
have used the same Leaky Integrate and Fire spiking neural network of Paper I to
produce self-healing neuro-controllers.

The results confirm the hypothesis formulated, suggesting that development
based on local information has an intrinsic robustness. Quite interestingly, results
show that the healing process is achieved by functional homeostasis: while the phe-
notype continuously grows new cells, the robot behaviour is stable. This is similar
to what happens in biological organisms in the case of the epidermis and partially
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also in the central nervous system (see for example (Zhao et al. 2003; Wu et al.
2001)).
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Chapter 3

Conclusions

The work presented in this thesis is directed towards the construction of intelli-
gent agents. Following the principles of the New AI wave, intelligent behaviour is
evaluated in an ethological perspective.

This approach highlights the necessity of a holistic design, taking into considera-
tion all sources of interactions between the agent, its behaviour, and the surrounding
environment.

When the operation of biological organisms is analyzed, the picture that emerges
is an engineer’s nightmare.

Starting from the bottom, the cell functions are based upon a huge number of
signaling pathways which are strongly intertwined. For example, the fundamental
synaptic plasticity is based on second-order effects caused by the propagation of the
neural signal, eventually triggering the activation of mRNA localized at synapses
(Wu et al. 1998).

As it appears, complexity is already overwhelming in the basic building blocks of
life. Considering this evidence, we have to consider how well traditional engineering
approaches might be suited for our design objective.

The classical engineering approach is in fact based on the proper neglect of forces
with lower order influences. For example, digital circuit design does not consider
small voltage oscillations, and electronics neglects gravitational effects on electrons.
Otherwise, an analytical treatise becomes impractical.

Compartmental models are therefore necessarily poorer. Even in the case of much
simpler neural network models, it is argued that increased functionality derives by
second-order effects of diffusing gases(Smith et al. 2002), or signal integration (Maass
and Bishop 1998; Beer 1995).

While these or other lower order effects would be abstracted away in traditional
design, evolution takes a holistic approach and solutions can exploit all the available
subtleties.

An example is also provided by the number of adaptive mechanisms which oper-
ate simultaneously in biological organisms. Still, typical AI systems tend to include
only one. We argue that, when trying to design grounded controllers for complex
and autonomous robots, each of the four evolutionary, developmental, learning and
cultural adaptive mechanisms, bring forward key characteristics. Each level provides



40 Chapter 3. CONCLUSIONS

specific advantages either for design or for the organization of behavioral responses.

3-1 Evolution

As already argued, searches based on evolutionary methods have the advantage of
allowing a very general exploration of the solution space. In fact, the search bias
introduced by Genetic Algorithms is based on two fundamental assumptions:

• the solutions can be refined incrementally

• solution traits are phylogenetically inheritable

For our purposes, evolution is appealing as an aid in the design of robot con-
trollers. Provided the possibility to judge the quality of behavior, evolved controllers
will have a tendency to display a minimalistic elegance, i.e. to exploit every available
resource: solutions often emerge from a complex composition of simple behaviours.

On the other hand, evolutionary search is very broad. As a consequence the
dimension of the problem must be kept within a reasonable (small) size.

3-2 Development

Concerning search-space reduction, developing organisms can exploit intrinsic reg-
ularity in a solution to increase its evolvability. The various degrees of symmetry
and modularity seen in living systems suggest that advantageous phenotypic traits
could be discovered just once and reused multiple times.

In this sense, development allows the evolution-aided design of controllers with
larger (but regular) sensory and motor connections (see Paper I).

Also, ontogeny could be exploited as an adaptive mechanism, both to recover
functionality after faults and to produce functional stages during operation (see
Paper J).

3-3 Learning

For controllers, plasticity offers a means to adapt to features which are unknown at
design time. These may include component faults (e.g. fatigue) in which case the
control strategy can adapt to the new conditions, or ad hoc aspects of the agent
task requiring the use of novel relevant information (e.g. planning).

When considered from the evolutionary design perspective, another benefit of
plasticity is that the inter-connections between controller modules, instead of being
directly specified, can be dependent upon learning rules.

Since the number of connections among modules grows combinatorially with the
number of modules, large systems should benefit from an encoding based on learning
rules.



Culture 41

3-4 Culture

Here we adopt a broad definition of culture, simply as the pool of information that
can be exchanged by non-genetic means.

The obvious advantage of a horizontal transmission of innovations is that inter-
esting behaviors have a faster diffusion (see Paper C). Discoveries are made more
readily available to the population, avoiding the necessity to ‘reinvent the wheel’ for
phylogenetically unrelated species.

Still, the memetic diffusion process must be engineered carefully in order to
avoid over-exploitative (Paper D) and epidemic effects. In Section 2-2, we argued
that a crucial aspect is played by the genetic predisposition to the acceptance of
novel information. Also in this concern, the innovation mechanisms provided by the
learning substrate appear fundamental.

Culture also offers an advantage associated with the development of cognitive
functions. If on one hand it is argued that language structure is derived from the
structure of the brain (Arbib 2001), on the other, it is also argued that the necessity
to acquire information from other agents produces an increased level of knowledge
organization in the brain (Calvin and Bickerton 2000). The structure of retained
knowledge can be interpreted as an emergent internal representation. For example,
in (Tani 2003; Cangelosi 2004) and (Sugita and Tani 2005, in press) more structure
is shown to emerge when language and imitation are allowed to interact with the
production of behavioral responses.

3-5 Design of Multi-Level Adaptive Agents

Putting all these arguments together, in Figure 3.1 we depict the relationships among
the four analyzed adaptive mechanisms aimed at the production of autonomous
intelligent agents.

At the base we imagine the designer specifying a selection criterion (inclusive
fitness) for the evolutionary process. Evolution conducts a broad holistic search
allowing the emergence of relationships among the available adaptive mechanisms.

To increase scalability, the controller structure (topology) is produced by a de-
velopmental process and plastic rules are used to set up the internal connections
among modules. Also development stages and learning interact to produce online
(lifetime) adaptation to the environment.

At the top, horizontal transmission allows a fast and directed information acqui-
sition process. By exchanging information, agents collaborate to reduce the necessity
of exploring the environment (bootstrapping). To achieve efficient transmission, evo-
lution will facilitate the refinement of the acquisition dynamics based on stigmergy,
imitation or language.
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Figure 3.1: Hypothesis for the construction of an autonomous intelligent controller:
inter-connections among different adaptive mechanisms. Each mechanism provides
particular benefits (shaded), and participates to the construction of higher level
mechanisms (arrows).
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A Limitations of gradient methods on sequence

learning

Author: Diego Federici. Published in proceedings of ICONIP 2002 9th International
Conference on Neural Information Processing.

Abstract:

Recurrent neural networks, such as the well-known Sim-
ple Recurrent Network, trained to predict their own next
input vector offer a promising framework for develop-
ing internal representations of environmental structure.
Current training techniques focus on the use of differ-
ent gradient methods and genetic search. These tech-
niques have the advantage of being general, to develop
distributed representations and to achieve holistic com-
putation. On the other side their generality does not pay
off in terms of learning speed, accuracy or flexibility. In
this paper a temporal learning problem is analyzed with
respect to traditional on-line learning approaches. The
results show that gradient methods do not offer a way to
identify and correct the actual cause of misclassifications
and so are prone to be stuck on local maxima.

Objective:

Investigate Simple Recurrent Networks as an au-
tonomous and grounded inductive methodology.

Conclusions:

Limitations appear connected to the misuse of informa-
tion derived by reinforcement. The overcoming of these
problems require a more directed (episodic) retention
system, but current models do not seems to be able to
scale up to realistically complex problems.
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B Implicant network: an associative memory model

Author: Diego Federici. Published in proceedings of IJCNN 2003 International Joint
Conference on Neural Networks.

Abstract:

The Implicant Network is a neural network model capa-
ble of storing an arbitrary boolean function F : 0, 1n →
0, 1. The difference from previous one-shot learning
models is that the training algorithm compresses the
positive set online with linear time and space require-
ments. The algorithm works by building a Sum Of Prod-
ucts (SOP) representation of the positive set as it is pre-
sented to the network. Since the minimum coverage of
implicants is an NP-Hard problem, the compression rate
is not optimal at first but it is shown to increase rapidly
as the positive set is shown over again.

Objective:

Produce a realtime episodic retention system which also
compresses information during operation.

Conclusions:

The systems works and additionally uses only local
learning (Hebbian) rules. Compression is achieved by
a recursive process. Further work should focus on the
extension of the system to multi-dimensional outputs.
Analytical and evolutionary approaches have been at-
tempted, but based on the time constraint imposed by
the project, it was strategically decided to postpone the
investigation.
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Abstract— The Implicant Network is a neural network model
capable of storing an arbitrary boolean function

���������
	���
�������
	��
. The difference from previous one-shot learning models

is that the training algorithm compresses the positive set online
with linear time and space requirements. The algorithm works by
building a Sum Of Products (SOP) representation of the positive
set as it is presented to the network. Since the minimum coverage
of implicants is an NP-Hard problem, the compression rate is not
optimal at first but it is shown to increase rapidly as the positive
set is shown over again.

I. INTRODUCTION

When designing an autonomous agent, a short term memory
storage is often a necessary mechanism, also found in animals
and humans. Its functioning is associated with many cognitive
tasks [1], not only for remembering a phone number or the
name of a street but also more general memory tasks, like
that a certain street is blocked for works or that John just left
the office. When a robot has to navigate a given environment
it has to remember several clues in order to orientate. Rats
have proven to be really good at these tasks [2]. The number
of clues can be considerable in the general case so it is
interesting to investigate to which extent it is possible to
compress information without altering the memory content. In
order to fit a mobile agent, the acquisition mechanism must
operate online and be capable of recalling and compressing in
real-time.

A. Different approaches

There is no associative memory model that we are aware
of that compresses information online and in real-time. Those
algorithms that achieve good compression need the complete
training set in order to operate. Those that can store patterns
as they are presented, do not compress much at all.

In the following discussion, the algorithms are encoding an
arbitrary ��������������������������� � .

BiAssociative Memories (BAM,[3]) belong to the first fam-
ily. They are capable of storing !#"%$'&)(+*,(-�.$0/ patterns1.
Other algorithms, such as Hamming Associative Memory [5]
Flash and Solar systems [6], also belong to the first group.
They achieve optimal storage given assumptions of good
orthogonality of the input patterns.

For online algorithms, a simple solution consists of adding
a node for each new pattern, see for instance [7]. This can

1Given constrains on the input pattern set, the storage capacity can be much
higher, see also [4]

be implemented in a simple way, but it does not compress
information at all. Correlation Matrix Memory (CMM), is a
binary perceptron approach. Perceptrons are unable to dis-
tinguish between non-linear separable classes. CMM solve
this problem by projecting the input space with some non-
linear function into a higher dimension space. As the new
input space increases, the probability that the classes became
linearly-separable increases too. CMM is easily implemented
in hardware [8], which makes this approach feasible. Still,
the algorithm does not really compress information. It is also
possible that the projecting function needs to be changed as
new patterns are presented.

The Implicant Network is capable of storing an arbitrary
function with $213� . The information is acquired as it is
presented to the network and compressed in no more than (
activation phases. In a mobile setting, the same pattern is likely
to be experienced several times and this proves to be beneficial
to the system as the compression rate is steadily improved.
The algorithm compresses information by optimizing a SOP
formula.

Any boolean function can be represented with a SOP
formula such as 45*,67�98:�<;�/+1=6�8
;->?8
;->@*BA-8�/C; . Each of the
constituents of a SOP formula (in this case ‘ 6�8
; ’, ‘ 8
; ’ and
‘ *BA-8�/.; ’) is called implicant. An implicant containing every
possible variable (or its complement) is called minterm (such
as ‘ 6D8�; ’). A minimal cover is the set of implicants with
minimal cardinality that represents a function. In the previous
example, the minimal cover of 4 is ‘ ; ’.

Finding the minimal cover of a SOP formula has been
proven to be NP-Hard [9].

II. THE IMPLICANT NETWORK

The network of Figure 1 implements an arbitrary function
������������� � ��� �E����� . At the beginning the network is empty
and � maps every input to 0. As positive exemplars (minterms)
are presented the training algorithm rearranges the Predicate
Neurons *,FHGI/ that connect to the output. Each FHG is equiv-
alent to an implicant of the SOP formula under construction.

Every time a pattern is presented during training, a new FHG
*,FHG ��JLK / is temporarily created. The FHG ��JLK is going to be
kept only if either:

1) it encodes new information, or
2) it increases the information compression
In this model, properties 1-2 are checked with a feedback

phase that propagates backward the activation of the FHG to
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Fig. 1. The Implicant Network

the input layer *���� / and then forward to the FHG s again.
This feedback-feedforward phase is used to identify the re-

lationships between FHG ��JLK and the FHG s that were contained
in the network. In particular, the feedback-feedforward phase
identifies:

1) the set of FHG s that FHG ��JCK covers2 in all but a single
dimension. We will refer to this set as the set of Sub-
Threshold neurons ( ��� 8�� FHG s).

2) the set of FHG s that cover FHG ��JLK . We will refer to this
set as the set of Over-Threshold neurons ( 	
� FHG s).

��� 8�� FHG s are covered by FHG ��JLK in all but a single
dimension. In other words, given a ��� 8��%FHG it exists a
dimension &
��� ���.(�� such as without that FHG � JLK would cover
entirely the ��� 8�� FHG , but with that dimension it does not.

For every minterm $�� covered by the ��� 8�� FHG it exists
a minterm $�� covered by FHG ��JLK such as $ � and $�� differ
only in dimension & . It is then possible to extend the ��� 8��
FHG by dropping the constrains on variable & .

Example: let FHG ��JLK 1�� 6�8 ’. FHG ��JLK covers minterms
$��01�� 6�8
; ’ and $�� 1�� 6�8:*)A ;�/ ’. Consider a node FHG��01
� 6 *BA-8�/C; ’. FHG�� is a ��� 8�� FHG of FHG ��JLK because without
the dimension of variable � 8 ’, FHG � JLK covers ��� 8�� FHG . It
is then possible to expand the coverage of FHG � by removing
the constrain on the variable ‘ 8 ’. FHG � becomes ‘ 6D; ’. The
extended coverage of FHG � does not add minterms/patterns
to the network, but by adding redundancy it might allow the
removal of some other FHG .

Redundancy is checked by the activation of the set of Over-
Threshold neurons ( 	
� FHG s). The existence of a 	
� FHG
signals that some node in the network already covers all

2as every �! stands for an implicant, we will often refer to an implicant
as the �! it is represented from

the information covered by FHG � JLK . FHG ��JLK can be removed
without altering the information contained in the network.
	
� and ��� 8�� FHG s are activated in the feedforward phase

thanks to the modulation of the Activity Detector ( "$# ). "$#
is activated only during training, see equation 2.

Basically, the training algorithm searches for the ��� 8��
FHG s of the input pattern. If any ��� 8�� exists, the FHG ��JCK
merges3 with the ��� 8�� , it is fed-back to the input, and the
process continues.

Once no ��� 8�� is found, the presence of an active 	
�
signals wether the FHG ��JLK is redundant and must be discarded.

These processes do not actually require a standard search,
but occur with a single activation of the predicate layer in a
totally parallel way. The use of this parallel search is the major
contribution of this paper.

A. Layers details

An input pattern is a vector F&% ���E� ���:� . The sensors layer
*'� / is set to F , each node representing a bit of the vector.

The Inpuit Layer ��� contains (-( units. For each unit 6*) in
� , there is a couple � 6,+) �<6.-) � in ��� , where 6,+) is equal to 6/)
and 6 -) is the negation of it. For example the � vector � � � �0�
gives the �1� vector � � ��� �%� �2� . Notice that, in this case,
the total number of high nodes in �1� is always ( .

Let’s define this function as:

�1� 1=�4353 *'�+/ (1)

The functions governing the activity of the other layers
follow:

"6# 1 �4798 *'�1� /
�:798 *���� / 1

; (�< *>=�?@��� /5A � &CBEDGF:6�& ( & (�H
� IJDLK.MNFJO &CPQM (2)

FHG 1 �:R5S�*���� �T"6# /
�4RUS�*'�1� �V"$# / 1 W � *<*��/XY?N�1� /UAZ"$# / (3)

	
� 1 �:[U\ *���� �T"6# /
�4[4\ *'�1� �V"$# / 1 ]W � *<*��/XY?N�1� /UAZ"$# / (4)

	 1 � [ *BFHGI/+1
; � &CB 6�(9^ FHG &GP �

�_IJDLK.MNFJO &CPQM (5)

where 	 is the output of the Implicant Network and

W � 1
; � &CB (

�_IJDLK`MQFJO &CPQMba ]W � 1
; � &CBdc (

�eIJDLK.MQFJO &CPNM
�/Xf%�� �E� ���Jg,h � � aji 1lk�FHGmk (6)

= 1n� ��� ���9opoqo � �2�
Equations 1–5 can be used to compute the activation of the

network: 	nr 6D;�DL&tsD61DCMD*u�+/ .
3merging is the process of extending coverage, see subsection II-D for

further details.



B. The input weights

The input weight matrix *��/X , see equation 6) has a row for
each FHG . When FHG ��JLK is created, an empty row is added
to ��X . During merging, ��X will change with the following
formula (Hebbian learning):

�/X RUS������ r��/X RUS������ > ��� � (7)

so that, following equation 2, the new node will be active
when ��� is further presented. �1� � is computed from ���
removing activation from pairs of corresponding units 6 +) and
6`-) when they are active at the same time (see also below).

C. Feedback

The feedback deserves some extra attention. The backward
activation of ��� is computed as follows:

�1� 1=�:3 � *BFHGI/+1 �/X \ ?�FHG (8)

Also, �1� has a delayed lateral inhibition between each
opposite unit 6,+) and 6.-) , so that if they are both high, they
will inhibit each other. Let �1� � define the activity in �1� before
lateral inhibition, �1� � the one after lateral inhibition.

When equation 1 is used, lateral inhibition is negligible
because ��� 1 ��� � 1 ��� � . But if the FHG feeding back covers
more than a single pattern then

� &�%:� � � i � such as 6 +) and 6 -)
that belong to ��� and are both high.

Example: if FHG ) is active and covers patterns � � �0� and� � �2� then �/X ) 1 � � � � �@��>�� � � � � � 1 � � � �+�2� and equation
8 yields ���=1 � � �5�+�@� . �1� � is then equal to � � �5�+�2� , while
�1� � is � � � �+�0� .
"$# from equation 2, also has two values, "$# � from ��� �

and "6# � from �1� � . Similarly FHG � , FHG � , 	
� � and 	
� � are
defined.

In this case, a FHG is defined high when both FHG � and
FHG � are high. The same applies to 	
� .

D. Merging and Deleting

When a new node FHG ��JLK is added to the network, it is
possible that it finds a ��� 8�� node to merge with. In this
case, �/X R5S ���	� is updated. The ��� 8�� node feeds back (see
equation 8) yielding �1��

��� \ 1 ��X \ ��� 8�� and ��X is updated
as follows:

�/X R5S������ r��/X R5S������ > ��� � 
���� \ (9)

Equation 9 derives directly from equation 7.

Example: suppose that FHG � JLK covers pattern � ���@� so that
��X R5S ���	� 1 � � �@� � � . ��� 8�� covers instead � �@� � and � �'�0�
so that ��X�
���� \ 1 � � � � �@� . Then, �1��
���� \ 1 � � � � �@� which
implies ��� �
���� \ 1 � �+� � �@� and �1� � 
���� \ 1�� �+�@� �2� . Using
equation 9 we find:

�/XdR5S ���	� r � � � � � ��> � �+� � �2�

��X R5S ���	� r � � � �+�2�
which implies that FHG ��JCK now covers patterns � � �2� and

� � �0� . Notice that, as it was the ��� 8�� node feeding back, 	
�
now signals whether ��� 8�� must be deleted or not.

E. training pseudo code

	
� D !`� D�r 6D;�DL&tsD61DCMD*u�+/ ;
��� r%�:353 *'� / ;
Create a new predicate neuron *,FHG ��JLK / ;
Set its input weights to ��X R5S����	� r �1� ;
loop-again r 1;
A-PN-Needs-To-Be-Deleted r�	
� D !`� D ;
while loop-again = 1;

loop-again r 0��� r � 3 � *,FHG ��JLK / a //feedback
"6# r �:798 *'�1� /
��� 8�� r �4R5S�*���� �T"6# /
	
� r � [4\ *'�1� �V"$# /
if at least one ��� 8�� is high, // ��� 8�� and FHG ��JCK

would be adjacent on a karnagh map��� 8��9)9r pick one high ��� 8�� at random
�1� r �43 � *'��� 8��9),/ a //feedback��X R5S����	� r��/X R5S����	� > �1� � ; //merge
"6# r � 798 *���� /� 	
� r � [4\ *'�1� �V"$# /
if at least one

� 	
� is high and is not ��� 8��9) ,
// ��� 8�� ) is redundant because of

� 	
�
remove ��� 8�� ) ;
A-PN-Needs-To-Be-Deleted r � ;

end if
loop-again r 1;

else if (there is an high 	
� and is not FHG ��JLK ) OR
A-PN-Needs-To-Be-Deleted
// FHG � JLK is redundant because of 	
� OR
//It does not increase compression as it
//did not remove any FHG

remove FHG � JLK
end if

end while

It is possible to download the Matlab source code, see
footnote4.

F. A training example

In this section, we give a step by step trace of a simple
training run of the Implicant Network.

Let the positive set for a function of 2 variables be � [00],
[10] � . This is equivalent to the function � *B6 � 8�/+1 *)A 6�/�*BA-8�/ >
6 *BA-8�/ .
A pattern ([00]) is selected at random.
� = [00] implies �1� = [01 01].
The input weights �/X R5S ���	� are set to �1� = [01 01].

4http://www.idi.ntnu.no/˜federici/code/implicant



FHG ��JLK is the first node in Implicant Network so
��X�� �/XdRUS ����� and FHG ��JLK �=FHG � .

Feed-Back Phase:
�1� 1 ��X R5S ���	� 1 [01 01].
no lateral inhibition takes place.
"6# 1 (
< (EA � 1 � .
compute the ��� 8�� set

*��/X ?Q�1� /5AZ"$##1 �
.� � * � / 1 � .��� 8�� r�� .

compute the 	
� set
*��/X ?Q�1� /5AZ"$##1 ( .
]� � * � / 1 � .	
� r��

there is no ��� 8�� .
there is no 	
� .
no FHG needs to be deleted.
so keep FHG ��JLK as FHG � .
no merging occurred: training is finished.

A new pattern is selected at random: [10].
� = [10] implies ��� = [10 01].
The input weights ��X�R5S ���	� are set to ��� = [10 01].
FHG ��JLK is the second node in the network so FHG ��JLK � FHG �

and �/X 1
���� �/X R5S�� � � � � �
�/X R5S
	 � � � � �

����
First Feed-Back Phase:�1� 1 ��X R5S����	� 1 [10 01]

no lateral inhibition takes place."6# 1 (
< (EA � 1 � .
compute the ��� 8�� set

*��/X ?Q�1� /5AZ"$##1 � ( � � \� ��*L� ( � � \ / 1n� � � � \ .��� 8�� r�� FHG � � .
compute the 	
� set

*��/X ?Q�1� /5AZ"$##1 � ( � � \
]��� ��
���� * � /+1 � � �2� \
	
� r�� FHG � �

there is a ��� 8�� .
��� 8�� ) r FHG ���� 8�� ) *BFHG ��/ Feed-Back phase:
�1� 1 ��X R5S � 1 [01 01]
no lateral inhibition takes place.
Merge FHG ��JLK and FHG � :
��X R5S ���	� r [10 01] > [01 01]
�/X R5S ����� r [11 01]"6# 1 (
< (EA � 1 � .

compute the
� 	
� set

*'��X ?Q�1� /5AZ"$##1 � ( � � \
]� � * � /+1 � �0�2� \�	
� r�� FHG � �

there is an high
�	
�

delete FHG � , remove �/X R5S��
As Merging occurred, repeat feedback of FHG ��JLK

Second Feed-Back Phase:

At this moment ��X 1 �� �/XdR5S 	 � � � � � ��
��� 1 �/XdR5S ���	� 1 [11 01]
lateral inhibition takes place.
��� � 1 [11 01]; �1� � 1 [00 01]
"6# 1 � "$# � �`"$# � � 1 � (
< � A �+�`(
< � A �@� 1n� � �.( �
compute the ��� 8�� set

*��/X ?N��� /5A "6# 1 �
� � * � /+1=� .
��� 8�� r��

compute the 	
� set
*��/X ?N��� /5A "6# 1 �
]� � * � /+1 �
	
� r���FHG � �

there is no ��� 8�� .
there is an high 	
� but it is FHG ��JLK .

recall that FHG � � FHG ��JLK
no FHG needs to be deleted.
so keep FHG ��JLK as FHG � .
no further merging occurred: training is finished.

The network contains a single FHG
�/X 1 �� ��X R5S 	 ��� � � � ��

Notice that, at this moment, the network contain a single
node which covers both patterns presented. In this case this is
equivalent to the minimal cover of � , consisting of the single
implicant ‘ A-8 ’.

III. SIMULATIONS

In order to test its compression rate, the Implicant Network
has been trained on random functions. In figures 2–4, it is
possible to see how many nodes are required in average to
store a function (Y axis) depending on the dimension of the
positive set (X axis). For each positive set size, results in
figures 2 and 3 are the average over 50 randomly generated
functions, while in figure 4 over 20 randomly generated
functions. The positive set of each function is presented in
random order, several times.

The order in which minterms are presented affects the
compression ratio achieved by the network (number of FHG
per minterm). That is why, the compression of the positive set
steadily increases as it is presented over again, see also figure
5. The compression achieved by an optimal minimum cover
algorithm is plotted in a dotted line.

The average compression progression for a full positive
input set of 10 variables ( ( ��� minterms) is given in figure
6. The input set is presented in random order each of the 100
passes. The average is computed over 20 runs. The number of
required FHGdP monotonically decreases to reach the optimal
solution. The optimal SOP formula requires a single predicate.

IV. CONCLUSIONS

The Implicant Network is an online algorithm capable of
compressing and remembering patterns with linear time and
space requirements.
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Fig. 2. Average number of nodes required for 50 random functions of 4 bits
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Fig. 3. Average number of nodes required for 50 random functions of 6 bits

The compression happens in terms of number of nodes
in the predicate layer of the network, and it is totally non-
destructive. Also, the compression algorithm requires only
information already stored in the network without decom-
pressing it. This is a fundamental feature of the algorithm, as
information decompression would be intractable in the general
case.

An n-input, single-output boolean function can have up to� ��� ( prime implicants and ( � minterms (patterns, [9]).
The compression is possible because of a feedback phase,

during which, an active predicate neuron is able to find similar
nodes to merge with, adjoint to finding those nodes that are
already covering its information.

This use of the feedback phase is a major contribution of
this paper.

The feedback phase is similar to the feed forward activation.
It requires 	 * ( ? i / multiplications in a serial implementation,
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Fig. 5. Compression increases as the positive set is shown over again

i being the size of the predicate layer. In a parallel implemen-
tation, the activation of each of the i nodes could be computed
in parallel, in linear time.

The compression ratio improves monotonically as the input
set is shown over and over again.

This is a nice feature for autonomous agents, as re-
presentation of the input set can merely occur as the agent
wonders in its environment. The improvement takes place just
by being up and running, so it is achieved for free.

The compression ratio seems to approach the theoretical
optimum for SOP formulae, which is computable solving the
minimal cover problem and is proven to be NP-Hard.

Still, it is often the case that convergence stops on a local
optimum. This happens most often for highest complexity
input sets, whose number of minterms is � (����0( . Among
those sets there is the parity function set, which is not
compressible by any mean with a SOP formula.
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The number of passes required for the system to converge
to the local optima appears to be a not-trivial function of
the input space dimension, of the positive set size, of the
function represented by the positive set and of the order in
which patterns are presented.

When the whole positive set is presented in random order
at each pass, convergence is reached in � ( 
 ��� passes in the
worst case. The worst case is associated to high cardinality
positive sets, where all minterms but a few map to 1.

V. FURTHER WORK

At the moment, we are investigating the possibility to extend

the algorithm to allow a � node representation, with � fixed
a priori and bigger than 1. In this model, the activation of the
output layer would require � high nodes in the hidden layer.

In fact, the Implicant Network uses a localistic representa-
tion *���1 ��/ in the hidden predicate layer.

To be able to encode arbitrary functions with m-outputs,
non-localistic representations seem to be the only efficient
way.

On the other side achieving a storage capacity which grows
exponentially with hidden layer size requires distributed rep-
resentations. This is unfortunately a very hard task in one-shot
learning algorithms.
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Abstract:

It is believed that the second phase of the Baldwin ef-
fect is basically governed by the cost of learning. In
this paper we argue that when learning takes place the
fitness landscape undergoes a modification that might
block the Baldwin effect even if the cost of learning is
high. The argument is that learning strategies will bias
the evolutionary process toward individuals that genet-
ically acquire better compared to individuals that ge-
netically behave better. Once this process starts the
probability of experiencing the Baldwin effect decreases
dramatically, whatever the learning cost. A simulation
with evolving learning individuals capable of communi-
cation is set to show this effect. The set of acquired
behaviors (culture) competes with the instinctive one
(genes) giving rise to a co-evolutionary effect.

Objective:

Produce and analyse a minimal model of cultural evo-
lution.

Conclusions:

Horizontal information exchange produces a significant
alteration of the evolutionary dynamics. The discovery
of social strategies accelerates the evolution of culture,
which in turns increases the advantage of social strate-
gies. As a result, it appears that the adopted meme
implementation provide a minimal, yet sufficient, model
of cultural evolution.
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Abstract. It is believed that the second phase of the Baldwin effect is
basically governed by the cost of learning. In this paper we argue that
when learning takes place the fitness landscape undergoes a modification
that might block the Baldwin effect even if the cost of learning is high.
The argument is that learning strategies will bias the evolutionary pro-
cess towards individuals that genetically acquire better compared to in-
dividuals that genetically behave better. Once this process starts the
probability of experiencing the Baldwin effect decreases dramatically,
whatever the learning cost. A simulation with evolving learning indi-
viduals capable of communication is set to show this effect. The set of
acquired behaviors (culture) competes with the instinctive one (genes)
giving rise to a co-evolutionary effect.

1 Introduction

1.1 The Baldwin effect

In the context of the debate between Darwinism and Lamarckism, James Mark
Baldwin (1896) proposed that phenotypic plasticity might be regarded as “a new
factor in evolution” [1]. Phenotypic plasticity allowing adaptation, would smooth
the fitness landscape increasing the efficiency of the evolutionary process [2, 3].
However, phenotypic plasticity has inherent costs associated with the training
phase in terms of energy, time and eventual mistakes. For these reasons, in a
second phase, evolution may find a way to achieve the same successful behaviors
without plasticity.

Thus the Baldwin effect has two phases. During the first phase, adapting in-
dividuals can, in same cases, acquire behaviors that help them achieving higher
fitness scores. But because of the costs of adaptation, there is an evolutionary
advantage towards the discovery of equivalent instinctive behaviors. Thus in this
second phase, a behavior that was once learned may eventually become instinc-
tive (see also below and [1–5]) In computer science, the phenotypic plasticity is
analog to a local search strategy. The evolutionary process and the local search
may be used in combination, often achieving higher efficiency than either of the
methods alone [5, 6].



2

There are three basic requirements for the second phase to take place. First
there must be a cost for the local search. In this way, the evolutionary process
will have a reason (in terms of inclusive fitness) for the genetic assimilation to
take place. This also means that in some settings, i.e. in a fast changing environ-
ment, genetic assimilation will never take place. With those setting, plasticity
would be the optimal strategy. We will refer to this characteristic by Assimilation

Advantage.
Also, genetic assimilation requires for the optimal strategy, acquired first

through local search, to be expressible by the genotype. This might be impossible
under some genotype-phenotype mapping strategies in which, the phenotype
plasticity is required as part of the developmental process 1. We will refer to this
characteristic as Genotypic Expressibility.

In addition, the probability of the assimilation depends on the distance be-
tween the genotype using plasticity and the one not using it. The distance would
be measured using the metric imposed by the genetic operators. A small distance
is possible if there is a strong neighborhood correlation in the transformation
from genotypic to phenotypic space. Where the distance is too high, the probabil-
ity of genetic assimilation could be so little to be considered actually impossible.
We will refer to this as Genotypic-Phenotypic Correlation

1.2 How learning effects evolution

In a now famous paper, Hinton and Nowlan [6] proved that with the help a local
search mechanism it is possible to speed up evolution in a hard fitness landscape.

In the Hinton and Nowlan example, the adaptive solution is ideally placed
in the middle between the lowest fitness solutions and the single high one, hence
smoothing the fitness landscape. Adaptation in this case is a step towards the
discovery of the best non-adaptive solution. The same considerations apply to
other examples such as [2, 8] among others.

In these cases adaptation success is not affected by any genetically coded
learning strategy. We argue that the search for good learning strategies might
distract the evolutionary process from the discovery of fit non-adaptive behav-
iors. In other words, co-evolution of learning and the non-learning strategies
modifies the fitness landscape. The quality of these modifications is an other
factor that governs the second phase Baldwin effect.

2 Learning, culture and fitness

Learning can be seen as the process of acquiring behaviors. The difficulty and
time lost acquiring behaviors constitute a cost of learning. We have to introduce a
clear distinction between instinctive and acquired behaviors. Instinctive are those
behaviors that emerge steadily and directly from the genotype, while acquired
ones are those that emerge through the interaction with the environment.

1 Like in the development of the retina [7]
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If we consider individuals belonging to a population sharing the same geno-
type, their individual fitness can be considered the sum of shared population fit-
ness (PopFit), fitness change due to local environmental characteristics (LEFit)
and fitness change due to individual specific behavior (IFit): Fitness = PFit +
LEFit + IF it.

The LEFit can be considered as noise and could be absent in ideal experi-
mental settings (all individuals having the exact same initial conditions or long
fitness tests). Fitness deriving from acquired behaviors (IFit) constitutes the
value of the learning process and incorporates the cost of learning.

When PFit � IFit, the advantage for plasticity is negligible. Otherwise ac-
quired behaviors may provide an advantage to genotypically similar individuals
(see figure 1). In this case, there is strong evolutionary pressure towards the
discovery of better acquisition mechanisms.

A
 B

C


Fitness after learning

(PFit + IFit)


Fitness by instinctive

behaviors (PFit)


PFit
A
, PFit
B


PFit
C


Fitness

B


Fitness
A
, Fitness
C


Genotype space


Fig. 1. Two similar individuals (A and B), share similar genotype and PFit values. By
acquiring different behaviors they achieve different fitness scores. On the other side,
two genotypically different individuals (A and C) reach the same fitness values because
the same acquired behavior shadows the instinctive ones.

2.1 Memes

As genes form the transmission medium of biological systems, memes [9] do for
acquired behaviors. Memes will be considered behavioral information blocks2.
Basically memes are those things that “leap from brain to brain” [9] carrying a
behavioral content. To strike a comparison to human society, we will call the set
of transmittable behaviors Culture.

3 Simulation details

We set up a population of learning individuals. Each individual/agent is equipped
with a single layer neural network (NN) subject to an evolutionary process and a

2 Memes usually have a wider definition, but considering only the behavioral ones, the
discussion is simplified
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classifier-like system (memes), see Figure 3. Agents perceive resources and other
bots from all tiles in a hamming distance of 2 (see figure 2), this constitutes the
input vector.

The NN produces an output vector with the expected reinforcement for each
of the possible actions: don’t move, go north, west, south and east.

Memes remind the agent the reinforcement experienced in the past. They are
constituted by an input pattern P , an action a and an expected reinforcement
R. If the pattern P matches the present input vector, then the meme replaces
the output of the genetically evolved NN with R for the given action a. Basically
the meme can recognize a particular sensory context (P ) and reminds the agent
that in the past he had performed a certain action (a) and the action yielded a
given reinforcement (R).

The four expected reinforcements, generated by the NN and eventually mod-
ified by the memes, are used to stochastically select the action performed by the
agent.

Agents score fitness by collecting resources spread at random in a toroidal
map. Each resource type gives a fixed amount of reinforcement. If an agent does
not move or collides with another agent it receives a small negative reinforce-
ment3. Fitness is the sum of all reinforcements received over a fixed number of
iterations. Agents undergo a steady state selection with a replacement fraction
of 25%. Surviving individuals keep their memes. The offspring is placed in the
proximity of a parent.

Fig. 2. Simulated Envi-
ronment. The vision range
of agent 1 is printed in
a thick line. Two dif-
ferent types of resources
are present. The resources
represented by a darker
color give a fixed neg-
ative reinforcement and
fitness value, while the
others give a fixed posi-
tive value. Resource types
never change value and
when consumed are regen-
erated on a random tile.
Newly generated agents
are placed in proximity of
a parent.
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3 These penalties were added to speed up the evolutionary process
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Fig. 3. Agent controller. The geneti-
cally evolved NN and the acquired cul-
ture are activated in parallel. When a
pattern P matches the current input,
the corresponding meme is activated
(encircled in the figure). Its expected
reinforcement R4 replaces the NN out-
put for action a4. The performed ac-
tion is selected stochastically giving a
higher probability to higher expected
reinforcements.
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3.1 Cultural evolution

An agent culture is built by a certain number of memes (20 at maximum in these
simulations). Memes can be acquired in two different ways.

First by transmission, whenever two individuals are next to each other. Every
iteration a fixed number of memes can be transmitted. These memes are prob-
abilistically selected from the transmitter culture according to their estimated
value. The number of memes transmitted when two agents are in contact (com-
munication speed, CS) is varied from 0 (no transmission) to 20 (all the meme
pool is transmitted in a single iteration). As the CS increases, the agents can
acquire fit behaviors earlier during the fitness evaluation, hence the Assimilation

Advantage is reduced.

The second way is through operant conditioning.

Operant conditioning is a learning mechanism that has been observed in a
variety of animals. When an animal experiences a reinforcement, its brain tries
to explain what caused the reward. The effect is that the behaviors that are
thought to be responsible of the reinforcement are rewarded. Learning appears
to build a relationship between behavior and reinforcement based on two gen-
eral assumptions: the behavior that steadily is followed by reinforcement is held
responsible for it, behavior and reward must fall into a certain time window.
These assumptions have strong biological and psychological support [10–12].

Whenever an agent experiences an unexpected reinforcement a meme is gen-
erated from this situation. The value of the meme changes as it is used, increasing
when it helps predict the expected reinforcement. This inhibition/enhancement
is an explicit measure of the memes fitness, and is used to drive the memetic
evolutionary process. Unfit memes can be explicitly identified and dropped, fit
ones will proliferate through transmission and new variants will eventually be
generated.

Memes variants are generated by merging, a stochastic generalization mech-
anism. Merging is the memetic equivalent of crossover and mutation in genes.
It can occur if two memes code the same action and expected reinforcement.
In this case, the merging probability is proportional to the hamming distance
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between the memes input matching patterns. Those parts that are different in
the two input matching patterns are replaced by don’t care symbols.

Merging is a weak simplification of a boolean function:
given (P1∧a 7→ R) and (P2∧a 7→ R) then with probability ∼ dH(P1, P2) replace
them with ((P1 ~ P2) ∧ a 7→ R); where Pi ∈ pattern, a ∈ action, R ∈ reinforce-
ment, dH is the Hamming distance, and ~ is a bitwise operator ~(bi, bj) = { bi

if bi = bj , don’t care if bi 6= bj }.
If it does not merge, a meme can be added only if the meme pool size does

not exceed the maximum. If the maximum is exceeded a meme is dropped, the
less general being dropped with higher probability. Because merging of memes
can sometimes produce unfit memes, if the expected reward does not match the
one experienced, the meme responsible for the error is removed.
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Fig. 4. run showing the Baldwin effect, convergence to the MG attractor. The memetic
contribution to the fitness is at first high. As it decreases, the memetic behavior is
partially assimilated in the genes.

4 Results

Agents can transmit some of their memes whenever their are next to each other.
The number of memes transmitted when two agents are in contact (communi-
cation speed, CS) is varied from 0 (no transmission) to 20 (all the meme pool is
transmitted in a single iteration).

As the CS increases, the agents can acquire fit behaviors earlier during the
fitness evaluation, hence the Assimilation Advantage is reduced.

It is possible to evaluate the amount of fitness generated through acquired
behaviors by stopping the simulation every generation and recording how much



7

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

10

Me
me

tic
 co

ntr
ibu

tio
n

Fitness

communication speed 5, 200 iterations per generation

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

10

Fit
ne

ss

generations

0 20 40 60 80 100 120 140 160 180 200
0

5

10

Me
me

 co
ntr

ibu
tio

n

generations

Fig. 5. run not showing the Baldwin effect, convergence to the M attractor. Genetic
assimilation does not take place.

fitness the agents score with and without the help of memes. It is so possible
to plot how much the memes contribute to the total fitness score (memetic
contribution). Figures 4 and 5 show three different plots. The first one is a
state diagram, memetic contribution vs. fitness, showing the trajectory that a
population undergoes during evolution. The second one displays the amount of
average fitness scored by the population, and the third the quantity of memetic
contribution.

The state diagram is particularly useful because it shows the attractors of the
evolutionary process. Figure 4 shows the attractor for a typical population that
went through the second phase of the Baldwin effect, figure 5 one that doesn’t
show it.

In almost every setting two attractors, such as those in figure 4 and 5 are
present. The two attractors show the convergence basin of different strategies.
The first relies both on memes and genes (MG) with the instinctive behaviors
capable of scoring some fitness. The second relies on memes only (M).

It is then understandable that while the dynamic towards MG is associated
to the second phase of the Baldwin effect, the path to M is not.

Figure 6 shows with which frequency a population falls in the MG attractor.

One would expect to experience a decreasing number of populations falling
in the MG attractor as CS is being increased. In fact, increasing CS reduces the
cost of learning and the advantage for genetic assimilation. Instead the frequency
decreases to a minimum and then increases again. This proves that the Baldwin
effect is influenced by other factors apart the cost of learning.
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Fig. 6. Populations falling into the MG attractor with each CS setting

4.1 Different strategies

An agent can acquire fit behaviors in three possible ways: evolving the proper
NN, building memes by operant conditioning, and acquiring memes from other
agents. CS can affect only the latter.

Being born next to its parent without any meme, an agent is faced with a
dilemma. It can either try:

1. first receive as many memes as possible from other agents, and then exploit
them to score fitness

2. start scoring fitness immediately and acquire memes by itself

Either choice requires a genetically coded strategy, a social one in the first case,
and an asocial one in the latter. The social strategy, scoring fitness mainly by
memes, is the one that converges to M. MG is instead the attractor of the asocial
strategy.

CS does not only change the cost of learning, modulating the acquisition
speed. It also changes the nature of the two strategies M and MG.

As CS decreases the social strategy becomes more difficult. In other words it
requires a more committing strategy and a more specialized genotype. In fact, it
must strongly avoid any asocial behavior, otherwise it will risk to interrupt the
acquisition phase. On the other side when CS is maximal, the parent’s culture is
acquired in a single shot. The social strategy is achieved simply by being born. In
this case M and MG will be maximally overlapping because an asocial individual
will receive the same amount of culture as a social one.

The difference between the two strategies determines the probability of mov-
ing from one to the other. The higher the difference the lower the probability.

A second aspect is that the quality of culture (the amount of fitness it can
guarantee) is not fixed. As genes evolve every generation, memes do every it-
eration. If CS is zero, agents cannot share their memes and the culture quality
improves in a given generation but not across generations. If CS is high, even if
an agent dies some of its memes might survive and continue evolving on other
hosts.
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The fitness advantage of a strategy or the other, is subjected by the actual
level of cultural evolution. When many agents do not socialize, culture improves
slowly and the social strategy is less attractive. With many social agents, cultural
evolution is faster and offers a greater prize for adaptivity.
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Fig. 7. effects of CS to evolvability

As the cultural quality evolves or fails to evolve, the fitness landscape changes.
If cultural evolution proceeds steadily, the M strategies will be able to dig into
their attractor increasing their stability. Still, if MG lies too close to the M

attractor, this is insufficient to prevent the second phase of the Baldwin effect.
Figure 7 summarize these concepts.

Figure 7A With low CS, the quality of culture is not enough so that the asocial
strategy MG is more convenient (the thicker line indicates a higher transition
probability).

Figure 7B CS increases and the M attractor becomes stronger. As the attrac-
tors are far away in genotypic space, the probability to move from M to
MG is very low. The frequency of the second phase of the Baldwin effect is
minimal.

Figure 7C CS continues to increase, the social and asocial strategy are very
similar and passage from M to MG is more probable.

5 Conclusions

We have provided an example in which genetic assimilation cannot be explained
by the Baldwin effect alone.

It is suggested that the Baldwin effect considers cases in which the genotype
cannot modify directly the adaptation mechanism. Under these conditions, the
genetic search can evolve only the non-adaptive part of the phenotype, and only
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that can provide a continuous fitness improvement. Examples for this case can
be found in [6, 2, 8, 13].

We argue that the adaptive behavior must be somehow expressed in the
genotype, so that evolution affects also the adaptation mechanism and its quality.

Evolution can than proceed in at least two directions, one towards the dis-
covery of better adaptive strategies (in this case the social behavior), the second
towards the discovery of fitter instinctive behaviors (the asocial behavior).

The state of the evolution of adaptivity affects both the cost of learning and
the correlation between genotype and phenotype. This can cause that both the
cost of learning and the correlation decrease, so that the probability of observing
the Baldwin effect is not a monotonic function.

Even in a static environment4 as the one provided in this paper, the fitness
landscape will undergo a dynamic. Under these circumstances, genetic assimila-
tion is ruled more by the quality of the fitness landscape dynamic than by the
assimilation advantage.

The simulations presented in this paper are very computational expensive
and have been run on ClustIS5 cluster.
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Abstract:

It is recognized that the combination of genetic and local
search can have strong synergistic effects. In same cases
though, the local search mechanism can be too aggres-
sive, mislead the evolutionary search and produce pre-
mature convergence. We set up a population of evolving
agents also capable of learning by operant conditioning
and communicating acquired behaviors (memes). The
diffusion and discovery of memes gives rise to a second
process of evolution atop of the genetic one. Memes are
shown to have both guiding and hiding effects on bald-
winian and lamarckian evolution. In contraposition to
previous models, simulations show that back-coding of
acquired behaviors is highly beneficial only at the be-
ginning of the evolutionary search. This result arises
because of the different nature of the guiding provided
by memes and the hiding effect that they generate. To
minimize the negative influence of the hiding effect but
still benefit from the memetic guidance, we decrease the
maximum number of memes that an agent can acquire
as evolution proceeds. Agents can then develop the op-
timal harvesting strategy in incremental steps with a
great performance advantage.

Objective:

Exploit cultural evolution and grounded directed inno-
vation processes to increase the efficiency of the evolu-
tionary search.

Conclusions:
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Lamarckian back-coding of culturally acquired traits is
beneficial towards the speed up of evolutionary search.
Still, innovation becomes more directed and limits the
exploration of the search space. Best performance is
obtained when back-coding is gradually inhibited.



Combining genes and memes to speed up evolution
Diego Federici

Norwegian University of Science and Technology
Department of computer and information science

N-7491 Trondheim, Norway
federici@idi.ntnu.no

Abstract- It is recognized that the combination of ge-
netic and local search can have strong synergistic effects.
In same cases though, the local search mechanism can be
too aggressive, mislead the evolutionary search and pro-
duce premature convergence.

We set up a population of evolving agents also capa-
ble of learning by operant conditioning and communi-
cating acquired behaviors (memes). The diffusion and
discovery of memes gives rise to a second process of evo-
lution atop of the genetic one. Memes are shown to
have both guiding and hiding effects on baldwinian and
lamarckian evolution.

In contraposition to previous models, simulations
show that back-coding of acquired behaviors is highly
beneficial only at the beginning of the evolutionary
search. This result arises because of the different nature
of the guiding provided by memes and the hiding effect
that they generate.

To minimize the negative influence of the hiding effect
but still benefit from the memetic guidance, we decrease
the maximum number of memes that an agent can ac-
quire as evolution proceeds.

Agents can then develop the optimal harvesting strat-
egy in incremental steps with a great performance ad-
vantage.

1 Introduction

Even though Lamarck’s theory of evolution [1] has been dis-
proved there has been quite an interest in its application in
artificial evolution.

As local search strategies can be more directed than ge-
netic, back-coding of acquired characteristics can operate
as a smart mutation operator yielding faster convergence to
optima.

Since local search focuses on the most promising parts
of the search space, it can increase the evolutionary speed
in two ways: at the beginning by overlooking low fitness
zones and at the end by climbing local optima. Of course,
this more aggressive strategy can often produce premature
convergence [3, 4].

The type of local search modulates the pro and cons
of back-coding. This can be summarized by the guide or
hide dichotomy [9, 10]). If on one side, learning can guide
the evolutionary process by smoothing the fitness landscape
(Baldwin effect [2, 5]) or through back-coding (lamarckian-
ism [1, 3, 4]), on the other it can mask the selection pres-
sure for certain characteristics hiding genetic differences
and slowing down the entire process (hiding effect [9, 10]).

In this paper we adopt a learning mechanism based
on acquisition through operant conditioning and commu-

nication. Individuals have a genetically encoded neuro-
controller that outputs the expected reinforcements for the
different possible actions. Individuals that experience an
unexpected reinforcement build a meme (a reminder) that
will allow them to avoid the same error in the future. At the
same time, when two individuals fall into the communica-
tion range, they can exchange memes.

As memes are acquired, exchanged and dropped during
a fitness evaluation, they give rise to a second evolutionary
process atop of the genetic one. We will refer to this process
as cultural evolution.

Previous work has already introduced models of cultural
and memetic evolution. In [11, 12] culture is a population
shared memory that acts as a global blackboard that indi-
viduals can read and write. The model of social exchange
used in [13] is implemented by a crossover operator that
combines the candidate with an individual of high fitness.

In this model memes are stand alone behavioral enti-
ties that reside on a single host and can be acquired and
transmitted. If an agent perceives two memes to be similar
enough, it will be merge them, generating a more general
variant that can eventually spread in the population. The set
of memes available to an individual specifies its culture and
modifies its instinctive behavior. Since behavior determines
the fitness scored by individuals, there is an evolutionary
advantage in the development of fit cultures and therefore
fit memes.

In this framework, the lamarckian back-coding of an in-
dividual’s culture is shown to have a positive guiding ef-
fect in a first phase of the evolutionary search but is also
shown to mask refinements of instinctive behaviors that do
not yield immediate reinforcements. Because of the way
that they are built, memes can encode only sources of imme-
diate reinforcement while optimal control policies should
also consider long term effects. Acquired behaviors have
precedence over instinctive ones resulting in a censorial ac-
tion of culture.

To minimize the negative effects of this cultural masking,
we show that it is possible to decrease the number of memes
that an agent can possess as evolution proceeds.

Although not applicable in every context, a good feature
of this hybrid evolutionary system, is that it does not require
additional fitness evaluations since memes are acquired on-
line during the single fitness test.

2 Background

Lamarck’s theory of evolution states that adapted traits are
inheritable [1]. The discovery of germ cells disproved
Lamarck’s theory, still Baldwin suggested that there could
have been a “new factor” that might operate in a similar



way.
The Baldwin effect [2] states that phenotypic plasticity

would allow adaptation to partially successful mutations,
smoothing the fitness landscape and increasing the efficency
of the evolutionary process.

However, phenotypic plasticity has inherent costs asso-
ciated with the training phase in terms of energy, time and
eventual mistakes. For these reasons, in a second phase,
evolution may find a way to achieve the same successful be-
haviors avoiding plasticity. Thus a behavior that was once
learned may eventually become instinctive.

In computer science, the phenotypic plasticity is analog
to a local search strategy. The evolutionary process and the
local search may be used in combination, often achieving
higher efficency than either of the methods alone [6, 4, 7].

Hinton and Nowlan [7] were the first to prove the ben-
efits of the Baldwin effect in a computer simulation. In a
needle in the haystack function optimization problem, they
showed that a local search mechanism could speed up evo-
lution. The difficulty of the fitness landscape is dampened
by the local search strategy, but since each step of the local
search requires an additional fitness evaluation, the speed
up of the evolutionary search is paid by the increased time
required for each generation.

A different picture appears when considering the evolu-
tion of systems that require long fitness tests, for example
controllers for situated agents. To get a good evaluation of
the agent’s fitness, it is often necessary to run several hun-
dreds activations of its controller, see [16, 14, 15] among
others.

In this context it is possible to add learning without re-
quiring additional fitness evaluations. For example we can
suppress behaviors that lead the robot to immediate negative
reinforcements, such as when it hits an obstacle during the
fitness test.

3 The model

We set up a population of 30 learning individuals that move
in a 20×20 toroidal world. The world contains 30 of each
of the two different types of resources: food and poison (see
figure 1). When an agent visits a tile containing a resource it
consumes it, receiving an immediate reinforcement. When
consumed, the resource is removed and regenerated at ran-
dom in the world.

The fitness is defined as the sum of the accumulated re-
inforcements over 150 simulation steps.

Each simulation step, an agent’s reinforcement is com-
puted as the sum of any of the following:

+0.8 if visiting a tile containing food
-0.8 if visiting a tile containing poison
-0.1 if colliding with another agent
-0.1 if the agent did not move

Each individual/agent is equipped with two different
controllers. The first, a single layer neural network (NN)
with hyperbolic tangent transfer function, is subject to an
evolutionary process. The second is a classifier-like system

(memes) and models the individual culture.
Agents perceive resources and other bots from all the 13

tiles within a hamming distance of 2 (see figure 1), this con-
stitutes the input vector for both controllers.

For each of the 13 tiles, the 39 element boolean input
vector contains a triplet T1−3 such as

T1 1 if the tile contains food, 0 otherwise
T2 1 if the tile contains poison, 0 otherwise
T3 1 if the tile contains an agent, 0 otherwise

The neuro-controller also receives an additional input,
always set, to provide the network bias.

The action performed by an agent is computed as fol-
lows:

• The NN produces 5 outputs. Each output is inter-
preted as the anticipated reinforcement (RA) for each
of the possible actions: don’t move, go north, west,
south and east. This constitutes the agent’s instinc-
tive response.

• The memes produce a set of reminders. Each re-
minder contains an action a and an experienced re-
inforcement RE . These tell the agent that it seems
to recognize the current input and that if action a is
performed it will yield a reinforcement equal to RE .
This set constitutes the acquired responses.

• Acquired responses RE replace the corresponding in-
stinctive ones RA (see figure 2), this constitutes the
vector of expected reinforcements. The action with
the highest expected reinforcement is selected with .7
probability. Otherwise a random action is selected.

3.1 genetic evolution

Given that the NN receives 40 inputs (a triplet for each of
the 13 tiles within an agent’s vision range, plus a bias),
and that it produces 5 outputs (RA), the weight matrix
∈ <{(39+1)×5}.

The neuro-controller genotype is a linear gray-coded
representation of its weight matrix.

Each generation, the best scoring 25% of the population
survives and reproduces. Three quarters of the offspring are
generated by the crossover of two randomly selected repro-
ducing individuals; the remaining are generated by mutation
of a single parent.

Mutation modifies each weight with a .2 probability by
adding to it Gaussian noise with .25 variance.

As each NN can be considered composed of 5 indepen-
dent sub-nets, one for each output, crossover produces two
new individuals shuffling the parents sub-nets.

3.2 memetic evolution

Memes ideally remind the agent of the reinforcement ex-
perienced in the past1. They consist of an input pattern P ,
an action a, a value V and an experienced reinforcement
RE . If the pattern P matches the present input vector, then

1a meme could also have been acquired by communicating with other
agents



Figure 1: Simulated En-
vironment. The vision
range of agent 1 is shad-
owed and surrounded by a
thick line. The two differ-
ent types of resources are
represented by squares of
different colors. The re-
sources represented by a
darker color give a fixed
negative reinforcement and
fitness value (-0.8), while
the others give a fixed posi-
tive value (+0.8). Resource
types never change value
and when consumed are re-
generated on a random tile.
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the meme replaces the output of the genetically evolved NN
with RE for the given action a. Basically the meme can rec-
ognize a particular sensory context (P ), and it reminds the
agent that in the past he had performed a certain action (a)
and the action yielded a given reinforcement (RE). If two
memes match the current input, the one with highest value
is used.

The input pattern P is a {−1, ∗, 1}39 vector. Each ele-
ment of P matches an element of the input vector. ∗ is a
don’t care symbol and matches any value of the input ele-
ment.

An agent culture consists of up to 20 memes. Memes
can be acquired either by transmission or by operant condi-
tioning.

Transmission occurs whenever two individuals are next
to each other. In such a way, the two agents can acquire
each other’s memes.

When an agent experiences an unexpected reinforcement
a meme is generated through an operant conditioning mech-
anism. A reinforcement (R) is unexpected if the instinctive
anticipation (RA) is too different from the actual one:

R is unexpected if | RA −R | ≥ 0.075

The meme’s pattern P is set to match the input vector
proceeding the reinforcement, a is set to the performed ac-
tion, RE to the reinforcement and V equals | R |.

Memes variants are generated by merging, a stochas-
tic generalization mechanism. Merging can occur if two
memes code the same action and expected reinforcement.
In this case, the merging probability (PM ) is inversely pro-
portional to the hamming distance (dH ) between the memes

input matching patterns:

PM (memei, memej) = 1−
dH(Pmemei

, Pmemej
)

39

where the distance between elements containing a ∗ is 0.
Merging is seen as a weak simplification of a boolean

functions:
given (P1∧a 7→ R) and (P2∧a 7→ R) then with a probabil-
ity proportional to the similarity of P1 and P2 replace them
with ((P1 ~ P2)∧ a 7→ R); where Pi ∈ pattern, a ∈ action,
R ∈ reinforcement and ~ is a bitwise operator:

~(bi, bj) =

{

bi if bi = bj

∗ if bi 6= bj

The value of the new meme is set to | R | ·N∗ where N∗

is the number of don’t care symbols in the new meme.
If it does not merge, a meme can be added only if the

meme pool size does not exceed the maximum. If the max-
imum is exceeded a meme is dropped, the one with lower
value being dropped with higher probability. Because merg-
ing of memes can sometimes produce unfit memes, if the
expected reward does not match the one experienced, the
meme responsible for the error is instantly removed.

3.3 Lamarckianism

Since memes are generated when the neuro-controller
makes a prediction error, the situations that their patterns
represents are a source for possible improvements of the
genotype. A meme can then be used as a training example
with which increase the neuro-controller performance.



Figure 2: Agent controller.
The genetically evolved NN
and the acquired culture are
activated in parallel. When a
pattern matches the current in-
put, the corresponding meme
is activated (encircled in the
figure). The meme’s RE value
(+.8) replaces the NN out-
put (−.15) for the correspond-
ing action (go west). This
modified output vector is inter-
preted as the agent’s expected
reinforcements when perform-
ing each of the possible ac-
tions. The action that is ac-
tually performed is selected
stochastically giving a .7 prob-
ability to the one with high-
est value in the modified out-
put vector. If, after performing
the an action, the actual rein-
forcement received is too dif-
ferent from the expected one,
the agent’s culture is modified
(refer to section 3.2).
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In this way, acquired behaviors are coded back into the
genotype in a lamarckian process.

At the beginning of each new generation, all the popu-
lation undergoes a training phase based on its acquired be-
haviors. Each individual’s culture is used to train its neural
network in 10 steps of back-propagation. The gradient is
computed in batch mode using each meme as a training ex-
emplar. ∗’s are replaced by zeros for this purpose. A learn-
ing rate of .25 is used.

The offspring uses one of the parent’s culture for training
(but does not inherit the culture itself).

This method cannot compute the exact gradient as each
∗ symbol distorts the error back-propagation. In fact, pat-
terns containing N∗ don’t care symbols, should have each
of them replaced by {−1, 1}. But this would give rise to the
expansion of 2N∗ training exemplars for each pattern, with
the result being too computationally expensive.

Because of this distortion, the training mechanism is ac-
tually performing only an incomplete back-coding of the ac-
quired behaviors.

4 Results

We have tried four different simulation settings:
• Genetic: standard genetic evolution without memes.

• Memetic: no evolution, individuals continue acquir-
ing memes through all the simulation. All instinctive
outputs are set to zero.

• Baldwinian: both memes and genes evolve. No back-
coding takes place.

• Lamarckian: both memes and genes evolve. Memes
are used to modify the genes.

Figure 3 shows the average over 10 runs of the average
population fitness with and without the help of memes. Se-
lection is performed on fitness values plotted in figure 3A,
but since the task is to optimize the evolution of the geneti-
cally encoded NN, its performance is given in figure 3B.

Memetic performance increases more quickly than the
genetic one. The average fitness scored at generation 25 by
memetic populations is at least as high if not better than any
of the others even after 500 generations.

But since memes can suggest only actions that yield an
immediate reinforcement, the genetically evolved NN could
take advantage of the two squares vision range, also ap-
proaching distal resources.

Tests performed on a population with an optimal one-
square vision controller gave a score of ∼14, while with
an optimal two-square vision controller the score was ∼20.
This means that a genetically evolved NN can score 40%
higher fitness.

The baldwinian simulations are the most penalized from
the use of memes. The acquired behaviors appear to mask
the pressure towards the evolution of the appropriate neuro-
controller.

An interesting picture emerges in the comparison be-
tween lamarckian and genetic simulations. During the first
250 generations, lamarckian runs outperform standard ge-
netic evolution. After that the hiding effect takes over and
while the standard genetic evolution keeps on improving
the neuro-controller performance, lamarckian populations
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Figure 3: Inclusive Fitness and neuro-controller performance plots. A: inclusive fitness. B: neuro-controller performance.
The performance of the neuro-controller is computed without the mediation of agent’s cultures, in this way only the evolved
NN is responsible of the agent’s fitness. Population averages over 10 runs.

show a vary slow increase.
The problem is that their behavior is still very depen-

dent on culture. Genetic assimilation and back-coding of
memes, should make the genotype less prone to mistakes
and hence reduce cultural acquisition (see section 3.2). This
effect takes place but is shown to be slow, see figure 4.
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Figure 4: Population average of the number of memes used
calculated over 10 runs. Both genetic assimilation and back-
coding are slowly reducing the need of memes.

Partial lamarckianism, i.e. only a fraction of the popu-
lation undergoes the back-coding phase, cannot solve this
problem, see figure 5. The stagnation of the evolutionary
process is not caused by convergence to a local optima, but
by the hiding effect cause by the individuals’ cultures.

To reduce the hiding effect, it is possible to progressively
decrease the maximum number of memes. This will unmask
the advantage for the refinement of the neuro-controller in a
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Figure 5: Neuro-controller performance plots for popula-
tions with partial lamarckianism. The fraction of the popu-
lation to which back-coding is applied is varied from 0 to 1
(lamarck share).

second phase of the evolutionary process.
The maximum number of memes is reduced every 50

generations from 20 to 0, and at the same time, each indi-
vidual culture is reset.

As the inclusive fitness must increasingly rely on the
genetically evolved NN, pressure is gradually shifted from
memes to genes. Results show that populations using lamar-
ckianism have both a higher average and steeper increase in
performance, see figure 6.

Figure 7 presents a summary of the performance for the
best populations with different experimental settings. Ev-
ery population with a neuro-controller capable of scoring
a fitness greater than 15 is represented by a dot. Popu-
lations scoring more than 19 contain almost only optimal
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Figure 6: Inclusive Fitness and neuro-controller performance plots with a decreasing maximum culture size. Vertical
lines indicate when the meme pool is reset and shrunk. The average performance of the genetic simulations is plotted for
comparison. A: inclusive fitness. B: neuro-controller performance. The performance of the neuro-controller is computed
without the mediation of agent’s cultures, in this way only the evolved NN is responsible of the agent’s fitness. Population
averages over 10 runs.

controllers. The plot shows the performance enhancement
given by lamarckianism with a decreasing culture size.

5 Conclusions

This paper introduces a hybrid model of genetic and cultural
evolution. The objective is to develop a neuro-controller for
situated agents performing a harvesting task.

Cultural evolution is based on a simple mechanism of
operant conditioning and memetic transmission. Given that
there are 239 possible inputs and that there are 339 different
matching patterns, developing general and fit memes with-
out a priori knowledge is not a trivial task. Cultural evolu-
tion is shown to quickly develop behaviors that constitute
an incomplete but fit strategy.

The incompleteness of the memetic strategy arises from
its innovation process, which considers only immediate
sources of reinforcements. Nevertheless, back-coding of
memes allows individuals to quickly assimilate behaviors,
speeding up the development of an optimal controller.

After this phase of increased evolutionary speed, culture
appears to mask any further development. Being based on
expectation, the acquisition mechanism was designed to al-
low un-masking of the complete strategy. This effect takes
place but is very slow.

To accelerate it, the maximum number of memes is ex-
ternally reduced, thus forcing individuals to rely more and
more on instinctive behaviors. The method is shown to in-
crease the performance of baldwinian and lamarckian sim-
ulations, with the latter capable of outperforming the other
evolutionary strategies both in convergence speed and fit-
ness score.

Lamarckian populations seem to benefit from the incre-
mental refinement of the harvesting strategy. Mediated by
cultural evolution, at first individuals develop a one-square
vision optimal strategy and only afterwards, with the dis-
appearance of memes, the two-square vision strategy is ob-
tained.

These results suggest a methodology for an incremental
development of control strategies. By assigning a reinforce-
ment to causes of immediate fitness change (i.e. hitting a
wall, entering a target zone or moving to full speed) and
with culture back-coding, individuals will quickly learn to
perform well in the most trivial cases. Individuals can there-
after discover the complete control strategy building upon
the incomplete memetic one, thus saving evolutionary time.

As a final remark, the benefits of the lamarckian process
must be inclusive of the overhead introduced by the local
search mechanism. As in Houck et al. [4] it is necessary
to compare performance taking as a reference the number
of function evaluations and not generations alone. To this
respect, cultural evolution does not require additional ef-
fort. In spite of this fact, populations with a maximum of
20 memes ran in simulation up to 4 times slower than those
that did not use memes.
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Magic: SourceMage GNU/Linux as HPC
Cluster OS. to appear in Proceedings Lin-
uxtag 2003, Karlsruhe, Germany, July 2003.
http//clustis.idi.ntnu.no/



Paper E 81

E Increasing the evolvability of development with

Embryonal Stages

Author: Diego Federici. Published in proceedings of WORLDS Workshop on Re-
generation and Learning in Developmental Systems, hosted by GECCO 2004

Abstract:

Indirect encoding methods are aimed at the reduction of
the combinatorial explosion of search spaces, therefore
increasing the evolvability of large phenotypes. These so
called Artificial Embryogeny systems have so far shown
increased scalability for problems involving solutions of
low complexity. This leaves open the more general ques-
tion about the evolvability of complex phenotypes. In
this paper, we introduce a novel method of cellular
growth regulated by a developmental program. Geno-
types are selected for their ability to develop organisms
of specific shape and cell types. Results show that the
use of Embryonic Stages, which involves the incremental
addition of growth programs, displays positive effects on
the evolvability of development.

Objective:

Development appears very interesting for the evolution
of large phenotypes, still previous work has produced
only limited results. Here we introduce a general method
to increase the heterochrony of development and, as a
consequence, evolvability.

Conclusions:

The performance of the evolutionary systems is promis-
ing. Still, further investigations of the general properties
of the model are required.
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Abstract. Indirect encoding methods are aimed at the reduction of
the combinatorial explosion of search spaces, therefore increasing the
evolvability of large phenotypes.
These so called Artificial Ebryogeny systems have so far shown increased
scalability for problems involving solutions of low complexity. This leaves
open the more general question about the evolvability of complex phe-
notypes.
In this paper, we study the evolvability of a model of cellular growth
regulated by a developmental program. Genotypes are selected for their
ability to develop organisms of specif shape and cell types.
Results show that a particular method involving Embryonal Stages dis-
plays positive effects on the evolvability of developmental programs.

1 Introduction

The evolution of large phenotypes is one of the most serious problems in the field
of evolutionary computation (EC). With each characteristic of the phenotype
encoded by a single gene, the increase of the phenotipic size imposes for direct
encoding strategies a combinatorial explosion of the search space.

On the other side, biological systems develop into mature organisms with
a complex process of embryogeny. Embryogeny is mediated by the interaction
of DNA, RNA and proteins to produce the cell regulatory system. This sort of
interaction does not permit a one to one map from gene to phene, since each
gene influences several aspects of the phenotype.

Motivated by the development of biological systems, several authors have
proposed indirected encoding schemes. With indirect encoding, each phenotype
is developed by a process in which genes are reused several times. The term
‘Artificial Embryogeny’ (AE) has been recently proposed to describe these evo-
lutionary systems [1].

In AE, development is de facto a decompression of the genotype. Since com-
pression is generally higher for regular targets, a serious question is how much
these methods will prove viable for the evolution of high complexity phenotypes.

Hints in this direction, also come from a recent study on Matrix Rewriting [2],
showing how the genotpye-pheotype correlation decreases with the complexity
of the phenotype [3].



2 Diego Federici

In this paper we present a model of cellular growth which is targeted to
the development of multi-cellular organisms of specific two dimensional shapes
and colors. These organisms must be intended as a metaphor of functional de-
vices, in which each color represents the specific function of the cell and the 2D
displacement encodes their local connectivity.

For example, such organisms could develop decentralized locally connected
digital circuits [4] or layers of artificial neural networks [5].

In AE, growth methods are either based on rewriting rules or cell chemistry
models. The firsts, like the well known Cellular Encoding [6], evolve the rules
of a grammar used to produce the mature organisms. The seconds proceed by
evolving the cell metabolism thus controlling the state and development of the
phenotype.

The model presented in this paper belongs to this second category. Pheno-
types are multi-cellular organisms in which each cell shares the same growth
program. The growth program regulates the cell type, chemical production and
replication based only on the state of the particular cell and of its neighborhood.

Also belonging to this cathegory, Bentley and Kumar proposed a model which
develops 2D tiling patterns [7]. Cells can only be of a single type and the aim is
to produce perfect tessellating phenotypes. The growth program is composed by
a set of rules which upon matching the state of the local neighborhood activate a
specific cellular response. Results showed that the systems performed and scaled
better than a direct encoding method. On the other side, the best solutions
developed had very regular phenotypes.

Miller extended Bentley and Kumar’s model and developed more complex
patterns [8]. He allowed 4 different cell types (colors) and a chemical undergoing
diffusion. The growth program is a boolean network evolved with the Cartesian
Genetic Programming. Results showed evolved phenotypes resembling the target
with only very few misplaced cells.

Additionally, Miller analyzed the behaviour of the evolved phenotype after
the developmental step in which the fitness was computed and when subjected to
severe mutilations. Phenotypes were shown to regrow the missing parts regaining
qualitative resemblance to the target. The self repair feature is very interesting
since it was not selected for during evolution.

Additional references can be found in the work of Stanley and Miikkulainen
which have proposed a survey and a taxonomy for AE systems [1]. Another
survey, addressing more specifically AE in control systems, can be found in [9].

Albeit that AE is showing promising results, it suffers from a general dif-
ficulty connected to the evolvability of the genotypes. Miller reported that in
the development of a specific ‘french flag’ pattern few runs produced satisfiable
results. The other tended to be stucked in local optima.

One of the reasons for this is intrinsic to the idea of gene reuse. In fact, if we
immagine an individual of high fitness with only a few misplaced phenes, a direct
encoding method could allow the tweaking of the few corresponding uncorrect
genes allowing the cumulative refinement of the phenotype. In the case of indirect
encoding, the change of the same few phenes may require a complete redesign
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of the genotype. In fact, the corrisponding genes might be resposible for other
features of the phenotype in other developmental stages. Their change may cause
interferences in the maturation of the organism with catastrophic effects.

Therefore AE models may be prone to create deceptive fitness landscapes as
the results in [3] seem to suggest. To reduce this effect and increase evolvability,
in this paper we have adopted three strategies.

1. An Artifical Neural Network (ANN) encodes the growth program. Compared
to discrete rules, the space of continuous functions representable by ANNs
allows a finer tuning of cellular responces. In this case, escaping local optima
should be easier.

2. Population diversity is increased rewarding fitness to individuals with rare
phenes. This reduces the chances that innovation, which in developmental
systems have saltatory charactarestics, may favor a single strain of genotypes.

3. Development may happen in more than one Embryonal Stage. The single
growth program is sub-divided in several stages each one governing the de-
velopment at subsequent times. Stages are evolved incrementally, the first
being evolved before. Embryonal Stages resemble but are capable of differen-
tiate from the previous ones, therefore allowing genetic refinement without
interference and a ‘zoom-in effect’ in the search space.

The remaining of the paper is organized as follows: section 2 contains a
description of the evolutionary task, section 3 the developmental model, section
4 the details of the genetic algorithm, section 5 the results of the simulations
and section 6 the conclusions.

2 The evolutionary task

Yet an other issue in AE is the proper choice of the targets used for benchmark-
ing. In [1] the authors suggest 4 different tasks: evolution of pure simmetry, of
specific shapes, of specific conenctivity patterns and of a simple controller.

In the simulations presented we have selected four shapes with various levels
of simmetry. Fig.1A is a pattern composed of three colored stripes similar to
the one used in [8]. Fig.1B has a bounding layer which insulates the internal
cell type from the outside. Fig.1C contains repetitions of a simple ‘plus’ pattern.
These sort of regularities should be exploitable by AE systems. Fig.1D is a more
complex Norwegian flag pattern and can be seen as a vertical and horizontal
insulated wiring.

Fitness is proportional to the resemblance of an individual to the target, and
is computed as shown in equation 1.

FIT (P, T ) =
( ∑

x,y EQUALS (P, T, x, y ) · PheneV alue(x, y)
)

/ ||T ||

EQUALS (P, T, x, y ) =
{

0 if P (x, y) 6= T (x, y)
1 if P (x, y) = T (x, y)

(1)
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A B

C D

Fig. 1. The four targets of the evolutionary task. A) a three-stripes pattern, B) a
bounded pattern, C) a group of pluses, D) a Norwegian flag pattern. Development
could take advantage of the various degrees of simmetry and modularity of the targets.

where P is the phenotype to evaluated, T the target, and PheneV alue(x, y)
is the frequency in the population of the phene in position x, y. PheneV alue is
used to increase population diversity (see also section 4.1).

3 The developmental model

Phenotypes are developed starting from a single egg (zygote) placed in the center
of a fixed size 2D grid. Morphogenesis proceeds in discrete developmental steps,
during which the growth program is executed for each cell. The execution order
is determined by age, older cells being taken first.

Cells (see figure 2) are characterized by internal and external variables. Inter-
nal variables define the cell state and move with it, while external ones (chemi-
cals) belong to the environment and follow a simple diffusion law.

At each developmental step, any existing cell can release chemicals, change
its own type, alter the internal metabolism and produce new cells in the cardinal
directions North, West, South and East. If necessary, existing cells are pushed
sideways to create space for the new cells (see figure 3). When a cell is pushed
outside the boundaries of the grid it is permanently lost.

Morphogenesis is governed by an Artificial Neural Network (Morpher) de-
fined by the genotype. The genotype is a direct gray-code representation of the
Morpher. The hyperbolic tangent is used as transfer function.

The Morpher (figure 4) receives in input the current cell internal and external
variables, and the cell types of the neighboring cells in the four cardinal direc-
tions. Its output determines the new internal and external variables of the cell
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Fig. 2. Description of the variables used for development. External variables follow a
diffusion law, while internal ones move with the cell. While chemical concentrations,
internal and external, vary in the range [0, 1], the cell type can take one of 4 discrete
values

and, in case, the internal variables of the newly generated cells. An additional
local variable, the cell age, is set to 1 at birth and decays exponentially to 0.

Chemical production and internal metabolism values are read directly to and
from input and output lines, one line being dedicated to each different internal
or external chemical. The cell type is encoded / decoded from a single value as
shown in Eq.2 and 3.

Encode(value) =





0 if v < −2/3
1 if v ∈ (−2/3 0)
2 if v ∈ [0 2/3)
3 if v > 2/3

(2)

Decode(type) =





−1 if t = 0
−1/3 if t = 1
1/3 if t = 2
1 if t = 3

(3)

In these simulations, feedforward networks with four hidden units have been
used.

4 The evolutionary model

Each population in the simulations presented is composed by 400 individuals
undergoing elitarian selection with a survival share of 1/8. A tenth of the new
individuals are produced by crossover, while all the offspring undergoes mutation.
The mutation operator takes each weight with a Pmut probability and adds to
it Gaussian noise with Vmut variance.
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A

B

B

A A'

A generates A' pushing B sideways

Fig. 3. Placement of new cells. If necessary, space is created by pushing sideways
existing cells. Cells falling off the development grid are lost.

Pmut and Vmut vary in the ranges [.01, .2] and [.035, .1] respectivelly. Their
value is proportional to the time passed from the last increase in the top fitness
score, reaching the maximum in ten generations. These values have being selected
after a preliminary study on short evolutionary runs, proving to be more effective
than fixed ones.

4.1 population diversity

Often, in AE systems, evolutionary improvements have saltatory characteris-
tics. Under these conditions a positive innovation can increase the reproductive
chance of a particular strain reducing the chance of survival of all others. This
increases the chances of convergence to local optima.

To increase population diversity, fitness scores are modified looking at the
frequency of the phenes that individuals possess, counteracting homogenization
and favoring individuals with rare characteristics:
(1) the population is first ordered by fitness values before modification (in case
of ties younger individuals go first).
(2) fitness scores are recomputed following this order, but the value for each
phene (PheneV alue in Eq.1) decreases linearly with use from 1 to 1/100.

4.2 embryonal stages

Biological organisms have the interesting property that embryonal developmental
stages of philogenetically related species share similarities:
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Fig. 4. Inputs and outputs of the growth program, the Morpher, implemented with a
feedforward ANN. Each cell internal variables, cell type and metabolism, implement a
direct feedback pathway, while chemical production and diffusion offer a channel for
longer range communication.

It is generally observed that if a structure is evolutionary older than an-
other, then it also appears earlier than the other in the embryo. Species
which are evolutionary related typically share the early stages of embry-
onal development and differ in later stages. [...] If a structure was lost in
an evolutionary sequence, then it is often observed that said structure is
first created in the embryo, only to be discarded or modified in a later
embryonal stage. Wikipedia [10]

This apparent relationship between ontogeny and philogeny, which should
not be confused with the discredited Recapitulation theory, suggests that multi-
cellular organisms evolve new traits incrementally over older phenotipic charac-
teristics.

In fact, the modification of early embryonal stages may disrupt development
with catastrophic results. Therefore, mutations affecting later stages of the on-
togenetic process will have a higher probability to be useful.

This suggests, also for AE, that decreasing the chances of modification of the
early steps of development will increase evolvability. Although such preservation
mechanism could be found by means of evolution, to simplify the evolutionary
task we propose an explicit mechanism for it.

We allow growth to be controlled by a set of programs. Phenotypes are
developed in subsequent embryonal stages, each one governed by a different
program.

At the beginning of the evolutionary search, organisms develop in a single
stage. When a certain performance or generation are reached a new stage is
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Fig. 5. Embryonal stages. Stages are introduced incrementally, and they govern on-
togeny from a pre-determined developmental step. Only the latest step is subject to
evolutionary operators, the others are fixed.

added. While the older stage starts the ontogenetic process as usual, the new
one will assume control at a pre-determined developmental step completing the
maturation of the organism (see Figure 5).

The new stage developmental program is initialized as a copy of the previous
one. In this way, at first, the introduction of new stages does not alter ontogeny.
On the other side, the innovation operators are allowed to modify only the
program of the latest embryonal stage without affecting any of the previous
ones.

Additional stages, being built upon the previous ones, add resolution to the
specific spot in the search space. This allows an incremental refinement of the
ontogenetic process, helping escaping local optima due to interference effects.

In the case of complex phenotypes, this positive effect should be even more
visible, since the amount of information required to produce them is higher, as
the chances of gene’s interference.
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5 Results

The performance of runs with and without embryonal stages is compared. Sim-
ulation specific details are given below:

– 1000 generations maximum.
– fitness is computed at developmental steps 7 and 8. Fitness values are ex-

pressed in % of target resemblance.
– simulations can have either 1 or 5 embryonal stages. Where used, new stages

are introduced at generations 500, 750, 875 and 938, or when a maximum
population fitness of 75%, 83%, 92% and 100% is reached. Each stage takes
development from steps 0, 4, 5, 6 and 7.

– cells can release one external and one internal chemicals.

Statistics from 10 runs with each parameter settings (target and number of
stages) are shown in the following table.

target shape (see fig.1)
phases bounded 3 stripes flag pluses

max 95% 84% 86% 83%
1 avg 83% 76% 78% 79%

min 70% 68% 72% 78%

max 99% 98% 94% 88%
5 avg 91% 88% 88% 83%

min 89% 77% 76% 81%

fitness change +4% +16% +12% +5%

From the results above, it is evident that embryonal stages have a positive
effect in all cases. Also, performance is somewhat proportional to the regularity
of target phenotypes.

In figures 6–9 is possible to see the development of the best evolved individu-
als. Steps 7 and 8 (highlighted in the figures) are the only ones used to calculate
fitness. This means that the following steps, 9 and 10, are not relevant for selec-
tion purposes. Even though, individuals maintain a resemblance to the target,
with a few of them, such as the one in figure 7, reaching a developmental stasis.

The modular target of figure 9, which is also the less regular, proved to be the
most difficult to evolve. Development is very chaotic until it reaches the steps
in which fitness is checked. This lack of regularity during development suggests
that, under such conditions, modular decomposition will be hardly achieved by
means of gene reuse. In fact, neighbors and chemical concentrations will generally
share little similarity in the places where modules should develop.
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Target Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Fig. 6. development of the best ‘bounded’ individual

Target Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Fig. 7. development of the best ‘3 stripes’ individual

Target Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Fig. 8. development of the best ‘norwegian flag’ individual

Target Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Fig. 9. development of the best ‘pluses’ individual

We have also checked how well these organisms responded to damage. The
best evolved individuals have been developed with various degrees of cellular
necrosis. At selected developmental steps, a number of cells have been removed
from the phenotype (but at least one cell was left). The average fitness of the
final organisms are plotted in figure 10.

Since cells in early developmental steps are more important for development,
one would expect a domino effect on fault propagation. Still performance de-
grades linearly the earlier damage is applied. Organisms seem to limit the effect
of faults during development. This behavior was not selected for and is similar
to what reported in [8].
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Fig. 10. Impact of cell death at different developmental steps. Average fitness com-
puted over 20 random development faults consisting of 1 to 4 cell deaths. Countrary
to intuition, faults do not propagate exponentially during development.

6 Conclusions

An artificial embryogeny (AE) model has been proposed and tested in the de-
velopment of four two dimensional targets of specific morphology. The system
is based on the evolution of a growth program that regulates the ontogeny of
multicellular organisms starting from a single egg cell.

This model is aimed at the construction of an evolutionary platform for the
development of functional organisms, such as locally connected digital circuits
[4] or neural networks [5].

The primary aim of the paper is to investigate the effects of multiple embry-
onal stages on evolvability. This method of incremental development is devised to
reduce the catastrophic interference caused by the change of genes that regulate
ontogeny in different growth phases.
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Results show that embryonal stages have positive effects on performance,
even if specific targets still prove hard to evolve.

Also, the behavior of phenotypes undergoing different degrees of damage
during development was analyzed. Similar to results in [8] individuals showed
a good resistance to faults. This is particularly interesting since there was no
selection for this characteristic.

6.1 further work

The role of chemicals, both internal and external, deserves additional investiga-
tion. For example, we have noticed that the evolution of the ‘bounded’ target
benefits from the presence of an external chemical, while the ‘pluses’ performs
better when only internal chemicals are present. For the other two targets, per-
formance increases when chemicals are not present at all.

Also, the scalability of these development systems should be put to the test,
searching for the relation between evolutionary effort and size of the search space.
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Abstract:

Evolving large phenotypes remains nowadays a prob-
lem due to the combinatorial explosion of the search
space. Seeking better scalability and inspired by the
development of biological systems several indirect ge-
netic encodings have been proposed. Here two differ-
ent developmental mechanisms are compared. The first
(POEtic), developed for hardware implementations, re-
lies on simple mechanisms inspired upon gene regula-
tion and cell differentiation. The second, inspired by
Cellular Automata, is an Artificial Embryogeny system
based on cell-chemistry. This paper analyzes the scala-
bility and robustness to phenotypic faults of these two
systems, with a direct encoding strategy used for com-
parison. Results show that, while for direct encoding
scalability is limited by the size of the search space, de-
velopmental systems performance appears to be related
to the amount of regularity that they can extract from
the phenotype. Finally the importance of comparing
different genetic encodings is stressed, in particular to
evaluate which key characteristics are necessary for bet-
ter scalability or fault-tolerance. The lack of standard
tests or benchmarks is highlighted and some character-
izations are proposed.

Objective:

Compare the scalability of two different indirect encod-
ing approaches against direct encoding.

Conclusions:
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In a task that is favourable for direct encoding, both
indirect methods produce more efficiently large pheno-
types. Also, the distributed nature of the encoding can
be exploited to achieve high levels of fault-tolerance.
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Abstract. Evolving large phenotypes remains nowadays a problem due
to the combinatorial explosion of the search space. Seeking better scal-
ability and inspired by the development of biological systems several
indirect genetic encodings have been proposed. Here two different devel-
opmental mechanisms are compared. The first, developed for hardware
implementations, relies on simple mechanisms inspired upon gene regula-
tion and cell differentiation. The second, inspired by Cellular Automata,
is an Artificial Embryogeny system based on cell-chemistry. This paper
analyses the scalability and robustness to phenotypic faults of these two
systems, with a direct encoding strategy used for comparison.
Results show that, while for direct encoding scalability is limited by the
size of the search space, developmental systems performance appears to
be related to the amount of regularity that they can extract from the phe-
notype. Finally the importance of comparing different genetic encodings
is stressed, in particular to evaluate which key characteristics are neces-
sary for better scalability or fault-tolerance. The lack of standard tests
or benchmarks is highlighted and some characterisations are proposed.

1 Introduction

The evolution of large phenotypes is one of the most serious problems in the field
of evolutionary computation. With each characteristic of the phenotype encoded
by a single gene, the increase of the phenotypic size imposes for direct encoding
strategies a combinatorial explosion of the search space.

On the other hand, biological systems develop into mature organisms with
a complex process of embryogeny. Embryogeny is mediated by the interaction
of DNA, RNA and proteins to produce the cell regulatory system. This sort
of interaction does not permit a one to one map from gene to phenotypic trait
(phene), since each gene influences several aspects of the phenotype (pleiotropy).

Motivated by the development of biological systems, several authors have
proposed indirected encoding schemes. With indirect encoding, each phenotype
is developed by a process in which genes are reused several times.

In this case, development is de facto a decompression of the genotype. But
since compression is generally higher for regular targets, a serious question is how



much these methods will prove viable for the evolution of arbitrarily complex
phenotypes. For example, the correlation between genotype and phenotype space
may decrease as the complexity of the target increases [1].

In other words, when looking at system evolvability, it appears that there is
a tradeoff between the combinatorial gain achieved by searching in a restricted
genotypic space and hindrances of a more complex fitness landscape caused by
gene reuse.

Additionally, the restriction on the search space implies that a part of the
solution space becomes unreachable, and some targets (such as those of high
regularity) might be more viable than others.

These considerations imply that in the analysis of such systems, performance
benchmarks play a fundamental role. Still, there is little agreement on a set of
evolutionary targets that can be used for assessing their quality. On the contrary,
it appears that the tasks are often selected ad hoc to highlight the strengths of
a particular model.

In this paper we want to compare two different developmental models, the
first used in the POEtic circuit [2, 3], the latter an Artificial Embryogeny system
[4] based on cell chemistry [5, 6]. The comparison is carried out for varying
phenotypic sizes, against a direct encoding strategy in a task that should favour
the latter.

The intention is to investigate the viability of these two indirect encoding
methods without leaving doubts about the generality of the results.

To this end, we have tried to set up a ‘worst case scenario’ for developmental
systems, pushing for results that do not depend on particular features of the
targets.

The selected task is the evolution of specific 2D patterns of various complexity
(figures 3 and 4) and sizes (from 8x8 to 128x128), with fitness being proportional
to the resemblance to the target. In the case of the direct encoding strategy, with
a gene representing a single pixel, the fitness landscape is a simple unimodal
function. On the contrary, in the case of development, gene reuse may imply a
multimodal deceptive fitness landscape. Thus, the comparison of the methods
will allow to address the influence of search space and pleiotropy on evolvability.

Development systems also provide internal dynamics which are absent in
direct encoding strategies. These dynamics may provide a way to withstand
phenotypic injuries. This aspect is explored by comparing the tolerance to faults
of both systems with the linear deterioration typical of direct encodings.

The remaining of the paper is organized as follows. Section 2 gives an overview
of the development systems, section 3 describes the evolutionary task, section 4
presents the results on fault resistance and section 5 concludes.

2 Multi-cellular growth and differentiation mechanisms

2.1 Morphogenetic System (MS)

The morphogenetic system [3] (MS) is a developmental model designed for
multi-cellular systems and focusing on simplicity and compact hardware imple-



mentation, initially developed for the POEtic circuit [2]. It uses signalling and
expression mechanisms which are remotely inspired by the gene expression and
cell differentiation of living organisms [7], notably by the fact that concentra-
tions of proteins and inter-cellular chemical signalling regulate the functionality
of cells. Related works include the use of L-Systems [8] and various cell-based
developmental processes [9, 10], and biologically plausible development models
[11].

The MS assigns a functionality to each cell of the circuit from a set of
predefined functionalities. Here functionalities are the colours necessary to draw
the patterns. It operates in two phases: a signalling phase and an expression
phase.

The signalling phase uses inter-cellular communication to exchange signals
among adjacent cells to implement a diffusion-like process. A signal is a simple
numerical value (signal intensity) that a cell owns. Special cells, called diffusers,
own a signal of maximum intensity and start the diffusion process. Diffusion
rules rely on the four neighbours of a cell to generate signal intensities which
decrease linearly with the Manhattan distance from the diffuser. They do so by
taking the smallest value for which the signal gradient with all the initialized
neighbours is -1, 0 or 1. Figure 1 shows an example of the signalling phase in the
case of a single type of signal, with two diffusers placed in the cellular circuit.

The expression phase finds the functionality to be expressed in each cell by
matching the signal intensities in each cell with a corresponding functionality
stored in an expression table.

The genetic code contains the content of the expression table and the position
of the diffusers. A genetic algorithm is used for evolution. 16 diffusers and 4
functionalities (colours) are used. The population is composed of 400 individuals,
selection is rank selection of the 300 best individuals, the mutation rate is 0.5%
per bit, one-point crossover rate is 20% and elitism is used by copying best
individuals without modifications into the new generation.

2.2 Embryogeny Model based on Cell Chemistry

Introduction Another way to develop the phenotype is to proceed with a
recursive process of rewriting, which starts from a single egg cell to produce the
mature organism. Among these Artificial Embryogeny (AE) systems [4], there
are two main approaches.

The first is aimed at the evolution of a grammar which is repeatedly applied to
the phenotype. Examples include the Matrix Rewriting scheme [12], the Cellular
Encoding [10], Edge Encoding [13] and the GenRe system [14].

The second evolves the regulatory system of a cell with its metabolism and its
ability to duplicate. Ontogeny results of the emergent interaction of neighboring
cells and the chemical concentrations in the environment.

The model used in this paper belongs to this second category, and is an
extension of the one presented in [6]. An extensive description on the model can
be found in [5].



Fig. 1. The arrays on the left are snapshots of the signalling phase with one type of
signal and two diffusers (gray cells) at the start of the signalling phase, after two time
steps, and when the signalling is complete. The number inside the cells indicates the
intensity of the signal in hexadecimal. The expression table used in the expression
phase is shown on the right. The signal D matches the second entry of the table with
signal F (smallest Hamming distance), thus expressing function F1.

Description Phenotypes are developed starting from a single egg (zygote)
placed in the center of a fixed size 2D grid. Morphogenesis proceeds in discrete
developmental steps, during which the growth program is executed for each cell,
one cell at a time.

Cells are characterized by internal and external variables. Two internal vari-
ables (cell type and internal chemical concentration) define the cell state and
move with it, while the external one belongs to the environment and follows a
simple conservative diffusion law.

At each developmental step, any existing cell can release a chemical to the
environment, change its own type, alter its internal metabolism and produce
new cells in the cardinal directions North, West, South and East.

The growth program is governed by a feedforward Artificial Neural Networks
(Morphers) without hidden layers. Each Morpher is specified by 144 genes (float-
ing values), one for each of the 8 inputs, 16 outputs and bias weights (see figure
2).

Ontogeny is governed by multiple morphers, each one defining an Embry-
onic Stage which spans one or more developmental steps. Stages are introduced
incrementally, those controlling earlier developmental steps being evolved first
and only the last one undergoing evolution (please refer to [5] for the full details
of the model). This system has the advantage of increasingly adding resolution
to promising areas of the search space while excluding the others, also reducing
pleiotropy among different developmental steps. New stages are introduced if
the performance did not increase for the last 100 generations.

The population is composed of 400 individuals, the 100 best individuals sur-
vive and reproduce. Crossover is set at 10%. All the offspring undergo mutation:
each of the weights of the evolving Morpher being changed with a .01 probability
by adding Gaussian noise with .035 variance.
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3 Evolution of patterns and scalability

The evolutionary task consists in evolving phenotypes resembling specific 2D
patterns of increasing size. This type of problem has been selected in order to
simplify the analysis of the results and avoid that the developmental models
might benefit from embedded “tricks”, which will not be applicable in other
settings.

The targets are 8x8, 12x12, 16x16, 32x32, 64x64, 96x96 and 128x128 multi-
cellular arrays. Each cell can take one of four possible types (colours). Two
different typologies of targets are considered. The first one is a more regular
‘Norwegian flag’ pattern (figure 3) which presents a high degree of symmetry that
should be exploitable by developmental systems. The latter, is a very complex
pattern generated from a Cellular Automata using Wolfram’s rule 90 and starting
from random initial conditions (figure 4). Wolfram’s rule 90 has been selected
because it steadily produces patterns of high complexity, which are supposedly
very difficult targets of developmental systems. In the case of direct encoding,
the target patterns have equivalent difficulty.

Fitness is proportional to the resemblance of the individual to the target. In
order to avoid premature convergence, individuals with rare phenotypic traits
(pixels) are rewarded (please refer to [5] for further details).

The experiments were conducted 20 times for each target size. The population
is composed of 400 individuals, undergoing elitism selection for 2000 generations.
Model specific GA parameters are listed in section 2. For direct coding, the GA
parameters are 10% single point crossover, mutation rate of 0.5% per gene, and
each gene represents one of the 4 possible colors.



Fig. 3. Norwegian Flag Target (64x64). Fig. 4. Target generated using a cellular-
automata with rule 90 of Wolfram start-
ing from a random initial line (64x64).

The genotype dimension for the various encodings and target sizes are listed
in table 1. The size of the genetic code with the MS scales with the logarithm of
the size of the array because the number of bits used to encode the position of
the diffusers depends on the size of the array. The size of the genetic code using
the embryogeny model remains constant because the morpher neural network
relies only on the state of immediate neighboring cells to update the state of the
current cell and hence needs no information about the size of the array. Size of
direct encoding scales with the size of the array.

Encoding Search space by target dimension
8x8 12x12 16x16 32x32 64x64 96x96 128x128

Direct coding 64 144 256 1024 4096 9216 16384
MS 192 224 224 256 288 320 320
AES 144 144 144 144 144 144 144

Table 1. Search space size of the 3 encoding methods presented for each target size.
Genes, in the Direct Encoding determine the color at a given position, in the Indirect
Encodings regulate the ontogeny of the phenotype. In the MS each gene is a bit, in
the Embryogeny model is a floating point number in the range [−1, 1].

Scalability is shown in figure 5 for the Norwegian flag and the CA-generated
pattern. Direct encoding steadily reaches 100% fitness for arrays up to size 32x32.
For larger targets, the explosion of the search space limits the overall perfor-
mance.

Both development approaches perform similarly for small target sizes where
they tend to get high fitness scores. Larger targets show a reduced performance
which tends to stabilize around a certain level. In the case of the Norwegian flag,
this level is determined by the complexity of the target pattern, which is constant



with its size. In the case of the CA-generated target, complexity increases with
size and solutions tend to exploit more the spatial frequency of the colours than
their exact position.

Fig. 5. Scalability for the morphogenetic system (MS), embryonic model (AES) and
direct encoding on evolution of the Norwegian flag and CA-generated pattern.

Figure 6 shows the best evolved Solutions for 64x64 targets with the different
encoding schemes. Notice that the solutions generated by development systems
show artifacts, due to their decoding scheme (diamond-shaped patterns for the
MS and regular repetitions for the AES). On the other hand, direct encoding
exhibits Salt and Pepper noise.

4 Robustness

Natural organisms exhibit recovery capabilities, for example in case of injuries.
In this section, we explore how these models behave when subjected to faults.

In order to have a meaningful deterioration mechanism for both develop-
mental models, we consider here transient events which damage the state of the
cell (e.g. by means of radiation corrupting memory elements). As development
continues to operate normally, cell functionality could be recovered. Notice that
individuals were not selected for their fault resistance.

In the case of the MS, faults modify the chemical content of a cell1. For the
embryogeny model, faults kill selected cells, while for direct encoding they alter
their colour.

Robustness is tested on the best evolved phenotype of the Norwegian flag on
the 64x64 array. This pattern and size has been selected because the fitness of
the three genetic encodings is very similar and higher than the trivial solution

1 It is assumed that no faults occur in the expression table, since in any case it can
be recovered from neighboring cells with a majority voting scheme.



Fig. 6. Best evolved 64x64 solutions using, from left to right, MS, AES and direct
coding. Norwegian flag above, CA-generated pattern below. Please refer to figures 3
and 4 for the actual targets.

consisting of exploiting only the frequency of colours as is the case with the CA-
generated target. The damage rate (percentage of faulty cells) is varied between
0% and 100%. The damage process is repeated 100 times for each damage rate.

Figure 7 illustrates the results. While direct encoding is subject to a linear
decrease in fitness, both developmental systems show a superior resistance to
faults.

The MS benefits from the fact that chemical concentrations vary with con-
tinuity, and can be reconstructed with little effort. Also, evolution assigned the
most frequent colour in the target to the default cell type, which explains the
fitness value with 100% faults.

In the case of the AES, fault recovery is a byproduct of ontogeny. These
results are in support to what was previously observed in [6, 5].

5 Conclusions

We have tested the scalability of two developmental and one direct encoding
strategy on a minimal task involving the evolution of specific target phenotypes.

Results show that the selected task, which was intended to be favorable to the
direct encoding scheme, is easily solvable by the latter only for reasonably small
target sizes. In these cases direct encoding greatly outperforms the developmen-
tal systems. Direct encoding benefits from the fact that each gene contributes
independently to the fitness and therefore its landscape is both unimodal and
non-deceptive.

On the other side, developmental systems suffer from the pleiotropy intro-
duced by gene reuse. Also, as there is a single optimal solution, this utterly



Fig. 7. Robustness of
the MS, the AES and
the direct coding on
the Norwegian flag (size
64x64). Average over
100 tests. The fitness
with 0% faults, is the
one of the evolved so-
lutions (.72 for develop-
ment systems, .71 for di-
rect encoding). Pheno-
types with similar fit-
ness scores were selected
for better comparison.
Fault recovery was not
selected for.

complicates the evolutionary task, since it is not guaranteed to fall within the
space of expressible phenotypes.

In any case, with bigger targets, development systems can take advantage
of their reduced search spaces, and this is reflected in their performance levels
starting at the 64x64 Norwegian flag and 96x96 CA-generated targets.

Developmental systems seem ‘smarter’ at finding exploitable regularities in
the targets, such as shape and most frequent cell types. On the other side, this
is impossible for direct encodings, so that errors in the evolved phenotypes must
take the shape of high frequency noise. This gives a different ‘psychological’
perception of incomplete phenotypes and seems to affect performance for larger
targets.

Finally, both systems behave very well against phenotypic faults and are
capable of recovering from significant amount of damage, even if the tested
individuals were not selected for this characteristic.

As a last remark, we want to stress the lack of standard tasks usable for
benchmarking developmental systems. In [4] the authors suggest 4 different tasks:
evolution of pure symmetry, of specific shapes, of specific connectivity patterns
and of a simple controller.

We believe that some of these, albeit interesting to demonstrate capabilities
of a model in principle, leave doubts about the generality of the results. For
example, the evolution of a controller is a task that imposes complex fitness
landscapes with usually many optimal and suboptimal solutions, and therefore
is difficult to analyse in relation to system evolvability.

On the other side, testing a developmental model against targets of various
phenotypic complexity2, from pure symmetry to total lack of it, may offer a good
indication of the system strengths and weaknesses in more general settings.

2 possibly calculating phenotypic complexity as its compressibility with standard al-
gorithms
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To increase the evolvability of larger search spaces, sev-
eral indirect encoding strategies have been proposed.
Among these, multicellular developmental systems are
believed to offer great potential for the evolution of gen-
eral, scalable and self-repairing organisms. In this paper
we reinforce this view, presenting the results achieved by
such a model and comparing it against direct encoding.
Extra effort has been made to make this comparison
both general and meaningful.
Embryonal stages, a generic method showing increased
evolvability and which can be applied to any develop-
mental model, are introduced. Development with em-
bryonal stages implement what we refer to as direct
‘Neutral Complexification’: a direct genotype complexi-
fication mechanisms by neutral duplications of expressed
genes.
Results show that, even for high complexity evolution-
ary targets, the developmental model proves more scal-
able. The model also shows emergent self-repair, which
is used to produce highly resilient organisms.

Objective:

Finalize the analysis of the DES system (Development
with Embryonal Stages), focusing on the advantage pro-
vided by the embryonal stages, the role of various pa-
rameters, its scalability, and its self-healing capabilities.

Conclusions:

Results highlight the viability of the proposed method.
Further work should focus on embedding functionality
in the evolved organisms.
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Abstract

To increase the evolvability of larger search spaces, several indirect
encoding strategies have been proposed. Among these, multicellular de-
velopmental systems are believed to offer great potential for the evolution
of general, scalable and self-repairing organisms. In this paper we reinforce
this view, presenting the results achieved by such a model and compar-
ing it against direct encoding. Extra effort has been made to make this
comparison both general and meaningful.

Embryonal stages, a generic method showing increased evolvability
and which can be applied to any developmental model, are introduced.
Development with embryonal stages implement what we refer to as di-
rect ‘Neutral Complexification’: a direct genotype complexification mech-
anisms by neutral duplications of expressed genes.

Results show that, even for high complexity evolutionary targets, the
developmental model proves more scalable. The model also shows emer-
gent self-repair, which is used to produce highly resilient organisms.
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1 Introduction

Without apriori specific knowledge to use, it is well understood that the bigger
the search space the less efficient the search will be. This makes the evolution
of large phenotypes one of the most serious problems in the field of evolutionary
computation (EC).

On the other hand, biological systems seem to have come to terms with it
since living organisms can easily contain trillions of cells (with each cell being
itself a structure of baffling complexity). These systems rely upon an artifice,
the emergent process during which a single replicating cell develops into the
mature organism. Inside each cell, an identical restricted set of genes interact
to provide the instructions for development. Morphology emerges as initially
identical cells interact with their local environment assuming specific roles.

Ontogeny is the result of the distributed process during which a relatively
small genotype decompresses into a large phenotype. For example, it is esti-
mated that there are only 30K genes in the human genotype (45M DNA bases),
while 50T (Tera) cells constitute a mature phenotype.

However, even if evolving direct representations of structures of similar com-
plexity is inconceivable, is not yet well understood under which circumstances
a developmental process can be beneficial to EC.

Specifically open questions regard:

• the evolvability of complex phenotypes

• the scalability of methods based on Artificial Embryogeny (AE)

• the properties of such systems

This paper addresses these issues with an empirical study of a model of
multicellular development, which is compared to direct encoding. In addition
we include a discussion and propose a test suited for this analysis.

Results show that:

• Development with Embryonal Stages (DES), a method based upon the
biological mechanisms of gene duplication and diversification, has signif-
icant benefits for evolvability. DES implements neutral complexification
and operates by preventing pleiotropy among different stages of develop-
ment.

• Development results are more scalable than direct encoding for both reg-
ular and high complexity targets.

The remainder of the paper is organized as follow: section 2 contains an in-
troduction on artificial and biological development and describes neutral com-
plexification. Section 3 discusses the evolutionary task. Section 4 describes
the adopted multicellular development model, while section 5 gives details of
the evolutionary methods for Direct Encoding (DE) and Artificial Embryogeny
(AE). Section 6 presents results from the simulations concerning the use of em-
bryonal stages, scalability comparison between DE and AE, performance under
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various AE settings and emergent and evolve regeneration features of the AE
model. Section 7 contains the conclusions.

2 Development

Since the search space grows exponentially with the genotype size, the evolution
of large phenotypes should benefit from parsimonious encodings. Among these
indirect encodings, development uses a genetically encoded growth program in
several recursive steps. Matrix Rewriting [20] and Cellular Encoding [14] are
emblematic approaches to such a definition; both are based on grammatical
rules.

Rewriting rules can be applied an arbitrary number of times, so that the
genotype size should be highly independent of the phenotype size. On the
other hand, development introduces a level of indirection between genotype
and phenotype. The level of indirection is proportional to the amount of gene
reuse, which is often linked to the number of developmental steps. For example,
consider the following grammars:

S → aSa
S → aSb

producing
aaaaa...S...aaaaa
aaaaa...S...bbbbb

(1)

A single change in the rule/genotype induces a phenotypic change proportional
to the number of substitution/developmental steps. The result is that the cor-
relation between genotype and phenotype is reduced with each rule reuse. A
decreasing correlation normally leads to rougher fitness landscapes, which means
harder searches. Ultimately, the impact of the search space compression on the
fitness landscape is what rules the performance of artificial developmental sys-
tems.

In AE, genes activated early in development are very costly to change. With
a sort of Domino Effect, modifications affecting early phases of development
will have huge phenotypic consequences. Big leaps in the phenotypic space go
against the basic evolutionary assumption of small incremental refinements.

Interestingly, this is valid also in natural evolution. Observing the develop-
ment of embryos, it is seen that the more related two species the more similar
their ontogeny. It is actually possible to judge phylogenetic relatedness by look-
ing for how long embryos of different species share a common developmental
dynamic:

It is generally observed that if a structure is evolutionary older
than another, then it also appears earlier than the other in the em-
bryo. Species which are evolutionary related typically share the early
stages of embryonal development and differ in later stages. [...] If a
structure was lost in an evolutionary sequence, then it is often ob-
served that said structure is first created in the embryo, only to be
discarded or modified in a later embryonal stage. Examples include:

3



Whales, which have evolved from land mammals, don’t have legs,
but tiny remnant leg bones lie buried deep in their bodies. Dur-
ing embryonal development, leg extremities first occur, then recede.
Similarly, whale embryos (like all mammal embryos) have hair at
one stage, but lose most of it later. All land vertebrates, which have
evolved from fish, show gill pouches at one stage of their embryonal
development. The common ancestor of humans and monkeys had
a tail, and human embryos also have a tail at one point; it later
recedes to form the coccyx. The swim bladder in fish presumably
evolved from a sac connected to the gut, allowing the fish to gulp
air. In most modern fish, this connection to the gut has disappeared.
In the embryonal development of these fish, the swim bladder origi-
nates as an out pocketing of the gut, and the connection to the gut
later disappears. Wikipedia [34]

This conservative nature of ontogeny is a direct consequence of the afore-
mentioned ‘Domino Effect’ since redesign is harder than incremental changes.
Therefore, mutations causing big phenotypic effects are counterproductive be-
cause, with good approximation, they never produce better individuals.

Another issue relates to the regularity of the phenotypes that AE produces.
Development is de facto a decompression of the genotype and since compression
is generally higher for regular targets, a serious question is how much these
methods are viable for the evolution of targets of high complexity.

Hints in this direction, also come from a study [21] on Matrix Rewriting [20],
showing how the genotype-phenotype correlation decreases with the complexity
of the phenotype. Again, low correlation decreases the chances of evolution by
small incremental steps.

Micro-array analysis and gene sequencing are providing new data to under-
stand how molecular evolution took place in organic systems. It is now clear
that the most genetic innovations were originated by Gene Duplication [27] (see
also Figure 1):

• Genotypes are not of fixed size. Notably, entire groups of genes can be du-
plicated (figure 1:B). Duplicated genes may not alter development at first
since their expression is controlled by position invariant promoters and
regulators. Evidence suggests that 90% of eukaryotic genes was produced
by gene duplication [31].

• Duplicates can diverge assuming different roles (figure 1:C–E). Phenotypic
traits that were linked by the expression of the same gene, can now evolve
independently. This phase is often referred to as complexification, and
can take two different forms: neofunctionalization (figure 1:C) and sub-
functionalization (figure 1:D) [36].

The steps depicted in Figure 1 can be translated to the following steps of a
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E diversification

The production of a specific

light sensitive protein  requi-

res a regulatory protein.

Imagine that the cell is a 

light receptor.

light sensitive 

protein 

The light sensitive protein 

gene is duplicated. 

The duplication is initially 

neutral to the pheotype.

A mutation alters one of the 

paralogous genes. 

The mutated gene produces 

a protein sensitive to a 

different color.  The receptor 

can now detect two colors.

One of the two light sensitive 

proteins mutates. Its

regulation is altered without

affecting the phenotype.

Now that the expression of the two light sensitive 

proteins is decoupled, their production is regulated

independently. Diverse light receptors can emerge.

Figure 1: An example of phenotypic complexification by gene duplication. In
this case gene duplication is initially neutral to the development of the phe-
notype. The genotypic redundancy introduced can eventually be exploited to
increase the complexity of the phenotype.
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grammar evolution:

A)
B)
C)
D)

genotype
{S → AS|ε; A → a}
{S → AS|ε; A → a|a}
{S → AS|ε; A → a|b}

{S → AS|BS|ε; A → a; B → b}

phenotype
aaaa...aa
aaaa...aa
abba...ab
abba...ab

type

duplication

neofunc.

subfunc.

(2)

Neofunctionalization regards duplicated (paralogous) genes which assume a
novel functionality. Example include the color specific opsins found in the light
receptors of the retina and the Hox genes responsible for the vertebrate body
structure. Subfunctionalization is the possibility that regulation of paralogous
genes gets changed while the genes retain the same function. An example is
found in the Zebra-Fish, where the genes engrail1 and engrail1b are expressed in
different parts of the body, pectoral and hindbrain respectively, while they both
produce the same protein. The engrail1b gene, originated from a duplication of
engrail1, has diverged in its regulation while conserving the same functionality.
It is possible to imagine that in the future they could eventually assume different
specific functions.

The case of the engrail1 genes, appears as a Neutral Complexification (NC)
of the genotype: an increase of genetic material which is functional (expressed)
but neutral to the phenotype.

NC makes possible an increase of sophistication with small incremental steps
consisting of neutral duplication events followed by divergence of paralogous
genes.

For evolution, NC allows an initial fast exploration of a restricted search
space, followed by an enlargement of the genotype which can achieve higher
levels of specialization. It is possible to imagine that the two phases will repeat
over and over, as individuals compete for higher values of fitness.

The great advantage of this incremental approach is that it induces an order-
ing of the search space, leading to an incremental increase of complexity from
the initial genotypes. In this simple to complex re-ordering of the solution space
lies its promise of higher performance.

2.1 implementing complexification

There are a number of genotype phenotype mappings that implement, either
directly or indirectly, complexification.

One approach is based on artificial Gene Regulatory Networks (aGRN) with
variable length genotypes [23, 5]. Genes are identified by a promoter site and
therefore can occur anywhere in the genotype. Additionally, gene’s activation
regulate (and is regulated by) the expression of other genes. Activated genes
are then used to define the morphology of the evolved organisms. Since gene
functionality is position invariant, gene duplication can be achieved simply by
replicating genotype sub-strings, while divergence is obtained by traditional
mutation operators.
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Notice that complexification is not generally possible for fixed-size string
based aGRN models, such as those presented in [11, 3, 18, 8].

The advantage of this indirect implementation of NC is that it can achieve
diversification of both the phenotypic traits (as in figure 1:3-4) and the regula-
tory network (by duplicating regulatory genes).

On the other hand, the approximate matching required for the identification
of activated genes is quite expensive and grows linearly with the size of the
genome and the number of regulatory genes/proteins1. This might impose a
limit to the scalability of multicellular organisms, since the determination of
each cell behaviour requires a separate activation of the aGRN.

Also, in Evolutionary Hardware there is a nascent interest for multicellular
development [32, 25, 33], but given the state of technology, these models do not
appear suited for hardware implementation.

Finally, current models do not protect against mutations affecting early
phases of development, which we believe reduce system evolvability. This how-
ever could be easily avoided by using a mutation operator which takes into
consideration the age of each gene.

A second, more abstract, approach is to increase sophistication by direct NC
steps, adding specific active elements which do not alter functionality.

1

1 -1

0.5

1 -1

0.5

-11

Depiction of Neutral Complexification
for an artificial neural network. The
network on the left is augmented hor-
izontally by adding an active ele-
ment without altering its functionality.
Changes to the weights of the new net-
work can produce more sophisticated
functions than for the old one. Without
altering functionality, complexification
can be achieved incrementally. This
mechanism, among others, is presented
in the NEAT system [30]

Figure 2: Neutral Complexification

As far as we know, apart form the mechanism presented in this paper, there
is no developmental system that implements direct NC. On the other hand,
the NEAT system [30], a variable length direct encoding for Artificial Neural
Networks (ANN), allows new neurons to be added almost neutrally with min-
imal changes to functionality, producing complexification by small incremental
evolutionary steps. Also in this case, system evolvability, can benefit from the
smaller-to-bigger reordering of the search space. Figure 2 gives an example of
how such mechanism can be implemented for ANNs. Unfortunately, it is not

1The computational complexity for the approximate matching of a genome of length n
with a single substring of length m is O(mn)
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always possible to achieve NC, especially when non-linearities are present.

2.2 Development with Embryonal Stages

The regulatory system controls gene expression over two orthogonal dimensions:
time and space. Development with Embryonal Stages (DES) implements a
direct mechanism of Neutral Complexification (NC) for the temporal dimension.

As development spans over several consecutive steps, the idea is to start evo-
lution with a single growth program (chromosome) which controls all the steps.
As evolution proceeds, a new chromosome can be added by gene duplication.

The developmental steps are therefore partitioned into two groups. The first,
controlling the initial steps of embryogenesis, is associated with the old chro-
mosome. The latter, completing growth, is associated with the new, identical,
duplicated chromosome.

Being exact copies, new chromosomes do not alter development, and are
therefore neutral. But eventual mutations can independently affect each paral-
ogous gene.

To avoid the Domino Effect caused by mutation altering early phases of
development, the original chromosome can have a lower mutation rate or be
arbitrarily excluded from evolutionary operators (see Section 6.2). In the latter
case, only the new chromosome, which completes the maturation process, is
allowed to change.

Likewise, new chromosomes can be added one by one, each one controlling
the partition of the last development steps (see Figure 3).

developmental steps

Fitness

EmbSt 1

EmbSt 1 EmbSt 2

EmbSt 1 EmbSt 2 EmbSt 3

G
en

er
at

io
n

s

duplicate

duplicate

Only latest stage evolves

each chromosome

controls one stage

Figure 3: Embryonal stages. New chromosome duplicates are added incre-
mentally without altering development. Evolution can thereafter alter only the
growth program/chromosome controlling the latest steps of development. With-
out changing its size, new embryonal stage alters the search space by adding
resolution around the current genotype and locking distal regions.
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When only the latest embryonal stage is allowed to change, the advantage of
DES is that each new stage restricts the evolutionary task to the optimization
of fewer developmental steps. The new chromosome must take care of the
maturation of an already partially developed phenotype. This new starting
phenotype, as opposed to the zygote, is the result of the original chromosome
evolution and provides a flying start for the second stage.

New stages do not modify the size of search space, but by controlling fewer
developmental steps, they increase the resolution around the area represented
by the current genome. Overall, the effect is an increase in genotype-phenotype
correlation which leads to higher evolvability (see section 6.1).

2.3 Related development models

Several indirected encoding schemes have been proposed. All these ‘Artificial
Embryogeny’ (AE, [29]) methods define the phenotype with a mapping which
allows recursive gene reuse.

It is possible to distinguish two major evolutionary approaches to develop-
ment. There are grammar-based approaches in which the genotype defines the
substitution rules which are repeatedly applied to the phenotype. Examples
include the Matrix Rewriting scheme [20], the Cellular Encoding [14], and Edge
Encoding [22].

The major advantage of these methods is that compact grammar rules can
generate a high number of organized patterns. For example, L-systems can
easily produce interesting structures for locomotion. On the other hand, our
target may contain many different phenotypic traits, each requiring a different
production rule and symbol. Therefore the space of possible grammars is bound
to grow with the complexity of the phenotype.

Some models include additional contextual information in each rule defini-
tion [17, 16], so that phenotypic traits variations can be generated. Also, it is
possible to implicitly define the grammar by means of an aGRN [5] and use the
accumulated concentrations of simulated chemicals to modulate the character-
istics of morphological constituents.

In this direction, and inspired by Cellular Automata (CA), a second approach
is to evolve the rules by which cells alter their metabolism and duplicate. Cells
are usually capable of sensing the presence of neighboring cells [9], releasing
chemicals which diffuse in simulated 2D or 3D environments [25], and moving
and growing selective connections to neighboring cells [6].

Closely related to the one presented in this paper, Bentley and Kumar pro-
posed a model which develops tiling patterns [4]. Ontogeny starts from a single
cell which duplicates following rules expressed in the genotype. Rule precondi-
tions are regular expressions matching the local North-West-South-East neigh-
borhood (NWSE) of each cell and their absolute position.

Miller extended the previous model and evolved specific patterns [25]. He
allowed 4 different cell types (colors) and a chemical undergoing diffusion. Cells
based their growth program on their type and the types and chemical concen-
trations from the 8 neighboring cells. The growth program itself was encoded in
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a boolean network that was evolved with the Cartesian Genetic Programming.
Miller also analyzed the behaviour of the evolved phenotypes when subjected

to severe mutilations. Phenotypes were shown to regrow the missing parts
achieving a striking resemblance to the target. The self repair feature is very
interesting since it was not selected for during evolution. A similar resistance
to damage was also reported in [28].

An important feature common to these last AE models, is that their growth
program is based only on local variables. The localization of the inputs is funda-
mental to achieve a distributed control of development, which allows practical
hardware implementation, failure recovery and, since the size of the program
does not change with the size of the phenotype, for scalability issues.

3 The evolutionary task

When looking at system evolvability, it appears that there is a trade off between
the combinatorial gain achieved by searching in a restricted genotypic space and
hindrances introduced by gene reuse.

The fact that gene reuse constitutes an advantage when searching for regular
patterns is quite established. For example, in [16] a generative (grammar-based)
and non-generative systems where tested in the evolution of a program defining
the construction of a 3D table. The generative mapping achieved much higher
performance.

Similarly, in [4], the task was to evolve tessellating patterns. Individuals
growing from a single cell to the mature organism showed higher scalability
when compared to direct encoding. On the other hand, the generated solutions
were always very regular.

A valid solution to this problem is a rectangle covering half of the allowed
growth area. Since the zygote is placed in the center, such rectangle can be
produced by growing in three over the four possible directions. The model
presented in this paper, for example, can often solve the tessellation problem
with the initial population of randomly generated individuals.

The problem of the complexity achievable by developed phenotypes is fun-
damental since high complexity targets are more difficult to refine incrementally
and therefore to evolve [21].

Many authors have tested their system for developing Artificial Neural Net-
works (ANN). ANN are a natural choice for several reasons. First their proper
set up is a central issue of AI. In addition, the number of synapses grows com-
binatorially with the size and interconnectedness of the network. Finally, the
organization of the brain shows repeated structures that should favor gene reuse.

Even if the problem is tempting and surely deserves attention, we believe
that it could prove misleading for initial investigations. In fact, there are several
network configurations with equivalent functionality. Searching in a restricted
search space, AE could stumble on a good solution at random. This is partic-
ularly true in the case of simple neuro-controllers, where often the problem is
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as simple as finding the proper connection from one point to another (e.g. from
an IR sensor to the motor output).

In [25], in order to show the capabilities of a cell-based developmental model,
a 9x12 French flag pattern was evolved. The reason for this choice is that the
uniqueness of the desired shape guaranteed that the problem was hard to solve.
In fact, it is not even possible to know apriori if a sufficient growth program
exists.

The advantages of this test are plentiful:

1) By presenting the phenotypes as 2D pictures, the bias of the development
system often emerges as repeated sub-patterns. Difficult to represent
mathematically, such artifacts are easily observable.

2) The generality of the model can be ascertained by testing targets of various
shapes and complexity.

3) The number of colors of the target and its dimension clearly specifies the
size of the solution space.

4) For direct encoding this is one of the easiest problems to solve. With each
pixel of the target pattern represented by a gene, not only every target
is expressible, but this is equivalent to the One-Max problem2, which is
totally decomposable, non deceiving and has a strictly monotonic fitness
landscape.

5) Fitness is an absolute measure of the individuals quality. This is not so easy
for other tasks, such as the evolution of locomotion or robot navigation.

In this paper we have tested direct encoding and the AE system in the
evolution of 4-color patterns of varying size and complexity (see figure 4). The
targets were chosen with different degrees of regularity, with the Circle being
the most regular and the Wolfram CA-generated pattern the most complex.

To test scalability, the targets size has been set to 8x8, 16x16, 32x32, 64x64,
128x128, 256x256. The tested solution spaces therefore range from 464 to 465536.
As the geometrical properties of the targets are size invariant the amount of
regularity should be invariant as well.

As proposed in [21], a measure of complexity can be provided by general
purpose compression algorithms. In this case, it was calculated using the well
known ARJ compressor [24]. In figure 4, below each target shape, the compres-
sion ratio and the size of the compressed data segment3 are plotted for all the
used target sizes. The ratio of compression can be seen as a depiction of the
target complexity (ARJ-complexity), the size of the compressed data gives an
indication of quantity of information needed to reproduce the pattern.

Apart for the CA-generated pattern, the ARJ-complexity decreases geomet-
rically with size. This is due to the fact that, while regularity is preserved

2where the fitness is the sum all bits in the genotype which are set to 1
3The ARJ headers, containing file name and other technicalities, are stripped for these

computations
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for all shapes, the size increases quadratically. For the high complexity CA-
generated pattern, there is little regularity that can be exploited and therefore
the ARJ-complexity converges to ∼ 15%.

4 The model of multicellular development

Organisms develop starting from a single cell to reach the mature multi-cellular
organisms in a precise number of developmental steps. Cells replicate and can
release simulated chemicals in intra-cellular and inter-cellular space.

Cell behaviour is governed by a growth program based on local variables,
and represented by a simple Recursive Neural Network (RNN). The RNN is
seen as a plausible model of the cell Gene Regulatory Network (GRN) [2, 10].

Compared to typical models of GRNs in EC [5, 18, 9, 11, 3, 23] RNNs are
much faster to evaluate. Since the growth program is evaluated literally billions
of times, for a multicellular organism this is a fundamental feature. Also, while
the evolutionary properties of artificial GRNs are still subject to debate, neural
networks are better understood.

Compared to discrete functions, such as Boolean Networks [19, 25, 9] or
production rules [4], the space of continuous functions representable by RNNs
allows finer tuning and richer neutral space. Neutral space is very useful to
escape local optima [1, 15], which pleiotropy makes abundant in the search
space.

4.1 cell growth

Phenotypes develop starting from a zygote placed in the center of a fixed size
2D grid. Morphogenesis proceeds in discrete developmental steps, during which
the unique growth program is executed for each cell. The execution order is
determined by position, proceeding from northeast to southwest.

Cells (see figure 5) are characterized by internal and external variables. Inter-
nal variables (metabolism) define the cell state and move with it, while external
ones (chemicals) belong to the environment and follow a simple diffusion law.
Diffusion is simulated by convolving the previous chemical concentrations with
the following kernel:

diffusion kernel =

∣∣∣∣∣∣

1/16 1/8 1/16
1/8 1/2 1/8
1/16 1/8 1/16

∣∣∣∣∣∣
(3)

At each developmental step, existing active cells can release chemicals, change
their own type, alter their internal metabolism and produce new cells. An active
cell can also die or become passive. Each step, up to four new cells can be pro-
duced in any of the cardinal directions North, East, South and West (NESW).
The mother cell specifies the new cell internal variables (type and metabolism)
and whether they are active or passive. If necessary, existing cells are pushed
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Figure 4: Shape of the evolutionary targets. A bounded circular pattern, a
French flag, a Norwegian flag and a type 4 CA-generated pattern using the
3-color totalistic rule 1387 [35]. Below each image a graph reports the ARJ
compression ratio (darker) and the size of the compressed data (lighter) for
various target dimensions (from 8x8 to 256x256). The compression ratio can
be seen as a measure of complexity, the size of compressed data as the measure
of information. In the Wolfram CA pattern a zoom box is superimposed for
clarity. The ARJ is a general purpose compression algorithm. Notice that each
pattern also contains a frame, which also must be matched. The frame is an
additional source of difficulty for the developmental system.
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Figure 5: Description of the variables used for development. External chemicals
follow a diffusion law, while internal ones move with the cell. While chemical
concentrations, internal and external, take values in [−1, 1], the cell type can
take one of 4 discrete values, one for each phenotypic color.

sideways to create space for the new cells. When a cell is pushed outside the
boundaries of the grid it is permanently lost.

Passive cells cannot release chemicals, change their state or produce new
cells.

The cell behavior is governed by an Artificial Neural Network (Morpher)
defined by the genotype. The genotype contains a floating point number for each
synaptic weight. The Morpher receives as input the current cell internal and
external variables, and the cell types of the neighboring cells in the four cardinal
directions. Its output determines the new internal and external variables of the
cell and, in case of replication, the internal variables of the newly generated
cells. An additional local variable, the cell age, is set to 1 at birth and decays
exponentially to 0.

The number of inputs and outputs to the growth program depends on the
number of neighbors, cell types, external and internal chemical types (see figure
6). In most of the simulations presented, there are 4 cell types, 1 internal
metabolism and 1 external chemical types. These sum up to 8 inputs (one
being the bias) and 16 outputs which can take values ∈ [−1, 1].

Chemical (production/concentration) and metabolism values are read di-
rectly to and from input and output lines. Since there is 4 possible cell types,
each input/output line is quantized to four possible values {−1,−1/3, 1/3, 1},
each representing a different color in the phenotype: black, blue, red and white
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respectively. When cell types are computed, the outputs take the nearest quan-
tized value.

Morpher
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Figure 6: Inputs and outputs of the growth program, the Morpher, imple-
mented with a feed-forward ANN. Each cell internal variables, cell’s type and
metabolism, implement a direct feedback pathway, while chemical production
and diffusion offer a channel for longer range communication. A bias input
neuron is also provided (not shown).

In picture 7, typical examples of phenotypes from random individuals are
shown. The first phenotype (Random 1) is the most frequent.

5 Evolution for development and direct encod-
ing

Every population is composed of 400 individuals. The best 1/8 survives and
reproduces (elitism).

Fitness is proportional to the resemblance of an individual to the target,
and is computed as shown in equation 4. For fitness computation, dead cells
are assigned the default type 0 (black color)

Fitness(P, T ) =
( ∑

x,y Equals ( P, T, x, y ) · TraitRarity(x, y)
)

/ ||T ||

Equals ( P, T, x, y ) =
{

0 if P (x, y) 6= T (x, y)
1 if P (x, y) = T (x, y)

(4)

where P is the phenotype, T the target, and TraitRarity(x, y) is a measure
of the rarity of the trait in P (x, y) over the entire population.
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Random 1 Random 2

Random 3 Random 4

Figure 7: Typical phenotypes of first generation individuals. Dead cells have
the same color of black cells.

TraitRarity is used to increase population diversity, counteracting homog-
enization and favoring individuals with rare characteristics. AE systems are
in fact characterized by saltatory improvements (see figure 11). Under these
conditions a positive innovation can increase the reproductive probability of a
particular strain. TraitRarity helps reduce the crowding of a single genotype
strain and is calculated as follows:
(1) The population is first ordered by fitness value before modification (in case
of ties, younger individuals have priority). (2) Fitness scores are recomputed
following this order, but the initial value of 1 of each trait (TraitRarity in Eq.4)
decreases with use in steps of .1. Whenever a trait value goes to or below zero,
it is assigned a value of 1/100.

The overall effect is that older individuals with common phenotype traits
are replaced by younger, rarer individuals.
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5.1 Mutation and Crossover

For direct encoding every gene (color) can mutate with a probability of 1/100
and 50% of the offspring are generated by single-point crossover.

In the case of AE, mutation takes each weight of the Morpher RNN with a
Pmut probability and adds to it Gaussian noise with Vmut variance. Pmut and
Vmut vary in the ranges [1/20, 1/10] and [1/30, 1/10] respectively. Their value
is proportional to the time passed since the last increase in the top fitness score,
reaching the maximum in ten generations. The reason behind these adaptive
values is to increase exploration when the system begins to stagnate.

N W S E N W S E

copy North to South

select the North subnet copy it over the South subnet

Figure 8: Symmetric mutation. The subnet responsible for the production of
new cells in the north direction (on the left with a darker color) is copied over
the subnet responsible for the south direction. Northward and southward cell
production are now identical.

With a 1/20 probability an offspring undergoes an additional symmetric
mutation (see Figure 8). The subnet responsible for the production of new cells
in a chosen direction overwrites one or more of the other direction subnets.
This operator should favor the evolution of phenotypes with various degrees of
symmetry, but, since cells are not activated in parallel but follow an activation
order, it does not produce perfect symmetrical phenotypes.

10% of the offspring are produced by crossover. If the Morpher RNN has a
hidden layer, crossover shuffles the parents’ hidden nodes (together with input
and output weights). If no hidden nodes are present, it exchanges all the weights
connected to inherited outputs units.

6 Results

The results present statistics over 20 independent evolutionary runs for each
parameter setting (400 individuals and 2000 generations). Unless specified oth-
erwise, the Morpher contains no hidden layers and each cells has 4 types, 1
internal and 1 external chemicals. Also, when more then one embryonal stage
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is available, only the latest one is affected by the evolutionary operators. All
other stages are fixed.

The results presented explore the following aspects of the multicellular de-
velopment system:

i: Advantage of the embryonal stages
ii: Exploration strategies with embryonal stages
iii: Scalability of the growth model
iv: Performance of different Morpher configurations
v: Effects of the variables used by the growth program
vi: Emergent and evolved self-repair

The number of embryonal stages (NES) can be altered from a minimum of
1 to a maximum of one for every development step (devStep). The number of
development steps (NdS) has a strong influence on system evolvability: there
must be enough steps to allow the emergence of good cell’s configurations and
not too many in order to minimize indirection (see section 2). Furthermore,
the optimal NdS often varies from target to target. In this paper we used the
formula:

NdS = 2 + log2(||Target||)
When a stage is available and the maximum fitness did not increase for

a period of 1000/NdS generations, a new stage is introduced. While the first
stage is responsible for the ontogeny from the beginning of development. The
i-th stage takes over at devStep

(
NdS − (NES − i)

)
.

6.1 Advantage of the embryonal stages

16x16 and 32x32 targets (see figure 4) have been evolved with a single, half, and
maximum number of stages (Group 0, 1/2, 1 respectively). Their performance
is shown in figures 9 and 10.

The average fitness scores demonstrate that embryonal stages are beneficial.
Using an ANOVA test with p = 10−3 the results always prove statistically
significant for group 0. The difference between group 1/2 and group 1 is only
significant for the Wolfram CA targets, which are also the most complex.

With a single embryonal stage innovations require long periods of explo-
ration and cause big phenotypic changes, more stages allows smaller and more
frequent refinements (see figure 11). These results suggest that stages increase
the correlation between genotype and phenotype.

6.2 Exploration strategies with embryonal stages

In most of the simulations presented in this paper, only the newest embryonal
stage is modified by evolution. This strategy allows for a search space of constant
size, with each stage increasing resolution around the current genotypes and
excluding from search distal regions of the solution space.
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Figure 9: Effects of varying embryonal stages on performance. Mean and max-
imum performance from 20 runs for each of the 16x16 targets.

A premature introduction of embryonal stages restricts exploration and could
affect overall performance.

To test this hypothesis, we allow every stage to be subjected to mutation.
To offer a protection of older embryonal stages, the mutation variance (Vmut in
Section 5.1) affecting the Morpher of a specific stage is reduced with age.

If the genotype currently contains N embryonal stages, the mutation vari-
ance affecting the Morpher of stage i is:

Vmut/(variance decay(N−i))

thus, the older an embryonal stage the lower the mutation variance.
Figure 12 shows statistics from 5 different groups with various variance decay

values. A value of 1 means that all stages change at the same rate.
The results show that, in some cases, locking old stages can reduce overall

performance. The effect is more evident for the Norwegian flag target with
variance decay values of 2 and 5. On the other hand, differences have no statistic
significance (p < 0.001).

6.3 Scalability of the growth model

The most interesting property of developmental systems is the claim of high
independence between evolvability and phenotypic size. Other papers compare
the performance of development against direct encoding in specific tasks, for
example [4, 16, 12]. Often though, the solution for the selected task can take
advantage of particular features of the development system. This fails to high-
light the trade-off between direct encoding and AE, often favoring the latter. In
these cases, critics may argue that the better performance of AE derives from
the exploitation of built-in implicit knowledge.
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Figure 10: Effects of varying embryonal stages on performance. Mean and
maximum performance from 20 runs for each of the 32x32 (right) targets.

Compared to previous work [28], we have tested more and bigger shapes.
Also, the high complexity target presented in [28] contains mainly 2 colors/cell
type, a property that could be exploited by minimalistic solutions.

The results for targets with 64, 256, 1024, 4096, 16384, 655364 cells are
shown in figure 13. For direct encoding, performance is not influenced by the
target shape, but for embryogeny the degrees of regularity have a great impact.
The best evolved 256x256 individuals are plotted in figures 21-24.

Direct encoding steadily evolves perfect solutions for targets with up to 1024
cells. As expected, with bigger search spaces, performance decreases monoton-
ically. This is not the case for development with embryonal stages. AE per-
formance, after reaching a minimum for medium sized phenotypes, shows an
increase and then levels off. The final fitness values appear to be proportional
to the regularity of the specific target.

It is interesting to notice that, even the performance of the high complexity
Wolfram CA patterns converges.

6.4 Performance of different Morpher configurations

It is possible to use various implementations of the growth program. The default
model, a RNN with no hidden layers, has been selected for simplicity, evolvabil-
ity and speed. In this section we have tested 32x32 targets with three different
RNN topologies: with no hidden layers (NH), with 4 hidden nodes (H4) and 8
hidden nodes (H8). Results are plotted in figure 14.

It is possible to imagine that, given the complexity of the task, neural net-
works with more hidden units could better achieve an optimal growth program.

4for the 256x256 target, only 8 runs are available at the moment, others are still running
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Figure 11: Maximum fitness plots of the best evolved populations for the 16x16
circular target from group 0 and group 1.

On the contrary, there is no significant difference (P < 0.001) among the vari-
ous morpher configurations, as the higher representation flexibility is counter-
balanced by bigger search spaces. These results advocate for growth program
simplicity.

6.5 Effects of the variables used by the growth program

The growth program takes as input the neighbors cell types, its own internal
metabolism state and the current chemical concentration at the cell’s locus. To
shed light on their role in development, the number of these variables can be
altered.

In figure 15 populations were evolved with 0, 1 and 2 types of external
chemicals. External chemicals diffuse in the environment allowing short range
inter-cellular communication. Every external chemical adds one input and one
output line to the growth program. Their number does not show a significant
influence on evolvability.

In figure 16 populations were evolved with 0, 1 and 2 types of internal chem-
icals (cell metabolism). Internal chemicals implement the recurrent connections
of the morpher. Every internal chemical adds one input and 5 output lines to
the morpher. Also in this case, their number have no statistically significant
influence on performance.

In figure 17 populations were evolved with 4 and 8 cell types. Additional
types are redundant, so when 8 types are possible, every color is represented
by 2 types. Additional cell types allow more information to be stored in the
local neighborhood. Every additional 4 cell types requires 5 extra input and
output lines. A statistically relevant performance increase is achieved only for
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Figure 12: Average and maximum fitness scores for populations with different
mutation strategies. On the contrary to other simulations presented, older em-
bryonal stages are also affected by mutation. Higher values of variance decay
(var decay, in figure) reduce the effects of mutation for older embryonal stages.
Mutation affects the functionality of the Morpher.

the Wolfram CA pattern.
These results suggest that the exact number of variables used does not alter

significantly the evolvability of development.

6.6 Emergent and Evolved self-repair

The regenerative capabilities of biological organisms have always been a source
of inspiration for researchers. A very interesting property of this and similar
multicellular development models is that they show emergent fault recovery
[25, 26, 28]. In these cases, self-repair was not selected for and appears as
an emergent byproduct of ontogeny. With each cell’s behaviour based on the
same growth program and only local variables, development achieves an intrinsic
stability.

Self-repair is very interesting in the prospect of real world implementations,
where random faults (e.g. radiation, fatigue) or substrate imperfections (e.g
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Figure 13: Average and maximum fitness scores for populations of various phe-
notypic size. Direct encoding performance decreases with bigger search spaces.
On the contrary, multicellular development performance seems to converge. For
comparison, the average performance of a random individual is also provided.

manufacture errors) are common. Contrary to traditional approaches, here
fault-tolerance is achieved by regeneration without phenotypic redundancy.

In Figures 18-20, emergent and evolved fault tolerance are shown. To test
the regenerative capabilities of the evolved organisms, the development of the
best individuals has been repeated with random phenotypic faults, which cause
the death of selected cells.

Each cell has been assigned a mortality rate mr ∈ {0.005, 0.01, 0.05, 0.1} per
cell per developmental step. The probability for a cell sustaining a fault at any
time during the development process (12 steps) is thus {0.06, 0.11, 0.46, 0.72}
respectively.

Emergent fault tolerance (figure 18) reports the self-repair capabilities for
individuals which were not selected for this characteristic.

On the contrary, evolved fault tolerance is achieved subjecting individuals
to faults during evolution. Subjected to random faults, the stochastic growth
process must be tested several times to guarantee a meaningful selection process.

23



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wolfram CA Norwegian Flag Circular French Flag

morpher NH

morpher H4

morpher H8

1024 cell targets (32x32), 10 dev. steps

Fi
tn

e
ss

Figure 14: Average and maximum fitness scores for populations with different
morphers: RNN without hidden layers (NH), and with one hidden layer of 4
(H4) and 8 (H8) neurons.

In particular, higher fault probability should require exponentially more repe-
titions. Since fitness evaluations are usually computationally expensive (for
example in the evolution of robot controllers) here the number of repetitions is
fixed to a reasonably small number. With mr ∈ {0.01, 0.1} fitness is computed
as an average over only 5 independent growth processes.

Evolved individuals manage to reach high fitness scores and show a strong
degree of fault tolerance.

7 Conclusions

We have tested a model of multicellular development showing that the method
is both highly scalable and capable of evolving self-repairing organisms. As
expected, performance is strongly dependent on the intrinsic regularity of the
target. With larger search spaces the performance of the Direct Encoding (DE)
steadily decreases, performance levels off for the presented Artificial Embryo-
geny (AE). This is valid also for the high complexity Wolfram CA target, even
though both DE and AE performance is low for the largest phenotypes.

It is important to notice, that the presented test and especially the Wolfram
CA target, are a ‘worst case scenario’ for the comparison of AE toward DE.

In fact, the problem of matching a string computing fitness as the Hamming
distance to the target, is among the easiest for DE. Its difficulty is independent
of the specific target’s structure and it is equivalent to the One-Max problem.

For AE, difficulty is influenced by the target shape. In the general case
it is not even clear whether a optimal solution exists. The fact that, even for
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Figure 15: Maximum and average fitness scores from 32x32 targets with varying
number of external chemical types. Differences are not statistically relevant (p
< 0.001).

highly complex phenotypes, development ends up out-performing DE represents
a strong evidence in favor of artificial embryogeny.

The analysis of random (Figure 4) and of evolved organisms (Figures 21-
24) does not show developmental fingerprints, such as numerous repeated sub-
patterns. These could prove a liability for the generality of the results. On
the other hand, since cell genesis can only happen in the NWSE directions,
horizontal and vertical sprouts are more common.

The development of organisms suffering stochastic cell deaths also shows
good self-repair capabilities both when fault tolerance is neutral and selected
for. Self-repair appears therefore as a by-product of ontogeny, with these results
being consistent with those presented in [25, 26, 28].

The use of multiple embryonal stages has proved beneficial to evolution.
Inspired upon gene duplication, development with embryonal stages implements
a direct neutral complexification of an organism reducing the pleiotropy among
different developmental phases. The method is very general and could be applied
to any developmental model. While in general it is true that the more embryonal
stages the better performance, on the other hand, if new stages are introduced
too early during evolution they can be detrimental. When excluding older stages
from search, new embryonal stages increase the resolution of proximal regions
of the solution space, while locking distal ones. As a result, early introduction
can show the drawbacks of over-exploitative search strategies. When all stages
are allowed to evolve, these effects are weaker.
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Figure 16: Maximum and average fitness scores from 32x32 targets with varying
number of internal, metabolic, chemical types. Differences are not statistically
relevant (p < 0.001).

7.1 Further Work

The evidence collected in this paper provides a good basis to start evolving more
interesting artifacts. Preliminary results in this direction involve the evolution
of locally connected spiking neural networks [13]. Given the high scalability
of the model, future work will include the evolution of neuro-structures with
functionality typical of peripheral brain regions, such as the retina and the
motor cortex.

Also, embryonal stages provide neutral complexification only over the tem-
poral domain. It is as well possible to design similar mechanisms operating on
the spatial domain. Such method could prove particularly beneficial in the evo-
lution of 3D organisms such as interconnected neural layers or body segments.

7.2 Computational Requirements

Locking older embryonal stages has a good effect on simulation speed. By
caching old (fixed) stages, each new stages reduces the number of developmental
steps required to produce a mature organism. Without this stratagem simula-
tions are several times slower.

A single 256x256 cells evolutionary run may require 50 billions Morpher ac-
tivations and take up to a week on a AMD XP 1800+ based computer. Without
caching, the time needed would be 9 times as much. The over 1500 simulations
presented have taken several weeks of computation time on the ClustIS Beowulf
cluster [7].
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Figure 17: Maximum and average fitness scores from 32x32 targets with varying
number of cell types. Differences are statistically relevant only for the Wolfram
CA target (p < 0.001).
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Figure 18: Emergent self-repair for the highest fitness 32x32 organisms with
maximum number of embryonal stages (group 1). In this case, fault tolerance
was not selected for and appears as a byproduct of ontogeny. Average perfor-
mance over 100 runs with various mortality rates. The horizontal lines show
the fitness score without faults.
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Figure 19: Evolved self-repair for 32x32 organisms with 12 EmbSt. Individuals
evolved while subjected to a 0.01 fault probability, fitness being the average
score over 5 runs. Average performance over 100 runs with various mortality
rates. The horizontal lines show the fitness score without faults.
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Figure 20: Evolved self-repair for 32x32 organisms with 12 EmbSt. Individuals
evolved while subjected to a 0.1 fault probability, fitness being the average score
over 5 runs. Average performance over 100 runs with various mortality rates.
The horizontal lines show the fitness score without faults.
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Figure 21: Wolfram CA target (left) and best evolved 256x256 individual (right).

Figure 22: Norwegian Flag target (left) and best evolved 256x256 individual
(right).
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Figure 23: Circular target (left) and best evolved 256x256 individual (right).

Figure 24: French Flag target (left) and best evolved 256x256 individual (right).
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Abstract:

We introduce a model of cellular growth that gener-
ates neurocontrollers capable of guiding simple simu-
lated agents in a harvesting task. The morphogenesis
of the neurocontroller is itself controlled by an evolved
artificial neural network. The neural network operates
only on local variables and chemical concentrations and
is thought as a flexible model of a gene regulatory sys-
tem and cell metabolism. The model is designed in order
to increase the evolvability of the growth mechanism,
which constitutes a serious issue in artificial embryo-
geny. Also, to increase the flexibility of development,
organisms are grown in embryonal stages, which allow
an incremental refinement of development. Neurocon-
trollers are organized in horizontal layers, with vertical
input and output pathways. Within the same layer, neu-
rons can have only local connections. On one side this
limits the information needed for routing and on the
other makes the system easy to implement in hardware.
Results show that the system is capable of developing
appropriate neurocontrollers in most of the evolutionary
runs.

Objective:

Use the DES system (Development with Embryonal
Stages) to produce a neuro-controller for situated
agents.

Conclusions:

If on one hand results showed that efficient neuro-
controllers are produced by development, on the other,
the evolutionary speed is quite low. Analysis suggests
a weakness of the proposed encoding for input, output
and lateral connections.
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Abstract

We introduce a model of cellular growth that
generates neurocontrollers capable of guiding sim-
ple simulated agents in a harvesting task.

The morphogenesis of the neurocontroller is it-
self controlled by an evolved artificial neural net-
work. The neural network operates only on lo-
cal variables and chemical concentrations and is
thought as a flexible model of a gene regulatory
system and cell metabolism.

The model is designed in order to increase the
evolvability of the growth mechanism, which con-
stitutes a serious issue in artificial embryogeny.

Also, to increase the flexibility of development,
organisms are grown in ebryonal stages, which al-
lows an incremental refinement of development.

Neurocontrollers are organized in horizontal lay-
ers, with vertical input and output pathways.
Within the same layer, neurons can have only lo-
cal connections. On one side this limits the infor-
mation needed for routing and on the other makes
the system easy to implement in hardware.

Results show that the system is capable of de-
veloping appropriate neurocontrollers in most of
the evolutionary runs.

1. Introduction

The single most serious problem in the field of evolution-
ary computation (EC) is the combinatorial explosion of
the search space as target designs grow in size.

Since the dimensionality of the search space in EC
is given by the genotypic space (G-space) while designs
reside in the phenotypic space (P-space), one possible
conclusion is to reduce the first without loosing the pos-
sibility to produce the best solutions in the latter.

Concerning the evolution of artificial neural networks
(ANN), the problem is that the number of weights typi-
cally grow quadratically with the size of the layers, while
the possible connections among layers grows combinato-
rially.

Examples taken from biological organisms suggest
that the solution may lay in a not trivial mapping from
genotype to phenotype. When we look to the develop-
ment of the human brain we can see that the ontogenetic
and epigenetic processes decompress the estimated 104

human genes to 1014 synaptic connections.
Inspired by such considerations, several indirect en-

coding schemes have been proposed. By allowing multi-
ple reuses of the same genes, indirect encodings decom-
press a smaller genotype in the final phenotype through
a process of development.

The term ‘Artificial Embryogeny’ (AE) has been pro-
posed to describe “the subdiscipline of evolutionary com-
putation (EC) in which phenotypes undergo a develop-
mental phase” (Stanley and Miikulainen, 2003).

In AE, it is possible to distinguish two major evo-
lutionary approaches to development of ANN’s. The
first one, is aimed at the evolution of a grammar which
is repeatedly applied to the phenotype. Examples
include the Matrix Rewriting scheme (Kitano, 1990),
the Cellular Encoding (Gruau, 1994), Edge Encod-
ing (Luke and Spector, 1996) and the GenRe system
(Hornby and Pollack, 2001).

A second approach evolves the regulatory system of a
cell with its metabolism and ability to duplicate. Cells
are usually capable of releasing chemicals which diffuse in
a simulated 2D environment, grow selective connections
to neighboring cells and sometimes move following some
chemical gradient.

There are two different ways to model the cell’s regu-
latory system. In biological organisms, DNA RNA and
proteins interact in complex patterns which are still mat-
ter of debate. Still, it has been suggested that this gene
regulatory system could be modeled by Boolean Net-
works (Kauffman, 1993). In (Dellaert and Beer, 1996)
the authors have have developed a Gene Regula-
tory Network (GRN) capable of evolving a neurocon-
troller. Other models of GNRs have been proposed in
(Jacobi, 1995) and (Bentley, 2003).

Inspired by cell automata, another approach is to reg-
ulate the development with a set of rules that, upon



matching the particular cellular state, activate specific
responses. The model presented in this paper belongs to
this category.

Also inspired by cell automata, Bentley and Kumar
proposed a model which does not yet develop ANNs but
tiling patterns (Bentley and Kumar, 1999). Cells can
only be of a single type and the aim is to develop per-
fect tessellating patterns. Rule preconditions are com-
posed of strings matching the local North-West-South-
East neighborhood (NWSE) of each cell and their ab-
solute position. Don’t care symbols are also allowed.
Results showed that the systems performed and scaled
better than a direct encoding method. On the other
side, the best solutions developed had very regular phe-
notypes. This left open the question whether the system
could be used with targets of higher complexity.

Miller extended Bentley’s model and developed more
complex patterns (Miller, 2003). He allowed 4 different
cell types (colors) and a chemical undergoing diffusion.
Cells based their growth program on their type and the
types and chemical concentrations from the 8 neighbor-
ing cells. The growth program itself was a boolean net-
work that was evolved with the Cartesian Genetic Pro-
gramming. Results showed evolved phenotypes resem-
bling the target with only very few misplaced cells.

Additionally, Miller analyzed the behaviour of the
evolved phenotype after the developmental step in which
the fitness was computed and when subjected to severe
mutilations. Phenotypes were shown to regrow the miss-
ing parts regaining a striking resemblance to the tar-
get. The self repair feature is very interesting since it
was not selected for during evolution. A similar resis-
tance to damage was also observed by this author in
(Federici, 2004).

In this paper we extend this model of cellular develop-
ment. Seeking a proof of the viability of these systems,
we impose a functional target to the evolutionary search.

This, on one side imposes a bigger search space, more
than 50 times bigger than previously tried, and on the
other offers the opportunity to test an encoding strategy
for the development of a given functionality.

In the genotype, instead of using lookup tables or
boolean functions to control development, we adopted
a recurrent neural network with a single hidden layer
(neuromorpher). On one side, recurrent networks are an
accepted model of genetic regulatory systems and on the
other, by allowing continuous changes of their outputs,
they allow a finer tuning of the program.

The mature phenotypes constitute themselves neuro-
controllers for situated agents. The evolved neurocon-
trollers are composed of spiking neurons with only local
connections. Compared to standard ANNs, the neuro-
controller is more biologically plausible and offers a bet-
ter hardware implementability, resistance to damage and
scalability.

The following of the paper is organized as follows:
section 2 contains the agent’s task description
section 3 the developmental system
section 4 the neurocontroller structure
section 5 details of the evolutionary model
section 6 results
section 7 conclusions

2. Agent’s task and selection rules

Agent’s are selected for their ability in a simple har-
vesting task. On a 60x60 toroidal map 240 agents com-
pete for the collection of 320 food resources. While they
search for food, agents must also avoid to crash against
each other and avoid to collect poison resources (also
320). The fitness is computed as the sum of collected re-
inforcements over 100 activation steps. Reinforcements
are calculated as follows:

+0.8 if visiting a tile containing food
-0.8 if visiting a tile containing poison
-0.3 if colliding with another agent
-0.1 if the agent did not move

Consumed resources are regenerated in random posi-
tions. At a given iteration, a tile can only contain either
food or poison. Also, only one agent can occupy a given
position. In case of a collision, the moving agent is un-
able to reach its destination.

The best 25% of the agent survive and reproduce. 10%
of the new agents are produced by crossover and all the
offspring undergoes mutation.

3. The development model

Phenotypes are developed starting from a single egg (zy-
gote) placed in the center of a fixed size 2D grid. Cells
(see figure 1) are characterized by internal and exter-
nal variables. Internal variables define the cell state and
move with it, while external ones (chemicals) belong to
the environment and follow a simple diffusion law.

External 
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Figure 1: Description of the variables used for development

At each development step, any existing cell can release
chemicals, change its own type and internal metabolism
and produce new cells in the cardinal directions North,
West, South and East. If necessary, existing cells are
pushed sideways to create space for the new ones (see



figure 2). When a cell is pushed outside the boundaries
of the grid it is permanently lost.

A

B

B

A A'

A generates A' pushing B sideways

Figure 2: Placement of new cells

Morphogenesis is governed by the program, the neu-
romorpher, defined in the genotype. The neuromorpher
(figure 3) receives in input the current cell internal and
external variables, and the cell types of the neighboring
cells in the four cardinal directions. Its output deter-
mines the new internal and external variables of the cell
and, in case, the internal variables of the newly gener-
ated cells. An additional local variable, the cell age, is
set to 1 at birth and decays exponentially to 0.

The neuromorpher is a model of a gene regulatory sys-
tem, and it is implemented by a standard feedforward
ANN1, and the genotpye is a direct gray-coded repre-
sentation of the ANN. The use of a neural network to
control the development process allows, we believe, a
greater degree of adaptivity for the definition of the ap-
propriate growth rules. This same author have tested
the same mechanism in the development of various 2D
patterns (Federici, 2004).

4. The neural model

At every stage of development, a phenotype defines a
neural network. For simplicity, in this paper the pheno-
type is first brought to maturation with a given number
of development steps, and then used to control the move-
ment of an agent.

The evolved neurocontroller (figure 4) is composed of a
single layer. Each neuron can have only local connections
to itself and to neighbors in the cardinal directions. Also
it can specify a single input and a single output.

1even if, for an existing cell, the internal variables provide an
immediate source of feedback
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Figure 3: Inputs and outputs of the growth program

Neurons are spiking units. A spike is generated if the
current net input exceeds the neuron’s threshold.

The sensory input activates the hidden layer the first
activation step only. The output of the neurocontroller
is computed after a given number of activation steps.

Outputs are normalized in [−1, 1]. An output of 1 (-1)
is possible if all excitatory (inhibitory) units connected
to that output are spiking in the last step of activation
of the neurocontroller. Otherwise the output assumes a
value in the range, proportional to the neural activity
among the connected neurons.

While intra-layer weights and thresholds take values in
[−2, 2], input and output weights can only have integer
values in {−1, 0, 1}.

For the task presented herein, neurocontrollers have 9
inputs and 2 outputs. There are two possible types of
sensors, one which detects food and poison (F-P) and
the second the presence of an agent (A) on a particular
tile.

The F-P sensor is set to 1 if food is present in the tar-
get tile, to -1 if poison is present, and 0 otherwise. The
A sensor is set to 1 if an agent is detected, -1 otherwise.

In each of the cardinal directions, agents possess F-
P and A sensors, while only a F-P sensor for the tile
currently occupied (figure 5).

The two output nodes are used to select the agent’s
direction of movement. The direction taken is the one
with strongest absolute output level. If both output lev-
els are within a [−.15, .15] region, no action is taken and
the agent does not move.

4.1 construction of the neurocontroller

The position, internal and external variables of each cell
select for their functionality in the organism:

1. The type determines input and output weights and to
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(N,W,S,E and 

center tiles)

HIDDEN LAYER:

Units are locally connected

and can have 1 input and 1 output

OUTPUT:

2 outputs control 

the agent's movement

Figure 4: Organization of the neurocontroller

which single input and output the cell is connected.

2. The chemical gradients between neighboring cells
are proportional to the strength of their connecting
weights (eq.1). Only local connections in the cardinal
directions are allowed.

3. The internal metabolism specifies the recurrent
weight (eq.2) and the cell’s threshold (eq.3).

The cell type is represented by a ternary vector of 5 di-
mensions. This gives rise to 35 = 243 different cell types.
The first and second dimensions contain the input and
output weights, where a value of 0 is read as no connec-
tion, a value of 1 gives an excitatory connection (+1),
and a 2 an inhibitory connection (-1). The following 2
dimensions contain the number of the input to which the
cell is connected (9 combinations). The 5th dimension

tells to which output the cell connects. In this case a
value of 2 is interpreted as no connection.

The formulas to calculate weights and thresholds are
given below.

Wi,j = ChemicalExt,1i − ChemicalExt,2j (1)

Wi,i = ChemicalInt,1i − ChemicalInt,2i (2)

Θi = 2
(
ChemicalInt,3i − 1

2

)
(3)

Where ChemicalExt,ki and ChemicalInt,ki stand for the
concentrations of the kth external or internal chemical
for cell i.
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4.2 genotype structure and operators

The neuromorpher is a feedforward ANN with 31 in-
puts, a single hidden layer with 8 units, and 47 outputs.
The adopted transfer function is the hyperbolic tangent.
The genotype is a direct gray-code representation of the
weight matrices.

Mutation operates by selecting each weight with a .05
probability and shifting it by adding a value extracted
by a normal distribution of zero mean and .01 variance.
Crossover generates two new individuals shuffling the
parent’s hidden units.

5. The evolutionary model

Family Grouping
One of the characteristics of AE systems is that evo-
lutionary improvements have saltatory characteristics.
Under these conditions a positive innovation can increase
the reproductive chance of a particular strain reducing
the chance of survival of all others. This often produce
premature convergence to local optima.

To reduce these over-exploitative effects, we have
adopted a family based grouping mechanism. Since
small differences at genotype level can have a great im-
pact on the development of the organisms, grouping is
done at the phenotypic level.

Every generation, individuals are taken in random or-
der and grouped by their phenotypes. For this task only
the cell types and their positions are taken in consider-
ation.

In order to belong to a family, individuals must have
less than 4 phenotypic differences from the family pro-
totype. If an individual does not fit in any family it will
generate a new one, and its phenotype will be taken as
new family prototype.

Within the same families, organisms are ranked by
their fitness. In case of a tie, younger individuals are
given a higher rank. The preference for younger indi-
viduals reduces the chances of stagnation (Miller, 2003).
All those individuals which have a rank lower than the
fourth have their fitness reduced:

fitness used for selection = fitness · 0.9rank−3

In figure 6, we show an example of how ranking coun-
teracts the population convergence following an innova-
tion.
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Figure 6: number of families and fitness. Around generation

100 an innovation favors a restricted group of genotypes. The

number of families drops as these individuals are selected

for reproduction. Counteracting this, ranking reduces the

homogenization of the population to avoid stagnation.

Ebryonal Stages
Another problem with the evolution of AE systems is
that, because of gene reuse, occasional mutations may
cause huge phenotypic changes. This effect reduces the
correlation between G-space and P-space, which has well
known negative effects on system evolvability.

A recent study conducted on the Matrix Rewrit-
ing model (Kitano, 1990) shows that this effect
increases with the complexity of the phenotypes
(Lehre and Haddow, 2003). Since organisms of high
complexity are probable targets of evolutionary meth-
ods, these considerations pose serious questions on the
viability of AE methodologies.

In biological organisms it is possible to observe a rela-
tionships between ontogeny and philology:

It is generally observed that if a structure is evo-
lutionary older than another, then it also appears



earlier than the other in the embryo. Species
which are evolutionary related typically share the
early stages of embryonal development and differ
in later stages. [...] If a structure was lost in an
evolutionary sequence, then it is often observed
that said structure is first created in the embryo,
only to be discarded or modified in a later embry-
onal stage. (Wikipedia, )

Motivated by these considerations2, this author has
developed a method consisting of incremental embryonal
stages (Federici, 2004).

Every embryonal stage is characterized by a single
growth program. At the beginning of the evolutionary
search, phenotypes are developed with a single embry-
onal stage. When a certain generation or fitness score
are reached, a new stage is added. For this new stage,
the novel growth program is initialized as a copy of the
one from the previous stage. From now on, development
will proceed in two successive phases.

At first it executes the growth program belonging to
the first stage, while, after a predetermined developmen-
tal step, development switches to the second3. Addi-
tional stages are added likewise (see figure 7).
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Figure 7: Embryonal stages. Stages are added incrementally,

those controlling earlier stages of development being evolved

first. Only the last stage is subjected to the innovation op-

erators, the others are fixed. Fitness is computed always at

the same developmental step.

Even if all the stages are used to grow the mature
organism, evolution can only modify the program of the
newest one, while the others are preserved intact.

This allows an incremental refinement of embryogen-
esis.

Even if the genotype size is increased linearly with
the number of stages, as the search space is extended
and explored incrementally, the evolvability is actually

2which should not be confused with the discredited Recapitu-
lation theory

3notice that, as the two programs are identical, the introduction
of new stages does not alter the development process.

increased. This is because, 1) additional stages are cre-
ated as a copy of the previous ones so that the evolu-
tionary search will proceed without discontinuities, 2)
the search is restricted to the refinement of the latest
stage and therefor of fewer developmental steps, simpli-
fying the task.

This effect should be particularly useful for high com-
plexity phenotypes, since the change of the genotype of
late embryonal stages will not affect early development
causing catastrophic changes in development.

For the simulations presented in this paper, three em-
bryonal stages have been used. The second stage is in-
troduced at the 500th generation, and the third at the
750th. When all the stages are activated, the first grows
the phenotype until the 5th developmental step, the sec-
ond until the 7th and the third completes the maturation
with step 8.

6. Results

We have evolved 20 populations with 240 agents. The
average fitness of each population computed over the last
5 generations ranges from a minimum of 0.5 to a maxi-
mum of 13.4, with an overall average of 6.8.

To achieve a good fitness, individuals have to develop
3 different abilities.

1. Collect Food: when an agents is next to a tile con-
taining food it must approach it.

2. Avoid Agents: agents must avoid to collide with
other agents.

3. Avoid Poison: agents must not enter tiles containing
poison.

Being that these are reactive agents, the optimal strat-
egy would be to simply proceed in a preferred direction
and steer only if confronted by an other bot, a tile con-
taining poison or because detecting food in an other di-
rection.

After evolution, we have taken the best individuals of
each population and monitored their behavior in con-
trolled enviromental conditions, such as with the pres-
ence of food, poison or other bots within the vision range.

Even if these controlled behavioral tests can check
the agent reactions only on a subset of all the possible
situations, they provide an objective description of the
evolved control strategies. We were able to classify the
collecting behavior in 7 categories of increasing quality
(figure 8).

6.1 collecting behavior

No agent developed the ability to collect food in the di-
rection opposite to the preferred direction of movement.
On the other side, the advantage for the development of



Description grade Nr
1 Always move in a single direction low 3
2 As type 1 but also approach

food in an additional direction low 3
3 As type 1 but additionally

avoid poison ahead ok 3
4 As type 3 but also approach

food in an additional direction ok 2
5 As type 3 but also avoid

agents ahead good 4
6 As type 5 and collect food

in an additional direction good 4
7 As type 4 but approach food

in three directions good 1

Figure 8: the description of the 7 evolved behavioral strate-

gies, a qualitative grade given to them, and the number of

populations that developed them.

this ability is quite limited. By proceeding in a single
direction, the tile left behind will be most often empty.

Also, the 60x60 toroidal world is quite crowded since
there are 240 agents. In these conditions collecting food
in all direction (strategy 7) can lead to globally unsta-
ble strategies. If an agent is surrounded by too many
greedy individuals, it may be unable to collect food and
score a low fitness score. Population-wise it might be as
good to approach food only in two (strategy 6 and 4) or
one (strategy 5 and 3) preferred directions, leaving not
collected resources to individuals of the same specie.

6.2 agent avoidance

Similar considerations may also explain why only 4 popu-
lations (strategy 5) developed the ability to avoid agents
in the preferred direction of movement. Since a homoge-
neous population will share the same preferred direction
of movement, encounters with other agents will be very
limited.

6.3 poison avoidance

Six populations (strategy 1 and 2) did not develop the
ability to steer away from tiles containing poison, and
therefore classified with a low grade. Still, the average
population fitness of the two strategies is quite high, be-
ing 5.1 and 8.0 respectively. The reasons for this, prob-
ably found at the level of population behavior.

6.4 analysis of an evolved neurocontroller

To provide an example of an evolved neurocontroller, we
have selected the best individual from a population of
type 6.

Selected steps of the growth process are displayed in
figure 10. Rectangles represent neurons, while synapses

are plotted as cones of various dimensions (see figure 9).
The bigger a cone the stronger the connection. White
(black) cones stand for inhibitory (excitatory) connec-
tions.

A small circle at the right top of each neurons gives
the amplitude of the recurrent weight.

Threshold values are represented by small vertical bars
inside the neuron rectangle. Bars extending upwards
have positive values.

Inside the neuron-rectangle two strings can be found.
The topmost string indicates how and which input is
connected to the neuron:

symbol input to the unit
+AX +1 only if agent is present
-AX +1 only if agent is not present
PX +1 only if poison is present
FX +1 only if food i spresent

where X is either {N,W,E,S,.}.
The second string indicates towards which direction

an activated neuron tries to move the agent.

+AE
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recursive

connection

Excitatory

incoming

connection

Inhibitory

outgoing

connection

Positive

Threshold

Input:

high (+) if

agent (A) is

eastward (E)

output:

southward (S) 

movement

Figure 9: Explanation of the symbols used in the neurocon-

troller plots

The neurocontroller final activation in four important
behavioral tasks is shown in figure 11.

Figure 11A contains the neural activity during the ex-
ploration task. In this case the agent proceeds in the
default direction (east). The task is accomplished with
the activation of 2 neurons for both the move south and
move east actions. Since there are more connections to
the north-south output, scaling favors the eastward di-
rection.

In figure 11B, a single neuron is responsible for steering
the agents towards the food. The extra activity sent to
the north-south output suffice for the direction change.

In figure 11C, several neurons are activated by the
presence of poison to the east. Only one though, is con-
nected to the output and responsible for the avoidance
behavior.
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Figure 10: Development of the neurocontroller. The single zygote of step 0 grows into the functional organism by step 8.

In figure 11D, the agent must decide if it should enter
a tile containing both food and an agent. In this case an
agent detector correctly steers the bot away.

It is interesting to notice, that in this case, the only
functional lateral weight goes from the neuron to the
top left to the unit immediately below it. Without that
connection the agent would start exploring southward
loosing its ability to avoid agents and poison.

7. Conclusions

This paper contains an explorative work in the develop-
ment of an Artificial Embryogeny model based on cell
chemistry.

We have presented a novel model capable of developing
a functional neurocontroller for a simple harvesting task
of situated agents.

The optimal control policy is based on three be-
haviours: collecting a food resource, avoiding a poison
resource and avoid other agents.

The quality of the results allows a cautious optimism

towards the presented approach. Over the 20 simula-
tions, 14 produced individuals with good control strate-
gies. Among the other 6, 5 where still able to score
acceptable average fitness scores. On the other side, be-
havioral tests showed their inability in the poison avoid-
ance task.

Compared to similar previous work, these simulations
have extended considerably the search space. Here there
are 243 different types of cells and 5 internal and external
chemicals.

The increased system’s evolvability is given by three
basic features: the ANN used to encode the growth pro-
gram, the family based grouping, and the embryonal
stages.

• Compared to other encodings, ANNs allows a smooth
refinement of the morphogenesis process.

• Because of the saltatory characteristics of evolution
in AE systems, grouping based on phenotype metrics
plays a fundamental role avoiding the takeover of a



single genotypic strain.

• Adding several embryonal stages reduces the catas-
trophic effects of mutations affecting early develop-
mental steps. This allows an incremental refinement
of the growth program and increases the correlation
between genotype and phenotype, expecially, we be-
lieve, for phenotypes of higher complexity.

The neuromorpher and neurocontroller introduced in
this paper are organized in a bidimensional layer and
present only local lateral connections. On one side, lo-
cal connections decrease dramatically the routing infor-
mation and therefore the search space. On the other,
these characteristics make the system feasible for an
hardware implementation such as the one presented in
(Tufte and Haddow, 2003). This is true both for the evo-
lutionary system and for the final evolved organisms.

From the analysis of the best scoring individuals, it
appears that chemical gradients are not a good way to
encode synaptic weights.

Since external chemicals diffuse in the environment,
neighboring cells tend to have similar concentrations.
This causes the connections to have mostly the same
signs and values. Under such conditions, processing
through lateral connections is very limited. Internal
chemical concentrations seem more appropriate.

8. Further work

Probably the biggest limitation of the model presented is
the way that input and output connections are encoded.
The schema is very inefficient requiring a cell type for
each possible input-output combination.

One possibility is to augment the encoding using the
unique spatial disposition of each neuron. Also, this
technique could permit the stacking of several neural lay-
ers one over the other.

A direction that is surely worth considering, is to ac-
tivate and test the neurocontrollers also during develop-
ment. The interaction with the environment would allow
the possible integration of epigenetic processes.
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Abstract:

Evolutionary Computation based on indirect encoding
strategies, aims to higher evolvability by reducing the
dimensionality search space. If on one hand scalability
is often improved for specific tasks, on the other the
generality of these methods can be limited.
In this paper, we introduce a novel evolutionary friendly
discrete-time leaky integrate and fire spiking neural
model and evolve its topology, local connectivity and
learning rules with both a multi-cellular Artificial Em-
bryogeny system and direct encoding. The spiking net-
works are selected for their efficiency in a wall-avoidance
task for simulated Khepera robots.
In previous work, to demonstrate its increased perfor-
mance in the evolution of larger phenotypes, a develop-
mental system was used to produce specific 2D patterns.
In this paper, we use the same system to instead pro-
duce neural networks of increasing size, showing that
similar conclusions can be drawn in a completely differ-
ent domain: development increases the evolvability of
large functional multi-cellular controllers for embodied
agents.
Additionally, we introduce a learning mechanism based
on local activity correlation. The mechanism is both
very parsimonious and versatile and it has been espe-
cially designed for evolutionary applications. Even if
the task does not require online adaptivity, simulations
show that by allowing the evolution of the learning rules,
performance is increased. This is valid only for the de-
velopmental system, where the increased phenotype size
has a diminished impact on search efficiency.

Objective:

Develop an enhanced neural model and network encod-
ing suited for multi-cellular development.
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Conclusions:

The proposed method evolves very rapidly proper neuro-
controller for simulated Khepera robots. Especially with
increasing phenotype sizes, development out-performs
direct encoding. Also, in a task that does not require
adaptivity, the proposed Hebbian-based learning model
shows that plasticity increases overall evolvability.
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Abstract

Evolutionary Computation based on indirect encoding strategies, aims to higher evolvabil-
ity by reducing the dimensionality of the search space.

In this paper, we introduce an evolutionary friendly discrete-time leaky integrate and fire
spiking neural model and evolve its topology, local connectivity and learning rules with both
a multi-cellular Artificial Embryogeny system and direct encoding. The spiking networks are
selected for their efficiency in a navigation task for simulated Khepera robots.

In previous work, to demonstrate its increased performance in the evolution of larger
phenotypes, the embryogeny system was used to produce 2D patterns. In this paper, we use
the same system to produce networks of increasing size showing that similar conclusions can
be drawn in the evolution of neuro-controllers for embodied agents.

By focusing on the evolution of the topology of the network, the introduced neural model
offers a route towards the automated design of very large networks.

1 Introduction

Biological systems are not generated directly form a blueprint, with each phenotypic trait expressed
by a section of the genotype. On the contrary, DNA bases display multiple levels of interactions
with the intracellular environment. These interactions, almost as a byproduct, are responsible for
the development of the phenotype.

As a consequence, specific groups of genes can influence several distinct phenotypic traits, so
that the dimension of the genotype can be quite independent of the phenotypic size. For example,
just by taking in consideration the number of cells in a human body, there are 50T (Tera) cells
circa, while it is estimated that our genotype contains only 30K genes (45M DNA bases).

For Evolutionary Computation (EC) a compression of the genotype has the obvious advantage
to restrict the search to an exponentially smaller space. On the other hand, an arbitrary restriction
could exclude some of the best solutions from the search space. Additionally, the pleiotropy
introduced by this indirect map from genotype to phenotype, reduces the correlation between the
search and the solution spaces, with a small change in the genotype capable of catastrophic effects
on the phenotype. Reduced correlation makes the incremental refinement of the phenotype more
difficult, often reducing the evolvability for complex problems.

Still, development allows the reuse of genetic material which might lead to the emergence of
modules in the phenotype. The bilateral symmetry found in most vertebrates is an example. The
nervous system also presents many repeated substructures: for example the neocortex shows two
levels of organization with repeated local micro-circuits.

In this paper we present a novel leaky integrate and fire spiking neural model particularly
suited for evolution and development. The model is used to evolve developing neuro-controllers for
a simulated Khepera robot equipped with a variable number of infrared sensors (IR). Development
is based on a multicellular embryogeny system which has be shown to be scalable, general and
capable of self-repair [9, 25, 11].

1



Results show that, in a collision avoidance task, the model evolves very rapidly a proper growth
program for a spiking neural network. Also Compared with a direct encoding GA, results show
that the model is well suited for evolution and artificial embryogeny systems.

1.1 related models

It is possible to partition the development of artificial neural networks (ANNs) into two major
evolutionary approaches. The first one, is aimed at the evolution of a grammar which is repeat-
edly applied to the phenotype. Examples include the Matrix Rewriting scheme [19], the Cellular
Encoding [14], Edge Encoding [20] and the GenRe system [15].

A second approach evolves the regulatory system of a cell with its metabolism and ability
to duplicate. Cells are usually capable of releasing chemicals which diffuse in a simulated 2D
environment, grow selective connections to other cells, move following some chemical gradient and
sense the presence of neighboring cells [23, 6, 4].

There are different ways to model the cell’s growth program. Inspired upon the eukaryotic
gene regulatory systems, artificial gene regulatory networks (aGRN) can be found in [7, 16, 3, 22].
In these systems, genes’ activation regulate (and is regulated by) the expression of other genes.
Activated genes are then used to define the morphology of the evolved organisms. Albeit capable of
generating very complex regulatory dynamics, these systems are often computationally expensive,
making them unsuited for the development of large multi-cellular organisms.

To avoid this problem, other approaches adopt lighter models with comparable functionality.
For example, inspired by the work of Kauffman [18] recursive boolean networks have been used
in [23, 6]. In the model used in this paper, recursive neural networks (RNN) are used. Not only
RNN are widely accepted as a model of gene regulatory systems[2, 8], but also, when compared to
discrete boolean functions, the space of continuous functions representable by RNNs allows finer
tuning and richer neutral space.

In previous work, a similar developmental model was used to produce an integrate and fire
neural network for agents immersed in a discrete world [9]. The presented new leaky integrate
and fire spiking neural network is used to control simulated Khepera robots and presents several
advantages in terms of: richer behavior, evolvability, scalability and learning rules. As a result
larger and more complex networks are produced.

2 Embryogenesis: development with embryonal stages

Organisms develop starting from a single replicating cell to reach the mature multi-cellular organ-
isms in a precise number of developmental steps. At each developmental step, existing active cells
can change their own type, alter their internal chemical concentrations and produce new cells. An
active cell can also die or become passive.

The cell behavior is governed by identical RNNs (Morphers) directly encoded in the genotype
with a floating point number used for each synaptic weight. The Morpher (Figure 1) is a single
layer network, receiving as input the current cell type (discrete values), metabolism (real values)
and age (real value), and the cell types of the neighboring cells in the four cardinal directions.
Its output determines its new type and metabolism and, in case of replication, the types and
metabolism of the newly generated cells. The cell age is initialized to 1 and decays exponentially.

During the course of evolution, similar to a process of gene duplication [24], new Morphers can
be added to extend the growth program. With each one controlling a different embryonal stage,
this mechanism of explicit neutral complexification allows richer and more timely responses of the
growth program, overall increasing the evolvability of development. Please refer to [9, 11] for all
the details concerning development with embryonal stages.

3 The neural model

Evolution searches the space of growth programs producing multi-cellular organisms. Each cell of
these organisms is interpreted as a spiking neuron and used to control the behavior of a Khepera
robot.
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Several dendritic trees, each with their genetically
encoded learning constants are possible. Each tree
can either have inhibitory or excitatory effects on
the activity in the soma. Synaptic input and so-
matic activity are integrated over time with an ex-
ponential decay. When the somatic activity ex-
ceeds a threshold, a spike and an exponentially
decaying refractory chemical are generated. Until
the refractory chemical does not fall below a small
value, spikes’ generation is blocked.

Figure 2: Depiction of the leaky integrate and fire spiking neuron.

The spiking neuron is an implementation of leaky integrate and fire neuron, similar to the
one defined in [13]. The behavior of the spiking neuron j is computed following discrete time the
equations (see also Figure 2):

synapse i : sCHi(t) =
{

wi + Ds sCHi(t− 1) with an incoming spike

Ds sCHi(t− 1) else ways

activity of j : aCHj(t) = Da aCHj(t− 1) +
∑

i∈Synapses

sCHi(t)

refract. of j : rCHj(t) = Dr rCHj(t− 1) + Sj(t)

spike from j : Sj(t) =
{

1 if aCHj(t) > θ ∧ rCHj(t) < .1
0 else ways

with {Da, Dr, Ds, Θ} ∈ [0, 1] constants controlling the dynamic of the spiking neuron. In our
implementation the synaptic efficacy w is either a fixed value ∈ {-1, 0, 1} or can vary freely within
±[0, 1] subjected to pre/post synaptic correlation plasticity (e.g. Hebbian learning).

In biological neurons plasticity is typically associated to the presence of post synaptic activity,
either derived from afferent neuro-transmitters or reverberating post-synaptic potentials, in con-
junction with second messengers (e.g. cAMP) or local chemicals (e.g. Ca++) [17, 5, 21]. As a result
a wide spectrum of learning behaviors are possible [1], including, but only limited to, Hebbian and
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Figure 3: Some of the possible dW curves achievable by the proposed learning model, named
after their biological counterparts. Learning is triggered by electrical activity at the post-synaptic
level. The efficacy change depends on the local concentration of activity, refractory and synaptic
chemicals and on the learning constants of the synaptic tree.

anti-Hebbian learning.
To model a wide range of learning rules still keeping the number of parameters to a minimum we

propose a correlation ruled based on the local concentrations of synaptic, activity, and refractory
chemicals. Whenever a synapse experiences electric activity, either because it was activated by
neuro-transmitters or because a spike was generated in the post-synaptic neuron, the synaptic
efficacy w is updated:

dw = La aCH + Lr rCH + Ls sCH + Lb

with {La, Lr, Ls, Lb} ∈ (−1, 1). Figure 3 shows some of the possible learning curves, named after
their biological counterparts [1]. Compared to other implementation of Hebbian rules this method
method is (1) activated only by post-synaptic electrical activity and (2) only driven by information
available in the post-synaptic dendrite.

4 Simulations: wall avoidance

Here we present results from evolutionary runs, each consisting of 100 generations, 100 individuals
and 25% elitism. The fitness is computed taking the average performance from the 4 worst of 6
independent runs, consisting of 200 100ms activation phases in a 50x50cm box. The fitness rewards
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Figure 4: Structure of a layer of bipolar spiking neurons receiving input from 8 IR sensors and
connecting to the actuators of Khepera’s motors. The input (wi) and output weights (wo) are
encoded by the type of the cell, while θ from the cell metabolism. All other parameters are fixed.

fast and straight movement and is computed at each step as:

Fit =
∑

i

(Wheel+l + Wheel+r ) (.5 (1 − abs(Wheell −Wheelr)))
1
4

where Wheel+i is set to zero if the wheel i spins backward, (Wheel+l + Wheel+r ) measures the
forward speed of the Khepera, and 1−abs(Wheell−Wheelr) is maximal when the robot proceeds
straight.

The offspring is generated applying Gaussian noise with .1 variance to each Morpher weight
with .05 probability. Crossover is applied to 10% of the population and is produced by shuffling
the parents’ output subnets. Finally, to reduce convergence, individuals are grouped in families
based on their phenotypic similarity (see [9] for details), with the effect of rewarding less common
phenotypes.

With development, the initial zygote cell replicates and differentiate to grow the mature multi-
cellular phenotype. Each cell is specified by its discrete type and real-valued metabolic chemical
concentrations. The cell type is itself a 3-valued vector (base 3), whose size is determined before-
hand, depending on the necessities of the spiking neural model.

4.1 bipolar cells with IR sensors

Each cell of the multi-cellular organism represents a bipolar neuron connecting an IR sensor to a
motor neuron. The organism is a layer of neurons NIR wide and 4 high, where NIR is the number
of infrared sensors (8 in this case). As Figure 4 shows, the neurons are connected to the input (X)
and output (Y) layers based on their 2D position. The normalized activity of the motor neurons
calculates the speed of each wheel of the Khepera robot:

Wheell = .9 L+ + .1 L−; Wheelr = .9 R+ + .1 R−;

where L± and R± is the concentration of the activity chemical (aCH) in the non-spiking motor
neurons. Notice that aCH can vary between -1 and 1.

To encode a bipolar neuron, each cell is specified by a 2D vector of ternary values and a
single metabolic concentration. The type specifies the efficacy of the afferent (wi) and output
(wo) synapses w ∈ {+1, 0,−1}; the chemical concentration encodes the single threshold value
θ ∈ [−1, 1]. The other neural parameters are fixed (see Figure 6).

Figure 6 shows the best evolved controller and its behavior (top), and the fitness scores of the
best individuals of each of 20 independent populations. Results show that in average, it takes less
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Figure 5: Explanation of the symbols used in the depiction of evolved neuro-controllers.

then 10 generations to produce controllers capable of wall-avoidance (fitness ≥ .40ca). After that,
fitness can be increased only by achieving faster and straighter movements. Even if the task is
relatively simple, the evolutionary speed is still very high when compared to related work [12].

4.2 tripolar cells with IR sensors: adaptive weights

In this case we add a plastic dendritic tree to the bipolar neuron. The tree can form horizontal local
connections to the the nine neurons around its position (itself and the eight neighbors). All the
synaptic efficacies are initialized to a small value (.1) and will be allowed to change in [0, 1] following
the learning rule specified by each cell. In this case, each cell has to specify 1 additional ternary
discrete value for the sign of the adaptive synapses wh ∈ {+, not active,−}, and 4 real values for
the learning constants of La ∈ {−.1, 0, .1}, Lr ∈ {−.5, 0, .5}, Ls ∈ {−1, 0, 1} and Lb ∈ {−.1, 0, .1}.
Therefore, in order for the mature phenotype to encode tripolar neurons, each cell must contain a
3-dimensional 3-valued type vector and 5 real valued metabolic chemicals: more than double the
requirements of bipolar neurons.

Even though, results show a higher performance, see Figure 7. Horizontal connections are
not necessary in this type of task, nevertheless adaptive connections are exploited to reduce the
network compexity.

For example, the adaptive weights of the two neurons connected to the right wheel in the
controller of Figure 7 usually converge to 0 quite early. At that point the two neurons are activated
and depressed always at the same time to produce fast clockwise turns. But depending on the initial
starting position, still active horizontal connections produce a decoupling of the two neurons to
produce earlier and smother turns (arrow in figure). As a result, fitter trajectories can be produced.

4.3 Comparison with direct encoding: performance

The modularity of the presented spiking neuron model makes it suitable for developmental multi-
cellular systems. Still, it is interesting to investigate whether with a direct encoding of the pheno-
type similar results are achieved.

For this purpose, in this section we evolve directly the neuro-controller phenotypes bypassing
the ontogenetic process.

The genotype is one-to-one representation of the phenotype: a NIRx4 matrix with each position
containing a cell. Akin to development, cells contain both discrete types and metabolic chemical
concentrations. Mutation operates with a direct change of each independent cell attribute with a
probability (mp), affecting in average 10 attributes per mutation (binomial distribution). When
affected, discrete attributes are randomized to a new value, continuous ones are perturbed with
Gaussian noise with .001 variance (mσ). The value of the variance has been found optimal among
the following:

mσ 0.05 0.005 0.001 0.0005 0.0001
mean (max) % fitness 27 (32) 62 (77) 70 (78) 70 (77) 68 (81)

All the other evolutionary details remain unchanged.
Compared to the results obtained with development, direct encoding shows a slower fitness

increase, even if both systems converge to the same performance values. This suggests that both
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systems search in comparable solution spaces, with development not being restricted to only a few
viable solutions. In fact, direct analysis of the best neuro-controllers from all populations show
always different individuals. On the other hand, the best networks produced with development
contain statistically fewer neurons (p < 10−3): in average 8.22 against 15.2.

4.4 Scalability

The 8 IR sensors of a Khepera robot offer a really minimalistic platform for the evolution of
embodied agents. Sensors in animals are more typically counted by the millions.

Development systems have been proposed as a solution to the scalability problem of high
dimensional solution spaces. In the evolution of specific 2D patterns, the development system used
in this paper has been shown to scale well to bigger phenotypes, with evolutionary performance
showing high correlation with the complexity of the targets [25, 11]. In this section, we test
scalability for larger neuro-controllers.

The number of IR sensors can be arbitrarily increased in simulation, at the same time increasing
the width of the neuro-controller (NIR). When 8 IR are used, they are placed according to the
standard Khepera specifications [?]. When more sensors are used, they are equally distributed
over the robot circumference.

The difficulty of the task remains unchanged since, simply by ignoring the additional sensors,
the previous controllers would still work. On the other side, evolution must cope with bigger
networks, whose refinement could impose a liability for overall performance.

Figure 9 shows that, while with direct encoding, performance degrades dramatically with the
size of the phenotype, with development, this effect is more contained.

Development is capable of exploiting the intrinsic regularity of good controllers to accelerate
the discovery of proper growth programs.

4.5 Development: Regularity and Performance

In general, development friendly targets are those that present some exploitable regularity [25, 11].
In the presented simulations, IR sensors are arranged in the input vector in an clockwise fashion,

with the first position of the input vector taken by the leftmost rear sensor. In this section, the
evolvability of development is tested when this orderly arrangement is replaced by a random one.

For every evolutionary run an independent random permutation of the sensor’s positions is
generated. The performance computed over 20 runs with bipolar spiking neural networks with 64
and 128 randomly arranged sensors is shown below:

IR sensors: 64 128
max average max average

clockwise order .84 .63 .81 .60
random order .63 .36 .72 .33

With random sensors’ arrangement, the performance of the developmental system is greatly
reduced. Both with 64 and 128 sensors, results are statistically significant, with averages differing
for more than 2 standard deviations.

Taken from the perspective of the robot’s behavior, with an ordered disposition two neighboring
sensors carry a similar information. In fact, they point at angles that differ by only 2π/NIR: 5.6o

for 64 and 2.8o for 128 sensors.
The role of a neuron, in terms of the input it receives and the behavior it triggers, will be

often similar to the role of its neighbors. Since neuron’s functionality is provided by the type and
metabolism of the corresponding cell, neighboring cells will share similarities with the consequence
that fit organisms will have more regular shapes.

Quite opposite is the case of randomly placed sensors. Here evolution must find a development
program capable of producing organisms for which neighboring cells encode neurons of probably
unrelated functionality. Fit organisms appear less regular with clear results in terms of perfor-
mance.
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5 Conclusions

In this paper we have introduced a novel evolutionary friendly adaptive spiking network model.
The discrete time neural model is based on the leaky integrate and fire spiking neural network [13].
Its adaptive rules are based on the correlation between post-synaptic electric activity and the local
concentrations of synaptic, activity and refractory chemicals. Compared to standard Hebbian and
anti-Hebbian learning rules, the model presented in this paper can produce more types of learning
curves comprising, but not being limited to, those found in various animals [1].

The adaptive mechanism is also computationally efficient and requires only four additional
parameters per learning rule. This is particularly interesting since efficient rules are fundamental
for evolutionary applications.

The spiking neural model has been used to control IR based navigation for a simulated Khepera
robot. Neuro-controllers have been evolved both with multi-cellular development with embryonal
stages [10, 11] and direct encoding. While both strategies can produce good controllers, develop-
ment appears more parsimonious and shows a steeper performance increase.

Also, when applied to the evolution of Khepera robots equipped with extra IR sensors, the
developmental system displays a sustained high performance, in accordance with what presented
in the evolution of 2D patterns [25, 11]. This is true as long as sensors are presented to the network
in an orderly fashion. With neighboring cells having a similar role on overall behavior, evolution
takes advantage of the regularity of fit organisms.

Adaptivity is not necessary for the navigation task, still the introduction of horizontal learning
synaptic trees has proved beneficial to the evolutionary speed of the development system, despite
the fact that the number of parameters defining a neuro-controller is more than doubled. An
opposite picture emerges with direct encoding, where the larger search space prevails against the
increased versatility of the adaptive networks.

As a conclusion, we believe, that efficient multi-cellular development offers a great evolutionary
advantage in the discovery of large networks. It must be noted that the approach adopted in
the presented model, differs form the traditional ‘evolution of weight matrices’ (e.g. the matrix
rewriting scheme [19]). In our case, weights are encoded indirectly as excitatory / inhibitory
connections, learning rules and the topological properties of mature phenotypes. The result is that
neuro-controllers can be produced exploiting the intrinsic regularity of good solutions.
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Figure 6: Evolving a development program for Kheperas spiking neuro-controllers: bipolar neurons.
Evolution selects for straight and fast navigation. Fitness scores above .40ca require the ability to
detect and avoid walls. In Figure: the best scoring bipolar controller (top right) and the behavior
it generates (top left).
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Figure 7: Evolving a development program for Kheperas spiking neuro-controllers: tripolar neu-
rons. Evolution selects for straight and fast navigation. Fitness scores above .40ca require the
ability to detect and avoid walls. In Figure: the best scoring tripolar controller (top right) and
the behavior it generates (top left). The arrow highlights the only apparent use of the horizontal
connections.

11



Bipolar Spiking ANN (direct encoding)

Fixed parameters:
aCH = 0.3
rCH = 0.1
sCH = 0.3

Evolving parameters:
Wi : dicrete {-1,0,1}
Wo : discrete {-1,0,1}
q : real [-1,1]

populations’ best individuals, best and mean from 20 runs

generations

fit
n

es
s

IR

ooooooooo
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
oo

ooooooo o o o o o o o o o o o o o o o o o o o o o o ooo
oooooo

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
oooooo

oooooooooooo

Wheels

RL

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

best direct encoding
mean direct encoding
best development
mean development

Figure 8: Evolving direct encoded spiking neuro-controllers: bipolar neurons. Evolution selects
for straight and fast navigation. Fitness scores above .40ca require the ability to detect and avoid
walls. In Figure: the best scoring bipolar controller (top right) and the behavior it generates (top
left). Results are also compared with those obtained with development.
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Abstract:

Opposed to the standard paradigm of ‘fault-tolerance
by redundancy’, ontogeny offers the possibility to engi-
neer artificial organisms which can re-grow faulty com-
ponents. Similar to what happens in nature, organisms
display self-healing: an homeostatic process which al-
lows proper operation while suffering faults.
In this paper we present a system which evolves develop-
ing spiking neural networks capable of controlling simu-
lated Khepera robots in a wall avoidance task. Develop-
ment is controlled by a decentralized process executed
by each cell identical growth program.
To test the system’s self-healing capability, networks are
(1) subjected to random faults during development and
(2) mutilated during operation.
Results demonstrate how development can (i) rapidly
produce proper neuro-controllers and (ii) re-grow neu-
rons to recover normal operation.
These results show that development, originally pro-
posed to increase the evolvability of large phenotypes,
also allows the production of artifacts with sustained
fault-tolerance. These artifacts would be especially well-
suited for tasks that require long periods of operation in
absence of external maintenance.

Objective:

Test the self-healing properties of development on a
functional neural network organism.

Conclusions:
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Self-healing is achieved by a functional homeostasis:
similar to what happens in biological organisms, evolved
developmental programs control the appearances of
faults with a continuous cellular genesis.
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Abstract— Opposed to the standard paradigm of ‘fault-
tolerance by redundancy’, ontogeny offers the possibility to
engineer artificial organisms which can re-grow faulty compo-
nents. Similar to what happens in nature, organisms display self-
healing: an homeostatic process which allows proper operation
while suffering faults.

In this paper we present a system which evolves developing
spiking neural networks capable of controlling simulated Khep-
era robots in a wall avoidance task. Development is controlled by
a decentralized process executed by each cell’s identical growth
program.

To test the system’s self-healing capability, networks are (1)
subjected to random faults during development and (2) mutilated
during operation.

Results demonstrate how development can (i) rapidly produce
proper neuro-controllers and (ii) re-grow neurons to recover
normal operation.

These results show that development, originally proposed to
increase the evolvability of large phenotypes, also allows the
production of artifacts with sustained fault-tolerance. These
artifacts would be especially well-suited for tasks that require
long periods of operation in absence of external maintenance.

I. I NTRODUCTION

Due to the fact that their functionality is distributed, it
is well known that neural networks tend to display a good
resistance to damage: with the loss of a few nodes or connec-
tions the system operation is often preserved to an acceptable
degree.

Still, living organisms present an additional source of ro-
bustness which is derived by their self-healing capabilities.
Common are the examples of the lizard’s tail and the limb of
a salamander, which can re-grow after being severed. In truth,
most living organisms present a continuous regeneration in
order to withstand the interaction with the physical world.

Having to operate for a long time, there is a clear evolu-
tionary advantage for organisms capable of self-healing. In this
case, self-healing is de facto an adaptation to frequent sources
of faults typical of hazardous environments.

Recent results have shown that the central nervous system
is not an exception. Stem cells are constantly produced in the
Substantia Nigra and its malfunctioning is being associated to
Parkinson’s disease [18]. It has also been shown that damaged
light receptors are regenerated [17].

Opposed to the more classical engineering principle of
fault-tolerance by redundancy, the picture that emerges from
living organisms is of a fault-tolerance by regeneration. The
advantage is that such systems can in principle operate without
limits of time and be deployed in hazardous environments
without the need of external technical assistance.

Work presented in [5], [16] has shown how the evolution of
large phenotypes of specific shapes can benefit from the use
of an indirect genetic encoding scheme based on development.
With a gene required for each phenotypic trait, the more
traditional direct encoding shows an exponential increase of
search spaces as larger phenotypes are being evolved. On the
contrary, by evolving a growth program, the size of genotype
can be highly independent from the size of the phenotype. In
fact, with development, genes can be recursively used multiple
times.

Additionally, as a side effect, developing organisms also
display emergent self-repair: dead (faulty) cells appear to
be regenerated by the original growth program [14], [5],
[16]. Opposed to the view of fault-tolerance achieved by
redundancy, this emergent feature of development would allow
the design of hardware and software devices which would re-
grow damaged components.

Previous analysis has focused on static 2D patterns, leaving
open the question about the applicability of the method in the
evolution of functional organisms. In this paper, the Artificial
Embryogeny model of [5], [16] is used to create Spiking
Neural Networks (SNN) to control simulated Khepera robots.
The introduced plastic SNN model has been designed to offer
high evolvability under development.

Results show that not only the method is capable of
producing very effectively proper neuro-controllers but also,
these controllers are capable of recovering from damage with
a regenerative process reminding the one seen in natural
organisms. This is valid for networks with both plastic and
non-plastic synapses.

A. related work

Methods directed towards the evolution of ANNs have
always been confronted with a dimensionality problem. The



number of inter-connections typically grows quadratically with
the size of the neural network layers, while the possible
connections among layers grows combinatorially.

Instead of evolving a genotype containing a direct repre-
sentation of each connection, it is possible to evolve the pa-
rameters specifying a generative process which will determine
each connection’s topology and efficacy. In such a way, the
combinatorial explosion of the search space can be prevented
and evolution can proceed within tractable limits.

For example, it is possible to evolve the rules of a grammar,
which, recursively applied to the phenotype, will produce the
mature network. Examples are provided by the Matrix Rewrit-
ing scheme [10], the Cellular Encoding [7], Edge Encoding
[12] and the GenRe system [8].

Some models include additional contextual information in
each rule definition [8], so that phenotypic traits variations can
be generated.

Another approach is inspired upon Cellular Automata (CA).
In this case, the target of evolution is the regulatory program of
a cell. Through the interaction with a simulated environment,
cells accordingly duplicate and differentiate to produce mature
organisms. Cells are usually capable of sensing neighboring
cells [4], releasing chemicals which either diffuse in the
simulated environment [14] or are localized in the cytoplasm
of the cell [5], grow selective connections to neighboring cells,
and migrate [2].

Concerning fault-tolerance, the CA-based models presented
in [14], [16] have shown emergent (neutral) self-repair prop-
erties. In [5] multi-cellular organisms showed increased re-
silience when additionally selected for that feature.

Still, searching in a restricted space, it is possible for good
solutions to lay outside the reach of the development program.
In fact, compression is generally higher for regular targets and
development is de facto a decompression of the genotype. A
serious question then is how much these methods are viable
for the evolution of irregular targets.

Hints in this direction, also come from a study [11] on the
Matrix Rewriting scheme [10], showing how the genotype-
phenotype correlation decreases with the complexity of the
phenotype: lower correlation is usually associated to less
efficient evolutionary search.

Similar results have been presented in [5], showing that
more complex (irregular) patterns were more difficult to
evolve. Still, as the targets increased in size, development
produced better results than direct encoding in all tested cases.

II. T HE MODEL

Spiking neuro-controllers are produced in 2 steps. The
first recursive one uses the growth program encoded in the
genotype to develop a multi-cellular phenotype. The latter,
translates each cell into a spiking neuron.

A. Multi-Cellular Development

Organisms develop starting from a single cell (zygote) to
reach maturation in a precise number of developmental steps.

Cells replicate and can release simulated chemicals in intra-
cellular space (metabolism).

At each developmental step, existing active cells can change
their own type, alter their metabolism and produce up to four
new cells in any of the cardinal directions North, East, South
and West. An active cell can also choose to die or become
passive. Once passive, cells can no longer change their state
or produce new cells.

The mother cell specifies each new cell type and
metabolism, and whether they are active or passive. If nec-
essary, existing cells are pushed sideways to create space for
the new cells. When a cell is pushed outside the boundaries
of the grid it is permanently lost.

Each cell’s behaviour is governed by a unique growth
program based on local variables, and implemented by a
simple recursive neural network (Morpher) with linear trans-
fer function and 4 hidden nodes. Recursive connections are
provided by each cell type and metabolism.

The Morpher is directly specified by the genotype, which
contains a floating point number for each synaptic weight. Its
inputs are the current cell type and metabolism, and the cell
types of the neighboring cells in the four cardinal directions.
Its output determines its new type and metabolism and, in
case of replication, each type and metabolism of the newly
generated cells. An additional local variable, the cell age, is
set to1 at birth and decays exponentially.

To increase the evolvability of development, a method
based on Embryonal Stages is also used. Development with
Embryonal Stages (DES) allows the Neutral Complexification
of the genotype. Similar to gene duplication in biological
organisms [15], DES increases the sophistication of evolved
phenotypes by adding new chromosomes to the genotype.

Each chromosome encodes a complete Morpher and con-
trols a predefined development phase, i.e. a range of develop-
ment steps. By increasing the time-specificity of development
(heterochrony) DES increases the sophistication of evolved
phenotypes [5]. DES operates as follows:

Set Up: all initial genotypes contain a single chromosome.
The corresponding Morpher controls development from the
first step to the last.

Gene Duplication: during evolution, a new chromosome
can be inserted. Each new chromosome is an exact duplicate
of the latest added one. The corresponding duplicated Morpher
is responsible for development of a share of the development
steps of its duplicate. For example, imagine that MorpherMi

controls development from stepk to j. When the duplicated
Morpher Mi+1 is added,Mi will control the development
steps fromk to (k+ j)/2, while Mi+1 will control steps from
(k + j)/2 + 1 to j. The total number of development steps
always remains constant.

New chromosomes are always associated to the final steps
of development. Being exact copies, at first new chromosomes
do not alter development, and are therefore neutral. But
eventual successive mutations can independently affect each
independent chromosomes.

In this paper, only the latest added chromosome is subjected



to evolutionary search. All others remain fixed. A more exten-
sive description of the developmental model, and in particular
of Development with Embryonal Stages, can be found in [5].

B. from cells to neurons

Each cell of an organism is a neuron of a spiking neuro-
controller. The type and metabolic concentrations of a cell are
used to specify the internal dynamics and synaptic properties
of its corresponding neuron. The position of the cell within
the organism is used to produce the topological properties of
neuron: its connections to inputs, outputs and other neurons.

The cell type is a discrete ternary vector{−1, 0, 1}Ns and
is used to determine the sign of theNs synaptic connections.
The metabolism is a real valued vector[−1, 1]Np and is used
to specify the neuron threshold and its learning parameters.

The actual values ofNs andNp can vary depending on the
needs of the specif spiking neuro-controller adopted. In this
paper two neuro-controller models are used.

Networks ofbipolar cells have a single input synaptic tree
with discrete efficacy ({−1, 0, 1}), a single axonal output with
discrete efficacy ({−1, 0, 1}, and a threshold value ([−1, 1]).
For a bipolar cellNs = 2 and Np = 1. To produce bipolar
cells, the morpher requires 12 inputs and 20 outputs.

Networks of tripolar cells are similar to the bipolar ones,
but an additional horizontal dendritic tree is present. The
plastic tree connects to the 8 most proximal neurons only
and is specified by its learning rule (4 real variables) and
sign ({−1, 0, 1}). For tripolar cellsNs = 3 and Np = 5.
To produce bipolar cells, the morpher requires 16 inputs and
45 outputs.

Finally, the 2D position of a cell in the mature organism
specifies the neuron’s input and output connections. A neuron
placed in (x, y) is connected to inputx and outputy. For
tripolar neurons, horizontal connections spread only to the 8
closest neighbors, see Figure 1.

The normalized activity of the motor neurons calculates the
speed of each wheel of the Khepera robot:

Wl = .9 L+ + .1 L−; Wr = .9 R+ + .1 R−;

whereL± andR± is the concentration of the activity chemical
(aCH, see below and Figure 2) in the non-spiking motor
neurons multiplied by their output weights.

C. spiking neuro-controller

The presented discrete-time spiking neuron model is a leaky
integrate and fire neuron implementation, similar to the one
introduced in [6]. The behavior of the spiking neuronj is
computed following equations in Figure 2.

In this implementation the synaptic efficacyw is either a
fixed value∈ {-1, 0, 1} or can vary freely within±[0, 1] sub-
jected to pre/post synaptic correlation plasticity (e.g. Hebbian
learning).

In biological neurons plasticity is typically associated to the
presence of post synaptic activity, either derived from afferent
neuro-transmitters or reverberating post-synaptic potentials, in
conjunction with second messengers (e.g. cAMP) or local

IR sensors
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Da = .3
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Ds = .3

Wi = Type

Wo = Type

θ = Metab.

Wh = Type

La  = Metab/10

Lr = Metab/2

Ls = Metab

Lb = Metab/10

Fig. 1. Structure of a layer of tripolar spiking neurons receiving input from
8 IR sensors and connecting to the 4 actuators of Khepera’s motors. The
(x,y) position of the cell specifies the input (x) and output (y) connectivity.
The input (wi), hidden (wh) and output weights (wo) are encoded by the
type of the cell and are fixed discrete values{-1,0,1}, the neuron’s threshold
θ ∈ [−1, 1] is encoded by the cell metabolism. For the plastic horizontal
connections, the learning constants{La, Lr , Ls, Lb} are also given by the
cell metabolism. All other parameters are fixed. Bipolars are similar to tripolar
spiking neurons but they lack the plastic horizontal connections.

chemicals (e.g. Ca++) [9], [3], [13]. As a result a wide
spectrum of learning behaviors are possible [1], including, but
only limited to, Hebbian and anti-Hebbian learning.

To model a wide range of learning rules still keeping the
number of parameters to a minimum we propose a correlation
ruled based on the local concentrations of synaptic, activity,
and refractory chemicals. Whenever a synapse experiences
electric activity, either because it was activated by neuro-
transmitters or because a spike was generated in the post-
synaptic neuron, the synaptic efficacyw is updated:

dw = La aCH+ Lr rCH + Ls sCH+ Lb

with {La, Lr, Ls, Lb} ∈ (−1, 1). This rule can produce,
without being limited to, all the learning curves shown in [1].

D. evolution

Here we present results from evolutionary runs, each con-
sisting of 200 generations, 100 individuals and 25% elitism.
Mutation normally perturbs each weight with a .05 probability
and .005 variance. 10% of the offspring is produced by multi-
point crossover.

The fitness is computed taking the average performance
from the 8 worst of 10 independent runs, consisting of 200
100ms activation steps in a 50x50cm box. The fitness rewards
fast and straight movement and is computed at each step as:

Fit =
∑

i

(W+
l + W+

r ) (.5 (1− abs(Wl −Wr)))
1
4

whereW+
i is set to zero if the wheeli spins backward,(W+

l +
W+

r ) measures the forward speed of the Khepera, and1 −
abs(Wl −Wr) is maximal when the robot proceeds straight.

All the values read from the IR sensors of the simulated
Khepera are perturbed with Gaussian noise with 0.05 variance.

To simulate external faults, at each developmental step every
cell has a 1/20 probability to be removed (die). Also fitness



synapsei : sCHi(t) =
{

wi + Ds sCHi(t− 1) with an incoming spike
Ds sCHi(t− 1) else ways

activity of j : aCHj(t) = Da aCHj(t− 1) +
∑

i∈Synapses

sCHi(t)

refract. ofj : rCHj(t) = Dr rCHj(t− 1) + Sj(t)

spike fromj : Sj(t) =
{

1 if aCHj(t) > θ ∧ rCHj(t) < .1
0 else ways

Fig. 2. Equations determining the operation of the discrete-time leaky integrate and fire neuron.{Da, Dr , Ds, Θ} ∈ [0, 1] are constants controlling the
dynamic of the spiking neuron. In the simulations presented{Da, Dr , Ds} are set to{.3, .1, .3}, while Θ is evolved.
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Fig. 3. Average an maximum fitness plot from 30 runs of bipolar neuro-
controllers. Fitness scores above circa .40 require proper wall detection and
avoidance.

tests are partitioned in two phases: after 100 activation steps
controllers are mutilated: each cell is removed with a .25
probability1. Ontogeny is then resumed for three additional
(healing) development steps before executing the last 100
activation steps.

A maximum of 3 chromosomes are possible, see Section
II-A. New chromosomes are introduced at generations 66 and
133. When all present, the first controls development from
step 1 to 5, the second from 6 to 7, and the third controls the
healing phase (steps 8 to 10).

High fitness values result from the combination of fast
straight movement, wall avoidance and recovery from neural
damage both during and after development.

III. R ESULTS

Figures 3 and 4 show the average fitness plots from 30
evolutionary runs with populations of bipolar and tripolar
controllers.

Of particular interest is the average number of generations
needed to reach a fitness score of circa .40 (15-20 in both
cases), since that level of performance requires proper wall

1with the exception that at least 1 cell is always removed
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Fig. 4. Average an maximum fitness plot from 30 runs of tripolar neuro-
controllers. Fitness scores above circa .40 require proper wall detection and
avoidance.

avoidance. Also, both populations converge to similar fitness
values: .62/.54 (max/mean) for bipolar networks and .63/.54
(max/mean) for tripolar ones.

A. Comparison to Populations Evolved without Faults

To test how difficult is to evolve the self-healing feature,
bipolar and tripolar networks populations have been evolved
without faults being applied (non fault-tolerant populations).

In this case, average performance reaches a .40 value in
less than 10 generations. It appears then, that the additional
regenerative capability is obtained at the expense of just a few
more generations.

When testing the best evolved individuals in the absence
of faults, we can compare the best-case performance of fault-
tolerant (FT ) and non fault-tolerant (FT ) populations. The
average results from 30 evolved populations for each group
are displayed in the following table (250 fitness tests):

network max/mean fitness
type FT FT

bipolar .86 / .70 .86 / .72
tripolar .89 / .69 .89 / .72
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Fig. 5. Trace of the best evolved bot behaviour (tripolar network). Network
without sustained faults. The arrow points at the only apparent use of hori-
zontal plastic connections: an increased sensitivity to frontal wall detection.
With the first smoother turn a fitter trajectory is obtained.

These results highlight that without faults, bothFT andFT
populations perform a comparably fit behaviour2 consisting
of fast straight movement with quick turns (see Figure 5).
Tripolar networks sometimes manage to evolve plastic synap-
tic connections which are used to produce, on necessity, a
single smooth turn (the arrow in Figure 5). With that, they
can score a subtle extra .03 fitness.

B. Fault-Tolerance

There are two sources of faults: one takes place during each
development step (cell mortality), the second occurs in the
middle of the fitness evaluation (mutilation).

While cell mortality is intended to model faults randomly
occurring during the configuration phase, mutilation tests
the organism capability to recover from an accident during
operation.

With varying sources of faults, the following table displays
the fitness values from 250 independent tests of the best
individual of each one of the 30FT populations:

network average fitness± std
type no faults only only mortality +

mutilation mortality mutilation
bipolar .70±.10 .57±.09 .60±.08 .54±.08
tripolar .69±.09 .57±.11 .61±.08 .54±.09

Notice that, during the 10 developmental steps (7 to matu-
ration plus 3 for the healing phase), mortality has a cumulated
.40 chance to strike any alive cell, higher than the .25 death
probability due to mutilation. Still, cell mortality strikes at
random times, while mutilation takes place in a single shot.
As a result, the effects of mutilation have somewhat heavier
consequences on performance.

While there is statistical difference (p < 0.01) between the
group tested without faults and the others, this is not true
among the different sources of faults. In all cases, damaged
individuals perform in average well above the .40 minimal
requirement.

2Notice that fitness cannot reach the value of 1 because of the necessity to
turn in the proximity of walls
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Fig. 6. Example of development of a bipolar fault tolerant organism. On the
left the development steps (maturation and healing phases): cells variables (2
discrete types and 1 metabolic chemical) are represented by three shades of
gray, ranging from black (-1) to white (+1). On the right the corresponding
spiking neural network. Healthy organisms contain 4 functional cells. More
cells are present after a mutilation event, still without affecting behaviour.

Finally, in all tested cases, bipolar and tripolar networks do
not have any significant difference, suggesting that the tripolar
horizontal plastic connections have no influence on the self-
healing process.

C. Analysis of a Regenerating Organism

In this section, the mechanism that drives the neural regen-
eration process is analyzed. To perform an extensive analysis,
the simplest bipolar controller among the best performing ones
has been chosen, Figure 6.

In the chosen example, an healthy organism contains 4 cells
and scores .86 fitness. The following table shows the fitness
score achieved after various mutilation events:

recovered fitness event probability lost cells
0% 4.7% (1 and 2)

1-10% 6.5% (2 but not 1)
51-99% 22.0% 2 and (2 and 4)
100% 66.8% any but not 2

88% of the times, mutilations are recovered to produce
neuro-controllers which are either healthy (66.8%) or still
capable of wall avoidance (22%).

These tests also highlight the centrality of cell 2 (see Figure
6), which is responsible for both the initial morphogenesis and
the homeostatic process. Cell 2 can be sometimes regenerated
during development but not during the healing phase.

The maturation and healing phases share similarities but are
quite different. During maturation, fault-tolerance is achieved
with a continuous cell production performed by cell 2. If lost,
cell 2 is regenerated by cell 1 (to its left).
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Fig. 7. Trace of the behaviour from the controller of Figure 6 after a mutila-
tion event occurring with a .185 probability (arrow in figure), representing the
most common source of unrecoverable mutilation. Being lost is the second
cell, which is responsible for the self-healing process, its loss prevents further
regeneration. The bot is still capable of avoiding walls, displaying a sub-
optimal navigation strategy (.44 fitness)

During the healing phase, cell 2 produces cells with slightly
lower metabolism (neuron thresholds). The reason behind this
is that at the start of the fitness evaluation, robots are placed
in random positions. Therefore controllers must be capable of
a robust wall avoidance. On the contrary, after mutilation the
robot is already navigating and a strong wall aversion is traded
for longer and fitter trajectories. As a side effect, cell 1 looses
the ability to regenerate cell 2, and an entirely new group of
non-functional cells is generated (their output weight is 0).

It turns out that, because of how fitness is computed, after
mutilation longer trajectories are more valuable than a more
robust regeneration.

Quite interestingly, the loss of cell 2 is associated to the
production of two sub-optimal neuro-controllers still capable
of wall avoidance: the first proceeds at slower speed (.83
fitness), the second producing fast but curved trajectories (.44
fitness, also shown in Figure 7).

IV. CONCLUSIONS

We have presented an ontogeny-based approach to the
design of fault-tolerant neural networks. By evolving a growth
program for Leaky Integrate and Fire Spiking Neural Net-
works, it has been possible to produce resilient neuro-
controllers for simulated Khepera robots.

Aimed at the production of neuro-controllers subjected to
externally caused faults, evolution exploits the developmental
process to produce individuals capable of self-healing. Fault-
tolerance is achieved by regenerating lost cells, with a process
which reminds of biological organisms.

Fault handling is achieved by functional homeostasis: while
the phenotype continuously grows new cells, bot behaviour is
stable. This is similar to what happens in biological organisms
in the case of the epidermis and partially also in the central
nervous system.

When compared to the evolution of non fault-tolerant con-
trollers: (i) individuals require only 50-100% more generations
to evolve robust wall-avoidance, (ii) similar behavioral strate-
gies are evolved, (iii) while related work argued for morpher

simplicity (i.e. no hidden layers) [5], hidden nodes are required
to achieve fault-tolerant neuro-controllers.

The presented results confirm the hypothesis formulated
in related work [14], [5], [16], suggesting that development
based on local information has an intrinsic robustness. With a
distributed growth process, ontogeny can be exploited to pro-
duce self-healing devices. Similarly to biological organisms,
such devices would display an increased tolerance to external
hazards by regenerating faulty components.
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