By Jacob White & Dan Harwell

DISTRIBUTED COMPUTING

Overview of Distributed Computing

- Field of Computer Science that studies distributed systems
 - A distributed system is a group of autonomous computers that communicate through a network
- Use of distributed systems to solve computational problems
 - Each problem is divided into many tasks, each of which is solved by one computer

Visual Representation

History of Distributed Computing

- ARPANET predecessor of the internet
 - Late 1960s
 - ARPANET email was invented in the early 1970s
 - Probably the earliest example of a large-scale distributed application
- The first widespread distributed systems were LANs (local-area networks)
 - Invented in the 1970s
- Became its own branch of computer science in the late 1970s - early 1980s

Advantages of Distributed Computing

- Two main reasons to use distributed computing & distributed systems:
 - The vary nature of the application may require the use of several computers communicating with one another
 - Ex. Data is produced in a different location than it is needed
 - While a single computer may be capable of handling the work, a distributed system could be beneficial for practical reasons
 - Ex. May be more cost effective to obtain the desired performance from a cluster of low-end computers rather than from a single high-end computer

Advantages of Distributed Computing

- More reliable than a single high-end machine
 - No single point of failure
- Easier to expand and manage than a monolithic uniprocessor system

Applications for Distributed Computing

- Telecommunication Networks
 - Telephone networks
 - Computer networks (internet)
- Network Applications
 - World Wide Web & Peer-to-Peer Networks
 - Distributed Databases
 - Banking & Airline reservation systems
- Real-Time Process Control
 - Aircraft Control Systems
 - Industrial Control Systems
- Parallel Computation
 - Scientific Computing (cluster, grid, volunteer computing projects)
 - Distributed Rendering in Computer Graphics

Architectures of Distributed Computing

- Client-Server
- 3-Tier Architecture (most web applications)
- n-Tier Architecture
- Tightly Coupled (clustered)
- Peer-to-Peer
- Space Based

- Using ancient computers from the Computer
 Science closet
 - Multiple failing/corrupted hard drives
 - Multiple slow/faulty disk drives
 - Unreliable computers
 - Just because you can install Ubuntu doesn't mean it will boot up the next time you power up the PC!

- QADPZ (Quite Advanced Distributed Parallel Zystem)
 - Open source implementation of a system for distributed computing
 - A client-master-slave architecture, using XML format message based communication
 - Allows the management/use of the computational power of idle computers in a network
 - Users of the system can send computing tasks to these computers to be executed
 - in the form of a dynamic library, an executable program, or any program which can be interpreted
 - Supports Linux, Unix, Win32, and Mac OS X.

- QADPZ (Quite Advanced Distributed Parallel Zystem)
 - Incompatibility with newest versions of Ubuntu
 - Last Stable Release version 0.7
 - October 10, 2002 (over 8 years ago!)
 - Ubuntu 9.10 Final Release
 - October 29, 2009

Condor

- specialized workload management system for computationally-intensive jobs
- Provides:
 - a job queuing mechanism
 - scheduling policy
 - priority scheme
 - resource monitoring
 - resource management
- Works with new versions of Ubuntu!
- Last stable release version 7.4.2
 - April 6, 2010

More about Condor

- Can use non-dedicated machines to run jobs
 - Harnesses power of idle machines without effecting machines being used at the time
- Simplifies the job submission process
 - Machine advertisements
- Maximizes efficiency
 - Intelligent job allocation
- Use of Universes (runtime environments)
 - Standard
 - Vanilla

More about Condor

- Developed at the University of Wisconsin-Madison
- Open Source
- Runs on:
 - AIX
 - Solaris
 - HPUX
 - Linux
 - Unix
 - Mac OS X
 - FreeBSD
 - Contemporary Windows OS's

Demonstration

■ It's demo time!

AddMultiples - integers

AddMultiples - doubles

Fibonacci

- 1,000,000,000 integers
 - Single machine 12.05 seconds
 - Condor 7.76 seconds

Special Thanks!

- Dr. Kirk for guidance throughout the semester
- UU Computer Science Department for the computers
- Dr. Wilms for the KVM, Cart, etc.

Resources

- http://en.wikipedia.org/wiki/Distributed_computing
- http://qadpz.sourceforge.net/
- http://www.naccq.ac.nz/bacit/ o203/2004Caukill_OffPeakGrid_files/ 2004CaukillFigure1.jpg
- http://www.cs.wisc.edu/condor/
- http://en.wikipedia.org/wiki/Condor_High-Throughput_Computing_System