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Abstract: Artificial evolution has been shown to generate remarkable systems of exciting novelty.
It is able to automatically generate digital circuit designs and even circuits that are robust to noise
and faults. Extensive experiments have been carried out and are presented here to identify more
clearly to what extent artificial evolution is able to generate robust designs. The evolved circuits are
thoroughly tested whilst being exposed to noise and faults in a simulated environment and the
results of their performance are presented. The evolved multiplier and adder circuits show a
graceful degradation as noise and failrate are increased. The functionality of all circuits is measured
in a simulated environment that to some extent takes into account analogue electronic properties.
Also included is a short overview of some recent work illustrating the robustness and tolerance of
bio-inspired hardware systems.

1 Introduction

Designing and manufacturing electronic chips is a complex
task, growing more so as the industry keeps up with what is
commonly referred to as Moore’s law. The ‘red brick wall’,
a metaphor used to illustrate the point where current
technology cannot be pushed further, seems to be repeatedly
pushed slightly forward in time [1]. If we at some point
stand face-to-face with this brick wall, a technology
transition or alteration will hopefully help us pass it.

Whether we push current technology or transfer to new
ones, there is still the task of doing the actual design. The
increasing density of modern chips and demand for more
complex designs presents a challenging task. Massive
resources are spent world-wide on all the different phases
in the complete design cycle. In addition, we face a design
technology gap as engineers and tools are unable to make
efficient use of all the resources available on state-of-the-art
chips.

Another issue of electronic design is the need for fault and
noise tolerance. The high density of chips increases the
possibility of failing components and the complexity of
designs increases the probability of human errors. The
acceptance for faults is diminishing as the market demands
increasingly more reliable systems. The need for fault-
tolerant designs and management of noise are stated
amongst the long-term (2008 through 2016) grand chal-
lenges in [2].

The above may be summarised as two key demands:
novel automated design and fault and noise tolerance.
Recently, a growing research field has started exploring new
solutions to these problems, the field of bio-inspired

hardware design. The main motivation within bio-inspired
hardware design comes from the observation of natural
systems. Biological organisms such as humans are in many
ways extremely complex, yet nature has managed to evolve
creatures that utilise their physical, chemical, electrical and
biological properties in intricate complex dynamical ways.
In addition, biological organisms are tolerant to faults on
many levels in that they keep on functioning even though
cells or sometimes even entire limbs fail.

The focus of the paper is a subfield of bio-inspired
hardware systems known as evolvable hardware (EHW).
EHW can be viewed as covering the phylogenetic [3] part of
biologically inspired systems, i.e. temporal evolution,
popularly termed Darwinism. In this paper, small electronic
circuits are extrinsically evolved, i.e. they are evolved in a
computer-simulated environment.

2 Background

Most digital systems are reliable as long as all events that
occur are expected and within specifications. However,
once something unforeseen happens, i.e. signal variations
deviate outside the specified voltage range for a logic 1 or 0
or external events deviate from those specified to be
tolerated by the system, a digital system is extremely
vulnerable. For instance, a single unexpected logic inver-
sion can halt an entire system. The issue with engineering-
approaches to the problem of noise robustness and fault
tolerance is the fact that they will always be limited by the
view and insight of the engineer.

Several important contributions to fault tolerance, fault
detection and fault repair within the field of bio-inspired
hardware exist. For instance, embryology-inspired work
conducted at York [4] and L’Ecole Polytechnique Fédérale
de Lausanne (EPFL) [5] experiments with multi-layered
hardware organisms where each cell contains the complete
genotype of the circuit. Through repeated cell divisions, a
circuit develops from a single cell into a full-grown
phenotype. Principles from biological immune systems
have been used to achieve fault detection and repair [6].
Fault tolerance and error detection for robots are explored in
[7, 8] using embryonic arrays and artificial immune systems.
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Garvie and Thompson are evolving hardware with built-in
self-test behaviour [9]. As early as 1995, Thompson evolved
fault-tolerant electronic control systems [10]. In [11] a
genetic representation is constructed that allows a spacecraft
controller to exploit faults. At NASA evolution of field-
programmable transistor arrays (FPTA) is used to obtain
fault tolerance [12]. Evolutionary fault-recovery techniques
on the FPTA have also been investigated [13]. In addition,
circuits have been evolved to be tolerant to temperature
changes [14].

The work herein originated from [15], where MUX gates
were simulated in an abstract environment, but without
simulating the logical behaviour of any specific technology.
2-bit multipliers were evolved in increasingly noisy
environments and then tested when subjected to noise or
stuck-at faults. The messiness i.e. the noise of the
environment and the seemingly confusing architectures
exploiting it, seemed to increase fault tolerance to stuck-at
faults and even produce some surprisingly compact 6-gate
solutions. This fault tolerance emerged implicitly, that is,
without faults being applied during evolution in order to
prepare the circuits for such events. In [16] it was found that
stronger fault tolerance could be obtained by explicitly
evolving the multipliers for fault tolerance. The fitness
function was taking into account the actual fault tolerance
during evolution. The increased fault tolerance came at a
higher computational cost. It was also discovered that
evolution would tend to generate small circuits. It was
assumed that this was an effective way of reducing the
amount of noise owing to the fact that noise was applied on
a per gate basis. This effect will be discussed in Section 5.

The work was continued [17] using a new parameterised
technology simulator. The experiments demonstrated the
ability of evolution to generate fault tolerant multipliers in a
simulation of CMOS technology. Transferring to a more
realistic simulation abandoned some of the messiness, as
noise propagation is suppressed owing to the sigmoid
behaviour of CMOS gates. However, no explicit stages were
added to the gates that would further enforce the signals to
keep within the digital thresholds. The experiments were
extended to cover 2-bit adders in [18]. The MUX gates were
abandoned, and replaced by the less complex AND, NAND,
OR, NOR and NOT gates, as well as allowing connections
to VCC and GND (logic 1 and 0 respectively). In addition,
the completed evolved circuits were thoroughly tested to
verify the performance with regard to fault tolerance and
noise robustness.

The experiments described in this paper are based on a
rewritten improved simulator. The simulator described in
[18] was discovered to have a stability issue, and could get
stuck in time-consuming loops waiting for two time-steps to
produce the same output in a gate (which would not always
be the case when noise or faults were applied). Since the time
domain was not a part of the simulations anyway, it was
completely abandoned to simplify the rewritten simulator.
The experiments herein have been conducted on a parallel
cluster, resulting in experiments covering a wider range of
noise and faults. This makes the experimental data more
statistically significant and clarifies the capabilities of
evolution to cope with different amounts of noise and faults.
It was decided to use a more sophisticated genetic algorithm
(GA) since the previously used GA was suspected to have
problems with high levels of noise and faults.

3 Simulation

The current simulator is a rewritten version of the one
described in [18]. Our feed-forward analogue simulator

allows simple, yet for our purposes sufficiently realistic,
modelling of a digital circuit including analogue noise. With
regard to timing, the simulator is completely combinatorial.
Thus, one single simulation represents only one specific
moment in time. The advantage of this approach is that
many experiments can be run without requiring huge
amounts of computational resources, which would be the
case with a state-of-the-art simulator (e.g. SPICE).
Additionally, it allows tuning to different technologies.

Currently, a sigmoid approximation to 5 V CMOS
technology is the core of our gate model. The output of a
gate is calculated as a function of the sigmoid approxi-
mation. This function corresponds to F in Fig. 1, a depiction
of the gate model. E1; E2 and E3 can generate one of the
supported errors or let the signal propagate through without
error. The probability of error is preset for each experiment,
while the type of error is random with equal probability for
each of the three possible faults. The possible faults are of
type stuck-at errors, floating output and partly random
output. In addition, there is support for inducing signal noise
at each gate output. Input or output stuck-at errors cover the
case of short-circuit to power or ground, or the cases of
inter-signal short-circuits that behave as stuck-at errors
when observed in a combinatorial and timeless domain.
Floating output errors cover cases where the output is
completely random, while partly random output covers the
case where the output is correct for one logical value while
random for the other logical value, e.g. logical 1 is
represented as 1 whilst logical 0 is represented as a random
number from 0 to 1.

The output noise N in Fig. 1 is noise that is superimposed
on the output signal to approximate errors that are not
explicitly a part of the model, e.g. thermal noise, radiation,
power supply noise, component variance and cross talk.
Noise has no time-related effects, but is simply implemented
as random numbers within a specified range (in per cent of
the complete signal range).

Interested readers are encouraged to look up further
details on the simulator in [18].

4 Circuit evolution

Earlier work [15–18] has been based on a simple yet
effective evolutionary strategy (ES), namely ð1þ lÞ: This
brute force approach has been shown to be efficient in
digital circuit evolution when combined with neutral genetic
drift [19]. However, experimentation has indicated that the
ES experiences trouble when evolution has to cope with

Fig. 1 Model of our two-input gate
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much noise and many faults. The unforgiving rejection of all
but the best individual does not suit the random affliction of
faults and noise.

The experiments herein are all based on evolution using a
tournament selection genetic algorithm (GA). Tournament
selection allows easy adjustment of the selection pressure
and is only sensitive to the relative difference between
fitness values. In addition, it is often used in conjunction
with noisy fitness functions [20]. As will become clear
during the remainder of this paper, the same individual or
circuit may not receive the same fitness score if tested
several times. The reason for this is the probabilistic nature
of the simulations with regard to faults and noise. Because
of this the evaluation of fitness is regarded as noisy.

Our genotype is a netlist. An example of the represen-
tation of a circuit is shown in Fig. 2. The corresponding
circuit is depicted in Fig. 3. Connections refer to labels of
either the inputs of the circuit (0 to 3) or the output of one of
the gates in the circuit (4 to 43). The last gates in the
genotype representation are considered to be connected to
the external outputs of the circuit (41 to 43). Allowed
elements are NOR, NAND, OR, AND, NOT, connection to
VCC and connection to GND. Mutations are applied at the
gate level. If a gate is mutated, either one of two incidents
can occur with an equal chance. In the first incident, one of
the gate inputs is randomly selected. That input is connected
to the output of a random gate in the circuit prior to the
mutated gate in the netlist, thus ensuring that the circuit

stays strictly combinatorial. In the second incident, the type
of the mutated gate is changed to a random type among the
set of allowed elements.

The goal of evolution is to generate a circuit that
successfully produces the correct mapping between input
and output vectors. The target behaviour is specified by a
truth table. Under fitness evaluation, a circuit is subject to
several noise and/or fault vectors while testing the complete
set of possible input vectors. The analogue output values of
the circuit are rounded to their closest logical value and then
compared to the target truth table.

The fitness function is expressed in (1). A circuit C (an
individual) is tested against the target truth table (T ) a
number of times (TPI) under different environments. Noise
and fault probabilities are used to generate the different
environments m for each test. The average of all tests is
computed to yield a penalty for the number of incorrect
output bits. Thus, the fitness is effectively the negative of the
average hamming distance between the measured function
of the evolved circuit and the target function truth table.

F ¼ �
PTPI

n¼1 diff ðCm;TÞ
TPI

� �
ð1Þ

where F is the fitness of the individual, TPI is the number of
tests per individual, diff() is the number of incorrect output
bits, Cm is the circuit in environment m and T is the target
truth table.

In order to get a picture of performance of the evolved
circuits one should keep in mind that 2-bit multipliers have
64 output bits in their truth table, while 2-bit adders have 48.

5 Experiments and results

Two target combinatorial circuits were chosen: 2-bit
multipliers and 2-bit adders, the former being relatively
more parallel than the latter. Circuits were limited to 40
gates. Since our circuits evolve to sizes less than 20 gates,
this leaves more than 50% of the genome to be genes
without direct phenotypic influence. This results in a
genotype size of 44 when evolving 2-bit multipliers or
adders (4 inputs). The population size was set to 20.
Mutation rate was 5% (per gate) and the crossover rate was
set to 20%. Elitism was deployed, so that the best individual
of a generation was transferred untouched to the next
generation. This elitism selects a random individual among
the best ones, thus ensuring neutrality (which was shown to
be important in [19]). The tournament selection GA was set
to use a group size of 3 and a selection probability of 70%.

Fig. 2 Example genotype

Fig. 3 Schematic of example circuit
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This means that to select a parent, three individuals are
randomly selected and compared. There is a probability of
70% that the one with the best fitness is chosen as a parent.
Otherwise, a parent is chosen randomly from the group of
three. Finally, the number of generations was limited to
100 000. Such a limitation was necessary to stop evolution
from running for extremely long times when noise and/or
failrate is high.

Obviously, if one of the gates connected to the circuit
output fails the output is bound to be distorted and be
incorrect unless it by chance happens to produce the correct
logic value. Thus, evolution has no way to influence the
impact of such failure. As argued in [18], the output gates
are, therefore, protected against faults, but not noise, in the
following experiments.

For every variation of noise percentage and failrate 20
separate evolutionary runs were performed so that the
average behaviour over several runs could be observed.
Owing to the high number of runs required in the span over
all variations of noise and failrate the experiments were
conducted on a 40-node Beowulf-type parallel cluster [21]
using OpenPBS [22]. Every circuit was also tested ten times
ðTPI ¼ 10Þ in these experiments to even out the random-
ness of applied noise and faults. Thus, the number of tests
run for each value of noise and/or failrate was 10 tests per
individual � 20 circuits evolved ¼ 200.

5.1 Robustness to noise

Evolution was carried out with multipliers and adders when
applying up to 70% noise. Figures 4 and 5 show the
relationship between noise and the required number of
generations for multipliers and adders respectively. The
vertical bars show the two most extreme individuals, those
that for their amount of noise, require the most and the least
number of generations to evolve (among the 20 separate
runs that were conducted for each value of noise). The noise

values shown along the x-axis represent all noise values for
which experiments were conducted.

As was suspected from earlier experiments, it is clear that
evolution can cope with low values of noise. The sigmoid
behaviour of the gates may explain some of this effect, as
small variations in the signals will be dampened. Still an
increase in the number of required generations would be the
intuitive thing to expect. However, there is a tendency for a
drop in the number of generations required to complete
evolution up to 15%–20% noise. The added noise may
actually aid evolution in exploring the search space more
efficiently. A general observation is that adders are harder to
evolve than multipliers. As pointed out in [18], the lack of
an XOR gate may explain this.

Another important observation is the great variation in the
number of generations required to evolve the circuits. Some
individuals are evolved extremely quickly, while others take
a long time or never complete, even with the same amount
of noise. This is the case until the noise is so dominant that
evolution always runs for 100 000 generations. Such a
variation is obviously rooted in the probabilistic nature of
GAs, as random chance plays a big part in the efficiency of
evolution.

Since experiments are halted if perfect fitness is not
achieved within 100 000 generations, the average fitness of
the circuits at the end of evolution is expected to fall as noise
increases. This can be observed in Figs. 6 and 7, where the
average fitness of completed circuits is depicted for
increasing amounts of noise. Again, the vertical bars
represent the extremes, in this case the worst and the best
individuals. Certain multipliers achieve perfect fitness up to
40% noise, while for adders some individuals complete with
perfect fitness with up to 35% noise.

Because of the random affliction of the applied noise,
some circuits could be more lucky than others even though
they are tested multiple times in an effort to even out the

Fig. 4 Increasing noise: multipliers (generations)

Fig. 5 Increasing noise: adders (generations)

Fig. 6 Increasing noise: multipliers (final fitness)

Fig. 7 Increasing noise: adders (final fitness)
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impact of noise. To investigate the impact of the
probabilistic nature of the evolutionary system all evolved
circuits were subjected to extensive testing after evolution
was completed. Each evolved circuit was tested 1000 times
with random noise within the noise range specified for that
circuit. The results are shown in Figs. 8 and 9. It is obvious
that by doing thorough testing, one can observe that the
circuits may be lucky during the 10 tests performed during
evolution. When tested extensively afterwards, some
multipliers work perfectly up to 25% noise, while there
are adders that can function correctly with up to 20% noise.

A final observation that can be made from the
experiments is a trend appearing in the number of gates
each circuit uses. Even though each individual consists of 40
gates, the number of gates actually active (contributing to
the output) in each circuit varies. The variation in the
average number of gates for increasing noise is shown in
Figs. 10 and 11, with vertical bars representing the largest
and smallest circuits in each case. It is obvious, as was also
observed in [15], that evolution prefers small circuits in
noisy environments. Since noise is applied per gate,
randomness is kept to a minimum by using few gates. In
extreme cases of noise, it is obviously more effective to use
fewer gates than necessary for complete functionality than
struggling for full functionality but being overwhelmed by
noise. The size of the circuits seems to be in the range of 16
to 18 gates within the range of noise where circuits prove to
be perfectly functional during the extensive (1000) tests.

5.2 Tolerance to gate failures

Evolution of multipliers and adders was also conducted
when random gate failures were allowed to strike all but the
output gates of the circuits. The failrate was increased in
steps from 0% up to 14%. Figures 12 and 13 show the
relationship between the failrate and the required number of
generations.

Fig. 8 Increasing noise: multipliers (actual performance)

Fig. 9 Increasing noise: adders (actual performance)

Fig. 10 Increasing noise: multipliers (number of gates)

Fig. 11 Increasing noise: adders (number of gates)

Fig. 12 Increasing failrate: multipliers (generations)

Fig. 13 Increasing failrate: adders (generations)
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As opposed to the observations made when evolving
circuits in noisy environments, the gate failures do not seem
to aid the evolutionary process. The phenomenon of gate
failure aiding evolution could to some degree be observed in
earlier experiments, and the use of a tournament selection
GA may explain why a similar phenomenon does not seem
to occur in these experiments. The fitness achieved as
evolution completed can be observed in Figs. 14 and 15. The
best multipliers and adders achieved perfect fitness with up
to 14% and 10% failrate, respectively.

A verification of the circuits evolved for fault tolerance
was performed, similar to that performed with the circuits
evolved for noise robustness. The results are shown in
Figs. 16 and 17. Eventhough the circuits evolved prove very
resilient to faults, none of them is able to work 100%
correctly when gates fail. This cannot be expected, since
during some of the 1000 tests very many gates may actually
fail. Theoretically speaking, there is indeed a chance that all
gates (except the protected output gates) fail. Keeping this
in mind it is mind-boggling that evolution is able to generate
multipliers that on average produce only two incorrect
output bits for all possible input vectors when there is a 6%
chance for each gate to fail. Similarly, one multiplier
actually produces only 2.34 incorrect bits on average when
there is an 11% chance for every gate to fail.

As with experiments with variations in noise, a trend in
the number of used gates can be seen when varying the
probability of gate failure. The gate usage is shown in
Figs. 18 and 19. It is obvious that evolution is forced to
reduce the number of gates much earlier than in the case
where noise is being applied.

5.3 Combinations of noise and gate failures

Some of the above results indicate that the application of
noise may in some situations actually improve the efficiency

Fig. 14 Increasing failrate: multipliers (final fitness)

Fig. 15 Increasing failrate: adders (final fitness)

Fig. 16 Increasing failrate: multipliers (actual performance)

Fig. 17 Increasing failrate: adders (actual performance) Fig. 19 Increasing failrate: adders (number of gates)

Fig. 18 Increasing failrate: multipliers (number of gates)
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of evolution. Perhaps this could be exploited by evolution
when evolving fault-tolerant circuits, as was assumed to be
observed in [18]. A limited set of experiments was
conducted for multipliers with varying amounts of noise

and gate failures. Due to the massive numbers of
experiments required to span all possible variations of
noise and failrate, only five evolutionary runs were
conducted for each case (as opposed to 20 experiments
when only considering variations in either noise or failrate).

The average number of generations required can be
observed in Fig. 20. The extreme individuals that were
displayed earlier are not shown here for reasons of visibility.
Some improved efficiency can be observed as combining
noise with gate failures yields fewer numbers of generations
when compared to experiments with only gate failures. For
instance, an area around about 35% noise and 5% failrate
stands out as very low with regard to the required number of
generations.

The fitness achieved at the end of evolution is shown in
Fig. 21, while the fitness achieved when doing thorough
testing afterwards is depicted in Fig. 22. In both cases, one
can observe that the impact of the failrate is strongest when
noise levels are low, but seems to diminish as noise levels
increase. The average number of gates used can be seen in
Fig. 23.

6 Conclusions

The experiments show that for limited size circuits,
evolution is capable not only of automatic generation of
100% functional circuits, but also shows potential to
generate circuits that are robust to noise and/or tolerant to
failing gates. Such circuits could be combined with more
traditional fault-tolerance schemes for increased perform-
ance. For instance, classical redundancy techniques could
use evolved structurally different but functionally equival-
ent (digitally speaking) circuits as the redundant elements.
This would give a multilayered tolerance with the benefits
of both bio-inspired novelty and engineered resilience.

The circuits could also provide valuable information if
one seeks ways to implement strong fault tolerance without
complete redundancy. The circuits illustrate the ability of
evolution to generate novel designs with beneficial proper-
ties, completely unlike the solutions an engineer would
come up with.

One important issue of evolved systems is the scalability
problem. It is common to experience a relation of
exponential nature between the size of the genotype and
the time it takes to find a correct solution. A few runs were
made using the same evolutionary system as with the

Fig. 20 Increasing noise and failrate: multipliers (generations)

Fig. 21 Increasing noise and failrate: multipliers (final fitness)

Fig. 23 Increasing noise and failrate: multipliers (number of
gates)

Fig. 22 Increasing noise and failrate: multipliers (actual
performance)
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experiments herein, and a 3-bit multiplier was evolved using
an average of about half a million generations (of 5 runs
without noise or faults, with 233 325 as lowest and 666 197
as highest). These circuits were about 75 gates in size, with a
genotype of 200 gates. Effectively, the number of required
generations increased with a factor of 30, while the
genotype increased with a factor of 5.

One interesting bio-inspired effort to cope with the
scalability problems of GAs is artificial development.
A discussion of artificial development techniques is outside
the scope of this paper. The interested reader is encouraged
to proceed to recent inspiring work such as [23–28].
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