Diplomarbeit

Distributed Computing for
Problems from Combinatorial
Geometry

Bernhard Kornberger

Institut fiir Softwaretechnologie
Technische Universitiat Graz
Vorstand: Univ.-Prof. Dipl.-Ing. Dr. techn. Franz Wotawa

-

TUG

Begutachter und Betreuer: DI. Dr. Oswin Aichholzer
Graz, im Mai 2005

Kurzfassung

Viele wissenschaftliche Forschungsprojekte erfordern bei weitem mehr Rechenlei-
stung als heutige Personal Computer bieten. Der Rechenzeitbedarf betrigt dabei
oft mehrere hundert Jahre auf einem Einzelplatzrechner, und die Untersuchungen
stolen daher an die Grenzen des Machbaren.

Auf der anderen Seite stehen in den Instituten und Subzentren der TU-Graz
hunderte PC’s, deren Rechenleistung - etwa wihrend der Nachtstunden, Textver-
arbeitung oder Internet-Recherchen - nicht einmal anndhernd ausgeniitzt wird.
Im Zuge dieser Diplomarbeit ist ein System fiir verteiltes Rechnen entstanden,
das genau diese Rechenleistung nutzbar macht und der rechenintensiven, wissen-

schaftlichen Forschung zur Verfiigung stellt.

Abstract

Research projects in an academic setting frequently require computing capaci-
ties by far exceeding those offered by modern personal computers. Some tasks
require computing times of a hundred years or more, researchers consequently
finding themselves confronted with the limits of feasibility. On the other hand,
departments and computer rooms at the University of Technology Graz possess
hundreds of computers. Their capacities are far from being fully exploited, es-
pecially during the night or while they are used for text processing or internet
research work. During this diploma thesis a system for distributed computing
evolved dedicated to bundling and making this idle computing power available

for extensive scientific investigations.

Danksagung

Diese Diplomarbeit wurde im Studienjahr 2004/05 am Institut fiir Softwaretech-
nologie an der Technischen Universitdt Graz durchgefiihrt.

Ich danke Herrn DI. Dr. Oswin Aichholzer fiir die engagierte und kompetente
Betreuung dieser Arbeit. Er hatte auch die Idee, parallel dazu zwei Projektar-
beiten zu starten, in deren Rahmen meine Kollegen Bernd Haug und Thomas
Uttenthaler Arbeit und Know-How in diese Diplomarbeit eingebracht haben. Ge-
meinsam konnten wir in zahlreichen Besprechungen Losungen fiir verschiedene
Probleme erarbeiten und das hat deutlich zur Qualitit dieser Arbeit beigetragen.
Die Fakultat fiir Informatik hat mir ein Forderstipendium gewahrt, um fiir die-
se Arbeit einen Server anzuschaffen. Dieser steht nun als zentrales Element des
entstandenen Systems am IST und hat es in diesem Umfang erst ermoglicht.

Dank gebiihrt auch meiner Familie fiir den Riickhalt, den sie mir bietet. Im
besonderen meiner Schwester Angela, die mich motiviert hat, nach der Abend-
schule ein Studium zu beginnen. Meine Freundin (und seit kurzem auch Verlobte)
Birgit Holzer hat wiahrend der sechs Jahre unserer gemeinsamen Studienzeit fest
zu mir gehalten, und auch ihre Eltern und Grofleltern waren immer fiir uns da.
Meine Freunde mochte ich wissen lassen, dafl ich es schitze, dafi sie Verstind-
nis hatten, daf ich zuletzt wenig Zeit hatte und ihnen danken fiir die wertvollen

Gespréche, die Sichtweisen und Lénder, die ich mit ihnen kennenlernen durfte.

Graz, im Mai 2005 Bernhard Kornberger

Contents

1 Introduction
1.1 Motivation and objectives

1.2 Structure

2 Evaluation 9
2.1 OpenMosix e 10
2.2 InteGrade 11
23 QADPZ . . . e 15
2.4 SETI@home e 18
2.5 BOINC . .. 19

2.5.1 BOINC: General information 19
2.5.2 Licensing 19
2.5.3 Architecture of a BOINC project 20
2.5.4 Selected features of BOINC 22
2.6 Conclusion 23

3 The BOINC core client 25
3.1 Filestructure 25
3.2 FSMstructureo 26
3.3 Datastructures Lo oL 26
3.4 Main loop logic of the core client 27
3.5 Host measuring performed by the client 29
3.6 Client’s CPU scheduling policy 30
3.7 Client’s work fetch policy 35

4 The BOINC server

4.1 BOINC server - general information
4.2 Project database oL
4.3 Workunit parameters oL
4.3.1 General propertieso Lo
4.3.2 Resource estimates and bounds
4.4 Result parameters Lo
4.4.1 Redundancy and scheduling
442 FErrormask o 0oL
4.5 Daemon programso
4.5.1 The Work Generator
4.5.2 The Transitioner
4.5.3 The Validator00

5 Modifications

5.1
2.2
9.3
5.4

Motivation underlying the modifications
Automatic participation in projects L.
Registration featureo o000

Implementation details 000

6 Setup and usage

6.1

6.2

6.3

System setup e
6.1.1 Linux distribution. 00000000
6.1.2 Installation of additional packages
6.1.3 Pythonupdate
6.1.4 httpd.conf
6.1.5 MySQL
6.1.6 Sendingofe-mails.o
Setting up BOINC
6.2.1 Selecting the right source code
6.2.2 Downloading and compiling
Project setupo
6.3.1 Final system preparation steps.
6.3.2 The script "make_project”

5

36
36
37
38
38
39
39
40
41
42
42
44
44

47
47
48
51
93

6.4

6.5
6.6

6.7

6.3.3 Thexaddstep.

6.3.4 Adjusting the file ”project.inc”
6.3.5 Securing thewebo o000
6.3.6 Starting the project
6.3.7 Debugging L L
6.3.8 Reducing the loglevel
Scientific application
6.4.1 Sourcecode
6.4.2 Compiling the scientific application
6.4.3 Registering the application with the project
Generating a workunit (WU)
In operationo
6.6.1 Theclient
Operation of the administrative project
6.7.1 The modified client
6.7.2 The modified server

7 Real applications

7.1
7.2
7.3
7.4
7.5

Order types o
Happy End Problem
Counting triangulations
Decomposition Lo

Rectilinear crossing numberso

8 Conclusion

Bibliography

84
84
85
87
88
88

92

93

Chapter 1

Introduction

1.1 Motivation and objectives

Today, many computing tasks in academic settings require such enormous amounts
of computing capacity that computing times in the order of hundreds of years
would be required even where modern high-end PCs are used. As access to the
small number of super computers available in the world today is limited, such
tasks must currently be considered practically unfeasible. The objective of the
present diploma thesis is to create a system distributing such tasks over several
hundreds of clients connected within a network so that they can be executed
within a few months using the bundled computing capacity of many computers.

For the purpose of this project, it is assumed that the tasks to be processed
can be distributed in the form of small sub-tasks completely independent from
each other. These sub-tasks (work units) will be distributed from a central server
via a network to the connected computers (clients) which will execute the tasks
during their respective idle periods and finally transfer the results to the server.
The clients will consist of computers owned by the Department, computers used
at the computer rooms of the TUG and external computers of persons wishing to
support the research activities of the TUG. This project is implemented at the
Department of Software Technology (IST) [17] under the name dIST (”distributed
computing at IST”) [11].

1. Introduction Structure

1.2 Structure

As the project dIST allows for a considerable number of different strategies as
far as its practical implementation is concerned, I have, as a first step, evalu-
ated existing solutions as outlined in Chapter 2. This evaluation has shown that
implementation of a completely new solution will not be reasonable because of
the extensive range of functionalities required. Instead, I have decided to use
and modify an existing project. For this purpose, I have selected the middleware
BOINC (Berkeley Open Infrastructure for Network Computing) which serves as a
basis for different projects such as the well-known distributed computing project
SETI [27]. A detailed description of BOINC can be found in Chapter 3 and Chap-
ter 4. Chapter 5 contains a description of the functionalities added to BOINC so
as to meet the requirements of our dIST project and indicates which sections of
the BOINC Software have been changed and how the changes can, if required, be
integrated into the source code. Chapter 6 contains step-by-step instructions for
installation and operation of a BOINC server and the set-up of BOINC projects
as well as detailed descriptions explaining how to create and administrate work
units. Chapter 7, finally, contains a decription of real applications running on
dIST.

Chapter 2
Evaluation

As a first step in the framework of this diploma thesis, I have evaluated existing
software solutions for similar tasks so as to gain an overview of the mechanisms
required to be incorporated in this type of software. This evaluation enabled me
to identify the components required to be included in the software solution to be
offered:

e The system to be proposed must consist of software for the server distribut-

ing the tasks as well as client software for at least Linux and Windows.

e The software must comprise a network functionality. In this respect, any ne-
cessity on the part of the server to connect to the clients must be prevented
as many of the clients will have dynamic IPs and be inaccessible behind
firewalls and NAT routers. Therefore, it is essential that all communication

with the server is initiated by the clients themselves.

e The clients must be protected against attempts by third parties to illegally
transfer executable code onto the systems of the clients. Additionally the
data transferred must be protected against error and manipulation, thus

rendering application of cryptography indispensable.

e Further effort will be required as a consequence of the fact that reliable
availability of the clients cannot be assumed, which means that the clients

may be switched off and/or disconnect from the network at any time without

2. Evaluation OpenMosix

prior announcement. Therefore, precautions must be taken in the form of

a workunit administration feature reallocating overdue workunits.

e A wide variety of client configuration options must be provided so as to
ensure optimal adaptation of the client and its respective characteristics to
the system. It will, for example, be essential to determine the speed of the
respective computer and to define, on the basis of the speed determined,

the work volume to be allocated to it at a time.

e Additionally, a specific feature must be included to ensure that the server
will allocate large workunits only to computers known to be active 24 hours

a day such as, for example, the computers of the IST.

These considerations have led to the conclusion that implementing a totally new
software meeting the requirements outlined above is not recommendable for two
reasons: Firstly, a software project providing the range of functionalities specified
above would be enormously extensive. Secondly, any newly developed software
would need to pass a phase of troubleshooting and elimination of safety gaps,
which would exceed the cooperation that can be expected from the clients. There-
fore, I looked for an existing software solution offering as many of the features
required for dIST as possible and additionally being licensed as Open Source
Software (OSS) so that modifications are possible and permitted. The evalua-
tion of different existing software solutions included below is not intended to be
exhaustive but merely provides an overview of the software solutions and ap-
proaches currently available. It is based on the web presentations and papers on

the projects indicated available as of summer 2004.

2.1 OpenMosix

OpenMosix [22] is (as opposed to the Mosix project) released under the GNU
General Public License (GPL) [13]. OpenMosix is a kernel extension for single-
system image clustering. Once OpenMosix is installed, the nodes in the cluster
start talking to one another and the cluster adapts itself to the workload. Pro-

cesses originating from any one node, if that node is too busy compared to others,

10

2. Evaluation InteGrade

can migrate to any other node. OpenMosix continuously attempts to optimize the
resource allocation. Since all OpenMosix extensions are inside the kernel, every
Linux application automatically and transparently benefits from the distributed
computing concept of OpenMosix and there is no need to program applications
specifically for OpenMosix. The cluster behaves much as does a Symmetric Multi-
Processor (SMP), but this solution scales to well over a thousand nodes which
can themselves be SMPs.

The project OpenMosix is still active, but its further development is proceed-
ing very slowly as only the Linux kernel 2.4.22, as opposed to the up-to-date
kernel versions 2.4.30 and 2.6.10, is supported. Additionally, the characteristics
of OpenMosix hardly meet the dIST specifications so that OpenMosix does not
represent an option for the project dIST. Nevertheless, it is a highly interesting
project that may represent a useful resource for application on the level of the

Department.

2.2 InteGrade

InteGrade [15] is a grid middleware architecture allowing execution of parallel
applications in a distributed environment. It is based on state-of-the-art middle-
ware technology such as the CORBA [10] industry standard for distributed object
systems which facilitates interaction between system and applications via well de-
fined IDL interfaces accessible from a large variety of programming languages and
operating systems. InteGrade builds on shared commodity hardware, which is
suitable for our project. In such a dynamic environment, scheduling the execution
of applications is rather difficult as an idle resource may turn busy again without
further notice. To minimize this problem, the InteGrade architecture includes a
feature collecting and analyzing usage patterns, i.e. a mechanism that is able,
on the basis of usage information and statistics, to determine the probability of
an idle node turning busy again. This mechanism can help schedulers to predict
whether an idle machine will stay idle for a significant amount of time or will be
busy again in a few seconds.

In the following paragraphs I provide a summary of the description of the In-

teGrade architecture (see [16] for more details): InteGrade Grids are structured

11

2. Evaluation InteGrade

Cluster
Manager

GUPA GRM

/

- e
Dedicated Node Resource User Node
Provider Node
LRM LUPA LRM LUPA LRM
NCC ASCT

Figure 2.1: InteGrade Intra Cluster Architecture

in the form of clusters each consisting of groups comprising between one and ap-
proximately one hundred computers that may be shared workstations or machines
dedicated to the grid. The clusters themselves are arranged in a hierarchy. There
is a Cluster Manager representing one or more nodes responsible for managing the
respective cluster and communicating with managers of other clusters. A User
Node is a node belonging to a grid user who submits applications to the grid. A
Resource Provider Node, typically a workstation, is a node that exports part of
its resources, making them available to grid users. A Dedicated Node is a node
reserved for grid computing. However, these categories may overlap: A node can
be a User Node and a Resource Provider Node at the same time. The Local Re-
souce Manager (LRM) and the Global Resource Manager (GRM) cooperatively
handle intra-cluster resource management. The LRM is executed in each cluster
node, collecting information about the node status such as memory, CPU, disk,
and network utilization. The LRMs periodically send the information thus ob-
tained to the GRM which uses it for scheduling within the cluster (Information
Update Protocol). The GRM and LRMs also collaborate in the Resource Reser-

12

2. Evaluation InteGrade

Cluster
WManager

1
Dedicated Node Resource User Node
Provider Node

LRI Lupa LRM LuPa LRM

Cluster
WManager

I

Dedicated Node Resource User Node
Provider Node
Cluster Cluster

Wanager Wanager
F |

T T

Dedicated Node Resource User Node Dedicated Node Resource
Provider Node Provider K
NCT ASCT NCC

Figure 2.2: Integrade’s Inter Cluster Architecture

vation and Execution Protocol, which works as follows: When a grid user submits
an application for execution, the GRM selects candidate nodes for execution of
the task on the basis of resource availability and application requirements. For
this purpose, the GRM uses its local information relating to the cluster status
as a hint for locating the nodes best suited to execute the respective application.
Subsequently, the GRM engages in direct negotiation with the selected nodes to
ensure that they actually have sufficient resources available for execution of the
application at the given moment and, if possible, reserves the relevant resources
in the target nodes. In the event that the resources are not available in a certain
node, the GRM selects another candidate node and repeats the process.
Similarly to the LRM/GRM cooperation, the Local Usage Pattern Analyzer

13

2. Evaluation InteGrade

(LUPA) and the Global Usage Pattern Analyzer (GUPA) handle intra-cluster
usage pattern collection and analysis. The LUPA executes in each cluster node
that is a user workstation and collects data about its user usage patterns. On the
basis of long series of data thus obtained, it identifies usage patterns reflecting
the use of the respective node throughout the week. Each node’s usage pattern
is periodically uploaded to the GUPA. This information is made available to the
GRM, enabling it to take more appropriate scheduling decisions as a node’s idle
periods can be predicted on the basis of its usage patterns.

The Node Control Center (NCC) permits the owners of resource providing ma-
chines to set the conditions for resource sharing if they wish to do so. Parameters
such as periods in which they do not want to share their resources, the portion of
resources that may be used by grid applications (e.g. 30% of the CPU and 50% of
its physical memory), or definitions as to when to consider their machine idle can
be set using this tool. The Dynamic Soft Real Time Scheduler enforces the condi-
tions defined by resource owners. The Application Submission and Control Tool
(ASCT) allows InteGrade users to submit grid applications for execution. The
user can specify execution prerequisites such as hardware and software platforms,
resource requirements such as minimum memory requirements, and preferences
such as priority to be given to execution on a faster rather than a slower CPU.
Additionally, the user may also employ the tool to monitor application progress.

The information on the InteGrade project indicated above has been published
by [16]. Unfortunately, further information relating to the project is only available
in Portuguese and many questions such as, in particular, network-related issues
remain open. For the time being, however, it appears unnecessary to spend more
time on further investigating this particular project as the source code of Inte-
Grade is currently still only available as version 0.1, its development status being
3 (alpha). Therefore, we may assume that the InteGrade project has so far not
proceeded beyond the stage of a favourable design and a prototype and is there-
fore not eligible for implementation in the framework of the dIST project. In the
course of the evaluation of InteGrade, however, we have come to the conclusion
that an opportunity for execution of parallel applications in the framework of
dIST represents a nice-to-have feature rather than a real necessity. Communica-

tion between the individual threads of a program would be excessively difficult -

14

2. Evaluation QADPZ

Client — Standard Master
client library
Client = Standard
client library
Sla'-.:re Slat:re
Slave user Slave user
program program

Figure 2.3: QADPZ architecture

and would require an excessive configuration effort that cannot be expected from
the supporters of the dIST project - in a setting where clients are characterized
by non-reliable availability and different quality of connection into the network

and largely located behind routers and firewalls.

2.3 QADPZ

QADPZ, spoken ”[’kwod pi-si]|”, stands for ”Quite Advanced Distributed Paral-
lel Zystem” [26] and is an open source implementation for distributed computing
released under the General Public License (GPL) [13]. The system allows man-
agement/use of the computational power of idle computers in a network. The
users of the system can transmit computing tasks to these computers for exe-
cution in the form of a dynamic library, an executable program or any program
that can be interpreted (Java, Perl, etc.). Platforms supported are Linux, Unix,
Win32 and MacOS X. The system is a client-master-slave architecture using mes-
sage based communication. Messages between the components of the system are
in XML format and can optionally be crypted for security reasons.

A QADPZ system consists of one master, many slaves and multiple clients

delegating jobs to the master.

15

2. Evaluation QADPZ

e Master - A process running on the master computer responsible for jobs-
tasks-slaves accounting. The slaves talk to the master when they join or
leave the system, or receive or finish tasks; the clients talk to the master

when they start or control user jobs or tasks.

e Slave - A process running on the slave computer as a daemon or WinNT-
service. The slave communicates with the master (possibly also directly
with a client) and starts the slave user process. Without the slave running,

the slave computer cannot take part in collaborative computing.

e Client - A process running on a client computer. It communicates with
the master to start and control jobs and tasks of a specific user, may also
communicate directly with slaves and is responsible for scheduling the tasks
of user jobs as required by particular user applications (beyond the scope

of scheduling done at the master level).

e Slave computer - One of many computers where the distributed collabora-
tive computation takes place, for example: a UNIX server, a workstation,

a computer in a student PC LAB, etc.

e Client computer - Any computer that the user uses to start his application.
A client computer may be a notebook connected to the network using a

dial-up connection, a computer in the office, lab, etc.

All slaves participating in the system are running a slave service program (a
small resident application that accepts the tasks to be computed). The master is
also running permanently and keeps track of the status of the slave computers,
i.e. registers whether they are idle, busy computing a QADPZ task, or disabled
because a user has logged in. When a user wishes to use the system, (s)he prepares
a user application consisting of two parts: A slave user program, i.e. the code
that will effect the desired computation after being distributed to the slaves, and
the client that will be generating jobs to be computed.

The main role of the master (the central component of the whole system) is
to maintain the current availability status of the slaves, and to start and control

the tasks. A client doesn’t communicate with the slaves directly but transmits

16

2. Evaluation QADPZ

all its requests to the master. Several user modes are available. To keep things
simple, the user can choose the QADPZ standard client (qadpz_run), which al-
lows him/her to set up and submit a job. The job description is saved into an
XML-formatted project file and can be manually edited by more advanced users.
Alternately, a user may want to write his or her own client application to have
full control over the submission of tasks (for example in cases where the user
must wait for the results of the computation of an initial series of tasks and sub-
sequently, on the basis of these results, transmits either one or another group of
tasks). It is also possible to directly write a slave library to speed up the execu-
tion. In that case, the slave service or daemon will not start a new process with
the downloaded executable, but a dynamic shared library will be loaded by the
slave service process (daemon/service).

The website [26] for the QADPZ project also comprises a discussion of safety
issues: The current QADPZ security scheme is designed to protect the security
of the computers in the network, i.e., a malicious hacker cannot submit an alien
piece of code to be executed instead of a user computational task. However, this
scheme doesn’t protect the QADPZ user data. A malicious hacker can monitor
(packet sniffing) or alter (IP spoofing) the data or control information arriving

back to master or client nodes and thus:
e put the slave nodes out of operation;
e put the master node out of operation;
e modify the result data submitted by slaves;
e do any other kind of harm to the computational process.

QADPZ is a project with features very closely meeting the requirements of the
dIST project. As the clients are entitled to transmit computing orders to the
master and the master distributes these to the slaves, the system is very flexi-
ble and a user can quickly launch a try without needing the administrator of a
central server. With a number of modifications, QAPDZ would certainly be an
option for dIST. However, QADPZ is only available in the form of a version 0.8
(beta), which indicates that the software is still in the middle of its growth phase,

17

2. Evaluation SETI@Qhome

so that it can be assumed that it is not sufficiently verified yet as far as safety
issues are concerned. Additionally, QADPZ currently seems to be designed only
for application within an in-house network. The website of the project, at least,
contains no information describing any network functionality exceeding such in-
house application. Another factor that must be taken into account is that the
planned dIST computing network will largely consist of quasi-anonymous par-
ticipants in a public, insecure network. As a basis for the dIST activity, I am
therefore looking for a project that largely resembles the QADPZ system but is
designed, in terms of its network features, for operation in the internet, strongly
emphasizes reliable safety features and, if possible, already includes a workunit

administration feature.

2.4 SETI@Qhome

In the Puerto Rican port town Arecibo, one of the world’s largest radio telescopes
[25] with a reflector diameter of 305 meters receives approximately 35 gigabytes
of data per day. The project SETI@home [27] of the University of California,
Berkeley, [28] is dedicated to identifying, within the data received, signals from
extra-terrestric life. As this project requires enormous quantities of computing
capacity and no super computer is available for this purpose, SETI@home went
looking for alternative methods of providing the required computing capacity.
The overall data stream is divided in terms of both time and frequency resulting
in individual files each comprising 0.25 MB. These files are transmitted via the
internet to the computers participating in the project which execute the com-
puting tasks and subsequently upload the results to one of the project servers.
SETI@home is one of the most successful distributed computing projects ever.
According to a paper published by the head of the project [6], SETI@home is cur-
rently running on more than one million computers, thus providing the project
with a computing capacity of 60 teraFLOPS (trillion floating point operations
per second), i.e. a computing power exceeding that of NEC’s Earth Simulator
(35.61 teraFLOPS/s), one of the world’s fastest computers.

While SETI@home Classic and its middleware formed one monolithic pro-

gram, new versions of SETI@home are based on BOINC, a general-purpose plat-

18

2. Evaluation BOINC

form for distributed computing projects.

2.5 BOINC

BOINC (Berkeley Open Infrastructure for Network Computing) [5] is a platform
for public-resource distributed computing. It is being developed at the U.C.
Berkeley Spaces Sciences Laboratory by the same group that also has developed
and operates SETI@Qhome.

2.5.1 BOINC: General information

As far as its features are concerned, BOINC uses the requirements of the SETI
project as a starting point. Additionally, however, it offers a strict distinction
between middleware and scientific application and has been designed with a view
to enabling other projects than SETI@home to use BOINC as a basis as well.

These include, for example:
e ClimatePrediction.net [9], for long-term climate forecasts;
e Predictor@home [23], testing methods for protein folding forecasts;
e Einstein@home [12], dedicated to locating gravitation waves and pulsars;

e LHC@home [20], computing simulations for the construction of a new LHC
particle accelerator at the CERN.

2.5.2 Licensing

BOINC has been released under the GNU Lesser General Public License (LGPL)
[19] and is therefore free software. The GNU LGPL license ensures that the
licensee is entitled to disseminate copies of the software (even charging a price
if (s)he wishes to do so), to obtain the source code of the free software and to
modify it. In return for the rights thus granted, each person who has modified
and/or passes on any software thus obtained under the license is obliged to grant

the recipient all rights (s)he was granted and must also ensure that the recipient

19

2. Evaluation BOINC

may obtain the source code. Additionally, die LGPL protects the programmers
of the free software by excluding any kind of warranty for the software.

While most of the GNU software today is published under the GNU GPL [13],
the LGPL used for licensing of BOINC is frequently used for libraries (e.g. the
GNU C-Library) to permit linking between such libraries and non-free software.
The main difference between the GPL and the LGPL used by BOINC therefore
consists of the fact that linking between a non-free software with a library licensed
under the LGPL is subject to less strict conditions than linking with a library
licensed under the GPL.

2.5.3 Architecture of a BOINC project

Figure 2.4 shows the structure of a typical BOINC project.

The project backend is project specific. It supplies the work units and handles

the computational results.

The HTTP data servers , typically one ore more apache servers running on
Linux, distribute the files. These servers must be able to handle CGI pro-
grams with POST commands. They need not be owned by the project
although it is possible for the whole server complex to reside on one physi-

cal machine.

The MySQL database is a relational database which stores information about

participants, workunits and results.

Utility programs and libraries are used by the project backend to manipu-
late the database.

The webinterface is automatically generated by one of the scripts of BOINC. It
is used for the interaction between participants and the project respectively
for the maintenance of the project by its developers. This webinterface can

also run on the same apache server as the dataserver does.

The scheduling server is a small cgi program used for communication with

the core clients.

20

2. Evaluation BOINC

project back end
Server
side
A
_ scientific application
client
side

[] ...project specific components
I ...BOINC components

Figure 2.4: Structure of a boinc project

21

2. Evaluation BOINC

The core client is the base program running on the computers of the partici-
pants. It communicates with the serverside scheduling server and downloads
the scientific applications and workunits from the data servers. The core
client is responsible for starting the scientific application, for buffering its
workunits and for uploading the results. The first time the core client is
started it performs benchmarks and checks the number of cpu’s and other
parameters. This information is stored in the BOINC database and is later
used to decide which workunits to transfer to the specific host. The base
client is able to manage several scientific applications and projects. For
example, if a participant decides to participate in Seti@home and in Cli-
matePrediction.net, one running instance of the core client manages both

projects.

The scientific application is project specific. It has to be linked statically and
also the BOINC API has to be linked with it. The BOINC API is used for
communication between the scientific application and the core client. For
example, system calls like the ones needed for file handling are performed
using the API and also checkpointing is supported through the API. Because
BOINC is released under the LGPL, the scientific application needs not to

be open source software.

2.5.4 Selected features of BOINC

The users of course must not suffer any disadvantage as a consequence of par-
ticipating in a BOINC project. Therefore, BOINC offers the participants an
easy-to-operate webinterface they can also use to register for the project and to

define their individual settings. Such settings include, for example:
e Do work while computer is running on batteries?
e Do work while computer is in use?
e Do work only after computer is idle for ...

e Do work only between the hours of ...

22

2. Evaluation Conclusion

Leave applications in memory while preempted?

Confirm before connecting to Internet?

Disconnect when done?

Connect to network about every ...
e On multiprocessors, use at most ... processors

...and a lot of disk-, memory-, and bandwith-usage-limits. Since it is possible to
have one account for multiple machines, such settings of one user account apply to
all hosts attached to the account but the participants can also create separate sets
of preferences for computers at home, work, and school. To keep participants con-
tributing computing power BOINC provides an accounting system, where users
get credits for doing calculations on workunits. It provides participant-oriented

web site features such as
e the ability to form teams;
e the ability to create and browse ”user profiles” including text and images;

e message boards, including a dynamic FAQ system that encourages partici-

pants to answer each others’ questions.

According to [7] the experiance with Seti@home has shown that participants are
highly motivated by credit, and particularly interested in their ranking relative
to other users. This information is typically displayed on web-based leaderboards
showing the ranking of participants or even teams of participants. For this mat-
ter, BOINC provides a mechanism that exports credit-related data in XML files
that can be downloaded and processed by credit statistic sites operated by third

parties. Several of these currently exist.

2.6 Conclusion

From all projects evaluated, BOINC with its architecture and features most prop-

erly meets the requirements of the dIST project. It can be assumed that BOINC,

23

2. Evaluation Conclusion

being widely disseminated, has been thoroughly tested and is sufficiently stable.
Additionally, comprehensive documentation on the project as well as a number of
very active mailing lists on the development and operation of BOINC are avail-
able. The software is licensed under the LGPL license, and modification and use
of the software are therefore legitimate and free. Therefore, I have decided to use

BOINC as middleware for application in the framework of the dIST project.

24

Chapter 3

The BOINC core client

A BOINC system consists of a server part and a client part. In the present
chapter, the client part is described in terms of its structure, implementation and

working method.

3.1 File structure

The core client runs in its home directory. It creates and uses the following files

and directories:
prefs.xml contains the user’s general preferences.

client_state.xml stores information about the host, the subscribed projects

and their applications, workunits, results and similar information.

account_$<$PROJECT$>$.xm1, where the term PROJECT describes the URL
of the project, contains the master URL, the user’s authenticator and other
project-specific preferences like the resource share rate which is used to
determine how much of the host’s idle time should be used for the described

project. One such file exists for each subscribed project.

The directory projects contains a subdirectory for each subscribed project.
This subdirectory contains all files (inputs, outputs, executeables) related

to its project.

25

3. The BOINC core client FSM structure

The directory slots contains one subdirectory, named 0, 1, ..., N-1, for each

CPU, where the results execute.

3.2 FSM structure

Let us now consider a number of important details regarding the implementation

of the core client. The core client consists of several finite-state-machines (FSMs):

NET_XFER: Each instance represents a network connection for which data is

transferred to/from memory or a disk file.
HTTP_OP: Each instance represents an HTTP operation (GET, PUT or POST).
FILE XFER: Each instance represents a file transfer in progress.

PERS_FILE_XFER: Each instance represents a " persistent file transfer”, which
recovers from server failures and disconnections and implements retry and

give-up policies.

SCHEDULER _OP: There is only one instance. It encapsulates communication

with scheduling servers, including backoff and retry policies.
ACTIVE_TASK: Each instance represents a running application.

FSMs of a particular type (one of the types explained above) are managed by
an FSM container named after the type of the FSM with the suffix ”_set”.
Each FSM container provides a (non blocking) po11() function for detecting and

performing state transitions.

3.3 Data structures

The data types listed below represent the central data types of the core client,
each class having write and parse functions for converting an instance to or from

XML.

¢ PROJECT

26

3. The BOINC core client Main loop logic of the core client

e APP

FILE_INFO

APP_VERSION

FILE_REF

e WORKUNIT
e RESULT

The initialization process works as follows: The "PREFS” class is a parsed ver-
sion of the prefs.xml file. It contains a vector of partially-populated PROJECT
objects and parsed versions of user preferences. When the core client starts
up, the function CLIENT_STATE::init() is called. It parses prefs.xml and cre-
ates a "PREFS” object from the parsed data. If there is no prefs file in the
home directory of the core client, it prompts the user for a master URL and
account ID and creates one. Then the vector of "PROJECT” objects is copied
to "CLIENT_STATE” which encapsulates the global variables of BOINC on this
host and is a parsed version of client_state.xml represented as vectors of the
basic types. CLIENT_STATE also includes transient variables such as sets of
FSMs.

3.4 Main loop logic of the core client

The function CLIENT_STATE::do_something() is called repeatedly either by the
sleep loop of the command-line program or by the time handler of the event loop
in case the GUI program is used. This function initiates activities as needed and
checks for the completion of current activities. If any change occured it returns

true, in which case it should be called again immediately without sleeping. This
is CLIENT_STATE::do_something():

bool CLIENT_STATE::do_something ()
{

27

3. The BOINC core client Main loop logic of the core client

bool action=false;

if (check_suspend_activities()) return false;

action |= net_xfers->poll();

action |= http_ops->poll ();

action |= file_xfers->poll();
action |= active_tasks->poll();
action |= scheduler_rpcs->poll();
action |= start_apps) ;

action |= pers_xfers->poll();
action |= handle_running_apps ();
action |= handle_pers_file_xfers();
action |= garbage_collect();

write_state_file_if_needed ();

return action;

Before the loop starts, check_suspend_activities checks for conditions in
which user preferences dictate that no work be done (i.e. running on batter-
ies). All the pol1() functions manage the transitions of the various finite state
machines. start_apps() checks whether it is possible to start an application
and if so starts the application. The function handle_running_apps () checks
whether a running application has exited, and if so cleans up after it. Then
handle_pers_file_xfers () is called which starts and finishes file transfers as
needed. garbage_collect () checks for objects that can be discarded. For exam-
ple, if a file is non-sticky and is no longer referenced by any work units or results,
both the FILE_INFO and the underlying file can be deleted. If a result has been
completed and acknowledged, the RESULT object can be deleted. And finally
write_state_file_if_needed () writes the file client_state.xml if any of the

above function has set the flag client_state_dirty.

28

3. The BOINC core client Host measuring performed by the client

3.5 Host measuring performed by the client

Because the server distributes workunits according to the properties of the host,

the core client measures the following aspects of each host and reports them in

every scheduling RPC. Their values are stored in the projects database:

CPU performance: Integer ops/sec, double-precision floating-point ops/sec,
and memory bandwidth are measured separately. They are measured by
a process executing at the same priority as BOINC applications, so the
results will be affected by other processes. These measurements are taken

when the client starts for the first time, and once every month afterwards.

Number of CPUs: By default, the number of simultaneous slot directories

will be set to this number unless otherwise indicated by user preferences.
Vendor and model of CPU

Disk space: Free space and total space on the drive where BOINC is in-
stalled. These numbers will be used to prevent BOINC from using more

space than set in the user preferences.

Memory: Total RAM, CPU cache, and swap space. These numbers can be
used by the scheduling server to decide whether or not to assign work to a
client. This also provides a means for assignment of differing work based

on host abilities.

Timezone

Last IP address and count of consecutive same addresses.
Number of RPCs, and time of last RPC.

Fractions of time that core client runs on host, host is connected, and user

is active. These are computed as exponentially-weighted averages.
Operating system name and version.

Average up- and downstream network bandwidth. These are computed as

exponentially-weighted averages.

29

3. The BOINC core client Client’s CPU scheduling policy

3.6 Client’s CPU scheduling policy

CPU scheduling means that the CPU time at BOINC’s disposal is appropriately
used for the host’s projects. For example, a user may decide to dedicate 75
percent of his/her spare computing time to one project and 25 percent to another.
In this case, there will be one client running on his/her system and the value
resource_share, which is part of the preferences, determines how much time
will be granted to each project. In this context, the variable "debt”, which is
used for making scheduling decisions, must be introduced: For each project, debt
means the amount of CPU time the BOINC client owes to the respective project.
debt decreases while calculations are performed for the project and increases
according to the total amount of work done in a time period scaled by the value
resource_share. To illustrate what this means, let us take another look at the
example referred to above: Let us assume that the user participates in both
CAPE (see Section 7.5) and the HappyEnd project (see Section 7.2):

e Project CAPE: resource_share=75
e Project HappyEnd: resource_share=25

Further suppose that the system has 40 minutes of spare computing time left
and the BOINC client runs CAPE for 25 minutes and HappyEnd for 15 minutes.
Because the resource_share of CAPE is 75, CAPE was entitled to be allocated
30 minutes but got only 25. Therefore its debt must be increased by 5 minutes
(i.e. decreased by 25 minutes but increased by the anticipated 30 minutes).

Actually, the algorithm computes the ”anticipated debt” (the debt expected
to be owing to the project after expiry of the time period) for determining which
computation to start next. The ratio between the CPU times allocated to the
projects in the course of one or two days should approximately match the ratio
between the user-specified resource shares. By the way: There is no need for the
sum of all resource_share rates to be exactly 100.

If there are no workunits waiting to be computed for a particular project, its
resource_share is of course not taken into account for the purpose of determi-
nation of the debts for other projects, and its own debt is not increased. Thus

the debt for such a project is set to zero. [5] provides a pseudo code scheduling

30

3. The BOINC core client Client’s CPU scheduling policy

algorithm and states that the clients CPU scheduling algorithm aims to achieve

the following goals in decreasing priority:

1. Maximize CPU utilization.
2. Enforce resource shares.
3. Satisfy result deadlines if possible.

4. Reschedule CPUs periodically. This goal stems from the large differences in
duration of results from different projects. Participants in multiple projects
will expect to see their computers do work on each of these projects in a

reasonable time period.

5. Minimize mean time to completion. For example, it is better to have one
result from a project complete in time T than to have two results simulta-

neously complete in time 2T.

The results to compute are dynamically chosen from a global pool so as to mini-
mize the number of result computations active at any given time, and when CPU
time is allocated to a project, already running tasks are chosen before preempted
tasks and new result computations are only launched when no other tasks are

waiting to be completed. The algorithm is as follows:

e Whenever a CPU is free
e Whenever a new result arrives (via scheduler RPC)

e Whenever it hasn’t run for T seconds, for some scheduling period T

if (a project has no runnable results)

{
Reset the projects debt to 0;
do not consider its resource share to determine relative
resource shares;

}

else

31

3. The BOINC core client Client’s CPU scheduling policy

Decrease debts to projects according to the amount of work
done for the projects in the last period.
Increase debts to projects according to the projects
relative resource shares.
b
for (each project)
{
anticipated debt = current debt
}
while(a result to compute is not determined for every cpu):
{
Choose the project that has the largest anticipated debt
and a ready-to-compute result.
Decrease the anticipated debt to the project by the expected
amount of CPU time.
}

Preempt current result computations, and start new ones.

This piece of pseudocode describes the algorithm more closely:

data structures:

ACTIVE_TASK:
double cpu_time_at_last_sched
double current_cpu_time

scheduler_state:

PREEMPTED
RUNNING
next_scheduler_state // temp
PROJECT:
double work_done_this_period // temp

double debt
double anticipated_debt // temp
RESULT next_runnable_result

32

3. The BOINC core client Client’s CPU scheduling policy

schedule_cpus () :

foreach project P

1]
o

P.work_done_this_period

total_work_done_this_period 0

foreach task T that is RUNNING:
x = T.current_cpu_time - T.cpu_time_at_last_sched
T.project . .work_done_this_period += x

total_work_done_this_period += x

foreach P in projects:
if P has a runnable result:
adjusted_total_resource_share += P.

resource_share

foreach P in projects:
if P has no runnable result:
P.debt = 0
else:
P.debt += (P.resource_share /
adjusted_total_resource_share)
* total_work_done_this_period

- P.work_done_this_period

expected_pay_off = total_work_done_this_period /

num_cpus

foreach P in projects:
P.anticipated_debt = P.debt

foreach task T

33

3. The BOINC core client Client’s CPU scheduling policy

T.next_scheduler_state = PREEMPTED

do num_cpus times:
// choose the project with the largest anticipated
debt
P = argmax { P.anticipated_debt } over all P in
projects with
runnable result
if none:
break
if (some T (not already scheduled to run) for P is
RUNNING) :
T.next_scheduler_state = RUNNING
P.anticipated_debt -= expected_pay_off
continue

if (some T (not already scheduled to run) for P is

PREEMPTED) :
T.next_scheduler_state = RUNNING
P.anticipated_debt -= expected_pay_off
continue

if (some R in results is for P, not active, and
ready to run):
Choose R with the earliest deadline
T = new ACTIVE_TASK for R
T.next_scheduler_state = RUNNING
P.anticipated_debt -= expected_pay_off

foreach task T
if (scheduler_state == PREEMPTED and
next_scheduler_state
= RUNNING) unsuspend or run
if (scheduler_state == RUNNING and

next_scheduler_state

34

3. The BOINC core client Client’s work fetch policy

= PREEMPTED) suspend (or kill)

foreach task T

T.cpu_time_at_last_sched = T.current_cpu_time

3.7 Client’s work fetch policy

Clients need not necessarily be connected to the server day and night. Therefore,
an algorithm is implemented to fetch enough work to avoid starvation for a period
of T days, starvation meaning that the CPU scheduler chooses a project to run
for which no computation tasks are scheduled. On the other hand, the volume of
work fetched should not be greater than necessary to achieve this goal. Therefore,
the algorithm tries to maintain enough work for T to 2T days.

To meet these requirements, the algorithm takes various system and project
parameters into account such as the number of CPUs, the resource_share rates
of the projects, the active fraction (which means the fraction of time in which
the core client typically runs), the CPU speed and the estimated_cpu_time for

a result.

35

Chapter 4

The BOINC server

4.1 BOINC server - general information

From a hardware point of view, a BOINC server may be an inexpensive stan-
dard PC set up with a LAMP system, the abbreviation LAMP standing for
Linux-Apache-MySQL-PHP. The all-in-one server used for the dIST project, for
example, is a Pentium-4 machine with 3.0 GHz and 1 GB RAM as well as a RAID
system consisting of 6 ATA disks with 200 GB each, running Debian Woody with
Linux kernel 2.6.7. The installation and configuration of BOINC on this server
will be described in Chapter 6. In addition to the LAMP system mentioned above,
which only represents the basic installation, the server consists of a database and
a project directory for each single project it runs. The project directory contains

the subdirectories and files listed below:

e apps/forapplications ready to be added to the system

bin/ contains scripts and programs to be described later on

cgi-bin/ contains cgi programs called by the clients via the apache web-

server

config.xml is a file with general settings such as paths, URLs, etc.

download/ for downloading of the core client and the scientific applications

36

4. The BOINC server Project database

html/ provides a complete project website including a variety of php pro-

grams
e log_$<$hostname$>$/ contains log files for the programs running

e pid_$<$hostname$>$/ contains small files with the process ID’s of the
feeder, the file_deleter and the transistioner as well as lock files

for those programs
e project.xml describes supported platforms

e upload/ is the directory where the clients upload their results

4.2 Project database

Each project has its own MySQL database. This database consists of various

tables, the most important being:

platform, a table containing platforms designed as follows:

ID | CREATE_TIME | NAME USER_FRIENDLY_ | DEPRE-
NAME CATED

1100212499 i686-pc-linux-gnu | Linux/x86 0

2 | 1100212499 windows-intelx86 | Windows/x86 0

app, a table where application information is stored.

app_version, a table where the different versions of an application are stored
together with information on the appropriate BOINC core client versions

and platforms designed as follows:

ID | CREATE_ APP | VER PLAT- | XML_ MIN_ MAX_ DE-
TIME ID SION_ | FORM | DOC CORE_ | CORE_ | PRE-
NUM D DOC VER- VER- CATED

SION SION
|1 [1098876450 |1 [402 |1 [BLOB|o [0 [0 |

user contains the names of the users, their email addresses, authenticators (32

bit hash values), locations and a number of user-specific preferences.

37

4. The BOINC server Workunit parameters

host stores host-specific information such as domain name, last_ip_addr, vendor

of the processor, processor model, operating system, etc.

workunit describes workunits. The input file descriptions are stored in an XML
document in a blob field. The table includes counts of the number of results
linked to the respective workunit, as well as of the numbers of workunits
that have been sent, that have succeeded and that have failed. A more

detailed description of the workunit table is included in section 4.3.

result describes results. It includes a ”state” and stores items relevant only after
the result has been returned: CPU time, exit status, and validation status.

A more detailed description of the result table can be found in section 4.4.

4.3 Workunit parameters

One row in the workunit table of a project database describes the attributes of
one workunit representing one computation task to be performed. A number of
tools, described in section 6.5, is available for creating workunits. In the present

section, the different attributes are to be explained.

4.3.1 General properties

name is the name of the workunit and must be unique.

appid is the ID of the application to perform the computation.
input files is a list of the input files for the computation.
priority means that higher-priority work is dispatched first.

batch is an integer field that can be used to operate (cancel, change priority,
etc.) on groups of workunits. Unfortunately there is no more information

about the usage of this value available in the documentation of Boinc [5].

38

4. The BOINC server Result parameters

4.3.2 Resource estimates and bounds

rsc_fpops_est is an estimate of the number of floating-point operations required
to complete the computation. This information is used to estimate how

long the computation will take on a given host.

rsc_fpops_bound: If the number of floating-point operations required to com-

plete a computation exceeds this bound, the computation is aborted.

rsc_mem _bound is a bound on the virtual memory working set size, and a
workunit is only sent to a host if its rsc_mem_bound value does not exceed

the host’s capabilities. If an application exceeds this bound, it is aborted.

rsc_disk_bound is a bound concerning disk space that works like rsc_.mem_bound.

4.4 Result parameters

Deviating from the common definition, the term ”result” in a BOINC context does
not refer to the final result of a computation process but to the instance of a com-
putation irrespective of whether the respective computation is yet unlaunched,
in progress or completed. Project databases contain a ”result” table where the
results are stored. BOINC automatically creates these entries for workunits on

the basis of their redundancy parameters. The parameters of a result include:

name, i.e. the unique name of the result derived from the name of the associated

workunit.
workunitid, i.e. the ID of the associated workunit.

xml_doc_in, i.e. a list of the names of the output files and the names by which

the application refers to them.

server state, i.e. a dynamic attribute. The following states are encoded in

integer values:

e Inactive - not ready to dispatch

e Unsent - ready, but not sent yet

39

4. The BOINC server Result parameters

In progress - sent but not yet done

Done successfully

Timed out

Done with error

Not needed - the work unit was finalized before this result was sent
hostid, identifying the host that executed the computation.

exit_status, representing what its name implies, 0 meaning success.

CPU _time, indicating the computation time of the result.

xml_doc_out, describing the output files, their sizes and checksums.
stderr_out, being the stderr output of the computation.

received_time, indicating the time when the result was received.

4.4.1 Redundancy and scheduling

delay_bound is the maximum number of seconds allowed to elapse between
sending a result to a client and receiving a reply. The scheduler will not
issue a result if the estimated completion time exceeds this bound. If the
client does not respond within the time permitted, the server cancels the
result and generates a new one to be reassigned to another client. This
value should be set to several times the estimated average execution time
of the workunit on an average PC. If it is set too low, no results can be sent

and the corresponding workunit is flagged with an error.
min_quorum is used to achieve redundant computing (min_quorum > 1).

target_nresults specifies how many results are to be initially created. The lower
bound for this value of course is min_quorum, and the value may be set

higher to compensate for result loss or to obtain results more quickly.

40

4. The BOINC server Result parameters

max_error_results indicates that a workunit is to be considered erroneous in
the event that the number of errors occured exceeds the value defined. In
this case, no further results are issued. This feature functions as a safeguard

against upload/download problems and client crashes.

max_total results specifies that a workunit is to be considered erroneous if the
total number of results for the workunit exceeds the value defined. This

feature functions as a safeguard against client crashes.

max_success_results is the maximum number of successful results permitted
to be returned without consensus. This feature functions as a safeguard

against workunits that produce nondeterministic results.

4.4.2 FError mask

As mentioned above, workunits may be classified as erroneous. For this case, the

database provides an error mask, which is a bit mask of error conditions:

e WU_ERROR_COULDNT_SEND_RESULT: Either no application version
was available for the platform of the hosts or a large number of hosts failed
to meet the resource requirements as the exceeded the disk, memory or
CPU limits described above.

e WU_ERROR_-TOO_-MANY_ERROR_RESULTS: Too many results with er-

ror conditions have been returned for the respective workunit.

e WU_ERROR_TOO_MANY _SUCCESS_RESULTS: Too many successful re-

sults have been returned without consensus.

e WU_ERROR.TOO_MANY_TOTAL_RESULTS: Too many total results have

been sent for the respective workunit.

If any of these conditions holds, BOINC ”gives up” on the workunit and refrains

from dispatching any more results for it.

41

4. The BOINC server Daemon programs

4.5 Daemon programs

Every BOINC project has a set of daemon programs used to manage the work
and maintain the project. These are listed within the daemons section of the

xml-file config.xml in the project directory. These daemons include:
e Work Generator

Transitioner

Validator

Assimilator

file_deleter

db_purge

4.5.1 The Work Generator

The Work Generator is a project-specific program the purpose of which consists
of generating workunits with appropriate input files if needed. This may be a
simple shell script using the create_work program or a program using the C++
libraries crypt.C and backend_lib.C,h, which provide the following functions:

e int create_work(...), which creates a workunit and one or more results.
e read_key_file(), which reads the file upload authentication key.
The process of work generation works as follows:

1. A workunit template file must exist. It has the form

<file_info>

<number >0</number >

[<sticky/>, other attributes]
</file_info >
L ... 1

<workunit >

42

4. The BOINC server Daemon programs

<file_ref>

<file_number >0</file_number>

<open_name >NAME</open_name >
</file_ref>
L]
[<command_line>-flags xyz</command_line>]
[<rsc_fpops_est>x</rsc_fpops_est> 1]
[<rsc_fpops_bound>x</rsc_fpops_bound>]
[<rsc_memory_bound >x</rsc_memory_bounds >]
[<rsc_disk_bound>x</rsc_disk_bounds >]
[<delay_bound>x</delay_bound>]
[<min_quorum>x</min_quorum>]
[<target_nresults>x</target_nresults>]
[<max_error_results >x</max_error_results>]
[<max_total_results >x</max_total_results>]
[<max_success_results >x</max_success_results>
]

</workunit >

The parameters of this file are described in section 4.3.

2. A result template file which has the form

<file_info>
<name ><X0QUTFILE_0/></name >
<generated_locally/>
<upload_when_present/>
<max_nbytes >32768</max_nbytes>
<url><UPLOAD_URL/></url>

</file_info>

<result>
<file_ref>

<file_name ><X0QUTFILE_0/></file_name >

<open_name >result.sah</open_name >

43

4. The BOINC server Daemon programs

</file_ref>
</result>

...where <QUTFILE_n> is replaced by a string of the form ”<workunitname
>_resultnum_n”, where resultnum is the ordinal number of the result (0,
1, ...). <UPLOAD_URL/>, is replaced with the upload URL specified within

config.xml.
3. The input files for the workunit must be placed in the download directory.

4. Either the create_work utility or the library function mentioned above
must be called to create the workunit within the project database where

the entry transition_time of the workunit table is set to the current time.

4.5.2 The Transitioner

The Transitioner is part of the BOINC software and independent of the project.
It is listed in the config.xml file by default. The Transitioner is run whenever a
result becomes done, the error mask of a workunit is set or assimilation is finished.
It handles state transitions of workunits and results, generates initial results and

is responsible for generating more results when timeouts or errors occur.

4.5.3 The Validator

The Validator is another project-specific feature. It is used to compare redundant
results and to select a canonical result as the correct one. In this respect, care
must be taken when comparing results because floating-point arithmetic varies
between different platforms. Additionally the Validator is responsible for credit
granting. BOINC supplies a framework program validator.C, which must be

linked with two application specific functions to make a validator program:

e function int check_set (vector<RESULT> results, DB_WORKUNIT& wu,

int& canonicalid, double& credit, bool& retry);

— Compares the output files of a set of results and if there is a quorum

of matching results, it selects one as the canonical result, returning its

44

4. The BOINC server Daemon programs

ID. Credit is granted to the users who return correct results.

— Sets the result’s outcome (in memory, not database) to outcome=RE-
SULT_-OUTCOME_VALIDATE_ERROR and validate_state=VALIDA-
TE_STATE_INVALID if an output file for a result has a non-recoverable

eITror.

— Sets the validate_state field of each non-ERROR result (in memory,
not database) to either validate_state=VALIDATE_STATE_VALID
or validate_state=VALIDATE_STATE_INVALID.

— Returns retry=true in case of a recoverable error while reading output

files to instruct the Validator to process this workunit again later.
— Returns non-zero if a major error occurs to tell the validator to exit.

e function int check_pair (RESULT& new_result, RESULT& can_result,
bool& retry);

— Compares a new result to the canonical result and sets the new re-
sult’s validate state to either VALIDATE_STATE_INVALID or VALI-
DATE_STATE_VALID.

— Sets the new result’s outcome (in memory, not database) to VALI-
DATE_ERROR if a nonrecoverable error occurs reading the output

file of either result or the new result’s output file is invalid.

— Returns retry=true if it has a recoverable error while reading an

output file of either result.

— Returns nonzero if a major error occurs.

BOINC provides a placeholder, validator_placeholder.C, which can be used
for writing a project specific Validator. A Validator has the following command-

line arguments:
e -app appname: The name of the application
e -one_pass_N_WU N: Validate at most N Workunits, then exit

e -one_pass: Make one pass through WU table, then exit

45

4. The BOINC server Daemon programs

e -mod n i: Process only workunits with (id mod n) == i. This option can

be used to run multiple instances of the validator for increased performance.

46

Chapter 5

Modifications

This chapter describes the areas where the BOINC functionalities were found
insufficient for the purposes of the dIST project as well as the modifications and
extensions added to the original BOINC.

5.1 Motivation underlying the modifications

The original version of the system works as follows: One or more projects are
located on the server and each project has its own webinterface. A participant
registers to one of the projects via its webinterface. Following this, a 32 bit key
unique within the project is sent to the participant’s email address. The par-
ticipant then uses the 32 bit key to confirm the account via the webinterface.
This step certainly being required from a safety point of view to prevent DOS
attacks resulting from automatic account generation. Following this, the partici-
pant launches the client and enters the master URL and the 32 bit key (s)he has
received. The same procedure is repeated for each of the projects the participant
wishes to support.

In contrast to this arrangement, the dIST project is intended to procure com-
puting time for a variety of different projects in general, the projects dynamically
evolving and terminating from time to time. For this purpose, an arrangement
where the participants must be contacted for each new project so that they can

rearrange their clients will not be acceptable, and the administrators in charge

47

5. Modifications Automatic participation in projects

of the computer rooms of the TUG can certainly not be expected to separately
change the settings of each individual computer whenever a change occurs. Ad-
ditionally, the value resource_share is to be administrated by the dIST project
so that the priority allocated to each of the individual projects can be managed
on the level of the server. This type of arrangement is, among other things, in-
tended to offer an opportunity to reduce the priority of a long-term project on
a temporary basis while another, more important project is computed for a few
weeks. Additionally, a special simplified registration feature that is described in

Section 5.3 is to be made available for special cases.

5.2 Automatic participation in projects

In the original version, the server can be used to run several scientific projects
at the same time. The modified BOINC version, in contrast, will additionally
comprise a special project, i.e. the administrative project called ”dIST”, which
will not distribute workunits but contain, on the server side, the extended func-

tionality consisting of
e automatic participation in scientific projects, and
e simplified registration for the administrative project.

The users are intended to use the extended BOINC client. This client already
knows the URL of the administrative project and, to get launched, only needs the
32 bit key. During start-up and at regular intervals thereafter, the modified client
connects to the server or, more precisely, the script automatic_subscription.
php of the administrative project. This script evaluates the file administrative_
config.xml, which is also located on the server, and checks all project databases
to determine if the respective user is already registered there. If this is not
the case, the script registers the user in the databases of the respective scientific
projects and sends a list containing the parameters of the projects to be supported
to the client. This list is stored in the form of an XML file in the work directory of
the client under the file name auto_proj_list.xml. The file administrative_

config.xml is designed as follows:

48

5. Modifications Automatic participation in projects

The XML parser of BOINC is very simple. Therefore
some rules:

#

1) TRUE and FALSE are expressed by 1 and 0

2) The order must be projectO, projectl, ...,
projectn

do not omit numbers!

3) No comments within the tag section. Just to be
sure. ..

4) The master_url is the first line of every project

section WITH "http://"-prefix

#

It is essential that this file is absolutely correct

because the clients do not check every special case
that

can occur and they could choke on a wrong syntax.

<administrative_config>

<reset_everything >0</reset_everything>

<project0>

<master_url>http://fsmtdist.ist.tu-graz.ac.at/coffee</
master_url>

<resource_share >500</resource_share >

<db_name >coffee</db_name >

<detach>0</detach>

</project0>

<projectl>
<master_url>http://fsmtdist.ist.tu-graz.ac.at/hello</

master_url>

49

5. Modifications Automatic participation in projects

<resource_share >8</resource_share >
<db_name >hello</db_name >
<detach>0</detach>

</projectl>

</administrative_config>

Any new scientific project generated by the operators of the BOINC server
can be set up in strict compliance with the standard without taking the BOINC
extensions into account. In the event that the new project is to be supported
by the clients of the administrative project dIST after the test phase, it only
needs to be entered in the file administrative_config.xml according to the
rules outlined above. The new project is automatically supported as soon as the
clients, lodging queries with the server at regular intervals, detect it. Caution
is recommended, however: As already explained in the file above, the structure
of the XML parser included with the regular BOINC distribution is very simple.
Consequently, the error tolerance of the extended version using the same parser
is rather limited and the file must be 100% correct. Explanation of the tags of

administrative_config.xml:

<reset_everything> specifies complete deletion on the client side of all projects
supported at a given time (i.e. including the scientific applications, data,
etc.) and subsequent subscription of the projects contained in the list. This
tag should, as a matter of fact, never be needed but has been included for
reasons of safety so that a clean-up can, if required, be performed on the

client side. The administrative project is not covered by this tag.

<resource_share> indicates the priority of the project, therefore gaining im-
portance as soon as more than one project is active. An exact description
of the way this value is used for CPU scheduling purposes can be found in
Section 3.6.

<detach> indicates that an individual project need no longer be supported. The

clients fully delete the applications and data of the respective project.

a0

5. Modifications Registration feature

5.3 Registration feature

The original BOINC version requires the user to create an account via the we-
binterface. Following this, a 32 bit key is sent to the user’s email address. The
user then enters the key via the webinterface and must finally indicate the mas-
ter URL as well as the key when initially launching the BOINC client. While it
definitely makes sense and increases safety, this procedure can in certain cases be
rather troublesome. In a situation where several accounts are to be created, for
example, a separate email address would be required each time. This is because
the email address must be unique. Additionally, setup is to be facilitated for the
administrators within the in-house network. Therefore, I have included, for such
cases and in addition to the regular registration, a simplified and more comfort-
able registration feature. For this purpose, the client, upon initially launching, is

offered the option ”-auto_acc” followed by the parameters for the registration:

./boinc_client - <username> <mail> <country> <postal

code> <secret>

Example:

./boinc_client -auto_acc ’’Bernhard Kornberger’’

kornberg@sbox.tugraz.at Austria 8010 theKey

A parameter containing spaces must of course be put in quotation marks as the
shell will otherwise interpret it as two separate parameters. Following this, the
client registers for the administrative project dIST with these parameters. From
this moment, the registration data is stored, and the client can in the future be
called using ./boinc_client.

A client started this way transmits an inquiry to the server via HT'TP, the
recipient of the inquiry being the script automatic_account_generation.php
within the administrative project. This script verifies that the secret key <secret
> is correct and whether or not automatic account generation is permitted at the
given moment. Subsequently, the script generates an account with the adminis-
trative project and transmits a reply containing the account data to the client.

This reply runs as follows:

o1

5. Modifications Registration feature

The account informations below were generated
automatically using AustroBOINC
and apply to this machine only:

<user >Bernhard Kornberger_auto -1</user>

<email >kornberg@sbox.tugraz.at</email >

<email_stored_in_db >kornberg@sbox.tugraz.at</
email_stored_in_db >

<administrative_url >fsmtdist.ist.tu-graz.ac.at/dist</
administrative_url >

<authenticator >ac59f81386aaeccb064a1b285d003db9 </
authenticator>

Thank you for contributing computing power to this

project!

...and is stored in the form of a file called auto_admin_proj_acc.xml on the
client’s hard disk. The following reply would be transmitted for a second account

generated with exactly the same data:

The account informations below were generated
automatically using AustroBOINC
and apply to this machine only:

<user>Bernhard Kornberger_auto -2</user>

<email >kornberg@sbox.tugraz.at</email >

<email_stored_in_db >kornberg@sbox.tugraz.at_duplicate
-2</email_stored_in_db>

<administrative_url >fsmtdist.ist.tu-graz.ac.at/dist</
administrative_url >

<authenticator >03ecd3133453727350a23098cb8f3691</

authenticator >

92

5. Modifications Implementation details

Thank you for contributing computing power to this

project!

As shown by these replies, accounts generated automatically are always desig-
nated by the suffix ” _auto-n” added to the name. To meet the BOINC require-
ment of each email address being registered only once in the database, the suffix
”_duplicate-n” is added to already existing email addresses. It is fairly obvious
that the simplified registration feature gives rise to a risk of DOS attacks as a
third party could automatically create millions of accounts so as to overload the

server. This risk is counteracted by two measures:

1. A secret key <secret> is required to use the feature. This key is only known
to authorized persons. This key is, on the server level, defined directly in

the file "automatic_account_generation.php”.

2. The tag <disable_account_creation/> can be entered in the file config.xml
so as to deactivate the function. Automatic registration will mainly be
useful during the initial phase of the project and can then be blocked using

this tag.

5.4 Implementation details

Implementation is based on the code boinc-cvs-2004-09-08.tar.gz, the extensions
being implemented as far as possible in the two new files austroBoinc_utils.h
and austroBoinc_utils.C so as to facilitate upgrades. However, programming
work will be required in the event that the client should in the future be based
on a different source code. The full functionality on the server level is exclusively
implemented in PHP scripts and XML files so that upgrades on the server level
will not require a significant effort. Additionally, the extensions on the server level
are limited to the administrative project so that new projects can be established
without taking the modifications into account. A CD-ROM containing both
the source code boinc-cvs-2004-09-08.tar.gz and the extensions is annexed

to the present diploma thesis so that the setup of the server extended by the

93

5. Modifications Implementation details

functions described can easily be repeated. The application of the new function

is documented in Section 6.7.

o4

Chapter 6
Setup and usage

This chapter describes in full how to set up a BOINC server. Setting up our
dIST server for the first time has made us aware of a great number of obstacles
on the way to a fully working BOINC system. Therefore, this chapter contains
a considerable number of notes I have jotted down during the setup procedure.
These notes represent a valuable part of the present diploma thesis as they ensure
that others will be able to follow the processes described, and maybe they will
even help other developers on their way into the world of BOINC.

95

6. Setup and usage System setup

6.1 System setup

This section explains how the basic system must be configured so as to allow
running of BOINC.

6.1.1 Linux distribution

In principle, almost any desired Linux distribution may be used. However,
BOINC is developed on Debian stable/unstable, Red Hat 8 and Solaris 2.6-2.9,
and therefore it can be assumed that use of these distributions will reduce prob-
lems to a minimum and give best access to support. Initially, I attempted to
install BOINC on Mandrake 10.0, which for not fully clarified reasons led to
shared memory problems so that the setup was not successful. A second try on
Debian Woody (Kernel 2.4.20-bf2.4) was successful.

6.1.2 Installation of additional packages

The BOINC documentation lists a number of packages that must be subsequently
installed on Debian systems, but this list is of course not exhaustive for lack of a
common basic installation. After installing Debian Woody, we had to install the

following additional packages on the dIST server:

apt-get install g++ python python-mysqldb python-xml
mysql -server mysql-client apache php4 automake autoconf
php4-mysql python2.2-xmlbase python2.2-mysqldb
python2 .2 1libmysqlclientl10 -dev zlibc zliblg zliblg-dev

These packages can be obtained from several standard Debian repositories.

6.1.3 Python update

As indicated in the paragraph above, we subsequently installed Python 2.2. The
command ”python -V”, however, showed the old Python version 2.1.3, which had
obviously not been removed in the course of the installation process. Therefore,

we had to insert a new symlink manually:

o6

6. Setup and usage System setup

[root@wtdist /usr/bin]# rm python
[root@wtdist /usr/bin]# 1n -s python2.2 python

6.1.4 httpd.conf

The file /etc/apache/httpd.conf is the configuration file of the Apache web-

server. In this file, a number of changes must be made:

e In the course of installation of the packages indicated above, one of the

installation scripts offered to enter the line

LoadModule php4_module /usr/lib/apache/1.3/1ibphp4.
S0

into the configuration file and after completion of the installation process
the line actually appears in the httpd.conf but is commented and must be

subsequently activated.

e To activate PHP, the following lines must be uncommented:

AddType application/x-httpd-php .php
AddType application/x-httpd-php-source .phps

e The Directorylndex directive controls which page will be shown when a
directory is called by a web browser. This line already exists in httpd.conf,

but it has to be extended by ”index.php”:

DirectoryIndex index.html index.htm index.shtml

index.cgi index.php

6.1.5 MySQL

For security reasons, accessibility of MySQL-Server is to be limited to the local

level. Therefore, it is protected as follows:

o7

6. Setup and usage System setup

/etc/mysql/my.cnf:

prevent access from the network

... but listen to the loopback-dev:
bind-address = 127.0.0.1

#skip-networking

To nevertheless allow remote administration, the package "phpmyadmin” can be
installed. This package offers access to the MySQL database of BOINC via a

comfortable web interface. Then the root password is defined as follows:

mysqladmin -u root password [new-password]

mysgqladmin -u root -p reload

6.1.6 Sending of e-mails

Registration of new users is implemented in the BOINC webinterface by means
of PHP scripts. These must be able to send confirmation e-mails containing a
32 bit key to the new users. In a first attempt, I tried to configure sendmail for
this purpose. Safely configuring and operating a true mail server, however, is a
delicate task. Additionally, port 25 of the network of the University of Technology
Graz seems to be locked for precisely this reason. For reasons of simplicity and
security, installing SSMTP represented a significantly more favourable alternative
in comparison with sendmal, SSMTP being a Mail Transfer Agent (MTA) to get
mail off the system to a mail hub. To cause SSMTP to be actually used, the
following entry is required in the file *’> /etc/php4/apache/php.ini’ ’:

sendmail_path = /usr/sbin/ssmtp -t -i

The path ’’ /usr/sbin/sendmail’’, in fact consisting of a symlink on SSMTP,
turned out to be insufficient as a parameter, i.e. the options ”-t” und ”-i” must
be explicitly indicated even though they are indicated as default options in the

documentation.

o8

6. Setup and usage Setting up BOINC

6.2 Setting up BOINC

After completing the basic configuration of the LAMP server (section 6.1), in-

stallation of BOINC as such can be commenced.

6.2.1 Selecting the right source code

The development of BOINC is ongoing, and therefore the relevant documentation
is also subject to frequent changes. Therefore, attention is expressly called to the
fact that the information below is based on the situation as of summer 2004.
Selecting the right BOINC source code is a critical issue. The website http:
//boinc.berkeley.edu/source offers many different versions of the source code
but provides no information as to which of the source codes is considered stable
and should be used for servers. The website comprises two download directories,
i.e. 7 Archive” and ”Nightly”.

e The following facts must be taken into account with regard to the directory

” Archive”:

— The 2.x versions can be compiled but are obsolete.

— Many 3.x and 4.x versions are defective. Some of the versions do not
contain some of the files needed for compiling. In some other cases,

the test scripts indicate errors.
e The following information refers to the directory ”Nightly”:

— The directory contains two different source variants: The ”boinc-cvs-

<date>" versions and the ”boinc_public-cvs-<date>"versions.

— Even though the public versions seem to contain all necessary com-
ponents, they do not compile faultlessly, and the test scripts do not
work either. In reply to a question I posted on a mailing list, a de-
veloper explained that the ”boinc_public-cvs-<date>"are stable but
only intended for the client while the development version ”boinc-cvs-

<date>" should be used for the server.

99

6. Setup and usage Setting up BOINC

Even with the information above, selecting the source code was a critical
task as CVS snapshots are made and provided for download on a daily
basis and some of these snapshots simply do not compile. The source code

boinc-cvs-2004-09-08.tar.gz, at any rate, works properly.

Update: Only a few days before finishing this diploma thesis, I received new infor-
mation relating to the source code, i.e. that the development branch can be checked
out using the command: cvs -d :pserver:anonymous@alien.ssl.berkeley.
edu:/home/cus/cusroot checkout boinc and subsequently the command cvs

update -r boinc_core_release_4_66 to get a source code which is known to
build correctly (April 2005). For details see [24]. However, as our source code

builds cleanly we will not upgrade our project.

6.2.2 Downloading and compiling

Downloading and compiling of BOINC is very similar to downloading and com-
piling of typical Linux installations. The only additional elements are test\

_sanity.py and makecheck:

wget http://boinc.berkeley.edu/source/nightly/boinc-cus
-2004-09-08. tar.gz

tar fxvz boinc-cvs-2004-09-08. tar.gz

cd boinc

./configure && test/test_sanity.py

make

make check

Failure of test_sanity.py is due to the authorizations of the MySQL server.
The line "make check” implements a number of self-tests after "make”. In the
case of the source code of 8 September 2004, the first test was passed successfully,
but the second test triggered the message "Exception thrown - bug in test

scripts?”. This in fact seems to be a case of a bug in the test script, because
BOINC nevertheless turned out to work properly. Apart from this, the same
problem also occurs in other up-to-date versions of the source code, which leads

to the conclusion that the tests are no longer maintained.

60

6. Setup and usage Project setup

6.3 Project setup

After successful compilation of the source code (in the home directory), creation
of a scientific project in another directory (/data/boinc) can commence. I use
the term ”scientific project” to make a clear distinction between this project and
the administrative project, which represents a part of my BOINC modification

and the setup of which is described later on.

6.3.1 Final system preparation steps

The BOINC projects are to run under a separate UID, and therefore the system

user ’boincsrv’ is established:

adduser boincsrv

A MySQL user with the same name must be created:

mysql -u root -p
> GRANT Select, Insert, Update, Delete, Create, Drop ON

. TO ’boincsrv’@’localhost’

A directory for the BOINC projects must be established, also properly con-
figuring the corresponding rights:

mkdir /data/boinc
chgrp boincsrv /data/boinc/{projects ,h keys}’
chmod g+w /data/boinc/{projects ,keys}

6.3.2 The script ”make_project”

The script ”boinc/tools/make_project”serves the purpose of establishing projects.
It creates a complete project directory comprising all files and sub-directories
required, a complete project web and the database needed for the new project.
A description of the parameters expected by the system can be obtained with
"make_project --help”. This script is executed as user "boincsrv” (like all
further commands needed to generate the project). In our case, a project called

”hello” is created:

61

6. Setup and usage Project setup

boincsrv@wtdist /home/kornberger/boinc/tools\$
./make_project --base /data/boinc --delete_prev_inst --
drop_db_first
--user_name boincsrv --url_base http://fsmtdist.ist.tu-
graz.ac.at/ hello
Creating project ’hello’ (short name ’hello’):
BASE /data/boinc/
KEY_DIR = /data/boinc/keys/

PROJECT_ROOT = /data/boinc/projects/hello/

URL_BASE = http://fsmtdist.ist.tu-graz.ac.at/
HTML_USER_URL = http://fsmtdist.ist.tu-graz.ac.at/
hello/

HTML_OPS_URL = http://fsmtdist.ist.tu-graz.ac.at/

hello_ops/
CGI_URL
hello_cgi/

http://fsmtdist.ist.tu-graz.ac.at/

Continue? [Y/n] y

Setting up server: creating directories

Keys don’t exist in /data/boinc/keys/; generate them? [
Y/nl y

Setting up server files: linking cgi programs Done
installing default daemons.

Done installing files.

Steps to complete installation:

Set permissions for Apache:

cat /data/boinc/projects/hello/hello.httpd.conf >> /
etc/apache/httpd.conf && apachectl restart

62

6. Setup and usage Project setup

(path to httpd.conf varies)

Add to crontab (as root)
(If cron cannot run "start", try using a helper
script to set PATH and
PYTHONPATH)

0,5,10,15,20,25,30,35,40,45,50,55 * * *x x /data/

boinc/projects/hello/bin/start --cron

To start, show status, stop BOINC daemons run:

/data/boinc/projects/hello/bin/start
/data/boinc/projects/hello/bin/status
/data/boinc/projects/hello/bin/stop

Master URL: http://fsmtdist.ist.tu-graz.ac.at/
hello/

Administration URL: http://fsmtdist.ist.tu-graz.ac.at/
hello_ops/

Add Work Generator , Validator and Assimilator daemons

for your applications

Further steps are necessary to add applications and
work.

See the online documentation at http://boinc.berkeley.
edu/

The script already specifies the next step:

e The Apache configuration must be adjusted (as user root):

63

6. Setup and usage Project setup

cat /data/boinc/projects/hello/hello.httpd.conf >>
/etc/apache/httpd.conf && apachectl restart

e Then the UID is changed to "boincsrv”’, and crontab -e is executed to

insert as follows in the crontab of the user:

0,5,10,15,20,25,30,35,40,45,50,55 * *x * * /data/

boinc/projects/hello/bin/start --cron

Now the cron jobs are executed under the UID ”boincsrv”.

6.3.3 The xadd step

The template ”project.xml” is copied from the source tree into the project direc-

tory:

boincsrv@wtdist /home/kornberger/boinc\$ cp tools/
project.xml /data/boinc/projects/hello/

Then it is edited. In this case, the supported platforms (Linux, Mac, Windows)
are indicated. For the first test project, I specified only Linux support.

boincsrv@wtdist /data/boinc/projects/hello\$ vi project
.xml
<boinc >
<platform>
<name>i686 -pc-linux -gnu</name>
<user_friendly_name >Linux/x86</
user_friendly_name >
</platform>
<app>
<name >hello </name>
<user_friendly_name >The famous hello world
application</user_friendly_name >

</app>

64

6. Setup and usage Project setup

</boinc>

Then xadd is called in the project directory:

boincsrv@wtdist /data/boinc/projects/hello\$ bin/xadd
project .xml

Processing <Platform#None i686-pc-linux-gnu>

Committed <Platform#1l i686-pc-linux-gnu> ; values:
{’_dirty’: O,

’ _lazy_lookups’: {3},

’create_time’: 1095775900L,

’deprecated’: OL,

’id’: 1L,

’name’: ’i686-pc-linux-gnu’,

’user_friendly_name’: ’Linux/x86°}
Processing <App#None hello>

Committed <App#1 hello> ; values:
{’_dirty’: 0,

’ _lazy_lookups’: {3},

>create_time’: 1095775900L,

’deprecated’: OL,

’id’: 1L,

’min_version’: OL,

’name’: ’hello’,

’user_friendly_name’: ’’}
6.3.4 Adjusting the file ”project.inc”
The file project.inc is edited in the project file:
boincsrv@wtdist /data/boinc/projects/hello\$
vi html/project/project.inc
define ("PROJECT", "TheHelloWorldProject");
define ("MASTER_URL", "http://fsmtdist.ist.tu-graz.ac.at

/hello") ;

65

6. Setup and usage Project setup

define ("URL_BASE", "http://fsmtdist.ist.tu-graz.ac.at/
hello") ;

define ("IMAGE_PATH", "../user_profile/images/");

define ("IMAGE_URL", "user_profile/images/");

define ("PROFILE_PATH", "../user_profile/");

define ("PROFILE_URL", "user_profile/");

define ("LANGUAGE_FILE", "languages.txt");

define ("STYLESHEET", "black.css");

define ("COPYRIGHT_HOLDER", "The dIST-Team");

define ("SYS_ADMIN_EMAIL", "bekor@gmx.net");

Then a minor optical feature in terms of the web interface is adjusted:

vi html/user/index.php

Line 53: <1link rel=stylesheet type=text/css href=black
.css>

Line 91: <tr><td valign=top bgcolor=3232cc>

6.3.5 Securing the web

The web is secured by means of the two files .htaccess and .htpasswd in the
project subdirectory /data/boinc/projects/hello/html/ops. .htaccess con-

tains as follows:

[root@wtdist /data/boinc/projects/hello/html/opsl# cat
.htaccess

AuthName "BOINC ADMIN PAGE"

AuthType Basic

AuthUserFile /data/boinc/projects/hello/html/ops/.
htpasswd

Require valid-user

The following command in the directory to be secured serves to generate the

password file .htpasswd with the user name ”admin”:

htpasswd -c .htpasswd admin

66

6. Setup and usage Project setup

The selected password is entered twice, thus securing the web. The visible success

of the steps executed so far consists in that the two pages
e http://fsmtdist.ist.tu-graz.ac.at/hello and
e http://fsmtdist.ist.tu-graz.ac.at/hello_ops

are accessible via the browser, the latter page being password-protected.

6.3.6 Starting the project

The project can be started in the project directory using:

boincsrv@wtdist:~/projects/hello\$./bin/start

Entering ENABLED mode

Starting daemons
Starting daemon: feeder -d 3
Starting daemon: transitioner -d 3

Starting daemon: file_deleter -4 3

This shows the start up procedure of the project "hello”, where the feeder, the
transitioner and the file_deleter program are started with the option ”-d
3” meaning debug level 3. This debug level produces a large output and should
be used only during the initial phase of a project. See Section 6.3.8 for details.

6.3.7 Debugging

In the event that the project fails to work properly, a few methods can be rec-

ommended to track down the error:
e ./bin/status can be entered to check whether or not the project is running.

e The sub-directory ./log_<host>/ additionally contains the logfiles of the

started programs.

67

6. Setup and usage Project setup

e My first attempt to set up a server on Mandrake_linux (Mandrake 10.0)

failed because the feeder was not running. According to information pro-
vided by a BOINC developer in response to a corresponding inquiry, this
failure was most probably due to a shared memory problem. However, my
configuration efforts in this respect were unsuccessful. The problem does
not occur when Debian Woody with kernel 2.4.20-bf2.4 or kernel 2.6.7 is

used.

Database entries can be visualized very efficiently using the software php-
myadmin. This software can be configured in such a way that the BLOB
fields of the databases where the projects store their XML files are also
shown. Additionally, the databases can be administrated via the BOINC
web interface by calling the URL http://fsmtdist.ist.tu-graz.ac.at/
hello_ops/ with the web browser.

By uncommenting the symbol SHOW_QUERIES in db/db\base.C, and recom-
pilation, all database queries are written to stderr (for daemons, this goes
to log files; for command-line apps it is written to the terminal). This is

verbose but extremely useful for tracking down database-level problems.

6.3.8 Reducing the log level

Each project directory contains a file config.xml:

[..

-]

<upload_url>

http://wtdist/hello_cgt/file_upload_handler
</upload_url>

</config>
<tasks/>

<daemons >

<daemon>

<cmd >
feeder -d 3

</cmd>

68

6. Setup and usage Scientific application

</daemon>
<daemon>
<cmd >
transitioner -4 3
</cmd>
</daemon >
<daemon>
<cmd >
file_deleter -4 3
</cmd>
</daemon >
</daemons >

</boinc >

Starting with log level 3, which is very favourable for initial debugging, is specified
for the three programs feeder, transitioner and file_deleter. For practical
operation of projects, however, this log level is practically unsuitable as logfiles
comprising several gigabytes are created within a few weeks. For information
about where these logfiles can be found see Section 4.1. The debug levels are: 1

= critical messages only, 2 = normal messages, 3 = detailed debugging info.

6.4 Scientific application

6.4.1 Source code

As the ”scientific” application for the first test, I have chosen a distributed Hel-
loWorld program. The source code for this program can be downloaded from
[21]. An error in this example that was difficult to identify resulted from the fact
that the major version number of the application was 3. This caused a problem
due to a non-documented or at least insufficiently documented relation included

in BOINC concerning the file names of the scientific applications:

1. The file name of each scientific application must contain its version number.

Further rules regarding the allocation of names can be found in the BOINC

69

6. Setup and usage Scientific application

documentation.

2. The major version number part of the version number must correspond to
that of the core client. This means that a core client with a version number
4.05 would receive workunits that can be computed with hello 4.08 but
would not receive workunits if the name of the scientific application were
hello_3.08.

Attention: If this error occurs, the answer from the server is: ”"No work

available. There was work for other platforms” and no further indication
is given that the problem has resulted from the version number. Consequently,
the cause for this error was extremely hard to find and I had to analyze the source
code to identify it. But as this is rather a feature than a bug, I didn’t change the
behavior. It suffices if one knows this special property and how to interpret the

message from the server.

6.4.2 Compiling the scientific application

The source code of the scientific application is unpacked. In the makefile, the
desired version number is defined and the paths to the libraries required are

adjusted if necessary. Then make is called.

[root@wtdist /home/kornberger/hello.dl# make

g++ -I../../1lib ~-I../../api -include ../../config.h
-¢ hello.C -o hello.o
g++ -L../../1ib -1boinc =-o hello -static hello.o

../../api/boinc_api.o -L../../1lib -1lboinc
strip hello
In -f hello hello_4.08_i686-pc-linux-gnu

In the context of one’s own applications, it is essential to remember that the
scientific application must always be statically linked so that it can run on all
systems. The libraries I needed for static linking under Debian seem to be part
of the standard scope of installation and already existed on the system. Under
Mandrake, at least the following libraries had to be installed: urpmi libstdc

++b-static-devel glibc-static-devel.

70

6. Setup and usage Scientific application

6.4.3 Registering the application with the project

The scientific application and the core client are copied into the project directory
or, more precisely, a sub-directory of /apps that must have the same name as the

application itself:

mkdir /data/boinc/projects/hello/apps/hello

mkdir /data/boinc/projects/hello/apps/boinc

cp hello_4.00_i686-pc-linux-gnu /data/boinc/projects/
hello/apps/hello/

cp ../../client/boinc_4.50_i686-pc-linux-gnu /data/
boinc/projects/hello/apps/boinc/

Then ”./bin/update_versions” is called and it is essential that this step is
performed from the project’s root directory. Otherwise, the paths are not resolved
properly. Prior to this, the project must be stopped using ./bin/stop if it is
active. If this step is repeated later again because a new application is added to

the project, the lines adding the Boinc client need not be executed anymore.

[root@wtdist /data/boinc/projects/hellol# bin/
update_versions

Looking for core versions in /data/boinc/projects/hello
/apps/boinc

Found core version 450 for <Platform#l i686-pc-linux-
gnu>: boinc_4.50_1686-pc-linux-gnu

Copying boinc_4.50_i686-pc-linux-gnu to /data/boinc/
projects/hello/download/boinc_4.50_i686 -pc-linux-gnu
Looking for <App#1 hello> versions in /data/boinc/
projects/hello/apps/hello

Found <App#1 hello> version 400 for <Platform#l i686-pc
-linux-gnu>: hello_4.00_i686-pc-linux-gnu

SECURITY WARNING:

71

6. Setup and usage Scientific application

You have not provided a signature file for /data/boinc/

projects/hello/apps/hello/hello_4.00_i686-pc-linux-gnu.

I can generate one now, but this is highly
unrecommended.

Generating code signatures on network-connected
computers 1is

a security vulnerability, and should not be done for

publicly-accessable projects.

Continue with automatically generating a code signature
?
[y/N] y
Signing /data/boinc/projects/hello/apps/hello/hello_4
.00_1686 -pc-linux-gnu
Copying hello_4.00_i686-pc-linux-gnu to /data/boinc/
projects/hello/download/hello_4.00_i686 -pc-linux-gnu
Ready to commit 2 items:
<CoreVersion#None 450 i686-pc-linux-gnu>
<AppVersion#None hello 400 i686-pc-linux-gnu>
Continue [Y/n] y
Committed:
<CoreVersion#1 450 i686-pc-linux-gnu>
<AppVersion#1l hello 400 i686-pc-linux-gnu>

Done

Attention: BOINC uses digital signatures to allow the core client to authenticate
executable files. I ignored the security warning above for our first HelloWorld
project, but for real publicly available projects this issue must be taken into
account. Otherwise, if hackers break into the BOINC server, they are able to
use BOINC to distribute malicious code to the participants’ machines. BOINC’s

documentation [5] recomments the following procedure:

e One computer should be used as code signing machine. The program boinc

72

6. Setup and usage Generating a workunit (WU)

/1lib/crypt_prog must be installed on this machine. This computer must
remain physically secure and disconnected from the network. A CD-RW or

USB stick can be used for moving files to and from this computer.

e crypt_prog -genkey is used to create a code-signing key pair. The public
key must be copied to the BOINC server. The private key is to be kept on
the code-signing machine. A copy of the key pair should be made (e.g. on a
CD-ROM that must be kept locked up), and all other copies of the private
key must be deleted.

e An executable file is signed by moving it to the code signing machine,
running crypt_prog -sign to produce the signature file and then moving
the signature file to the server. Then update_versions is used on the
server to install the application, including its signature files, in the download

directory and database.

6.5 Generating a workunit (WU)

The directory hello.d of the HelloWorld application contains, among other things,
the files hello_re.xml and hello_wu.xml. These are copied directly into the
project directory, i.e., in our case into /data/projects/hello, where they are

modified as follows:

boincsrv@wtdist:”/projects/hello\$ vi hello_re.xml
<!-- result template for the BOINC hello world program
-—>
<file_info>
<name ><0UTFILE_O0/></name>
<generated_locally/>
<upload_when_present/>
<url>http://fsmtdist.ist.tu-graz.ac.at/hello_cgi/
file_upload_handler </url>
<max_nbytes >100000</max_nbytes>
</file_info >

73

6. Setup and usage Generating a workunit (WU)

<result>
<file_ref>
<file_name >X0QUTFILE_0/></file_name >
<open_name >out </open_name >
</file_ref >
</result>

boincsrv@wtdist:"/projects/hello\$ vi hello_wu.xml
<!-- workunit template for the BOINC hello world
program -->

<workunit >

<min_quorum> 1 </min_quorum>
<target_nresults > 1 </target_nresults>
<max_error_results > 99 </max_error_results>
<max_total_results > 10 </max_total_results>

<max_success_results> 5 </max_success_results>
<rsc_fpops_est > 2e9 </rsc_fpops_est>
<rsc_fpops_bound > 9e10 </rsc_fpops_bound>
<rsc_memory_bound > 100000000 </rsc_mem_bound>
<rsc_disk_bound > 100000000 </rsc_disk_bound >
<delay_bound> 3600 </delay_bound>

</workunit >

The meaning of the parameters indicated above is explained in Section 4.3. An
important precondition, which is unfortunately not expressly indicated in the
BOINC documentation, is that the upload URL must point to the file_upload_
handler as shown in the file hello_re.xml above. This simple HelloWorld
workunit does not use an input file. In the event that input files are needed, this
is also specified there, and the input files are put into the directory /download.

The utility ./bin/create_work is used to enter this workunit into the database.

boincsrv@wtdist:~"/projects/hello\$./bin/create_work -
appname hello -wu_name firstHelloWU -wu_template

hello_wu.xml -result_template hello_re.xml;done

74

6. Setup and usage

Alternatively, workunits can be inserted by means of a separate program, two

libraries containing the functions required for this purpose being available:

e crypt.C provides a function for reading the file upload authentication key:

int read_key_file(char* path, R_RSA_PRIVATE_KEY&
key) ;

e backend_l1ib.C,h provides the function create_work(), which creates a
workunit and one or several results. The arguments are similar to those of
the utility program, but some of the information is passed in the WORKU-

NIT structure, namely the fields name, appid, batch, rsc_fpops, rsc_iops,

rsc_memory, rsc_disk and delay_bound.

int create_work (

DB_WORKUNIT&,
const char* wu_template, //
contents, not path
const char* result_template_filename, //
relative to project root
const char* result_template_filepath, //
absolute,

// or relative to current dir
const charx infile_dir, //
where input files are
const char*x infiles, //
array of input file names
int ninfiles
R_RSA_PRIVATE_KEY& key, // upload
authentication key
SCHED_CONFIG&

75

Generating a workunit (WU)

6. Setup and usage In operation

6.6 In operation

6.6.1 The client
Participation is very simple:

e Visit the website of the project, e.g. http://fsmtdist.ist.tu-graz.ac.
at/hello

e Generate an account. The project automatically sends an e-mail containing
a 32 bit key.

e Enter the 32 bit key in the web interface to confirm the account.
e Enter the desired settings in the corresponding form.

e Download the client from the website of the project, move it into a separate

directory and make it operable using chmod a+x boinc_client.

e Start the client and indicate the master URL as well as the 32 bit key. See

Section 6.7.1 for simplifications implemented in the modified core client.

After indication of the project URL and the ID, the client, during the first session,
indicates that it is performing preparatory activities such as benchmarks, etc.
Then it contacts the scheduler by transmitting a query to http://fsmtdist.ist.
tu-graz.ac.at/hello_cgi/cgi. The entry ScriptAlias /hello_cgi /data/
boinc/projects/hello/cgi-bin in the Apache configuration file etc/apache/
httpd.conf causes the query to be addressed to the program cgi in the project
directory. The scheduler provides a reply, and the client receives the general set-
tings as well as the application hello_4.00_1686-pc-linux-gnu. Subsequently,

the workunit is computed and uploaded back to the server.

[root@polar client_boinc]# ./boinc_4.50_i686-pc-linux-
gnu

2004-09-22 10:40:45 [---] Starting BOINC client version
4.50 for i686-pc-linux-gnu

2004-09-22 10:40:45 [hello] Project prefs: using your
defaults

76

6. Setup and usage

In operation

2004-09-22 10:40:45 [hello] Host ID not assigned yet

2004-09-22 10:40:

45

[---]

- using BOINC defaults

2004-09-22 10:40

network activity
2004-09-22 10:41
2004-09-22 10:41
2004-09-22 10:41

No general preferences found

:45 [---]1 Running CPU benchmarks
2004-09-22 10:40:

45 [---] Suspending computation and

- running CPU benchmarks

146
146
146

(Whetstone) per CPU

2004-09-22 10:41:

46

Dhrystone) per CPU

2004-09-22 10:41:
147

2004-09-22 10:41
network activity
2004-09-22 10:41
more

2004-09-22 10:41
more

2004-09-22 10:41

work

46

147

147

147

[---1
[---1
[---1
[---]
[---1
[---1
[---]
[---1

Benchmark results:
Number of CPUs: 1
508 double precision MIPS

1234 integer MIPS (

Finished CPU benchmarks

Resuming computation and

Insufficient work; requesting

Insufficient work; requesting

[hello] Requesting 17280 seconds of

2004-09-22 10:41:47 [hello] Sending request to
scheduler: http://fsmtdist.ist.tu-graz.ac.at/hello_cgi/

cg1t

2004-09-22 10:41:47 [hello] Scheduler RPC to http://
fsmtdist.ist.tu-graz.ac.at/hello_cgi/cgi succeeded
2004-09-22 10:41:47 [hello]l General preferences have

been updated

2004-09-22 10:41:47 [---] General prefs: from hello (
last modified 2004-09-22 09:53:02)
2004-09-22 10:41:47 [---] General prefs: no separate

prefs for home;

using your defaults

7

6. Setup and usage In operation

2004-09-22 10:41:47 [hello] Project prefs: no separate
prefs for home; using your defaults

2004-09-22 10:41:47 [hello] Started download of hello_4
.00_1686 -pc-1linux-gnu

2004-09-22 10:41:47 [---]1 May run out of work in 0.10
days ;
2004-09-22 10:41:47 [hello] Requesting 17276 seconds of
work

2004-09-22 10:41:47 [hello] Sending request to

http://fsmtdist.ist.tu-graz.ac.at/hello_cgi/

requesting more

scheduler:
cg1t
2004-09-22 10:41:48 [hello] Scheduler RPC to http://
fsmtdist.ist.tu-graz.ac.at/hello_cgi/cgs
2004-09-22 10:41:48
work available
2004-09-22 10:41:48
2004-09-22 10:41:48
2004-09-22 10:41:48
with project for

succeeded

[hello] Message from server: No
[hello]
[hellol
[hellol
1 hours, O
2004-09-22 10:41:48 [hellol

with project for

No work from project

No work from project
Deferring communication
minutes, and O seconds
Deferring communication
1 hours, O and 0 seconds
2004-09-22 10:41:52 [hello]

hello_4.00_i686-pc-linux-gnu

minutes,

Finished download of

2004-09-22 10:41:52 [hello]
2004-09-22 10:41:52 [hello]
secondHelloWU_O0 using hello
2004-09-22 10:42:10 [hello]
secondHelloWU finished
2004-09-22 10:42:10 [hello]
secondHelloWU_0_0
2004-09-22 10:42:10 [hello]
secondHelloWU_0_O
2004-09-22 10:42:10 [hello]

Throughput 105567 bytes/sec
Starting result

version 4.00

Computation for result
Started upload of

Finished upload of

Throughput 1918 bytes/sec

78

6. Setup and usage Operation of the administrative project

Then the result is visible in the upload directory on the server side:

boincsrv@wtdist:~/projects/hello/upload\$ cat
secondHelloWU_0_0

Hello, BOINC World!

Stress test begins...

Stress test ends...

6.7 Operation of the administrative project

The previous paragraphs of the present section section described setup and op-
eration of a normal BOINC server. As soon as this server is running smoothly,
the modifications I have programmed for the dIST project can be integrated. For
this purpose, it is essential to distinguish between the code for the client and the

code for the server.

6.7.1 The modified client

The modifications performed in the core client are based on the source code
boinc-cvs-2004-09-08.tar.gz and are largely implemented in the two newly
added files austroBoinc_utils.h and austroBoinc_utils.C. Some #includes
and #defines however are also concerning other sections of the code. In the
framework of my diploma thesis, I make both the original code and the modified
code available on a CDR. The modifications contained therein exclusively serve
the purpose of compiling a modified core client. Before starting ./configure

&& make, two adjustments must be performed in the source code if required.

1. As the modified client is designed for use with the administrative project, it
would not make sense to ask the user for the master URL as in the original
core client. On the other hand, the modified core client, being used as
a normal application by the dIST project, may only consist of one single
executable file. Therefore, I have decided to compile the master URL of the

administrative project as a fixed component into the core client, which is

79

6. Setup and usage Operation of the administrative project

the only possible rather than an elegant solution. Prior to compiling, the
source code must be changed in this respect where a client operated with
an administrative project on a different BOINC server is to be established.
The respective section of the code can be found in the file boinc/client/

austroBoinc_utils.h:

// This is the url of the AustroBoinc-enhanced
project which

// only does admintistrative tasks

#define ADMINISTRATIVE_PROJECT "dist"

#define ADMINISTRATIVE_URL "fsmtdist.ist.tu-graz.ac
.at"

#define ADMINISTRATIVE_PROJECT_STRING "http://
fsmtdist.ist.tu-graz.ac.at/dist/"

2. The same file contains an entry defining how often the core client is to
inquire with the server whether or not there are new projects to support
or whether or not the resource_share rate must be changed. The value
entered indicates the number of seconds that must expire before the next
query is transmitted. For test purposes, this value can be set to 10 seconds.

In a practical operation setting, a value of 24 hours can be recommended.

// Wait at least this time to request informations
about mew projects.
#define TIME_NEW_PROJECT_REQUEST 10

After performing these adjustments, the command make, which creates the
new core client in the directory boinc/client, can be executed in the

directory boinc.

6.7.2 The modified server

Only a few minor changes are required to create an administrative project instead

of a normal project.

80

6. Setup and usage Operation of the administrative project

1. A normal project with the name ”dist” is generated as described in Section
6.3. Experience has shown that a significant error source in this respect can
be eliminated by refraining from using capital letters in the project name
as the project name entered will occur frequently in different contexts in

the course of the further setup procedure.

2. Subsequently, the following files are copied from the PHP directory on the
CDR to dist/html/user/ in the project directory.

e automatic_subscription.php

e automatic_account_generation.php

3. The file automatic_account_generation.php must be adjusted in two re-

spects:

<?php

automatic_account_generation.php

#

#

Mon Nov 1 21:41:34 2004

Copyright 2004 Bernhard Kornberger
Email: bekor@gmx.net
#
#
#

This program is distributed in the hope that it
will be useful,
but WITHOUT ANY WARRANTY; without even the
implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

Purpose of this file: This is a feature for
simplified subscription.
One doesn’t have to subscribe via the web

interface anymore. Instead

81

6. Setup and usage Operation of the administrative project

the user data can be specified in the command

line:

-autoFirstTime <username> <mail> <country> <

postal code> <secret>

The modified client (we call it the AustroBoinc-

Version) sends the

parameters to this script which generates a new

user account.

#

0f course this opens the door for DOS attacks

because someone could

auto-generate thousands of user accounts. Two

measures are destined

to prevent such misuse:

#

1) Disable this php script after the initial

installation phase.

2) To use this feature one has to know the

shared secret key (tan -

transaction number) below. Give it only to

trusted persons and

change it frequently.

#

To clarify the leading thought behind the

AustroBoinc-Mod: This is

not intended for use with big projects 1like Seti
but rather for cases

where a few hundred computers of a university

are to be managed.

$tan="ChangeThis";

$admin_url="fsmtdist.ist.tu-graz.ac.at/dist";

82

6. Setup and usage Operation of the administrative project

Here, the line $tan=... must be adjusted, the string in quotation marks
representing the password that must be entered for simplified registration
as described in Section 5.3. If any other administrative project than that
under the master URL fsmtdist.ist.tu-graz.ac.at/dist is used, this
line must be adjusted as well. To ensure correct functioning of this script,
all projects to be supported must be on the same server as the administra-
tive project dIST. This is due to the fact that this script manipulates the

databases of the scientific projects and is only designed for local access.

83

Chapter 7
Real applications

The previous chapters of this diploma thesis describe the dIST system. This
chapter, in contrast, will provide an impression of the different kinds of problems
that can be solved at the IST [17] by means of the dIST system. The basis
of most of the calculations performed at the IST is a database containing order
types. Therefore, the concept of order types will be explained before dealing with

actual applications.

7.1 Order types

Let S = {p1,...,pn} be a set of n points in the plane. In this context, one might
want to know how many different ways to arrange the n points exist, and the
answer to this question is of course: Infinitely many. But for a large number of
problems it is absolutely sufficient to consider just the combinatorial properties
of a point set rather than its metric properties. These are given by the crossing
properties of the complete graph of a point set as shown in figure 7.1 where one can
see that for instance there are just two possibilities of arranging four points in the
plane so as to achieve different crossing properties whereas there are three options
for five points. The order type of each point set S = {p, ..., p,} is determined by
a mapping that assigns to each index triple {3, j, k} the orientation (clockwise or
counter-clockwise) of the points p;, p;, px. For this purpose it is required that no
three points lie on a straight line. It is easy to see that the crossing properties

84

7. Real applications Happy End Problem

n 314|156 |7 8 9 10 11

Planar

Order

Types |12 |3 |16 | 135 | 3 315 | 158 817 | 14 309 547 | 2 334 512 907

Table 7.1: Numbers of different order types of size n

of two point sets are equivalent only if the point sets have the same order type
and that a change in the orientation of three arbitrary points {p;, p;, px} would
lead to different crossing properties. At the IST a considerable amount of work
has been done by Oswin Aichholzer and Hannes Krasser to establish a complete
database of such order types for sets with up to 11 points, as summarized in [3]
where it turned out that the number of different arrangements of n points in the
plane increases dramatically with increasing n as shown in table 7.1. In [18] order
types are described in a more scientific way and in far more detail, but for the

purpose of this thesis the description given above should be sufficient.

7.2 Happy End Problem

A very famous problem, mentioned also in the literature [14], is the Happy End
Problem. In 1935 Paul Erdos and Gyorgy Szekeres set themselves the task of
determining the smallest positive number g(n), such that any set S of at least g(n)
points, S = {p1, ..., Pg(n) }, in general position in the plane contains n points that
are the vertices of a convex n-gon. They also conjectured that g(n) = 2(*=2 +1
for all n > 3. Szekeres proved an upper bound and in recent years this upper
2::25) + 2. However,
70 years after the problem was stated it is still unresolved for n > 5, where the

bound has been improved so that we know that g(n) < (

conjecture is that g(6) = 17 and the best known upper bound is ¢(6) < 37.

To answer this conjecture there was an attempt by Birgit Breitenlechner [4]
to approach the Happy End Problem for n = 6 by computing whether or not
there is an order type of cardinality 17 with no convex hexagon. As shown in
table 7.1, the number of order types grows exponentially with increasing n and it

is not even feasible to build a complete database of order types of cardinality 12.

85

7. Real applications Happy End Problem

n=3

n=

n=>5

Figure 7.1: Different order types of point sets with cardinality n

86

7. Real applications Counting triangulations

Therefore the order types of cardinality 17 are derived by applying an abstract
extension technique to the order types from the database described in section
7.1. Tt is fortunately not necessary to extend all the 2334512907 order types of
cardinality 11 but only the ones containing no convex hexagon, which reduces
the number of point sets to be considered to 235987 328. This extension leads
to order types of cardinality 12 whereof in turn only those containing no convex
hexagon need to be extended to 13 points and so on. Because of the exponential
growth of existing order types, this attempt was based on the hope that the
number of order types without convex hexagons will decrease with the number
of points as least as significantly as the number of overall order types increases.
Unfortunately, this turned out to be an illusion as for instance the extension of one
specific 11-point order type generated more than 142 millions of 16-point order
types without convex hexagons and this example seems not to be an exception.
A CPU with 1 GHz needed more than two weeks to extend this specific point
set to cardinality 16 and considering such computation times we estimate that
the task of computing all order types of cardinality 17 could take as much as 100
years yet on a modern personal computer.

This is where dIST comes into play. The task of computing each order type
of cardinality 17 is perfectly suited to be divided into small sub-tasks which can
be solved by the participants of our new distributed computing system. We will
slightly modify the algorithms implemented by Birgit Breitenlechner to make
them suitable for dIST. With participation of all computers of the computing
rooms of the TUG and contribution of computing power from students, we could

achieve to complete this task within several months.

7.3 Counting triangulations

Counting the number of triangulations of a point set in the plane represents an-
other task requiring an enormous amount of computing capacity. Exact numbers
are known, and can be retrieved from the database, for all sets comprising n < 11
points. The currently best general asymptotic lower bound for this problem can
be derived from these results for small sets, see [1]). This bound can be im-

proved by obtaining a tight lower bound for order types of higher cardinality,

87

7. Real applications Decomposition

e.g. n = 12,13,.... By adding an interior point to a given set, the number of
triangulations increases by a constant factor of at least ¢ = 2, which means that
the starting point for determining the tight lower bound for n = 12,13, ... is the
2351 11-point sets each achieving a maximum of 1118 triangulations. This seems
to be feasible even for n = 13, as only 845 829 sets with a maximum of 1786 tri-
angulations need to be taken into account, which represents less than 0.037% of
the entire database of 11 points. With our new distributed computing network,

additional results will be available soon.

7.4 Decomposition

Another task is to search for optimal decompositions of small point sets. In this
context it was asked for disjoint empty convex polygons spanned by the set, see

[2] for details. Two results of these investigations were:

e Any set of 8 points contains either an empty convex pentagon or two inde-

pendent empty convex quadrilaterals.

e Any set of 11 points contains either an empty convex hexagon or an inde-

pendent empty convex quadrilateral.

These results directly lead to an upper bound of 7n/10 for the number of convex
or pseudotriangular faces used to decompose a set of n points. There is hope to
extend these results for sets of bigger size using the dIST system and applying

an extension technique to the order types of our data base.

7.5 Rectilinear crossing numbers

In order to get crossing numbers for point sets with n > 11 points it is not
sufficient to extend only the order types with optimal drawings, as not all optimal
drawings of K, (i.e., a complete graph of order n) contain an optimal sub-drawing
of K,_1. In fact, it is not even known whether there always exists at least one
optimal drawing of K, which contains an optimal sub-drawing of K,, ;. For an

arbitrary rectilinear drawing of K, each of its n sub-drawings K, | has at least

38

7. Real applications Rectilinear crossing numbers

number of crossings 102 | 104 | 106 108 110 112
number of order types | 374 | 3984 | 17896 | 47471 | 102925 | 228497

Table 7.2: Number of order types of K;; having a specific small crossing number

¢r(K,_1) crossings. Summing up the crossing numbers in the n sub-drawings
K,,_1 each crossing is counted n-4 times, as each quadruple of points determining
a crossing shows up in all but 4 of the sub-drawings K, ;. This implies the

relation

() > [(|

n —

As a consequence, for any drawing of K, with c crossings there exists at least one

n—4

—%¢| crossings. For example, a drawing

sub-drawing K,_; with a maximum of |
of K5 with 153 or less crossings has to contain at least one sub-drawing of size
11 with |£52153| = 102 crossings.

There is also a parity property that leads to further improvements for sets of

odd cardinality: Let n € N be odd and consider a straight-line drawing of K,

c= (Z) (mod2)

A drawing of K3 with 229 (or less crossings) contains at least one sub-drawing

K5 with [%J = 158 (or less crossings) and recursive application shows that

there exists a sub-drawing of size 11 with [1%158J = 105 crossings. By the parity

with ¢ crossings. Then

property we can further reduce the number of crossings for the 11-point subset to
a maximum of 104. Thus, to achieve a database of all order types of cardinality
13 with 229 (or fewer) crossings, we can take the order types from our complete
database of order types of size 11 with a maximum of 104 crossings, i.e., either
102 or 104 crossings. Table 7.2 shows the number of order types of K;; having a
certain low number of crossings. The conclusion is that for this example we just
need to consider 374 + 3984 order types instead of all 2334512907 order types,
i.e., less than 0.0002 %.

Using the above mentioned properties the rectilinear crossing numbers for n =
12, ...,17 have already been computed (see table 7.3). To provide an impression

of the duration of the computations: The computations to determine ¢7(K,,) and

89

7. Real applications Rectilinear crossing numbers

n 12 |13 |14 |15 16 |17
er(K,) | 153|229 | 324 | 447 | 603 | 798
dy 1 [4534 |20 | 16001 |36 | >37269

Table 7.3: Rectilinear crossing number ¢7(K,) for n = 12,...,17 and the number

d,, of order types with ¢r(K,)

d, for n < 16 have taken 58 days on a 2 GHz CPU. The average computing
time for sets of size 11 was approximately 3.7 hours, the slowest 11-set needed
56 hours and the fastest 11-sets took only 16 seconds. This variation in context

with distributed computing is an additional problem because:

e Checkpointing, i.e. saving of intermediate results for later continuation, is

very hard to implement when abstract order type extension is applied.

e It is useless to send results (remember, results are instances of computations,
regardless of their computation status) with a huge demand of computation

time to computers turned off every few hours.
e We don not know a result’s computing time in advance.

At the same time I am writing this diploma thesis, Thomas Uttenthaler checks out
our new dIST system within the scope of a project work at the IST [17]. For this
purpose he applies the cape algorithm implemented by Birgit Breitenlechner, see
[4], to order types of cardinality 11 with 104 crossings. He generated 445 worku-
nits, each representing one order type (the outcome of the rest is already known
from previous computations). His workaround regarding the problem described

above is to perform three runs extending the sets up to n = 20:

e First run: The value rsc_fpops_bound (see Section 4.3) is set in such a
way that results requiring more than approximately 5 hours (on a Pentium
4 with 3 GHz) are aborted. This run should finalize a big number of fast
results so that the corresponding workunits will not have to be considered
anymore. However, our intermediate results show that this bound causes
70 percent of the results to terminate before the computations are finished.

In this turn the results are sent to arbitrary machines.

90

7. Real applications Rectilinear crossing numbers

e Second run: The remaining workunits are regenerated, where the value
rsc_fpops_bound is set in such a way that results requiring more than 24
hours are aborted. The hope is that this turn will leave just a small number
of unsolved results.

e Third run: If there are still unsolved workunits after the first two runs, new
results are generated for them, whereby rsc_fpops_bound is set to such a
high value, that computations may take 500 hours. These results may only
be sent to fast computers running 24/7, i.e. 24 hours a day and 7 days a

week, which are the computers of the IST.

91

Chapter 8
Conclusion

At the beginning of this diploma thesis, my target was to develop a system for
distributed computing. In particular, this system was planned to be used to
solve the Happy End Problem, described in Section 7.2. I have evaluated existing
systems for similar tasks and came upon BOINC, which is released under the
Open Source license LGPL. I programmed a number of new functions extending
BOINC so as to allow projects to dynamically evolve and terminate without
the need to reconfigure the computers of the participants. In other words, the
computers of the participants support not only one particular project but every
project we specify. With the support and the know-how of my colleagues Bernd
Haug and Thomas Uttenthaler, I was finally able to solve all problems, and now
there is a fully functional, general purpose, distributed computing system installed
at the IST, including all customized extensions required by our specific tasks.
While I am finalizing the present thesis, several computers are busy calculating

the crossing number problem described in Section 7.5.

92

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]
[9]

O. Aichholzer, F. Hurtado, and M. Noy, A lower bound on the num-
ber of triangulations of planar point sets, Computational Geometry:
Theory and Applications, 29(2):135-145, 2004

O. Aichholzer, C. Huemer, S. Renkl, B. Speckmann, and C. D. Toth,
On Pseudo-Convex Decompositions, Partitions, and Coverings, 21st
European Workshop on Computational Geometry (EWCG), Eind-
hoven, The Netherlands, pp. 1-2, 2005.

O. Aichholzer, F. Aurenhammer, and H. Krasser. Points and Combi-
natorics Journal Telematik, 1:12-17, 2002.

Birgit Breitenlechner, Abstract Order Type Extension for Combinato-
rial Problems, Master Thesis, Graz University of Technology, 2004.

BOINC - Homepage and Documentation:
http://boinc.berkeley.edu/

David P. Anderson, Public Computing: Reconnecting People To Sci-
ence, Space Sciences Laboratory, University of California - Berkeley,
March 21, 2004, http://boinc.berkeley.edu/boinc2.pdf

David P. Anderson, BOINC: A System for Public-Resource Comput-
g and Storage, Space Sciences Laboratory, University of California
Berkeley, 2004, http://boinc.berkeley.edu/grid_paper_04.pdf

BOINC Homepage: http://boinc.berkeley.edu

ClimatePrediction.net: http://climateprediction.net/

93

BIBLIOGRAPHY

[10] OMG CORBA Specification:
http://www.omg.org/technology/documents/formal/corba_
iiop.htm

[11] Homepage of dIST: http://fsmtdist.ist.tu-graz.ac.at/dist
[12] Einstein@home: http://boinc.de/einstein.htm

[13] GNU General Public License, Free Software Foundation (FSF) 1991,
http://www.gnu.org/copyleft/gpl.html

[14] Paul Hoffman, The Man Who Loved Only Numbers, Econ Ullstein List
Verlag, Miinchen, 2001, ISBN 3-548-75058-3.

[15] Integrade: http://gsd.ime.usp.br/integrade/

[16] University of Sao Paulo: Andrei Goldleger, Fabio Kon, Alfredo
Goldman, Marcelo Finger, Germano Capistrano Bezerra, Integrade:
object-oriented Grid middleware leveraging idle computing power of
desktop machines, http://gsd.ime.usp.br/publications/cpe03_
integrade.pdf

[17] Institute for Softwaretechnology, Graz http://www.ist.tugraz.at/

[18] Hannes Krasser, Order Types of Point Sets in the Plane, PhD Thesis,
Institute for Theoretical Computer Science, Graz University of Tech-
nology, Austria, October 2003.

[19] GNU Lesser General Public License, Free Software Foundation (FSF)
1991, http://www.gnu.org/copyleft/lesser.html

[20] LHC@home: http://boinc.de/lhcathome.htm

[21] Eric Myers’ BOINC downloads:
http://noether.vassar.edu/pub/myers/src/boinc/

[22] OpenMosix: http://openmosix.sourceforge.net/

[23] Predictor@home: http://boinc.de/predictor.htm

94

BIBLIOGRAPHY

[24] Pirates@home:
http://pirates.vassar.edu/help/boinc-on-linux.html

[25] Radio telescope Arecibo:
http://www.naic.edu/public/the_telescope.htm

[26] QADPZ: http://qadpz.sourceforge.net/
[27] SETI@Qhome: http://setiathome.ssl.berkeley.edu/

[28] University of California, Berkeley: http://www.berkeley.edu/

95

