
SECURED REMOTE TRACKING OF CRITICAL AUTONOMIC
COMPUTING APPLICATIONS

Paritosh Kumar Srivastava, Sandeep Sahu
Dept. of IT, ABV-Indian Institute of Information Technology & Mgmt. Gwalior, 474003, India

paritoshjiitm@ yahoo.co.in, sahusandeep@yahoo.com

.Abstract

Autonomic computing is an entirely new philosophy
fo r the development of computing systems .It is emerging
as. a sign8canr new approach to the design of computing
systems. Its goal is the development of systems that are self
configuring, selfhealing, selfprotecting and self
optimizing. This makes autonomic computing best candidate
for designing critical applications, rhus minimizing human
inremention. Bur these applications need to be monitored,
even if total maintenance is done by the system itself:
Remotely tracking the performance of system is necessary in
case of critical autonomic computing applications to spot
any extraordinary behavior which may arise due to some
error .Bur the tracking system needs to be a parr of the
whole system and needs to be secure as it is vulnerable to
all kinds of security threats. This paper proposes to add
security at the application layer to track remotely these
critical applications .These security mechanisms secures the
communication channel between rracking system and
application thus making it safe from all kinds of security
threats. An example of a critical autonomic computing
application, e-medicine is ako discussed showing how the
remote tracking system can help in monitoring the
application guaranteeing total securiry.

Keywords: Autonomic computing, Security, Remote
tracking, Web Services

1. INTRODUCTION

The difficulty of managing today’s computing
systems is not only because of the administration of
individual software environments, but also because of the
need to integrate multiple heterogeneous environments,
and to extend beyond company boundaries into the
Internet [I]. All these factors contribute to increased
levels of complexity in computing systems. Installing,
configuring, and maintaining such large systems is
becoming an increased challenge even for experts. A
possible solution to this problem is to embed the
complexity in the system infrastructure itself (both
hardware and software), then automating its
management. This is in a way similar to the human
system, with its autonomic nervous system, which

provides automatic, involuntary regulation of the major
physiological functions.

The essence of autonomic computing systems is self-
management, the intent of which is to free system
administrators from the details of system operation and
maintenance. The power of autonomic computing makes
them best candidate for designing criticdl applications
like the ones used in space research programmes, bio-
technological equipments, etc. But it is very important to
ensure high reliability in these systems because any
minute error can create a big havoc.

So it is proposed in this paper to monitor these
critical systems using a remote tracking system. But
though autonomic computing systems have security
built-in, connecting them to the remote tracking system
through an ordinaly communication channel opens the
system to various security threats. To guard against such
threats, it is proposed in this paper to implement security
at the application layer for the autonomic computing
application and its tracking system. An example of an
autonomic computing application, E-Medicine is also
discussed and a remote tracking system is also used
which is secured making use of WS-Sec standards.

2. AUTONOMIC COMPUTING

The need to integrate several heterogeneous
environments into corporate-wide computing systems.
and to extend that beyond company boundaries into the
Internet, introduces new levels of complexity. Computing
systems’ complexity appears to be approaching the limits
of human capability, yet the march toward increased
interconnectivity and integration rushes ahead unabated.
As systems become more interconnected and divcrse.
architects are less able to anticipate and design
interactions among components, leaving such issues to be
dealt with at runtime. Soon systems will become too
massive and complex for even the most skilled system
integrators to install, configure, optimize, maintain. and
merge. And there will be no way to make timely,
decisive responses to the rapid stream of changing and
conflicting demands [2].

The difficulty of managing today’s computing
systems goes well beyond the administration of

0-7803-8655-8/04/$20.00 0 2004 IEEE 17

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on December 29, 2009 at 16:51 from IEEE Xplore. Restrictions apply.

mailto:sahusandeep@yahoo.com

individual software environments. The need to integrate
several heterogeneous environments into corporate-wide
computiag systems. and to extend that beyond company
boundaries into the Internet, introduces new levels of
complexity. Computing systems' complexity appears to
be approaching the limits of human capability, yet the

representing business-level objectives, for example-that
specify what is desired, not how it is to be accomplished.
When a component is introduced, it will incorporate
itself seamlessly, and the rest of the system will adapt to
its presence

march toward increased interconnectivity and integration
rushes ahead unabated.

2.3 Self-op~mization

As systems become more interconnected and
diverse, architects are less able to anticipate and design
interactions among components, leaving such issues to be
dealt with at runtime. Soon systems will become too
massive and complex for even the most skilled system
integrators to install. con-figure, optimize, maintain, and
merge. And there will be no way to make timely,
decisive responses to the rapid stream of changing and
conflicting demands.

Complex middleware, such as WebSphere, or
database systems, such as Oracle or DB2, may have
hundreds of tunable parameters that must be set correctly
for the system to perform optimally, yet few people know
how to tune them. Such systems are often integrated with
other, equally complex systems. Consequently,
performance-tuning one large subsystem can have
unanticipated effects on the entire system.

Autonomic systems will continually seek ways to
improve their operation, identifying and seizing 2.4 Self-healing
opportunities to make themselves more efficient in
performance or cost.

2.1 Self-management

IT vendors have large departments devoted to
identifying, tracing, and determining the root cause of
failures in complex computing systems. Serious customer
oroblems can take teams of Droerammers several weeks

The essence of autonomic computing systems is self-
management, the intent of which is to free system
administrators from the details of system operation and
maintenance and to provide users with a machine that
runs at peak performance 2417 in face of changing
components, workloads, demands, and external
conditions and in the face of hardware or software
failures, both innocent and malicious. The autonomic
system might continually monitor its own use, and check
for component upgrades, for example. If it deems the
advertised features of the upgrades worthwhile, the
system will install them, reconfigure itself as necessary,
and run a regression test to make sure all is well. When it
detects errors. the system will revert to the older version
while its automatic problem-determination algorithms try
to isolate the source of the error.

2.2 Self-configuration

Installing, configuring, and integrating large,
complex systems is challenging, time-consuming, and
error-prone even for experts. Most large Web sites and
corporate data centers are haphazard accretions of
servers, routers, ' databases, and other technologies on
different platforms from different vendors. It can take
teams of expert programmers' months to merge two
systems or to install a major e-commerce application
such % SAP.

Autonomic systems will configure themselves
automatically in accordance with high-level policies-

. I

to diagnose and fix, and sometimes the problem
disappears mysteriously without any satisfactoly
diagnosis. Autonomic computing systems will detect,
diagnose, and repair localized problems resulting from
bugs or failures in software and hardware, perhaps
through a regression tester,

2.5 Self-protection

Despite the existence of firewalls and intrusion
detection tools, humans must at present decide how to
protect systems from malicious attacks and inadvertent
cascading failures. Autonomic systems will be self-
protecting in two senses. They will defend the system as a
whole against large-scale, correlated problems arising from
malicious attacks or cascading failures that remain
uncorrected by self-healing measures. They also will
anticipate problems based on early reports from sensors
and take steps to avoid or mitigate them.

Once a computing system bas the inherent properties
of self-mechanism and complexity hiding, it will be able
to exhibit a wide range of capabilities and attributes, such
as autonomy in the control and'management of internal
resources and external service provisions,
trustworthiness, robustness to un-modeled properties of
the external environment, adaptability to -external
environment, fault tolerancelresumption, resilience to
environment, protectiveness against attacks, etc. Major
challenges of autonomic computing will be the design of
the self-mechanism and the complexity hiding in addition
to the conventional design of the system, more exactly,

18

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on December 29, 2009 at 16:51 from IEEE Xplore. Restrictions apply.

how to explicitly design the self-mechanism and the 1. Service providers who create Web services and
complexity hiding. Some other issues will be that publish them to the outside world by registering the
autonomic systems are inevitably knowledge intensive
systems, and the architecture of autonomic computing is 2. Service brokers who maintain a registry of
absolutely paramount. published services: and service requesters who find

required services by searching the service .broker’s
registry.

3. Service requesters then bind their applications to
the service provider to use particular services.

services with service brokers..

3. CHALLENGES BEFORE AUTONOMIC
COMPUTING APPLICATIONS

Critical autonomic computing applications are those
which perform very important tasks such as real-time
autonomic systems or others where fault tolerance limit
is almost equal to zero. So, such applications need to be
remotely monitored to keep track of important system
performance evaluation parameters. Even though
autonomic computing applications are self-managed, for
critical systems a separate monitoring system is
imperative to check and keep track of any extraordinary
behavior shown by the system. So, a remote tracking
system should he used to monitor the autonomic
computing application.

But using such a system opens the autonomic
computing system to new threats as autonomic
computing applications work on the platform of web
services, and the remote tracking system will also be
communicating with the application using these services
only. But there is no application level security in web
services implemented which can check the security
threats to which this communication channel is
vulnerable. Hence, if any intruder breaks into the
communication channel and plays with the system
performance’s information passed from the application to

’ the tracking system, there are chances the critical
application may start behaving erroneously. In such a
case, even if the autonomic computing application is
behaving erroneously, tracking system is not able to
detect it because the intruder hides the correct
information from him.

Thus to remotely monitor the critical autonomic
computing application. and to make sure that
communication channel is totally secure against all kinds
of attacks, it is proposed to add security at the application
layer. Using WS-Sec, this task can he done through XML
encryption and XML signature. Thus using WS-Sec,
authentication, authorization can be done as well as the
confidentiality of messages can be ensured.

2. WEB SERVICES SECURITY

This emerging model lets Web applications call
independently published Web based software
components to conduct business transactions. A typical
Web services architecture consists of three entities:

r}A.[-J &u-C+?*2l.lStS C;r...ez.) .,., c(r

Fig. 1 Architecture of web services

Figure 1 shows the interaction between service
providers, service brokers, and service requesters in the
publication, discovery, and consumption of Web
services.

Web services are essentially founded upon three
major technologies: Web Services Description
Language (WSDL); Universal Description, Discovery
and Integration (UDDI); and the Simple Object Access
Protocol (SOAP) [3]. These ,three technologies form the
core Web services technologies.

WSDL is an XML language for describing the
programmatic interfaces Web services .Conceptually it is
similar to the interface definition language (IDL) used by
the Common Object Request Broker Architecture
(CORBA). The description includes details like data type
definitions, the operations supported by the service,
inputloutput message formats, network address, protocol
bindings, and so on. :

UDDI lets Web services register their characteristics
with a registry so that other applications can look them
up. The UDDI specification provides a mechanism to
register and locate Web services..It defines an electronic
business registry where businesses can describe their
business and register their Web services as well as
discover and integrate with other businesses that offcr
Web services. UDDI is itself a Web service that is based
on XML and SOAP. Interaction with UDDI is
accomplished via a set of pre-defined SOAP interfaces.

SOAP provides a simple and lightweight protocol for
exchanging XML (Extensible Markup Language) data
over the Web. Client applications typically call Web

19

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on December 29, 2009 at 16:51 from IEEE Xplore. Restrictions apply.

services over Service providers the Web using SOAP
mechanisms.

Despite the promise, Web services present network
administrators with a thorny problem: As network
security becomes an increasing concern, Web services
open up networks by letting outside users access
databases, applications, and internal users.

Traditional security techniques-such as virtual
private networks or secure sockets layer (SSL)
technology- cannot secure the large number of
transactions,that Web services can perform in a short
time.

3.1 Security issues

Web services security requires authentication
(establishing identity), authorization (establishing what a
user is allowed to do), confidentiality (ensuring that only
the intended recipient can read the message,
accomplished with encryption), and integrity (ensuring
the message hasn’t been tampered with, generally
accomplished with digital signatures).

Browsers support SSL and TLS, but the protocols
don’t scale well to complex, high-volume transactions,
like those in Web services. This is because SSL and TLS
systems must decrypt data every time it arrives at a new
Web server and then encrypt the data for transmission to
the next server.

SAML defines a vendor-neutral way to express
security information in an XML format. It defines the
schemas for the stmcture of documents that include
information related to user identity and access or
authorization rights. By defining how this information is
exchanged, SAML lets companies with different
internal security architectures communicate. Assertions
provide proof of identity- via SAML subjects, which
contain identity-related information-for users and
computers. In addition, assertions list transaction-related
user information (such as credit limits for e-commerce)
and activities users are authorized to perform (such as
executing .permissions to access and work with files).
SAML can also indicate the authentication method that
must be used with a message, such as a password,
Kerkros authentication ticket, hardware token, or X.509
digital certificate.

SAML would facilitate single-sign on for Web users
by, for example, letting them log on to one site and have
their security credentials transferred automatically to
partner sites for authentication.

3.2 WS-Sec

WS-Sec, under consideration as a standard by Oasis,
lets applications attach security data to the headers of

SOAP messages. This can include security metadata like
that found in the XML Encryption and XML Signature
specifications. WS-Sec lets companies send messages
with digital signatures that tell recipients whether hackers
have altered documents during transmission and whether
the documents are actually from the person named as the
sender.

The XML Encryption and XML Signature
specifications are central to WS-Sec. The two approaches
provide ways to include both encrypted data and digital
signatures in XML documents. They also include XML
elements that identify the encryption.

XMI, Encryption: XML Encryption describes
the process for encrypting and representing
encrypted data in XML documents. The
specification supports common encryption
algorithms and techniques. The standard
provides ways to encrypt aIl or just parts of the
XML in the message. Proponents say this
approach is more efficient because information
that isn’t confidential can be sent unencrypted.
Selective encryption and signing also let senders
add different signatures and keys to parts of a
single document that are designated for different
recipients.
XML Signature: XML Signature defines
syntax and processing rules for representing
digital signatures. Digital signatures on one
computer can be read by another because the
machines work with the same encrypted
digest-a cryptographic hash that represents the
signed material-for the same section of XML
code

4. SECURED REMOTE TRACKING

An autonomic system is an autonomous computing
environment that completely hides its complexity.
Complexity hiding from userslservices means that
autonomic computing will provide users with a
computing environment that allows them to concentrate
on what they want to do without worrying about how it
has to be done. This particular property is highly
advantageous for designing critical applications.
minimizing human intervention and adding more
accuracy to the task accomplished by the application.
To discuss the benefits of autonomic computing, an
example of a critical autonomic computing application.
e-medicine is taken and discussed how it is based on the
autonomic computing irchitecture. Then to monitor such
a system a remote tracking system is proposed. Also this
remote tracking system is made secure to safeguard
against all security threats.

20

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on December 29, 2009 at 16:51 from IEEE Xplore. Restrictions apply.

4.1 E-medicine

Extensive research has been carried out in health
informatics, e.g., the object management group's
specifications for healthcare domain [4]. Computer
supported medical diagnosis is an important area of
health informatics. Cooperative medical diagnosis is a
complicated process of evolving, decision-making,
reasoning. therapy planning. andor guessing. It crucially
relies upon actors' knowledge and the utilization of their
knowledge. Physicianslsurgeonslinicians from a variety
of medical specialties co-operate toward reasonable and
feasible diagnosis. Such co-operation is through the
interoperability facilities (platforms, architectures,
communication languages, system management
mechanisms (e.g., forgetting, version, backtracking,
etc.)), and is represented in the dynamic growth of the
procedural knowledge and descriptive knowledge.
Different types of actors are involved in cooperative
medical diagnosis process, . including human
physicians/surgeonslclinicians, information repositories,
intelligent instruments, and software packages. Actors
are packaged into agents, i.e. agentized, so that services
are made accessible and sharable in a unified and
integrated computing model. .The agents represent all
types of scientific, instrumental and historical evidences.
human doctors and the patients. which mostly are
heterogeneous in formats and contents, public and
proprietary in accessibility, and temporally distributed
over a long history and geographically dispersed all over
the globe. Medical diagnosis is a 'decision making
process of repeat, detour, verification, refinement, self-
exploring. converging, synthesis. etc. At a stage of this
process, not all agents are actually drawn into
involvement. Actors play different major and minor ro!es
at different stages. Procedure of cooperative medical
diagnosis can typically be divided into five decision
steps, i.e., clustering of patient's claims, evidences
discovery by use of medical instruments, verification
based on patient's claims and instrument-inspected
evidences, probing cures for more evidences, refinement
and synthesis, as depicted in Figure 2.

4.2. Multi-agent autonomic architecture for
e - m e d i E i n e

Interoperability between distributed and
heterogeneous medicalhealth knowledgelinformation
bases is essential for cooperative medical diagnosis. The
major challenges of cooperative medical diagnosis are
the legacy and diversity, and the distributing and
heterogeneity of various kinds of medicalhealth
knowledgelinformation bases. The multi-agent
autonomic architecture (MA3) [51 is applied to evidence-

based collaborative medical diagnosis. At the higher
level of MA3 lies the medical diagnosis decision support,
and at its lower level are various kinds of
knowledgelinformation bases. Multi-agent systems will

, perform interaction, interoperation, evolution, interfacing
browsing, searching, archival, filtering, knowledge
mining, automatic document analysis, vinual localization
of information sources, etc.

This is made possible by utilizing and applying
autonomic computing architecture to the E-Medicine
application. As a result, following an autonomic
computing architecture, it will be able to realize the
collaborative diagnosis transcending
geographicallorganizational barriers and derive optimal
and alternative diagnostic conclusions ' and
treatmenuhealthcare plans [61.

Figure 2. E-Medicine

Now, this application, e-medicine is a highly critical
one. The reason for being it so is that the application is a
real-time one and all the different agents involved in the
architecture depend on each other. So, there is an acute
and pressing need to monitor and track this system to
protect the system against any extraordinary or
unforeseen error.

Hence in Fig. 3, a remote tracking system is shown
which monitors the system and alarms in case of any

21

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on December 29, 2009 at 16:51 from IEEE Xplore. Restrictions apply.

problem. Also using WS-Sec. with the application of
XML signature and XML encryption, this
communication channel is made secure. The process of
initiating and terminating communication between
application and tracking system is as follows:

1. The tracking system initiates the
communication channel by requesting for
connection.

2. Using digital signature, the tracking system
and application authenticates each other.

3. Now. the communication is started. This
communication is nothing but transfer of the
application’s performance variables which
are monitored by the remote system. The data
transferred is also made secured by XML
encryption.

4. After monitoring is over, tracking system
terminates the connection.

Tracking E- Medicine
System Channel

U

Fig. 3 Secured Remote Tracking system

7. CONCLUSIONS

Autonomic computing is an emerging holistic
approach to computer system development that aims to
bring a new level of automation to systems through self-
healing, self-optimizing, self-configuring and self-
protection functions. Thus once a computing system has
these properties, it will be able to exhibit a wide range of
capabilities and attributes, such as autonomy in the
control and management of internal resources and
external service provisions. trustworthiness, robustness to
un-modeled properties of the external environment, etc.

Use of autonomic computing in designing and
maintenance of critical systems is going to be the next
big wave in information technology industry. But remote
tracking of these systems is also required to meet the
reliability requirements. Securing the communication
channel between the tracking system and application
system guarantees protection from all kinds of security
threats.

Acknowledgements

The authors would like to thank Dr. Rdjendra Sahu.
Asstt. Professor, IT Department. ABV-IIITM Gwalior,
India for his encouragement and guidance in carrying out
the work.

References

[l] Zoran Constantinescu. ‘Towards an Autnnomic
Distributed Computing System, ” Proceedings of rhe
14th International Workhop on Database and
Expert Systems Applications (DEXA ‘OS), 2003

[2] Jeffrey 0. Kephart and David M. Chess, “The Vision
of Autonomic computing,” Computer. IEEE
Publishing Society, January 2003.

[3] David Geer, “Taking Steps to Secure Web Services,”
Computer, IEEE Publishing Society, January 2003.

[4] OMG (object management group),
http:/lw.omg.org
[5] A. G. Ganek and T. A. Corbi, “The dawning of the

autonomic computing era..’’ IEM S y s t e m Journal,
Vol. 42, No.1, pp. 5-18, 2003

[6] Huaglory Tianfield. “Multi-Agent Autonomic
Architecure and Its Application in E- Medicine,”
Proceedings of the IEEE/WIC International
Conference On Intelligent Agenr
Technology(lAT‘O3). 2003.

22

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on December 29, 2009 at 16:51 from IEEE Xplore. Restrictions apply.

http:/lw.omg.org

