
Evolving automatons for distributed behavior arbitration
Pavel Petrovic, Department of Computer and Information Science, NTNU Trondheim,

ppetrovic@acm.org

IDI/NTNU Technical Report 05/2005.
ISSN 1503-416X.

Abstract
Designing controllers for mobile robots is an advanced engineering task. We develop a
method for designing the controllers automatically using artificial evolution. In contrast
to similar approaches, our aim is to evolve controllers for more complex tasks involving
multiple interactions and behaviors. We achieve this by providing a set of pre-designed
simple low-level behaviors, which are either programmed manually or designed
automatically. The output of our algorithm is a behavior arbitration mechanism
consisting of a set of finite-state automata. Inspired by the incrementality of the
Behavior-Based Robotics, we employ incremental evolution to decrease the size of the
search space and to automatically design the robot controller in a bottom-up manner.

Introduction
In order to utilize ever advancing technological developments of materials, power
supplies, computer technology, sensors, and actuators in the field of robotics, suitable
controller architectures at a correspondingly advanced level need to be developed for
these devices. Mobile robots could perform complicated tasks in unknown,
nondeterministic, changing, noisy, and unpredictable environments, if methods for
designing robot controllers could be developed. Successful completion of tasks will
require the controllers to be adaptive and learning. Systematic research efforts to study
possible methods for building such controllers are to be spent.

Designing a controller for a particular task for a mobile robot requires detailed
knowledge of the robot hardware and software and an experienced engineer. We are
seeking an alternative: automatic design of the controller. Our aim is to minimize the
efforts and maximize the quality. One of the most popular methods for automatic design
of robot controllers is Reinforcement Learning [22]. An alternative employed also by
this work are Evolutionary Algorithms (EA) [17]. It has been demonstrated that EAs
can be successfully used to design the controllers for trivial tasks such as wall-following,
and obstacle-avoidance, or target tracking. The controllers are often based on
arbitrarily-connected neural networks [2]. Adaptive behaviors on a different level could
possibly be achieved by approaches [5] that evolve the neuron learning rules instead of
the connection weights, which are changing dynamically during the task execution.
Nevertheless, it appears that evolving more complex behaviors in a single evolutionary
run is not plausible due to a complex search space, and becomes impossible without
additional guidance of the EA. One way of self-guiding of an evolutionary algorithm is
the use of co-evolution [7]. Co-evolution, however, applies well only to a narrow class
of problems where two entities can be competing for the same resource. In addition, it
suffers from possible cyclic loops in the relation of strategy dominance in effect causing
stagnation of the algorithm instead of progression. Another possible guidance, adopted
also in this work, is dividing the target task into more simple incremental steps [6]. This
strategy is more general; however, it requires a scenario of incremental evolutionary
steps. How to devise such incremental steps, and how to setup such incremental EAs is
the focus of this and future work.

The complexity of interactions of a mobile robotic system implies a structured (non-
monolithic) controller architecture. Traditional AI approaches based on centralized-
processing and Sense-Plan-Act cycle have difficulties dealing with simultaneous robot
activities that have different priorities. Even if such a controller would be successfully
designed, its maintainability, modifiability, and performance would be compromised.
Mobile robots must behave according to the outcome of several independent threads of
reasoning. Therefore a modular architecture with reasoning modules executing in
parallel is suitable. On the bottom side, these modules are as simple as direct reactive
connections between sensors and actuators. On the top side, these modules might
perform long-term reasoning inferences running on the background with low priority.
These ideas are reflected well in various Behavior-Based (BB) and hybrid architectures
[1]. One of the challenges of BB design is how the individual modules will be
coordinated. This is referred to as action-selection problem or behavior arbitration; an
overview is in [21].

In this work, we aim at evolutionary design of behavior arbitration for a controller of a
mobile robot performing a non-trivial task, where simple reactive controller would not
be sufficient. The controller has a particular BB architecture, while the arbitration is
based on a set of finite-state automata. The design is the output from an incremental
evolutionary algorithm. Further sections of this article discuss our controller
architecture, evolutionary algorithm, simulation framework, incremental evolution
method, example task setup, obtained results, further work, and conclusions.

Related work
Our efforts are to combine and integrate the ideas from several independent fields. The
main area of interest is the field of Evolutionary Robotics [2, 5, 6, 8, 10]. Most of the
work in the field is focusing on adaptive mobile robots with neural controllers.
Inspiration from biology brings the laws of natural Darwinian evolution and motivates
towards long-term evolution of individuals that successfully perform in their artificial
life environment. In these cases, the focus is not on building systems that can be directly
useful today or tomorrow, rather on the study of how the natural principles observed in
the living species apply to the artificial robotic systems built by us. It is often not
important what the agent will be able to do when the evolution completes, rather how
the evolutionary process progresses, and how it interacts with the agent learning
abilities. Aim is at answering the questions of how we could imitate the clever and very
effective animal behavior that relies on imperfect and irregular patterns, and how to
build artificial control systems that would have similar properties of the animal brains.
Naturally, researchers with such motivations study controllers based on artificial neural
networks, and explore various neural architectures. The systematic research efforts start
and still progress with the early systems capable of obstacle avoidance, wall-following,
target recognition and following, box pushing, simple autonomous flight, or survival of
agents in artificial environment. It is sincere to point out that most (if not all) of the
resulting evolved controllers perform a behavior that can easily be achieved by a
manually programmed controller of small or moderate difficulty. However, the
researchers in the field cull the argument stressing their interest in adaptive and self-
organizing systems, and the early stages of the research field.

Another group of research efforts study the possible architectures for intelligent mobile
robot controllers for robots performing real tasks in real environments. Traditional AI
methods for building robotic controllers [15] typically rely on extensive centralized
planning and sense-plan-act cycle. These approaches are limited mainly by their
complexity, they are difficult to maintain, test, and debug. Others proposed modular

incremental architectures of independent modules responsible for different behaviors
that can be developed, tested, debugged, and even exchanged individually, and usually
run in parallel when combined in a complex controller. The main research challenge in
this area (called after the behaviors BB Robotics [1]) is how the behaviors can be
coordinated, and how they should interact in order to share the agent resources.
Substantial work and an overview have been done by Pirjanian [21]. There have been
only few attempts to generate arbitration mechanisms automatically based on the
required task or robot purpose. Their usefulness can be supported by the following
reasons:

• Automatic method might explore unforeseen solutions that would otherwise be
omitted by standard engineering approaches used in manual or semi-automatic
design performed by a human.

• Mobile robots can be built for general purpose, and the arbitration mechanism
for different achievable tasks might have to be different, either for reasons of
critical limits on their efficiency, the bounds on the controller capacity, or
conflicting roles in different tasks. In such a case, generating the arbitration
mechanism based on task description might be required. Having the option of
automatic arbitration generation might save extensive amounts of work needed
to hand-craft each arbitration mechanism.

• Manual arbitration design might suffer from the lack of understanding of the real
detailed interactions of the robot with its environment. These interactions might
be difficult to describe analytically. Automatic arbitration design might capture
the undergoing characteristics of the robot interactions more reliably, efficiently
and precisely.

Learning action selection (term sometimes used interchangeably with behavior
arbitration) studies in his thesis Humphrys [8]. His focus is on the “communication” of
agents that together form a controller; in fact, his agents are so simple that they
correspond to the nodes in a recurrent neural network, with very few control actions
generated by output nodes. Input nodes receive discrete sensing of an artificial ant
moving on a rectangular grid. The topology and connection weights are evolved and the
communication of the very few nodes in the network is studied on a standard artificial
ant seeking food in a rectangular grid problem.

The most valuable inspiration for our work stems from the work of Lee et al. [10],
where the more complex, high-level task is decomposed hierarchically and manually
into several low-level simple tasks, which can further be decomposed to low-level tasks.
The reactive controller consists of primitive behaviors at lowest level and behavior
arbitrators at higher levels, both with the same architecture of interconnected logic-gate
circuit networks. The evolution proceeds from the lowest level tasks up the hierarchy to
the target complex task. We see several possible improvements:

• avoiding the centralistic architecture,

• allowing for easier modification of task by introducing a new module without
affecting substantially the existing controller hierarchy, and

• removing the limitation to purely reactive tasks.

The work has been continued on by the master thesis [18], where a football player has
been evolved with the use of co-evolution. The qualitative change is in the ability to
work with internal state (as contrasted to purely-reactive controllers), and more complex

architecture allowing two types of arbitrations: 1) a sequence of several states, and 2)
selecting the module with the highest activation value; where the activation value is
exponentially decreasing over time, and reset to maximum on request of the module.
Even though extensibility has been slightly improved from [10] and internal state was
introduced, still only a limited subclass of finite-state automatons taking the arbitration
role was supported. Reactive modules are not general, but have to follow with the
simple unifying architecture only providing the activation level, and being based on the
winner-take-all principle. Co-evolution that was used for increasing the difficulty of the
evolutionary task could be applied due to the game character of the task, however it
does not scale up to more general classes of tasks.

Controller architecture
A task of an autonomous robot usually consists of many interactions occurring, starting
or ending at various time points. Between these events, the robot remains in some
particular state. We consider state and event to be the crucial concepts for the controller
architectures of the mobile robots. Many researchers advocated the use of neural
network based controllers. However, the representation of states in the recurrent
networks is still very poorly understood. Furthermore, responsiveness of neural
networks to particular events is hard to asses and analyze, and the current learning
mechanisms require thousands of interactions to learn even very simple behaviors.
Controllers aiming at more complex tasks must have modular architectures, but it is yet
unclear how this modularity can be efficiently achieved with neural networks, and what
consequences it might have on their learning rules and algorithms. We suggest studying
alternative architectures, which better reflect the concepts of robot state and
environmental events.

Our controller architecture is strongly inspired by BB robotics. The large numbers of
interactions, which can arbitrarily occur at any time of robot execution, mean that many
different activities can be triggered at any time; many different sensory inputs and their
various aspects have to be monitored continuously. Instead of having one centralized
learning module, BB robotics suggests distributed control in multiple behavioral
modules. Our controller also consists of several independent modules, which are
running simultaneously. Many of the individual interactions have to be coordinated, and
the modules might need to exchange relevant information about their states. The
modules communicate by sending asynchronous messages, which can be either
broadcasted or sent to a specific target module. In principle, each module can access the
robot’s low-level hardware (sensors and actuators), but a careful design approach
leading to multiple abstract layer architectures should be taken. As a result, only very
few modules (ideally one) should access each robot hardware resource and extract the
relevant sensory information or synchronize the access to an actuator for all other
modules. The competition for robot actuators is implemented using fixed or dynamic
module priorities: the robot actuator executes the action requested by the module with
the highest priority, or becomes idle, if no module requests an action. One of the main
motivations for BB robotics is the incremental building of the robot and robot controller
(bottom-up design). This implies the qualities labelled in the fields of software
architecture as “modifiability” and “extensibility”. Indeed, to add new functionality to a
working controller, it is sufficient to add a new module, and integrate it into the
controller by modifying the message interface for all relevant modules to respond to the
new interactions. Figure 1 shows an example of a controller, where the robot is
randomly exploring environment turning more likely towards more illuminated regions,
while avoiding obstacles, until it enters a the line, which it starts to follow. The added

dashed module introduces new functionality: the robot will start following the line only
if it is located in an area, which is illuminated. To achieve this change, the whole
existing controller can be preserved, but the line-following controller will need to
introduce a new state outside_illuminated_area, which can be triggered by the context
switching module. In this state, the line following module will not start following a line.

Figure 1. Extensibility of the controller.

Ideally, the message interfaces of the modules should be defined as simple and as
general as possible so that each module can easily be integrated into a controller. In this
way, modules can be reused across different controllers, which are built for different
purposes and tasks. To extend this idea further, hardware modules, such as sensors and
actuators can have certain level of intelligence and be accessed with unified interfaces
so that they can be easily interchanged and configured. This idea is well adopted by
LEGO robotics sets [9], and there exist other similar toolkits, such as Microbric [25],
Parallax robotics [26], or Handyboard [24]. The idea of easy integration of intelligent
sensors into larger networks is at focus for large players like Intel, or for as small groups
as InnoC with their Simple Sensor Networks [27]. One could argue that the robot
controller should be general and give the robot all the possible functionality by
including all the possible behavior modules. However, the memory and CPU capacities
of practical robotic systems are always limited, and thus, using separate programs
(controllers) for each task, instead of insisting on one general-purpose controller, can be
more feasible. To achieve generality, all the modules might be stored in a long-term
memory, and only the relevant modules might be retrieved into an operational memory
when a particular task is being solved. The controller thus contains a set of specific
behavior modules with clearly defined message interfaces, and a coordination
mechanism, which makes these modules talk together as required by a particular task.

Many previous approaches to the action-selection or behavior-arbitration problem are
either centralized, for example [10] or too limiting, for example [13]. Our aim is to
design a general architecture, which can cope with different design challenges in a
systematic rather than an ad-hoc manner. In addition, this mechanism should be easy to
integrate into the set of modules that are exchanging asynchronous messages. Each
module has its own post-office module, which filters and translates the incoming
messages into the messages recognized by the module itself, and which also monitors
and possibly filters or modifies the messages being sent by the module. Since the state
is a central concept in the controller, we chose to first study the post-offices that have
the form of a finite-state automata. The state transitions are triggered by messages being
received or sent by the module owning the post-office. Each state transition can result in
a message being sent to the module or to other modules, see figure 2. Please see also
figure 13 for examples of evolved FSAs and the representation of the transitions.

Figure 2. Single behavior module with its arbitrating post-office finite-state machines.

This coordination mechanism is distributed, and thus the standard advantages of the
distributed systems: robustness, modularity, better communication throughput, better
encapsulation and modifiability are gained for free. In particular, adding a new module
to an existing controller requires only designing a new post-office for the added module
and the minimum set of changes in post-offices of other modules, instead of inferring
with all modules and modifying a centralized coordination mechanism.

Let us explain the controller architecture on a simplified artificial example of a mouse
robot acquiring a piece of cheese from a room and bringing it back to its mouse hole.
The controller is shown in figure 3. The mouse explores the room in random
movements, and whenever it smells or sees the cheese, it moves in its direction, grasps
the food, and drags it back to its home.

Figure 3. Example controller architecture for a mouse acquiring cheese task.

The core of the controller is formed by several modules, which are implementations of
simple competencies (grayed boxes). These competences alone do not give the robot
any purpose or any intelligent behavior yet. They simply react to a predefined message
interface and produce status messages whenever their actions produce a significant

outcome. For example, the “locating cheese” competence receives inputs from the
vision and smelling sensor and produces a desired direction of movement, if the cheese
is detected. Whenever the cheese is detected, it reports the event by an outgoing
message. The competencies might be provided by the robot builders, or programmed in
any programming language. Alternately, they can be hand-designed or evolved finite-
state machines1, GP program trees, or neural networks. The architecture does not limit
their internal architecture. Most of the competencies have their own thread of execution.
The competencies might be understood as the “operating system” of the robot that
provides higher-level interface for controlling the low-level robot hardware.

The intelligence and a particular purpose of the controller are encoded in a set of post-
office modules, at most one post-office for each competence (post-offices are encircled
by dashed boundaries at figure 3). The post-office modules are the communication
interface competences with other competencies and the remaining parts of the controller:
sensors, and actuators. All messages received and sent by a particular competence
module pass through its post-office module. The post-office modules in our architecture
are finite-state machines, but other languages or formalisms could be used in place,
where the state transitions are triggered by incoming or outgoing messages, which may
be transformed, or filtered. Transitions can optionally result in generating new messages.
In this way, the functionality of the competence module is turned on, or off, or regulated
in a more advanced way, depending on the current state of the task, environment, and
the robot performance represented by the state of the post-office finite-state automaton.
The post-office simply filters or modifies the messages so that the competence module
takes actions that are suitable in a particular situation. For example, the random turning
competence will be activated only while the robot is exploring the room and searching
for the cheese, or when it accidentally dropped and lost the cheese on its way back. The
post-office module of the random turning competence follows with the events
performed by other modules, and adjusts its state to represent the current sitation. Please
refer to the section ‘Example task’ below for another specific example.

Evolutionary algorithm
The goal of this work is to design controllers for mobile robots automatically by means
of artificial evolution. We take the assumption that the hardware details of sensors and
actuators are quite specific and the low level interactions of the controller with the robot
hardware can be implemented efficiently and without much effort manually, before the
target task is known: the behavior modules can be written in any available language or
formalism manually. However, they can even be evolved automatically, if suitable. The
part of the controller that we aim to design automatically here is the behavior
coordination mechanism, in particular, a set of finite-state automatons (FSAs). The
genotype representation consists of blueprints of FSAs for the set of modules for which
the FSAs are to be designed automatically (some modules might work without post-
offices, other might use manually-designed post-offices, or some post-offices are held
fixed because they are already evolved). An example of a genotype is in figure 4.

The number of states and the number of transitions in each state vary (within specified
boundaries). Transitions are triggered by messages (incoming or outgoing) and have the
following format (please see figure 13 for examples, and the appendix for example of
specification of the EA parameters including the specification of states, and transitions):
(msg_type, new_state, msg_to_send_out, [msg_arguments],
 msg_to_send_in, [msg_arguments])

1 We use the terms finite-state machine and finite-state automaton interchangeably in this document.

Figure 4. Controller architecture and genotype representation: left oval shows actual numeric
genotype representation (it is a vector of numbers containing the number of states in FSA, number of
incoming and outgoing transitions in each state, and detailed transition specifications as described
above in the text), bottom oval shows symbolic representation as viewed by a viewer utility (used to
analyze the evolved post-office modules); right oval shows the genotype structure for both incoming
and outgoing messages for better explanation. Note that the outgoing messages in the viewed FSA
are irrelevant when no other module is reacting to those particular types of messages.

Figure 5. Example of crossover operator functionality (revisiting the mouse task). The two finite-
state automata on the left are combined into a single resulting automaton (one of the two offsprings)
on the right. The state “not avoiding” is inherited from the parent shown above left, together with
both states of the parent shown below left. The states carry with them all their outgoing transitions
from the parent to the offspring. The transition destinations are pointed to randomly chosen states of
the part of the offspring inherited from the other parent, see text for details. The mutation is shown
by striking line over the previous message label, where it was replaced by another message, see text
for list of mutation types.

We use the standard genetic algorithm, with our specific initialization, crossover, and
mutation operators. In the first stage, the designer prepares individual modules. For each
module, he or she specifies the module message interface: the messages the module
accepts and the messages it generates. In the second stage, the designer selects the
modules for the controller and specifies lists of messages that can trigger incoming and
outgoing transitions of the FSAs associated with each module. The remaining work is
performed by the evolutionary algorithm.

The GA-initialization operator generates random FSAs that comply with the supplied
specification. The crossover operator works on a single randomly selected FSA. It
randomly divides states of the FSAs from both parents into two pairs of subsets, and
creates two new FSAs by gluing the alternative parts together. A simple example is
shown at figure 5, where two FSAs with partial functionality, each having 2 states, are
combined by the crossover operator to form a new FSA that has three states. Later, the
transition in the state labelled “close to object” is mutated: the message produced by the
transition is changed from steer_right to backup.

The following paragraphs describe the crossover operator in detail.

Let the states of the first parent be S = (S1, …, SK), and the states of the second parent be
T = (T1, …, TL). The operator randomly picks a set of states that will be inherited by the
first offspring from the first parent, O1fromS ∈ S, and a set of a possibly different
cardinality, containing states that will be inherited by the second offspring from the
second parent, O2fromT ∈ T. The first offspring will then consist of states O1fromS + (T –
O2fromT), and the second offspring will consist of states O2fromT + (S – O1fromS). The state
transitions cannot be always preserved, because the number of states and their
numbering changes. Figure 6 visualizes the crossover operator in a diagram.

Figure 6. Crossover operator.

The following transitions are preserved: O1fromS to O1fromS, S – O1fromS to S – O1fromS,
O2fromT to O2fromT, T – O2fromT to T – O2fromT. The states are renumbered according to the
new state numbers.

Since the transitions leading to states that are now part of the other offspring would
point nowhere, we randomly generate mappings between the exchanged states of the
two offspring. Since the numbers of states in these four sets are different, bijection is
not possible and we need all four mappings – one in each direction for both parts.
Mapping M1 of states in S – O1fromS to states in T – O2fromT, mapping M2 of states in T –
O2fromT to S – O1fromS, mapping M3 of states in O1fromS to O2fromT, and mapping M4 of
states in O2fromT to O1fromS. The new numbers of states are taken into account when
generating M1, M2, M3, and M4.

The transitions are then modified using the generated mappings, the mappings M1 and
M4 are used to generate the first offspring, the other two to generate the second
offspring:

Transitions that lead:

 From x ∈ O1fromS to y ∈ S – O1fromS are changed to M1(y),
 From x ∈ O2fromT to y ∈ T – O2fromT are changed to M2(y),
 From x ∈ S – O1fromS to O1fromS are changed to M3(y),
 From x ∈ T – O2fromT to O2fromT are changed to M4(y).

The above transformation is attempting to maximize the genetic information passed
from the parents to offspring by conservative approach, where the transitions originally
pointing to the same state will point to the same state also in the offspring.

The implementation of the crossover procedure:

1. choose the index of FSA to work on
2. randomly generate bits O1fromS[1..K] and O2fromT[1..L],
3. based on O1fromS and O2fromT, generate SRENUM[1..K] and TRENUM[1..L],
4. randomly generate M13[1..K], and M24[1..L] that represent M1, M2, M3, and M4,
5. form O1 by copying states from O1fromS and T – O2fromT, and updating all

transitions based on M1, M4, SRENUM, TRENUM,
6. form O2 by copying states from O2fromT and S – O1fromS, and updating all

transitions based on M1, M3, SRENUM, TRENUM.

The mutation operator works upon a single FSA. One of the following operations is
performed (the probabilities of the mutation types are parameters of the algorithm):

• a new random transition is created,
• random transition is deleted,
• a new state is created (with minimum incoming and outgoing random

transitions); in addition, one new transition leading to this state from another
state is randomly generated,

• a random state is deleted as well as all its incident transitions,
• a random transition is modified: (one of its parts new_state, message_type,

msg_to_send_out, msg_to_send_in is replaced by an allowed random value),
• a completely random individual is produced (this operator changes all FSAs),
• a random transaction is split in two and new state is created in the middle,
• the initial state number is changed.

In our experiments, we use roulette wheel and tournament selection schemes combined
with steady-state or standard GA with elitism. Other parameters of the algorithm
include (with these default values): pcrossover (0.3), pmutation (0.7), probabilities of all
8 mutation types that sum up to 1: pnew_random_transition (0.25).
pdelete_random_transition (0.1), pnew_state (0.2), prandom_state_deleted (0.05),
prandom_transition_mutated (0.25), pnew_random_individual (0.05), psplit_transition
(0.05), pchange_starting_state (0.05); population_size (100), number_of_generations
(60), portion_of_population_to_replace (0.2), number_of_modules in the controller
(10), specification of the message interfaces and trigger messages for all modules, initial
and boundary values for number of states and transitions, number of starting locations
for the robot for each evaluation, timeout for the robot evaluation run, specification of
the fitness function parameters, input, output, and log file locations, detials in appendix.

Simulation framework
The aim is to design controllers for real robots. Our current testing hardware platform is
the LEGO Robotics RCX equipped with 32KB RAM, up to 3 sensors and 3 motors,
running programs built using GNU C compiler and binutils with LegOS [16]. Testing
the performance of each individual in hardware would be completely infeasible, and
therefore a simulator is essential. The objective function of our evolutionary algorithm
evaluates individuals in simulation; each individual is started from several starting
locations. We upload the final evolved controller on the real hardware to verify its real-
world functionality.

Two standard approaches to simulation can be distinguished: in a discrete event
simulation, the events can occur only at the start of a distinct unit of time during the
simulation – events are not permitted to occur in between time units. The state of the
system changes and is updated at discrete time events. A continuous simulation system
is trying to model the exact behavior of the simulated system, its state, and the outcome
of the simulation using mathematical formulas. Our approach falls more in the category
of continuous simulation. The simulated system generates events at discrete time units
(for example, start the motor A, determine the value of sensor 1), but its environment is
continuous, and the events can occur at an arbitrary time (robot running against an
obstacle, or over some pattern drawn on the floor). Our ‘lazy simulation’ approach
(inspired by lazy evaluation in functional programming languages) updates the state of
the simulated system only when the robot controller interacts with the robot hardware.
At that time instant, we suspend the simulated program, compute the current exact state
of the simulated system by mathematical formulas, and determine the outcome of the
interaction. The temporal granularity is thus limited only by the CPU or bus frequency.
The simulated program is not interpreted by the simulator. It runs almost independently
in the operating system of the simulating computer. However, instead of accessing the
robot hardware, it accesses the simulator that is waiting in the background. For example,
the robot controller program might be computing without interacting with the robot
hardware for some time, during which the robot crosses several lines on the floor,
triggers switching of the light by entering an active area, passes below a light, and
bounces to a wall, where it remains blocked for a while. At that point in time, the robot
controller wants to read a value of its light sensor, for instance, and only at that point in
time, the simulator becomes active and computes all the sequence of the previous events
that occurred, and the current location and situation of the robot and the environment.
Finally, the required value of the sensor reading is determined and returned to the
program, which resumes its execution. To achieve better performance, the simulator
pre-computes expected events before resuming the simulated program. The pre-

computed information helps to test quickly whether the state of the robot or
environment has changed since the last “interrupt”, without processing all the data
structures of the simulator.

None of the existing robot simulators satisfied our needs. We chose to implement our
own simulator in language C, now available as open-source project [28]. The simulator
is designed to cope with any program written in LegOS system, which controls an
experimental robot with a compatible topology (figure 7 right). This allows us to use it
both with our controller architecture, and with virtually any C-program that can control
the robot. Small modifications would allow simulating robots with different topology.

Figure 7. Camera setup for measuring the actual real-world outcome of the individual robot
movements (left), the detail of the robot covered by black surface with 2 white marks detected by the
calibrated software (centre), an experimental robot with high-lifting fork (right): its topology of the
robot is compatible with a cylindrical shape with two independent motors propelling the wheels on
the sides, one motor operating the high-lifting fork, front bumpers, and two light sensors pointing
upwards and downwards.

There are several issues related to simulation. First of all, many researchers pointed out
that simulating robotic systems accurately is almost impossible. Each sensor and motor
part has somewhat different characteristics, and the outcome of each sensory or motor
action depends on imperfect interactions with the real world. In order to achieve a
comparable performance of the simulated and real robotic system, noise has to be
applied both to sensory readings, and motor actions. In addition, the outcome of the
motor action is hard to compute, and it appears to be more feasible to measure it and
construct a table of basic motor actions and their outcomes as proposed by Miglino et.al.
[14]. Figure 7 left shows a camera setup in the computer vision laboratory in Maersk
institute in Odense that we used to measure the outcome of basic robotic actions in real-
world. These values can be used to setup the simulator.

Another important issue is the execution speed of the simulated controller. By default,
the controller runs at a real-time speed (1-to-1 ratio). Even though the CPU speed of the
simulating hardware is higher than the CPU speed of RCX, the resulting behavior is
compatible, since the modules of the controller are typically spending their time waiting
for some event to occur to change their state in response. Obviously, the running speed
on a fast simulating hardware can be increased. However, after some threshold, further
speedup is impossible even though the CPU utilization remains about 0.0%. This
threshold is reached when the frequency of events exceeds the response frequency of
the controller. For instance, when the robot is crossing a line drawn on the floor, one of
the modules must detect the line in order to turn the robot and make it follow the line.
Once the controller misses the line, because the thread of the line follower module does
not always get a time slice between the time the robot enters and leaves the line, the
simulation speedup is too high – even though the controller still spends most of the time

waiting for some event, and keeping CPU utilization very low2. Even though the
accuracy of the simulator was somewhat compromised due to different CPU and OS
architectures between the HW of the real robotic system and the simulating computer,
and some of the delay constants used in the controller had to be adjusted for different
speed-up ratios, we found the simulator accuracy satisfiable. More precise simulations
could be achieved using a real-time operating system.

Incremental evolution
Having explained the tools, settings, and supporting methods, we reached the main
focus of our work. Researchers observed in the past [6] that evolving robot behavior is a
hard challenge for any EA. The fitness landscape tends to be rough, and evaluation of
each individual typically takes a long time. Trying to evolve more complex behaviors is
often too difficult. Some groups, such as [6, 10] advocated the use of incremental
evolution – where the complexity of the target task is decreased by decomposing it to
several simpler tasks, which are easy enough to solve by an evolutionary algorithm (see
[19] for an earlier overview of incremental evolution). We have identified five different
ways, in which an evolutionary robotic algorithm can be incremental:

Environment (where is the robot performing?): the earlier incremental steps can be run
in a simplified environment where the frequency and characteristics of percepts of all
kinds can be adjusted to make it easier for the robot to perform the task. For instance,
the number of obstacles or distance to the target can be reduced, the environment can be
made more deterministic, the noise can be suppressed, landmarks can be made more
visible, etc. An example of this type of incrementality is [12], where box-shaped
obstacles were replaced by more difficult U-shaped obstacles after the avoidance
behavior for the former was evolved.

Task (what is the robot doing?): the earlier incremental steps can require only part of
the target task to be completed, or the robot might be trained to perform an independent
simple task, where it learns skills that will be needed to successfully perform in the
following tasks. An example of this type of incrementality is [6], where the gantry robot
evolved forward movement first, followed by stages that required movement towards a
large target, movement towards a small target (this would be again the change of
environment), and distinguishing a triangle from square.

Controller (how is the robot doing it?): the architecture of the controller changes. For
example, the final controller might contain many interacting modules, but the individual
interactions can be evolved in independent steps, where only the relevant modules are
enabled. In the later steps, the behavior might be further tuned to integrate with other
modules of the controller. This type of evolutionary incrementality occurs seldom in the
literature, but an example could be a finite-state machine-controlled robot negotiating a
maze. The controller can be extended with a mapping module that is able to learn the
maze topology, however, the output of the module has to be properly integrated with the
output of the FSA. Non-evolutionary controller incrementality can certainly be seen in
the Subsumption architecture and its flavors [13], and many later BB approaches.

Robot sensors/actuators (with what…?) the dimensionality of the search space might
be reduced by disabling some of the robot sensors and actuators before they are needed
for the task evolved in each particular step. An example of this can be seen in Behavior

2 Here it is interesting to note that upgrading from the old LinuxThreads to new pthreads library (NPTL)
and utilizing the round-robin real-time scheduling in superuser mode allowed a speedup of more than one
order of magnitude (100-500-times faster than real-time as contrasted to 10-times faster with older
LinuxThreads).

Analysis and Training [22], where the Khepera robot had first evolved the abilities of
navigation, obstacle avoidance, and battery recharge, before a gripper was attached to it
and the robot had to evolve an additional behavior of collecting objects and releasing
them outside of the arena.

Robot morphology (what form does the robot have?): the shape and size of the robot
can be adjusted to make its performance better and reshaped according to final design in
the later incremental steps. This kind of incrementality is also seldom seen in the
literature. On the other hand, there are examples where the robot morphology itself is
evolved [11], but automatic design of robot morphology is beyond the scope of this
work. An example of morphological incrementality would be a vacuum-cleaning robot
with the shape of an elliptical cylinder that needs to turn in proper direction to pass
through narrow passages. It could be simplified to a circular cylinder to evolve basic
navigation strategies and later updated to its final shape to achieve the proper target
behavior.

From the implementation point of view, incrementality can be achieved by modifying
the simulated environment, the objective function, the genotype representation and the
corresponding controller implementation, and the configuration of the simulated robot.

Another important issue is how to transfer a population from the end of one incremental
step to another step. In order to find plausible solutions, EAs require that the initial
population randomly samples the search space. However, the population at the end of
one step is typically converged to a very narrow area, and thus it cannot be used as an
initial population in the next step. We therefore generate a new initial population from
several ingredients: some portion of the original population containing the best
individuals is copied, another part is filled with copied individuals that are mutated
several times, and the remaining individuals are randomly generated. However, it is also
possible to blend the populations from two or more previous incremental steps. In
principle, our algorithm takes for each incremental step a full specification of blending,
copying, and mutation ratios for all FSAs in the genome and all preceding incremental
steps. In this way, one can design an evolutionary incremental process following a
scenario with a topology of a complex oriented graph. However, in most of the
situations, the incremental scenario does not have to be complicated and thus the
number of the parameters to specify remains manageable.

Distributed evolutionary computing
The simulated runs require extensive CPU resources, and thus we chose to utilize the
idle CPU power of many machines around the campus. We have developed Q2ADPZ, a
specialized open-source system for distributed computing, which allows the user to
submit jobs consisting of multiple tasks into a pool of idle CPUs that are running a
daemon process (or Windows NT service) [4]. In addition, we make use of the
computational cluster of our division [3], and finally, for the experiments running under
real-time scheduling, we did setup a dedicated cluster of high-performance Linux
machines [20]. A population of robot controllers is distributed over the computational
cluster, where each node computes several fitness evaluations and submits the result
over TCP/IP network and SQL database to the server running the main evolutionary
algorithm. For our example task, we utilized more than 100 idle powerful 2.4GHz P4
desktop machines in the computer labs in the summer vacations period. The whole
incremental scenario evolved the target behavior sucessfully in approximately 1 hour
without any substantial attempts to optimize it – we were busy enough to see that the
experiment delivered a positive result.

Example task
Our goal was to evaluate the proposed controller architecture and incremental evolution
method and compare it to a manual design of the arbitration mechanism in the controller.
The RCX hardware platform offers high flexibility and a multitude of possible
configurations for laboratory robotics experiments. We tested the implementation of our
controller architecture on a high-lifting fork robot built around a single RCX (figure 7
right). The task for the robot is to locate a loading station, where the cargo has to be
loaded, and then locate an unloading station to unload the cargo, and repeat this
sequence until the program is turned off. The robot exists in a closed rectangular arena
with obstacles to be avoided. Both loading and unloading stations lie at the end of a line
drawn on the floor. The start of the correct line to be followed at each moment is
illuminated from above by light (an adjustable office lamp). The light source located
over a segment of the line leading to the loading station is automatically turned off
when the robot loads the cargo, and it is turned on when the robot unloads the cargo at
the correct location. The reverse is true for the light located over the line leading to the
unloading station. Other lines might exist in the environment as well. Figure 8 right
shows a screenshot of a simulator with an example environment.

The environment is defined by a configuration text file, which specifies the shape and
size of the environment, robot, obstacle, floor drawings, loading and unloading stations
as well as light position, and intensity. In addition, the simulator software allows
defining simple control events based on (possibly periodic) time, robot heading,
location, and fork and cargo positions.

Figure 8. Robot executing the target task in a simulated environment (right), and an example of a
manually designed fsa arbitrator for the line follower module (left). The illuminated area on the right
is depicted by a large filled circle; dark squares represent obstacles; thick lines are drawn on the
floor and detectable by robot; loading and unloading stations are marked by rectangles at the end of
line, and the thin line shows the trajectory for an example run. The transitions between states on the
left are labeled by messages that trigger them, and in cursive by messages they generate. The robot
first travels randomly until it enters light (state 2). Then it looks for line and follows it in states 3 and
4, with recovery in states 5, 6, and 7. Whenever it reaches the loading station, it stops following the
line and resets to random walk in state 1. Module explore queries the sensor module to see if the
robot is moving towards or away from light and controls the turning of the robot in order to reach the
light more quickly.

We chose this task for four reasons: 1) compared to other evolutionary robotics
experiments, it is a difficult task; 2) it is modular, in terms of the same behavior (finding
and following line) being repeated two times, but with a different ending (either loading
or unloading cargo), and therefore has a potential for reuse of the same code or parts of
the controller; 3) it can be implemented both in real hardware and in our simulator (for
the implementation of the switching lights, we used two standard office electric bulb
lamps controlled by two X10 lamp modules and one X10 PC interface connected to a
serial port of a computer that received an IR message from RCX brick when the robot
loaded the cargo, which was in turn detected by an infrared emitter/detector from
HiTechnic); 4) the task consists of multiple interactions, and behaviors, and thus is
suitable for incremental evolution.

Our robot comes with a set of preprogrammed behavioral modules – we have coded
them directly in the language C:

Sensors – translates the numeric sensory readings into events, such as robot passed over
or left a line, entered or left an illuminated area, received an IR message from a cargo
station, bounced into or avoided an obstacle.

Motor driver – accepts commands to power or idle the motors. The messages come
asynchronously from various modules and with various priorities. The purpose of this
module is to maintain the output according to the currently highest priority request, and
fall back to lower priorities as needed. All motor control commands in this controller
are by convention going through the motor driver.

Navigate – is a service module, which provides higher-level navigational commands –
such as move forward, backward, turn left, as contrasted with low-level motor signals
that adjust wheel velocities.

Avoidance – monitors the obstacle events, and avoids the obstacles when encountered.

Linefollower – follows the line, or stops following it when requested.

Explorer – navigates the robot to randomly explore the environment. It turns towards
illuminated locations with higher probability.

Cargoloader – executes a procedure of loading and unloading cargo on demand: when
the robot arrives to the cargo loading station, it has to turn 180°, since the lifting fork is
on the other side than the bumpers, then it moves the fork down, approaches the cargo,
lifts it up, and leaves the station; at the unloading station, the robot turns, approaches the
target cargo location, moves the fork down, backs up, and lifts the fork up again.

Console and Beep – are debugging purpose modules, which display a message on the
LCD, and play sounds.

The input and output message interface of all modules is shown in table 1. The
arbitration mechanism, which is our focus, consists of FSA post offices attached to
individual modules. Figure 8 left shows the hand-made FSA for the linefollower module.
Other modules that use FSAs are cargoloader, avoidance, and explore.

We have successfully designed the arbitration using our incremental evolutionary
algorithm. According to the Fitness Space guidelines proposed in [5], we attempted to
keep the fitness function as implicit, internal, and behavioral as possible. In particular,
in the later steps, we are only counting the number of correctly delivered cargo objects,
whereas in the earlier steps, we measure the total distance traveled, the time the robot
runs over the line, the quality of the line following (that is how much is the robot

interacting with the motors and sensors while it follows the line), and how much time it
spends colliding with obstacles. In addition, we favor FSAs with less states and
transitions. Figure 9 shows the six incremental steps and their respective environments
for our main incremental scenario (we refer to it as creative). Throughout the whole
experiment, the robot morphology and the set of sensors and actuators remained
unchanged. In the first three incremental steps, the task, the environment, and the
controller were simplified. In the 4th and 5th incremental steps, the task and the
environment were simplified, but the controller already contained all its functionality.

Module Recognized incoming messages Generated outgoing messages
AVOIDANCE_START
SENSORS_BUMPERS_PRESSED

Avoidance

SENSORS_BUMPERS_RELEASED

-

SENSORS_LIGHT_QUERY SENSORS_BUMPERS_PRESSED
 SENSORS_BUMPERS_RELEASED
 SENSORS_LIGHT_ENTER
 SENSORS_LIGHT_LEAVE
 SENSORS_LIGHT_INCREASE
 SENSORS_LIGHT_DECREASE
 SENSORS_LIGHT_NOCHANGE
 SENSORS_LINE_ENTER
 SENSORS_LINE_LEAVE

Sensors
(Bumpertracker,
Lighttracker, and
Linetracker)

 SENSORS_TARGET_MARK
CARGOLOADER_LOAD CARGOLOADER_OK Cargoloader
CARGOLOADER_UNLOAD CARGOLOADER_FAIL
EXPLORE_START Explore
EXPLORE_STOP

-

LINEFOLOOWER_FOLLOW
LINEFOLLOWER_STOP
SENSORS_LINE_ENTER

Linefollower

SENSORS_LINE_LEAVE

LINEFOLLOWER_LINELOST

MOTORDRIVER_POWER m, pwr Motordriver
MOTORDRIVER_NOPOWER m

-

NAVIGATE_FORWARD t NAVIGATE_COMMAND_FINISHED
NAVIGATE_BACKWARD t NAVIGATE_COMMAND_INTERRUPTED
NAVIGATE_RIGHT t
NAVIGATE_LEFT t
NAVIGATE_AROUNDLEFT t
NAVIGATE_AROUNDRIGHT t
NAVIGATE_TURNRND t
NAVIGATE_STOP
NAVIGATE_FAST

Navigate

NAVIGATE_SLOW

NAVIGATE_BUSY

Beep BEEP_BEEP x
Console CONSOLE_PRINT x

Table 1. Message interfaces for behavioral modules defined by the module designer.

Evolution progressed to the next incremental step when an individual with a satisfactory
fitness was found and the improvement ratio fell below a certain value, i.e. the evolution
stopped generating better fit individuals. The improvement ratio mn in generation n was
computed using the following formula:

mn = φ . mn-1 + (best_fitnessn – best_fitnessn-1)

where best_fitnessi is the fitness of the best individual in population i, φ is a constant
(we used φ=0.2), and m0 is initialized to 0.9 . best_fitness0.

 A B C

 D E F

Figure 9. Experimental environments for 6 incremental evolutionary steps of creative incremental
scenario, A – F. A: avoidance – the robot is penalized for time it spends along the wall; B: line
following – the robot is rewarded for the time it successfully follows the line – it must have contact
with the line and should be moving forward; C: cargo-loading – robot is rewarded for loading and
unloading cargo in an open area without lines or obstacles; D: cargo-loading after line following –
follow-up of B and C, the robot is rewarding for loading and unloading cargo, but it has to
successfully follow line to get to the open loading/unloading area; E: starting line-following under
light – robot learns to start following the line that is under the light (it is started from different
locations in order to make sure it is sensitive to light and not, for instance, to number of lines it needs
to cross); F: final task – robot is rewarded for successfully loading and delivering the cargo, it uses
the avoidance learned in A and behavior E.

Figure 10. FSA arbitrators for modules cargoloader, avoidance, and explore. The avoidance FSA
forwards to the module only BUMPERS_PRESSED message, while the explore FSA forwards to
the module all messages.

Results
To verify the controller architecture and task solvability, we have first designed the
post-office arbitrators manually. The most complex arbitrator was shown in the figure 8
(left), while the remaining three arbitrators were simpler and are shown in figure 10.

Figure 11. Setup for the real robot: bottom view of the robot (top left), loading station (top right),
robot carrying cargo (bottom left) and the environment with obstacles, lamps, loading and unloading
stations. The cargo loading and unloading is handled automatically by two RCX modules that use
the HiTechnic photo-sensor to detect the presence of the robot and send IR signal both to the robot
and to the computer that switches the lights using the X10 lamp modules.
This controller performed well and resulted in reliable cargo delivery behavior. We
have also tested the controller on the real robot. Figure 11 shows the real-world setup,
robot and its environment. The transition to the real-world settings was straightforward,
except of that the calibration of the sensors and timing of motoric actions. Still, in this
experiment, the exact quantitative dimensions and distances played minor role, for the
performance of the controller (except, perhaps, for the line-follower module), and
therefore the distances and timings in the realistic actions did not need to correspond to
the simulated one with 100% accuracy, and actual tuning of the timing could be
performed separately for the simulated and realistic runs. We experimented with a
framework for obtaining a better correspondence as shown in figure 3. The robot with
the diameter of 12 cm took ca. 430 seconds for completing the full task of a single
loading-unloading sequence.

In the evolutionary experiments, we have tried to see if the evolutionary algorithm
described above could evolve the target task by automatically designing all four FSA
arbitrators in a single evolutionary run. We ran the program for 20 times with a
population of 200 individuals and 200 generations, and with a fitness function

rewarding line following, cargo loading and unloading, distance traveling, and
penalizing obstacles. However, none of the runs evolved the target behavior.

Figure 12. Best fitness for all incremental steps (average over 10 runs), creative incremental scenario.
In the incremental step 5 (geom), the plotted fitness is an geometric mean of fitness achieved from
the three different starting locations. This step was followed by 5 (worst), where the plotted fitness is
the worst fitness achieved in the three runs from different starting locations.

To save computational effort, we have stored all previously evaluated genotypes with
their fitness to the database. The objective function first checks if the genotype has
already been evaluated and starts the simulator only in case of a new genotype.
Furthermore, during the simulated run, we measure the fitness obtained by the best (or
average of several best) individuals, and later, we automatically stop all individuals that
achieved less than q % of the best measured fitness (q = 5 %) in one of the periodically

Incremental step 2

0

100000

200000

300000

400000

1 5 9 13 17 21 25

generation #

fit
ne

ss

Incremental step 1

255000

270000

285000

300000

315000

1 4 7 10 13

generation #

fit
ne

ss

Incremental step 4

0
200000
400000
600000
800000

1000000
1200000

1 3 5 7 9 11 13 15 17 19 21 23

generation #

fit
ne

ss

Incremental step 3

0
200000
400000
600000
800000

1000000

1 4 7 10

generation #

fit
ne

ss

Incremental step 5 (geom)

0

500000

1000000

1500000

2000000

1 6 11 16 21 26 31 36 41 46

generation #

fit
ne

ss

Incremental step 5 (worst)

1200000
1300000
1400000
1500000
1600000
1700000

1 2 3 4 5 6 7 8 9 10 11 12 13

generation #

fit
ne

ss

Incremental step 6

0
250000
500000
750000

1000000
1250000

1 9 17 25 33 41 49 57 65 73

generation #

fit
ne

ss

occurring checkpoints. All evaluated FSAs and the trajectories of best-fitness improving
runs were saved to files and extensive logs were produced for further analysis.

Run \ Step 1 2 3 4 5 6 All
1 12 / 961 24 / 2850 9 / 813 15 / 3776 19 / 4561 9 / 1666 88 / 14627
2 9 / 740 22 / 2581 6 / 611 9 / 2477 58 / 12291 18 / 2924 122 / 21624
3 7 / 586 11 / 1483 7 / 709 12 / 3122 42 / 9353 42 / 6227 121 / 21480
4 5 / 450 16 / 1955 11 / 955 14 / 3618 52 / 11584 74 / 10761 172 / 29323
5 8 / 665 16 / 1953 6 / 614 12 / 3099 27 / 5998 9 / 1688 78 / 14017
6 7 / 562 15 / 1905 9 / 842 6 / 1852 24 / 5424 7 / 1378 68 / 11963
7 7 / 594 5 / 794 6 / 600 19 / 4570 23 / 5427 16 / 2599 76 / 14584
8 8 / 638 17 / 2048 7 / 683 22 / 5240 45 / 9867 46 / 6784 145 / 25260
9 11 / 855 17 / 2070 8 / 749 14 / 3495 56 / 12052 20 / 3218 126 / 22439
10 11 / 858 13 / 1663 6 / 610 18 / 4373 19 / 4526 25 / 3856 92 / 15886

Average 9 / 691 16 / 1930 8 / 719 14 / 3562 37 / 8108 27 / 4110 109 / 19120

Table 2. Generations/evaluations in each incremental step, 10 different simulated runs. The relation
between the number of generations and the number of evaluations is not direct: the algorithm
evaluates only new individuals, and among them only those that are not found in the cache.

Later experiments followed the creative scenario with 6 incremental steps shown in
figure 9. Table 2 shows the number of evaluations used by each incremental step for 10
different runs. Figure 12 plots the best fitness average from 10 different runs. Each
evaluation took into account the worst fitness for the three different starting locations
and robot orientations, except of step 5, where we had to use the geometric mean of
fitness from all three runs.

This ensured that the behavior evolved in step 4 was not lost as the successful
individuals from run 4 at least performed well when started close to the line that was
leading to the loading station. Using the worst fitness resulted in loosing the behavior
learned in step 4 before the sensitivity to light was evolved. On the other hand, this step
was repeated with the same settings, except for the use of worst fitness instead of
geometric mean, before proceeding to step 6, in order to eliminate the cheating
individuals from the population (so step 5 in table 2 refers to evaluations in both steps).

In order to obtain a better evaluation of our approach, we compared the runs against an
alternative scenario (which we in fact designed first, and we refer to it as sequential) of
incremental steps: The robot is rewarded in different incremental steps for:

1. avoiding obstacles

2. following a line

3. following a line under light (while being penalized for following line outside
light)

4. loading cargo

5. loading cargo, and for following a line under light after it has loaded cargo

6. loading and unloading cargo (one time unloading is sufficient)

7. for loading and unloading cargo (multiple deliveries are required)

This sequential scenario corresponds to the sequence of skills as the robot needs them
when completing the target task, being thus a kind of straight-forward sequential
decomposition. Contrary to the creative scenario, here the input material in each step is
only the final population of the directly preceding step. Another important difference is
that the environments in all steps of sequential scenario were the same as in the final
task, with the exception of third incremental step, where the line originally leading to

the loading station has been changed to a loop, being illuminated by light along full its
length; for this purpose we also removed one of the obstacles and introduced an
additional light source.

Figure 13. Finite-state machines evolved in each step.

We tried to evolve the target behavior with sequential incremental scenario without
simplifying the environment. However, even after spending several weeks of efforts and
years of computational time, and exhausting the parametric space of the configuration
options, and various fitness functions, the correct controller functionality was never
produced. In particular, it appears to be too difficult to evolve sensitivity to light, while
not loosing the proper line-following behavior, if the line leaves the light and follows to
the loading station, where it is non-trivial to turn and return back under the light to gain
fitness. If the robots were rewarded for spending time under the light, they evolved all
the possible tricks of pretending the line following behavior, while moving in various
loops, but forgetting the proper line-following behavior at the same time.

Once the line-following behavior has been lost, it was very difficult for the evolution to
reclaim it later again in the successor incremental steps, which required it. Modifying
the environment in the third incremental step was sufficient, and the target behavior
evolved in 11 of 15 runs, each run taking about 12 hours on a pool of 60 computational

Transition tables describe
transitions in format:

A → B: (m), in: m1, out: m2
Meaning that transition from state
A to state B occurs, when message
m arrives. Then message m1 is sent
to the module and message m2 is
broadcasted to other modules.

The relevant messages are:

AVOIDANCE_START

SENSORS_BUMPERS_PRESSED
SENSORS_BUMPERS_RELEASED

SENSORS_LINE_ENTER
SENSORS_LINE_LEAVE
SENSORS_TARGET_MARK

SENSORS_LIGHT_ENTER
SENSORS_LIGHT_LEAVE

LNFLWER_FOLLOW
LNFLWER_STOP

CARGOLOADER_LOAD
CARGOLOADER_UNLOAD

nodes (2 GHz PCs). Table 3 shows the number of evaluations performed in 10 different
simulated runs with the sequential scenario. Figure 14 plots the best fitness.

Run \ Step 1 2 3 4 5 6 7 All
1 9 / 614 21 / 2966 39 / 8396 21 / 4298 43 / 8516 7 / 1072 7 / 1122 147 / 26984
2 5 / 393 42 / 5400 48 / 6058 21 / 2849 65 / 8256 7 / 1107 13 / 1903 201 / 25966
3 7 / 497 44 / 2798 35 / 4850 29 / 3950 180 / 9592 20 / 1408 6 / 477 321 / 23572
4 5 / 357 40 / 2440 44 / 5826 44 / 5696 12 / 872 12 / 905 13 / 942 170 / 17038
5 6 / 469 43 / 2819 30 / 3701 76 / 9668 9 / 728 26 / 1666 71 / 4863 206 / 23914
6 10 / 636 28 / 3736 38 / 7495 42 / 8254 9 / 1368 6 / 992 6 / 980 139 / 23461
7 10 / 641 55 / 6976 31 / 5828 24 / 4797 28 / 3675 9 / 1293 11 / 1626 168 / 24836
8 7 / 500 49 / 6356 62 / 11590 22 / 4696 11 / 1685 44 / 5539 19 / 2555 214 / 32921
9 5 / 393 42 / 5400 48 / 6058 21 / 2849 65 / 8256 7 / 1107 13 / 1903 253 / 25966
10 5 / 394 27 / 3164 47 / 9306 11 / 2648 15 / 2305 12 / 1747 26 / 3600 143 / 23164

Average 7 / 489 39 / 4206 42 / 6911 31 / 4971 44 / 4525 15 / 1684 19 / 1997 196 / 24782

Table 3. Evaluations in each incremental step for 10 different simulated runs (for the values in
cursive, the population size was reduced from 200 to 100, or from 300 to 200; those in bold face ran
with population 100 instead of 300). The parameters were varied for empirical testing.

To gain better understanding of underlying processes, we studied the contribution of the
various mutation operators to the fitness improvements. The fitness of the offspring that
was generated using each mutation operator was compared with the fitness of the parent,
and the difference was stored. Figure 15 compares the relative contribution of the
mutation operators in all incremental steps of the sequential scenario, that is with how
large portion each operator contributed to the progress. Obviously, operator with higher
rate has higher chances to contribute. On the contrary, figure 16 looks only at the
individual performances of all single operators, and plots the ratio of the cases with
positive and negative fitness change that resulted from operator application.

Discussion
Multi-agent control architectures are the focus of contemporary research. Our robot
controller architecture is inspired by the principle of independent robot competencies
performed, or being ready to be activated, in parallel. This principle is prevalent in
Behavior-Based Robotics approaches. In our case, the behaviors communicate by
sending addressed or broadcasted message signals possibly containing data. The
implementation relies on shared memory locations between the individual threads of
computation, and the messagepassing interface function calls achieve high efficiency
(usually no data is copied; rather the functions with arguments refering to common
memory space are called). Our framework for incremental evolution allows a general
design of the incremental evolutionary scenario: the populations from several steps can
be combined together in different ratios for each particular FSA. In addition, it is
possible to specify a general “incremental” function, which specifies a termination
criterion in each incremental step, i.e. a required condition for proceeding to the next
incremental step. Incremental function can contain the following variables: gennum, the
current generation number; gennum-thisstep, current generation of this step; best-fitness,
the best fitness of the last generation; avg-fitness, average fitness of the last generation,
learning-momentum, which is the current learning rate with history; num-eval, total
number of evaluations so far; num-eval-thisstep, number of evaluations since the
beginning of this step, total-gennum, total planned number of generations, real-runtime,
real time since application start in seconds. These variables can be combined with
numeric constants, binary operators and predicates.

Each incremental step has its own definition file for the environment, separate fitness
function, structure of the controller, and describes the robot topology. Despite this
generality, we concluded to several guidelines for designing the incremental scenarios:

Figure 14. Best fitness for all incremental steps
(average over 10 runs) with sequential scenario.

1. Individual incremental steps ought to be as focused as possible. If a certain
competence required for the target behavior can be learned completely in some
incremental step, it should not be the subject of further learning and improvement in
other incremental steps, as it would only increase its complexity multiplicatively.

2. Each incremental step should focus on a relatively narrow and well-identifiable
competence. Avoiding evolving of multiple competencies at the same time is essential.
If some competence requires a cooperation of multiple competencies, this itself has to
be identified, and formulated as a distinguished, well-defined competence. .

Incremental step 1

293500
294000
294500
295000
295500
296000

1 2 3 4 5 6 7 8 9 10 11
generation number

fit
ne

ss

Incremental step 2

0
200000
400000
600000
800000

1000000
1200000
1400000

1 6 11 16 21 26 31 36 41 46 51 56
generation number

fit
ne

ss

Incremental step 3

0

500000

1000000

1500000

2000000

1 6 11 16 21 26 31 36 41 46 51 56 61
generation number

fit
ne

ss

Incremental step 4

0
200000
400000
600000
800000

1000000
1200000
1400000

1 7 13 19 25 31 37 43 49 55 61 67 73
generation number

fit
ne

ss

Incremental step 5

0
100000
200000
300000
400000
500000
600000
700000

1 20 39 58 77 96 115 134 153 172
generation number

fit
ne

ss

Incremental step 6

0

200000

400000

600000

800000

1 5 9 13 17 21 25 29 33 37 41 45
generation number

fit
ne

ss

Incremental step 7

0
200000
400000
600000
800000

1000000
1200000

1 7 13 19 25 31 37 43 49 55 61 67
generation number

fit
ne

ss

Figure 15. Contribution of mutation operators to evolutionary progress in all incremental steps of a
single run of the sequential experiment. Due to different mutation rates, the absolute contribution of
mutation operators was scaled by the number of operator applications: in total 3970, 3321, 3951,
13329, 2974, 21857, 17773 applications of mut_change_start, mut_split, mut_rnd_state_del,
mut_new_state, mut_del_rnd_trans, and mut_new_trans operator resp. Low success rate of
rnd_state_del in earlier steps is due to the lower and upper limits on number of states. Steps
introducing higher complexity in task benefit from mut_split, when an extra state is smoothly added,
extending one transition to two steps. The totals graph show that most of the work is done by simple
mutation of a single transition mut_rnd_trans, however all operators contribute significantly in more
than one incremental step.

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 0 of sequential scenario

experiment

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 1 of sequential scenario

experiment

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 2 of sequential scenario

experiment

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 3 of sequential scenario

experiment

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 4 of sequential scenario

experiment

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 5 of sequential scenario

experiment

0 0,05 0,1 0,15 0,2 0,25

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Relative performance of mutation operators in
incremental step 6 of sequential scenario

experiment

0 2000 4000 6000 8000 10000

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Total relative contribution of mutation
operators in all steps

Figure 16. Positive rate of mutation operators expresses how often the operator generated a positive
fitness increase. In the first step (step 0), the total number of evaluations was low, therefore high
positive rate was achieved. In the fifth step, a very large potential for improvement existed. The
deletion operators (mut_del_state, mut_del_trans) show lower rate as they often harm useful parts of
automata.

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 6

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 4

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 5

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 2

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 3

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 0

0 0,1 0,2 0,3 0,4 0,5

mut_new_trans

mut_rnd_trans

mut_del_rnd_trans

mut_new_state

mut_rnd_state_del

mut_split

mut_change_start

Positive rate of mutation operators,
incremental step 1

3. Modifying the environment in order to create training situations for the robot is a
very efficient method of devising simpler incremental steps. Modifying the objective
function only, while keeping the same environment, is more challenging, and often
leads to multitudes of false behaviors. Evolution tends to discover unexpected tricks due
to the large number of possible interactions in a typical target environment. Figure 17
shows few samples of incorrect evolved behaviors.

4. The early apparent suggestive decomposition of the task is often not necessarily the
most efficient way of task decomposition for incremental evolution. The average
number of evaluations was significantly lower in the case of more elaborate task
decomposition as shown in the results section of this work.

 A B C D

Figure 17. Examples of evolved misbehaviors demonstrating richness of controllers with FSA
arbitrators evloved for a set of predefined competence modules. In A and B, the robot is trained to
follow the line. In A, when the line is encountered, it starts chaotic cyclic movements around the line,
sometimes crossing a larger distance in a straight movement. In B, the robot starts following the line
after it meets it for the second time, but instead of smooth following, it follows by the line by
systematic looping – although actually achieving the wished behavior at certain quality level. In C
and D, the robot needs to follow the line and then periodically transport cargo between the loading
and unloading locations placed opposite to one another. In C, the robot loads the cargo once, but
fails to stop following the line. In D, the robot fails to follow the correct (third from the bottom) line,
which starts under top-mounted light (not shown in this earlier environment viewer version).

5. Special care has to be taken to prevent the individuals from gaining fitness by random
coincidences without performing the required task. If the populations with several
hundreds individuals evolve for hundreds of generations, even very unlikely events do
happen and if the EA uses elitism, such faulty, but lucky behavior might completely
push all promising individuals out of the population. Such events can, to a limited
extent, be prevented by multiple starts from all starting locations. This, however,
increases the total evaluation time for each individual. In our experiments, we used four
different methods of calculating the individual fitness from the scores gained in all
starting locations: arithmetic mean, geometric mean, worst fitness, and combination.
The worst fitness has to be used, if we want to set a hard constraint and require that the
individual performs the required behavior consistently and reliably. It should be used
especially when the objective function permits a very high score in lucky situations –
thus both mean and geometric mean thresholds could pass an individual that would
solve only some of the runs, accidentally with a luckily high score (please note, that the
geometric mean would not suffer from this problem if the unsuccessful runs would
receive zero-fitness, that is, however, not the case, because the objective function
typically rewards multiple aspects of the task, and thus it is almost never 0). In case of
the combined option, we use the geometric mean for all runs from the same starting
location, but the worst fitness among all those means for all starting locations. In other

words, the robot has to solve each starting location, but its performance does not have to
be completely stable.

Many tasks (including ours) comprise a high degree of randomness. The same
individual can gain fitness values that vary often more than 10%. This can lead into an
illusory fitness improvement while the quality of the individuals does not change – or
even decreases slightly, especially if elitism is in use: a small change introduced to an
individual will result in a new individual, which by a lucky coincidence gains higher
fitness and replaces the old individual in the population. This makes it also more
difficult for newly found individuals, which introduce changes in a good direction, to
steer the evolution away, as there are already many individuals who have the more
lucky fitness for their real quality in the population, especially if the evolution stagnated
for some time already. For this reason, it is recommended to evaluate all individuals
over in each generation. Unfortunately, in our case, this would exceed out practical CPU
limits, but it remains for future work to study how much this issue hinders the evolution
of arbitrators.

Sometimes, one cannot avoid transferring certain evolved features to succeeding
evolutionary steps. There is a high risk that the new incremental step will quickly move
in its search away from the evolved features, which thus become easily forgotten. A
remedy for this situation would be a continuous flow of individuals from previous
incremental step, however it remains for the future work to evaluate this strategy.

It seems though that an insight of a human expert knowing the details of the robot
hardware and software is still required in order to design a functional incremental
decomposition. Future work should focus on eliminating these and making the process
of creating the controller as automatic as possible.

Three advanced evolutionary techniques were applied in order to improve the
evolutionary search process:

1. The population was automatically reinitialized each time it converged prematurely;

2. The states and transitions, which were never entered during the evaluation by the
fitness function, could optionally be removed automatically. On one hand, this leads
into much more readable and concise FSAs, on the other hand, it reduces the
evolvability as the overhead genetic material present in the population becomes
forbidden, and thus the population can get stuck in local extremes more easily.
Removing unused transition also helps to win the useful code over bloat that can
prevent the evolution from progressing at any reasonable pace.

3. Fitness cache implemented using SQL database helped to decrease the overall time
required to reach the solution.

Conclusions and Future Work
We have designed a parallel, distributed behavior-based controller architecture where
individual modules communicate by sending messages. Modules implement simple
behaviors and are usually hand-coded, or optionally evolved. Messages are processed
by post-offices attached to modules in order to filter relevant messages and adapt the
behavior of the modules with independent behavioral responsibility to the purpose of
the combined controller thus achieving efficient synergic behavior coordination. On
example task of cargo delivery, we have demonstrated a successful design both
manually and using automatic method based on incremental evolutionary algorithm that
evaluates the individuals in simulation. The evolved individuals representing the
arbitrators, i.e. the post-offices of all modules, take form of finite-state automatons.

The incremental method is based on dividing the target task into multiple tasks of
increasing complexity (a partial order relation). Evolved populations with individuals
that successfully perform more simple tasks are transformed and combined into initial
populations for more complex tasks thus making it possible to evolve complex
behaviors, which could not be automatically programmed otherwise.

The computational demand of the algorithm is high and requires utilization of
distributed computational power. We have used three various systems for distributed
computation to harness the idle CPU power of university student lab computers and
cluster. Further directions of this work are several. A natural-language interface for
specifying the target task would allow to program robot for complex task by giving
description in human language. This would also require work on automatic partitioning
of the target task into incremental steps, and an AI system that could achieve that by
understanding the semantic descriptions of the basic robot capabilities. Automatic
programming of multiple groups of robots is a straight extension of this work.
Improvements in the simulation techniques, using real-time operating systems,
simulating more realistic environments, as well as implementing the robot simulator and
evolutionary algorithm directly on the robot hardware remain for further studies. Other
representations in addition to FSA taking the role of behavior arbitrators should be
investigated. The crispness of FSAs can be alleviated by making them more continuous:
either by transitions that occur with certain probability, or by messages that would be
probability vectors for all message types, or by staying in multiple states at the same
time with distributed probability. This is our connection to the fields of Hidden Markov
Models and neural networks, however it remains to be investigated whether such
representations apply smoothly to the crisp robotic tasks constraint by the discrete robot
body, actuators, and world interactions, which are probably modeled best by discrete
states.

References
[1] Arkin R C (1998) Behavior-Based Robotics. MIT Press, Cambridge, MA.
[2] Beer R D, Gallagher J C (1992) Evolving dynamical neural networks for adaptive
behavior. Adaptive Behavior, 1, 91-122.
[3] Cassens J, Constantinescu Z (2003) It’s Magic: SourceMage GNU/Linux as a High
Performance Cluster OS. (abstract). LinuxTag 2003 Conference, July 10-13, Karlsruhe.
[4] Constantinescu Z, Petrovic P (2002) Q2ADPZ, An Open Source, Multi-platform
System for Distributed Computing, ACM Crossroads Student Magazine, 9, 2.
[5] Floreano D, Urzelai J (2000) Evolutionary Robots with on-line self-organization and
behavioral fitness. Neural Networks, 13, 431-443.
[6] Harvey I (1995) The Artificial Evolution of Adaptive Behaviours. DPhil Thesis,
University of Sussex, 1995.
[7] Hillis W D (1990) Co-evolving parasites improve simulated evolution as an
optimization procedure. Physica D 42:228-234.
[8] Humphrys M (1997) Action Selection methods using Reinforcement Learning. PhD
thesis, University of Cambridge.
[9] Lau K W, Tan H K, Erwin B T, Petrovic P (1999). Creative Learning in School with
LEGO Programmable Robotics Products. Proceedings to Frontiers in Education'99.
[10] Lee W, Hallam J, Lund H H (1998) Learning Complex Robot Behaviours by
Evolutionary Computing with Task Decomposition. In Lecture Notes in Computer
Science, Volume 1545, p. 155.

[11] Lund H H (2001) Co-evolving Control and Morphology with LEGO Robots. In
Hara and Pfeifer (eds.) Proceedings of Workshop on Morpho-functional Machines,
Tokyo. Springer-Verlag.
[12] Lund H H, Miglino O (1998) Evolving and Breeding Robots. in Proceedings of
First European Workshop on Evolutionary Robotics, Springer-Verlag.
[13] Maes P (1990) How to do the right thing. Connection Science Journal, Special
Issue on Hybrid Systems, 1.
[14] Miglino O, Lund H H, Nolfi S (1995) Evolving Mobile Robots in Simulated and
Real Environments, Artificial Life, 2, 4, 417-434.
[15] Nilsson, N J (1980) Principles of Artificial Intelligence. Palo Alto: Tioga Press.
[16] Noga M L (1999) Designing the legos multitasking operating system. Dr. Dobb’s
Journal, Miller Freeman Inc. November 1999.
[17] Nolfi S, Floreano D (2001) Evolutionary Robotics. The Biology, Intelligence, and
Technology of Self-organizing Machines. MIT Press, Cambridge, MA.
[18] Ostergaard E H (2000) Co-Evolving Complex Robot Behaviour, Masters Thesis,
University of Aarhus.
[19] Petrovic P (1999) Overview of Incremental Evolution Approaches to Evolutionary
Robotics. In Proceedings to Norwegian Conference on Computer Science, 151-162.
[20] Petrovic P (2004) Distributed System for Evolutionary Robotics Experiments, IDI
Technical report 05/04, Norwegian University of Science and Technology, Trondheim.
[21] Pirjanian P (1999) Behavior Coordination Mechanisms – State-of-the-art.
Technical Report IRIS-99-375, Institute of Robotics and Intelligent Systems, School of
Engineering, University of Southern California, October 1999.
[22] Sutton R S, Barto A G (1998) Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA.
[23] Urzelai J, Floreano D, Dorigo M, Colombetti M (1998) Incremental Robot Shaping.
Connection Science, 10, 341-360.
[24] Handyboard, http://handyboard.com/
[25] Microbric robotics set, http://www.microbric.com/
[26] Parallax robotics, http://www.parallax.com/html_pages/robotics/
[27] InnoC, Simple Sensor Networks, http://www.innoc.at/
[28] Eval homepage at NTNU, http://www.idi.ntnu.no/grupper/ai/eval/

Appendix A – Example project files

sequential83_e.prj - defines parameters of the evolutionary algorithm
number of incremental steps (this many INCREMENTAL BLOCKS appear below AND
how many values are in each category marked INCR_VECTOR below)
7

probability of the crossover (INCR_VECTOR - for each incremental step
different
value in another row)
0.3
0.3
0.3
0.3
0.3
0.3
0.3

probability of mutation (per individual) (INCR_VECTOR)
0.7
0.7
0.7
0.7
0.7
0.7
0.7

detailed mutation probabilities for all operators (INCR_VECTOR all)
MUT_NEW_RANDOM_TRANSITION
0.25
0.25
0.25
0.25
0.25
0.25
0.25
MUT_DELETE_RANDOM_TRANSITION
0.1
0.1
0.1
0.1
0.1
0.1
0.1
MUT_NEW_STATE
0.2
0.2
0.2
0.2
0.2
0.2
0.2
MUT_RANDOM_STATE_DELETED
0.05
0.05
0.05
0.05
0.05
0.05
0.05
MUT_RANDOM_TRANSITION_MUTATED
0.25
0.25
0.25
0.25
0.25
0.25

0.25
MUT_NEW_RANDOM_INDIVIDUAL
0.05
0.05
0.05
0.05
0.05
0.05
0.05
MUT_SPLIT_TRANSITION
0.05
0.05
0.05
0.05
0.05
0.05
0.05
MUT_CHANGE_STARTSTATE
0.05
0.05
0.05
0.05
0.05
0.05
0.05

p_trim (probability of trimming all states and transitions that were not
used) (INCR_VECTOR)
0.5
0.5
0.5
0.5
0.5
0.5
0.5

p_newinlast (probability of creating new transition in the state which was
terminal) (INCR_VECTOR)
0.5
0.5
0.5
0.5
0.5
0.5
0.5

number of individuals (population size) (INCR_VECTOR)
100
200
300
300
300
200
200

number of generations (total - all steps together)
600

portion of population to replace (INCR_VECTOR)
1.0
1.0
1.0
1.0
1.0
1.0
1.0

selection type (1 = RouletteWheel, 2 = Tournament)

1
1
1
1
1
1
1

total number of modules in the controller (INCR_VECTOR)
10
10
10
10
10
10
10

module message data in file
project/cargo/modules/alldata.dat

module specification files for all modules - the modules must be listed
in the order of their module ids! (INCR_VECTOR)
project/cargo/modules/navigate.mod
project/cargo/modules/cargoloader.mod
project/cargo/modules/motordriver.mod
project/cargo/modules/lnflwer.mod
project/cargo/modules/avoidance.mod
project/cargo/modules/explore.mod
project/cargo/modules/bumpertracker.mod
project/cargo/modules/linetracker.mod
project/cargo/modules/lighttracker.mod
project/cargo/modules/beep.mod

project/cargo/modules/navigate.mod
project/cargo/modules/cargoloader.mod
project/cargo/modules/motordriver.mod
project/cargo/modules/lnflwer.mod
project/cargo/modules/avoidance.mod
project/cargo/modules/explore.mod
project/cargo/modules/bumpertracker.mod
project/cargo/modules/linetracker.mod
project/cargo/modules/lighttracker.mod
project/cargo/modules/beep.mod

project/cargo/modules/navigate.mod
project/cargo/modules/cargoloader.mod
project/cargo/modules/motordriver.mod
project/cargo/modules/lnflwer.mod
project/cargo/modules/avoidance.mod
project/cargo/modules/explore.mod
project/cargo/modules/bumpertracker.mod
project/cargo/modules/linetracker.mod
project/cargo/modules/lighttracker.mod
project/cargo/modules/beep.mod

project/cargo/modules/navigate.mod
project/cargo/modules/cargoloader.mod
project/cargo/modules/motordriver.mod
project/cargo/modules/lnflwer.mod
project/cargo/modules/avoidance.mod
project/cargo/modules/explore.mod
project/cargo/modules/bumpertracker.mod
project/cargo/modules/linetracker.mod
project/cargo/modules/lighttracker.mod
project/cargo/modules/beep.mod

project/cargo/modules/navigate.mod
project/cargo/modules/cargoloader.mod

project/cargo/modules/motordriver.mod
project/cargo/modules/lnflwer.mod
project/cargo/modules/avoidance.mod
project/cargo/modules/explore.mod
project/cargo/modules/bumpertracker.mod
project/cargo/modules/linetracker.mod
project/cargo/modules/lighttracker.mod
project/cargo/modules/beep.mod

project/cargo/modules/navigate.mod
project/cargo/modules/cargoloader.mod
project/cargo/modules/motordriver.mod
project/cargo/modules/lnflwer.mod
project/cargo/modules/avoidance.mod
project/cargo/modules/explore.mod
project/cargo/modules/bumpertracker.mod
project/cargo/modules/linetracker.mod
project/cargo/modules/lighttracker.mod
project/cargo/modules/beep.mod

project/cargo/modules/navigate.mod
project/cargo/modules/cargoloader.mod
project/cargo/modules/motordriver.mod
project/cargo/modules/lnflwer.mod
project/cargo/modules/avoidance.mod
project/cargo/modules/explore.mod
project/cargo/modules/bumpertracker.mod
project/cargo/modules/linetracker.mod
project/cargo/modules/lighttracker.mod
project/cargo/modules/beep.mod

number of fsas that are part of the genome (INCR_VECTOR)
(they will be saved to project/cargo/fsa/$project_id/$step_number)
1
1
1
2
2
2
2

module ids for the fsas that are evolved (each on separate line)
(INCR_VECTOR)
5

4

4

2
4

2
4

2
4

2
4

number of fsas that are fixed and loaded from file (INCR_VECTOR)
1
2
2
2
2

2
2

module ids for the fsas that are fixed and loaded from file (one per line)
followed by file name (INCR_VECTOR) ; the extension .module_number will
be added to each file automatically
#---s0
6
project/cargo/fsa-handmade/fsa.dat
#---s1
5
project/cargo/fsa/sequential/1/fsa.dat.evolved
6
project/cargo/fsa-handmade/fsa.dat
#---s2
5
project/cargo/fsa/sequential/1/fsa.dat.evolved
6
project/cargo/fsa-handmade/fsa.dat
#---s3
5
project/cargo/fsa/sequential/1/fsa.dat.evolved
6
project/cargo/fsa-handmade/fsa.dat
#---s4
5
project/cargo/fsa/sequential/1/fsa.dat.evolved
6
project/cargo/fsa-handmade/fsa.dat
#---s5
5
project/cargo/fsa/sequential/1/fsa.dat.evolved
6
project/cargo/fsa-handmade/fsa.dat
#---s6
5
project/cargo/fsa/sequential/1/fsa.dat.evolved
6
project/cargo/fsa-handmade/fsa.dat

########### trigger messages specifications for all modules that are evolved
(INCR_VECTOR)

#---------step0
trigger message specification block - module 5 - avoidance
5
number of trigger messages
3
list of the messages
SENSORS_BUMPERS_PRESSED
SENSORS_BUMPERS_RELEASED
AVOIDANCE_START

#---------step1
trigger message specification block - module 4 - lnflwer
4
number of trigger messages
2
list of the messages
SENSORS_LINE_ENTER
SENSORS_LINE_LEAVE

#---------step2
trigger message specification block - module 4 - lnflwer
4
number of trigger messages

4
list of the messages
SENSORS_LINE_ENTER
SENSORS_LINE_LEAVE
SENSORS_LIGHT_ENTER
SENSORS_LIGHT_LEAVE

#---------step3
trigger message specification block - module 2 - CARGOLOADER
2
number of trigger messages
1
list of the messages
SENSORS_TARGET_MARK

trigger message specification block - module 4 - lnflwer
4
number of trigger messages
5
list of the messages
SENSORS_LINE_ENTER
SENSORS_LINE_LEAVE
SENSORS_TARGET_MARK
SENSORS_LIGHT_ENTER
SENSORS_LIGHT_LEAVE

#---------step4
trigger message specification block - module 2 - CARGOLOADER
2
number of trigger messages
1
list of the messages
SENSORS_TARGET_MARK

trigger message specification block - module 4 - lnflwer
4
number of trigger messages
5
list of the messages
SENSORS_LINE_ENTER
SENSORS_LINE_LEAVE
SENSORS_TARGET_MARK
SENSORS_LIGHT_ENTER
SENSORS_LIGHT_LEAVE

#--------step5
trigger message specification block - module 2 - CARGOLOADER
2
number of trigger messages
1
list of the messages
SENSORS_TARGET_MARK

trigger message specification block - module 4 - lnflwer
4
number of trigger messages
5
list of the messages
SENSORS_LINE_ENTER
SENSORS_LINE_LEAVE
SENSORS_TARGET_MARK
SENSORS_LIGHT_ENTER
SENSORS_LIGHT_LEAVE

#--------step6
trigger message specification block - module 2 - CARGOLOADER
2
number of trigger messages
1
list of the messages
SENSORS_TARGET_MARK

trigger message specification block - module 4 - lnflwer
4
number of trigger messages
5
list of the messages
SENSORS_LINE_ENTER
SENSORS_LINE_LEAVE
SENSORS_TARGET_MARK
SENSORS_LIGHT_ENTER
SENSORS_LIGHT_LEAVE

########## trigger msgs end

max. number of states for each evolved module (INCR_VECTOR)
4

5

5

4
6

4
6

4
8

4
10

min. init. number of states for each evolved module (INCR_VECTOR)
1

1

1

1
1

1
1

1
1

1
1

max. init. number of states for all modules evolved (INCR_VECTOR)
4

5

5

4
6

4
6

4
8

4
10

max. count of transitions in one state (only 1 number for all modules)
(INCR_VECTOR)
5
5
5
5
5
7
8

min. count of transitions in one state (only 1 number all modules)
(INCR_VECTOR)
1
1
1
1
1
1
1

max. init # of transitions in one state (1 number) (INCR_VECTOR)
4
4
4
4
4
4
4

min. init # of transitions in one state (1 number) (INCR_VECTOR)
2
2
2
2
2
2
2

probability that the outgoing message is sent in the incoming fsa transition
0.1

phi for the learning momemtum (used for increments) (INCR_VECTOR)
0.2
0.2
0.2
0.2
0.2
0.2
0.2

name of the environment-description project file
project/cargo/cfg/sequential4.prj

previously saved incremental steps filename table
how many they are

#1
0
filenames (these are indexed from (-1)...(-how_many)).
#project/cargo/population/for_sequential/1

list of steps that are requested to be saved into file for possible
continuation of evolution
how many they are
7
which steps (one per line, steps are indexed starting with 0)
0
1
2
3
4
5
6
and the filenames
project/cargo/population/sequential_/0
project/cargo/population/sequential_/1
project/cargo/population/sequential_/2
project/cargo/population/sequential_/3
project/cargo/population/sequential_/4
project/cargo/population/sequential_/5
project/cargo/population/sequential_/6

prefix formula that can include variables (parenthesis treated as whitespace)
(INCR_VECTOR)
gennum ... current generation,
gennum-thisstep ... current generation of this step
best-fitness ... best fitness of the last generation
avg-fitness ... average fitness of the last generation
learning-momentum ... m_new = phi * m_old + (best_fitness -
last_best_fitness)
num-eval ... total number of evaluations so far
num-eval-thisstep ... number of evaluations since the beginning of this
step
total-gennum ... total planned number of generations defined above
real-runtime ... real time since application start in seconds

numeric constants, and binary predicates &, |, ^, =, <, >, [,], !
and binary operators +, -, *, /
([means <=;] means >=; ! means !=)

#skip first two steps, they are already computed
&] best-fitness 295000 < learning-momentum 50
&] best-fitness 900000 < learning-momentum 0.001
&] best-fitness 900000 < learning-momentum 0.001
&] best-fitness 800000 < learning-momentum 1
&] best-fitness 400000 < learning-momentum 1
&] best-fitness 400000 < learning-momentum 50
&] best-fitness 700000 < learning-momentum 50

population pass method from all previous steps:
number of directly preceding steps (INCR_VECTOR)
0
0
1
1
1
1
1

and their list (negative values are taken from file according to previous
steps filename table) (INCR_VECTOR)
#-1
1
2

3
4
5

for all fsas that are present in k multiple steps, specify the ratios
for blending - p-portion of the original population will come from copied
individuals, t-portion of the new population will be born by copying and
mutating x-times
and the rest of the new population will be initialized randomly
(INCR_VECTOR)
#-------k-times: (where k is the number of fsas evolved in this step)
mid
p_1 t_1 x_1
...
p_nsteps t_nsteps x_nsteps
#-------
= mid - identifies fsa; p_i identifies portion of the whole (1.0)
new population, where the fsa for given mid will be generated by
copying
individuals from i-the of the directly preceding steps listed above
t_i represents the portion which will be copied and mutated x_i
times,
q identifies portion of the new pop. which will have the fsa for mid
initialized randomly.
copying fsas from previous steps and mutating x_i times
the sum of q and all p_i for all mids together should be less than 1.
probabilities for all preceding steps have to be listed
(even if this fsa doesn't occur in some of them - when the p_i
should be 0)
0

0

4
0.3 0.4 0.3 2
#0.5 1.0 0.0 0
0

2
0.0 0.1 0.0 1
4
0.4 0.2 0.3 2
0

2
0.5 0.5 0.3 2
4
0.5 0.5 0.3 2
0

2
0.5 0.5 0.3 2
4
0.5 0.5 0.3 2
0

2
0.5 0.5 0.3 2
4
0.5 0.5 0.3 2
0

the list is terminated by extra row with 0
note: in the first step, or step that has no preceding step since there are
no preceding
steps, the population is generated just randomly and this structure should
be omitted

number of starting positions for the objective function (INCR_VECTOR)
3
3
3
3
3
3
3

number of runs from all starting locations (INCR_VECTOR)
1
4
4
4
2
1
2

fitness function timeout [s] (INCR_VECTOR)
150
150
150
150
200
250
400

fitness checkpoints (if the fitness at given time is less than specified,
the individual is killed and its currently gained fitness is used)
(INCR_VECTOR)

format: simulation_time required_fitness (list should be ordered by time)
10.0 200
or:
p q
t1 dt
where p - portion of population that is taken into account to get average
progress
(0 - only best individual)
q - contstraint requirement multiplication quotient for measured
fitness progress
t0 - first checkpoint (0 = right from the start)
dt - checkpoint time interval (ms of simulated time)
their number or -1 for automatic checkpoints
#-1
#0 0.05
#20000 5000

#-1
#0 0.05
#20000 5000

#-1
#0 0.05
#20000 5000

#-1
#0 0.05
#20000 5000

#-1
#0 0.05
#20000 5000

#-1
#0 0.05
#20000 5000

#-1
#0 0.05
#20000 5000

0
0
0
0
0
0
0

fitness function weights

w_obstacle_time (INCR_VECTOR)
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0

w_below_light_time (INCR_VECTOR)
0.0
0.0
0.0
0.0
0.0
0.0
0.0

w_following_line_time (INCR_VECTOR)
0.0
5.0
-5.0
#-5.0
0.1
0.0
0.0
0.0

w_following_line_below_light_time (INCR_VECTOR)
0.0
0.0
10.0
10.0
1.0
0.1
0.0

w_total_distance (INCR_VECTOR)
0.0
0.0
0.0
0.0
0.0
0.0
0.0

w_robot_moving_changed (INCR_VECTOR)
0.0
100.0
0.0
3.0
0.0
0.0
0.0

cnt w_script_count[cnt] - cnt should match the number of scripts in the
simulation.prj (INCR_VECTOR)
#--step0
0
#--step1
0
#--step2
0
#--step3
4
0.0
500000.0
0.0
0.0
#--step4
4
0.0
100000.0
0.0
0.0
#--step5
4
0.0
10000.0
0.0
100000.0
#--step6
4
0.0
0.0
0.0
100000.0

cnt w_active_area_count[cnt]; (INCR_VECTOR)
0
0
0
0
0
0
0

w_num_states (INCR_VECTOR)
-10.0
-10.0
-10.0
-10.0
-10.0
-10.0
-10.0

w_num_trans (INCR_VECTOR)
-5.0
-5.0
-5.0
-5.0
-5.0
-5.0
-5.0

w_offset (the score is lifted by this constant to avoid negative values)
(INCR_VECTOR)
300000.0
300000.0
300000.0
300000.0
300000.0

300000.0
300000.0

w_suppress_score_before_load (0 or 1, no scores are accummulated before
cargo is loaded) (INCR_VECTOR)
0
0
0
0
1
1
0

combine_start_loc (0 - average, 1 - worst fitness, 2 - best fitness, 3 -
geom. mean, 4 - worst+geom)
4
4
4
4
4
4
4

end of fitness function weights

name of the output log file for ea
log/ea_sequential.log

name of the galib output log file with statistics
log/ga_sequential.log

project_id for fsa and trajectory file locations
sequential

project_id for cache
sequential_

use_preserved_fitness - if nonzero, previous values in the database will
not be deleted on startup - use with caution, leave 0 if not sure
(INCR_VECTOR)
0
0
0
0
0
0
0

commands to be executed after each incremental step on the slave if running
in distributed mode (only 1 line per step, use 'none' if no commands)
(INCR_VECTOR)
scp cargo@search:current3/project/cargo/fsa/sequential_/0/*.evolved.*
/home/current3/project/cargo/fsa/sequential/0
scp cargo@search:current3/project/cargo/fsa/sequential_/1/*.evolved.*
/home/current3/project/cargo/fsa/sequential/1
scp cargo@search:current3/project/cargo/fsa/sequential_/2/*.evolved.*
/home/current3/project/cargo/fsa/sequential/2
scp cargo@search:current3/project/cargo/fsa/sequential_/3/*.evolved.*
/home/current3/project/cargo/fsa/sequential/3
scp cargo@search:current3/project/cargo/fsa/sequential_/4/*.evolved.*
/home/current3/project/cargo/fsa/sequential/4
scp cargo@search:current3/project/cargo/fsa/sequential_/5/*.evolved.*
/home/current3/project/cargo/fsa/sequential/5
scp cargo@search:current3/project/cargo/fsa/sequential_/6/*.evolved.*
/home/current3/project/cargo/fsa/sequential/6

commands to be executed after each incremental step on the master if running

in distributed mode (only 1 line per step, use 'none' if no commands)
(INCR_VECTOR)
scp /home/current3/project/cargo/fsa/sequential/0/*.evolved.*
cargo@search:current3/project/cargo/fsa/sequential_/0
scp /home/current3/project/cargo/fsa/sequential/1/*.evolved.*
cargo@search:current3/project/cargo/fsa/sequential_/1
scp /home/current3/project/cargo/fsa/sequential/2/*.evolved.*
cargo@search:current3/project/cargo/fsa/sequential_/2
scp /home/current3/project/cargo/fsa/sequential/3/*.evolved.*
cargo@search:current3/project/cargo/fsa/sequential_/3
scp /home/current3/project/cargo/fsa/sequential/4/*.evolved.*
cargo@search:current3/project/cargo/fsa/sequential_/4
scp /home/current3/project/cargo/fsa/sequential/5/*.evolved.*
cargo@search:current3/project/cargo/fsa/sequential_/5
scp /home/current3/project/cargo/fsa/sequential/6/*.evolved.*
cargo@search:current3/project/cargo/fsa/sequential_/6

stop-file - when this file is detected after the generation is completed,
the application
terminates (and saves the population of the current incremental step, if
requested)
project/cargo/true.stop_computing

skip-file - when this file is detected after the generation is completed,
the incremental
step is completed and the application proceeds with the next incremental
step (the incremental
step to skip must be added to the end of this file name!)
project/cargo/true.skip_step

save_fsa_file
1

use_benchmark (for distributed slaves)
0

master_startup_delay (how long time master should wait for slaves to start
before submitting work, seconds)
150

threshold for m_new for random reinitialization of population (INCR_VECTOR)
0=not used
0.5
0.5
0.5
0.5
0.5
0.5
0.5

if the learning is stopped, reinitialize the following portion of population
randomly (INCR_VECTOR)
0.7
0.7
0.7
0.7
0.7
0.7
0.7

whether robot_moving_changed applies only while following line:0/1
(INCR_VECTOR)
1
1
1
1
1
1

1

w_robot_moving_changed_under_light (INCR_VECTOR)
0.0
0.0
100.0
100.0
1.0
0.0
0.0

sequential.4.prj.3: description of environment

modules message data in file (used only in non-evolutionary mode)
project/cargo/modules/alldata.dat

number of modules in use
10

their list (mid and name)
1
navigate
2
cargoloader
3
motordriver
4
lnflwer
5
avoidance
6
explore
7
bumpertracker
8
linetracker
9
lighttracker
10
beep

list of the modules that use fsa (0-terminated)
2
4
5
6
0

version of code to start
1

environment type: RECTANGLE

1

environment dimensions: width height

1.0 1.0

number of obstacles

5

obstacle description: type(RECTANGLE) x y width height (0,0 is a bottom
left corner)

1 0.2 0.2 0.1 0.1
1 0.4 0.7 0.1 0.1
1 0.6 0.6 0.1 0.1
1 0.8 0.85 0.1 0.1
1 0.7 0.25 0.1 0.1

number of floor marks

#4
2

another floor mark: type(LINE) x y width Nsegments value

x1 y1
...
xN yN
the coordinates of vertices of this polyline are
in the center of the line (i.e. there's a line around
these points in all directions up to a distance
width/2 - i.e. round corners)
-> this means that you should start/end the line in distance
width/2 from where it actually ends

2 0.4 0.4 0.05 5 30
0.35 0.4
0.3 0.8
0.25 0.8
0.22 0.5
0.03 0.5

2 0.8 0.5 0.05 3 30
0.8 0.75
0.6 0.8
0.6 0.97

floor marks description: type(RECTANGLE) x y width height value

1 0.5875 0.975 0.025 0.025 46
1 0.0 0.4875 0.025 0.025 46

number of light sources

2

light source description: type(POINTLIGHT) x y z intensity

1 0.8 0.5 1 1
1 0.4 0.4 1 1

environment light conductivity constant 0-1

0.3

number of active components

5

active areas description format (all conditions are in conjuction):

type ; now always 1=conditional active area
activation/delay ; -1: one time only,
; 0: on each entrance,
; d: on each entrance, if d [ms] passed since last
entrance
x y width height ; location of the robot in the environment to activate
heading tolerance ; robot heading to activate (-1: any, otherwise:
<heading-tolerance; heading+tolerance>)
fork_state (r0) ; fork state to activate (-1: any, 1, 2, 3, 4 for UP,
DOWN, MOVING_UP, MOVING_DOWN resp.)
fork_position_min fork_poisition_max (r1) ; fork must be <min;max> to
activate, <0.0;1.0> for any
carrying_cargo (r2) ; state of cargo (-1: any, 0, 1, 2, 3, 4 for NO, YES,
PUSHING, UNLOADING1, UNLOADING2)
{reg min max}* ; reg must be <min;max> 0-31 system registers, 32-255
user registers, min, max are 'doubles'
-2 event_index ; which script event to execute (refers to the list of
events below)

loading station: signal to robot on entrance
1
-1

#0.58975 0.965 0.025 0.01
0.58975 0.965 0.075 0.01
#0.0 0.25
0.0 0.75
-1
0.0 1.0
0
-2 1

loading station: cargo loading - switching lamps and active areas
1
-1
#0.58975 0.975 0.025 0.025
0.58975 0.975 0.075 0.025
#3.1415926536 0.25
3.1415926536 0.75
2
0.0 0.3
0
-2 2

unloading station: signal to robot
1
-1
#0.025 0.48975 0.01 0.025
0.025 0.48975 0.01 0.075
#4.712389 0.25
4.712389 0.75
1
0.3 1.0
1
-2 1

unloading station: start cargo unloading
1
-1
#0.0 0.48975 0.025 0.025
0.0 0.48975 0.025 0.075
#1.5707963 0.25
1.5707963 0.75
-1
0.0 1.0
1
-2 3

unloading station: cargo unloaded - switching lamps and active areas
1
-1
#0.025 0.48975 0.01 0.125
0.025 0.48975 0.01 0.075
#1.5707963 0.25
1.5707963 0.75
2
0.0 0.3
4
-2 4

number of time events

1

time events description: type periodic [start count] time event_index
(refers to list of events below)
following types are recognized
1 ... SCRIPT EVENT
periodic is
either 0, then time is a global simulation time

or 1, then also the start and count arguments must be given. start is
global simulation time of
the first occurence, count is number of occurences and time is the
period

in the beginning, turn on light 1 and off light 2

1 0 0 4

number of script events

4

script events description

multiple lines for each script,
each line contains a command, script terminated by command 0 (STOP)
following commands are recognized:
10 light_ID ... (TURN LIGHT ON)
11 light_ID ... (TURN LIGHT OFF)
12 active_area_index ... (reinitialize active area)
13 msg ... (message msg received from IR port)
14 reg ... set current register to reg (0-31 system registers, 32-255
user registers)
15 val ... put value (double) val into current register

light_ID start from 1

script 1: send msg to the robot that it is close to cargo loading/unloading
station

13 84
0

script 2: turn on light 2, turn off light 1, reinitialize active areas 3, 4,
5, set carrying_cargo = 2

10 2
11 1
12 3
12 4
12 5
14 2
15 2
0

script 3: set carrying_cargo = 3

14 2
15 3
0

script 4: turn on light 1, turn off light 2, reinitialize active areas 1, 2,
set carrying_cargo = 0

10 1
11 2
12 1
12 2
14 2
15 0
0

type of robot (round)

1

dimensions:

- radius

0.025

- fork size relative to radius

0.3

robot speed ratio (how the motor speed is translated to robot speed)
should be estimated by Henrik's method

0.00000150

fork relative ratio - moving upwards (per millisecond of simulated time)

0.0012

fork relative ratio - moving downwards (per millisecond of simulated time)

0.0014

initial location and heading: number of locations followed by x y heading

12
#for evolving avoidance
0.5 0.5 0.0
0.76 0.45 0.0
0.1 0.9 0.5
0.5 0.5 0.0
0.76 0.45 0.0
0.1 0.9 0.5
0.5 0.5 0.0
0.76 0.45 0.0
0.1 0.9 0.5
0.5 0.5 0.0
0.76 0.45 0.0
0.1 0.9 0.5
#0.5 0.5 0.0
#0.76 0.45 0.0
#0.76 0.45 0.0
#0.76 0.45 0.0
#0.76 0.45 0.0
#0.76 0.15 0.0

#0.95 0.7 2.4
#0.5 0.5 0.0
#0.1 0.1 1.2
#0.7 0.1 0.2
#0.91 0.75 1.0

#4.8

time slowdown constant (how many times slower should be the simulation
time than the system time)

200

trajectory file
(used only when run without evolution)

project/cargo/traj/sequential/3/t

fsa files for all fsas (these are not used when called by objective
function,
in that case the values specified in evolutionary config file are used)
list is terminated by 0. each filename is automatically suffixed
with .x, where

x is the number of module

2
project/cargo/fsa-handmade/fsa.dat
4
project/cargo/fsa-handmade/fsa.dat
5
project/cargo/fsa-handmade/fsa.dat
6
project/cargo/fsa-handmade/fsa.dat
0

how often does the viewer refresh the visual output (in ms) zero means no
viewer, default: 200

#200
0

realtime (0/1): are we running realtime (1) or time-shared (0); realtime
must be run as root
1

save trajectory file (0/1)
0

NOISE LEVELS:

sensor1 gaussian noise level variance (0 = noise free)
0.0

sensor2 gaussian noise level variance (0 = noise free)
0.0

sensor3 gaussian noise level variance (0 = noise free)
0.0

robot speed gaussian noise level variance (0 = noise free)
0.0

robot heading gaussian noise level variance (0 = noise free)
0.0

robot heading change by obstacle gaussian noise level variance (0 = noise
free)
0.0

