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Abstract 
Designing controllers for mobile robots is an advanced engineering task. We develop a 
method for designing the controllers automatically using artificial evolution. In contrast 
to similar approaches, our aim is to evolve controllers for more complex tasks involving 
multiple interactions and behaviors. We achieve this by providing a set of pre-designed 
simple low-level behaviors, which are either programmed manually or designed 
automatically. The output of our algorithm is a behavior arbitration mechanism 
consisting of a set of finite-state automata. Inspired by the incrementality of the 
Behavior-Based Robotics, we employ incremental evolution to decrease the size of the 
search space and to automatically design the robot controller in a bottom-up manner. 

Introduction 
In order to utilize ever advancing technological developments of materials, power 
supplies, computer technology, sensors, and actuators in the field of robotics, suitable 
controller architectures at a correspondingly advanced level need to be developed for 
these devices. Mobile robots could perform complicated tasks in unknown, 
nondeterministic, changing, noisy, and unpredictable environments, if methods for 
designing robot controllers could be developed. Successful completion of tasks will 
require the controllers to be adaptive and learning. Systematic research efforts to study 
possible methods for building such controllers are to be spent. 

Designing a controller for a particular task for a mobile robot requires detailed 
knowledge of the robot hardware and software and an experienced engineer. We are 
seeking an alternative: automatic design of the controller. Our aim is to minimize the 
efforts and maximize the quality. One of the most popular methods for automatic design 
of robot controllers is Reinforcement Learning [22]. An alternative employed also by 
this work are Evolutionary Algorithms (EA) [17]. It has been demonstrated that EAs 
can be successfully used to design the controllers for trivial tasks such as wall-following, 
and obstacle-avoidance, or target tracking. The controllers are often based on 
arbitrarily-connected neural networks [2]. Adaptive behaviors on a different level could 
possibly be achieved by approaches [5] that evolve the neuron learning rules instead of 
the connection weights, which are changing dynamically during the task execution. 
Nevertheless, it appears that evolving more complex behaviors in a single evolutionary 
run is not plausible due to a complex search space, and becomes impossible without 
additional guidance of the EA. One way of self-guiding of an evolutionary algorithm is 
the use of co-evolution [7]. Co-evolution, however, applies well only to a narrow class 
of problems where two entities can be competing for the same resource. In addition, it 
suffers from possible cyclic loops in the relation of strategy dominance in effect causing 
stagnation of the algorithm instead of progression. Another possible guidance, adopted 
also in this work, is dividing the target task into more simple incremental steps [6]. This 
strategy is more general; however, it requires a scenario of incremental evolutionary 
steps. How to devise such incremental steps, and how to setup such incremental EAs is 
the focus of this and future work. 



The complexity of interactions of a mobile robotic system implies a structured (non-
monolithic) controller architecture. Traditional AI approaches based on centralized-
processing and Sense-Plan-Act cycle have difficulties dealing with simultaneous robot 
activities that have different priorities. Even if such a controller would be successfully 
designed, its maintainability, modifiability, and performance would be compromised. 
Mobile robots must behave according to the outcome of several independent threads of 
reasoning. Therefore a modular architecture with reasoning modules executing in 
parallel is suitable. On the bottom side, these modules are as simple as direct reactive 
connections between sensors and actuators. On the top side, these modules might 
perform long-term reasoning inferences running on the background with low priority. 
These ideas are reflected well in various Behavior-Based (BB) and hybrid architectures 
[1]. One of the challenges of BB design is how the individual modules will be 
coordinated. This is referred to as action-selection problem or behavior arbitration; an 
overview is in [21]. 

In this work, we aim at evolutionary design of behavior arbitration for a controller of a 
mobile robot performing a non-trivial task, where simple reactive controller would not 
be sufficient. The controller has a particular BB architecture, while the arbitration is 
based on a set of finite-state automata. The design is the output from an incremental 
evolutionary algorithm. Further sections of this article discuss our controller 
architecture, evolutionary algorithm, simulation framework, incremental evolution 
method, example task setup, obtained results, further work, and conclusions. 

Related work 
Our efforts are to combine and integrate the ideas from several independent fields. The 
main area of interest is the field of Evolutionary Robotics [2, 5, 6, 8, 10]. Most of the 
work in the field is focusing on adaptive mobile robots with neural controllers. 
Inspiration from biology brings the laws of natural Darwinian evolution and motivates 
towards long-term evolution of individuals that successfully perform in their artificial 
life environment. In these cases, the focus is not on building systems that can be directly 
useful today or tomorrow, rather on the study of how the natural principles observed in 
the living species apply to the artificial robotic systems built by us. It is often not 
important what the agent will be able to do when the evolution completes, rather how 
the evolutionary process progresses, and how it interacts with the agent learning 
abilities. Aim is at answering the questions of how we could imitate the clever and very 
effective animal behavior that relies on imperfect and irregular patterns, and how to 
build artificial control systems that would have similar properties of the animal brains. 
Naturally, researchers with such motivations study controllers based on artificial neural 
networks, and explore various neural architectures. The systematic research efforts start 
and still progress with the early systems capable of obstacle avoidance, wall-following, 
target recognition and following, box pushing, simple autonomous flight, or survival of 
agents in artificial environment. It is sincere to point out that most (if not all) of the 
resulting evolved controllers perform a behavior that can easily be achieved by a 
manually programmed controller of small or moderate difficulty. However, the 
researchers in the field cull the argument stressing their interest in adaptive and self-
organizing systems, and the early stages of the research field. 

Another group of research efforts study the possible architectures for intelligent mobile 
robot controllers for robots performing real tasks in real environments. Traditional AI 
methods for building robotic controllers [15] typically rely on extensive centralized 
planning and sense-plan-act cycle. These approaches are limited mainly by their 
complexity, they are difficult to maintain, test, and debug. Others proposed modular 



incremental architectures of independent modules responsible for different behaviors 
that can be developed, tested, debugged, and even exchanged individually, and usually 
run in parallel when combined in a complex controller. The main research challenge in 
this area (called after the behaviors BB Robotics [1]) is how the behaviors can be 
coordinated, and how they should interact in order to share the agent resources. 
Substantial work and an overview have been done by Pirjanian [21]. There have been 
only few attempts to generate arbitration mechanisms automatically based on the 
required task or robot purpose. Their usefulness can be supported by the following 
reasons: 

• Automatic method might explore unforeseen solutions that would otherwise be 
omitted by standard engineering approaches used in manual or semi-automatic 
design performed by a human. 

• Mobile robots can be built for general purpose, and the arbitration mechanism 
for different achievable tasks might have to be different, either for reasons of 
critical limits on their efficiency, the bounds on the controller capacity, or 
conflicting roles in different tasks. In such a case, generating the arbitration 
mechanism based on task description might be required. Having the option of 
automatic arbitration generation might save extensive amounts of work needed 
to hand-craft each arbitration mechanism. 

• Manual arbitration design might suffer from the lack of understanding of the real 
detailed interactions of the robot with its environment. These interactions might 
be difficult to describe analytically. Automatic arbitration design might capture 
the undergoing characteristics of the robot interactions more reliably, efficiently 
and precisely. 

Learning action selection (term sometimes used interchangeably with behavior 
arbitration) studies in his thesis Humphrys [8]. His focus is on the “communication” of 
agents that together form a controller; in fact, his agents are so simple that they 
correspond to the nodes in a recurrent neural network, with very few control actions 
generated by output nodes. Input nodes receive discrete sensing of an artificial ant 
moving on a rectangular grid. The topology and connection weights are evolved and the 
communication of the very few nodes in the network is studied on a standard artificial 
ant seeking food in a rectangular grid problem. 

The most valuable inspiration for our work stems from the work of Lee et al. [10], 
where the more complex, high-level task is decomposed hierarchically and manually 
into several low-level simple tasks, which can further be decomposed to low-level tasks. 
The reactive controller consists of primitive behaviors at lowest level and behavior 
arbitrators at higher levels, both with the same architecture of interconnected logic-gate 
circuit networks. The evolution proceeds from the lowest level tasks up the hierarchy to 
the target complex task. We see several possible improvements:  

• avoiding the centralistic architecture,  

• allowing for easier modification of task by introducing a new module without 
affecting substantially the existing controller hierarchy, and  

• removing the limitation to purely reactive tasks.  

The work has been continued on by the master thesis [18], where a football player has 
been evolved with the use of co-evolution. The qualitative change is in the ability to 
work with internal state (as contrasted to purely-reactive controllers), and more complex 



architecture allowing two types of arbitrations: 1) a sequence of several states, and 2) 
selecting the module with the highest activation value; where the activation value is 
exponentially decreasing over time, and reset to maximum on request of the module. 
Even though extensibility has been slightly improved from [10] and internal state was 
introduced, still only a limited subclass of finite-state automatons taking the arbitration 
role was supported. Reactive modules are not general, but have to follow with the 
simple unifying architecture only providing the activation level, and being based on the 
winner-take-all principle. Co-evolution that was used for increasing the difficulty of the 
evolutionary task could be applied due to the game character of the task, however it 
does not scale up to more general classes of tasks. 

Controller architecture 
A task of an autonomous robot usually consists of many interactions occurring, starting 
or ending at various time points. Between these events, the robot remains in some 
particular state. We consider state and event to be the crucial concepts for the controller 
architectures of the mobile robots. Many researchers advocated the use of neural 
network based controllers. However, the representation of states in the recurrent 
networks is still very poorly understood. Furthermore, responsiveness of neural 
networks to particular events is hard to asses and analyze, and the current learning 
mechanisms require thousands of interactions to learn even very simple behaviors. 
Controllers aiming at more complex tasks must have modular architectures, but it is yet 
unclear how this modularity can be efficiently achieved with neural networks, and what 
consequences it might have on their learning rules and algorithms. We suggest studying 
alternative architectures, which better reflect the concepts of robot state and 
environmental events. 

Our controller architecture is strongly inspired by BB robotics. The large numbers of 
interactions, which can arbitrarily occur at any time of robot execution, mean that many 
different activities can be triggered at any time; many different sensory inputs and their 
various aspects have to be monitored continuously. Instead of having one centralized 
learning module, BB robotics suggests distributed control in multiple behavioral 
modules. Our controller also consists of several independent modules, which are 
running simultaneously. Many of the individual interactions have to be coordinated, and 
the modules might need to exchange relevant information about their states. The 
modules communicate by sending asynchronous messages, which can be either 
broadcasted or sent to a specific target module. In principle, each module can access the 
robot’s low-level hardware (sensors and actuators), but a careful design approach 
leading to multiple abstract layer architectures should be taken. As a result, only very 
few modules (ideally one) should access each robot hardware resource and extract the 
relevant sensory information or synchronize the access to an actuator for all other 
modules. The competition for robot actuators is implemented using fixed or dynamic 
module priorities: the robot actuator executes the action requested by the module with 
the highest priority, or becomes idle, if no module requests an action. One of the main 
motivations for BB robotics is the incremental building of the robot and robot controller 
(bottom-up design). This implies the qualities labelled in the fields of software 
architecture as “modifiability” and “extensibility”. Indeed, to add new functionality to a 
working controller, it is sufficient to add a new module, and integrate it into the 
controller by modifying the message interface for all relevant modules to respond to the 
new interactions. Figure 1 shows an example of a controller, where the robot is 
randomly exploring environment turning more likely towards more illuminated regions, 
while avoiding obstacles, until it enters a the line, which it starts to follow. The added 



dashed module introduces new functionality: the robot will start following the line only 
if it is located in an area, which is illuminated. To achieve this change, the whole 
existing controller can be preserved, but the line-following controller will need to 
introduce a new state outside_illuminated_area, which can be triggered by the context 
switching module. In this state, the line following module will not start following a line. 

 
Figure 1. Extensibility of the controller. 

Ideally, the message interfaces of the modules should be defined as simple and as 
general as possible so that each module can easily be integrated into a controller. In this 
way, modules can be reused across different controllers, which are built for different 
purposes and tasks. To extend this idea further, hardware modules, such as sensors and 
actuators can have certain level of intelligence and be accessed with unified interfaces 
so that they can be easily interchanged and configured. This idea is well adopted by 
LEGO robotics sets [9], and there exist other similar toolkits, such as Microbric [25], 
Parallax robotics [26], or Handyboard [24]. The idea of easy integration of intelligent 
sensors into larger networks is at focus for large players like Intel, or for as small groups 
as InnoC with their Simple Sensor Networks [27]. One could argue that the robot 
controller should be general and give the robot all the possible functionality by 
including all the possible behavior modules. However, the memory and CPU capacities 
of practical robotic systems are always limited, and thus, using separate programs 
(controllers) for each task, instead of insisting on one general-purpose controller, can be 
more feasible. To achieve generality, all the modules might be stored in a long-term 
memory, and only the relevant modules might be retrieved into an operational memory 
when a particular task is being solved. The controller thus contains a set of specific 
behavior modules with clearly defined message interfaces, and a coordination 
mechanism, which makes these modules talk together as required by a particular task. 

Many previous approaches to the action-selection or behavior-arbitration problem are 
either centralized, for example [10] or too limiting, for example [13]. Our aim is to 
design a general architecture, which can cope with different design challenges in a 
systematic rather than an ad-hoc manner. In addition, this mechanism should be easy to 
integrate into the set of modules that are exchanging asynchronous messages. Each 
module has its own post-office module, which filters and translates the incoming 
messages into the messages recognized by the module itself, and which also monitors 
and possibly filters or modifies the messages being sent by the module. Since the state 
is a central concept in the controller, we chose to first study the post-offices that have 
the form of a finite-state automata. The state transitions are triggered by messages being 
received or sent by the module owning the post-office. Each state transition can result in 
a message being sent to the module or to other modules, see figure 2. Please see also 
figure 13 for examples of evolved FSAs and the representation of the transitions. 



 
Figure 2. Single behavior module with its arbitrating post-office finite-state machines. 

This coordination mechanism is distributed, and thus the standard advantages of the 
distributed systems: robustness, modularity, better communication throughput, better 
encapsulation and modifiability are gained for free. In particular, adding a new module 
to an existing controller requires only designing a new post-office for the added module 
and the minimum set of changes in post-offices of other modules, instead of inferring 
with all modules and modifying a centralized coordination mechanism.  

Let us explain the controller architecture on a simplified artificial example of a mouse 
robot acquiring a piece of cheese from a room and bringing it back to its mouse hole. 
The controller is shown in figure 3. The mouse explores the room in random 
movements, and whenever it smells or sees the cheese, it moves in its direction, grasps 
the food, and drags it back to its home.  

 
Figure 3. Example controller architecture for a mouse acquiring cheese task. 

The core of the controller is formed by several modules, which are implementations of 
simple competencies (grayed boxes). These competences alone do not give the robot 
any purpose or any intelligent behavior yet. They simply react to a predefined message 
interface and produce status messages whenever their actions produce a significant 



outcome. For example, the “locating cheese” competence receives inputs from the 
vision and smelling sensor and produces a desired direction of movement, if the cheese 
is detected. Whenever the cheese is detected, it reports the event by an outgoing 
message. The competencies might be provided by the robot builders, or programmed in 
any programming language. Alternately, they can be hand-designed or evolved finite-
state machines1, GP program trees, or neural networks. The architecture does not limit 
their internal architecture. Most of the competencies have their own thread of execution. 
The competencies might be understood as the “operating system” of the robot that 
provides higher-level interface for controlling the low-level robot hardware. 

The intelligence and a particular purpose of the controller are encoded in a set of post-
office modules, at most one post-office for each competence (post-offices are encircled 
by dashed boundaries at figure 3). The post-office modules are the communication 
interface competences with other competencies and the remaining parts of the controller: 
sensors, and actuators. All messages received and sent by a particular competence 
module pass through its post-office module. The post-office modules in our architecture 
are finite-state machines, but other languages or formalisms could be used in place, 
where the state transitions are triggered by incoming or outgoing messages, which may 
be transformed, or filtered. Transitions can optionally result in generating new messages. 
In this way, the functionality of the competence module is turned on, or off, or regulated 
in a more advanced way, depending on the current state of the task, environment, and 
the robot performance represented by the state of the post-office finite-state automaton. 
The post-office simply filters or modifies the messages so that the competence module 
takes actions that are suitable in a particular situation. For example, the random turning 
competence will be activated only while the robot is exploring the room and searching 
for the cheese, or when it accidentally dropped and lost the cheese on its way back. The 
post-office module of the random turning competence follows with the events 
performed by other modules, and adjusts its state to represent the current sitation. Please 
refer to the section ‘Example task’ below for another specific example. 

Evolutionary algorithm 
The goal of this work is to design controllers for mobile robots automatically by means 
of artificial evolution. We take the assumption that the hardware details of sensors and 
actuators are quite specific and the low level interactions of the controller with the robot 
hardware can be implemented efficiently and without much effort manually, before the 
target task is known: the behavior modules can be written in any available language or 
formalism manually. However, they can even be evolved automatically, if suitable. The 
part of the controller that we aim to design automatically here is the behavior 
coordination mechanism, in particular, a set of finite-state automatons (FSAs). The 
genotype representation consists of blueprints of FSAs for the set of modules for which 
the FSAs are to be designed automatically (some modules might work without post-
offices, other might use manually-designed post-offices, or some post-offices are held 
fixed because they are already evolved). An example of a genotype is in figure 4. 

The number of states and the number of transitions in each state vary (within specified 
boundaries). Transitions are triggered by messages (incoming or outgoing) and have the 
following format (please see figure 13 for examples, and the appendix for example of 
specification of the EA parameters including the specification of states, and transitions): 
(msg_type, new_state, msg_to_send_out, [msg_arguments],  
 msg_to_send_in, [msg_arguments]) 

                                                 
1 We use the terms finite-state machine and finite-state automaton interchangeably in this document. 



 
Figure 4. Controller architecture and genotype representation: left oval shows actual numeric 
genotype representation (it is a vector of numbers containing the number of states in FSA, number of 
incoming and outgoing transitions in each state, and detailed transition specifications as described 
above in the text), bottom oval shows symbolic representation as viewed by a viewer utility (used to 
analyze the evolved post-office modules); right oval shows the genotype structure for both incoming 
and outgoing messages for better explanation. Note that the outgoing messages in the viewed FSA 
are irrelevant when no other module is reacting to those particular types of messages. 

 

Figure 5. Example of crossover operator functionality (revisiting the mouse task). The two finite-
state automata on the left are combined into a single resulting automaton (one of the two offsprings) 
on the right. The state “not avoiding” is inherited from the parent shown above left, together with 
both states of the parent shown below left. The states carry with them all their outgoing transitions 
from the parent to the offspring. The transition destinations are pointed to randomly chosen states of 
the part of the offspring inherited from the other parent, see text for details. The mutation is shown 
by striking line over the previous message label, where it was replaced by another message, see text 
for list of mutation types. 



We use the standard genetic algorithm, with our specific initialization, crossover, and 
mutation operators. In the first stage, the designer prepares individual modules. For each 
module, he or she specifies the module message interface: the messages the module 
accepts and the messages it generates. In the second stage, the designer selects the 
modules for the controller and specifies lists of messages that can trigger incoming and 
outgoing transitions of the FSAs associated with each module. The remaining work is 
performed by the evolutionary algorithm.  

The GA-initialization operator generates random FSAs that comply with the supplied 
specification. The crossover operator works on a single randomly selected FSA. It 
randomly divides states of the FSAs from both parents into two pairs of subsets, and 
creates two new FSAs by gluing the alternative parts together. A simple example is 
shown at figure 5, where two FSAs with partial functionality, each having 2 states, are 
combined by the crossover operator to form a new FSA that has three states. Later, the 
transition in the state labelled “close to object” is mutated: the message produced by the 
transition is changed from steer_right to backup. 

The following paragraphs describe the crossover operator in detail. 

Let the states of the first parent be S = (S1, …, SK), and the states of the second parent be 
T = (T1, …, TL). The operator randomly picks a set of states that will be inherited by the 
first offspring from the first parent, O1fromS ∈ S, and a set of a possibly different 
cardinality, containing states that will be inherited by the second offspring from the 
second parent, O2fromT ∈ T. The first offspring will then consist of states O1fromS + (T – 
O2fromT), and the second offspring will consist of states O2fromT + (S – O1fromS). The state 
transitions cannot be always preserved, because the number of states and their 
numbering changes. Figure 6 visualizes the crossover operator in a diagram. 

 

 
Figure 6. Crossover operator. 
 



The following transitions are preserved: O1fromS to O1fromS, S – O1fromS to S – O1fromS, 
O2fromT  to O2fromT, T – O2fromT  to T – O2fromT. The states are renumbered according to the 
new state numbers. 

Since the transitions leading to states that are now part of the other offspring would 
point nowhere, we randomly generate mappings between the exchanged states of the 
two offspring. Since the numbers of states in these four sets are different, bijection is 
not possible and we need all four mappings – one in each direction for both parts. 
Mapping M1 of states in S – O1fromS  to states in T – O2fromT, mapping M2 of states in T – 
O2fromT to S – O1fromS, mapping M3 of states in O1fromS to O2fromT, and mapping M4 of 
states in O2fromT to O1fromS. The new numbers of states are taken into account when 
generating M1, M2, M3, and M4. 

The transitions are then modified using the generated mappings, the mappings M1 and 
M4 are used to generate the first offspring, the other two to generate the second 
offspring: 

Transitions that lead: 

  From x ∈ O1fromS  to y ∈ S – O1fromS are changed to M1(y), 
  From x ∈ O2fromT  to y ∈ T – O2fromT are changed to M2(y), 
  From x ∈ S – O1fromS  to O1fromS are changed to M3(y), 
  From x ∈ T – O2fromT  to O2fromT are changed to M4(y). 
 
The above transformation is attempting to maximize the genetic information passed 
from the parents to offspring by conservative approach, where the transitions originally 
pointing to the same state will point to the same state also in the offspring.  
 
The implementation of the crossover procedure: 

1. choose the index of FSA to work on 
2. randomly generate bits O1fromS[1..K] and O2fromT[1..L], 
3. based on O1fromS and O2fromT, generate SRENUM[1..K] and TRENUM[1..L], 
4. randomly generate M13[1..K], and M24[1..L] that represent M1, M2, M3, and M4, 
5. form O1 by copying states from O1fromS and T – O2fromT, and updating all 

transitions based on M1, M4, SRENUM, TRENUM, 
6. form O2 by copying states from O2fromT and S – O1fromS, and updating all 

transitions based on M1, M3, SRENUM, TRENUM. 

The mutation operator works upon a single FSA. One of the following operations is 
performed (the probabilities of the mutation types are parameters of the algorithm): 

• a new random transition is created, 
• random transition is deleted, 
• a new state is created (with minimum incoming and outgoing random 

transitions); in addition, one new transition leading to this state from another 
state is randomly generated, 

• a random state is deleted as well as all its incident transitions, 
• a random transition is modified: (one of its parts new_state, message_type, 

msg_to_send_out, msg_to_send_in is replaced by an allowed random value), 
• a completely random individual is produced (this operator changes all FSAs), 
• a random transaction is split in two and new state is created in the middle, 
• the initial state number is changed. 



In our experiments, we use roulette wheel and tournament selection schemes combined 
with steady-state or standard GA with elitism. Other parameters of the algorithm 
include (with these default values): pcrossover (0.3), pmutation (0.7), probabilities of all 
8 mutation types that sum up to 1: pnew_random_transition (0.25). 
pdelete_random_transition (0.1), pnew_state (0.2), prandom_state_deleted (0.05), 
prandom_transition_mutated (0.25), pnew_random_individual (0.05), psplit_transition 
(0.05), pchange_starting_state (0.05); population_size (100), number_of_generations 
(60), portion_of_population_to_replace  (0.2), number_of_modules in the controller 
(10), specification of the message interfaces and trigger messages for all modules, initial 
and boundary values for number of states and transitions, number of starting locations 
for the robot for each evaluation, timeout for the robot evaluation run, specification of 
the fitness function parameters, input, output, and log file locations, detials in appendix. 

Simulation framework 
The aim is to design controllers for real robots. Our current testing hardware platform is 
the LEGO Robotics RCX equipped with 32KB RAM, up to 3 sensors and 3 motors, 
running programs built using GNU C compiler and binutils with LegOS [16]. Testing 
the performance of each individual in hardware would be completely infeasible, and 
therefore a simulator is essential. The objective function of our evolutionary algorithm 
evaluates individuals in simulation; each individual is started from several starting 
locations. We upload the final evolved controller on the real hardware to verify its real-
world functionality. 

Two standard approaches to simulation can be distinguished: in a discrete event 
simulation, the events can occur only at the start of a distinct unit of time during the 
simulation – events are not permitted to occur in between time units. The state of the 
system changes and is updated at discrete time events. A continuous simulation system 
is trying to model the exact behavior of the simulated system, its state, and the outcome 
of the simulation using mathematical formulas. Our approach falls more in the category 
of continuous simulation. The simulated system generates events at discrete time units 
(for example, start the motor A, determine the value of sensor 1), but its environment is 
continuous, and the events can occur at an arbitrary time (robot running against an 
obstacle, or over some pattern drawn on the floor). Our ‘lazy simulation’ approach 
(inspired by lazy evaluation in functional programming languages) updates the state of 
the simulated system only when the robot controller interacts with the robot hardware. 
At that time instant, we suspend the simulated program, compute the current exact state 
of the simulated system by mathematical formulas, and determine the outcome of the 
interaction. The temporal granularity is thus limited only by the CPU or bus frequency. 
The simulated program is not interpreted by the simulator. It runs almost independently 
in the operating system of the simulating computer. However, instead of accessing the 
robot hardware, it accesses the simulator that is waiting in the background. For example, 
the robot controller program might be computing without interacting with the robot 
hardware for some time, during which the robot crosses several lines on the floor, 
triggers switching of the light by entering an active area, passes below a light, and 
bounces to a wall, where it remains blocked for a while. At that point in time, the robot 
controller wants to read a value of its light sensor, for instance, and only at that point in 
time, the simulator becomes active and computes all the sequence of the previous events 
that occurred, and the current location and situation of the robot and the environment. 
Finally, the required value of the sensor reading is determined and returned to the 
program, which resumes its execution. To achieve better performance, the simulator 
pre-computes expected events before resuming the simulated program. The pre-



computed information helps to test quickly whether the state of the robot or 
environment has changed since the last “interrupt”, without processing all the data 
structures of the simulator.  

None of the existing robot simulators satisfied our needs. We chose to implement our 
own simulator in language C, now available as open-source project [28]. The simulator 
is designed to cope with any program written in LegOS system, which controls an 
experimental robot with a compatible topology (figure 7 right). This allows us to use it 
both with our controller architecture, and with virtually any C-program that can control 
the robot. Small modifications would allow simulating robots with different topology. 

 
 
Figure 7. Camera setup for measuring the actual real-world outcome of the individual robot 
movements (left), the detail of the robot covered by black surface with 2 white marks detected by the 
calibrated software (centre), an experimental robot with high-lifting fork (right): its topology of the 
robot is compatible with a cylindrical shape with two independent motors propelling the wheels on 
the sides, one motor operating the high-lifting fork, front bumpers, and two light sensors pointing 
upwards and downwards. 

There are several issues related to simulation. First of all, many researchers pointed out 
that simulating robotic systems accurately is almost impossible. Each sensor and motor 
part has somewhat different characteristics, and the outcome of each sensory or motor 
action depends on imperfect interactions with the real world. In order to achieve a 
comparable performance of the simulated and real robotic system, noise has to be 
applied both to sensory readings, and motor actions. In addition, the outcome of the 
motor action is hard to compute, and it appears to be more feasible to measure it and 
construct a table of basic motor actions and their outcomes as proposed by Miglino et.al. 
[14]. Figure 7 left shows a camera setup in the computer vision laboratory in Maersk 
institute in Odense that we used to measure the outcome of basic robotic actions in real-
world. These values can be used to setup the simulator. 

Another important issue is the execution speed of the simulated controller. By default, 
the controller runs at a real-time speed (1-to-1 ratio). Even though the CPU speed of the 
simulating hardware is higher than the CPU speed of RCX, the resulting behavior is 
compatible, since the modules of the controller are typically spending their time waiting 
for some event to occur to change their state in response. Obviously, the running speed 
on a fast simulating hardware can be increased. However, after some threshold, further 
speedup is impossible even though the CPU utilization remains about 0.0%. This 
threshold is reached when the frequency of events exceeds the response frequency of 
the controller. For instance, when the robot is crossing a line drawn on the floor, one of 
the modules must detect the line in order to turn the robot and make it follow the line. 
Once the controller misses the line, because the thread of the line follower module does 
not always get a time slice between the time the robot enters and leaves the line, the 
simulation speedup is too high – even though the controller still spends most of the time 



waiting for some event, and keeping CPU utilization very low2. Even though the 
accuracy of the simulator was somewhat compromised due to different CPU and OS 
architectures between the HW of the real robotic system and the simulating computer, 
and some of the delay constants used in the controller had to be adjusted for different 
speed-up ratios, we found the simulator accuracy satisfiable. More precise simulations 
could be achieved using a real-time operating system. 

Incremental evolution 
Having explained the tools, settings, and supporting methods, we reached the main 
focus of our work. Researchers observed in the past [6] that evolving robot behavior is a 
hard challenge for any EA. The fitness landscape tends to be rough, and evaluation of 
each individual typically takes a long time. Trying to evolve more complex behaviors is 
often too difficult. Some groups, such as [6, 10] advocated the use of incremental 
evolution – where the complexity of the target task is decreased by decomposing it to 
several simpler tasks, which are easy enough to solve by an evolutionary algorithm (see 
[19] for an earlier overview of incremental evolution). We have identified five different 
ways, in which an evolutionary robotic algorithm can be incremental: 

Environment (where is the robot performing?): the earlier incremental steps can be run 
in a simplified environment where the frequency and characteristics of percepts of all 
kinds can be adjusted to make it easier for the robot to perform the task. For instance, 
the number of obstacles or distance to the target can be reduced, the environment can be 
made more deterministic, the noise can be suppressed, landmarks can be made more 
visible, etc. An example of this type of incrementality is [12], where box-shaped 
obstacles were replaced by more difficult U-shaped obstacles after the avoidance 
behavior for the former was evolved. 

Task (what is the robot doing?): the earlier incremental steps can require only part of 
the target task to be completed, or the robot might be trained to perform an independent 
simple task, where it learns skills that will be needed to successfully perform in the 
following tasks. An example of this type of incrementality is [6], where the gantry robot 
evolved forward movement first, followed by stages that required movement towards a 
large target, movement towards a small target (this would be again the change of 
environment), and distinguishing a triangle from square. 

Controller (how is the robot doing it?): the architecture of the controller changes. For 
example, the final controller might contain many interacting modules, but the individual 
interactions can be evolved in independent steps, where only the relevant modules are 
enabled. In the later steps, the behavior might be further tuned to integrate with other 
modules of the controller. This type of evolutionary incrementality occurs seldom in the 
literature, but an example could be a finite-state machine-controlled robot negotiating a 
maze. The controller can be extended with a mapping module that is able to learn the 
maze topology, however, the output of the module has to be properly integrated with the 
output of the FSA. Non-evolutionary controller incrementality can certainly be seen in 
the Subsumption architecture and its flavors [13], and many later BB approaches. 

Robot sensors/actuators (with what…?) the dimensionality of the search space might 
be reduced by disabling some of the robot sensors and actuators before they are needed 
for the task evolved in each particular step. An example of this can be seen in Behavior 
                                                 
2 Here it is interesting to note that upgrading from the old LinuxThreads to new pthreads library (NPTL) 
and utilizing the round-robin real-time scheduling in superuser mode allowed a speedup of more than one 
order of magnitude (100-500-times faster than real-time as contrasted to 10-times faster with older 
LinuxThreads). 



Analysis and Training [22], where the Khepera robot had first evolved the abilities of 
navigation, obstacle avoidance, and battery recharge, before a gripper was attached to it 
and the robot had to evolve an additional behavior of collecting objects and releasing 
them outside of the arena. 

Robot morphology (what form does the robot have?): the shape and size of the robot 
can be adjusted to make its performance better and reshaped according to final design in 
the later incremental steps. This kind of incrementality is also seldom seen in the 
literature. On the other hand, there are examples where the robot morphology itself is 
evolved [11], but automatic design of robot morphology is beyond the scope of this 
work. An example of morphological incrementality would be a vacuum-cleaning robot 
with the shape of an elliptical cylinder that needs to turn in proper direction to pass 
through narrow passages. It could be simplified to a circular cylinder to evolve basic 
navigation strategies and later updated to its final shape to achieve the proper target 
behavior. 

From the implementation point of view, incrementality can be achieved by modifying 
the simulated environment, the objective function, the genotype representation and the 
corresponding controller implementation, and the configuration of the simulated robot.  

Another important issue is how to transfer a population from the end of one incremental 
step to another step. In order to find plausible solutions, EAs require that the initial 
population randomly samples the search space. However, the population at the end of 
one step is typically converged to a very narrow area, and thus it cannot be used as an 
initial population in the next step. We therefore generate a new initial population from 
several ingredients: some portion of the original population containing the best 
individuals is copied, another part is filled with copied individuals that are mutated 
several times, and the remaining individuals are randomly generated. However, it is also 
possible to blend the populations from two or more previous incremental steps. In 
principle, our algorithm takes for each incremental step a full specification of blending, 
copying, and mutation ratios for all FSAs in the genome and all preceding incremental 
steps. In this way, one can design an evolutionary incremental process following a 
scenario with a topology of a complex oriented graph. However, in most of the 
situations, the incremental scenario does not have to be complicated and thus the 
number of the parameters to specify remains manageable. 

Distributed evolutionary computing 
The simulated runs require extensive CPU resources, and thus we chose to utilize the 
idle CPU power of many machines around the campus. We have developed Q2ADPZ, a 
specialized open-source system for distributed computing, which allows the user to 
submit jobs consisting of multiple tasks into a pool of idle CPUs that are running a 
daemon process (or Windows NT service) [4]. In addition, we make use of the 
computational cluster of our division [3], and finally, for the experiments running under 
real-time scheduling, we did setup a dedicated cluster of high-performance Linux 
machines [20]. A population of robot controllers is distributed over the computational 
cluster, where each node computes several fitness evaluations and submits the result 
over TCP/IP network and SQL database to the server running the main evolutionary 
algorithm. For our example task, we utilized more than 100 idle powerful 2.4GHz P4 
desktop machines in the computer labs in the summer vacations period. The whole 
incremental scenario evolved the target behavior sucessfully in approximately 1 hour 
without any substantial attempts to optimize it – we were busy enough to see that the 
experiment delivered a positive result. 



Example task 
Our goal was to evaluate the proposed controller architecture and incremental evolution 
method and compare it to a manual design of the arbitration mechanism in the controller. 
The RCX hardware platform offers high flexibility and a multitude of possible 
configurations for laboratory robotics experiments. We tested the implementation of our 
controller architecture on a high-lifting fork robot built around a single RCX (figure 7 
right). The task for the robot is to locate a loading station, where the cargo has to be 
loaded, and then locate an unloading station to unload the cargo, and repeat this 
sequence until the program is turned off. The robot exists in a closed rectangular arena 
with obstacles to be avoided. Both loading and unloading stations lie at the end of a line 
drawn on the floor. The start of the correct line to be followed at each moment is 
illuminated from above by light (an adjustable office lamp). The light source located 
over a segment of the line leading to the loading station is automatically turned off 
when the robot loads the cargo, and it is turned on when the robot unloads the cargo at 
the correct location. The reverse is true for the light located over the line leading to the 
unloading station. Other lines might exist in the environment as well. Figure 8 right 
shows a screenshot of a simulator with an example environment.  

The environment is defined by a configuration text file, which specifies the shape and 
size of the environment, robot, obstacle, floor drawings, loading and unloading stations 
as well as light position, and intensity. In addition, the simulator software allows 
defining simple control events based on (possibly periodic) time, robot heading, 
location, and fork and cargo positions. 

 

 
 

Figure 8. Robot executing the target task in a simulated environment (right), and an example of a 
manually designed fsa arbitrator for the line follower module (left). The illuminated area on the right 
is depicted by a large filled circle; dark squares represent obstacles; thick lines are drawn on the 
floor and detectable by robot; loading and unloading stations are marked by rectangles at the end of 
line, and the thin line shows the trajectory for an example run. The transitions between states on the 
left are labeled by messages that trigger them, and in cursive by messages they generate. The robot 
first travels randomly until it enters light (state 2). Then it looks for line and follows it in states 3 and 
4, with recovery in states 5, 6, and 7. Whenever it reaches the loading station, it stops following the 
line and resets to random walk in state 1. Module explore queries the sensor module to see if the 
robot is moving towards or away from light and controls the turning of the robot in order to reach the 
light more quickly. 



We chose this task for four reasons: 1) compared to other evolutionary robotics 
experiments, it is a difficult task; 2) it is modular, in terms of the same behavior (finding 
and following line) being repeated two times, but with a different ending (either loading 
or unloading cargo), and therefore has a potential for reuse of the same code or parts of 
the controller; 3) it can be implemented both in real hardware and in our simulator (for 
the implementation of the switching lights, we used two standard office electric bulb 
lamps controlled by two X10 lamp modules and one X10 PC interface connected to a 
serial port of a computer that received an IR message from RCX brick when the robot 
loaded the cargo, which was in turn detected by an infrared emitter/detector from 
HiTechnic); 4) the task consists of multiple interactions, and behaviors, and thus is 
suitable for incremental evolution. 

Our robot comes with a set of preprogrammed behavioral modules – we have coded 
them directly in the language C: 

Sensors – translates the numeric sensory readings into events, such as robot passed over 
or left a line, entered or left an illuminated area, received an IR message from a cargo 
station, bounced into or avoided an obstacle. 

Motor driver – accepts commands to power or idle the motors. The messages come 
asynchronously from various modules and with various priorities. The purpose of this 
module is to maintain the output according to the currently highest priority request, and 
fall back to lower priorities as needed. All motor control commands in this controller 
are by convention going through the motor driver. 

Navigate – is a service module, which provides higher-level navigational commands – 
such as move forward, backward, turn left, as contrasted with low-level motor signals 
that adjust wheel velocities. 

Avoidance – monitors the obstacle events, and avoids the obstacles when encountered. 

Linefollower – follows the line, or stops following it when requested. 

Explorer – navigates the robot to randomly explore the environment. It turns towards 
illuminated locations with higher probability. 

Cargoloader – executes a procedure of loading and unloading cargo on demand: when 
the robot arrives to the cargo loading station, it has to turn 180°, since the lifting fork is 
on the other side than the bumpers, then it moves the fork down, approaches the cargo, 
lifts it up, and leaves the station; at the unloading station, the robot turns, approaches the 
target cargo location, moves the fork down, backs up, and lifts the fork up again. 

Console and Beep – are debugging purpose modules, which display a message on the 
LCD, and play sounds. 

The input and output message interface of all modules is shown in table 1. The 
arbitration mechanism, which is our focus, consists of FSA post offices attached to 
individual modules. Figure 8 left shows the hand-made FSA for the linefollower module. 
Other modules that use FSAs are cargoloader, avoidance, and explore. 

We have successfully designed the arbitration using our incremental evolutionary 
algorithm. According to the Fitness Space guidelines proposed in [5], we attempted to 
keep the fitness function as implicit, internal, and behavioral as possible. In particular, 
in the later steps, we are only counting the number of correctly delivered cargo objects, 
whereas in the earlier steps, we measure the total distance traveled, the time the robot 
runs over the line, the quality of the line following (that is how much is the robot 



interacting with the motors and sensors while it follows the line), and how much time it 
spends colliding with obstacles. In addition, we favor FSAs with less states and 
transitions. Figure 9 shows the six incremental steps and their respective environments 
for our main incremental scenario (we refer to it as creative). Throughout the whole 
experiment, the robot morphology and the set of sensors and actuators remained 
unchanged. In the first three incremental steps, the task, the environment, and the 
controller were simplified. In the 4th and 5th incremental steps, the task and the 
environment were simplified, but the controller already contained all its functionality. 

Module Recognized incoming messages Generated outgoing messages 
AVOIDANCE_START 
SENSORS_BUMPERS_PRESSED 

Avoidance 

SENSORS_BUMPERS_RELEASED 

- 

SENSORS_LIGHT_QUERY SENSORS_BUMPERS_PRESSED 
 SENSORS_BUMPERS_RELEASED 
 SENSORS_LIGHT_ENTER 
 SENSORS_LIGHT_LEAVE 
 SENSORS_LIGHT_INCREASE 
 SENSORS_LIGHT_DECREASE 
 SENSORS_LIGHT_NOCHANGE 
 SENSORS_LINE_ENTER 
 SENSORS_LINE_LEAVE 

Sensors 
(Bumpertracker, 
Lighttracker, and 
Linetracker) 

 SENSORS_TARGET_MARK 
CARGOLOADER_LOAD CARGOLOADER_OK Cargoloader 
CARGOLOADER_UNLOAD CARGOLOADER_FAIL 
EXPLORE_START Explore 
EXPLORE_STOP 

- 

LINEFOLOOWER_FOLLOW 
LINEFOLLOWER_STOP 
SENSORS_LINE_ENTER 

Linefollower 

SENSORS_LINE_LEAVE 

LINEFOLLOWER_LINELOST 

MOTORDRIVER_POWER m, pwr Motordriver 
MOTORDRIVER_NOPOWER m 

- 

NAVIGATE_FORWARD t NAVIGATE_COMMAND_FINISHED 
NAVIGATE_BACKWARD t NAVIGATE_COMMAND_INTERRUPTED 
NAVIGATE_RIGHT t 
NAVIGATE_LEFT t 
NAVIGATE_AROUNDLEFT t 
NAVIGATE_AROUNDRIGHT t 
NAVIGATE_TURNRND t 
NAVIGATE_STOP 
NAVIGATE_FAST 

Navigate 

NAVIGATE_SLOW 

NAVIGATE_BUSY 

Beep BEEP_BEEP x  
Console CONSOLE_PRINT x  

Table 1. Message interfaces for behavioral modules defined by the module designer. 

Evolution progressed to the next incremental step when an individual with a satisfactory 
fitness was found and the improvement ratio fell below a certain value, i.e. the evolution 
stopped generating better fit individuals. The improvement ratio mn in generation n was 
computed using the following formula: 

mn = φ . mn-1 + (best_fitnessn – best_fitnessn-1) 

where best_fitnessi is the fitness of the best individual in population i, φ is a constant 
(we used φ=0.2), and m0 is initialized to 0.9 . best_fitness0. 
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Figure 9. Experimental environments for 6 incremental evolutionary steps of creative incremental 
scenario, A – F. A: avoidance – the robot is penalized for time it spends along the wall; B: line 
following – the robot is rewarded for the time it successfully follows the line – it must have contact 
with the line and should be moving forward; C: cargo-loading – robot is rewarded for loading and 
unloading cargo in an open area without lines or obstacles; D: cargo-loading after line following – 
follow-up of B and C, the robot is rewarding for loading and unloading cargo, but it has to 
successfully follow line to get to the open loading/unloading area; E: starting line-following under 
light – robot learns to start following the line that is under the light (it is started from different 
locations in order to make sure it is sensitive to light and not, for instance, to number of lines it needs 
to cross); F: final task – robot is rewarded for successfully loading and delivering the cargo, it uses 
the avoidance learned in A and behavior E.  
 
 
 

 
 
 

 

 

 

Figure 10. FSA arbitrators for modules cargoloader, avoidance, and explore. The avoidance FSA 
forwards to the module only BUMPERS_PRESSED message, while the explore FSA forwards to 
the module all messages. 



Results 
To verify the controller architecture and task solvability, we have first designed the 
post-office arbitrators manually. The most complex arbitrator was shown in the figure 8 
(left), while the remaining three arbitrators were simpler and are shown in figure 10.  

 
Figure 11. Setup for the real robot: bottom view of the robot (top left), loading station (top right), 
robot carrying cargo (bottom left) and the environment with obstacles, lamps, loading and unloading 
stations. The cargo loading and unloading is handled automatically by two RCX modules that use 
the HiTechnic photo-sensor to detect the presence of the robot and send IR signal both to the robot 
and to the computer that switches the lights using the X10 lamp modules.  
This controller performed well and resulted in reliable cargo delivery behavior. We 
have also tested the controller on the real robot. Figure 11 shows the real-world setup, 
robot and its environment. The transition to the real-world settings was straightforward, 
except of that the calibration of the sensors and timing of motoric actions. Still, in this 
experiment, the exact quantitative dimensions and distances played minor role, for the 
performance of the controller (except, perhaps, for the line-follower module), and 
therefore the distances and timings in the realistic actions did not need to correspond to 
the simulated one with 100% accuracy, and actual tuning of the timing could be 
performed separately for the simulated and realistic runs. We experimented with a 
framework for obtaining a better correspondence as shown in figure 3. The robot with 
the diameter of 12 cm took ca. 430 seconds for completing the full task of a single 
loading-unloading sequence. 

In the evolutionary experiments, we have tried to see if the evolutionary algorithm 
described above could evolve the target task by automatically designing all four FSA 
arbitrators in a single evolutionary run. We ran the program for 20 times with a 
population of 200 individuals and 200 generations, and with a fitness function 



rewarding line following, cargo loading and unloading, distance traveling, and 
penalizing obstacles. However, none of the runs evolved the target behavior. 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Best fitness for all incremental steps (average over 10 runs), creative incremental scenario. 
In the incremental step 5 (geom), the plotted fitness is an geometric mean of fitness achieved from 
the three different starting locations. This step was followed by 5 (worst), where the plotted fitness is 
the worst fitness achieved in the three runs from different starting locations. 

To save computational effort, we have stored all previously evaluated genotypes with 
their fitness to the database. The objective function first checks if the genotype has 
already been evaluated and starts the simulator only in case of a new genotype. 
Furthermore, during the simulated run, we measure the fitness obtained by the best (or 
average of several best) individuals, and later, we automatically stop all individuals that 
achieved less than q % of the best measured fitness (q = 5 %) in one of the periodically 
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occurring checkpoints. All evaluated FSAs and the trajectories of best-fitness improving 
runs were saved to files and extensive logs were produced for further analysis. 

Run \ Step 1 2 3 4 5 6 All 
1 12 / 961 24 / 2850 9 / 813 15 / 3776 19 / 4561 9 / 1666 88 / 14627 
2 9 / 740 22 / 2581  6 / 611  9 / 2477 58 / 12291 18 / 2924 122 / 21624 
3 7 / 586 11 / 1483 7 / 709 12 / 3122  42 / 9353 42 / 6227  121 / 21480 
4 5 / 450 16 / 1955 11 / 955 14 / 3618 52 / 11584 74 / 10761 172 / 29323 
5 8 / 665 16 / 1953 6 / 614 12 / 3099 27 / 5998 9 / 1688 78 / 14017 
6 7 / 562 15 / 1905 9 / 842 6 / 1852 24 / 5424 7 / 1378 68 / 11963 
7 7 / 594 5 / 794 6 / 600 19 / 4570 23 / 5427 16 / 2599 76 / 14584 
8 8 / 638 17 / 2048 7 / 683 22 / 5240 45 / 9867 46 / 6784 145 / 25260 
9 11 / 855 17 / 2070 8 / 749 14 / 3495 56 / 12052 20 / 3218 126 / 22439 
10 11 / 858 13 / 1663 6 / 610 18 / 4373 19 / 4526 25 / 3856 92 / 15886 

Average 9 / 691 16 / 1930 8 / 719 14 / 3562 37 / 8108 27 / 4110 109 / 19120 

Table 2. Generations/evaluations in each incremental step, 10 different simulated runs. The relation 
between the number of generations and the number of evaluations is not direct: the algorithm 
evaluates only new individuals, and among them only those that are not found in the cache. 

Later experiments followed the creative scenario with 6 incremental steps shown in 
figure 9. Table 2 shows the number of evaluations used by each incremental step for 10 
different runs. Figure 12 plots the best fitness average from 10 different runs. Each 
evaluation took into account the worst fitness for the three different starting locations 
and robot orientations, except of step 5, where we had to use the geometric mean of 
fitness from all three runs. 

This ensured that the behavior evolved in step 4 was not lost as the successful 
individuals from run 4 at least performed well when started close to the line that was 
leading to the loading station. Using the worst fitness resulted in loosing the behavior 
learned in step 4 before the sensitivity to light was evolved. On the other hand, this step 
was repeated with the same settings, except for the use of worst fitness instead of 
geometric mean, before proceeding to step 6, in order to eliminate the cheating 
individuals from the population (so step 5 in table 2 refers to evaluations in both steps). 

In order to obtain a better evaluation of our approach, we compared the runs against an 
alternative scenario (which we in fact designed first, and we refer to it as sequential) of 
incremental steps: The robot is rewarded in different incremental steps for: 

1. avoiding obstacles 

2. following a line  

3. following a line under light (while being penalized for following line outside 
light)  

4. loading cargo 

5. loading cargo, and for following a line under light after it has loaded cargo 

6. loading and unloading cargo (one time unloading is sufficient) 

7. for loading and unloading cargo (multiple deliveries are required) 

This sequential scenario corresponds to the sequence of skills as the robot needs them 
when completing the target task, being thus a kind of straight-forward sequential 
decomposition. Contrary to the creative scenario, here the input material in each step is 
only the final population of the directly preceding step. Another important difference is 
that the environments in all steps of sequential scenario were the same as in the final 
task, with the exception of third incremental step, where the line originally leading to 



the loading station has been changed to a loop, being illuminated by light along full its 
length; for this purpose we also removed one of the obstacles and introduced an 
additional light source. 

 

 

 

 

Figure 13. Finite-state machines evolved in each step. 

We tried to evolve the target behavior with sequential incremental scenario without 
simplifying the environment. However, even after spending several weeks of efforts and 
years of computational time, and exhausting the parametric space of the configuration 
options, and various fitness functions, the correct controller functionality was never 
produced. In particular, it appears to be too difficult to evolve sensitivity to light, while 
not loosing the proper line-following behavior, if the line leaves the light and follows to 
the loading station, where it is non-trivial to turn and return back under the light to gain 
fitness. If the robots were rewarded for spending time under the light, they evolved all 
the possible tricks of pretending the line following behavior, while moving in various 
loops, but forgetting the proper line-following behavior at the same time. 

Once the line-following behavior has been lost, it was very difficult for the evolution to 
reclaim it later again in the successor incremental steps, which required it. Modifying 
the environment in the third incremental step was sufficient, and the target behavior 
evolved in 11 of 15 runs, each run taking about 12 hours on a pool of 60 computational 

Transition tables describe 
transitions in format: 

A → B: (m), in: m1, out: m2 
Meaning that transition from state 
A to state B occurs, when message 
m arrives. Then message m1 is sent 
to the module and message m2 is 
broadcasted to other modules.  
 
The relevant messages are: 
 
AVOIDANCE_START 
 

SENSORS_BUMPERS_PRESSED 
SENSORS_BUMPERS_RELEASED 
 

SENSORS_LINE_ENTER 
SENSORS_LINE_LEAVE 
SENSORS_TARGET_MARK 
 

SENSORS_LIGHT_ENTER 
SENSORS_LIGHT_LEAVE 
 

LNFLWER_FOLLOW 
LNFLWER_STOP 
 

CARGOLOADER_LOAD 
CARGOLOADER_UNLOAD 



nodes (2 GHz PCs). Table 3 shows the number of evaluations performed in 10 different 
simulated runs with the sequential scenario. Figure 14 plots the best fitness. 

Run \ Step 1 2 3 4 5 6 7 All 
1 9 / 614  21 / 2966 39 / 8396 21 / 4298 43 / 8516 7 / 1072 7 / 1122 147 / 26984 
2 5 / 393 42 / 5400 48 / 6058 21 / 2849 65 / 8256 7 / 1107 13 / 1903 201 / 25966 
3 7 / 497 44 / 2798 35 / 4850 29 / 3950 180 / 9592 20 / 1408 6 / 477 321 / 23572 
4 5 / 357 40 / 2440 44 / 5826 44 / 5696 12 / 872 12 / 905 13 / 942 170 / 17038 
5 6 / 469 43 / 2819 30 / 3701 76 / 9668 9 / 728 26 / 1666 71 / 4863 206 / 23914 
6 10 / 636 28 / 3736 38 / 7495 42 / 8254 9 / 1368 6 / 992 6 / 980 139 / 23461 
7 10 / 641 55 / 6976 31 / 5828 24 / 4797 28 / 3675 9 / 1293 11 / 1626 168 / 24836 
8 7 / 500 49 / 6356 62 / 11590 22 / 4696 11 / 1685 44 / 5539 19 / 2555 214 / 32921 
9 5 / 393 42 / 5400 48 / 6058 21 / 2849 65 / 8256 7 / 1107 13 / 1903 253 / 25966 
10 5 / 394 27 / 3164 47 / 9306 11 / 2648 15 / 2305 12 / 1747 26 / 3600 143 / 23164 

Average 7 / 489    39 / 4206 42 / 6911 31 / 4971 44 / 4525 15 / 1684 19 / 1997 196 / 24782 
 
Table 3. Evaluations in each incremental step for 10 different simulated runs (for the values in 
cursive, the population size was reduced from 200 to 100, or from 300 to 200; those in bold face ran 
with population 100 instead of 300). The parameters were varied for empirical testing. 

To gain better understanding of underlying processes, we studied the contribution of the 
various mutation operators to the fitness improvements. The fitness of the offspring that 
was generated using each mutation operator was compared with the fitness of the parent, 
and the difference was stored. Figure 15 compares the relative contribution of the 
mutation operators in all incremental steps of the sequential scenario, that is with how 
large portion each operator contributed to the progress. Obviously, operator with higher 
rate has higher chances to contribute. On the contrary, figure 16 looks only at the 
individual performances of all single operators, and plots the ratio of the cases with 
positive and negative fitness change that resulted from operator application.  

Discussion  
Multi-agent control architectures are the focus of contemporary research. Our robot 
controller architecture is inspired by the principle of independent robot competencies 
performed, or being ready to be activated, in parallel. This principle is prevalent in 
Behavior-Based Robotics approaches. In our case, the behaviors communicate by 
sending addressed or broadcasted message signals possibly containing data. The 
implementation relies on shared memory locations between the individual threads of 
computation, and the messagepassing interface function calls achieve high efficiency 
(usually no data is copied; rather the functions with arguments refering to common 
memory space are called). Our framework for incremental evolution allows a general 
design of the incremental evolutionary scenario: the populations from several steps can 
be combined together in different ratios for each particular FSA. In addition, it is 
possible to specify a general “incremental” function, which specifies a termination 
criterion in each incremental step, i.e. a required condition for proceeding to the next 
incremental step. Incremental function can contain the following variables: gennum, the 
current generation number; gennum-thisstep, current generation of this step; best-fitness, 
the best fitness of the last generation; avg-fitness, average fitness of the last generation, 
learning-momentum, which is the current learning rate with history; num-eval, total 
number of evaluations so far; num-eval-thisstep, number of evaluations since the 
beginning of this step, total-gennum, total planned number of generations, real-runtime, 
real time since application start in seconds. These variables can be combined with 
numeric constants, binary operators and predicates.   



Each incremental step has its own definition file for the environment, separate fitness 
function, structure of the controller, and describes the robot topology. Despite this 
generality, we concluded to several guidelines for designing the incremental scenarios: 

 

 

 

 

 

 
Figure 14. Best fitness for all incremental steps 
(average over 10 runs) with sequential scenario. 

1. Individual incremental steps ought to be as focused as possible. If a certain 
competence required for the target behavior can be learned completely in some 
incremental step, it should not be the subject of further learning and improvement in 
other incremental steps, as it would only increase its complexity multiplicatively.  

2. Each incremental step should focus on a relatively narrow and well-identifiable 
competence. Avoiding evolving of multiple competencies at the same time is essential. 
If some competence requires a cooperation of multiple competencies, this itself has to 
be identified, and formulated as a distinguished, well-defined competence.           . 
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Figure 15. Contribution of mutation operators to evolutionary progress in all incremental steps of a 
single run of the sequential experiment. Due to different mutation rates, the absolute contribution of 
mutation operators was scaled by the number of operator applications: in total 3970, 3321, 3951, 
13329, 2974, 21857, 17773 applications of mut_change_start, mut_split,  mut_rnd_state_del, 
mut_new_state, mut_del_rnd_trans, and mut_new_trans operator resp. Low success rate of 
rnd_state_del in earlier steps is due to the lower and upper limits on number of states. Steps 
introducing higher complexity in task benefit from mut_split, when an extra state is smoothly added, 
extending one transition to two steps. The totals graph show that most of the work is done by simple 
mutation of a single transition mut_rnd_trans, however all operators contribute significantly in more 
than one incremental step.  
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Figure 16. Positive rate of mutation operators expresses how often the operator generated a positive 
fitness increase. In the first step (step 0), the total number of evaluations was low, therefore high 
positive rate was achieved. In the fifth step, a very large potential for improvement existed. The 
deletion operators (mut_del_state, mut_del_trans) show lower rate as they often harm useful parts of 
automata. 
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3. Modifying the environment in order to create training situations for the robot is a 
very efficient method of devising simpler incremental steps. Modifying the objective 
function only, while keeping the same environment, is more challenging, and often 
leads to multitudes of false behaviors. Evolution tends to discover unexpected tricks due 
to the large number of possible interactions in a typical target environment. Figure 17 
shows few samples of incorrect evolved behaviors. 

4. The early apparent suggestive decomposition of the task is often not necessarily the 
most efficient way of task decomposition for incremental evolution. The average 
number of evaluations was significantly lower in the case of more elaborate task 
decomposition as shown in the results section of this work. 
 

 

 

 

 

 

  A                              B                             C                             D 
 
Figure 17. Examples of evolved misbehaviors demonstrating richness of controllers with FSA 
arbitrators evloved for a set of predefined competence modules. In A and B, the robot is trained to 
follow the line. In A, when the line is encountered, it starts chaotic cyclic movements around the line, 
sometimes crossing a larger distance in a straight movement. In B, the robot starts following the line 
after it meets it for the second time, but instead of smooth following, it follows by the line by 
systematic looping – although actually achieving the wished behavior at certain quality level. In C 
and D, the robot needs to follow the line and then periodically transport cargo between the loading 
and unloading locations placed opposite to one another. In C, the robot loads the cargo once, but 
fails to stop following the line. In D, the robot fails to follow the correct (third from the bottom) line, 
which starts under top-mounted light (not shown in this earlier environment viewer version). 

5. Special care has to be taken to prevent the individuals from gaining fitness by random 
coincidences without performing the required task. If the populations with several 
hundreds individuals evolve for hundreds of generations, even very unlikely events do 
happen and if the EA uses elitism, such faulty, but lucky behavior might completely 
push all promising individuals out of the population. Such events can, to a limited 
extent, be prevented by multiple starts from all starting locations. This, however, 
increases the total evaluation time for each individual. In our experiments, we used four 
different methods of calculating the individual fitness from the scores gained in all 
starting locations: arithmetic mean, geometric mean, worst fitness, and combination. 
The worst fitness has to be used, if we want to set a hard constraint and require that the 
individual performs the required behavior consistently and reliably. It should be used 
especially when the objective function permits a very high score in lucky situations – 
thus both mean and geometric mean thresholds could pass an individual that would 
solve only some of the runs, accidentally with a luckily high score (please note, that the 
geometric mean would not suffer from this problem if the unsuccessful runs would 
receive zero-fitness, that is, however, not the case, because the objective function 
typically rewards multiple aspects of the task, and thus it is almost never 0). In case of 
the combined option, we use the geometric mean for all runs from the same starting 
location, but the worst fitness among all those means for all starting locations. In other 



words, the robot has to solve each starting location, but its performance does not have to 
be completely stable.  

Many tasks (including ours) comprise a high degree of randomness. The same 
individual can gain fitness values that vary often more than 10%. This can lead into an 
illusory fitness improvement while the quality of the individuals does not change – or 
even decreases slightly, especially if elitism is in use: a small change introduced to an 
individual will result in a new individual, which by a lucky coincidence gains higher 
fitness and replaces the old individual in the population. This makes it also more 
difficult for newly found individuals, which introduce changes in a good direction, to 
steer the evolution away, as there are already many individuals who have the more 
lucky fitness for their real quality in the population, especially if the evolution stagnated 
for some time already. For this reason, it is recommended to evaluate all individuals 
over in each generation. Unfortunately, in our case, this would exceed out practical CPU 
limits, but it remains for future work to study how much this issue hinders the evolution 
of arbitrators. 

Sometimes, one cannot avoid transferring certain evolved features to succeeding 
evolutionary steps. There is a high risk that the new incremental step will quickly move 
in its search away from the evolved features, which thus become easily forgotten. A 
remedy for this situation would be a continuous flow of individuals from previous 
incremental step, however it remains for the future work to evaluate this strategy. 

It seems though that an insight of a human expert knowing the details of the robot 
hardware and software is still required in order to design a functional incremental 
decomposition. Future work should focus on eliminating these and making the process 
of creating the controller as automatic as possible. 

Three advanced evolutionary techniques were applied in order to improve the 
evolutionary search process: 

1. The population was automatically reinitialized each time it converged prematurely; 

2. The states and transitions, which were never entered during the evaluation by the 
fitness function, could optionally be removed automatically. On one hand, this leads 
into much more readable and concise FSAs, on the other hand, it reduces the 
evolvability as the overhead genetic material present in the population becomes 
forbidden, and thus the population can get stuck in local extremes more easily. 
Removing unused transition also helps to win the useful code over bloat that can 
prevent the evolution from progressing at any reasonable pace. 

3. Fitness cache implemented using SQL database helped to decrease the overall time 
required to reach the solution. 

Conclusions and Future Work 
We have designed a parallel, distributed behavior-based controller architecture where 
individual modules communicate by sending messages. Modules implement simple 
behaviors and are usually hand-coded, or optionally evolved. Messages are processed 
by post-offices attached to modules in order to filter relevant messages and adapt the 
behavior of the modules with independent behavioral responsibility to the purpose of 
the combined controller thus achieving efficient synergic behavior coordination. On 
example task of cargo delivery, we have demonstrated a successful design both 
manually and using automatic method based on incremental evolutionary algorithm that 
evaluates the individuals in simulation. The evolved individuals representing the 
arbitrators, i.e. the post-offices of all modules, take form of finite-state automatons.  



The incremental method is based on dividing the target task into multiple tasks of 
increasing complexity (a partial order relation). Evolved populations with individuals 
that successfully perform more simple tasks are transformed and combined into initial 
populations for more complex tasks thus making it possible to evolve complex 
behaviors, which could not be automatically programmed otherwise. 

The computational demand of the algorithm is high and requires utilization of 
distributed computational power. We have used three various systems for distributed 
computation to harness the idle CPU power of university student lab computers and 
cluster. Further directions of this work are several. A natural-language interface for 
specifying the target task would allow to program robot for complex task by giving 
description in human language. This would also require work on automatic partitioning 
of the target task into incremental steps, and an AI system that could achieve that by 
understanding the semantic descriptions of the basic robot capabilities. Automatic 
programming of multiple groups of robots is a straight extension of this work. 
Improvements in the simulation techniques, using real-time operating systems, 
simulating more realistic environments, as well as implementing the robot simulator and 
evolutionary algorithm directly on the robot hardware remain for further studies. Other 
representations in addition to FSA taking the role of behavior arbitrators should be 
investigated. The crispness of FSAs can be alleviated by making them more continuous: 
either by transitions that occur with certain probability, or by messages that would be 
probability vectors for all message types, or by staying in multiple states at the same 
time with distributed probability. This is our connection to the fields of Hidden Markov 
Models and neural networks, however it remains to be investigated whether such 
representations apply smoothly to the crisp robotic tasks constraint by the discrete robot 
body, actuators, and world interactions, which are probably modeled best by discrete 
states. 
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Appendix A – Example project files 
 
# sequential83_e.prj  - defines parameters of the evolutionary algorithm 
# number of incremental steps (this many INCREMENTAL BLOCKS appear below AND 
#  how many values are in each category marked INCR_VECTOR below) 
7 
 
# probability of the crossover (INCR_VECTOR - for each incremental step 
different 
#  value in another row) 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
 
# probability of mutation (per individual) (INCR_VECTOR) 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
 
#### detailed mutation probabilities for all operators (INCR_VECTOR all) 
#  MUT_NEW_RANDOM_TRANSITION 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
#  MUT_DELETE_RANDOM_TRANSITION 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
#  MUT_NEW_STATE 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
#  MUT_RANDOM_STATE_DELETED 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
#  MUT_RANDOM_TRANSITION_MUTATED 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 



0.25 
#  MUT_NEW_RANDOM_INDIVIDUAL 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
#  MUT_SPLIT_TRANSITION 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
#  MUT_CHANGE_STARTSTATE 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
 
# p_trim  (probability of trimming all states and transitions that were not 
used) (INCR_VECTOR) 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
 
# p_newinlast (probability of creating new transition in the state which was 
terminal) (INCR_VECTOR) 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
 
# number of individuals (population size)  (INCR_VECTOR) 
100 
200 
300 
300 
300 
200 
200 
 
# number of generations (total - all steps together) 
600 
 
# portion of population to replace (INCR_VECTOR) 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
 
# selection type (1 = RouletteWheel, 2 = Tournament) 



1 
1 
1 
1 
1 
1 
1 
 
# total number of modules in the controller (INCR_VECTOR) 
10 
10 
10 
10 
10 
10 
10 
 
# module message data in file 
project/cargo/modules/alldata.dat 
 
# module specification files for all modules - the modules must be listed 
#  in the order of their module ids!  (INCR_VECTOR) 
project/cargo/modules/navigate.mod 
project/cargo/modules/cargoloader.mod 
project/cargo/modules/motordriver.mod 
project/cargo/modules/lnflwer.mod 
project/cargo/modules/avoidance.mod 
project/cargo/modules/explore.mod 
project/cargo/modules/bumpertracker.mod 
project/cargo/modules/linetracker.mod 
project/cargo/modules/lighttracker.mod 
project/cargo/modules/beep.mod 
# 
project/cargo/modules/navigate.mod 
project/cargo/modules/cargoloader.mod 
project/cargo/modules/motordriver.mod 
project/cargo/modules/lnflwer.mod 
project/cargo/modules/avoidance.mod 
project/cargo/modules/explore.mod 
project/cargo/modules/bumpertracker.mod 
project/cargo/modules/linetracker.mod 
project/cargo/modules/lighttracker.mod 
project/cargo/modules/beep.mod 
# 
project/cargo/modules/navigate.mod 
project/cargo/modules/cargoloader.mod 
project/cargo/modules/motordriver.mod 
project/cargo/modules/lnflwer.mod 
project/cargo/modules/avoidance.mod 
project/cargo/modules/explore.mod 
project/cargo/modules/bumpertracker.mod 
project/cargo/modules/linetracker.mod 
project/cargo/modules/lighttracker.mod 
project/cargo/modules/beep.mod 
# 
project/cargo/modules/navigate.mod 
project/cargo/modules/cargoloader.mod 
project/cargo/modules/motordriver.mod 
project/cargo/modules/lnflwer.mod 
project/cargo/modules/avoidance.mod 
project/cargo/modules/explore.mod 
project/cargo/modules/bumpertracker.mod 
project/cargo/modules/linetracker.mod 
project/cargo/modules/lighttracker.mod 
project/cargo/modules/beep.mod 
# 
project/cargo/modules/navigate.mod 
project/cargo/modules/cargoloader.mod 



project/cargo/modules/motordriver.mod 
project/cargo/modules/lnflwer.mod 
project/cargo/modules/avoidance.mod 
project/cargo/modules/explore.mod 
project/cargo/modules/bumpertracker.mod 
project/cargo/modules/linetracker.mod 
project/cargo/modules/lighttracker.mod 
project/cargo/modules/beep.mod 
# 
project/cargo/modules/navigate.mod 
project/cargo/modules/cargoloader.mod 
project/cargo/modules/motordriver.mod 
project/cargo/modules/lnflwer.mod 
project/cargo/modules/avoidance.mod 
project/cargo/modules/explore.mod 
project/cargo/modules/bumpertracker.mod 
project/cargo/modules/linetracker.mod 
project/cargo/modules/lighttracker.mod 
project/cargo/modules/beep.mod 
# 
project/cargo/modules/navigate.mod 
project/cargo/modules/cargoloader.mod 
project/cargo/modules/motordriver.mod 
project/cargo/modules/lnflwer.mod 
project/cargo/modules/avoidance.mod 
project/cargo/modules/explore.mod 
project/cargo/modules/bumpertracker.mod 
project/cargo/modules/linetracker.mod 
project/cargo/modules/lighttracker.mod 
project/cargo/modules/beep.mod 
 
# number of fsas that are part of the genome (INCR_VECTOR) 
#  (they will be saved to project/cargo/fsa/$project_id/$step_number) 
1 
1 
1 
2 
2 
2 
2 
 
# module ids for the fsas that are evolved (each on separate line) 
(INCR_VECTOR) 
5 
# 
4 
# 
4 
# 
2 
4 
# 
2 
4 
# 
2 
4 
# 
2 
4 
# 
 
# number of fsas that are fixed and loaded from file (INCR_VECTOR) 
1 
2 
2 
2 
2 



2 
2 
 
# module ids for the fsas that are fixed and loaded from file (one per line) 
#  followed by file name (INCR_VECTOR) ; the extension .module_number will 
#  be added to each file automatically 
#---s0 
6 
project/cargo/fsa-handmade/fsa.dat 
#---s1 
5 
project/cargo/fsa/sequential/1/fsa.dat.evolved 
6 
project/cargo/fsa-handmade/fsa.dat 
#---s2 
5 
project/cargo/fsa/sequential/1/fsa.dat.evolved 
6 
project/cargo/fsa-handmade/fsa.dat 
#---s3 
5 
project/cargo/fsa/sequential/1/fsa.dat.evolved 
6 
project/cargo/fsa-handmade/fsa.dat 
#---s4 
5 
project/cargo/fsa/sequential/1/fsa.dat.evolved 
6 
project/cargo/fsa-handmade/fsa.dat 
#---s5 
5 
project/cargo/fsa/sequential/1/fsa.dat.evolved 
6 
project/cargo/fsa-handmade/fsa.dat 
#---s6 
5 
project/cargo/fsa/sequential/1/fsa.dat.evolved 
6 
project/cargo/fsa-handmade/fsa.dat 
 
########### trigger messages specifications for all modules that are evolved 
(INCR_VECTOR) 
 
#---------step0 
### trigger message specification block - module 5 - avoidance 
5 
# number of trigger messages 
3  
# list of the messages 
SENSORS_BUMPERS_PRESSED 
SENSORS_BUMPERS_RELEASED 
AVOIDANCE_START 
### 
 
#---------step1  
### trigger message specification block - module 4 - lnflwer 
4 
# number of trigger messages 
2 
# list of the messages 
SENSORS_LINE_ENTER 
SENSORS_LINE_LEAVE 
### 
 
#---------step2 
### trigger message specification block - module 4 - lnflwer 
4 
# number of trigger messages 



4 
# list of the messages 
SENSORS_LINE_ENTER 
SENSORS_LINE_LEAVE 
SENSORS_LIGHT_ENTER 
SENSORS_LIGHT_LEAVE 
### 
 
#---------step3 
### trigger message specification block - module 2 - CARGOLOADER 
2 
# number of trigger messages 
1 
# list of the messages 
SENSORS_TARGET_MARK 
### 
### trigger message specification block - module 4 - lnflwer 
4 
# number of trigger messages 
5 
# list of the messages 
SENSORS_LINE_ENTER 
SENSORS_LINE_LEAVE 
SENSORS_TARGET_MARK 
SENSORS_LIGHT_ENTER 
SENSORS_LIGHT_LEAVE 
### 
 
#---------step4  
### trigger message specification block - module 2 - CARGOLOADER 
2 
# number of trigger messages 
1 
# list of the messages 
SENSORS_TARGET_MARK 
### 
### trigger message specification block - module 4 - lnflwer 
4 
# number of trigger messages 
5 
# list of the messages 
SENSORS_LINE_ENTER 
SENSORS_LINE_LEAVE 
SENSORS_TARGET_MARK 
SENSORS_LIGHT_ENTER 
SENSORS_LIGHT_LEAVE 
### 
 
#--------step5 
### trigger message specification block - module 2 - CARGOLOADER 
2 
# number of trigger messages 
1 
# list of the messages 
SENSORS_TARGET_MARK 
### 
### trigger message specification block - module 4 - lnflwer 
4 
# number of trigger messages 
5 
# list of the messages 
SENSORS_LINE_ENTER 
SENSORS_LINE_LEAVE 
SENSORS_TARGET_MARK 
SENSORS_LIGHT_ENTER 
SENSORS_LIGHT_LEAVE 
### 
 



#--------step6  
### trigger message specification block - module 2 - CARGOLOADER 
2 
# number of trigger messages 
1 
# list of the messages 
SENSORS_TARGET_MARK 
### 
### trigger message specification block - module 4 - lnflwer 
4 
# number of trigger messages 
5 
# list of the messages 
SENSORS_LINE_ENTER 
SENSORS_LINE_LEAVE 
SENSORS_TARGET_MARK 
SENSORS_LIGHT_ENTER 
SENSORS_LIGHT_LEAVE 
### 
 
########## trigger msgs end 
 
# max. number of states for each evolved module (INCR_VECTOR) 
4 
# 
5 
# 
5 
# 
4 
6 
# 
4 
6 
# 
4 
8 
# 
4 
10 
# 
 
# min. init. number of states for each evolved module (INCR_VECTOR) 
1 
# 
1 
# 
1 
# 
1 
1 
# 
1 
1 
# 
1 
1 
# 
1 
1 
# 
 
# max. init. number of states for all modules evolved (INCR_VECTOR) 
4 
# 
5 
# 
5 



# 
4 
6 
# 
4 
6 
# 
4 
8 
# 
4 
10 
 
# max. count of transitions in one state (only 1 number for all modules) 
(INCR_VECTOR) 
5 
5 
5 
5 
5 
7 
8 
 
# min. count of transitions in one state (only 1 number all modules) 
(INCR_VECTOR) 
1 
1 
1 
1 
1 
1 
1 
 
# max. init # of transitions in one state (1 number) (INCR_VECTOR) 
4 
4 
4 
4 
4 
4 
4 
 
# min. init # of transitions in one state (1 number) (INCR_VECTOR) 
2 
2 
2 
2 
2 
2 
2 
 
# probability that the outgoing message is sent in the incoming fsa transition 
0.1 
 
# phi for the learning momemtum (used for increments) (INCR_VECTOR) 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
 
# name of the environment-description project file 
project/cargo/cfg/sequential4.prj 
 
# previously saved incremental steps filename table 
# how many they are 



#1 
0 
# filenames (these are indexed from (-1)...(-how_many)). 
#project/cargo/population/for_sequential/1 
 
# list of steps that are requested to be saved into file for possible 
continuation of evolution 
# how many they are 
7 
# which steps (one per line, steps are indexed starting with 0) 
0 
1 
2 
3 
4 
5 
6 
# and the filenames 
project/cargo/population/sequential_/0 
project/cargo/population/sequential_/1 
project/cargo/population/sequential_/2 
project/cargo/population/sequential_/3 
project/cargo/population/sequential_/4 
project/cargo/population/sequential_/5 
project/cargo/population/sequential_/6 
 
# prefix formula that can include variables (parenthesis treated as whitespace) 
(INCR_VECTOR) 
# gennum             ... current generation,  
# gennum-thisstep    ... current generation of this step 
# best-fitness       ... best fitness of the last generation 
# avg-fitness        ... average fitness of the last generation 
# learning-momentum  ... m_new = phi * m_old + (best_fitness - 
last_best_fitness) 
# num-eval           ... total number of evaluations so far 
# num-eval-thisstep  ... number of evaluations since the beginning of this 
step 
# total-gennum       ... total planned number of generations defined above 
# real-runtime       ... real time since application start in seconds 
# 
# numeric constants, and binary predicates &, |, ^, =, <, >, [, ], ! 
# and binary operators +, -, *, /  
#  ([ means <=; ] means >=; ! means !=) 
 
#skip first two steps, they are already computed 
& ] best-fitness 295000 < learning-momentum 50 
& ] best-fitness 900000 < learning-momentum 0.001 
& ] best-fitness 900000 < learning-momentum 0.001 
& ] best-fitness 800000 < learning-momentum 1 
& ] best-fitness 400000 < learning-momentum 1 
& ] best-fitness 400000 < learning-momentum 50 
& ] best-fitness 700000 < learning-momentum 50 
 
# population pass method from all previous steps: 
# number of directly preceding steps (INCR_VECTOR) 
0 
0 
1 
1 
1 
1 
1 
 
# and their list (negative values are taken from file according to previous  
#  steps filename table) (INCR_VECTOR) 
#-1 
1 
2 



3 
4 
5 
 
# for all fsas that are present in k multiple steps, specify the ratios  
#   for blending - p-portion of the original population will come from copied 
#   individuals, t-portion of the new population will be born by copying and 
mutating x-times 
#   and the rest of the new population will be initialized randomly  
(INCR_VECTOR) 
#-------k-times: (where k is the number of fsas evolved in this step) 
# mid  
# p_1 t_1 x_1 
# ...  
# p_nsteps t_nsteps x_nsteps 
#------- 
# = mid - identifies fsa; p_i identifies portion of the whole (1.0) 
#         new population, where the fsa for given mid will be generated by 
copying 
#         individuals from i-the of the directly preceding steps listed above 
#         t_i represents the portion which will be copied and mutated x_i 
times, 
#         q identifies portion of the new pop. which will have the fsa for mid 
#         initialized randomly. 
#         copying fsas from previous steps and mutating x_i times 
#         the sum of q and all p_i for all mids together should be less than 1. 
#         probabilities for all preceding steps have to be listed 
#         (even if this fsa doesn't occur in some of them - when the p_i 
should be 0) 
0 
# 
0 
# 
4 
0.3 0.4 0.3 2 
#0.5 1.0 0.0 0 
0 
# 
2 
0.0 0.1 0.0 1 
4 
0.4 0.2 0.3 2 
0 
# 
2 
0.5 0.5 0.3 2 
4 
0.5 0.5 0.3 2 
0 
# 
2 
0.5 0.5 0.3 2 
4 
0.5 0.5 0.3 2 
0 
# 
2 
0.5 0.5 0.3 2 
4 
0.5 0.5 0.3 2 
0 
# 
# the list is terminated by extra row with 0 
# note: in the first step, or step that has no preceding step since there are 
no preceding  
# steps, the population is generated just randomly and this structure should 
be omitted 
 



# number of starting positions for the objective function (INCR_VECTOR) 
3 
3 
3 
3 
3 
3 
3 
 
# number of runs from all starting locations (INCR_VECTOR) 
1 
4 
4 
4 
2 
1 
2 
 
# fitness function timeout [s]   (INCR_VECTOR) 
150 
150 
150 
150 
200 
250 
400 
 
# fitness checkpoints (if the fitness at given time is less than specified, 
#  the individual is killed and its currently gained fitness is used) 
(INCR_VECTOR) 
 
# format:  simulation_time required_fitness (list should be ordered by time) 
# 10.0 200 
# or: 
# p q 
# t1 dt 
# where p - portion of population that is taken into account to get average 
progress 
#           (0 - only best individual) 
#       q - contstraint requirement multiplication quotient for measured 
fitness progress 
#       t0 - first checkpoint (0 = right from the start) 
#       dt - checkpoint time interval (ms of simulated time) 
# their number or -1 for automatic checkpoints 
#-1 
#0 0.05 
#20000 5000 
 
#-1 
#0 0.05 
#20000 5000 
 
#-1 
#0 0.05 
#20000 5000 
 
#-1 
#0 0.05 
#20000 5000 
 
#-1 
#0 0.05 
#20000 5000 
 
#-1 
#0 0.05 
#20000 5000 
 



#-1 
#0 0.05 
#20000 5000 
 
0 
0 
0 
0 
0 
0 
0 
 
##### fitness function weights 
 
# w_obstacle_time (INCR_VECTOR) 
-1.0 
-1.0 
-1.0 
-1.0 
-1.0 
-1.0 
-1.0 
 
# w_below_light_time (INCR_VECTOR) 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
 
# w_following_line_time (INCR_VECTOR) 
0.0 
5.0 
-5.0 
#-5.0 
0.1 
0.0 
0.0 
0.0 
 
# w_following_line_below_light_time (INCR_VECTOR) 
0.0 
0.0 
10.0 
10.0 
1.0 
0.1 
0.0 
 
# w_total_distance (INCR_VECTOR) 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
 
# w_robot_moving_changed (INCR_VECTOR) 
0.0 
100.0 
0.0 
3.0 
0.0 
0.0 
0.0 



 
# cnt w_script_count[cnt]  - cnt should match the number of scripts in the 
simulation.prj  (INCR_VECTOR) 
#--step0 
0 
#--step1 
0 
#--step2 
0 
#--step3 
4 
0.0 
500000.0 
0.0 
0.0 
#--step4 
4 
0.0 
100000.0 
0.0 
0.0 
#--step5 
4 
0.0 
10000.0 
0.0 
100000.0 
#--step6 
4 
0.0 
0.0 
0.0 
100000.0 
 
# cnt w_active_area_count[cnt];  (INCR_VECTOR) 
0 
0 
0 
0 
0 
0 
0 
 
# w_num_states  (INCR_VECTOR) 
-10.0 
-10.0 
-10.0 
-10.0 
-10.0 
-10.0 
-10.0 
 
# w_num_trans   (INCR_VECTOR) 
-5.0 
-5.0 
-5.0 
-5.0 
-5.0 
-5.0 
-5.0 
 
# w_offset (the score is lifted by this constant to avoid negative values)   
(INCR_VECTOR) 
300000.0 
300000.0 
300000.0 
300000.0 
300000.0 



300000.0 
300000.0 
 
# w_suppress_score_before_load (0 or 1, no scores are accummulated before 
cargo is loaded)  (INCR_VECTOR) 
0 
0 
0 
0 
1 
1 
0 
 
# combine_start_loc (0 - average, 1 - worst fitness, 2 - best fitness, 3 - 
geom. mean, 4 - worst+geom) 
4 
4 
4 
4 
4 
4 
4 
 
#### end of fitness function weights 
 
# name of the output log file for ea 
log/ea_sequential.log 
 
# name of the galib output log file with statistics 
log/ga_sequential.log 
 
# project_id for fsa and trajectory file locations 
sequential 
 
# project_id for cache 
sequential_ 
 
# use_preserved_fitness - if nonzero, previous values in the database will 
#  not be deleted on startup - use with caution, leave 0 if not sure 
(INCR_VECTOR) 
0 
0 
0 
0 
0 
0 
0 
 
# commands to be executed after each incremental step on the slave if running 
# in distributed mode (only 1 line per step, use 'none' if no commands) 
(INCR_VECTOR) 
scp cargo@search:current3/project/cargo/fsa/sequential_/0/*.evolved.* 
/home/current3/project/cargo/fsa/sequential/0 
scp cargo@search:current3/project/cargo/fsa/sequential_/1/*.evolved.* 
/home/current3/project/cargo/fsa/sequential/1 
scp cargo@search:current3/project/cargo/fsa/sequential_/2/*.evolved.* 
/home/current3/project/cargo/fsa/sequential/2 
scp cargo@search:current3/project/cargo/fsa/sequential_/3/*.evolved.* 
/home/current3/project/cargo/fsa/sequential/3 
scp cargo@search:current3/project/cargo/fsa/sequential_/4/*.evolved.* 
/home/current3/project/cargo/fsa/sequential/4 
scp cargo@search:current3/project/cargo/fsa/sequential_/5/*.evolved.* 
/home/current3/project/cargo/fsa/sequential/5 
scp cargo@search:current3/project/cargo/fsa/sequential_/6/*.evolved.* 
/home/current3/project/cargo/fsa/sequential/6 
 
# commands to be executed after each incremental step on the master if running 



# in distributed mode (only 1 line per step, use 'none' if no commands) 
(INCR_VECTOR) 
scp /home/current3/project/cargo/fsa/sequential/0/*.evolved.* 
cargo@search:current3/project/cargo/fsa/sequential_/0 
scp /home/current3/project/cargo/fsa/sequential/1/*.evolved.* 
cargo@search:current3/project/cargo/fsa/sequential_/1 
scp /home/current3/project/cargo/fsa/sequential/2/*.evolved.* 
cargo@search:current3/project/cargo/fsa/sequential_/2 
scp /home/current3/project/cargo/fsa/sequential/3/*.evolved.* 
cargo@search:current3/project/cargo/fsa/sequential_/3 
scp /home/current3/project/cargo/fsa/sequential/4/*.evolved.* 
cargo@search:current3/project/cargo/fsa/sequential_/4 
scp /home/current3/project/cargo/fsa/sequential/5/*.evolved.* 
cargo@search:current3/project/cargo/fsa/sequential_/5 
scp /home/current3/project/cargo/fsa/sequential/6/*.evolved.* 
cargo@search:current3/project/cargo/fsa/sequential_/6 
 
# stop-file - when this file is detected after the generation is completed, 
the application 
#  terminates (and saves the population of the current incremental step, if 
requested) 
project/cargo/true.stop_computing 
 
# skip-file - when this file is detected after the generation is completed, 
the incremental 
#  step is completed and the application proceeds with the next incremental 
step (the incremental 
#  step to skip must be added to the end of this file name!) 
project/cargo/true.skip_step 
 
# save_fsa_file 
1 
 
# use_benchmark (for distributed slaves) 
0 
 
# master_startup_delay (how long time master should wait for slaves to start 
before submitting work, seconds) 
150 
 
# threshold for m_new for random reinitialization of population (INCR_VECTOR) 
0=not used 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
 
# if the learning is stopped, reinitialize the following portion of population 
randomly (INCR_VECTOR) 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
 
# whether robot_moving_changed applies only while following line:0/1 
(INCR_VECTOR) 
1 
1 
1 
1 
1 
1 



1 
 
# w_robot_moving_changed_under_light (INCR_VECTOR) 
0.0 
0.0 
100.0 
100.0 
1.0 
0.0 
0.0 
 



# sequential.4.prj.3: description of environment 
# 
 
#### modules message data in file (used only in non-evolutionary mode) 
project/cargo/modules/alldata.dat 
 
#### number of modules in use 
10 
 
#### their list (mid and name) 
1 
navigate 
2 
cargoloader 
3 
motordriver 
4 
lnflwer 
5 
avoidance 
6 
explore 
7 
bumpertracker 
8 
linetracker 
9 
lighttracker 
10 
beep 
 
#### list of the modules that use fsa (0-terminated) 
2 
4 
5 
6 
0 
 
### version of code to start 
1 
 
#### environment type: RECTANGLE 
 
1 
 
#### environment dimensions: width height 
 
1.0 1.0 
 
#### number of obstacles 
 
5 
 
#### obstacle description: type(RECTANGLE) x y width height (0,0 is a bottom 
left corner) 
 
1 0.2 0.2 0.1 0.1 
1 0.4 0.7 0.1 0.1 
1 0.6 0.6 0.1 0.1 
1 0.8 0.85 0.1 0.1 
1 0.7 0.25 0.1 0.1 
 
#### number of floor marks 
 
#4 
2 
 
#### another floor mark: type(LINE) x y width Nsegments value 



####                     x1 y1 
####                     ... 
####                     xN yN 
#### the coordinates of vertices of this polyline are 
#### in the center of the line (i.e. there's a line around 
#### these points in all directions up to a distance 
#### width/2 - i.e. round corners) 
####  -> this means that you should start/end the line in distance 
####     width/2 from where it actually ends 
 
2 0.4 0.4 0.05 5 30 
0.35 0.4 
0.3 0.8 
0.25 0.8 
0.22 0.5 
0.03 0.5 
 
2 0.8 0.5 0.05 3 30 
0.8 0.75  
0.6 0.8  
0.6 0.97  
 
#### floor marks description: type(RECTANGLE) x y width height value 
 
# 1 0.5875 0.975 0.025 0.025 46  
# 1 0.0 0.4875 0.025 0.025 46 
 
#### number of light sources 
 
2 
 
#### light source description: type(POINTLIGHT) x y z intensity 
 
1 0.8 0.5 1 1 
1 0.4 0.4 1 1 
 
#### environment light conductivity constant 0-1 
 
0.3 
 
#### number of active components 
 
5 
 
#### active areas description format (all conditions are in conjuction): 
# 
# type                 ; now always 1=conditional active area 
# activation/delay     ; -1: one time only,  
#                      ;  0: on each entrance,   
#                      ;  d: on each entrance, if d [ms] passed since last 
entrance 
# x y width height     ; location of the robot in the environment to activate 
# heading tolerance    ; robot heading to activate (-1: any, otherwise: 
<heading-tolerance; heading+tolerance>) 
# fork_state (r0)      ; fork state to activate (-1: any, 1, 2, 3, 4 for UP, 
DOWN, MOVING_UP, MOVING_DOWN resp.) 
# fork_position_min fork_poisition_max (r1)      ; fork must be <min;max> to 
activate, <0.0;1.0> for any 
# carrying_cargo (r2)  ; state of cargo (-1: any, 0, 1, 2, 3, 4 for NO, YES, 
PUSHING, UNLOADING1, UNLOADING2) 
# {reg min max}*       ; reg must be <min;max> 0-31 system registers, 32-255 
user registers, min, max are 'doubles' 
# -2 event_index       ; which script event to execute (refers to the list of 
events below) 
 
# loading station: signal to robot on entrance 
1  
-1 



#0.58975 0.965 0.025 0.01  
0.58975 0.965 0.075 0.01  
#0.0 0.25 
0.0 0.75 
-1 
0.0 1.0 
0 
-2 1 
 
# loading station: cargo loading - switching lamps and active areas 
1 
-1 
#0.58975 0.975 0.025 0.025  
0.58975 0.975 0.075 0.025  
#3.1415926536 0.25 
3.1415926536 0.75 
2 
0.0 0.3 
0 
-2 2 
 
# unloading station: signal to robot 
1 
-1 
#0.025 0.48975 0.01 0.025 
0.025 0.48975 0.01 0.075 
#4.712389 0.25 
4.712389 0.75 
1 
0.3 1.0 
1 
-2 1 
 
# unloading station: start cargo unloading  
1 
-1 
#0.0 0.48975 0.025 0.025 
0.0 0.48975 0.025 0.075 
#1.5707963 0.25 
1.5707963 0.75 
-1 
0.0 1.0 
1 
-2 3 
 
# unloading station: cargo unloaded - switching lamps and active areas 
1 
-1 
#0.025 0.48975 0.01 0.125 
0.025 0.48975 0.01 0.075 
#1.5707963 0.25 
1.5707963 0.75 
2 
0.0 0.3 
4 
-2 4 
 
#### number of time events 
 
1 
 
#### time events description: type periodic [start count] time event_index 
(refers to list of events below) 
# following types are recognized 
# 1 ... SCRIPT EVENT 
# periodic is  
#  either 0, then time is a global simulation time  



#  or 1, then also the start and count arguments must be given. start is 
global simulation time of 
#        the first occurence, count is number of occurences and time is the 
period 
 
# in the beginning, turn on light 1 and off light 2 
 
1 0 0 4 
 
#### number of script events 
 
4 
 
#### script events description 
# 
# multiple lines for each script,  
# each line contains a command, script terminated by command 0 (STOP) 
# following commands are recognized: 
# 10 light_ID ... (TURN LIGHT ON) 
# 11 light_ID ... (TURN LIGHT OFF) 
# 12 active_area_index  ... (reinitialize active area) 
# 13 msg      ... (message msg received from IR port) 
# 14 reg      ... set current register to reg (0-31 system registers, 32-255 
user registers) 
# 15 val      ... put value (double) val into current register  
 
# light_ID start from 1 
 
# script 1: send msg to the robot that it is close to cargo loading/unloading 
station 
 
13 84 
0 
 
# script 2: turn on light 2, turn off light 1, reinitialize active areas 3, 4, 
5, set carrying_cargo = 2 
 
10 2 
11 1 
12 3 
12 4 
12 5 
14 2 
15 2 
0 
 
# script 3: set carrying_cargo = 3 
 
14 2 
15 3 
0 
 
# script 4: turn on light 1, turn off light 2, reinitialize active areas 1, 2, 
set carrying_cargo = 0 
 
10 1 
11 2 
12 1 
12 2 
14 2 
15 0 
0 
 
#### type of robot (round) 
 
1 
 
#### dimensions:  



####  - radius 
 
0.025 
 
####  - fork size relative to radius 
 
0.3 
 
#### robot speed ratio (how the motor speed is translated to robot speed) 
#### should be estimated by Henrik's method 
 
0.00000150 
 
#### fork relative ratio - moving upwards (per millisecond of simulated time) 
 
0.0012 
 
#### fork relative ratio - moving downwards (per millisecond of simulated time) 
 
0.0014 
 
#### initial location and heading: number of locations followed by x y heading 
 
12 
#for evolving avoidance 
0.5 0.5 0.0 
0.76 0.45 0.0 
0.1 0.9 0.5 
0.5 0.5 0.0 
0.76 0.45 0.0 
0.1 0.9 0.5 
0.5 0.5 0.0 
0.76 0.45 0.0 
0.1 0.9 0.5 
0.5 0.5 0.0 
0.76 0.45 0.0 
0.1 0.9 0.5 
#0.5 0.5 0.0 
#0.76 0.45 0.0 
#0.76 0.45 0.0 
#0.76 0.45 0.0 
#0.76 0.45 0.0 
#0.76 0.15 0.0 
 
#0.95 0.7 2.4 
#0.5 0.5 0.0 
#0.1 0.1 1.2 
#0.7 0.1 0.2 
#0.91 0.75 1.0 
 
#4.8 
 
#### time slowdown constant (how many times slower should be the simulation 
time than the system time) 
 
200 
 
#### trajectory file 
####  (used only when run without evolution) 
 
project/cargo/traj/sequential/3/t 
 
 
#### fsa files for all fsas (these are not used when called by objective 
function, 
####  in that case the values specified in evolutionary config file are used) 
####  list is terminated by 0.  each filename is automatically suffixed 
with .x, where 



####  x is the number of module 
 
2 
project/cargo/fsa-handmade/fsa.dat 
4 
project/cargo/fsa-handmade/fsa.dat 
5 
project/cargo/fsa-handmade/fsa.dat 
6 
project/cargo/fsa-handmade/fsa.dat 
0 
 
#### how often does the viewer refresh the visual output (in ms) zero means no 
viewer, default: 200 
 
#200 
0 
 
#### realtime (0/1): are we running realtime (1) or time-shared (0); realtime 
must be run as root 
1 
 
#### save trajectory file (0/1) 
0 
 
#### NOISE LEVELS: 
 
#### sensor1 gaussian noise level variance (0 = noise free) 
0.0 
 
#### sensor2 gaussian noise level variance (0 = noise free) 
0.0 
 
#### sensor3 gaussian noise level variance (0 = noise free) 
0.0 
 
#### robot speed gaussian noise level variance (0 = noise free) 
0.0 
 
#### robot heading gaussian noise level variance (0 = noise free) 
0.0 
 
#### robot heading change by obstacle gaussian noise level variance (0 = noise 
free) 
0.0 
 


