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Abstract
If we were to have a Grid infrastructure for visualization, what technologies would be needed to build such an
infrastructure, what kind of applications would benefit from it, and what challenges are we facing in order to
accomplish this goal? In this report, we make use of the term ‘visual supercomputing’ to encapsulate a subject
domain concerning the infrastructural technology for visualization. We consider a broad range of scientific and
technological advances in computer graphics and visualization, which are relevant to visual supercomputing. We
identify the state of the art technologies that have prepared us for building such an infrastructure. We examine a
collection of applications that would benefit enormously from such an infrastructure, and discuss their technical
requirements. We propose a set of challenges that may guide our strategic efforts in the coming years.
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1. Introduction

Today there is a variety of computational resources available
to visualization. While a huge number of users are contented
with the visualization capabilities provided through modern
desktop computers and powerful 3D graphics accelerators,
many are still relying on high performance computing facil-
ities to visualize very large data sets or to achieve real-time
performance in rendering a complex visualization. In some
areas, users have already demanded visualization capabili-
ties to be provided through mobile computing systems, such
as PDAs (Personal Digital Assistants), most of which are
yet to benefit from powerful 3D graphics accelerators. As
the size of visualization data (e.g., in visual data mining),
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the complexity of visualization algorithms (e.g., with vol-
umetric scene graphs), and demand for instant availability
of visualization (e.g., for virtual environments) continues to
grow, it is unlikely that visualization users can be served ad-
equately, at least in the coming years, by an infrastructure
largely based on desktop computers.

Inevitably, this leads to a series of questions that we must
ask ourselves:

• What would be an adequate infrastructure?
• In what way do the computational requirements of visual-

ization differ from other software technologies?
• Is it desirable or feasible to bring a range of technologies

under one management (not necessarily under one roof)?
• If it were feasible to build such an infrastructure, what

would be an appropriate virtual machine interface for the
infrastructure?
• How should users’ experience be managed when they ac-

cess visualization resources in the infrastructure?
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In fact, the computer graphics and visualization commu-
nity has been seeking answers for these questions for the past
few decades. The community has invested a huge amount of
effort in developing specialized graphics hardware, has al-
ways been among the first to deploy the latest technologies
for high performance computing, and has accumulated large
volumes of research outputs in parallel, distributed, and web-
based techniques for visualization. Recently, the community
has shown equally great enthusiasm to embrace the cluster,
Grid and mobile technologies. However, in general, the com-
munity tended to address these questions mainly from the
perspective of visualization technology. With the rapid ex-
pansion of the visualization user community, there is an ur-
gent need to examine these questions from the perspective
of end-users, for instance, surgeons, field workers, and fraud
detectives.

The authors of this report are engaged in a collaborative
project, e-Viz [e-V], to develop an advanced infrastructure
for managing a variety of visualization tasks. In this report,
we trace the historic route of deploying advanced computing
technologies for visualization, and survey a broad collection
of scientific and technological developments, including the-
ories, algorithms, hardware, software and services, for visu-
alization. We utilize the term Visual Supercomputing to en-
capsulate a subject domain concerning such an infrastructure
for visualization, and outline the user requirements by con-
sidering a range of applications. We present an overview of
the state of the art of technologies in hardware and software
for visualization, and the impacts of the Internet, Grid and
mobile technologies to visualization. We highlight those lat-
est developments that are relevant, or potentially relevant, to
visualization. We propose a set of technical challenges in re-
alizing a visual supercomputing infrastructure that manages
visualization tasks in complex networked computing envi-
ronments, as well as manages users experience in accessing
and interacting with visualization resources. We believe that
autonomic computing can play an integral role in the evolu-
tionary development of such an infrastructure.

Our survey comes at a timely moment in considering the
relationship between visual supercomputing and Grid com-
puting. There is now a growing body of experience in adapt-
ing applications to a Grid environment. What is emerging is
a consensus that the original idea of a computational Grid
that behaved like a utility Grid for computation is perhaps
oversimplified. There may be several different structures for
Grids depending on whether the resources aggregated in
the Grid are to serve large-scale computation, large-scale
data handling, complex data sources (e.g., bioinformatics
databases) or perhaps to integrate business processes. In this,
the visual supercomputing paradigm presents novel chal-
lenges to the Grid concept. A number of pioneering projects,
described in this report, have been testing the implications of
a Grid for various visualization applications and have raised
many technical issues including real-time processing, syn-

chronicity of resource allocation and interactivity between
clients and Grid services.

This report is organized as follows. In Section 2, we will
give a more precise definition of the term Visual Supercom-
puting and outline its technical scope. In Section 3, we will
review major scientific and technological developments by
following the arrivals of different computing technologies,
and identify the state of the art technologies that have pre-
pared us for building an infrastructure for visual supercom-
puting. In Section 4, we will examine a collection of applica-
tions that would benefit enormously from such an infrastruc-
ture, and discuss their technical requirements. In Section 5,
we will propose a set of challenges that may be used to guide
our strategic efforts in the coming years. These will be fol-
lowed by a summary of our conclusions in Section 6.

2. Visual Supercomputing

In this section, we first define the term ‘Visual Supercomput-
ing’. We examine its relevance to the three semantic contexts
of visualization. We then outline the technical scope of vi-
sual supercomputing from the perspectives of applications,
users and systems respectively.

2.1. Definition

Definition. Visual supercomputing is concerned with the
infrastructural technology for supporting visual and in-
teractive computing in general, and visualization in par-
ticular, in complex networked computing environments.

In this report, we are focusing only on the subject domain
of visualization, though most of the discussions can be ex-
trapolated to other subject domains involving visual and in-
teractive computing, such as computer-aided design, com-
puter animation, and computer vision.

As an infrastructural technology, visual supercomputing
encompasses a large collection of hardware technologies and
software systems for supporting the computation and man-
agement of visualization tasks. It focuses on generic tech-
nologies for managing the specification, execution and de-
livery of visualization tasks. It addresses issues such the
scheduling of visualization tasks, hardware and software
configurations, parallel and distributed computation, data
distribution, communications between different visualiza-
tion tasks, and communications between visualization tasks
and their couplings such as computation tasks or data collec-
tion tasks. In addition, it provides infrastructural support to
users’ interaction with visualization systems, and manages
users’ experience in accessing and interacting with visual-
ization resources. Nevertheless, visual supercomputing does
not concern a specific algorithm and technique for process-
ing a specific type of data in order to generate visualization
results.
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We give an explicit emphasis on complex networked com-
puting environments, as this report is not intended as only a
survey of the technologies that have been developed so far
in the context of visual supercomputing, but as a report on
technologies that are in place as well as that are desirable for
a future infrastructure. No doubt such an infrastructure must
take web computing, Grid computing and mobile computing
into account. Hence it has to provide comprehensive support
to visualization tasks in complex networked computing en-
vironments.

The best way to capture our imagination of a visual su-
percomputing environment is to consider a global Grid in-
frastructure for visualization. The above-mentioned techni-
cal features of visual supercomputing have clearly set it apart
from the traditional subject domains such as hardware archi-
tectures for visualization, parallel and distributed computa-
tion for visualization, web-based visualization, and collabo-
rative visualization. While the advances in these traditional
subject domains will have significant influence in shaping
the infrastructure of visual supercomputing, we need not
only integrate these technical advances together in an en-
vironment, but also bring in, and develop new, technologies
for significantly improving the quality of services (QoS) of
such an infrastructure and users’ experience. This will be-
come apparent in Sections 4 and 5.

2.2. Semantic Contexts

The gerund ‘visualizing’ refers to a process that extracts
meaningful information from data, and constructs a visual
representation of the information. In the field of visualiza-
tion, this process is commonly considered in three different
but interrelated semantic contexts as illustrated in Figure 1.

Reps.
Visual Data

User

Display Control

Rendering

Making displayable by a computer

Making visible
to one’s eye

Making visible to one’s mind Mental
Images

Figure 1: Three semantic contexts of visualization.

• Making displayable by a computer. This is concerned with
the algorithmic and computational process of extracting
information and rendering a visual representation of the
information. In this semantic context, a visual supercom-
puting infrastructure should address issues such as allo-

cating and scheduling computational resources for visu-
alization tasks, managing data distribution, and providing
mechanisms for inter-process, and inter-task communica-
tions within an infrastructure.
• Making visible to one’s eyes. This is concerned with the

process of specifying meaningful information, designing
appropriate visual representations, and conveying visual
representations to viewers. In this semantic context, a
visual supercomputing infrastructure should address is-
sues related to the interaction between users and their
visualization tasks, which can be conducted in a vari-
ety of forms, including interactive virtual environments,
Internet-based collaborative environments, mobile visual-
ization environments, and so on.
• Making visible to one’s mind. This is concerned with

users’ thought process and cognitive experience of inter-
preting received information (not necessarily in a visual
form) in one’s mind and converting the information to
knowledge in pictorial representations. In this semantic
context, it is neither desirable nor perhaps feasible for a vi-
sual supercomputing infrastructure to manage the thought
process of a user.

This section presents further detailed discussions on how
visual computing relates to the above three semantic con-
texts, and provides rationalization for focusing infrastruc-
tural support on the processes of making displayable by a
computer and making visible to one’s eye, with the state of
the art technologies in visual supercomputing. It also argues
for the necessity for introducing gradually new capabilities
in a visual supercomputing environment, to support the pro-
cess of making visible to one’s mind.

2.3. Application Perspective

The demands for visualization multiply in every direction,
and there is an increasing number of new applications, re-
sulting in new, and sometimes conflicting, requirements. For
example:

• In some applications (e.g., bioinformatics), the size of
datasets to be processed continues to grow, while in others
(e.g., mobile visualization), a careful control of data size
is absolutely necessary.
• In many applications (e.g., those involving 3D virtual en-

vironments), users still have plenty of appetite for photo-
realistic visualization at an interactive speed, while in oth-
ers (e.g., visual data mining), schematic visual representa-
tions and non-photo-realistically rendered images are of-
ten able to convey more information.
• In many applications (e.g., virtual endoscopy), interactive

visualization can now be achieved with modern personal
computers, hence small integrated systems provide a high
degree of independence to users who operate in various
practical situations. Meanwhile, other applications (e.g.,
those centralized around one or more data warehouses)
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require a substantial amount of computation for visualiza-
tion to be closely coupled with the source of data. Some
applications, which have distributed data sources or dy-
namic data sources, demand a more complex computa-
tional model.

From the perspective of applications, an important re-
quirement for a visual supercomputing infrastructure is
choice, that is, it has to provide a large collection of plat-
forms, methods, mechanisms and tools to serve different ap-
plications, as well as offer each individual application a di-
verse selection of means to accomplish a visualization task.

In Section 4, we will consider several major applications,
which collectively characterize the main requirements for a
visual supercomputing infrastructure.

2.4. User Perspective

Visualization users are no longer limited to scientists and en-
gineers. At the same time, a visualization process often re-
quires a high degree of domain knowledge about the applica-
tion concerned. While the diversity of applications demands
a visual supercomputing environment to provide a large col-
lection of platforms, methods, mechanisms and tools, users
require the service to be tailored to individual needs, and to
be delivered in a seamless manner. Many users, especially
those less technically oriented, would very much hope for a
secretary-like visualization service, where they simply sub-
mit the data, give instructions and receive results. Although
to get appropriate results may require a few feedback loops,
many users certainly do not wish to get involved in choosing
hardware, programming parallelism, organizing storage for
input and output data, and so on. Further more, like a secre-
tary, perhaps a visual supercomputing infrastructure should
accumulate knowledge about various entities in the envi-
ronments, profiling hardware capabilities, software usage,
users’ preference, etc. and gradually improving its quality
of services to individual users.

Recent developments in business computing, such
as electronic customer relationship management (e-
CRM) [PL03, LaR00], has shown that it is possible to
provide users with better quality of services with ap-
propriate technologies that are capable of collecting and
processing users’ experience. The emergence of autonomic
computing [KC03] is gathering further momentum in de-
veloping self-managed services in a complex infrastructure
(see also Sections 3.6.2 and 5). Therefore a visual super-
computing infrastructure should have the responsibility for
managing:

• visualization resources,
• visualization processes,
• source data and resultant data,
• users’ interaction and communication,
• users’ experience in accomplishing a visualization tasks.

2.5. System Perspective

From the system perspective, a visualization task is a kind of
computation task, which exhibits a specific class of charac-
teristics. The infrastructure of visual supercomputing is built
upon a range of underlying technologies, including com-
puter hardware, operating systems, programming languages,
data warehouses, communications, world-wide-web, Grid
computing, knowledge-based systems, and standardization.
It is neither sensible nor feasible for the visualization com-
munity to attempt to provide solutions in all these aspects.
However, it is necessary for the construction of such an in-
frastructure to bring in the latest advances in other fields of
computing and communications, and moreover, to influence
the developments in these fields.

In the following section, we thereby examine in detail the
major advances and the state of the art in the relevant fields.

3. Technologies of Visual Supercomputing

The technological infrastructure for visualization has
heavily depended on high performance computing en-
vironments until recently. In this section, we examine
how the advances in computing and communication tech-
nologies have shaped, and reshaped, the foundation of
visual supercomputing. Obviously, it is not possible to
provide a comprehensive coverage for the large number
of visualization works that have impacted upon the devel-
opment of visual supercomputing. We hence focus on the
contributions, in connection with each major technological
advance, which are particularly relevant to the state of the
art of visual supercomputing. For further historic details,
readers are encouraged to refer to several excellent surveys
[Whi96, Han96, BS01, Vit01, EE02, KMS02, BWD∗03]
and some major publications [DEH89, The89, Gre91]
[Whi92, SSC02, Kou03].

3.1. The Era of Supercomputers

Elwald and Mass’s vector graphics library for Cray-
1 [EM78] represents the earliest efforts for providing vi-
sualization capability to support scientific computation on
supercomputers. Since then, there has been a huge volume
of publications devoted to parallel architectures and parallel
algorithms for computer graphics and visualization. While
most of these architectures are no longer in action, and many
of these algorithms have difficulties to benefit from modern
hardware, the research in the era of supercomputers has pro-
vided us with a collection of abiding concepts which can
still be entrusted to serve modern visual supercomputing en-
vironments.†

† Note that some of the works described in this section were de-
veloped much later than the actual ‘era of supercomputers’. As they
represent some fundamental concepts and methodologies, we have
conveniently placed in this section.
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3.1.1. Models of Parallel Computation

Since the creation of the very first computer, there have been
ever-increasing demands for processing power. Although
Moore’s Law [Moo65], which suggests that processor power
doubles every 18 months, has been satisfied for the last 39
years, today’s seemingly powerful desktop computers still
cannot meet the requirements of many scientists and engi-
neers who seek to model, compute and visualize even larger
and more complex problems. Hence, there has always been,
and will continue to be, a need for parallel computation.
There are three paradigms for parallel computation:

• Functional parallelism splits up the process of computa-
tion by dividing an algorithm into separately functional
sections and distributing these sections onto different pro-
cessors organized along a logical pipeline. Data is passed
from one processor to another to be computed. The paral-
lelism is achieved when different parts of data are pro-
cessed concurrently by different functional sections on
different processors. In many special purpose graphics
hardware systems, including commodity graphics cards,
a graphics rendering pipeline is partially realized using
functional parallelism.

• Data parallelism splits up the process of computation by
dividing the data amongst the processors, all of which per-
form more or less the same algorithmic function. The par-
allelism is achieved when multiple streams of the data are
computed in parallel. Some graphics hardware, such as
the SGI InfiniteReality, makes use of data parallelism at
individual stages of a graphics pipeline. A large collection
of parallel visualization algorithms have been designed
based on data parallelism.

• Farm parallelism splits up the process of computation
into ‘tasks’, each of which is essentially a portion of
data coupled with a functional operation to be performed.
The tasks are kept in a queue, and are distributed to
a ‘worker’ processor whenever one becomes available
(i.e., idle). Many modern parallel visualization algorithms
(e.g., [PMS∗99]) have employed farm parallelism to opti-
mize processor utilization.

In 1972, Flynn’s taxonomy [Fly72] redefined parallel ar-
chitectures and, whilst it may be a little outdated now, it is
still generally appropriate and widely used. Flynn suggested
four categories of parallel machines, namely SISD (Single
Instruction stream, Single Data stream), SIMD (Single In-
struction stream, Multiple Data stream), MISD (Multiple In-
struction stream, Single Data stream), and MIMD (Multiple
Instruction stream, Multiple Data stream ).

In 1978, Fortune proposed the PRAM (Parallel Ran-
dom Access Machine) model [FW78], which is an ideal-
ized parallel machine of p processors sharing an unbounded
global memory and a common clock. PRAM architectures
are essentially synchronous shared-memory MIMD systems,
which are further categorized into four subclasses accord-
ing to whether a memory location can be read or written

concurrently. By not considering synchronization problems
and communication issues, the model focuses on the ac-
tual parallelization of a problem. As interconnection of the
processors and memory is a fundamental factor in classical
parallel architecture, other models of parallel computations
were proposed, including UMA (Uniform Memory Access)
and NUMA (Non-Uniform Memory Access ) [Ski88, Buy99]
UMA systems are better known as SMP (Symmetric Multi-
Processor) systems, where all processors are able to ac-
cess all shared memory in the same, consistent time pe-
riod. NUMA systems have differing access times for pro-
cessors depending on the locality of the memory being ac-
cessed. Hence, NUMA systems can be larger and more dis-
tributed [ZQ91].

There are two principal memory structures that can op-
erate in both UMA and NUMA systems. Firstly, in a dis-
tributed memory system, each processor has private access to
its own fast, local memory, but must use some form of mes-
sage passing over the interconnection to access the memory
of another processor. A typical example is the Cray T3D.
Distributed memory systems are generally regarded as diffi-
cult to program and debug, but they can scale to many thou-
sands of processors [Tea02]. This is in contrast to shared
memory systems, where all processors can access all mem-
ory directly via a shared bus (normally in a UMA system) or
a complex switched interconnection network (normally in a
NUMA system). Both of these require synchronization func-
tions in order to safely handle contention for shared data. In
hardware specifically designed for shared memory purposes,
extra cache memories are often present along with a Cache
Coherency Protocol to ensure consistency between local
cache and global shared memory [TOIA95]. Volume visu-
alization often relies on memory systems supplying conflict-
free simultaneous access to multiple voxel values in a vol-
ume dataset [RPSC99].

Another major consideration in parallel computation is
granularity, which is often used to indicate, intuitively, the
size of parallel tasks in relation to the whole computation re-
quirement. Granularity of a parallel architecture is defined as
the ratio of the number of processors to the computation ca-
pacity of each processor. Granularity of a parallel algorithm
is measured as the ratio of the time required for a basic com-
munication operation to that for a basic computation. Dif-
ferent applications suit fine- or coarse-grain parallelization.
Finer granularity brings greater potential for parallelism but
increases the overhead of synchronization and communica-
tion. Over the last two decades, researchers in graphics and
visualization have developed a large collection of parallel
visualization hardware and algorithms of a wide range of
granularity.

3.1.2. Models of Inter-process Communications

Since the first multitasking systems, it has been necessary to
provide means for concurrent processes to communicate. In
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parallel and distributed systems, inter-process communica-
tion introduces delays, which may affect the efficiency of a
parallel algorithm significantly.

Shared memory architectures rely on low-latency (< 1ms)
communication between processing units and memory via a
dynamic interconnection network [Tan01]. Several parallel
architectures, such as Cray Y-MP, utilized a crossbar switch-
ing network, which uses a grid of switching elements to con-
nect p processors to q memory banks. A simple but less scal-
able alternative is a bus-based network, with which p pro-
cessors connect to q memory banks by sharing a common
data path. Multi-stage interconnection networks are a class
of networks that offer more scalable performance than bus
networks and more scalable costs than crossbar networks.
A typical configuration is the omega network where p pro-
cessors connect to p memory banks via p stages, and each
stage is an interconnection pattern connecting p inputs to p
outputs.

Distributed memory architectures typically involve static
interconnection networks, which may be of a variety connec-
tion topologies [Fen81]. In such architectures, some kind of
mechanism for message passing [Sil99] or remote procedure
calls (RPC) [BN84] is required. The former enables data
communication between remote processes, and the latter fa-
cilitates server-client communication by allowing a client to
activate pre-defined remote procedures at a server and ex-
change data in a manner similar to conventional subroutine
calls. An object-oriented approach to inter-process commu-
nication enables a process to send data as well as operations
to remote processes, hence significantly improve the flexibil-
ity and scalability in dynamic management of parallel com-
putation tasks. Common Object Request Broker Architecture
(CORBA) [Bak97] provides such an inter-process commu-
nication in UNIX-like systems, while Microsoft Windows
incorporates such features into DCOM as an operating sys-
tem service Some systems, such as Globe [vSTKS99] allow
a single object to be distributed across a wide area network.

A number of modern parallel environments provide
programmers with high level programming interfaces for
managing inter-process communications. These include
coordination-based middleware such as Jini [OW00], and
document-based middleware such as Globus [FK97]. This
enables application developers to focus on the contents of the
communications, and many have adopted the XML standard
for defining the syntax of the contents [BWD∗02]. Although
there is significant overhead in parsing transferred data when
compared with binary encodings, the XML standard facili-
tates integration of different protocols and extension of ex-
isting protocols.

3.1.3. Performance Metrics for Parallel Systems

Many different metrics have used to measure the perfor-
mance of parallel systems and algorithms. The primary ob-
jective of using p processors in parallel to solve a problem

of size n is the multiplication of the amount of processing
power, commonly measured in terms of MIPS (millions of
instructions per second) or FLOPS (floating-point opera-
tions per second). However, as previously outlined, it is not
possible to parallelize all problems perfectly without intro-
ducing any additional costs.

One widely used performance metric is the
speedup [JW00] which measures the ratio of sequen-
tial run time on a single processor to parallel run time
taken on p processors. Speedup can never exceed the
number of processors p, though in practice superlinear
speedup (speedup > p) may sometimes be observed due to
non-optimal sequential run time. Amdahl’s Law [Amd67]
describes another upper bound of speedup in relation to
the problem size. Given a problem of size w that has a
sequential fraction of size ws and a parallel fraction of
size wp = w− ws, the upper bound of speedup is w/ws,
regardless the number of processors.

It is also important to measure a parallel system with the
efficiency metric, which is defined as the ratio of speedup to
the number of processors; and the cost metric, which is the
product of parallel run time and the number of processors
used. One design goal for a parallel algorithm is to achieve a
cost-optimal system, the cost of which is proportional to the
execution time of the fastest-known sequential algorithm.
The main obstacle to achieving a cost optimal parallel sys-
tem is the overhead resulting from parallelization, which is
usually caused by inter-process communication, extra com-
putation (e.g., initialization, distributed data management),
and idle waiting (e.g., due to load imbalance, task synchro-
nization).

Increasing the number of processors reduces efficiency,
while increasing the size of the computation increases total
speedup hence efficiency. One of the most important met-
rics is scalability [Kri89], which measures the capability of a
parallel system to maintain efficiency by increasing problem
size and speedup in proportion to the number of processors.

The isoefficiency function of a parallel system describes
the problem size w required, as a function of the overhead
and efficiency, p, in order to maintain a constant level of ef-
ficiency. Isoefficiency has been found useful in characteriz-
ing the scalability of a variety of parallel algorithms. A small
isoefficiency function indicates a highly scalable parallel sys-
tem [GGK93].

Gustafson et al. [GMB88] studied the time-constrained
scalability which is the core issue in some applications,
such as weather forecasting, where it is necessary to fix the
parallel run time, and to scale the problem size according
to the number of available processors. They also examined
the memory-constrained scalability, focusing on the largest
problem that can fit the available memory in a parallel sys-
tem.
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3.1.4. Parallel Programming Paradigms

It is generally accepted that there are three primary program-
ming paradigms for developing parallel applications, namely
message passing, shared-address-space and data parallel
paradigms. The first two are sometimes collectively referred
to as the control-parallel paradigm ‡

Message passing is a widely adopted programming
paradigm. Although it is commonly associated with MIMD
computers, it is universal enough to run on SIMD systems
and uniprocessor systems as well as cluster systems and
symmetric multi-processor systems. It requires the program-
mer to ‘manually’ specify subtasks to be executed in parallel,
start and stop their execution, and coordinate their interac-
tion and synchronization.

Message Passing Interface (MPI) [Sil99] is perhaps one of
the most popular programming environments for developing
parallel applications in C/C++ and Fortran. It is hardware in-
dependent, and provides a set of library interface standards
for managing dynamic processes and message communi-
cations. It is supported by most of the hardware platforms
available today.

The Parallel Virtual Machine (PVM), which was first de-
veloped at Oak Ridge National Laboratory (ORNL), is an-
other implementation of the message passing paradigm. Us-
ing the notion of a virtual machine, PVM enables program-
mers to treat a set of heterogenous computers as a single
parallel computer. Although MPI is believed to be faster
within a large multiple processor system, PVM still scores
highly due to its fault tolerance and recovery [GKP96].
Other vendor independent libraries for the messaging pass-
ing paradigm include EXPRESS, P4 and PICL.

The shared-address-space paradigm aims to provide pro-
grammers with a virtual shared memory machine, which can
be built upon distributed as well as shared memory architec-
tures. An programming environment for this paradigm nor-
mally include primitives for creating processes, allocating
shared variables, managing mutual exclusion and facilitating
synchronization. Managing mutual exclusion during concur-
rent memory accesses is critical to the correctness of parallel
programs in this paradigm [GBD∗94].

Linda [CG86] is a coordination language, in the form
of extensions to C and Fortran respectively, for support-
ing shared-address-space programming. SR [AO93] is a lan-
guage that supports both shared-address-space paradigm and
messaging passing paradigm. X3H5 is an ANSI standard for
shared-address-space programming in the context of single
program and multiple data stream (SPMD).

‡ The terms control parallelism, functional parallelism and task
parallelism are often used in an interchangeable manner, while each
places different emphasis on aspects of parallel computation.

The data parallel paradigm provides programmers a col-
lection of virtual processors. Hence it facilitates a high level
abstraction in developing parallel applications, hiding the ar-
chitectural features of the underlying hardware. Data are dis-
tributed among virtual processors. It enables programmers
to focus on data parallelism within a parallel algorithm. The
parallelization of a computation task is usually realized by
an appropriate compiler which must map virtual processors
onto physical processors [KGGK93].

Many languages were developed for supporting the data
parallel paradigm in the late 1980s and early 1990s, includ-
ing the CM-2 family (i.e., C*, CM-Fortran and *Lisp by
Thinking Machine Co.), MP-2, Dataparallel C, DINO and
PC++ [KGGK93].

One important strand of the data parallel paradigm is
dataflow computation [Sha85, Sha92], in which operations
are executed in an order determined by the data interde-
pendencies and the availability of resources. The execution
can be activated by the availability of input data (i.e., data-
driven) or by requirements for specific output data (i.e., de-
mand driven). The concept of dataflow computing facilitates
a functional specification of a computation task and the per-
mitted freedom as well as constraints in its parallelization.

This concept has also played a more significant role in vi-
sualization (see also 3.2). Systems, such as OpenDX [AT95],
AVS [UFK∗89], IRIS Explorer [Fou95], SCIRun [SGPJ98]
and DDV [MH99], are dataflow-based modular visualiza-
tion environments. They provide a network of modules as
the specification of a visualization task, which in principle
can support dataflow parallelism [SG93]. As most networks
normally define a coarse-grain dataflow, and most available
modules cannot handle partial datasets, these environments
offer only limited data parallelism under a centralised ex-
ecutive [ABM∗01]. Both AVS and OpenDX can achieve
control parallelism with remote modules. SCIRun provides
threaded-task and data parallelism on shared-memory multi-
processors. DDV enables a pipelined-based, demand-driven
execution that requires the minimum amount of input data to
produce the results.

Stream-based computation, inspired by some paral-
lel hardware architectures, represents a combination of
simple control parallelism and simple data parallelism.
Chromium [HHN∗02] provides a collection of pluggable
stream processing units, and allows streams of OpenGL
commands (which contain mostly data) to be processed
in parallel. Moreland and Thompson [MT03] recently de-
scribed a new set of VTK parallel rendering components
built on the top of Chromium for supporting ‘cluster to wall’
visualization.

3.1.5. Design Methods for Parallel Visualization

Parallel and distributed computation in visualization is
broadly divided into two fundamental categories — ob-
ject space and image space [Gre91]. ‘Object space parallel’
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refers to the decomposition of a visualization task by divid-
ing up input data into a collection of smaller components,
each being processed by a computation node. Algorithms
in this category are also known as sort-last [MMEF94], re-
flecting the need for sorting graphics primitives generated
by different computation nodes at the image composition
stage of a graphics pipeline. ‘Image space parallel’ refers
to the decomposition of a visualization task into a collection
of sub-tasks, each responsible for a small portion of pixels
in the visualization image to be synthesized. Algorithms in
this category are also known as sort-first, reflecting the need
for organizing (or ‘sorting’) data according to the target sub-
images prior to their entering into the graphics pipeline.

There is always a need in any parallel implementations to
keep a balance between two, often conflicting, requirements,
namely data locality and load balance. The former helps re-
duce the communication overhead, whilst the latter attempts
to minimise the idle time of the processors involved.

Data partitioning is important for any visualization tasks
to be computed on parallel and distributed architectures. It
is particularly critical for distributed memory architectures,
such as Beowulf clusters, where partitioned data components
are distributed to different processing nodes. Data or spatial
coherence is often harnessed by partitioning algorithms to
ensure data locality while minimizing the amount of data re-
siding on each node [MC94]. Further consideration includes
image and frame coherence [GR95], and overlapping and
exchange of boundary data [MLM∗03]. In general, sophis-
ticated partitioning methods are largely datatype-dependent,
though they can sometimes also be architecture-dependent.

Data partitioning and distribution schemes may be
classified according to division criteria (e.g., image-
space [MC94], object-space [WH94], or hybrid meth-
ods [Lac96]), or organization of data replication, which may
be in one the following three forms:

• Complete Data Replication, in which each node holds
all data locally. This allows simple parallelization, clas-
sically image-space parallelization, through the same se-
quential algorithm on all nodes and minimizes communi-
cation overhead during processing. This technique is only
effective for processing read-only data. It does not scale
well as the cost of initial data distribution is a function of
both the size of data and the number of nodes. The de-
mand for large memory in each computation node is often
difficult to meet.

• Block Replication, in which a dataset is typically parti-
tioned into blocks or slices based on the ‘physical’ orga-
nization of the data. This meets the basic needs of object-
space parallelization, and replicates a small proportion of
an input dataset on each processor. For example, a regular
block decomposition method may divide a volume dataset
into equally-sized regular blocks. As equally-sized blocks
do not ensure an equal amount of workload in each block,
this sometimes leads to difficulties in load balance. An ir-

regular block decomposition method is often employed to
produce blocks that contain similar workloads.
• Structured or Hierarchical Partitioning, in which one

or more higher level structures are superimposed upon
the raw dataset, facilitating data decomposition based
on the ‘logical’ organization of the data. An occupancy
map [MDKH01, KWH03] is one of the simplest forms of
such structures, which employs a binary flag to indicate
whether or not a block of data is of any interest to the
rendering algorithm. A relatively more complex approach
is the Kd-tree Partitioning [Ben75], which is used for
partitioning k-dimensional space into sub-volumes along
planes through the dataset. Another commonly used ap-
proach is Octree subdivision [DT81, CA86], which recur-
sively divides the object-space (or an octant) into eight
octants. Such a structure can be used to organize the
data according to various attributes, including spatial oc-
cupancy and workload [VA88]. While most structured
partitioning takes places in the object-space, many of
these methods can also serve image-space paralleliza-
tion as they can facilitate efficient view-dependent data
fetch [LP02], and combined image and data coherence.
Recently, scene graphs were used as a hierarchical struc-
ture for managing sort-first, distributed memory parallel
visualization [BHPB03], and facilitating real-time virtual
reality applications [NLSG03].

Load balancing is normally addressed by appropri-
ate task assignment methods, which are typically clas-
sified by its run-time behaviour. Static task assignment
(e.g., [WH94, MPK94]) pre-determines the workload of
each processor according to the predicated workload of each
sub-task and processing power of each computation node.
Though it requires the pre-processing of task assignment,
it demands less communication overhead and little cost in
run-time monitoring and scheduling. It usually facilitates ef-
ficient data partition and distribution by taking data coher-
ence into account in task assignment.

Dynamic task assignment (e.g., [Lac96]) maintains a pool
of tasks, which are often of small and varying workloads.
Whenever a processor is free, it is assigned a new task from
the pool. This procedure repeats until the pool is empty.
This method is particularly effective in heterogeneous envi-
ronments, where the available computation capacity of each
processor is somehow difficult to predict. It is often associ-
ated with image-space parallelization where the workload of
each sub-task is difficult to predict.

Image composition, which transforms parallel streams
into a useful output (usually a single image), is often a
bottleneck in algorithms, especially sort last algorithms, in
high performance visualization. Many classical implemen-
tations use the direct send method, in which each processor
sends its rendered pixels directly to the processor responsi-
ble for image composition. However this simple method suf-
fers from the problem of link contention with a large com-
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munication overhead. Lee et al. [LRN96] suggested a paral-
lel compositing algorithm to avoid link contention by rout-
ing messages along pre-defined grid paths in a mesh net-
work. Ma et al. proposed to organize message paths in the
form of a binary-tree (also by [WH94]), together with a bi-
nary swap algorithm for improving processor utilization. Re-
cently, Stompel et al. [SML∗03] presented a scheduled linear
image compositing algorithm, as a highly optimized direct
send method, offering better scaling on larger numbers of
processors.

3.2. The Arrival of Graphics Workstations and
Modular Visualization Environments

The arrival of graphics workstations in the late 1970s
changed the face of visual computing. Up to that point,
graphics was a speciality, provided in the form of a graph-
ics terminal connected over a relatively slow communica-
tion line to a time-sharing processor. Suddenly the processor
was co-located with the display, and so interaction became
much more dynamic. Moreover this development coincided
with the emergence of network-based windowing systems.
This was significant to visualization users, who benefited
from not only the WIMP-based user interface, but also from
the interactive graphics capability that allowed visualization
tasks to be carried out on the desktop.

However it took some time before visualization soft-
ware emerged to support these new opportunities. In the
late 1980s, the performance of workstations reached a
point where interactive 3D visualization was feasible, and
this performance leap was accompanied by new algo-
rithmic developments such as Marching Cubes for iso-
surfacing [LC87], and ray casting for volume render-
ing [Lev88]. A number of products started to appear, first
AVS [UFK∗89] and aPE [Dye90], and soon followed by
IRIS Explorer [Fou95], Khoros [RASW91] and IBM Vi-
sualization Data Explorer [AT95], and more recently TGS
Amira [TGS]. These are known as modular visualization en-
vironments, since applications are composed by wiring mod-
ules together in a dataflow network, using a visual program-
ming paradigm. They are designed to suit end-users with
limited programming knowledge and enable them to inter-
rogate interactively a dataset via its visual representation.

Often these modular visualization environments were de-
veloped in the first instance as software tools to accompany
and promote particular graphics workstations. Thus AVS
was developed as a tool for use with Ardent workstations,
and later Stardent; IRIS Explorer was developed to enhance
the promotion of SGI workstations. The cost was typically
very low, if not free. It is interesting that the software in
most cases has lived rather longer than the hardware it was
designed to support. For instance, responsibility for the de-
velopment of AVS and IRIS Explorer was passed to soft-
ware vendors in the 1990s, NAG Ltd. in the case of IRIS
Explorer. Khoros was recently renamed as VisiQuest and

marketed by AccuSoft. IBM Visualization Data Explorer be-
came OpenDX as IBM decided to make it an open source
product. AVS, IRIS Explorer, Khoros and OpenDX remain
vibrant products today.

In the late 1990s, relatively expensive graphics worksta-
tions were gradually replaced with modern personal com-
puters equipped with commodity graphics cards. This has
certainly created new demands for visualization tools from
users of all types of occupations, for instance, security
officers, and stock-brokers. It has also introduced a new
dilemma as to the best way to provide users with visual-
ization capabilities, and the role of modern personal com-
puters equipped with powerful graphics hardware in the in-
frastructure of visual supercomputing. Undeniably, it is a
formidable argument that a future visual supercomputing in-
frastructure should be based on all these personal computers,
either loosely or tightly connected.

3.3. From Special Purpose Hardware to General
Purpose Hardware

Many graphics and visualization tasks are computationally
intensive, and continuing efforts have been made to offload
the tasks performed by different parts of a graphics pipeline
onto special purpose hardware. These efforts are exemplified
by several most quoted developments, which include:

• The video random-access memory (VRAM) [PNG83],
which provides an effective solution to improve the size
and access of the frame-buffer required by almost every
graphics pipeline.
• Graphics processors, such as Intel’s i860 [GKB89],

which led to an era when graphics processing units
(GPUs) facilitated firstly window-based user interfaces to
the desktop computers, followed by computer games, in-
teractive 3D graphics, and interactive visualization toolk-
its.
• Multi-processor graphics architectures, such as Silicon

Graphics’ POWER IRIS [Ake89], which distributed the
computational costs to a number of subsystems, each
serving a set of special purpose operations, such as ge-
ometric manipulation, scan-conversion, and visibility de-
termination.
• Texture mapping hardware, which has provided com-

puter graphics and visualization with low cost pseudo-
photorealism. In addition, such hardware has played a
significant role in the development of visualization al-
gorithms, and has been effectively deployed to accel-
erate a range of visualization tasks, including texture-
based volume rendering [CCF95, WE98], flow visualiza-
tion [RSHTE99, TvW03, LBS03], splatting [SMM∗97]
and point-based rendering [PZvBG00]. Both 2D and 3D
texture mapping techniques benefit from hardware sup-
port, but only high performance workstations currently of-
fer 3D texture mapping hardware. For example, datasets
of up to 512 Mbytes in size can be loaded into the dedi-
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cated 3D texture memory available on a SGI InfiniteRe-
ality graphics pipe and then be visualized using hardware
accelerated direct volume rendering. This is adequate to
cope with the size of datasets from most medical scanners
currently operating in hospitals around the world.

The latest generations of commodity graphics cards,
such as the NVidia GeForce and ATI Radeon families,
are allowing more and more applications to take ad-
vantage of graphics hardware. Demanding visualization
techniques such as volume rendering and ray casting
have already been successfully implemented, for exam-
ple, [MHS99, RSEB∗00, RGW∗03, MLM∗03, DPH∗03].
With their generous memory capability and sophisticated
numerical processing power, these cards have also been
utilized for many circumstances other than graphics and
visualization. Their affordability and extensive availability
on almost all desktop computers, allows them to become
more general purpose than ever before. There are limitations
on what can be achieved today, however. For example, the
size of the volume that can be manipulated is limited by
the amount of dedicated graphics memory available on the
card, and this can easily become a bottleneck when dealing
with large datasets. Texture data must be fetched via the
accelerated graphics port (AGP) from the main memory
of the PC, and this prevents interactive performance from
being achieved. Sophisticated partitioning of the data can
be applied as a pre-processing stage to help overcome this
limitation [CKS03]. However, it will be the replacement of
the AGP with technology based on the new PCI-express
standard that will eventually overcome this bandwidth
bottleneck [WST03].

Among all of the increasingly ‘general purpose’ cards,
one stands out as a piece of truly special purpose hardware;
that is, the TeraRecon VolumePro, which delivers high-
quality and real-time volume rendering capability [PHK∗99]
Built upon the results of earlier research [PK96], the com-
mercial VolumePro card currently available for PCs can de-
liver up to 30 frames per second for a 5123 voxel dataset.

While there has been a surge of interest in transferring
more computational costs from a visualization algorithm
to a commodity graphics card, there has also been effort
put into building high performance architectures that ben-
efit from the collective power of an array of graphics cards.
Several recent developments have demonstrated how graph-
ics hardware of a PC cluster can accelerate a graphics and
visualization task [WPLM01, MLM∗03], implementing ei-
ther image-space (sort-first) or object-space (sort-last) paral-
lelism (see Section 3.1.5).

WireGL [HEB∗01] was the first of a new breed of graph-
ics software specifically designed to make use of such
cluster systems, and it delivered general-purpose render-
ing capabilities through its support of sort-first render-
ing to tiled displays. The design of WireGL evolved into
Chromium [HHN∗02], which is a stream-oriented frame-

Figure 2: A large-scale, front projected, semi-immersive vir-
tual environment.

work for processing streams of OpenGL commands on par-
allel architectures such as clusters. It can support sort-first,
sort-last and hybrid parallelization strategies through the use
of stream processing units. Integration between Chromium
and visualization software such as VTK and OpenRM was
recently reported [BHPB03, MT03]. The popularity of clus-
ter computing has already led to a number of commer-
cial products, including software products such as Mod-
viz [Mod04] and hardware products such as the Sun Fire
Visual Grid system [Sun04] and IBM DeepView [KKV∗02].

The latest developments in graphics hardware have cer-
tainly suggested a modern approach to the architectural de-
sign for visual supercomputing, aiming at gaining the col-
lective power from a large number of CPUs and GPUs si-
multaneously. No doubt, cluster computing is set to become
a formidable technology in a visual supercomputing infras-
tructure.

3.4. The Drive for Virtual Reality

Immersive and semi-immersive virtual environments (Fig-
ure 2) represent a major technical drive in computer graphics
and visualization, and have helped push a range of hardware
and software technologies forward. Such a virtual environ-
ment enables users to be immersed inside a computer gen-
erated environment with a sense of spatial presence and of-
ten coupled with physical presence. For many visualization
applications, virtual environments can provide users with
realistic experiences in ‘interrogating’, ‘navigating within’,
‘feeling’ and ‘manipulating’ data via its visual representa-
tion.
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3.4.1. Hardware Technologies

Although conventional computer displays and input devices
can offer the most basic means for graphical interaction, they
do not provide a sense of immersion, which is highly desir-
able in complex visualization tasks. Such tasks may require
the user to have a better spatial awareness, better physical
control in direct manipulation, better interaction with other
users in the same virtual world, or better association with the
real world.

Several techniques have been developed to enable users
visually immersed in a virtual world with 3D stereoscopic
views and volumetric views [BC03, SSC02, SC02]. These
include:

• Head mounted display — It mounts a visual display in
front of each eye. It is limited to one user at a time, and
requires some form of cabled connection to the computer
which could be cumbersome.

• Projection-based display — It provides stereoscopic
views by projecting two different series of images, one
for each eye, and allows several users to share the same
visualization at a time [SMDW98]. Users typically gain
stereoscopic experience using shutter glasses (i.e., in ac-
tive stereo), or polarizing glasses (i.e., in passive stereo).

• Autostereoscopic display — It does not require the user to
wear special glasses. One of such techniques is volumetric
display [BS02], which allows users to view a 3D dataset
directly. Parallax techniques, including hologram, paral-
lax barrier display, lenticular display and holographic
stereogram [Hal97], facilitate stereoscopic vision with
motion parallax. A special layer (e.g., for example, a hor-
izontal array of cylindrical lenses in lenticular display) is
placed in front of interleaved images of a 3D object from
different viewing angles. When the viewer moves, the a
different image is picked up by the display, and the object
is perceived to have rotated.

In addition to stereoscopic displays, one growing trend is
building very large high resolution displays, involving, for
instance, 63 million pixels [MT03]. Such a display can cre-
ates an unusual sensation of presence, and involvement, en-
abling a team of users to interrogate a high fidelity model in
its totality.

Techniques are available for users to interact with a virtual
world with 3D input devices, some of which facilitate users’
experience of physical immersion [Sto00]. These techniques
include:

• 3D mouse — It is a low cost hand-held device that pro-
vides a tracker sensor and a set of buttons. By changing
the orientation of the mouse, the user can exert navigation
control or apply direct manipulation in a virtual environ-
ment.

• Interactive glove — It is worn by the user and transducers
sewn into the finger joints, which can be used to tell the
computer the physical characteristics of the fingers when

they are bent. This allows the computer to identify when
an object is being picked up, although the user would have
no real sense of holding the object [SSC02].
• Force feedback devices — They are able to give the user a

feel of physically interacting with virtual objects, and are
often referred to as active haptic devices. One of the avail-
able techniques is the Phantom-like haptic device [Sto00],
which involves a stylus fixed to a base, and can pro-
vide force resistance according to users’ input actions and
physical attributes defined with the object being manip-
ulated. It can produce realistic feeling of the shape and
textures of a solid object and the physical property of a
deformable object.

3.4.2. Resourcing a Virtual Environment

The computational resources required to generate and inter-
act with a virtual environment can be very different depend-
ing upon what is being simulated. A single desktop com-
puter, or a cluster, with a £1,000 graphics card can be suf-
ficient However, many high performance applications are
looking to the Grid and parallel computing to provide high
quality graphics and resource-intensive data processing.

One of the most successful implementations of a virtual
environment is the CAVE (Cave Automatic Virtual Environ-
ment) [CNSDe92]. It provides the illusion of immersion by
projecting stereo images on the walls and floor of a room-
sized cube. Simply by wearing lightweight stereo glasses,
multiple users can enter and walk freely inside the CAVE.
A head tracking system continuously adjusts the stereo pro-
jection to the current position of the main viewer. The tech-
nology of the CAVE and other large scale visualization envi-
ronments has developed greatly over the last decade. Recon-
figurable environments are providing even greater flexibility
today. CAVE has been deployed in numerous visualization
applications around the world. Such an immersive virtual en-
vironment requires the use of a high performance computer,
for example, a SGI Onyx 3400 with 12 CPUs and 3 graph-
ics pipes for CAVE, Special purpose software is also needed
to manage the virtual environment, such as the open source
DIVERSE [KASK02].

A related development to DIVERSE is the Resource
Aware Visualization Environment (RAVE) [RAV04], which
supports a collaborative visualization environment that
scales from immersive platforms, to non-immersive but
network-enabled platforms, including PCs, and PDAs.
RAVE is ‘resource-aware’ so that the rendering platform and
the visual representation will be determined dynamically by
factors such as the client capabilities and the network band-
width.

The Grid is becoming more and more important in the
field of visualization, particularly when computational re-
sources required for real time interaction in a virtual environ-
ment are not locally available. Also the popular component-
based programming paradigm, which has been adopted
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by many visualization systems such as VTK, AVS and
OpenDX, can make use Grid resources. This allows differ-
ent computation steps of a visualization pipeline to be dis-
tributed around the globe [SB03].

3.4.3. Collaborative Virtual Environments

Collaborative Virtual Environments allow multiple users to
interact with each other and objects in a shared virtual en-
vironment. The users are usually also represented in the vir-
tual environment by embodying themselves in virtual actors.
Many of such environments are distributed systems, provid-
ing remote users with a sense of common presence.

Examples of collaborative virtual environments
include DVIE [CH93], MASSIVE [GB95], VRML-
extension [Bro95], COVEN [NT96], DEVRL [SUB∗96],
and VirtuOsi [BBG∗94]. Many of them have focused on
3D virtual worlds, while others have attempted to address
a wide range of issues related to collaborative virtual envi-
ronments, such as avatar design (body-like figures), users’
awareness, dynamic behaviours, system scalability, human
factors and interest management. However, most of these
environments were built independently on a project-based
infrastructure by assembling different technologies together
in an ad hoc manner.

Environments, such as those listed above, demand a no-
ticeable amount of computational resources, complex dis-
tributed data management, dynamic resource allocation, as
well as a variety of graphics support, it is only appropri-
ate for the future development of such environments to be
built upon a visual supercomputing infrastructure, which can
facilitate computation, communication, graphics, data man-
agement, interaction management and interest management
in a consistent and coherent manner.

3.4.4. Augmented Reality

Augmented Reality (AR) is an extension of the traditional
virtual environment technology, which aims to immerses a
user inside a virtual world completely. By contrast, AR al-
lows the user to see the real world, whilst supplementing it
with virtual objects which are superimposed within the real
world [Azu97].

Most AR technologies have been based upon the use of
some form of transparent display which is positioned be-
tween the real world and the eyes of the user [Pin01]. The
most basic method is by overlaying computer graphics onto
a 2D tabletop surface. In order to align the computer graph-
ics with the physical reality, cameras are used to track the
movements of the users vision and allow the graphics to
be realigned [LaR98]. Rekimoto et al. [RS99] developed
an InfoTable which combined a set of cameras for identi-
fying real objects that were placed on the tabletop and an
LCD projector for adding useful information to the known
objects. The development of a collaborative AR environ-
ment has also been reported, in which several users can be

tracked and see the same virtual objects from different per-
spectives [SFH∗00].

Potential AR applications include medical visualization,
maintenance and repair, annotation, robot path planning,
entertainment and aircraft navigation [Azu97]. Several AR
techniques have now been shown to add value to the infor-
mation available to doctors in the medical world. 3D med-
ical datasets of a patient can be rendered in real time and
overlaid onto the patient, allowing the doctor virtually to see
inside the patient [GLPW∗96]. This technique could also
be used for medical training. Some examples of deploying
this technology can be found in a recent survey by Vidal et
al. [VBB∗04].

One approach to facilitating interaction in an AR environ-
ment is to use Tiles as a reference between the virtual object
and the real world [PTB∗02]. Through a head mounted cam-
era, the computer can identify the uniquely labelled Tiles
and superimpose other graphics onto each Tile. ARToolKit
is a software library for building AR applications [BKP01],
which has been successfully in several example applica-
tions [The04]. The Tile approach was extended to become
a Personal Interaction Panel (PIP), which provided a two
handed ‘pen and pad’ interface for AR applications and al-
lowed users to interact with virtual controls overlaid onto the
panel [SFH∗00].

The Eurographics Association sponsored an annual medi-
cal prize, acknowledging research utilizing computer graph-
ics within the medical field [Uni04]. In 2003 the prize went
to an AR application for Liver Surgery Planning, which uti-
lized a PIP and a tracked pen to allow doctors to examine a
patients liver. The PIP was used to allow doctors to specify
cross sections of the liver that they wanted to examine.

Desktop PCs are continuing to increase in power and the
latest range of GPUs are capable of meeting the require-
ments for many virtual environments. However as many im-
mersive virtual environments consume a substantial amount
of computational resources, particularly when handling large
datasets that associated with some grand challenge prob-
lems, there remains a need for a visual supercomputing in-
frastructure.

3.5. The Ever-growing World Wide Web

The world wide web has made navigating 3D virtual worlds
a readily-accessible technology, through programming en-
vironments such as VRML, X3D and Java3D. It provides
a generic framework, under which it is possible to deliver
visualization services to every corner of the globe. Interest-
ingly, the web itself is becoming one of the focus points in
information visualization as its complex infrastructure, its
highly dynamic traffic, and its enormous amount of contents
present serious challenges to the state of the art visualization
technology.
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The initial seminal work by Ang et al. [AMD94] demon-
strated that the Web had a role in visualization. They associ-
ated visualization data with a MIME-type and this launched
a helper application on the client side when the browser (i.e.,
Mosaic in 1994) downloaded the data. This data-driven ap-
proach has subsequently been rarely used, but it did show
that the web can be an infrastructure for carrying out visual-
ization, not just publishing previously created visualizations.

Two distinct approaches have emerged. In the server-side
approach, the user submits a request from a web page, spec-
ifying the data to be visualized and the technique to be used.
The request is processed on the server, and result returned
as an image or a 3D VRML world. An early example, using
CGI-scripting and IRIS Explorer, was developed by Wood et
al. [WBW96]. Engel et al. [EWE99] exploit this for isosur-
face extraction.

In the alternative, client-side approach, Java applets can
be used to provide simple visualizations on demand. An
early example is by Michaels and Bailey [MB97]. This
client-side approach has not gained wide popularity, perhaps
because the security restrictions on Java applets prohibit the
processing of local data. Thus many applets tend to be edu-
cational demonstrations rather than real services.

We can expect the server-side approach to be the forerun-
ner of serious attempts at visualization web services. Proto-
types are being developed using SOAP/XML (for Java-based
services) and gSOAP (for services based on C/C++ and even
Fortran). In terms of visual supercomputing, this may offer
an attractive approach with its simplicity via a browser inter-
face and power via remote server processing.

3.5.1. Collaborative Visualization

The Internet has also encouraged and facilitated collabo-
rative visualization where geographically distributed users
can work together as a team. Three distinct approaches have
emerged: display sharing, where a single application runs,
but the interface is shared; data sharing, where data is dis-
tributed to a group of users to visualize as they wish; and full
collaboration in which the participants are able to program
the way they collaborate.

Display sharing is supported by conferencing technol-
ogy such as Microsoft NetMeeting, and the non-proprietary
VNC [VNC]. This technology uses efficient compression on
the frame buffer so that screen updates can be feasibly trans-
mitted to a group of users. Data sharing has been exploited
in collaborative environments such as CUMULVS [NER04]
and in pV3 [pV304], where data from parallel computations
is made available to multiple viewers. Another example of
data sharing is provided by COVISE [COV] where geometry
is made accessible to a group, each person in the group being
able to render as they please. The most flexible approach is
full collaboration, epitomized by the COVISA extension of
IRIS Explorer developed by Wood et al. [WWB97]. In this

approach, each collaborator runs their own dataflow pipeline
to create a visualization, but can export data and parameter
settings to other users, and likewise import data and param-
eters. Although developed for IRIS Explorer, the idea can be
exploited in any dataflow environment.

Figure 3 shows COVISA in action. It demonstrates the
sort of application where collaboration can be useful: two
doctors (Bone and Blood), each with their own special-
ity, can collaborate over the network. Bone looks at CT,
and Blood at SPECT, but the two modalities can also be
combined and this combined visualization viewed by both.
Shared pointers allow discussion of significant features. The
whole process is supported by video conferencing facilities:
either desktop based using for example VRVS, or room-
based using the AccessGrid [Acc03].

Figure 3: A collaborative visualization environment, where
Dr. Bone is collaborating with Dr. Blood at a remote site to
look at CT and SPECT data together.

There are many significant issues in the design of collab-
orative visualization systems: technical issues such as het-
erogeneity of visualization systems and of operating sys-
tems (collaboration between different visualization systems
is hard because of lack of standardized data formats); and
social issues such as privacy and floor control.

Both web-based and collaborative visualization have pre-
sented a visual supercomputing environment with the re-
quirement for two essential services. As the web is likely
to be the dominant information highway in the near future, it
is inevitable that a visual supercomputing infrastructure will
deliver a substantial amount of its services through the web.
Web-based visualization and collaborative visualization will
continue to challenge the underlying technologies of a visual
supercomputing infrastructure.

3.6. The Beginning of Grid Computing and Autonomic
Computing

3.6.1. Grid Computing

The Grid, as described by Ian Foster, one of the central
characters in its development, is a distributed computing
infrastructure for ‘co-ordinated resource sharing’ [FK98b].
The Grid is a virtual organization, which is composed of
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autonomous organizations that maintain various local poli-
cies and software for controlling their resources. This distin-
guishes Grid computing from cluster computing, and intro-
duces a great deal of complexity to the software engineering
needed to provide the services and resources. Though it is
generally agreed upon what actual services are required in a
Grid infrastructure [SGPJ98], there are as of yet no agreed
standards. A great deal of experimentation is being carried
out to determine the best way to provide middleware ser-
vices that ‘glue’ differing underlying systems together. The
Grid middleware sits between users’ applications and remote
computing resources. It is generally accepted that the fol-
lowing key issues and services must be addressed within the
Grid middleware:

• networking quality of service (QoS),
• resource co-scheduling,
• load balancing,
• message passing,
• file transfer mechanisms,
• data security, integrity and coherence.
• authentication.

Initially Grid middleware was built as a layer on top of
services and protocols common in the Unix world, e.g., ssh,
ftp and LDAP. The Globus Project [FK98a] developed a
reference implementation of Grid protocols by providing all
of the services and capabilities to construct a computational
grid. This reference implementation has now become a de
facto standard in the form of the Globus Meta-computing
Toolkit [FK97], which contains a range of tools for resource
allocation and process management, unicast and multicast
communication services, authentication and related security
services, distributed access to structure and state informa-
tion, monitoring of health and status of system components,
remote access to data via sequential and parallel interfaces.

The Grid infrastructure must be able to support a vast
range of applications, allowing its services to be incorpo-
rated into the applications using a mix-and-match approach.
An important aspect of the Globus Toolkit (GT) is that it
separates local and global services. Local services are kept
simple to allow deployment, and global services are built on
top of local services. The Metacomputing Directory Service
is provided as part of the toolkit to discover available re-
sources and services. This allows resources to be added and
removed dynamically and enables the Grid to recover if a
failure was to occur.

Several other middleware developments took place in the
same time frame as Globus but based on different princi-
ples. UNICORE (The UNiform Interface to COmputing RE-
sources) [ES01] facilitated seamless access to computing re-
sources and to integrate legacy applications for which source
code was not available. This development was further ex-
tended into the European Grid infrastructure via the EURO-
GRID [EUR] and GRIP [GRI] projects. ICENI (The Impe-
rial College e-Science Networked Infrastructure) provided

an environment for deploying software components over a
federated pool of resources, with rich metadata structures
for describing the characteristics of the components. Le-
gion [CKKG99] federated computing resources as a virtual
supercomputer. Condor [Con], which predates the idea of a
Grid, is Grid-like in that it locates and federates resources to
perform application tasks mainly in numerical computation.
Codine, which was designed for scheduling tasks across a
distributed infrastructure, was developed into Sun Grid En-
gine [Sun].

Several existing Grid infrastructures have been imple-
mented and are already being used for research. These in-
clude the UK e-Science Grid, NASA’s Information Power
Grid (IPG) and the European Data Grid. In addition, there
is the AccessGrid [Acc03], which is not an infrastructure for
computation, but an IP-based conferencing infrastructure for
supporting large scale collaborative activities.

In 2002, an alliance was formed between the Globus
Project and IBM to promote an Open Grid Services Archi-
tecture (OGSA) [FCKT02]. This changed the delivery of
Grid middleware to a web services framework and all Grid
resources were virtualized as Grid services accessed via web
service standard interfaces written in WSDL (Web Services
Description Language). The emphasis has been shifted from
interfacing with resource control mechanisms to hosting en-
vironments for the Grid Services defined by OGSA. Thus
Apache Axis and Microsoft .NET became the tooling envi-
ronments. Globus Toolkit 2 (GT2) was re-factored via tools
such as Axis to create Globus Toolkit 3 (GT3), which was in-
tended to preserve the functionality of GT2 in the new Grid
Service environment.

In March 2003, a working group of the Global Grid Forum
produced the first draft of the specification of Open Services
Grid Infrastructure (OGSI), which involved moving key web
services standards beyond what has been defined by the rel-
evant standards groups. Because of the growing strain be-
tween the business and commerce users of web services and
the scientific users of Grid computing, Globus and IBM re-
cently announced that they were moving from OGSI to a
newly proposed standard WS-RF (Web Services Resource
Framework), which exposes resources (as in GT2) but now
in the context of web services. The concept of inherent state
in the former OGSI Grid Service has been abandoned, as
web services are stateless entities and have difficulties in
handling stateful management such as (e.g., a job queue).
A new version of the Globus Toolkit (i.e., GT4) is to be re-
leased to replace GT3 later in 2004. In the meantime, WS-
RF implementations are being developed based on .NET (by
University of Virginia) and Perl (by University of Manch-
ester) respectively.

The main problem with applying the Grid methodology,
and any of the above implementations or proposed standards,
to visual supercomputing is the need for interactivity with
components running on the Grid. While users’ interactive
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intervention is an integral part of many visualization tasks, it
does not always fit naturally with the idea of virtual ‘visual-
ization’ resources. Some sophisticated middleware compo-
nents are therefore required. One interesting attempt is the
development of an Interactive Access plug-in to the UNI-
CORE client [Sne01], which allows end-users to interact,
via the UNICORE middleware, with simulation processes
running at multiple locations.

The development of the Grid has laid critical foundations
for a visual supercomputing infrastructure. It is highly pos-
sible that the development of visual supercomputing can be
piggybacked on that of the Grid, and can learn a great deal
from the evolution of the Grid technology. However it is also
important to recognize that visualization is not just another
computation process and hence a visual supercomputing in-
frastructure is not just a subset of the Grid infrastructure for
launching computational tasks.

The great emphasis on a web services framework in Grid
computing indicates that techniques developed for web-
based visualization may have a more generic use in Grid
computing. The server-based visualization services (see Sec-
tion 3.5) allow visualization to delivered in a coarse-grained
visualization service, taking input data and sending back im-
ages. However, it poses a much more difficult challenge to
deliver a sophisticated service, similar to modular visualiza-
tion environments (see Section 3.2), that could access Grid
resources using the web services paradigm.

3.6.2. Autonomic Computing

A Grid infrastructure, or more generally, a pervasive in-
frastructure, will be considerably complex, and the diffi-
culties in managing such an infrastructure raise a serious
question as to whether it is adequate for it to be managed
by human administrators, and whether it requires a much
more system-level automation than what is currently imple-
mented. Researchers and developers in many fields, such as
distributed systems, data communications, Internet technol-
ogy, Grid computing, agent technology, database systems,
expert systems and business management systems, are em-
bracing the concept of autonomic computing in managing
large and complex infrastructures and services.

Autonomic computing [KC03] refers to computing sys-
tems which possess the capability of self-knowing and self-
management. Such a system may feature one or more of the
following attributes:

• Self-configuring — The system can integrate new and ex-
isting components without low-level intervention from an
administrator.

• Self-optimizing — The system can continually try alter-
nate configurations to determine if the current one is opti-
mal.

• Self-healing — The system can detect, and recover from,
failure of components, hardware or software.

• Self-protecting — The system can detect attempts to com-
promise it, perhaps from hackers or viruses, and react ac-
cordingly.

A noticeable amount of research effort in autonomic com-
puting has been placed on the self-management of system
infrastructure and business services. Examples of this in-
clude self-configuration in patching management [DRD∗04]
and in Grid service composition [AP03], self-optimization in
power management [KAH04], business objectives manage-
ment [AGL∗04], and resource management in dealing with
network traffic spikes [NCFC04], and self-healing in online
service management [CZL∗04] and distributed software sys-
tems [Min03].

Efforts have also been made to broaden the scope of au-
tonomic computing, addressing a wide range of related re-
search issues, such as economic models [ERA∗03], physio-
logical models [LI03], interaction law [MU00], preference
specification [WTKD04], ontology [Lin03, TT03], human-
computer interaction [AHP∗03], and so forth.

Though the development of generic software environ-
ments for autonomic applications is still in its infancy, sev-
eral attempts were made, which include projects such as
QADPZ [Con03], AUTONOMIA [DHX∗03] and Almaden
OptimalGrid [DLJ03].

QADPZ (Quite Advanced Distributed Parallel Zys-
tem) [Con03] provides an open source framework for
managing heterogeneous distributed computation in a net-
work of desktop computers using autonomic principles. In
QADPZ, the system complexity is hidden in the middle-
ware layer, facilitating self-knowledge, self-configuration,
self-optimization and self-healing.

AUTONOMIA [DHX∗03] is a prototype software devel-
opment environment that provides application developers
with tools for specifying and implementing autonomic re-
quirements in network applications and services. It features
an application management editor for requirements speci-
fication, a mobile agent system as a uniform execution in-
terface to underlying hardware and operating systems, an
autonomic middleware service for managing autonomic ser-
vices, an application delegated manager as a broker between
components and resources in the context of Jini lookup ser-
vice [OW00], and a fault handler for self-healing.

OptimalGrid is a self-configuring, self-healing and self-
optimizing grid middleware, using a set of distributed white-
boards for communication between the different nodes. A
computational problem is expressed using Original Problem
Cells (OPCs), which describe the connectivity of the cells
with their neighbours and the calculations to be performed
using the neighbours information. OPCs are aggregated in
collections which are themselves part of Variable Problem
Partitions (VPP), assigned to grid nodes. The OptimalGrid
system is then able to self-configure, using a list of available
compute nodes with their characteristics, and can optimize
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the repartition of OPCs after each computation cycle. As the
communication history between nodes is saved in the white-
boards, if a node is lost the system is able to recover and
catch up with the computation, rather than restarting the en-
tire problem. The use of these different autonomic features
permits to deliver a grid system more robust and easier to
use. Future plans include integrating support for the Open
Grid Services Architecture (OGSA) [FCKT02].

By mimicking the behaviour of the human autonomic
system especially in dealing with homoeostasis, autonomic
computing is believed to be a solution to the increas-
ing administrative complexity of computing infrastructures.
Hence, no visual supercomputing infrastructure can afford
to ignore this emerging technology.

4. Applications of Visual Supercomputing

If we were to have a Grid for visualization, what kind of
applications would benefit from it, and perhaps more im-
portantly, how would these applications necessitate specific
requirements for such an infrastructure? Shalf and Bethel
recently outlined a futuristic scenario depicting how a geo-
physics researcher and her international collaborators may
benefit from grid-based computation and visualization. They
concluded that the current state of visualization is not grid
ready [SB03]. In this section, we examine several traditional
and newly emerged application areas, and discuss their re-
quirements, especially those difficult to be met by the state
of the art visualization environments.

4.1. Visual Data Mining and Large-scale Data
Visualization

Never before in history have we had such capability for
generating, collecting and storing digital data. Data repos-
itories at terabyte level are becoming a common place in
many applications, including bioinformatics, medicine, re-
mote sensing and nano-technology. In some applications,
such as network traffic visualization [Kou99] and video vi-
sualization [DC03] (Figure 4), we are encountering the sce-
nario that dynamic data streams are almost temporally un-
bounded. Many visualization tasks are evolving into visual
data mining processes [KMS02].

These applications are placing a huge strain on the exist-
ing visualization environments, and challenging the state of
the art technologies in many ways. They demand a variety
of infrastructural supports, such as,

• for providing sufficient run-time storage space to active
visualization tasks;

• managing complex data distribution mechanisms for par-
allel and distributed processing;

• choosing the most efficient algorithm according to the size
of the problem;

• facilitating the search through a huge parameter space for
the most effective visual representation.

Figure 4: Video visualization needs to deal with data
streams of an arbitrarily large size. Stream-based rendering
can be effectively deployed to visualize video streams.

Data management is the very first issue in handling large
datasets. Many visualization processes involve datasets that
are much too large for the internal memory of a computer,
and have to rely on external disk storage, usually under the
virtual memory management of an operating system. The ex-
ternal disk access can become a serious bottleneck in terms
of rendering speed. Out-of-core algorithms (also known as
external memory algorithms) [Vit01] are designed to solve
a variety of batch and interactive computational problems
by minimizing disk I/O overhead. Various out-of-core vi-
sualization algorithms have been proposed to handle large
structured and unstructured 3D datasets, for instance, in the
context of (i) isosurface extraction [CMPS96, CS97, SH00],
(ii) terrain rendering [LP02], (iii) streamline visualiza-
tion [USM97], (iv) mesh simplification [Lin00], (v) ren-
dering time-varying volume data [SCM99], (vi) rendering
unstructured volumetric grids [FS01], and (vii) ray trac-
ing [PKGH97]. While some algorithms rely little on in-
ternal memory (e.g., [CS97, FS01]), others utilize prepro-
cessed data structures, such as octree [USM97] and in-
dexing [SCM99] to optimize disk I/O operations. Kurc et
al. [KÇC∗01] recently reported their experience in visual-
izing large volume datasets using Active Data Repository,
which is composed of a set of modular services and a uni-
fied interface for supporting the management of, and map-
ping between, in-core and out-core data.

There has been a similar amount of research effort, if not
more, for developing techniques that synthesize a visualiza-
tion image using less than the full dataset. Two commonly
used approaches for determining a subset of data to be visu-
alized are multi-resolution and view-dependent data organi-
zation.

Multi-resolution data organization makes use of various
hierarchical spatial structures to manage levels-of-details
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(LODs) of a graphical model or scene. Such structures fa-
cilitate real-time rendering by allowing an appropriate LOD
to be selected according to the requirements of interactiv-
ity and the constraints of computational resources. In com-
puter graphics and visualization, there exists a large col-
lection of works based on this approach. For example, oc-
trees and min-max indexing were used for isosurface extrac-
tion [WvG92, Jon95, CMPS96]. Laur and Hanrahan [LH91]
utilized an octree for progressive refinement in splatting.
Wilhelms et al. [WvGTG96] employed a k-D tree for direct
rendering irregular and multiple volumetric grids.

View-dependent data organization makes use of the con-
cepts and algorithms of hidden surface removal, and prior-
itizes geometrical primitives according to their visibility to
the viewer. For example, Livnat and Hansen [LH98] pro-
posed a view-dependent isosurfacing algorithm. LaMar et
al. [LHJ99] prioritized volume data based on its proximity to
the viewer. Other view-dependent works include visible set
estimation [KS00], visibility-based prefetching [CKS03],
and view-dependent progressive rendering [NR03].

While it is necessary to deal with problems arising from
very large datasets, it is equally important to improve our ca-
pability for managing inter-related datasets in order to gener-
ate more meaningful visualization. In computer graphics and
computer aided design, scene graphs, built-upon the concept
of constructive solid geometry, have played an indispensable
role in combining simple objects into a complex object and
bringing many objects together into a scene. It is common
for graphics systems to support scene graphs, for instance, in
RenderMan, OpenGL, OpenRM, VRML, Java3D, POV-ray
and Open Scene Graph. However, support for combinational
modelling in visualization systems [BHPB03, NLSG03] is
largely based on surface-based scene graphs, relying on
image-space composition. Early research efforts for mod-
elling complex visualizations involving multiple datasets
were focused on voxelization [WK93]. In order to address
the problems associated with voxelization [Jon96], such
as excessive data size and data degeneration, Chen and
Tucker [CT00] outlined the concept of constructive volume
geometry for combining volumetric datasets and procedu-
rally defined scalar fields. vlib [WC01], an open source vol-
ume graphics API, offers volumetric scene graphs as its fun-
damental data structure, and provides a discrete ray tracer
for direct rendering volumetric scene graphs.

In large-scale data visualization, high performance ren-
dering techniques, such as massively parallel rendering
(e.g., [MP01]), progressive rendering (e.g., [LH91]) and
stream-based rendering (e.g., [HHN∗02]), are essential to
the the process of making displayable by a computer (Fig-
ure 1). However, facing very large datasets, making mean-
ingful information visible to one’s eyes is often more critical
in visualization. With very large datasets, ‘meaningful in-
formation’ is often featured in a visualization at a sub-pixel
level, in a large amount or in four or higher dimensions. This

challenges us to develop visualization techniques into tools
for visual data mining [KMS02].

A popular approach to the handling of a huge amount
of visual information is the use of focus and context tech-
niques, which highlights a ‘focus’ in detail and depict its
‘context’ with less details to provide an overview. Focus and
context techniques such as fisheye views [SB92], perspec-
tive wall [MrC91], hyperbolic space [Mun98] and rubber
sheets [SSTR93], have been deployed extensively in infor-
mation visualization. This approach has also been employed
in scientific visualization, deformation-based volume visu-
alization by Kurzion and Yagel [KY95], distortion view-
ing by Carpendale et al. [CCF97], non-photorealistic ren-
dering by Treavett and Chen [TC00], magnification lens by
LaMar et al. [LHJ01], two-level rendering by Hadwiger et
al. [HBH03], digital dissection in cardiac visualization by
Chen et al. [CTCH03].

Data mining should be closely coupled with visualiza-
tion [Won99]. Interactive visualization is an indispensable
tool in many data mining activities [HAC∗99, HKW99]. in-
teractive visualization of large datasets not only demands
sufficient computational resources, but also requires effec-
tive interactive techniques for data exploration, view naviga-
tion, data segmentation, data filtering, data fusion and direct
manipulation [KMS02].

Perhaps one of the main challenges in the coming
year is computer-assisted design of visual representations.
Many techniques in information visualization enable au-
tomated placement of information in a visualization, for
instance, treemap [Shn92] and Sunburst [SZ00] in hier-
archy visualization, recursive pattern [KKA95] and circle
segments [AKK96] in time-series visualization, and spring
models [TK98] and Kohonen networks [Koh97] for self-
organization and self-optimization in the entire information
space. In volume visualization, initial attempts have been
made to automate the specification of transfer functions.
Marks et al. [MAB∗97] proposed a design galleries ap-
proach to the problem, while Kindlmann and Durkin [KD98]
developed a semi-automatic method for generating transfer
functions.

The problems surrounding large scale data visualization
are collectively becoming an infrastructure issue, as it is un-
likely an individual technique can provide a satisfactory so-
lution alone. To process such large amounts of data at the
speed required, it is necessary for a visual supercomputing
infrastructure to provide dedicated computational resources
and application software systems. It is no doubt useful for
the infrastructure to select appropriate modelling, process-
ing and rendering techniques according to the available re-
sources and interaction requirements. It is also highly de-
sirable for the infrastructure to offer a wide range of tools
for visual data mining as such activities are often unplanned
and the effectiveness of a particular tool cannot always be
pre-determined.
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4.2. Scientific Computation and Computational
Steering

Problem Solving Environments (PSEs) are ‘computer sys-
tems that provide all of the computational facilities neces-
sary to solve a target class of problems’ [GHR94]. For ex-
ample, Cactus, is an open source PSE, which was origi-
nally designed to provide a framework for solving Einstein’s
Equations, and gradually evolved into a ‘unified modular and
parallel computational framework for physicists and engi-
neers’ [ABD∗01]. While PSEs have been successfully de-
ployed to model many problems in science, engineering and
finance, new problems, including a number of grand chal-
lenge problems, continue to be formulated.

In scientific modelling and simulation, it is rare to get a
correct model without a complex feedback loop involving
specification, modelling, computation, visualization and op-
timization. Upson et al suggested such a computation cy-
cle [UFK∗89]. Marshall et al. [MKDY90] identified three
modes of combining simulation and visualization, namely
post-processing, tracking and steering.

• In post-processing, visualization is merely a post-
processing stage of simulation and cannot directly influ-
ence (or even abort) the simulation. This asynchronous
working requires simulation to complete before visual-
ization begins, and so there is no opportunity to effect
any control on the simulation through the visualization.
A benefit however is that the scientists can take as long as
they want in visualizing the results, as the time scale for
visualization is independent of that for the simulation.

• In tracking, the simulation and visualization are coupled,
but there is no concept of the user altering the simulation
on the basis of the visualization, other than the user hitting
the abort key!

• In steering, the control parameters of the simulation are
exposed, and can be manipulated as it runs. The model
was expressed as dataflow. This concept was extended by
Brodlie et al. [BBB∗93] to allow an audit trail of check-
point information to be stored in a tree structure, called
History Tree. This generalized steering to facilitate a ‘re-
verse gear’. Simulation and visualization were seen as
separate processes, linked through a manager. Recently
Zhou et al. [ZCW02] proposed an approach towards auto-
matic steering based on comparative visualization involv-
ing both experimental and computational results.

Building a generic computational steering environment is
a non-trivial task. A significant development in this area was
carried out by van Liere, van Wijk and Mulder in a series
of works [vWvL97, vLMvW97, MvWvL99]. The key inno-
vation was to build steering widgets, which sat within the
visualization, to enable direct manipulation of the simula-
tion.

A major software advance was made with SCIRun from
Utah, which was a dataflow environment specially de-
signed for steering. It facilitated the interactive construc-

tion, debugging and steering of large-scale scientific com-
putations [SGPJ98].

CUMULVS (Collaborative User Migration, User Library
for Visualization and Steering) [NER04] was developed as
part of the large US DOE ACTS project which aims to pro-
vide tools for scientific programmers. It is a software frame-
work for linking steering and visualization services with par-
allel simulation. It provides two libraries: one for the appli-
cation, the other for the steering and visualization front-end.
It is collaborative in the sense that multiple remote viewers
can connect to a simulation.

Recently the RealityGrid project (Figure 5) have
built some impressive demonstrations of steering Lattice-
Boltzmann simulations, which are massive Grid applica-
tions, involving collections of machines across the world,
and are state of art in what can be achieved on a global
scale [BCH∗03].

Figure 5: A computational steering environment developed
in the RealityGrid project.

On a smaller scale, the gViz e-science project [WBW03]
has studied two approaches to computational steering. One
extends IRIS Explorer to run in secure distributed fashion
across Grid machines, so an IRIS Explorer session spans the
internet. The simulation runs inside IRIS Explorer. The other
is very similar to RealityGrid in building an API for steering,
and decoupling the simulation code from the visualization.

The close-coupling between computation and visualiza-
tion in computational steering has highlighted the need for
advanced inter-process and inter-task management in an vi-
sual supercomputing infrastructure. This challenges the un-
derlying technologies of visual supercomputing, requires
further advances in fields such as operating systems (e.g.,
for process management and migration), and programming
environments (e.g., for component-based programming, dy-
namic integration management).

As scientific modelling and simulation usually involves
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many repetitive steps in a feedback loop, there is a great
scope for a visual supercomputing infrastructure to collect
performance data in such a feedback loop, and transform the
data into the knowledge, which can be used to offer users ap-
propriate guidance, identify the best configuration, automate
part of the process, and hence provide a higher quality of
services. Such an approach has been extensively deployed in
business, a conceptually similar situation, where customers
are involved in a repetitive process loop, and data measur-
ing various attributes of the process can easily be collected
and analyzed. There are some successful examples where the
quality of services has been improved.

4.3. Mission Critical Visualization

This category of visualization requires the real time process-
ing of large datasets, possibly from diverse sources, that can
then be fed into an interactive visualization environment.
Typically, such a system provides decision support tools to
the end user. Application areas exist in defence and intelli-
gence, law enforcement, healthcare and social services, sci-
entific research and education, transportation and communi-
cation, and energy and the environment. A mature example
of mission critical systems are training simulators such as
flight simulators, which have used custom built hardware to
train pilots for many years both in routine flying and critical
incident handling [Sog02].

Medical simulators are expected to be the next major ap-
plication to benefit from simulator technology, but based
on commodity graphics hardware (see Section 3.3). Clini-
cians are also using intra-operative surgical planning tools
and neurosurgeons, for example, have been utilizing image
guidance for the last decade [PDe96]. The military is an-
other large market for mission critical visualization. For ex-
ample, the US Fleet Numerical Meteorology and Oceanog-
raphy Centre was recently tasked with supplying military
forces deployed in the Persian Gulf with highly accurate me-
teorological information critical to conducting land, sea and
air operations.

A characteristic of mission critical visualization has been
the requirement for specialized and often expensive equip-
ment. Until recently, growth has been restricted to niche ar-
eas and little work has been published on the optimization
and scheduling problems of the visualization task. Grid and
cluster based computing, however, are now providing an in-
frastructure for further exploitation and visualization will be
a key component of future work.

For example, as shown in Figure 6, in a system for de-
livering interactive volume interrogation of patient data in
the operating theatre [MJ03], visualization tasks were car-
ried out on a server over a mile away from the hospital and
then delivered across the data network. Applications such as
this raise many issues including: how to guarantee a mini-
mum bandwidth required for both data communication and

Figure 6: Visualization-guided surgery is a typical applica-
tion of mission-critical visualization.

data processing; the use of redundancy for both communi-
cation and computation to ensure a reliable delivery of visu-
alization; and the handling of secure information. Synchro-
nization algorithms as well as data distribution techniques
must also be considered when making use of multiple com-
pute resources [Fuj01]. Those are exactly the issues to be
addressed by a visual supercomputing infrastructure.

4.4. Mobile Visualization

Ubiquitous computing is capturing our imagination of a
global infrastructure that supports not only networks of
desktop computers and high performance computers, but
also a huge number of wearable and mobile computing de-
vices [Wei93]. The prospect for integrating mobile devices
into the visualization pipeline and its applications offers new
opportunities for accessing, interrogating and manipulating
data remotely.

Izadi et al. [ICRS02] proposed the FUSE system as a
development tool for collaborative systems across multiple
platforms. Lamberti et al. [LZS∗03] demonstrated a mo-
bile graphical interactive rendering task running on a PDA
which is provided by a remote graphics workstation. Wolf et
al. [WCHS02] proposed the Smart Pointer as a role for PDA
devices, where it either presents a subset of the visualiza-
tion when part of a larger visualization environment (such
as a CAVE) or it aims to provide the same overall image
as other (desktop) clients, both approaches using a remote
visualization server. Hartling et al. [HBCN02] presented a
middleware system, Tweek, which displays a 2D GUI to a
virtual environment using a PDA. The user may interact with
the virtual environment via the PDA. D’Amora and Bernar-
dini [DB03] developed a PDA 3D viewer that can access a
remote database of CAD models. Apart from the technical
aspect, human factor issues in using PDAs for visualization
need to be addressed [PRM00].
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We have categorized the demands upon both the mo-
bile device and the visualization service into the following
classes ordered according to their communication require-
ments:

• Remote scheduling — A device, such as a PDA, can be
used to monitor the account status of the user on a visual-
ization server. The user should be able to consult their ac-
count, see the current state of any jobs, and perform basic
management tasks, such as start, stop, hold and remove.
This requires a low bandwidth duplex channel for textual
communications.

• Remote monitoring — Higher level monitoring functions
can take advantage of the colour displays on the de-
vice. Users may query their account to retrieve still im-
ages which are visualizations of their data. They may
(pre)select parameters for rendering (such as rendering
method and transfer function), and be presented with
the image. Such parameters may be used to assist with
scheduling decisions. This class requires a duplex chan-
nel with a higher bandwidth downstreaming traffic.

• Remote steering — A remote user can be notified on job
(or intermediate result) completion, and may view a vi-
sualization of the result. Some limited interaction with
the visual representation is possible as the user’s feedback
can be used to generate modifications to the current job.
This is most useful for checking intermediate results dur-
ing batch mode without having to be tied down to one
location. Some steering of the simulation is possible as
jobs can be stopped and restarted from a recent state with
new parameters. The bandwidth requirement is higher as
the wait time for several images may be undesirable. The
computational demands on the PDA are higher due to the
need to zoom, pan, and interact with the data. At this
stage, transmission and interaction with small 3D models
may be desirable and possible.

• Remote visualization — The user interacts freely with the
simulation, using the visualization to explore all aspects
of their data. This places a high demand on the PDA as
well as the server. The visualization could be in the form
of a sequence of images generated by the server and trans-
mitted compressed to the PDA, or the server could send a
stream which could be processed by the limited graphics
hardware available on the PDA. User interface widgets
could be overlayed over the data, and the user will send
interaction data back to the server in order to steer the
simulation. Some frame loss, and some pauses in results
are inconvenient but not critical.

Mobile visualization (Figure 7) introduces an interesting
design problem for a visual supercomputing environment.
It reminds us of the desktop technology two decades ago
when low resolution displays and limited computation re-
sources were supported by main frame computers. However,
it also exhibits a completely new scenario where the requests
for visualization, or managing visualization tasks, can come
from anywhere with often unreliable communication chan-

Figure 7: Mobile technology has offered an exciting scope
for developing new visualization applications.

nels in terms of both bandwidth and security. The infras-
tructural support to mobile visualization may significantly
broaden the application scope of visualization, and trans-
form this largely laboratory-based technology to a pervasive
technology.

5. Challenges in Visual Supercomputing

The above discussions have clearly indicated the need for
encompassing a large collection of infrastructural issues re-
lated to the management of visualization tasks in a common
framework, for which we have introduced the subject do-
main of visual supercomputing. The requirements from ap-
plications, such as visual data mining, computational steer-
ing, mission-critical visualization and mobile visualization,
have indicated a high research priority to the infrastructure
of visual supercomputing. While such an infrastructure can
benefit from the state of the art technologies in visualization,
we are still facing many new challenges in order to realize a
well-designed, serviceable and cost-effective infrastructure
for visual supercomputing.

Hoare outlined a set of criteria for a grand challenge in
computer science [HMTB02]. According to these criteria,
building a visual supercomputing infrastructure can be con-
sidered as a grand challenge in the field of visualization. It
raises a series of scientific questions such as:

• Architectural Design — Would it be desirable or feasi-
ble to build an infrastructure for visual supercomputing
based on that of the Grid? How would it accommodate
the different needs for centralized, distributed or indepen-
dent services from various applications? How would such
an infrastructure provide generic support to the manage-
ment of visualization data, distributed visual data mining,
very large scale data visualization, mission-critical visu-
alization and mobile visualization?
• Technology Deployment — Should special purpose graph-

ics hardware form the central core of a visual supercom-
puting environment? If so, what would be the relation-
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ship between such central hardware and graphics hard-
ware available on personal computers? What would dif-
ferent hardware attributes impact upon visualization algo-
rithms, and how would visualization tasks are managed to
take such attributes into account?

• Quality of Service — How would a visual supercomput-
ing infrastructure provide seamless services to many users
and for many applications, instead of just another ‘remote
login’ service? What would be the role of the infrastruc-
ture in managing interaction, data and knowledge about
users’ experience? In what way could users benefit from
a knowledge-based infrastructure?

One emerging strategy for developing complex comput-
ing infrastructure is autonomic computing [KC03] (see also
Section 3.6.2), which seeks inspiration in self-adaptive bio-
logical systems and self-governing social and economic sys-
tems.

Adapting the deployment model, proposed by
IBM [IBM04], for the gradual evolution of complex
system-wide self-managing environments, one can en-
visage a similar five-level deployment model for visual
supercomputing, which can be developed evolutionarily.

• Level 1: Basic — At this level, a visual supercomput-
ing infrastructure is an integrated system platform that
provides visualization applications with necessary com-
putation and communication resources. Typically, users
are fully involved in identifying appropriate tools, locat-
ing computation resources, and managing data distribu-
tions. It is often necessary for users to navigate themselves
through complicated technical obstacles, such as network-
ing, security, parallel computing, data replication, and so
forth.

• Level 2: Managed — At this level, a visual supercomput-
ing infrastructure will have a managed service layer be-
tween the user interface and the system platform. The ser-
vice layer is aware of the availability and ontology of data
and resources, and can provide services to various visu-
alization applications according to dynamic requirements
of users and applications as well as dynamic states of the
system platform. To a large extent, the development of
the Grid technology is aiming at the delivery of a general-
purpose infrastructure. To managing visualization appli-
cations effectively, it is necessary to incorporate more ad-
vanced service features into the Grid technology for sup-
porting a variety of visualization needs such as interactive,
distributed, mobile, and mission-critical applications in a
more transparent manner.

• Level 3: Predictive — At this level, a visual supercomput-
ing infrastructure will have an information layer between
the user interface and the service layer, which collects,
monitors and correlates various user interaction data and
system performance data. It provides users with analyti-
cal data, which may indicate the quality of visualization
results, effectiveness of visualization tools, and so on. In

addition, this layer can enable faster and better task speci-
fication by reporting potential problems and recommend-
ing suitable tools and visual representations. It is at this
level, the infrastructure starts to manage users’ experience
in carrying out visualization tasks.
• Level 4: Adaptive — At this level, a visual supercomput-

ing infrastructure will have an adaptation layer between
the information layer and the service layer. Based on the
information collected, the adaptation layer has the func-
tionality for self-configuring and self-optimizing the com-
putational requirements of a visualization task, as well as
the functionality for self-managing the system platform
and various visualization services dynamically. It is at this
level, visualization users can be largely freed from soft-
ware management, and are able to focus on their core
business, that is, visualization.
• Level 5: Autonomic — At this level, the traditional user

interface in a visual supercomputing infrastructure will be
replaced by an intelligent user interface, for instance ‘a
virtual secretary’, which is capable of transform informa-
tion to knowledge and provides users with a wide range
assistance. Such assistance may include specifying visu-
alization tasks, scheduling inter-dependent jobs, organiz-
ing raw data and visualization results, managing security,
checking the quality of the service and results, and arrang-
ing the sharing of the data with other users.

Figure 8 illustrates evolutionary advance of the infras-
tructure through the five levels. In this deployment model,
each layer is merely a conceptual placeholder for a collec-
tion of functional components (e.g., services, tools, agents,
databases, knowledge-bases, and so on). It is not necessary
for the development and deployment of each level to fol-
low a temporal order. Nor is it desirable to make each layer
a centralized bottleneck in the process of visualization. It
is most likely that the infrastructure will be realised with
a large number of autonomous, interacting, self-governing
functional components.

Building a visual supercomputing infrastructure is no
doubt an ambitious grand challenge. However, we have al-
ready had a solid foothold at Level 1, and are rapidly ap-
proaching Level 2. A noticeable amount of research effort
is being made to develop system-level autonomic comput-
ing techniques in many fields, including distributed systems,
data communications, Internet technology, Grid computing,
agent technology, database systems and business manage-
ment systems. Some of such effort can be viewed as ‘hor-
izontal’ deployment of autonomic computing at the system
layer and service layer of a visual supercomputing infras-
tructure (Figure 8), while others can provide new concepts,
methods and tools for the development of the intelligent user
interface, information and knowledge layer and adaptation
layer. Hence, we believe that having such a visual supercom-
puting infrastructure is a realistic challenge.
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Figure 8: developing new visualization applications.

6. Conclusions

In this STAR report, we have outlined an agenda for visual
supercomputing, which defines a subject domain concern-
ing the infrastructural technology for visualization. We have
considered a broad range of scientific and technological ad-
vances in computer graphics and visualization, which are
relevant to visual supercomputing. We have identified the
state of the art technologies that have prepared us for build-
ing such an infrastructure. We have examined a collection of
applications that would benefit enormously from such an in-
frastructure, and discussed their technical requirements. We
have proposed a set of challenges that may guide our strate-
gic efforts in the coming years. In particular, we have high-
lighted the integral role of autonomic computing in the grad-
ual evolution of an infrastructure for visual supercomputing.
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