

Traffic-aware Stress Testing of Distributed
Real-Time Systems based on UML Models

using Genetic Algorithms
By

Vahid Garousi

A thesis submitted to
The Faculty of Graduate Studies and Research

In partial fulfillment of the requirements of the degree of
Doctor of Philosophy

Ottawa-Carleton Institute of Electrical and Computer Engineering
Department of Systems and Computer Engineering

Carleton University
Ottawa, Ontario, K1S 5B6

Canada
August 2006

Copyright © 2006 by Vahid Garousi

The undersigned hereby recommend to

The Faculty of Graduate Studies and Research
Acceptance of the thesis

Traffic-aware Stress Testing of Distributed Real-Time
Systems based on UML Models using Genetic

Algorithms

Submitted by
Vahid Garousi

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Professor L. C. Briand (Co-Supervisor)

Professor Y. Labiche (Co-Supervisor)

Professor V. C. Aitken (Department Chair)

Carleton University
August 2006

iii

Abstract
A stress test methodology aimed at increasing chances of discovering faults related to

distributed traffic in distributed systems is presented. The technique uses as input a

specified UML 2.0 model of a system, augmented with timing information, and yields

stress test requirements composed of specific Control Flow Paths along with time values

to trigger them.

We propose different variants of our stress testing methodology to test networks and

nodes of a system under test according to various heuristics. Using a real-world system

specification, we design and implement a prototype distributed system and describe, for

that particular system, how the stress test cases are derived and executed using our

methodology.

We report the results of applying our stress test methodology on the prototype system and

discuss the usefulness of the technique. Results indicate that the technique is significantly

more effective at detecting distributed traffic-related faults when compared to standard

test cases based on an operational profile. Furthermore, a sophisticated stress test

technique based on Genetic Algorithms is proposed to handle specific constraints in the

context of Real-Time distributed systems.

iv

Acknowledgments
I would like to express my sincere gratitude to all the people who have been an integral

part of my graduate experience. First and foremost I would like to thank my thesis

advisors: Prof. Lionel C. Briand and Dr. Yvan Labiche for their help and guidance

throughout my PhD career. Lionel and Yvan, thanks for supervising my work with

continuous encouragement, interest and enthusiasm. Our discussions always gave me

thinking material for a few days of mental digestion, resulting in an extremely stimulating

guidance. I am greatly indebted for your genuine interest in my work and for the high

quality of your advices. Merci beaucoup tous les deux!

I would like to thank my thesis committee members: Dr. Jeff Offutt, Dr. Alan Williams,

Dr. Nicola Santoro, Dr. Greg Franks, and Dr. Murray Woodside for taking the time to

read this thesis and providing me with valuable comments.

I would like to thank Siemens Corporate Research in New Jersey and the Canada

research chair fund in Software Quality Engineering for supporting my PhD work

financially.

I would also like to thank everyone at the SQUALL Lab for a great work environment. I

had the pleasure to be a colleague of the following individuals (in alphabetical order):

Zaheer Bawar, Michael G. Bowman, Hongyan Chen, Jim Cui, Daniel Di Nardo, Bin

Dong, Wojciech Dzidek, Maged Elaasar, Wladimir de Lara Araujo Filho, Joanne Leduc,

Qing Lin, Xuetao Liu, Yanhua Liu, Reymes M. Rivera, Samar Mouchawrab, Alex Sauve,

Mike Sowka, Tao Yue, and Gregory Zoughbi. My thanks also goes to the friendly staff at

our department office: Blazenka Power, Jennifer Poll, Darlene Hebert, and Anna Lee for

providing support in many occasions.

v

On a personal note, even if I was more than 9,084 km away from my homeland

(Miyana, Azerbaijan), I had any moment the possibility to find a piece of Azerbaijani

culture, humor or spirituality thanks to the community of Azerbaijanis in Ottawa and in

Canada (in large): Şovqi Mürsəlov, Fəriba Zəmanı, Şəhruz Torfax, Faxtə Zəmanı, Əli

Bəxşı, Əkbər Macidov, Nazila Isgəndərova, Şəhriyar Rəhnəmayan, Fəxrəddin Qurbanov,

Ceyhun Şahverdiyev, and Orxan Haciyev; to name among many. Thank you all for the

good time I spent in your company. Şovqi, thanks for devoting your time to teach me

how to play Tar, and thanks for inviting us all to dinner parties at your place to feel at

home in many occasions. Şəhruz, thanks for your real friendship. Hammınız, sağ olun!

I would also like to express my appreciation to my master's supervisor, Prof. Amir

Keyvan Khandani, and his wife, Dr. Ladan Tahvildari (faculty members of the University

of Waterloo), who provided me with academic and personal encouragements in many

occasions. Kheili mamnoon!

Last but not least, I am indebted to Xiao Han whose love, encouragement and support in

the past several years made all this work possible. Furthermore, my family members were

always sources of support from a long distance: my parents Sürəyya and Yusif, my sisters

Sonya, Röya and Gülara, and my brother Nəvid. I could not have achieved this without

their unlimited help and encouragements. Sizə bır ömur can sağlıqı, uğurlar və səlamət

arzulayıram!

Vahid Garousi
August 2006

Ottawa, Canada

vi

vii

To my parents:

Surayya Shahbazi and Yusif Garousi

and my homeland: Azerbaijan

Ana və atama:

Sürəyya Şəhbazlı and Yusif Gəruslı

və ana yurduma: Azərbaycan

viii

Table of Contents

CHAPTER 1 INTRODUCTION..1
1.1 MOTIVATION AND GOAL..1
1.2 APPROACH...3
1.3 CONTRIBUTIONS ..4
1.4 STRUCTURE ...5

CHAPTER 2 BACKGROUND...7
2.1 RELATED WORKS ..7
2.2 PROBLEM STATEMENT (INITIAL)..12
2.3 TERMINOLOGY...12
2.4 UML PROFILE FOR SCHEDULABILITY, PERFORMANCE, AND TIME.............................14
2.5 AN OVERVIEW ON UML 2.0 SEQUENCE DIAGRAMS ..17

CHAPTER 3 AN EXTENDED FAULT TAXONOMY FOR DISTRIBUTED REAL-
TIME SYSTEMS ...20

3.1 AN EXTENDED FAULT CLASSIFICATION FOR DISTRIBUTED REAL-TIME SYSTEMS.....21
3.1.1 Persistency of Faults ..23
3.1.2 Distribution ..25
3.1.3 Time Criticality ..30
3.1.4 Concurrency ...30
3.1.5 Resource-Usage Orientation..31
3.1.6 Location of Creation or Occurrence..32

3.2 CHAIN OF DISTRIBUTION FAULTS ..32
3.3 CLASS OF FAULTS CONSIDERED IN THIS WORK ...33

CHAPTER 4 OVERVIEW OF THE STRESS TEST METHODOLOGY34
4.1 STRESS TEST METHODOLOGY..34
4.2 INPUT AND INTERMEDIATE MODELS IN OUR STRESS TEST METHODOLOGY...............36

4.2.1 Input System Design Models ..36
4.2.2 Test Models ..38

CHAPTER 5 INPUT SYSTEM MODEL..41
5.1 SEQUENCE DIAGRAM...42

5.1.1 Timing Information of Messages in SDs ..44
5.2 CLASS DIAGRAM ...48
5.3 MODIFIED INTERACTION OVERVIEW DIAGRAMS ...49

5.3.1 Existing Representations to Model Inter-SD Constraints51
5.3.2 Modified Interaction Overview Diagrams ...55

5.4 CONTEXT DIAGRAM...56
5.5 NETWORK DEPLOYMENT DIAGRAM...58

5.5.1 Extending the Notation of UML 2.0 Deployment Diagrams..............................61
5.5.2 Network Interconnectivity Graph...63

5.6 MODELING REAL-TIME CONSTRAINTS ..64
CHAPTER 6 CONTROL FLOW ANALYSIS OF SEQUENCE DIAGRAMS.........69

6.1 AN OVERVIEW OF OUR CONTROL FLOW ANALYSIS TECHNIQUE................................70
6.1.1 Challenges of SDs’ CFA ..70
6.1.2 Towards a CFM for SDs ..72
6.1.3 Concurrent Control Flow Graph: a Control Flow Model for SDs74

ix

6.1.4 Consistency Mapping Rules from SDs to CCFGs..77
6.1.5 Concurrent Control Flow Paths...83

6.2 INCORPORATING DISTRIBUTION AND TIMING INFORMATION IN CCFPS.....................84
6.3 FORMALIZING MESSAGES ..85
6.4 DISTRIBUTED CCFP ..87
6.5 TIMED INTER-NODE AND INTER-NETWORK REPRESENTATIONS OF DCCFPS88

CHAPTER 7 CONSIDERING INTER-SD CONSTRAINTS91
7.1 INDEPENDENT-SD SETS ...93

7.1.1 Definitions ..94
7.1.2 Derivation of Independent-SD Sets ..95
7.1.3 Algorithm Complexity ..97

7.2 CONCURRENT SD FLOW PATHS, CCFP AND DCCFP SEQUENCES.............................98
7.2.1 Concurrent SD Flow Paths ..98
7.2.2 Concurrent Control Flow Paths Sequence...100
7.2.3 Duration of a Concurrent Control Flow Path Sequence102

CHAPTER 8 RESOURCE USAGE ANALYSIS OF DISTRIBUTED TRAFFIC..105
8.1 ESTIMATING THE DATA SIZE OF A DISTRIBUTED MESSAGE106

8.1.1 Effect of Inheritance ...109
8.1.2 Messages with Indeterministic Sizes ..110

8.2 FORMALIZING RELATIONSHIPS BETWEEN NODES AND NETWORKS..........................111
8.2.1 Node-Network and Network-Network Memberships..112
8.2.2 Network Paths Function...113

8.3 DISTRIBUTED TRAFFIC USAGE ATTRIBUTES ..113
8.3.1 Location: Nodes vs. Networks..114
8.3.2 Direction (for nodes only): In, Out, Bidirectional ...116
8.3.3 Type: Amount of Data vs. Number of Network Messages................................117
8.3.4 Duration: Instant vs. Interval...119

8.4 ASPECTS TO CONSIDER WHEN ESTIMATING NETWORK TRAFFIC USAGE..................121
8.4.1 Effects of Multiple Network Paths between Nodes...121
8.4.2 Delay in Network Transmissions..124
8.4.3 Traffic Distribution of Messages with Durations more than a Time Unit126
8.4.4 Effect of Concurrent Processes ..127

8.5 A CLASS OF TRAFFIC USAGE ANALYSIS FUNCTIONS ...128
8.5.1 Naming Convention..128
8.5.2 Functions..129

CHAPTER 9 TIME-SHIFTING STRESS TEST TECHNIQUE..............................136
9.1 PROBLEM STATEMENT: REVISITED ..137
9.2 STRESS TEST HEURISTIC..137
9.3 AN EXAMPLE TO ILLUSTRATE THE HEURISTIC...138
9.4 EXCERPTS ..141

CHAPTER 10 GENETIC ALGORITHM-BASED STRESS TEST TECHNIQUE143
10.1 TYPES OF ARRIVAL PATTERNS...145
10.2 ANALYSIS OF ARRIVAL PATTERNS...149
10.3 ACCEPTED TIME SETS..154
10.4 FORMULATING THE PROBLEM AS AN OPTIMIZATION PROBLEM159
10.5 IMPACT OF ARRIVAL PATTERNS ON STRESS TEST STRATEGIES..............................159

x

10.5.1 Impact on Instant Stress Test Strategies ..160
10.5.2 Impact on Interval Stress Test Strategies...160
10.5.3 How Arrival Patterns are Addressed by Stress Test Strategies164

10.6 CHOICE OF THE OPTIMIZATION METHODOLOGY: GENETIC ALGORITHMS..............165
10.7 TAILORING GENETIC ALGORITHM TO DERIVE INSTANT STRESS TEST
REQUIREMENTS ...167

10.7.1 Chromosome...168
10.7.2 Constraints ...171
10.7.3 Initial Population ...172
10.7.4 Determining a Maximum Search Time...175
10.7.5 Objective (Fitness) Function..182
10.7.6 Operators ...184

10.8 INTERVAL STRESS TEST STRATEGIES ACCOUNTING FOR ARRIVAL PATTERNS191
10.9 IMPACTS OF UNCERTAINTY IN TIMING INFORMATION ON OUR STRESS TEST
METHODOLOGY...197
10.10 WAIT-NOTIFY STRESS TEST TECHNIQUE ...199

CHAPTER 11 AUTOMATION AND ITS EMPIRICAL ANALYSIS.....................202
11.1 GALIB ...202
11.2 GARUS...204

11.2.1 Class Diagram..204
11.2.2 Activity Diagram ..206
11.2.3 Input File Format ...207
11.2.4 Output File Format ..211

11.3 VALIDATION OF TEST REQUIREMENTS GENERATED BY GARUS...........................212
11.3.1 Satisfaction of ATSs by Start Times of DCCFPs in the Generated Stress Test
Requirements...215
11.3.2 Checking the extent to which ISTOF is maximized ..216
11.3.3 Repeatability of GA Results across Multiple Runs...218
11.3.4 Convergence Efficiency across Generations..220
11.3.5 Our Strategy for Investigating Variability/Scalability224
11.3.6 Impacts of Test Model Size (Scalability of the GA)..234
11.3.7 Impacts of Arrival Pattern Types ...245
11.3.8 Impacts of Arrival Pattern Parameters..252
11.3.9 Impact of Maximum Search Time...264

CHAPTER 12 CASE STUDY...268
12.1 AN OVERVIEW OF TARGET SYSTEMS...269
12.2 CHOOSING A TARGET SYSTEM AS CASE STUDY...271

12.2.1 Requirements for a Suitable Case Study ..271
12.2.2 None of the Systems in our survey Meets the Requirements272

12.3 OUR PROTOTYPE SYSTEM: A SCADA-BASED POWER SYSTEM.............................274
12.3.1 SCAPS Specifications...274
12.3.2 SCAPS Meets the Case-Study Requirements..276
12.3.3 SCAPS UML Design Model ...277
12.3.4 Stress Test Objective ..291
12.3.5 Implementation...292
12.3.6 Hardware and Network Specifications ..294

xi

12.4 STRESS TEST ARCHITECTURE ..295
12.5 RUNNING STRESS TEST CASES...297
12.6 BUILDING THE STRESS TEST MODEL FOR SCAPS ...298

12.6.1 Network Interconnectivity Tree..298
12.6.2 Control Flow Analysis of SDs ..299
12.6.3 Derivation of Distributed Concurrent Control Flow Paths302
12.6.4 Derivation of Independent-SD Sets ..303
12.6.5 Derivation of Concurrent SD Flow Paths..304
12.6.6 Data Size of Messages..306

12.7 STRESS TESTING SCAPS BY TIME-SHIFTING STRESS TEST TECHNIQUE................307
12.8 STRESS TESTING SCAPS BY GENETIC ALGORITHM-BASED STRESS TEST TECHNIQUE308

12.8.1 Using GARUS to Derive Stress Test Requirements308
12.8.2 Test Results...318
12.8.3 Conclusions ..324

CHAPTER 13 GENERALIZATION OF OUR STRESS TEST METHODOLOGY
TO TARGET OTHER TYPES OF FAULTS ...325

13.1 TARGETING OTHER TYPES OF RESOURCES...325
13.1.1 Resource Usage Analysis of other Types of Resources..................................326
13.1.2 CPU..329
13.1.3 Memory...333

13.2 TARGETING OTHER TYPES OF FAULTS ...335
13.2.1 Distributed Unavailability Faults ..336
13.2.2 Resource Unavailability Faults..338
13.2.3 Concurrency Faults..339

CHAPTER 14 SUMMARY...343
14.1 CONCLUSIONS..343
14.2 FUTURE RESEARCH DIRECTIONS ...345

xii

List of Tables
Table 1-A stereotype to model SRT constraints. .. 67
Table 2-A stereotype to model HRT constraints. ... 67
Table 3-Tagged values of SRT and HRT stereotypes. ... 67
Table 4- Mapping rules from SDs to CCFGs. .. 78
Table 5-Data size of some of the primitive data types in Java (adopted from [75])....... 109
Table 6-A set of heuristics to identify a suitable MST (MSTsuitable). 179
Table 7-(a): Durations of several CCFPs. (b): Arrival patterns of several SDs. 196
Table 8-Output format of 10 schedules generated by GARUS. 217
Table 9-Descriptive statistics of the maximum ISTOF values over 1000 runs. Values are
in units of data traffic (e.g. KB).. 218
Table 10-Summary of GARUS results for five runs. ... 223
Table 11- Variability parameters for experimental test models...................................... 225
Table 12-Experimental test models with different sizes... 230
Table 13-Experimental test models with variations in SD arrival patterns. 232
Table 14-Execution time statistics of 1000 runs of tm1…tm6. ... 235
Table 15-Descriptive statistics of the maximum ISTOF values for each test model over
1000 runs. Values are in units of data traffic. ... 239
Table 16-Descriptive statistics of the maximum stress time values for each test model
over 1000 runs. Values are in time units... 243
Table 17-Minimum, maximum and average values of the generation numbers when a
stable maximum fitness plateau is reached in 1000 runs of each test model.................. 245
Table 18-Execution time statistics of 1000 runs of tm7…tm11. .. 246
Table 19-Descriptive statistics of the maximum ISTOF values for each test model over
1000 runs. Values are in units of data traffic. ... 249
Table 20-Descriptive statistics of the maximum stress time values for each test model
over 1000 runs. Values are in time units... 250
Table 21-Minimum, maximum and average values of the generation numbers when a
stable maximum fitness plateau is reached in 1000 runs of each test model.................. 252
Table 22-Execution time statistics of 1000 runs of tm8, tm9, tm10, tm12,…tm18. 255
Table 23-Descriptive statistics of the distributions in Figure 109. 257
Table 24-Descriptive statistics of the distributions in Figure 110. 259
Table 25-Descriptive statistics of the distributions in Figure 111. 262
Table 26-Descriptive statistics of the distributions in Figure 112. 267
Table 27-Mean data sizes of the entity data classes of SCAPS...................................... 307
Table 28-An operational profile for SCAPS... 320
Table 29-Probabilities of taking DCCFPs of SDs OC and PRNF according to the
operational profile given in Table 28.. 321
Table 30-Quantiles of the distributions in Figure 144. ... 323

xiii

List of Figures
Figure 1-The structure of the GRM Framework of the UML-SPT profile [12]. 15
Figure 2-Part of the deployment architecture of a chemical reactor system..................... 16
Figure 3-Example of time modeling using UML-SPT profile.. 17
Figure 4-UML 2.0 Sequence Diagram Metamodel. ... 18
Figure 5-An example illustrating the new features of the UML 2.0 SDs. 19
Figure 6-The fundamental chain of dependability threats. ... 21
Figure 7-Tree of Generalized Fault Classes for Distributed Systems............................... 23
Figure 8-Occurrences of Distributed Unavailability Faults (DUF). 27
Figure 9-An example scenario showing how a distributed traffic fault might happen..... 29
Figure 10- Overview of our model-based stress test methodology (a UML activity
diagram). ... 35
Figure 11- Metamodel of input and intermediate test models in our stress test
methodology. .. 37
Figure 12-Modeling the deployment node of an object using node tagged value. 43
Figure 13- Probabilistic representation of uncertainty in a task’s execution times. 47
Figure 14-The approach in which the different SD constraint types are considered by the
two optimization algorithms in this work. .. 50
Figure 15- Use Case Sequential Constraints for the Librarian actor (adopted from [60]).
... 52
Figure 16-Interaction Overview Diagram (IOD) of a simplified ATM system................ 54
Figure 17- Modified Interaction Overview Diagram (MIOD) of a simplified ATM
system. .. 55
Figure 18-A controller system made of several sensors. .. 57
Figure 19-(a): Modeling concurrent instances of SDs inside MIOD. (b): Equivalent in
meaning to (a). .. 58
Figure 20-A simple network deployment for an online shopping service........................ 59
Figure 21-A metamodel for network topologies... 60
Figure 22-A network topology.. 60
Figure 23-Using a Network Deployment Diagram (NDD) to model the network topology
of Figure 22... 62
Figure 24-Modeling network interconnectivity of a university network.......................... 63
Figure 25-Network Interconnectivity Graph (NIG) of the topology in Figure 22............ 64
Figure 26- Examples usages of the «SRTaction» and «HRTaction» stereotypes in a SD
and in a MIOD. ... 68
Figure 27-A SD with asynchronous messages.. 71
Figure 28- A SD with par operator... 72
Figure 29- CCFG metamodel.. 75
Figure 30-CCFG of the SD in Figure 27. ... 79
Figure 31-(a)-Part of the CCFG instance ccfg mapped from the SD in Figure 27,
satisfying the consistency rule #2. (b)-Part of the CCFG, corresponding to the instance
shown in (a)... 81
Figure 32-(a):Part of the CCFG instance ccfg mapped from the SD in Figure 27,
satisfying the consistency rule #3. (b): Part of the CCFG, corresponding to the instance
shown in (a)... 83
Figure 33-CCFPs of the CCFG in Figure 30. ... 83

xiv

Figure 34- DCCFPs of the CCFPs in Figure 33. .. 88
Figure 35-Timed inter-node representation of DCCFP(ρ2) in Figure 34. 89
Figure 36-A simple system NIG. .. 89
Figure 37-Timed inter-network representation of a DCCFP. ... 90
Figure 38- The MIOD of a library system. ... 93
Figure 39-The Independent SD Graph (ISDG) corresponding to the MIOD in Figure 38.
The ISDS={A,B,G,H} is shown with dashed edges. ... 96
Figure 40-A MIOD with a multi-SD construct... 97
Figure 41-An example MIOD and the CCFG of one of its SDs....................................... 99
Figure 42-The call tree of the recursive algorithm Duration applied to CCFPS1. 104
Figure 43-A class diagram showing three classes with data fields................................. 109
Figure 44-A Network Interconnectivity Graph (NIG).. 112
Figure 45-A system made up of four nodes and three networks. 115
Figure 46-Timed inter-node and inter-network representations of three DCCFPs......... 116
Figure 47-A typical system composed of two nodes and four processes. 118
Figure 48-Network traffic diagram (data traffic) of DCFP2 in Figure 47. 118
Figure 49-Network traffic diagram (number of distributed messages) of DCFP2 in Figure
47... 119
Figure 50-“In-data” traffic diagram of a node, highlighting difference between instant
and interval (3ms) traffic. ... 120
Figure 51-Example Network Interconnectivity Graph (NIG). 122
Figure 52-A Network Deployment Diagram (NDD) annotted with network transmission
delay information. ... 125
Figure 53-The data traffic diagram of a node with two processes.................................. 127
Figure 54-Naming convention for the traffic usage functions.. 128
Figure 55-A simple system NIG. .. 138
Figure 56-Heuristic to stress test instant data traffic on a network................................. 140
Figure 57-Activity diagram of stress test strategy StressNetInsDT(net). 141
Figure 58- Pseudo-code to check if the arrival pattern AP is satisfied by an arrival time.
... 150
Figure 59-Accepted Time Intervals (ATI) of a bounded arrival pattern (‘bounded’, (4,
ms), (5, ms)), i.e. MinIAT=4ms, MaxIAT=5ms.. 151
Figure 60-Accepted Time Intervals (ATI) of the bursty arrival pattern (‘bursty’, (5, ms),
2). .. 152
Figure 61-Accepted Time Points (ATP) of the irregular inter-arrival pattern (‘irregular’,
(1, ms), (5, ms), (6, ms), (8, ms), (10, ms)).. 153
Figure 62-Accepted Time Intervals (ATI) of the periodic inter-arrival pattern (‘periodic’,
(5, ms), (1, ms)). .. 153
Figure 63-Probability Distribution Function (PDF) of (‘poisson’, (5, ms)) arrival pattern.
... 154
Figure 64-(a): Accepted Time Set (ATS) metamodel. (b): Three instances of the
metamodel... 155
Figure 65- Illustrating the overlap of two ATSs’ intervals... 158
Figure 66-Example intersections of two ATSs. .. 158
Figure 67-Formulating the problem of generating stress test requirements as an
optimization problem. ... 159

xv

Figure 68-Impact of arrival patterns on instant (a)-(b) and interval (c)-(d) stress test
strategies. .. 162
Figure 69-SD arrival pattern constraints... 164
Figure 70-(a): Metamodel of chromosomes and genes in our GA algorithm. (b): Part of
an instance of the metamodel.. 169
Figure 71- Constraint #1 of the GA (an OCL expression).. 171
Figure 72-Constraint #2 of the GA (an OCL function). ... 172
Figure 73-Pseudo-code to generate a chromosome for the GA’s initial population....... 173
Figure 74-An example where the ATS intersection of all SDs is null, but they can
overlap... 175
Figure 75-Impact of maximum search time on exercising the time domain. 177
Figure 76- The ATSs of three irregular APs... 178
Figure 77-Illustration showing the heuristic of choosing a suitable maximum search time.
... 181
Figure 78-Computing the Instant Stress Test Objective Function (ISTOF) value of a
chromosome.. 184
Figure 79-Crossover operators.. 187
Figure 80-Two example uses of the crossover operators.. 188
Figure 81- DCCFPMutation operator... 191
Figure 82- startTimeMutation operator. ... 191
Figure 83- ISDSMutation operator.. 191
Figure 84-Impact of arrival patterns on the duration of a CCFP. 195
Figure 85-Call tree of the recursive algorithm minAPDuration applied to a CCFPS. ... 197
Figure 86-Heuristics of the Wait-Notify Stress Test Technique (WNSTT). 201
Figure 87-Basic GAlib class hierarchy (adopted from [99]). ... 203
Figure 88-Simplified class diagram of GARUS. .. 205
Figure 89-Overview activity diagram of GARUS. ... 207
Figure 90-GARUS input file format. .. 208
Figure 91-An example input file of GARUS.. 210
Figure 92-An example DTUP of a DCCFP. ... 210
Figure 93-(a): Stress test requirements format in GARUS output file. (b): An example.
... 212
Figure 94-ATSs of the SDs in the TM in Figure 91, and a stress test schedule generated
by GARUS. ... 215
Figure 95-Modified DCCFPs of the test model in Figure 91. .. 217
Figure 96-(a): Histogram of maximum ISTOF and stress time values for 1000 runs of test
model corresponding to the input file in Figure 91. (b): Corresponding max stress time
values for one of the frequent maximum ISTOF values (72 units of traffic). 219
Figure 97-Histogram of the generation numbers when a stable maximum fitness plateau
is reached in 1000 runs of the test model corresponding to the input file in Figure 91 by
GARUS. .. 221
Figure 98-Simplified activity diagram of our random test model generator. 228
Figure 99-Visualization of the average values in Table 14. ... 235
Figure 100-Histograms of maximum ISTOF values (y-axis) for 1000 runs of each test
model. The y-axis values are in traffic units... 239

xvi

Figure 101- Probability of the event that at least one test requirement with an ISTOF
value in group70 is yielded in a series of n runs of GARUS. .. 240
Figure 102-Histograms of maximum stress time values for 1000 runs of each test model.
The y-axis values are in time units. .. 242
Figure 103- Histograms of the generation numbers when a stable maximum fitness
plateau is reached in 1000 runs of each test model... 244
Figure 104-Visualization of the average values in Table 18. ... 246
Figure 105-Histograms of maximum ISTOF values for 1000 runs of each test model. The
y-axis values are in traffic units. ... 248
Figure 106-Histograms of maximum stress time values for 1000 runs of each test model.
The y-axis values are in time units. .. 250
Figure 107- The intersection of several periodic ATSs is a discrete unbounded ATS... 251
Figure 108- Histograms of the generation numbers when a stable maximum fitness
plateau is reached in 1000 runs of each test model... 252
Figure 109-Histograms of maximum ISTOF values for 1000 runs of each test model. The
y-axis values are in traffic units. ... 256
Figure 110- Histograms of maximum stress time values for 1000 runs of each test model.
The y-axis values are in time units ... 260
Figure 111- Histograms of the generation numbers when a stable maximum fitness
plateau is reached in 1000 runs of each test model... 263
Figure 112- Impact of variations in maximum search time on the GA’s behavior and
outputs... 265
Figure 113-A typical architecture of SCADA systems... 271
Figure 114- Modified SCAPS Use-Case Diagram including a Timer actor................... 278
Figure 115- SCAPS network deployment diagram. ... 279
Figure 116-SCAPS partial class diagram. .. 280
Figure 117- SDs OM_ON and OM_QC (Overload Monitoring). 282
Figure 118-SD queryONData(dataType). .. 283
Figure 119-SD queryQCData(dataType). .. 283
Figure 120- SD OC (Overload Control). .. 285
Figure 121-SD DSPS_ON and DSPS_QC (Detection of Separated Power System)...... 285
Figure 122-SD PRNF (Power Restoration after Network Failure)................................. 286
Figure 123-SCAPS Modified Interaction Overview Diagram (MIOD). 290
Figure 124-A screenshot of the main screen of SCAPS. .. 293
Figure 125-Overview of SCAPS Stress Test Architecture. .. 295
Figure 126- SCAPS Network Interconnectivity Graph (NIG). 298
Figure 127-CCFG(OM_ON). ... 299
Figure 128-CCFG(OM_QC)... 300
Figure 129-CCFG(OC). .. 300
Figure 130-CCFG(DSPS_ON). .. 301
Figure 131-CCFG(DSPS_QC). .. 301
Figure 132-CCFG(PRNF)... 301
Figure 133-CCFP and DCCFP sets of SDs in SCAPS. .. 302
Figure 134-(a):Independent-SDs Graph (ISDG) corresponding to the MIOD of Figure
123. (b), (c) and (d): Three of the maximal-complete subgraphs of the ISDG (shown with
dashed edges), yielding three ISDSs... 304

xvii

Figure 135-A grammar to derive CSDFPs from SCAPS’ MIOD................................... 305
Figure 136-Some of the CSDFPs of SCAPS derived from the grammar in Figure 135. 306
Figure 137- Input File containing SCAPS Test Model for a GASTT Test Objective.... 310
Figure 138-Relationship between ATSs of SCAPS SDs and their execution durations,
d(sd_name), to each other in 50 time units. .. 311
Figure 139--Relationship between ATSs of SCAPS SDs and their execution durations,
d(sd_name), to each other in 200 time units. .. 313
Figure 140-Histograms of 100 GARUS Outputs for a SCAPS Test Objective.............. 314
Figure 141- Probability of the event that at least one test requirement with an ISTOF
value in groupA is yielded in a series of n runs of GARUS for SCAPS. 316
Figure 142-Five Different Test Requirements (TR) generated by GARUS for a SCAPS
Test Objective. .. 317
Figure 143-Part of CCFG(OC), annotated with probabilities of paths after decision nodes.
... 320
Figure 144-Execution time distributions of test suites corresponding to SRT constraint
SRTC1 by running operational profile test (OPT) and stress test cases from GASTT (ST).
... 323
Figure 145-Overview activity diagram of the Model-Based Resource Usage Analysis
(MBRUA) technique... 327
Figure 146-Modeling CPU usage example... 331
Figure 147-Memory usage analysis example. .. 334
Figure 148-Four SDs with distributed messages. ... 337
Figure 149-Heuristics for the application of the barrier scheduling heuristic in the context
of UML-based stress testing. .. 341
Figure 150-GA chromosome terminology.. 359
Figure 151-Illustration of crossover operator (single point crossover). 360
Figure 152-Illustration of mutation operator. ... 360
Figure 153-Activity diagram of the most general form of genetic algorithms (concept
from [87]).. 361
Figure 154-Formalization of bounded APs time properties. .. 363
Figure 155-Two overlapping ATIs. .. 364

xviii

List of Equations

Equation 1- Distributed Traffic Usage (DTU) functions for different types of messages.
... 108
Equation 2-Node-network membership function.. 112
Equation 3-Network-network membership function. ... 112
Equation 4-A function to calculate the shares of a network in data transmissions between
two nodes. ... 123
Equation 5-A function to calculate the data transmissions delay of network between a
source node and a network (or a destination node)... 126
Equation 6-Intersection of two ATSs. .. 157
Equation 7-A formula to calculate the maximum ATP (maxATP) of an irregular AP... 179
Equation 8-A formula to calculate the Unbounded Range Starting Point (URSP) of a
bounded AP, given the ATIs of the AP. ... 180
Equation 9-A formula to calculate the Unbounded Range Starting Point (URSP) of a
bounded AP, given the minimum and maximum inter-arrival times (minIAT and maxIAT)
of the AP. .. 180
Equation 10- Instant Stress Test Objective Function (ISTOF)....................................... 183
Equation 11- Function returning the earliest arrival time of a SD based on its arrival
pattern. .. 195
Equation 12-RUD and RUM for CPU resource. .. 332
Equation 13-RUD and RUM for memory resource.. 335

xix

List of Acronyms

AD Activity Diagram
AOCS Attitude and Orbit Control System
AP Arrival Pattern
APC Arrival-Pattern Constraint
ATI Accepted Time Interval
ATP Accepted Time Point
ATS Accepted Time Set
BCET Best-Case Execution Time
BLOB Binary Large OBject
BNF Backus-Nauer Form
CCFG Concurrent Control Flow Graph
CCFP Concurrent Control Flow Path
CCFPS Concurrent Control Flow Path Sequence
CFA Control Flow Analysis
CFG Control Flow Graph
CFM Control Flow Model
CFP Control Flow Path
CPU Central Processing Unit
CSDFP Concurrent SD Flow Paths
DBMS DataBase Management System
DCCFP Distributed Concurrent Control Flow Path
DCCFPS Distributed Concurrent Control Flow Path Sequence
DCS Distributed control system
DRTS Distributed Real-Time Systems
DT Data Traffic
DUF Distributed Unavailability Fault
ECC Error Correcting Codes
GARUS GA-based test Requirement tool for distribUted Systems
GASTT Genetic Algorithm-based Stress Test Technique
GRM General Resource Modeling
HMI Human-Machine Interface
HRT Hard Real-Time
IDE Integrated Development Environment

xx

IOD Interaction Overview Diagram
IVSDS Invalid SD Schedule
IPMCS Industrial Process Measurement and Control System
ISDS Independent-SD Sets
ISTOF Instant Stress Test Objective Function
LAN Local Area Network
MIOD Modified Interaction Overview Diagram
MT Message Traffic
NDD Network Deployment Diagram
NIG Network Interconnectivity Graph
NRI Network Resources Index
OCL Object Constraint Language
OMG Object Management Group
OO Object-Oriented
OPTC Operation Profile-based Test Case
OPTR Operation Profile-based Test Requirement
OSI Open Systems Interconnection
PDF Probability Distribution Function
PLC Programmable Logic Controller
PRI Performance Requirements Index
PSTN Public Switched Telephone Network
RAD Rapid Application Development
RandTMGen Random Test Model Generator
RT Real-Time
RTCOST Real-Time Constraint-Oriented Stress Test
SCADA Supervisory Control and Data Acquisition
SCAPS A SCADA-based Power System
SD Sequence Diagram
SDNUM SD-Network Usage Matrix
SHR Synchronized Hyperedge Replacement
SPE Software Performance Engineering
SRT Soft Real-Time
STPE Stress-Test Performance Engineering
SUT System Under Test

xxi

TC Te1e-Control unit
TM Test Model
TSSTT Time-Shifting Stress Test Technique
UC Use Case
UCM Use-Case Map
UML Unified Modeling Language
UML-SPT UML profile for Schedulability, Performance, and Time
VSDS Valid SD Schedule
WAN Wide Area Network
WCET Worst-Case Execution Time
WNSTT Wait-Notify Stress Test Technique

1

Chapter 1

INTRODUCTION

1.1 Motivation and Goal

Distributed Real-Time Systems (DRTS for short) are becoming more important to our

everyday life. Examples include command and control systems, aircraft aviation systems,

robotics, and nuclear power plant systems [1]. However as described in the literature, the

development and testing of a DRTS is difficult and takes more time than the development

and testing of a distributed system without real-time constraints or a non-distributed

system, one which runs on a single computer.

System testing has been the topic of a myriad of research in the last two decades or so.

Most testing approaches target system functionality rather than performance. However,

Weyuker and Vokolos point out in [2], that a working system more often encounters

problems with performance degradation as opposed to system crashes or incorrect system

responses. In other words, not enough emphasis is generally placed on performance

testing. In hard real-time systems, where stringent deadlines must be met, this poses a

serious problem. Because hard real-time systems are often safety critical systems,

2

performance failures are intolerable. Deadlines that are not adhered to can in some

applications lead to life-threatening risks. The risk of this occurring can be greatly

reduced if enough performance testing is done before deploying the system. Performance

degradation and consequent system failures due to this degradation usually arise in

stressed conditions. For example, stressed conditions can be attained in a DRTS when

many users are concurrently accessing a system or when large amounts of data are

transferring through a network link.

In a recent paper by Kuhn [3], sources of failures in the United States’ Public Switched

Telephone Network (PSTN), as a very big DRTS, were investigated. It was reported that

in the time period of 1992-1994, although only 6% of the outages were overloads, they

led to 44% of the PSTN’s service downtime in the respected time frame. In the system

under study, overload was defined as the situation in which service demand exceeds the

designed system capacity. So it is evident that although overload situations do not happen

frequently, the failure consequences they result into are quite expensive.

Furthermore, in the context of Distributed Control Systems (DCS) (e.g., [4]) and

Supervisory Control And Data Acquisition (SCADA) systems (e.g., [5]), reports such as

[6], [7], [8], [9] indicate the high risk of failures due to network overload.

The motivation for our work can be stated as follows: because DRTS are by nature

concurrent and are often real-time, there is a need for methodologies and tools for stress

testing and debugging DRTS under stressing conditions, such as heavy user loads and

intense network traffic. The systems should be tested under stress before being deployed

in the field. In this work, our focus for stress testing is on the network traffic in DRTS,

one of the fundamental factors affecting the behavior of DTRS. Distributed nodes of a

3

DTRS regularly need to communicate with each other to perform some of the system’s

functionalities. Network communications are, however, not always successful and timely.

Problems such as congestion, transmission errors, or delays might occur in a network. On

the other hand, many real-time and safety-critical systems have hard deadlines for many

of their operations, where catastrophic consequences may result from missing deadlines.

Furthermore, a system might behave well with normal network traffic loads (in terms of

either amount of data or number of requests), but the communication might turn to be

poor and unreliable if many network messages or high loads of data are concurrently

transmitted over a particular network or towards a particular node.

1.2 Approach

We propose a technique to derive test requirements to stress the robustness of a system to

network traffic problems in a cost-effective manner. It is based on models, rather than

code, describing, among other things, interactions between distributed objects. This is a

difficult problem as, for a given DRTS where several concurrent processes are running on

each distributed node and processes communicate frequently with each other, the size of

the set of all possible network interaction interleavings is unbounded, where a network

interaction interleaving is a possible sequence of network interactions among a subset of

all processes running on a subset of all nodes.

The Unified Modeling Language (UML) [10] is increasingly used in the development of

DRTS systems. Since 1997, UML has become the de facto standard for modeling object-

oriented software and is used, in one way or another, by nearly 70 percent of IT industry

[11]. The new version of UML, version 2.0 [10], was finalized by the OMG in August

2003. UML 2.0 offers an improved modeling language compared to UML 1.x versions:

4

enhanced architecture modeling, improved extensibility, support for component-based

development, modeling of relationships and model management [11]. As we expect UML

to be increasingly used for DTRS, it is therefore important to develop automatable UML

model-driven, stress test techniques and this is the main motivation for the work reported

here.

Assuming that the UML design model of a DTRS is in the form of Sequence Diagrams

(SD) annotated with timing information, and the systems’ network topology is given in a

specific modeling format, we propose a technique to derive test requirement to stress the

DTRS with respect to network traffic in a way that will likely reveal robustness

problems. We introduce a systematic technique to automatically generate a network

interaction interleaving that will stress the network traffic on a network or a node in a

System Under Test (SUT) so as to analyze the system under strenuous but valid

conditions, e.g., triggering the Withdraw sequence diagram before (or together with) the

Login in an ATM system is invalid. If any network traffic-related failure is observed,

designers will be able to apply any necessary fixes to increase robustness before system

delivery.

1.3 Contributions

The contributions of this work can be summarized as follows:

• An extended faults taxonomy for DRTS (Chapter 3)

• A control flow analysis technique based on UML 2.0 SDs (Chapter 6)

• A resource usage analysis technique for network traffic usage in DRTS (Chapter

8)

5

• A family of automated stress testing techniques (Chapter 9) aiming at increasing

chances of discovering faults related to network traffic in DTRS. Based on a

specific UML 2.0 system model, and analysis of the control flow in SDs, it yields

stress test requirements composed of specific CFPs (Control Flow Paths) to be

invoked and a schedule according to which to trigger each CFP. In addition to

sequence diagrams. Two different approaches are discussed for the identification

and scheduling of CFPs: the first one is based on a heuristic (Chapter 9); the

second one, more general, re-expresses the objectives as an optimization problem

and solves it with a Genetic Algorithm (Chapter 10).

1.4 Structure

The remainder of this document is structured as follows. Relevant background

information is given in Chapter 2, where we discuss the related works and define the

main terminology used throughout the document. Chapter 3 presents an extended fault

taxonomy for DRTS so that the types of faults we target are well defined. Chapter 4

presents an overview of the stress test methodology. The assumed input system models

for the methodology are precisely described in Chapter 5. From Chapter 6 to Chapter 8,

we describe in detail how a stress test model is built to support automation. Chapter 6

describes a technique for the control flow analysis of UML 2.0 sequence diagrams.

Chapter 7 discusses how sequential and conditional constraints among sequence diagrams

(or their corresponding use cases) can be analyzed when generating stress test

requirements. A resource usage analysis technique for network traffic usage is then

presented in Chapter 8. Chapter 9 proposes the simpler version of our stress test

technique which should be applicable for a large proportion of DTRS. A more

6

sophisticated version of the technique, which takes into account complex arrival patterns

for internal and external system events, is presented in Chapter 10. This technique re-

expresses our objectives as an optimization problem and uses Genetic Algorithms to

derive test requirements. Chapter 11 discusses how the stress test methodology can be

fully automated using a prototype tool we have developed to generate stress test

requirements. This tool is carefully assessed by an experiment. A comprehensive case

study is presented in Chapter 12 in order to assess the usefulness of our overall

methodology on a realistic example. Chapter 13 discusses how our stress test

methodology can be generalized to target other types of faults than the one targeted in

Chapter 9 and Chapter 10, or other types of resources (e.g. CPU or memory) instead of

network traffic. Finally, Chapter 14 concludes this document and discusses some of the

future research directions.

7

Chapter 2

BACKGROUND

This section presents related works (Section 2.1), a detailed problem statement (Section

2.2), the basic terminology used in this thesis (Section 2.3), and a brief introduction to the

UML profile for Schedulability, Performance, and Time (UML-SPT) [12] (Section 2.4).

As UML 2.0 sequence diagrams are used as the main behavior model, an overview on

SDs is presented in Section 2.5.

2.1 Related Works

There has not been a great deal of work published on systematic generation of stress test

suites for software systems. The works in [13-17] are notable exceptions. On a different

note, there are reports that highlight the high cost of system outages and damages due to

high loads and systems’ malfunction under stressing conditions. For example, Kuhn [3]

investigated the sources of failures in the United States’ Public Switched Telephone

Network (PSTN)─a very large distributed system. It was reported that in the time period

of 1992-1994, although only 6% of the outages were overloads, they led to 44% of the

PSTN’s service downtimes in the studied time frame.

8

Authors in [15] propose a class of load test case generation algorithms for

telecommunication systems which can be modeled by Markov chains. The black-box

techniques proposed are based on system operational profiles. The Markov chain that

represents a system’s behavior is first built. The operational profile of the software is then

used to calculate the probabilities of the transitions in the Markov chain. The steady-state

probability solution of the Markov chain is then used to guide the generation process of

test cases according to a number of criteria, in order to target specific types of faults. For

instance, using probabilities in the Markov chain, it is possible to ensure that a transition

in the chain is involved many times in a test case so as to target the degradation of

performance due to large numbers of calls/requests that can be accepted by the system.

From a practical standpoint, targeting only systems whose behavior can be modeled by

Markov chains can be considered a limitation of this work. Furthermore, using only

operational profiles to test a system may not lead to stressing situations.

Yang proposed a technique [13] to identify potentially load sensitive code regions to

generate load test cases. The technique targets memory-related faults (e.g., incorrect

memory allocation/de-allocation, incorrect dynamic memory usage) through load testing.

The approach is to first identify statements in the module under test that are load

sensitive, i.e., they involve the use of malloc() and free() statements (in C) and pointers

referencing allocated memory. Then, data flow analysis is used to find all Definition-Use

(DU)-pairs that trigger the load sensitive statements. Test cases are then built to execute

paths for the DU-pairs.

Briand et al. [16] propose a methodology for the derivation of test cases that aims at

maximizing the chances of deadline misses within a system. They show that task

9

deadlines may be missed even though the associated tasks have been identified as

schedulable through appropriate schedulability analysis. The authors note that although it

is argued that schedulability analysis simulates the worst-case scenario of task

executions, this is not always the case because of the assumptions made by schedulability

theory. The authors develop a methodology that helps identify performance scenarios that

can lead to performance failures in a system. It combines the use of external aperiodic

events (ones that are part of the interface of the software system under test, i.e., triggered

by events from users, other software systems or sensors) and internally generated system

events (events triggered by external events and hidden to the outside of the software

system) with a Genetic Algorithm.

Zhang et al. [14] describe a procedure, similar to ours, for automating stress test case

generation in multimedia systems. The authors consider a multimedia system consisting

of a group of servers and clients connected through a network as a SUT. Stringent timing

constraints as well as synchronization constraints are present during the transmission of

information from servers to clients and vice versa. The authors identify test cases that can

lead to the saturation of one kind of resource, namely CPU usage of a node in the

distributed multimedia system. The authors first model the flow and concurrency control

of multimedia systems using Petri-nets [18] coupled with temporal constraints. Allen’s

interval temporal logic [19] was used by the authors to model temporal relationships. For

example, given two media objects, VideoA and VideoB, the representation: αVideoB =

βVideoA + 4 (where αVideoB and βVideoA denote the begin time of VideoB and end time

of VideoA respectively) is used to express the starting of VideoB four time units after the

end of VideoA. In their model, Zhang and Cheung first identify a reachability graph of the

10

Petri net representing the control flow of multimedia systems. This graph is quite

similar to a finite state machine where the states are referred to as markings and the

transitions correspond to the transitions in the Petri-net. Each marking on the reachability

graph is composed of a tuple representing all the places on the Petri-net along with the

number of tokens held in each. It is important to note that only reachable markings (that

is ones that can be reached by an execution of the Petri-net) are included in the

reachability graph. From there, the authors identify test coverage of their graph as a set of

sequences that cover all the reachable markings. These sequences, or paths in the

reachability graph, are referred to as firing sequences. Firing sequences are composed of

a transition and a firing time, represented as a variable. From there, each sequence is

formulated into a linear programming problem and solved, outputting the actual firing

times that maximize resource utilization.

The proposed technique can not be easily generalized to generate test cases for different

stress testing strategies of a distributed system. Some of the limitations of their technique

are:

• They assume constant resource utilization (called as weight by the authors) for

each media object. While in most DRTS, the resource usage of each object

(system component) varies with time.

• Only instant stress testing (happening in one time instant) is supported. But a

system may only exhibit failures if stress test is prolonged for a period of time.

• The temporal relationships and control flow model of the system should be

modeled using Petri-nets [18] and Allen’s interval temporal logic [19]. Although

these two notations have solid mathematical foundations, they are not widely used

11

by software developers. It would be much better if the required temporal

relationships and control flow information could be extracted from the UML

model of a system.

• The proposed technique can not be easily generalized to generate test cases for

different stress testing strategies, i.e., testing networks vs. nodes, stress direction

(i.e., towards a node vs. from a node). This will be discussed in detail in our

system model and methodology sections.

Several techniques have been proposed to find concurrent faults, such as [20-23] which

aim at finding data-race related faults. For example, Ben-Asher et al. [21] propose a set of

heuristics to increase the probability of manifesting data-race related faults. The goal is to

increase the chance of exercising data-races in the program under test and thus increase

the chance of manifesting concurrency faults that are data-race related. The proposed

technique first orders global shared variables according to the number of times they are

accessed by different processes. Then data-race based heuristics are used to change the

runtime interleaving of threads so that the probability of fault manifestation increases.

One of the proposed heuristics in [21] is called barrier scheduling, in which barriers are

installed before and after accessing a particular shared variable. A barrier causes the

processes accessing the variable to wait just before accessing it. When a predefined

number of processes are waiting, the heuristic then simultaneously resumes all the

waiting processes to access the shared variable, for example using notifyAll() in Java.

The existing techniques to find concurrent faults do not distinguish between local or

distributed concurrent processes. However since a set of concurrent processes can run on

12

distributed locations, the existing methods to find concurrency faults can also be

potentially used in a distributed system, which is implicitly concurrent as well.

2.2 Problem Statement (Initial)

We first define the problem we tackle in a general way, without providing details on the

modeling and formalisms which will be proposed later on in this thesis.

Assuming that the UML design model of a DRTS is given, the problem is to find

a systematic technique which automatically generates a set of test requirements to

stress the network traffic of the system nodes and network links such that the

probability of exhibiting network traffic-related faults increases. The UML design

model of the SUT is assumed to include at least the system’s sequence diagrams

(annotated with start and end timing information of each message), class

diagram(s) and a system network interconnectivity package diagram which will be

introduced in Section 5.5 and shows the interconnectivity of the system’s nodes

and network links. There can be several concurrent processes running on each

system node where processes communicate with other processes located on the

other nodes.

The above problem statement will be revisited in Section 9.1, where it will be detailed

and rephrased using the modeling and formalisms proposed in Chapter 5 to Chapter 7.

2.3 Terminology

Here we define the basic terminology used throughout this paper.

Performance Testing. Performance testing is defined as the testing activity which is

conducted to evaluate the compliance of a system or component with specified

13

performance requirements. By thorough performance testing, it is expected that the

risks of performance failures in systems are reduced. If performance is defined in terms

of response time, software systems must produce results within acceptable time intervals.

For example, most users of desktop systems will be annoyed with response times longer

than a few seconds. In hard real-time systems, the deadlines to accept and respond to an

input are measured in small time units such as milliseconds [24]. In all of these

applications, the inability to meet response time requirements is no less a bug than

incorrect outputs or a system crash.

Stress Testing. Stress testing is defined as the testing process by which a software system

is put under heavy stress and demanding conditions in an attempt to increase the

probability of exhibiting failures. A stress test pushes the SUT to its design limits and

tries to cause failures under extreme but valid conditions. This kind of testing will reveal

two kinds of faults: lack of fail-safe behavior and load-sensitive bugs. The stress test

suites may increase the number of simultaneous actions and cause resources to be used in

unexpected way. This may reveal faults on rare conditions, in exception handlers, and in

restart/recovery features of a software system [24].

Distributed system: A collection of autonomous, geographically-dispersed computing

nodes (hardware or software) connected by some communication medium: one or more

networks.

Distributed node: A geographically-dispersed computing node, which is a part of a

distributed system and is part of a network.

14

Network: A network is the communication backbone for a set of nodes in a distributed

system. A network may be a subnet of another network or the supernet of several other

networks.

2.4 UML Profile for Schedulability, Performance, and Time

The UML standard has been used in a large number of time-critical and resource-critical

distributed systems [25-29]. Based on this experience, a consensus has emerged that,

while a useful tool, UML is lacking some modeling notations in key areas that are of

particular concern to distributed system designers and developers. In particular, it was

noticed that the lack of a quantifiable notion of time and resources was an obstacle to its

broader use in the distributed and embedded domain. To further standardize the use of

UML in modeling complex distributed systems, the OMG (Object Management Group)

adopted a new UML profile named “UML Profile for Schedulability, Performance and

Time” (SPT) [12] (referred to as the UML-SPT).

The UML-SPT profile proposes a framework for modeling real-time systems using UML.

The profile was finalized on Sept. 2003 and is becoming popular in the research

community [30-34] and the industry [35]. The profile provides a uniform framework,

based on the notion of quality of service (QoS), for attaching quantitative information to

UML models. Specifically, QoS information models, either directly or indirectly, the

physical properties of the hardware and software environments of the application

represented by the model. This framework is referred to as the General Resource

Modeling framework (GRM) by the UML-SPT profile. The structure of the GRM

framework is shown in Figure 1 [12].

15

General Resource Modeling Framework

«sub-profile»
RTresourceModeling

«sub-profile»
RTconcurrencyModeling

«sub-profile»
RTtimeModeling

«import»

«import»

Figure 1-The structure of the GRM Framework of the UML-SPT profile [12].

According to the UML-SPT profile’s specification [12], sub-profiles are defined as

profile packages dedicated to specific aspects and modeling analysis techniques. As

shown in Figure 1, the RTtimeModeling sub-profile imports the RTresourceModeling

sub-profile since time can be considered as a resource in a system. The RTtimeModeling

sub-profile provides means for representing time and time-related mechanisms that are

appropriate for modeling real-time software systems. It is composed of several packages

that introduce the following separate but related groups of concepts:

• Concepts for modeling time and time values, included in the TimeModel package.

• Concepts for modeling events in time and time-related stimuli, included in the

TimedEvents package.

• Concepts for modeling timing mechanisms (clocks, timers), included in the

TimingMechanisms package.

• Concepts for modeling timing services, such as those found in real-time operating

systems, included in the TimingServices package.

As we will see in the faults taxonomy related to time constraints in distributed systems

(Section 3.1.1), we will mostly use the concepts for modeling events in time and time-

16

related stimuli in the context of this work. Those concepts are included in the

TimedEvents package of the RTtimeModeling sub-profile. The modeling of the

TimedEvents package is shown in Section 4.1.3 of the UML-SPT profile [12].

As an example, part of the deployment architecture of a typical chemical reactor system

is shown in Figure 2, where a sensor controller node (nsc) is supposed to get the sensor

data from sensors ns1 and ns2, and then send the data to be updated in the control server

(ncs).

Reactor
LAN

ncs: ControlServer

Reactor
Expert

`

nrm:ReactorMonitoringns1:HeatSensor

ns2:HeatSensor

nsc :SensorController

Figure 2-Part of the deployment architecture of a chemical reactor system.

The sequence diagram (SD) in Figure 3 shows the realization of the data update process.

The SD is using time modeling constructs in the TimeModel package of the UML-SPT

profile and the UML 2.0 [10] notations. The timing information of messages has been

modeled using the UML-SPT. For example, «RTstimulius» denotes that the first message

is a RT stimulus with an arrival pattern specified by the tagged-value

«RTArrivalPattern».

17

SD updateSensorData

nnnnnnnnnnnnnnnnnn

«RTstimulus»
{RTArrivalPattern=
"'periodic',(100,'ms')"
RTduration<(10,'ms')} :SensorDataCollector

{node=nsc}
:Sensor

{node=ns1}
:Sensor

{node=ns2}

data[0]

data[1]

updateSensorData()

«RTstimulus»
{RTstart=(1,'ms'),
RTend=(2,'ms')}

getData()

getData()

:SensorDB
{node=ncs}

updateData(data)

updateAck
«RTstimulus»
{RTstart=(6,'ms'),
RTend=(10,'ms')}

«RTstimulus»
{RTstart=(14,'ms'),
RTend=(15,'ms')}

Figure 3-Example of time modeling using UML-SPT profile.

The system is obviously a safety-critical one, where an inadequate response time of the

system might have life-threatening consequences. In other words, the temperature of the

system should be measured and checked according to the timing notations in Figure 3 and

prompt corrective actions should be carried out if the temperature is higher than a pre-

specified threshold. Note that the decision of time units (e.g., ms in Figure 3) modeled in

SDs are based on the precisions of the estimates.

2.5 An Overview on UML 2.0 Sequence Diagrams

The UML 2.0 [10] syntax of SDs is used in this work. Comparing to UML 1.x [36, 37],

UML 2.0 have proposed a set of new features to SDs. Some of the new features are

illustrated with an example in Figure 5. The SD metamodel showing the class diagram of

SD features is shown in Figure 4.

18

InteractionFragment

EventOccurrenceExecutionOccurrenceStateInvariant

0..1

-{ordered}

*

Lifeline

1

*

MessageEnd-messageKind
-messageSort
-return_value

Message

GeneralOrdering

toBefore * toAfter *

1

1
*

sendEvent

receiveEvent
0..1 0..1

«enumeration»
MessageKind
complete
lost
found
unknown

«enumeration»
MessageSort
synchCall
synchSignal
asynchCall
asynchSignal

start
[0..1] 1

finish

InteractionOperand

Continuation

InteractionConstraint

0..1

1
-guard 0..1

-InteractionOperator
CombinedFragment

Gate

InteractionOccurrence

0..1

*

0..1

*

1

*

*
*

refers to

Constraint
1

*

Value
Specification

Named
Element

1
*

Interaction

-End1

*

-End2

*
signature

argument

0..1
*

[0..1] 1

before 1 after 1

covered

startExec
finishExec

guard 0..1

0..1 0..1

«enumeration»
InteractionOperator
alt
opt
break
neg
loop
seq
strict
par
region
assert
ignore
consider

Figure 4-UML 2.0 Sequence Diagram Metamodel.

A message in a SD is the basic form of communication in interactions. Communication

can raise a signal, invoke an operation, and create or destroy an object instance. UML 2.0

no longer draws a distinction between message and stimulus as UML 1.x did. In the new

version, a message can be one of the following two types:

• Operation call: which expresses the invocation of an operation on the receiving

object. An operation call must match the signatures of an operation on the target

object (receiver of the message).

• Signal: which represents a message object sent out by one object and handled by

the other object that is equipped to respond to it.

19

o1 o2

m2()frame

o3

return

m3()

N

receiveEvent
(EventOccurrence)

sd M

[x>0]

[else]

alt

Nref

Pref

InteractionOperand
separator

InteractionOperand

InteractionOccurrence

CombinedFragment

InteractionOperator

InteractionConstraint

Figure 5-An example illustrating the new features of the UML 2.0 SDs.

UML also provides four varieties (or sorts as UML 2.0 calls them) for a message.

Message sorts identify the sort of communication reflected by a message. The sorts of

messages supported are defined in an enumeration called MessageSort (in Figure 328 of

[10]) as:

 SynchCall: synchronous call

 AsynchCall: asynchronous call

 SynchSignal: synchronous signal

 AsynchSignal: asynchronous signal

20

Chapter 3

AN EXTENDED FAULT TAXONOMY FOR DISTRIBUTED

REAL-TIME SYSTEMS

Before devising any type of testing technique, one needs to clearly specify the target set

of fault types. Since the scope of our testing technique is distributed real-time systems,

we present in this chapter a fault taxonomy for such systems, which is an extension to the

fault taxonomy presented in [38].

Section 3.1 presents our fault classification for DRTS. Section 3.2 discusses the chain of

distribution faults, i.e., how a specific fault may recursively lead to other faults (possibly

of other types than the initial fault). Finally, the classes of faults considered in this work,

a sub-set of what is described in Section 3.1, are described in Section 3.3. This will

clarify the objectives of the stress testing methodology we present in Chapter 9 and

Chapter 10.

21

3.1 An Extended Fault Classification for Distributed Real-Time Systems

To operate successfully, most large distributed systems depend on software, hardware,

and human operators and maintainers to function correctly. Failure of any one of these

elements can disrupt or bring down an entire system.

According to the terminology used in system dependability, a system may fail either

because it does not comply with the specification, or because the specification did not

adequately describe its function [38]. Three fundamental categories of threats exist in the

dependability theory presented in [38]: failures, errors, and faults. A system failure

occurs when the delivered service deviates from fulfilling the system function. An error is

the part of the system state that may cause a subsequent failure. A fault is the adjudged or

hypothesized cause of an error. A fault is active when it produces an error; otherwise it is

dormant. Failures, errors, and faults are closely related. The chained causality

relationship between these threats is shown by Avizienis et al. [38], as depicted in Figure

6.

Fault Error Failure Fault
activation propagation causation

... ...

Figure 6-The fundamental chain of dependability threats.

The arrows in this chain express a causality relationship between faults, errors and

failures. From the users viewpoint, a malfunction in a system is observed via a failure,

which itself has been caused by an error and that by a fault. Therefore in terms of system

granularity, failures are in a higher level than errors and those are in a higher level than

faults. For example in a typical web-based email system such as Yahoo, which most

22

probably uses parallel/distributed web servers to serve huge number of clients at the

same time, a typical failure from a user standpoint might be: “Yahoo! mail doesn’t let me

log in”. This failure might be due to an error such as: “the user database can not be

reached” in the system, which in turn, might be caused by a distributed fault like:

“congestion in a database server’s request queue has resulted in an unavailability of the

server”.

Adapting the concept of dependability to our context, i.e., distributed systems, it makes

sense to account for specific faults which occur specially in distributed systems and thus

extend the taxonomy introduced in [38]. Our proposed additions are presented in Figure

7, where the faults classes on the gray background are our proposed additions, while

those on a white background were discussed by Avizienis et al. in [38].

We have added five top-most categories: distribution, time criticality, concurrency,

resource-usage orientation, and location of creation or occurrence. By this extension, we

believe that the fault taxonomy can be used in the context of DRTSs.

The technique proposed in this thesis aims to target transient faults (in term of

persistency) since stressing conditions are by nature transient. Thus, we first revisit the

persistency of faults in Section 3.1.1. In terms of the other fault categories described in

[38] (domain, intent, boundary, cause and phase), the objective of our technique is not

specific to a specific category (e.g., internal or external for the faults boundary). Thus, we

do not discuss those fault categories in detail here.

Sections 3.1.2 to 3.1.6 discuss our five extended categories: distribution, time criticality,

concurrency, resource-usage orientation, and location of creation or occurrence.

23

Network

Faults

Persistency

Domain

Phenomenological
Cause

System Boundary

Phase of Creation
or Occurrence

Intent

Permanent

Transient

Hardware

Natural

Software

Human-made

Internal

External

Developmental

Operational

Node

Accidental

Deliberate

Unavailability

Traffic

Malicious

Non-Malicious

Location of Creation
or Occurrence

Amount of Data

Number of Requests

Proposed in the current work

By Avizienis et al.

A Testing focus of the current work

Distributed

Concurrency

Local

Resource-usage orientated
Overload Usage

Unavailability

Time Criticality

Distribution

Resource-Usage
Orientation

Real-Time

Non Real-Time
Soft Real-Time

Hard Real-Time

Non Resource-usage orientated

Concurrent

Non Concurrent

Figure 7-Tree of Generalized Fault Classes for Distributed Systems.

3.1.1 Persistency of Faults

Some studies have suggested that since software is not a physical entity and hence not

subject to transient physical phenomena (as opposed to hardware), software faults are

permanent in nature [39]. Some other studies classify software faults as either permanent

or transient [38]. Permanent faults are essentially design faults which can be identified

quite easily and can be removed during the testing and debugging phase (or early

deployment phase) of the software life cycle. Transient faults, on the other hand, belong

to the class of temporary internal faults and are intermittent. They are essentially faults

24

whose conditions of activation occur rarely or are not easily reproducible. Hence these

faults result in transient failures, i.e., failures which may not recur if the software is

restarted or is run in normal load conditions. Some typical situations in which transient

faults might surface are high usage loads, improper or insufficient exception handling and

interdependent timing of various events. It is for this reason that transient faults are

difficult to identify through regular testing techniques. Hence a mature piece of software

in the operational phase, released after its development and testing stage, is more likely to

experience failures caused by transient faults than due to permanent faults.

Some studies on failure data have reported that a large proportion of software failures are

transient in nature [40, 41], caused by phenomena such as overloads or timing and

exception errors [42, 43]. For example, a study of failure data from a fault tolerant

system, called Tandem, indicated that 70% of the failures were transient failures, caused

by faults like race conditions and timing problems [44].

Altogether, depending on the system under study, we might be able to list some of the

situations in which transient faults might happen:

• Overloads

• Race conditions on shared resources

• Interdependent timing of various events

• Improper or insufficient error handling

• Memory leaks

25

3.1.2 Distribution

Since nodes are geographically distributed in a distributed system, there should be a

communication medium connecting them. We can thus classify faults based on their

distribution aspect. We identify faults pertaining to communication among nodes under

the class of distributed faults. The contrary category is called local faults.

An important point to mention here is that since both the SUT and the test system run in

the application layer of the OSI (Open Systems Interconnection)’s 7-layer network

architecture [45], we only consider faults which are of relevance to the application layer

and not the lower OSI layers, such as bit transmissions errors which are handled and

corrected by the Error Correcting Codes (ECC) in the data link layer. In the context of

testing distributed systems, we identify two types of faults with a distributed nature:

• Distributed unavailability faults

• Distributed traffic faults

We discuss each of the above fault categories in the following sections.

3.1.2.1 Distributed Unavailability Faults

Distributed unavailability faults relate to the availability (readiness for correct service)

and reliability (continuity of correct service) attributes of a system. The specification of

most distributed systems usually dictates that the system’s network links and nodes

should be highly available and reliable. For example, in a safety-critical system like a

distributed air traffic control, the flight and runway information should be updated

frequently in the system’s central database. Failing to do so, which might be caused for

26

example by a network unavailability fault between a radar and the controller, might

result in disastrous consequences.

A distributed unavailability fault happens when a system component is no longer

available and can not provide services to other components in the system. This equally

applies to networks and nodes. For example, a distributed message from a source node

may not reach the destination node because one of the network links in the path from the

source to the destination node is exhibiting a distributed unavailability fault. Since there

are essentially three parties (network, the source and the destination nodes) in every

communication, therefore in our definition, this fault might happen in either a network or

in a node, which can be described using the “Location of Creation or Occurrence” fault

class, as shown in Figure 7. This justifies why Unavailability, an orthogonal concept to

“Location of creation or Occurrence”, is sub-type of type Distributed.

Network links between any two distributed nodes might become unavailable at any time

during the system activity. As we will assume in the system model in Chapter 5, any

arbitrary network link in the network path between any two nodes in the system might be

unavailable while the other links are functioning well. Therefore, all different types and

combinations (e.g., the sender node, any of the network links, or the receiver node of a

message) of unavailability faults have to be accounted for if we want to test all

possibilities of unavailability in a system. The reason why we would like to distinguish

the unavailability fault in terms of its location of creation or occurrence is that the

system’s overall behavior might be different when a network link, the source or the

destination nodes exhibit unavailability faults. A schematic notation of possible

27

distributed unavailability faults in a simple distributed message scenario is shown in

Figure 8.

Network

n1 n2

Denotes the occurrence of a
distributed unavailability fault

o2.f()

v1=o2.f()

o1
{node=n1}

o2
{node=n2}

DUF1

DUF2DUF3

DUF1 DUF2DUF3

DUF

SD

Figure 8-Occurrences of Distributed Unavailability Faults (DUF).

In the simple distributed message scenario of Figure 8, object o1 on node n1 invokes a

remote procedure call f() from object o2 on node n2 and subsequently receives the return

value. A distributed unavailability fault (DUF) might happen anywhere in this scenario.

We have identified three of all possible DUFs as shown with DUFi’s in Figure 8.

Suppose DUF1 happens on the network connecting two nodes and just after the message

o2.f() is sent from o1 to o2. DUF2 occurs in n2 (e.g. node n2 crashes) after message o2.f()

has arrived in o2 and while o2 (node n2) is busy processing function f(). DUF3 is a DUF

which takes place in n1 before receiving the reply message (v1=o2.f()). The time and

location where a DUF happens might cause different failures and subsequent faults in a

system. Therefore to achieve full coverage in terms of DUFs, all different times and

locations of DUFs have to be tested in a system.

Distributed unavailability faults might happen due to a variety of reasons, such as:

physical damage to a network cable, dead node, dead router/switch/hub in the network

path, and network or application software malfunction.

28

3.1.2.2 Distributed Traffic Faults

A distributed traffic fault occurs when at least one of the system components does not

function correctly under heavy network traffic, but remains available. Distributed traffic

faults can be due, for instance, to network congestions, buffer overflows, or processing

delay in software modules. This, again, also equally applies to networks and nodes. A

detailed discussion of the root causes for distributed traffic faults is outside the scope of

this document since such discussions will be mostly related to computer and

communication networks literature. However, among the main causes, we consider two

cases: large amounts of data transmitted by networks, and high number of requests

handled by nodes.

There have been many studies in the area of network traffic and researchers have used

many analytical models. One of the most common models to represent traffic in networks

is to use queuing theory [46]. Those group of works build mathematical models (such as

Markov chains) to analyze a network’s behavior under stressed conditions. Most of such

techniques work in the lower layers of the OSI architecture and do not analyze stressed

conditions from the application layer (software) point of view. Thus, a detailed discussion

of those group of works is outside the scope of this document as they are mostly in the

field of computer and communication networks. The interested reader is referred to the

extensive literature in these areas.

As an example of a scenario when a distributed traffic fault might happen, consider the

network schematic shown in Figure 9. Let us suppose the nodes in NetworkA (n1, n2, n3)

send messages to nodes in NetworkB (n4, n5, n6) simultaneously, where each message

contains a large amount of data. All of these messages have to go through NetworkAB

29

which connects NetworkA and NetworkB. If the total size of the simultaneous data sent

over NetworkAB is larger than its capacity, there will probably be a delay or other network

faults that can be referred to “distributed traffic faults”. This fault may cause an error and

subsequently a failure in the system, which in turn might lead to other classes of faults

according to the fundamental chain of dependability threats shown in Figure 6.

Distributed database and multimedia servers are examples of systems where large

amounts of data are usually exchanged between nodes and distributed traffic faults might

occur.

NetworkA

n1 n2

Denotes a message from
node ni to node nj at time t

n3

NetworkB

n4 n5 n6

i,j,t

2,
5,

t

3,
6,

t

NetworkAB

1,
4,

t

Figure 9-An example scenario showing how a distributed traffic fault might happen.

As discussed previously, in addition to the amount of data transmitted over a network or

from/to a node, we further acknowledge that high number of simultaneous messages

might also be a potential cause of traffic faults. Considering the example scenario in

Figure 9, assume each of the concurrent processes on the nodes n1, n2, and n3 (inside

NetworkA) send messages to processes on nodes n4, n5, and n6 (inside NetworkB) all at the

same time. Since there can be large number of concurrent processes on each node, there

might be scenarios where high number of distributed messages go over the network

30

NetworkAB. This, subsequently, might cause a distributed traffic fault in the network

and/or any of the nodes.

3.1.3 Time Criticality

In the context of DRTSs, faults can also be categorized based on their real-time (time

criticality) aspect. A real-time fault occurs when a real-time deadline is missed. As

discussed earlier, safety-critical systems often have time constraints which they should

react on time. As usually categorized in the literature, real-time deadlines (constraints)

are of two types: hard and soft deadlines. Hard deadlines are constraints that absolutely

must be met [47]. A missed hard deadline results in a system failure. A system with hard

deadlines is called a hard real-time system. On the other hand, soft real-time systems are

characterized by time constraints (soft deadlines) which can (a) be missed occasionally,

(b) be missed by small time derivations, or (c) occasionally skipped altogether. Usually,

these permissible variations are stochastically characterized. Another common definition

for soft real-time systems is that they are constrained only by average time constraints.

Examples include on-line databases and flight reservation systems. Therefore, in soft

real-time systems, late data may still be good data, depending on some measure of the

severity of the lateness.

3.1.4 Concurrency

A concurrency fault occurs if the root cause of a system failure is due to the concurrency

among processes. There might be, for example, a shared resource that is accessed by

several processes in a system. The synchronization scheme and order in which a shared

31

resource is accessed might lead to a concurrency fault. Some types of concurrency

faults are: deadlock, livelock, starvation and data-races.

A deadlock is a situation where two or more processes cannot proceed because they are

all waiting for the other to release some shared resource. Livelock happens when

processes are blocked with reasons other than waiting for a shared resource, for example

a busy waiting on a condition that can never become true [48]. Resource starvation is a

more subtle form of a deadlock state. A process may have large resource requirements

and may be overlooked repeatedly because it is easier for the resource management

system to schedule other processes with smaller resource requirements [48]. Data-race is

an anomaly of concurrent accesses by two or more threads to a shared variable when at

least one is writing. Programs which contain data-races usually demonstrate unexpected

and even non-deterministic behavior. The outcome might depend on specific execution

order (a.k.a. threads’ interleaving). Rerunning the program may not always produce the

same results. Thus, programs with data-races are hard to test and debug.

3.1.5 Resource-Usage Orientation

Resource-usage orientated (resource, in short) faults relate to usage of resources (e.g.

network bandwidth, CPU, or memory) in a system. We identify two types of resource

faults : (1) overload usage of a resource, and (2) unavailability of a resource.

An overload resource fault might happen if the amount of usage from a resource exceeds

its limits (capacity). For example, several processes may try to allocate more memory

space than it is available in a system. Resource unavailability faults relate to the

availability (readiness for correct service) and reliability (continuity of correct service)

32

attributes of resources. Note that there is an overlap in the concept between resource

unavailability and distributed unavailability faults. The focus of the former is on resource

aspect of faults, while the later deals with distribution aspect of faults in a DRTS.

Distributed unavailability faults can be considered as a special type of resource

unavailability faults if networks and nodes (distributed components of a DRTS) are

considered as resources.

3.1.6 Location of Creation or Occurrence

We propose this new classification for faults in DRTS to specify location of creation or

occurrence. We consider two possibilities for the location of a fault: network or node.

Considering a distributed system to be a set of networks and nodes, a fault might occur in

any of the nodes or networks.

3.2 Chain of Distribution Faults

As shown in the fundamental chain of dependability threats in Figure 6, a fault with a

specific type may recursively lead to other faults with different types. For example, a

distributed fault such as data traffic fault might lead to a real-time fault, where a process

might miss its assigned deadline to perform a particular task. This chained causality can

be rephrased as: when a process does not receive the data it was waiting for, on time (by

a specific deadline), it is not able to perform its action on time. Therefore, when studying

the root cause of faults in a system, it is important to order the faults according to the

order they occur and cause the next one in the faults chain: the data traffic fault is the first

fault in the chain and the real-time one is the second in the above example.

33

3.3 Class of Faults Considered in this Work

The dark boxes in Figure 7 depict the classes of faults targeted by the stress testing

methodology described in this document:

In other words, our methodology targets traffic-related faults of distributed nature, which

can occur on either nodes or networks in a DRTS. Such a traffic-related fault is supposed

to be related with network bandwidth as resource type. The following can be an example

of such a fault: congestion in a database server’s request queue.

To investigate if our test methodology can be generalized to target other types of faults,

we will need to discuss its details first through the next several chapters. We will discuss

in Chapter 13 how our methodology can be either tailored to target other types of

resources (e.g. CPU or memory) instead of network bandwidth, or generalized to target

other types of faults.

34

Chapter 4

OVERVIEW OF THE STRESS TEST METHODOLOGY

In this chapter, we present in one view the different pieces of information and

steps/activities of our entire approach, and at the same time indicating in which coming

chapter more details are provided. We also describe succinctly the purpose of each part of

the input model and the purpose of each intermediate representation. Note the although

some input (and intermediate) models (in our approach) are not standard UML diagrams,

we propose them to stay in the UML world, thus facilitating tool support.

Section 4.1 presents the overview of our model-based stress test methodology. An

overview of the input (and intermediate) models used in our stress test methodology is

discussed in Section 4.2.

4.1 Stress Test Methodology

The overview of our model-based stress test methodology is shown using an Activity

Diagram (AD) in Figure 10. Note that the steps after test requirements generation, i.e.,

deriving test cases and executing them, are not addressed by this thesis. However, we

discuss those steps for the specific case of our case study. A UML model of a SUT,

following specific but realistic requirements, is used in input. A test model (TM) is then

35

built to facilitate subsequent automation steps. The TM and a set of stress test

parameters (objectives) set by the user are then used by an optimization algorithm to

derive stress test requirements. Test requirements can finally be used to specify test cases

to stress test a SUT. The TM consists of three sub-models: a control flow analysis model

(Chapter 6), inter-SD constraints (Chapter 7) and network traffic usage pattern (Chapter

8).

Control Flow Model
(CFM) (Chapter 6)

Distributed Traffic Usage
Patterns (Chapter 8)

Test Cases
(TC)Test Oracles

Network Deployment
Diagram (NDD)

Sequence Diagrams (SD)

Class Diagrams (CD) Test Model (TM) Stress Test
Requirements

Design UML Model
(Section 5)

INPUT

OUTPUT

Modified Interaction
Overview Diagrams

(MIOD)

Inter-SD Constraints
(Chapter 7)

Test Model
Generator

Test DriverSUT

Time-Shifting Stress Test
Technique (Chapter 9)

Tester

Modeler

Discussed in this work

Stress Test
Parameters

Context Diagrams

Genetic Algorithm-based
Stress Test Technique

(Chapter 10)

At least one of SUT
SDs has arrival
pattern constraints

None of SUT SDs
have arrival pattern
constraints

Stress Test
Parameters

Network Interconnectivity
Tree (Section 5.5)

Figure 10- Overview of our model-based stress test methodology (a UML activity

diagram).

As we will discuss in Section 5.3, triggering SDs may not be allowed in any time instant.

These types of constraints are called arrival-patterns. If none of a SUT’s SDs has arrival-

pattern constraints, we use a simple optimization algorithm (Chapter 9) to derive stress

test requirements from a TM. Otherwise, if at least one of SDs has arrival pattern

constraints, we show in Chapter 10 that a more sophisticated optimization algorithm is

needed and present one based on Genetic Algorithms.

36

Test requirements are the outputs of our technique, which can be used by a tester to

derive test cases. A test driver can be utilized to feed the derived test cases to the SUT,

monitor its behavior, check the output with test oracles and generate test verdicts.

4.2 Input and Intermediate Models in our Stress Test Methodology

An overview of the input and intermediate test models in our stress test methodology is

shown by their respective high level metamodels in Figure 11. The metamodels are

grouped into two packages: input system design models, and test models, which are

described next.

4.2.1 Input System Design Models

The design UML model of a SUT should consist of the following diagrams which are

described extensively in Chapter 5.

• Sequence diagrams (SD): SDs model the behavior of a SUT. To enable our stress

test methodology to derive stress test requirements (as schedules to trigger SDs),

we also require the messages in SDs to be annotated with timing information

(e.g., Figure 3).

• Class diagrams (CD): CD of a SUT will be used to estimate the data size of

messages in SDs. This will enable our stress test methodology to derive stress test

requirements with maximum possible network traffic.

• Network Deployment Diagram (NDD): A NDD is an extended diagram to UML

2.0 deployment diagrams will models the network topology of a SUT, and will let

37

our stress test methodology to derive localized stress test requirements (i.e., on

a specific node or network).

1

1

1

1

«metamodel»
Input System Design Models

«metamodel»
Control Flow Analysis

«metamodel»
Resource Usage Analysis

«metamodel»
Test Models

SUT Design Model

Modified Interaction
Overview Diagram

Network Deployment
Diagram

«metamodel»
Inter-SD Constraints

Independent-SD Sets

Concurrent SD Flow Paths

Concurrent Control Flow
Paths Sequence

Concurrent Control
Flow Graph

Sequence Diagram

«metamodel»
Network Interconnectivity Tree

Context Diagram

Package Diagram Class Diagram Activity Diagram

UML 2.0 Diagram

Network
Interconnectivity Tree

Network Traffic Usage

1

1

11

1

1

1

Figure 11- Metamodel of input and intermediate test models in our stress test

methodology.

• Context Diagram [49]: Context diagrams are an extension to class diagrams and

will provide the number of multiple invocations of a SD, relevant in the context of

DRTSs.

38

• Modified Interaction Overview Diagram (MIOD): A MIOD models the

sequential and conditional constraints among SDs. This will enable modelers to

specify the valid sequences of SDs in a SUT, and our stress test methodology to

derive stress test requirements complying with such constraints.

SDs and CDs are standard UML diagrams, while NDDs, Context diagrams and MIODs

are not standard diagrams, but they extend standard UML diagrams as explained in detail

in Chapter 5.

4.2.2 Test Models

The Test Model (TM) package consists of four sub-packages: (1) control flow analysis

model, (2) network traffic usage model, (3) network interconnectivity tree and (4) inter-

SD constraints, which are described in the next subsections.

4.2.2.1 Control Flow Analysis

In UML 2.0 [10], SDs may have various program-like constructs such as conditions

(using alt combined fragment operator), loops (using loop operator), and procedure calls

(using interaction occurrence construct). As a result, a SD is composed of Control Flow

Paths (CFP), defined as a sequence of messages in a SD. Furthermore, as we discussed in

[50], asynchronous messages and parallel combined fragments entail concurrency inside

SDs.

In a SD of a DS, some messages are local (sent from an object to another on the same

node), while others are distributed (sent from an object on one node to an object on

another node). Furthermore, different CFPs can have different sequences of messages and

each message can have different signatures and a different set of parameters. Therefore,

39

the network traffic usage pattern of each CFP can be different from other CFPs. Thus,

comprehensive model-based stress testing should take into account the different CFPs of

a SD.

As we will discuss in Chapter 6, synchronous and asynchronous messages should be

handled differently in the control flow analysis of a SD. We will propose a CFM (Control

Flow Model) for SDs, referred to as CCFG (Concurrent Control Flow Graph). OCL

consistency-rules will be used to define the mapping between a SD and its equivalent

CCFG (Concurrent Control Flow Graph). CCFGs will support asynchronous messages

and concurrency in SD. Similar to the concept of Control Flow Paths (CFP), we will

propose Concurrent Control Flow Paths (CCFP), which can be derived from a CCFG. To

consider distributed messages, between two objects on two different nodes, in a SD,

Distributed Concurrent Control Flow Paths (DCCFP) will be defined. The process to

build a CFM will be discussed in Chapter 6.

4.2.2.2 Resource Usage Analysis

We define the resource usage analysis metamodel to enable resource usage analysis of

messages in SDs. We only consider network traffic resource usage in this work.

Quantifying network traffic usage is done by measuring the amount of traffic entailed by

a message and assigning the value to the flow node (in CCFP) corresponding to a

message. Therefore, the resource usage analysis is done at the message-level in this work.

We consider four abstract classes for network traffic usage: type, duration, direction, and

location. These classes will be discussed in further detail in Chapter 8. A technique to

formally analyze network traffic usage of a system based on a given UML model will be

40

proposed in Chapter 8. The resource model will be formalized in a way to facilitate the

stress testing of network traffic in a SUT.

4.2.2.3 Network Interconnectivity Graph

A Network Interconnectivity Graph (NIG) is an internal data structure derived from a

NDD using the technique presented in Section 5.5.2. As we discuss in Chapter 9, it

facilitates tree-based manipulations on a SUT’s topology, such as extracting the network

path between two nodes.

4.2.2.4 Inter-SD Constraints

These constraints are derived from a Modified Interaction Overview Diagram (MIOD),

which models constraints among SDs of a SUT. We will propose in Chapter 7 four

concepts to analyze such constraints in our methodology.

• Independent-SD Sets (ISDS): An ISDS is a set of SDs that can be executed

concurrently, i.e. there are no sequential constraints between any two of the SDs

in the set to prevent it.

• Concurrent SD Flow Paths (CSDFP): A CSDFP is a sequence of SDs from a start

to an end node of a MIOD. In other words, a CSDFP is a sequence of SDs that are

allowed to be executed in a system (according to the constraints modeled in a

MIOD).

• Concurrent Control Flow Paths Sequence (CCFPS): A CCFPS is derived from a

CSDFP by substituting each SD by one of its CFPs.

41

Chapter 5

INPUT SYSTEM MODEL

In this work, stress test input data is assumed to be the UML 2.0 [10] design model of a

SUT. As discussed in Chapter 1, UML has become the de-facto standard for modeling

object-oriented software for nearly 70 percent of IT industry since 1997 [11]. The new

version, UML 2.0 [10], proposed by the OMG in August 2003, offers an improved

modeling language. As we expect UML to be increasingly used for DRTS, it is therefore

important to develop automatable UML model-driven, stress test techniques.

We describe in this chapter the modeling information required. The rationale for using

the following five modeling diagrams by the methodology are described next:

• Two standard UML 2.0 diagrams: sequence diagrams (Section 5.1), and class

diagrams (Section 5.1.1.3)

• A modified UML 2.0 diagram: modified interaction overview diagram (Section

5.3) - our specific diagram used in our test methodology

• A context diagram [49] (Section 5.4)

42

• A specialized UML 2.0 package structure, referred to as Network Deployment

Diagram (NDD) (Section 5.5)

Furthermore, two tagged-values (specialized from the UML-SPT tagged-values) for

modeling hard and soft Real-Time constraints in UML behavior diagrams are described

in Section 5.6.

5.1 Sequence Diagram

The goal in this work is to systematically stress test a SUT and we need to find some

particular test requirements, based on the behavior of the SUT, to feed into the SUT.

Therefore the dynamic behavior of the SUT should be analyzed to derive such test

requirements. According to the UML 2.0 specification [10], seven UML diagrams can be

used to specify the behavior of a system. As shown in Appendix A of [10], they are

Activity, Sequence, Collaboration (or called Communication in Section 14 of [10]),

Interaction Overview, Timing, Use case and State machine diagrams. Among all those

diagrams, only sequence and communication diagrams provide message-level details of a

program, which are needed for the Control Flow Analysis (CFA) needed for stress

testing. Furthermore, among the last two, SDs have been more popular than

communication diagrams in modeling dynamic behavior of systems, as they provide a

richer set of behavior modeling constructs (e.g. loops and conditions).

SDs have been accepted as essential UML artifacts for modeling the behavioral aspects

of systems [51]. They show interacting objects as well as the control flow of those

interactions (e.g., if-then conditions, repetitions) [52]. These diagrams are particularly

well-suited for object-oriented software as it is now well recognized that the complexity

43

of object-oriented software lies in objects interactions much more than in individual

operations. Moreover, SDs have been the basis for several approaches for testing object-

oriented software [24, 51, 53, 54], although not in a distributed or real-time context.

These are the reasons why we choose SDs as the source of information for dynamic

behavior of a SUT.

Because SDs can specify varying flows of control (e.g., thanks to conditional constructs),

network-traffic stress conditions may happen in only subsets of those SD control flows.

Thus, we need to analyze control flow in SDs to derive network-aware stress test

requirements. We have presented a control flow analysis technique based on SDs in [50],

which we will use in this work. An overview of this technique will be given in Chapter 6.

Since each of the participating objects of a SD may be deployed on a different node, we

need to model this information in SDs. We use a node tagged value to specify this

information, as illustrated in Figure 12: objects o1, o2, and o3 are deployed on three

different nodes in the network, n1, n2, and n3, respectively..

sd M

m1

o1
{node = n1}

o2
{node = n2}

o3
{node = n3}

m2

Figure 12-Modeling the deployment node of an object using node tagged value.

44

5.1.1 Timing Information of Messages in SDs

As mentioned in Chapter 1, real-time systems often have real-time constraints that have

to be met at runtime or real-time faults will occur. In Chapter 3, we also mentioned that

that a fault can trigger other subsequent faults as well. For instance, a network traffic

fault might trigger a real-time fault. Therefore, our overall heuristic in this work is to

schedule the SD’s of a SUT such that all possible distributed messages with maximum

data sizes on a particular network link or a node happen at the same time. As we will see

in the next sections, this will maximize the chance of exhibiting network traffic faults and

consequently any other faults dependent on them.

In order to devise precise test requirements (from time point of view) that yield such a

stress test scenario of network traffic in a SUT, our stress test methodology requires that

the timing information of messages in SDs is available and as precise as possible. The

more precise the timing information of messages, the more precise (and thus potentially

more stressing) the test requirements will be to stress test a SUT. By timing information

of a message, we basically mean the start and end times of a message. As discussed in

Section 3.1.3, messages in a typical DRTS might have hard or soft real-time constraints.

There might be also messages that do not possess any real-time constraints. In terms of

timing information, there can be two types of messages which are discussed next: (1)

messages with predictable timing (to a degree of uncertainty), and (2) messages with

unpredictable timing information.

45

5.1.1.1 Estimating Execution Times

Three of the approaches used in the literature to estimate timing information of messages

in DRTSs are:

- Static analysis and manual estimations (such as [55])

- Runtime monitoring (such as [56])

- Benchmarks (such as [49])

With manual estimations, different schedulability analysis techniques are used and the

program code is analyzed by hand. The possible execution paths which lead to extreme

execution times are then derived. Static analysis methods are limited when the test object

contains program control structures such as loops. In this case, loop bounds must be

specified manually or can only be estimated. This process is resource-consuming, error-

prone, and is not scalable. Furthermore, the BCET (Best-Case Execution Time) can be

too optimistic and the WCET (Worst-Case Execution Time) too pessimistic due to

manual estimations.

Another common approach for estimating timing information is runtime monitoring

techniques (such as [56]), which can be utilized to get a statistical overview of the time

length of such messages at runtime prior to the testing phase. Statistical distributions of

start and end times of such messages can be derived by running the system before testing

and their expected values can then be used by the stress test technique in this paper.

However, due to the statistical (and hence indeterministic) nature of the timing values,

such timing information might not lead to precise stress scenarios. We assume that a time

46

measurement technique has been used for the messages in the SUT and that such

information is already available.

Estimating timing information may also be possible in late design stages by using, for

example, heuristics similar to the ones used in the COMET (Concurrent Object Modeling

and Architectural Design with UML) [49] object-oriented life cycle, where Gomaa

proposed a heuristic to estimate time durations of messages based on benchmarks defined

on previously-developed similar messages. Such an approach can be adapted to the

estimation of number and types of local variables of a method by comparing the

functionality/role of a method at hand with benchmarks of previously-developed

methods’ local variables (in the same target programming language). It should be

acknowledged that this is in general a complex task which would require extensive

experience and skills. Such information should then be provided by modelers in an

appropriate way, for example by using specific tagged-values.

5.1.1.2 Uncertainty of Timing Information

Regardless of the type of technique used by engineers to estimate timing information,

uncertainty (impreciseness) in timing information is inevitable. Different models have

been used in the literature to model time uncertainty (e.g., [57, 58]). The core part of such

models which incorporates uncertainty of time are similar. The work in [58] formalizes

such a concept as follows.

Uncertainty in execution time of a task t is taken care of by letting its execution time ET

be a random variable characterized by a probability mass function (PMF) PET. PET is

defined over K+1 points, denoted by etk, k∈0…K. By definition, a) the values etk are

47

assumed to be in the ascending order with increasing k, but with the restriction that

etk,≤WCET of task t, b) et0 = 0 and PET (ET = et0) = 0, and c) PET(ET = etk)≠0 for

k∈1…K. Assumptions (b) and (c) are intended to produce a minimal set of mass values

in the initial specification of uncertainties, while excluding zero as a possible execution

time. For example, the probabilistic representation of a task execution requirement is

depicted in Figure 13. The sequence of execution times and their probabilities are derived

by applying schedulability analysis techniques, and are referred to as Timed Sequence of

Probabilities (TSP) [58]. As it is shown, the task’s execution time is assumed to be 2, 3

and 6 units of time with the probabilities of 0.3, 0.6, and 0.1, respectively.

0.1

0.6

0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7

execution time

pr
ob

ab
ili

ty

Figure 13- Probabilistic representation of uncertainty in a task’s execution times.

To further investigate the impact of uncertainty in timing information on our quantitative

stress test methodology (Chapter 9), we need to present the methodology itself first.

Thus, such this topic will be revisited in Section 10.9.

48

5.1.1.3 Messages with Unpredictable Execution Times

After using different schedulability analysis techniques to estimate execution times of

messages in a SUT, there might still be messages whose execution times are

unpredictable: no WCET/BCET can be found for them. Examples of such messages are

those with data-intensive parameters whose data sizes can not be estimated early enough.

Estimating the execution times of such messages will lead to great amounts of

uncertainty in such time values, which might lead to great deals of indeterminism in our

stress test methodology and the output test requirements it will generate. Thus, we will

present in Section 10.10 a different version of our stress test methodology, referred to as

Wait-Notify Stress Test Technique (WNSTT), which will in specific target systems with at

least one message with unpredictable execution time.

5.2 Class Diagram

The class diagram is at the heart of the object modeling process. The class diagram

models the resources used to build and operate the system. It models each resource in

terms of its structure, relationships and behavior [11].

The stress testing technique in this document will use the class diagram(s) of a system for

the following two purposes:

• To achieve full coverage criteria for polymorphism in control flow analysis of

SDs, as explained in Section 5 of [50, 59], and

• To estimate the data size of a distributed message in a SD (either a call or a reply

message), as explained in Section 8.1.1.

No specific constraints is imposed on the use of the UML 2.0 class diagram notation.

49

5.3 Modified Interaction Overview Diagrams

Executing any arbitrary sequence of use cases (UCs) (i.e., their corresponding SDs) in a

SUT might not be always valid or possible. Business logic of a SUT might enforce a set

of constraints on the sequence (order) of SDs, requiring that certain conditions be

satisfied before a particular SD can execute.

Different types of SD constraints can be considered:

• Sequential constraints [60] define a set of valid SD sequences: e.g., the Login SD

of an ATM system should be executed before the Withdrawal SD.

• Conditional constraints are related to sequential constraints and indicate the

condition(s) that have to be satisfied before a sequence of SDs can be executed.

For example, the Login SD should be executed “successfully” before the

Withdrawal, Transfer and Deposit SDs, or the RenewLoan SD of a library system

can be invoked up to “two times” for an instance of a loan.

• Arrival-pattern constraints relate to timing of SDs. The time instant when a SD

can start running might be constrained in a system. Each SD might be allowed to

execute only in some particular time instants. For example in a replicated

distributed database server system, where the data on the main server is mirrored

(copied) to the replicated servers, the policy may be to run the Mirror SD every

hour and not on every transaction (maybe since the SD deals with enormous

amounts of data). Another scenario in which a SD can have an arrival-pattern

constraint is when the SD is triggered by an event and the event is periodic.

50

Accounting for those constraints when deriving stress test requirements is paramount if

one wants to obtain valid stressing executions. If no constraint or only sequential and

conditional constraints apply to SDs, we have developed a simple heuristic approach for

stress test requirement generation (Chapter 9). If arrival-pattern constraints exist, a more

complicated approach, based on a Genetic Algorithm is proposed in Chapter 10. This is

illustrated in Figure 14.

Sequential

Conditional

Constraint types

Arrival-pattern

Genetic Algorithm-based
Stress Test Technique

(Section 10)

Time-Shifting Stress Test
Technique
(Section 9)

considers

considers

considers

considers

considers

Figure 14-The approach in which the different SD constraint types are considered

by the two optimization algorithms in this work.

In order to analyze and take the above three types of constraints into account when

conducting any type of testing on a SUT, the constraints should be modeled. Arrival

patterns apply to each SD, and hence are not inter-SD constraints. Arrival patterns can be

modeled using the RTArrivalPattern tagged-value of the UML-SPT profile, as explained

in Section 2.4. Refer to the SD in Figure 3 for an example.

Sequential and conditional constraints are between SDs. Therefore, we refer to them as

inter-SD constraints. In the following, we first discuss existing techniques and

representations to model and formalize inter-SD constraints (Section 5.3.1) and we then

choose the one which suits best our context (Section 5.3.2).

51

5.3.1 Existing Representations to Model Inter-SD Constraints

In this section, we present a brief review of the existing representations to model SD

constraints, in both UML and non-UML contexts. We briefly discuss some of them and

focus on the ones in the context of UML.

Before UML became a standard, an OO-development method called Fusion [61]

proposed the notion of life-cycle model which bears some similarity in concepts to what

we call SD sequential constraints. Such constraints are the direct result of the logic of the

business process the system purports to support. Such processes could be specified by

life-cycle models.

Use-Case Maps (UCMs) [62] are also one of the notations which bears some similarities

to UML activity diagrams. The UCM notation aims to link behavior and structure in an

explicit and visual way. UCM paths are architectural entities that describe causal

relationships between responsibilities which are bound to underlying organizational

structure of components. UCM paths represent scenarios that intend to bridge the gap

between requirements (use cases) and detailed design [62].

Allen’s interval temporal logic [19] is also one of the models proposed for modeling

temporal constraints among a group of objects. This temporal logic was used by Zhang

and Cheung in [14] to model the temporal constraints among objects in multimedia

presentations. Having modeled these temporal constraints, the authors presented a

technique to stress test the CPU load of a multimedia system using linear programming

optimization technique.

52

Petri-nets [18] can also be used to model sequential constraints among SDs. For

example, Zhang and Cheung [14] model the flow and concurrency control of multimedia

objects using Petri-nets. The advantage of Petri-nets is that it a well-founded formal

notation that has been widely used for the modeling of dynamic behavior.

Item LibraryTitleUser Loan

Add User Add Title

Add Item

Monitor System

Borrow Loan Copy
Remove Item Remove Title

Collect Fine Renew Loan

Return Loan Copy

Remove User

Figure 15- Use Case Sequential Constraints for the Librarian actor (adopted from

[60]).

In the context of UML and SDs, there have also been techniques and representations to

model and formalize constraints among SD, [60] and [63] for instance. When modeling

the behavior of a system, a SD is usually modeled to realize a particular UML UC.

Briand and Labiche [60] report that when planning test cases for UCs, all possible

execution sequences for UCs have to be identified. In order to do that, they represent the

sequential dependencies of UCs as an activity diagram in which vertices are UCs and

53

edges are sequential dependencies between UCs. An edge between two UCs (from a

tail UC to a head UC) specifies that the tail UC must be executed in order for the head

UC to be executed, but the tail UC may be executed without any execution of the head

UC. In addition, specific situations require that several UCs be executed independently

(without any sequential dependencies between them) for another UC to be executed, or

after the execution of this other UC. This is modeled by join and fork synchronization

bars in the activity diagram, respectively. The authors illustrated the technique on a

library system: Figure 15 shows the UC sequential constraints for the Librarian actor

(parameters of the UCs such as a title_id for AddTitle are not shown for clarity).

Nebut et al. [63] propose a contract language for functional requirements expressed as

parameterized use cases. They also provide a method, a formal model and a prototype

tool to automatically derive both functional and robustness test cases from the

parameterized use cases enhanced with contracts. In this technique, pre- and post-

conditions (i.e., logical expressions) are attached as UML notes to each use case in the

use case diagram. The sequential constraints among SDs can then be deduced from the

set of contracts: e.g., if the postcondition of use case A implies the precondition of use

case B then sequence A-B is legal.

The OMG introduced a new UML diagram in UML 2.0, namely Interaction Overview

Diagram (IOD) (Section 14.4 of [10]). IODs “define interactions through a variant of

activity diagrams in a way that promotes overview of the control flow” [10]. IODs are

specializations of Activity Diagrams (AD) where object nodes are either Interactions or

InteractionOccurrences. Recall that following the UML 2.0 terminology, a sequence

diagram is an Interaction and referring to an existing sequence diagram is an

54

InteractionOccurrence. In other words, an IOD is used to show how flows of

executions of sequence diagrams. IODs are similar to the activity diagram notation

suggested in [60] for use case sequential constraints, except that in an IOD, the designer

can use powerful Activity Diagram notations such as conditions and loops.

As an example, the IOD of an ATM system is depicted in Figure 16. The IOD is

composed of interaction occurrences which refer to specific SDs (Insert Card, Login,

Display Menu, etc.). The flow of control between interaction occurrences is modeled

using AD flows. The control can take on different paths as modeled by decision nodes.

For example, if only login is successful, the interaction occurrence Display Menu is

invoked.

Login

ref

[login unsuccessful &&
num_retries<3]

[num_retries=3]ref

Hold Card

Insert Card

ref

[login successful]

Display Menu

ref

ref

Withdraw

ref

Deposit

ref

Transfer

ref

Logout

ref

Eject Card

ref

Print
Transactions

[choice==Withdraw] [choice==Deposit] [choice==Transfer]

[choice==Logout]

A

A

Figure 16-Interaction Overview Diagram (IOD) of a simplified ATM system.

55

5.3.2 Modified Interaction Overview Diagrams

One fundamental constraint for the choice of a representation for sequence diagram

constraints is that the entire system modeling should be performed using UML. The IOD

notation is therefore a suitable representation for our needs.

UML 2.0 specification does not explicitly discuss swimlanes for IODs. However, as an

IOD is basically a specific AD, it can therefore have swimlanes. Thus, to model which

actor or sub-system invokes a particular SD, we explicitly include the concept of activity

partitions using the AD notation for swimlanes in IODs, and refer to such IODs as

Modified Interaction Overview Diagrams (MIOD). Thus, MIODs are our specific

diagrams used in our test methodology. In a MIOD, SDs are grouped into swimlanes

according to the actors triggering them. For example, the MIOD of the IOD in Figure 16

is shown in Figure 17.

AT
M

 M
ac

hi
ne

U
se

r

[login unsuccessful &&
num_retries<3]

[num_retries=3]

[login successful]

[choice==Withdraw]

[choice==Deposit]

[choice==Transfer]

[choice==Logout]

A

A

Login

ref

ref

Hold Card

Insert Card

ref

Display Menu

ref

ref

Withdraw

ref

Deposit

ref

Transfer

ref

Logout

ref

Eject Card

ref

Print
Transactions

Figure 17- Modified Interaction Overview Diagram (MIOD) of a simplified ATM

system.

56

The differences of our MIOD modeling notation with the use-case sequential-

constraints modeling done in [60] are: (1) the MIOD is a notation for system-wide

sequential constraint modeling for SDs, while the notation in [60] was per actor. (2) the

MIOD takes into account the conditional constraints (defined in Section 5.3) among SDs,

while the work in [60] did not explicitly support such constraints.

In Chapter 7, we will discuss the SD constraints in more detail and we will see why

modeling those constraints is needed and in the current work for the purpose of stress

testing.

5.4 Context Diagram

In a DRTS, there are often cases that lead to multiple concurrent invocations of a SD. For

example, there might be several sensors which, as actors, trigger a particular SD at the

same time in a controller system. Having multiple concurrent invocations of a SD rather

than once can potentially have a different effect on the amount of network traffic in the

system. Such a case should be modeled and be provided to our stress test technique.

To model concurrent invocations of SDs, we use the information provided in a Context

Diagram [49], a concept originally proposed in the COMET (Concurrent Object

Modeling and Architectural Design Method) framework [49]. A Context Diagram is a

particular class diagram where the system being developed is modeled as class and is

associated with the actors it interacts with. For example, a context diagram is shown in

Figure 18-(a), where a controller system is made of three sensors. On the other hand, a

sensor is the actor which can trigger the SD UpdateData, Figure 18-(b). Therefore, at one

time instant, up to three concurrent instances of the SD can be executed.

57

A Controller System
13

Sensor

SD UpdateData

:Database

Update()Sensor

(a)-Context diagram (b)-A sequence diagram which can be triggered
by several instances of the actor Sensor

Figure 18-A controller system made of several sensors.

Alternatively, the number of concurrent instances of a SD may be modeled inside a

MIOD. We propose a modeling notation, referred to as multi-SD, similar to the concept

of multi-objects in UML. The multi-SD construct is used in MIODs to model multiple

instances of a SD. Furthermore, a tagged-value titled instances is used to model the

number of concurrent instances. An example is shown in Figure 19-(a). SD UpdateData

is a multi-SD, where three instances of which can be executed concurrently. SD1 and

SD2 are arbitrary SDs which are modeled before and after SD UpdateData according to

business logic of the system. Note that the MIOD in Figure 19-(a) is equivalent to Figure

19-(b): a multi-SD can be replaced by a fork/join construct and multiple instances of the

multi-SD in-between. The number of the SDs between fork and join are equal to the

number modeled by the tagged-value instances.

58

SD1 UpdateData

instances=3

SD2

SD1

UpdateData

SD2UpdateData

UpdateData

(a)

(b)

Figure 19-(a): Modeling concurrent instances of SDs inside MIOD. (b): Equivalent

in meaning to (a).

Our test technique accepts both of the above two modeling approaches to model multiple

instances of SDs. Number of concurrent invocations of a SD can be easily extracted if the

multi-SD construct of MIODs is used. On the other hand, if a CD is used to model such

information, our technique needs to look and match the SDs actors with the actors in the

CD of a system to extract the information.

5.5 Network Deployment Diagram

Since we are dealing with nodes and networks which can be connected in any arbitrary

fashion to each other in a SUT, and we further intend to use UML 2.0 models as the

source for testing, we should find a proper notation in UML 2.0 to model networks/nodes

interconnectivity, i.e., the system topology.

In UML 2.0 [10], there has been a significant change in support for modeling application

architecture, nodes and communication paths, compared to UML 1.x [11]. Modelers can

model complicated deployment scenarios such as nested and generalized nodes. Network

topology modeling has also enhanced. CommunicationPath, Section 10.3.2 of [10],

59

generalized from standard UML’s “Association”, is a new concept for modeling the

communication path between distributed nodes of a system. As defined in [10]: “A

communication path is an association between two nodes, through which nodes are able

to exchange signals and messages.” For example, Figure 20 represents a simple network

deployment of an online shopping system where client workstations, servers and printers

are collaborating.

«client workstation»
PC

«application server»
OnlineShop

«web server»
OnlineShop.com

«database server»
OnlineShopDB

«print server»
OnlineShop Print

Printer

0..* 1 1 1 1 1

1..*
1

-primary 1
1

-backup2

1

Figure 20-A simple network deployment for an online shopping service.

However, to the knowledge of the authors; modeling a hierarchical set of networks,

network paths and their inter-connectivity, such as the one shown in Figure 22, is not

directly stated in the UML 2.0 specification [10].

The structure of the distributed architecture of a SUT as we need it to be described is

shown in Figure 21 as a metamodel. A distributed SUT consists of two or more

distributed nodes and one or more networks. As described in terminology (Section 2.2), a

node is a geographically-dispersed computing node, which is a part of a system. A node

is part of a network in a system. A network is the communication backbone for a set of

nodes in a system. A network may be subnet of another network, and at the same time it

can be the supernet of several other networks. For example, a typical network topology is

shown in Figure 22.

60

1

1

«metamodel»
System Architecture

connected to *
*member of
*

1..* *
1..*

1

1

1..*subnet

supernet

1 Distributed
System (SUT)

1

*

0..1

*
1

Distributed Node

ObjectNetwork PathNetwork

Figure 21-A metamodel for network topologies.

a subnet of Network2

Network1

n1 n2 n4 n5n3

Network3

n6 n7

System Network

Network2

Figure 22-A network topology.

In the example of Figure 22, there are four networks in the system: System Network,

Network1, Network2 and Network3. Each network has several nodes (ni) or networks as

shown. For example, Network2 has two nodes (n4 and n5) and one network Network3,

which itself has is the owning network of two other nodes (n6 and n7). It is assumed that

there is at least one network in every distributed system and that is named as System

Network which connects the highest level networks and nodes to each other.

In order to traverse from a node to another in the system, there can be (in general) several

network paths between each two nodes. A network path between two nodes is an ordered

61

set denoting the unique path of networks between the sender and receiver nodes of a

message extracted from the network topology. For example, the network path from n1

and n6 in Figure 22 is <Network1, SystemNetwork, Network2, Network3>. A function to

derive the network paths between two nodes will be described in Section 8.2. An

extension to the UML 2.0 deployment diagram, referred to as Network Deployment

Diagram (NDD), described next, will be used to model a network topology.

5.5.1 Extending the Notation of UML 2.0 Deployment Diagrams

We want to describe a distributed architecture using UML 2.0 so as to be able to use it as

an input for our dependency analysis in the context of UML-based development.

Modeling a hierarchical set of networks and their inter-connectivity is not directly

addressed in the UML 2.0 specification [10]. We therefore extend UML 2.0 deployment

diagrams by adding two stereotypes to the node notation: «network» and «node». We

thus identify the type of an entity as a network or a node. Furthermore, association roles

supernet and subnet are used to model the containment relationships between super and

sub-networks. As an example, the architecture in Figure 22-(a) is modeled by the NDD in

Figure 23.

62

«node»
n1

«node»
n3

«network»
SystemNetwork

«network»
Network1

«network»
Network2

«node»
n4

supernet

subnet subnet

«network»
Network3

«node»
n2

«node»
n5

«node»
n6

«node»
n7

supernet

subnet

supernet

Figure 23-Using a Network Deployment Diagram (NDD) to model the network

topology of Figure 22.

In order to model and quantify bandwidth (capacity) values of each network, we define a

bandwidth tagged value for the «network» stereotype in the above notation. The format

of the bandwidth tagged value is {bandwidth=(bw, u)} where bw is the bandwidth value

in unit u, e.g. {bandwidth=(100,kbps)}, kbps: kilo bits per second. Furthermore, since the

bandwidth of the network interface of a node connected to a network, as well as that of a

switch/router/gateway connecting two different networks might be different than the two

connected networks, we can also optionally model the bandwidth values of those model

elements using bandwidth tagged value. We can assume that if the bandwidth value of a

node’s network interface (or a network) is not specified, its value is defined to be the

value of the network the node is a member of (or the supernet of the network). The way

to model bandwidth tagged values is shown by an example in Figure 24, which depicts

the network interconnectivity of nodes and networks in a typical university setting. The

system is deployed in three buildings (Buildingi), each of which has its own subnet per

63

floor. Each node (workstation) is represented as w(building_number). (floor_number).

(node_number), such as w3.1.2. The bandwidth of the network interface of node w1.1.1.

has been specified to be 100 kbps.

«node»
w1.1.1

«node»
w1.1.3

«network»
University Network
{bandwidth=(100,kbps)}

«network»
Building1

{bandwidth=(100,kbps)}

«network»
Building2

{bandwidth=(50,kbps)}

«node»
w2.1.1

supernet

subnet subnet

«node»
w1.1.2

«node»
w2.2.1

supernet

subnet

supernet

«network»
Building3

{bandwidth=(100,kbps)}

«network»
Floor1

«network»
Floor2

«node»
w2.2.1

«node»
w3.1.1

«node»
w3.1.2

«node»
w3.1.3

{bandwidth=
(100,kbps)}

Figure 24-Modeling network interconnectivity of a university network.

Therefore, we assume that the network interconnectivity model of the SUT is modeled

using the above notation. As a more efficient, tool-specific, representation which will be

used by our testing technique, we propose a tree data structure for representing such

interconnectivity. We refer to the new notation as Network Interconnectivity Graph

(NIG), which is described next.

5.5.2 Network Interconnectivity Graph

A Network Interconnectivity Graph (NIG) is an equivalent data structure to the NDD

notation, which is used internally in our methodology. In a NIG, networks and nodes are

shown as rectangles and circles, respectively. For example, the NIG of the network

interconnectivity model of the Figure 22 (or equivalently Figure 23) is shown in Figure

64

25. The rationale of having NIG is to enable the test technique to easily find the subset

of nodes and networks for deriving stress test cases and also to find the network paths

between any two given nodes. For example, if a tester’s goal is to stress test only the

network Network2 in the system shown in Figure 25, the test strategy will only look for

messages going through Network2 in the NIG tree and will generate the test cases by

considering only those messages.

Network2

System
Network

Network1

Network3n1 n2 n3 n4 n5

n6 n7

Figure 25-Network Interconnectivity Graph (NIG) of the topology in Figure 22.

Generating the NIG from a NDD is an easy procedure. The root node will be the system’s

overall network (System Network). Then, all the high-level subnets of the system will be

the children of the root. This repeats for all the nested subnets in the system. We finally

put the distributed nodes of the system as leaf nodes. The bandwidth values of different

components, modeled by the bandwidth tagged value in the design UML model, can also

be stored in NIG data structure’s elements (rectangles for networks and circles for nodes)

and edges (representing switch/router between networks).

5.6 Modeling Real-Time Constraints

As discussed in Section 3.1.3, Real-Time (RT) constraints are of two types: soft and hard.

Hard RT constraints are constraints that absolutely must be met. A missed hard deadline

65

results in a system failure. Soft RT constraints are those which can be missed

occasionally, i.e., the probability that they can be missed is usually limited by a threshold.

Furthermore, as discussed in Section 2.4, the UML profile for Schedulability,

Performance, and Time (UML-SPT) [12] proposes comprehensive modeling constructs to

model timing information. Although UML-SPT briefly mentions soft and hard RT

constraints (Section 2.2.3 of [12]), it doesn’t propose any specific stereotypes to

distinguish between hard and soft RT constraints in UML models. There is an SAction

stereotype (S for Schedulability) in the UML-SPT, and one of its tagged-values is laxity:

which specifies the type of deadline: hard or soft. But the stereotype is primarily intended

for schedulability purposes, by having some other schedulability-specific tagged-values.

On the other hand, explicit distinction of soft and hard RT constraints when modeling can

be beneficial. This can help analysts, developers and testers to distinguish between the

two types and perform necessary actions for each of them. For example, stress testing

hard RT constraints is of higher priority compared to the soft constraints. We will see in

Chapter 9 how our stress testing technique deals with the two types of RT constraints.

In order to model hard and soft RT constraints, we propose an extension to the RTaction

stereotype of the UML-SPT referred to as HRT (Hard RT Constraints) and SRT (Soft RT

Constraints). Furthermore, in order to model the statistical threshold probability up to

which SRT constraints can be missed, we consider a tagged value referred to as missProb

for SRT constraints. Similarly, we consider a tagged value referred to as criticality for

HRT constraints. Criticality is a real number in the range [0..1] indicating the degree to

which the consequences of missing a hard deadline are unacceptable: the closer to one the

criticality of a HRT constraint, the more severe the consequences of missing it. For

66

example, if violating a HRT constraint may cause life-threatening situations, it would

be better to set criticality to 1. Conversely, if for example the cost of violating a HRT

constraint is just an increase in the temperature of a water hydro plant (which will not

immediately lead to catastrophic results), then this constraint would have a lesser value of

criticality. HRTaction and SRTaction stereotypes are presented in Table 1 and Table 2,

which are simila r to the representation used in the UML-SPT [12]. In DRTSs where

some messages are identified by analysts to have higher priorities than other messages,

the HRTaction and SRTaction stereotypes can be used to model those priorities.

Table 1 and Table 2 define two new stereotypes, «SRTaction» and «HRTaction», which

can be applied to any of the four UML modeling concepts listed (Message,

MessageSequence, Action, and ActionSequence) or to their respective subclasses.

Message corresponds to messages in SDs. A MessageSequence is an ordered sequence of

SD messages. Action corresponds to actions in activity diagrams (AD). A

ActionSequence is an ordered sequence of AD actions. For further details on these base

classes, refer to [12]. The «SRT» and «HRT» stereotypes have two associated tagged

values each, which are defined in Table 3.

67

Stereotype Base Class Tags

Message

MessageSequence

Action

SRTaction

ActionSequence

RTduration

RTmissProb

Table 1-A stereotype to model SRT constraints.

Stereotype Base Class Tags

Message

MessageSequence

Action

HRTaction

ActionSequence

RTduration

RTcriticality

Table 2-A stereotype to model HRT constraints.

Tag Type Multiplicity

RTduration RTtimeValue [0..1]

RTmissProb Real [0…1] [0..1]

RTcriticality Real [0…1] [0..1]

Table 3-Tagged values of SRT and HRT stereotypes.

Table 3 defines the type of each tag. An RTduration tagged value is an instance of the

RTtimeValue data type (Section 4.2.2.4 of [12]). RTmissProb and RTcriticality are real

value in the range of [0…1]. Each tag also has a multiplicity indicating how many

individual values can be assigned to each tag. A lower bound of zero implies that the

tagged value is optional.

«SRTaction» and «HRTaction» stereotypes can be used either in a SD or a MIOD. In the

former case, the RT constraint is applied to a Message or a MessageSequence, while in

68

the latter, the constraint is applied to an Action, or an ActionSequence (since MIOD is a

subtype of activity diagrams). Examples usages of the «SRTaction» and «HRTaction»

stereotypes in a SD and in a MIOD are demonstrated in Figure 26.

SD1

SD2

...

...

sd M

m1

r1

o1
{node = n1}

o2
{node = n2}

[condition]

[else]

alt

m3

o3
{node = n3}

m2

r2

(a) A SRT constraint in a SD (b) A HRT constraint in a MIOD

«SRTaction»
{RTduration<(1300,'ms'),
RTmissProb<0.5}

MIOD

«HRTaction»
{RTduration<(1000,'ms'),
RTcriticality=0.2}

Figure 26- Examples usages of the «SRTaction» and «HRTaction» stereotypes in a

SD and in a MIOD.

69

Chapter 6

CONTROL FLOW ANALYSIS OF SEQUENCE

DIAGRAMS

We presented a Control Flow Analysis (CFA) technique in [50] to analyze control flow in

SDs. We presented Concurrent Control Flow Graph (CCFG) as a Control Flow Model

(CFM) for SDs. If we consider the UML 2.0 SDs metamodel (Figure 4), asynchronous

messages and par interaction operator entail intra-SD concurrency. However, such

concurrency cannot be analyzed by conventional CFGs (Control Flow Graphs).

Concurrency resulting from the above two modeling features has to be taken into account

when analyzing the control flow in SDs. The impacts of the above two modeling features,

leading to concurrency inside SDs, were discussed in [50].

We review in Section 6.1 some of the discussions from [50] which we use in this thesis,

such as Concurrent Control Flow Paths (CCFPs). More details on our control flow

analysis technique can be found in [50]. Section 6.2 discusses how the distribution and

timing can be incorporated in control flow information. In order to precisely define how

we will perform traffic analysis of SDs (Chapter 8) based on their distribution and timing

70

information, we formally define SD messages. in Section 6.3. A special type of CCFPs

(Distributed CCFP), which will be used in our methodology later on, is presented in

Section 6.4. In order to help developers visualize the behavior of DCCFPs with respect to

time over the system nodes and networks, a timed inter-node and inter-network

representations of distributed CCFPs are presented in Section 6.5, which will be used in

future chapters.

6.1 An Overview of our Control Flow Analysis Technique

We review in this section some of the discussions from [50] which we use in this thesis.

We first briefly identify the challenges of SDs’ CFA in Section 6.1.1. By surveying some

of the existing Control Flow Model (CFM) in the literature, Section 6.1.2 explains our

choice of a suitable CFM. The detail of our CFM is presented in Section 6.1.3. Section

6.1.4 presents a set of OCL-based mapping rules from SDs to our CFM, and illustrates

them on an example SD. Based on the our CFM’s metamodel, Section 6.1.5 discusses

how different control flow paths of a SD can be formally represented.

6.1.1 Challenges of SDs’ CFA

Conventional CFA techniques [64] are usually applied to sequential programs, and are

thus not easily applicable when concurrency has to be accounted for.

Asynchronous messages and the par interaction operator in SDs entail intra-SD

concurrency. Figure 27 shows an example SD that we will use later in the article to

illustrate our approach. It contains two asynchronous messages, namely addToQueue()

and process(), labeled C and E respectively. (The other messages are synchronous.)

Figure 27 also shows one of the new constructs in UML 2.0 SDs, namely combined

71

fragments. The combined fragments are labeled opt and loop, which are respectively

used to specify options (alternatives) and loops. The interaction occurrence (ref) is used

to refer to other SDs. par is another combined fragment used to illustrate asynchronous

communications of groups of messages: for instance, in Figure 28, messages m1, and m2

and m3 are handled in parallel. The reader not familiar with those new constructs is

referred to [65] for further details.

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkk

sd AsynchronousRequestProcessing

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkk

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkkc:Controller pf:ProcessorFactory apr:AsyncProcessor jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjkkkkkkkkkkkkkkkkap:AsyncProcess

A-getAsynchProcessor()

C-addToQueue()

E-Process()

B-AsyncProcessor

D-at=AsynchTicket

F-getProcessResult()

G-AsynchProcessResult

while (s!=FINISHED)
loop

H-getStatus()

I-s=Status

dummy:Class

opt [at=NULL]

ref
N

Figure 27-A SD with asynchronous messages.

Although traditional CFG models have constructs (i.e., nodes and edges) to specify

branching and sequences of executions, they do not possess specific constructs to specify

asynchronous messages or the concurrent sequences of executions.

72

o1 : ClassA o2 : ClassB

m1

m2

m3

par

Figure 28- A SD with par operator.

6.1.2 Towards a CFM for SDs

Various CFMs have been proposed for CBCFA of concurrent programs in the literature,

such as: [66], [67], [68], [18], [69] and [70]. The first three CFMs are used in the context

of compilers, languages and formal methods. Although they are well-defined, they are

difficult to adapt to the UML notation. Thus, they cannot be easily used in the context of

UML and metamodel-based transformations. The work in both [69] and [70] reports on

Petri net-based CFMs. Petri-nets [18] contain specific constructs to specify sequences of

executions, either synchronous or not, where fork and join nodes (bars) are used to model

synchronization of concurrent executions. One advantage of Petri-nets is that they have a

well-established formal notation that has been widely used for the modeling of dynamic

behavior, as well as extensive tool support.

Among the CFMs used in the previous MBCFA techniques (i.e., IRCFG [71], CRE [72],

and LGSPN [31]), only LGSPN (a Petri-net based model) takes into account concurrent

control flow.

UML has adopted a Petri-net like semantics for control and object flow modeling referred

to as Activity Diagrams (AD). ADs have been in UML since its early 1.x versions . They

73

account for both sequential and concurrent control flow and data flow. As UML 2.0

points out (Section 12.1 of [65]): “These [UML activities] are commonly called control

flow and object flow models.” Among the alternative representations of LGSPN, TIG

[69], TIG-based Petri-nets [70], Petri-net and UML AD, we choose the latter for the CFA

of SDs. The reasoning for this decision is threefold:

1. AD already has a well-defined metamodel, which is needed by our MBCFA

technique and satisfies our needs.

2. SD and AD are both in the context of UML. Both metamodels are part of a large

collection (UML) and they have been designed in a similar methodology.

Therefore, our technique may potentially benefit from the fact that both

metamodels are part of the same context.

3. Furthermore, the generated CFM (a slightly modified version of ADs in our case)

can be easily visualized/analyzed by standard UML 2.0 CASE tools.

UML 2.0 proposes six different but dependent activity packages (Section 12 of [65]):

BasicActivities (BA), StructuredActivities (SA), IntermediateActivities (IA),

CompleteStructuredActivities (CSA), ExtraStructuredActivities (ESA), and

CompleteActivities (CA). Based on the analysis of the metamodel and class descriptions

of the activity packages, we decide to use the IA package as the starting point towards a

CFM for our MBCFA approach. The reasons for this selection are: (1) The IA package

fits the needs of MBCFA, since it supports modeling both concurrency (by being Petri-

net like, i.e., including ForkNode and JoinNode) and structured control constructs, and

(2) The IA package is simpler than the other three packages (CSA, ESA and CA), as it

does not include the modeling features needed for advanced data flow modeling. The BA

74

and SA packages are not chosen since they are too simple, i.e. they do not include the

ForkNode and JoinNode constructs. However, due to specific requirements in our

MBCFA, which will be explained in the next section, we need to extend the IA package

to a new activity package called CCFG.

6.1.3 Concurrent Control Flow Graph: a Control Flow Model for SDs

 We merge1 the Concurrent CFG (CCFG) package from the IA package by adding new

associations and sub-classes as a CFM for SDs. A CCFG (activity class in the

metamodel) will be generated for one SD. In the case where a SD calls (refers to) another

SD, there will be control flow edges connecting their corresponding CCFGs. We can

refer to this concept as Inter-SD CCFG, similar to the concept of inter-procedural CFG

[64].

The CCFG metamodel is shown in Figure 29. Extensions are made to four of the classes

in the IA metamodel: Activity, ActivityNode, ExecutableNode, and ActivityPartition,

which are described next. Furthermore, since the Activity class of the IA metamodel is

extended, its sub-classes (ControlNode, ExecutableNode and their sub-classes as well) in

the CCFG metamodel are also implicitly extended from their corresponding classes in the

IA metamodel.

1 “Merge” is a terminology (stereotype) used on associations between two UML AD

packages (Figure 175 of [65] OMG, "UML 2.0 Superstructure Final Adopted

specification," 2003.). The classes of the AD package on the tail of the “merge”

association extend the classes of the AD package on the head of the association.

75

Activity

ActivityEdge

ControlNode

ActivityNode

ControlFlow

InitialNode

FinalNodeDecisionNode

ActivityFinalNode

ActivityGroup

ForkNode

JoinNode

FlowFinalNode

1

1

ValueSpecification
1

1

1

1 target
1 source

incoming *

outgoing *

guard
0..1

ObjectPartition
inPartition 1

outFlow* inFlow*
* nodes

SD::MessageEnd

ValueSpecification

1guard 0..1

NamedElement

objectName 1

SD::Message
message 1

CallNode ReplyNode

ExecutableNode

ActivityPartition

MergeNode

MessageNode

children * parent 1

*
 n

od
e

activity 1
SD::InteractionFragment

interFrag

1
1 activity

* e
dg

e

Figure 29- CCFG metamodel.

Each instance of the Activity class in the CCFG metamodel corresponds to an instance of

the InteractionFragment class in the SD metamodel. Therefore, in order to access the

interaction fragment associated with an activity, we need to add an association from the

activity class in the CCFG metamodel to the interaction fragment class in SD metamodel.

Note that the activity and CCFG classes of the CCFG metamodel are used

interchangeably in this article. Furthermore, since SD interaction fragments can be

nested, their corresponding activities have to be nested too. Therefore, we add a reflexive

bidirectional association from the activity class to itself with role names parent and child.

Each CCFG has one parent CCFG and can have multiple child CCFGs.

The need for an extension to ActivityNode arose when we started to design our mapping

approach (Section 6.1.4). In order to build all control flows (edges) among all activity

nodes of a CCFG, we need to make associations between activity nodes and their

76

corresponding messages’ message ends. In other words, we add two associations to

ActivityNode: inFlow and outFlow, which are both targeted to the SD::MessageEnd class.

These two associations will keep track of in and out flows of an activity node, to be used

later in control flow connection. The reason why we assign a zero to many multiplicity

(*) for these two associations is that there might be cases in which more than one in/out

flows have to be built towards/from a node. Consider node F in Figure 30 as an example,

which has two in flows. Our strategy for control flow connection is to store send and

receive events of each message in the in and out flow sets of its corresponding executable

node. In case when a message is inside an alt or loop combined fragment, the message

ends are stored inside in and out flows of the decision node, responsible for controlling

the flow of the combined fragment. The guard association of the MessageEnd is intended

for storing guard conditions when storing in/out flows of a node. The guard will be later

copied to the corresponding activity edge. More details on how the in and out flows are

handled are provided in Section 6.1.4 and [59]. Note that the subclasses of ActivityNode

in the CCFG metamodel extend ActivityNode in similar ways like subclasses of

ActivityNode in the IA metamodel. For example, CCFG::ControlNode extends

CCFG::ActivityNode (which itself extends IA::ActivityNode) and IA::ControlNode. We

also change the semantics of activity final nodes in a way that they can have outgoing

edges. This is needed to be done since when a SD calls another SD using an interaction

occurrence, there needs to be a control flow from the activity final node of the CCFG

corresponding to the called SD to a message node in the CCFG corresponding to the

caller SD (see Figure 30 for example).

77

We define new CallNode and ReplyNode classes in a CCFG which correspond to a

call/reply message in the corresponding SD. Distinguishing between call and reply

messages (and their corresponding activity nodes) can enrich our MBCFA technique.

These two classes in a CCFG are generalized by a new abstract class MessageNode

which itself is being generalized by ExecutableNode in IA. One more extension is to

make it possible to access the corresponding message of an ExecutableNode. In order to

do this, we add an association to ExecutableNode, which is entitled message and is

targeting the SD::Message class.

An extension to ActivityPartition is made by adding a subclass named ObjectPartition.

This is to group a CCFG’s activity nodes based on the receiver object of their

corresponding messages: swimlanes in an AD then correspond to classifiers in the

corresponding SD.

6.1.4 Consistency Mapping Rules from SDs to CCFGs

Using OCL [73], we propose a consistency rule-based approach to map SDs into CCFGs.

The mapping rules are useful in several ways: (1) they provide a logical specification and

guidance for our transformation algorithms that derive a CCFG from a SD (both being

instances of their respective metamodels), and (2) they help us ensure that our CCFG

metamodel is correct and complete with respect to our control flow analysis purpose, as

the OCL expression composing the rules must be based on the metamodels.

We have derived fourteen consistency rules, expressed in OCL, that relate different

elements of an instance of a SD metamodel to different elements of an instance of the

CCFG metamodel. They are all listed in Table 4 and are illustrated them with the

78

example SD of Figure 27. However, due to space constraint, we only describe a subset

of them in the remaining sections.

SD feature CCFG feature
1 Interaction Activity
2 First message end Flow between InitialNode and first

control node
3 SynchCall/SynchSignal CallNode
4 AsynchCall or AsynchSignal (CallNode+ForkNode) or ReplyNode
5 Message SendEvent and ReceiveEvent ControlFlow
6 Lifeline ObjectPartition
7 par CombinedFragment ForkNode
8 loop CombinedFragment DecisionNode
9 alt/opt CombinedFragment DecisionNode

10 break CombinedFragment ActivityEdge
11 Last message ends Flow between end control nodes and

FinalNode
12 InteractionOccurrence Control Flow across CCFGs
13 Polymorphic message DecisionNode
14 Nested InteractionFragments Nested CCFGs

Table 4- Mapping rules from SDs to CCFGs.

To demonstrate the feasibility of our approach, we have applied the consistency rules to

the SD of Figure 27 and the resulting CCFG is shown in Figure 30. Each message node in

CCFG of Figure 30 is labeled with the corresponding message name in SD of Figure 27.

Two fork nodes in the CCFG are created because of the two asynchronous messages in

the SD of Figure 27. Due to space limitations, we describe in the next sections only two

of the rules (#2 and #3) and how they are applied to the SD of Figure 27. In the rule

descriptions below, symbol means mapping from a SD feature to a CCFG feature.

Further details on applying each consistency rule and the OCL expressions of the other

consistency rules are described in [59].

79

getAsynchProcessor()

AsyncProcessor

addToQueue()

Process()

getStatus()

[s!=FINISHED]

[else]

AsynchTicket

s=Status

getProcessResult()

AsynchProcessResult

Call Node

Reply Node

A

B

C

D

E

F

G

H

I

Legend

[else]
[at=NULL]

CCFG(N)

...

Figure 30-CCFG of the SD in Figure 27.

6.1.4.1 First Message End Flow between InitialNode and first Control Node

This consistency rule checks if there is a flow from the initial node of every CCFG to its

first control node. The first control node of a CCFG is the one that corresponds to the first

message of the corresponding SD.

80

OCL Mapping

1 SD::InteractionFragment.allInstances->forAll(interFrag:InteractionFragment|
2 CCFG::InitialNode.allInstances->exits(in:InitialNode|
3 in.activity=Utility::Util.getCCFG(interFrag) and
4 in.outgoing->includes(flow:ControlFlow|
5 getCCFG(interFrag).node->exits(an:ActivityNode|
6 an.inFlow->includes(Utility::Util.getFirstMessage
7 (interFrag).sendEvent) and flow.target=an

8)

9)

10)

11)

The CCFG of each interaction fragment is checked to have an initial node (lines 1-2) with

specific characteristics. There should be a control flow from the initial node to the

activity node having the sendEvent of the first message of the interaction fragment in its

inflow (lines 4-7).

To reduce the complexity of our consistency rules, we have defined several utility

functions inside a utility class Util, such as getCCFG() and getFirstMessage(), as they are

used in the above rule. getCCFG() returns the CCFG::Activity instance associated with

an instance of SD::InteractionFragment. getFirstMessage() returns the first message of a

given interaction fragment according to the ordering provided by its GeneralOrdering.

GeneralOrdering is the SDs mechanism to order messages. More details are provided in

[59].

Example

Figure 31-(a) shows part of the CCFG instance that satisfies the above consistency rule

based on Figure 27. The corresponding part of the resulting CCFG is represented in

Figure 31-(b). Executable node enA corresponds to the message A (getAsynchProcessor)

81

in Figure 27. enAse is the sendEvent MessageEnd of the message A. enAse is already in

the inflow of node enA because of the rule #3. Furthermore, getFirstMessage(ccfg)

returns message A, and in this way, the appropriate control flow connection between the

ccfg‘s initial node and node enA is checked to exist.

ccfg:Activity

flow:ControlFlow

in:InitialNode enA:ExecutableNode
1

1

targetsource

incomingoutgoing

A:SD::Message
message

enAse:SD::MessageEnd
inflow

enA:ExecutableNode

ccfg=getCCFG(AsynchronousRequestProcessing)

in:InitialNode

flow:ControlFlow

enA.message=A

enA.sendEvent

(a) (b)

Figure 31-(a)-Part of the CCFG instance ccfg mapped from the SD in Figure 27,

satisfying the consistency rule #2. (b)-Part of the CCFG, corresponding to the

instance shown in (a).

6.1.4.2 SynchCall/SynchSignal CallNode

This rule maps synchronous (call or signal) messages of a SD to call nodes of a CCFG.

(These messages are identified thanks to enumeration values synchCall and synchSignal

of message attribute messageSort.)

OCL Mapping

1 SD::Message.allInstances->forAll(m:Message|
2 (m.messageSort=SD::MessageSort.synchCall) or

3 (m.messageSort=SD::MessageSort.synchSignal)
4 implies
5 CCFG::CallNode.allInstances->exits(cn:CallNode|
6 cn.message=m and

82

 -- check object partition

7 cn.inPartition= Utility::Util.getObjectPartition(
 m.receiveEvent.covered.connectable_element_name) and

-- make sure cn is prepared for control flow (edge) connections

-- m.SendEvent/m.ReceiveEvent should be in inFlow/outFlow of cn

8 cn.inFlow->includes(m.sendEvent) and
9 cn.outFlow->includes(m.receiveEvent) and
10 Utility::Util.getCCFG(m.interaction).node->includes(cn)

11)

12)

The synchCall and synchSignal messages of a SD are selected in lines 1-3. The existence

of a corresponding call node c is checked in lines 5-10. The call node cn’s message

association value should be m (line 6), its object partition should be lifeline of message m

(line 7), and its inflow and outflow sets should include only m’s send and receive events,

respectively (lines 8-9). These inflow and outflow information are needed since the

control flow consistency rule (#5) will use them to connect nodes to each other to form

the control flow. Line 10 makes sure that node cn is a part of the CCFG corresponding to

interaction containing message m. getObjectPartition() is another utility function, which

returns the object partition instance associated with a lifeline (using consistency rule #6).

Example

Figure 32-(a) shows part of the CCFG instance corresponding to message A in Figure 27

that satisfies the consistency rule #3. The corresponding part of the resulting CCFG is

represented in Figure 32-(b). Call node cn corresponds to message A in Figure 27. Since

the receiver lifeline of message A is pf:ProcessorFactory, the inPartition association of

cn corresponds to ObjectPartition instance op which is associated with object and class

names pf and ProcessorFactory, respectively.

83

ccfg:Activity

op:ObjectPartition cn:CallNode

1 1

outFlowinFlow
inPartition

A.sendEvent:
SD::MessageEnd

A:SD::Message
message

A.receiveEvent:
SD::MessageEnd

“pf”:NamedElement

“ProcessorFactory”
:NamedElement

objectName

className
cn:CallNode

ccfg=getCCFG(
AsynchronousRequestProcessing)

op:ObjectPartition

A.sendEvent

A.receiveEvent

cn.message=A

(a) (b)

Figure 32-(a):Part of the CCFG instance ccfg mapped from the SD in Figure 27,

satisfying the consistency rule #3. (b): Part of the CCFG, corresponding to the

instance shown in (a).

6.1.5 Concurrent Control Flow Paths

The concept of Concurrent Control Flow Paths (CCFPs) is similar to the conventional

Control Flow Paths (CFPs), except that they consider concurrent control flows as they are

derived from CCFGs [50, 59]. We presented a grammar in [50, 59] to derive all different

CCFPs of a CCFG.

For example, by using such grammar, some of the CCFPs of the CCFG in Figure 30 can

be derived as shown in Figure 33. The symbol ρ will be used in the rest of this article to

refer to CCFPs.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

FGHI

)JK(
DEABC

FGHI

)JK(
DEABC

FGHI

JK
DEABC

FGHI

DEABC

3

4

2

3

21

ρρ

ρρ

Figure 33-CCFPs of the CCFG in Figure 30.

84

Four CCFPs for the CCFG in Figure 30 are due to the decision node (corresponding to

a loop) in the CCFG. According to the grammar of CCFPs (Equation 1 of [50, 59]), a

loop can either be bypassed (ε) – if possible, taken only once, a representative or average

number, and a maximum number of times. These possibilities have derived the four

CCFPs: ρ1, ρ2, ρ3 and ρ4. The loop is bypassed in ρ1, taken once in ρ2, repeated twice in

ρ3, and a maximum number (m) of times in ρ4. Each CCFP is made of several message

nodes of a CCFG. Each message node corresponds to a message in the corresponding SD

of the CCFG. In the rest of this article, we will refer to CCFP messages and nodes

interchangeably.

6.2 Incorporating Distribution and Timing Information in CCFPs

The discussions in [50, 59] about CCFPs described generic CCFPs in a sense that they

can be used to analyze control flow of SDs with distributed or non-distributed messages.

In the current context, we consider SDs with distributed messages and we saw in Section

5.1 that the node on which a SD object is deployed can be modeled using node

stereotype. Since only distributed messages of a SD are of interest to our testing

technique, therefore we need to incorporate the distribution data of messages inside

CCFPs. As the sender/receiver objects and nodes of a message are already modeled in

SDs, we can easily access those information from a CCFP, which is a set of messages.

Furthermore, as discussed in Section 5.1.1, we assumed that timing information of

messages in a SD are modeled using the RTstart and RTend tagged values of the UML-

SPT profile [12].We can also easily access such information of each message in a CCFP.

85

Following the above discussion, we can derive all the above information along with

message signature and returns list of messages from SDs during the CFA phase. To

facilitate our mathematical relations in the next sections, we consider the following

format for the call and reply messages of each CCFG and CCFP.

6.3 Formalizing Messages

In order to precisely define how we perform traffic analysis of SDs, we formally define

SD messages. Similar to the tabular representation of messages, proposed by UML 2.0

[10], each message annotated with timing information (using the UML-SPT profile [12])

can be represented as a tuple:

message=(sender, receiver, methodOrSignalName, parameterList, returnList, startTime,

endTime, msgType)

where

• sender denotes the sender of the message and is itself a tuple in the form

sender=(object, class, node), where:

o object is the object (instance) name of the sender.

o class is the class name of the sender.

o node is where the sender object is deployed.

• receiver denotes the receiver of the message and is itself a tuple in the same form

as sender.

• methodOrSignalName is the name of the method or signal on the message.

• parameterList is the list of parameters for call messages. parameterList is a

sequence in the form parameterList=<(p1, C1, in/out), ..., (pn, Cn, in/out)>,

86

where pi is the i-th parameter with class type Ci and in/out determines the kind

of parameter pi. For example if the message is m(o1:C1, o2:C2), then the ordered

parameters set will be parameterList=<(o1, C1, in), (o2, C2, in)>. If the method

call has no parameter, this set will be empty.

• returnList is the list of return values on reply messages. It is empty in other types

of messages. UML 2.0 assumes that there may be several return values by a reply

message. We show returnList in the form of a sequence

returnList=<(var1=val1,C1), …, (varn=valn,Cn)>, where vali is the return values

for variable vari with type Ci.

• startTime is the start time of the message (modeled by UML-SPT profile’s

RTstart tagged value).

• endTime is the end time of the message (modeled by UML-SPT profile’s RTend

tagged value).

• msgType is a field to distinguish between signal, call and reply messages.

Although the messageSort attribute2 of each message in the UML metamodel can

be used to distinguish signal and call messages, the metamodel does not provide a

2 The messageSort attribute of a message specifies the type of communication reflected

by the message [10] Object Management Group (OMG), "UML 2.0 Superstructure

Specification," 2005., and can be any of these values: synchCall (synchronous call),

synchSignal (synchronous signal), asynchCall, or asynchSignal

87

built-in way to separate call and reply messages. Further explanations on this

and an approach to distinguish between call and reply messages can be found in

[50].

6.4 Distributed CCFP

Distributed CCFP is a CCFP where CCFP messages (call or reply) are distributed. A

CCFP message is distributed if its sender and receiver are located in two different nodes.

Formally, using the definitions of call and reply node from Section 6.2 a CCFP message

msg is distributed if:

msg.sender.node ≠ msg.receiver.node

where msg can be either a call or a reply message. In other words, a distributed CCFP

message is one whose corresponding SD message goes to a different receiver node than

its sender node. Similarly, Distributed CCFP (DCCFP) is a CCFP that only includes

distributed CCFP messages. A DCCFP is built from a given CCFP ρ by removing all

local messages and keeping the distributed ones. As an example, let us assume the CCFPs

given in Figure 33. In order to derive their DCCFPs, we should first judge each messages

as local or distributed. According to the corresponding SD (Figure 27), all the messages

except the messages A and B are distributed. Therefore, in the CCFG of Figure 30, only

control nodes A and B are local, and the rest are distributed. Hence, the DCCFPs

corresponding to the CCFPs given in Figure 33 are shown in Figure 34.

88

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

FGHI

)JK(
DEC)(DCCFP,

FGHI

)JK(
DEC)(DCCFP

FGHI

JK
DEC)(DCCFP,

FGHI

DEC)(DCCFP

3

4

2

3

21

ρρ

ρρ

Figure 34- DCCFPs of the CCFPs in Figure 33.

6.5 Timed Inter-Node and Inter-Network Representations of DCCFPs

In this section, we provide a timed inter-node (and inter-network) representation of

DCCFPs. This representation can help to visualize the behavior of DCCFPs with respect

to time over the system nodes and networks. This will help to better understand our

discussions in the remainder of this article.

UML 2.0 introduces a new interaction diagram called Timing Diagrams (Section 14.4 of

[10]). As defined by UML 2.0: “Timing Diagrams are used to show interactions when a

primary purpose of the diagram is to reason about time. Timing diagrams focus on

conditions changing within and among lifelines along a linear time axis.” We use the

basic concepts of UML 2.0 timing diagrams and propose a model for timed inter-node

and inter-network representations of DCCFPs. These two representations of a DCCFP

can be useful to represent a timeline view of the flow and occurrence of distributed

messages by a DCCFP in node and network levels. These representations are 2-

dimentioanl charts where the X-axis is a linear time axis and the Y-axis is the set of all

nodes referenced at least once by the control nodes of a given DCCFP.

For example, let us consider the SD of Figure 27 and DCCFP(ρ2) in Figure 34. Timed

inter-node representation of DCCFP(ρ2) in shown in Figure 35, where the message ends

89

correspond to the type of corresponding messages (synchronous/asynchronous call or

reply) in the SD. Let us also assume that the start and end times of all control nodes

(A…K) are given using UML-SPT profile stereotypes (Section 5.1.1) with the values as

shown. In this representation, the X-axis represents time and the Y-axis lists the nodes of

the DCCFP messages.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time (x100 ms)

n1

n2

n3

C Dno
de

s E

F G
H I

Figure 35-Timed inter-node representation of DCCFP(ρ2) in Figure 34.

Suppose the NIG of this system is as the one shown in Figure 36. The inter-network

representation of the DCCFP(ρ2) can be derived using the node information in SD, the

inter-node representation (Figure 35) and the system NIG.

Network2

System
Network

Network1

Network3n1 n2

n3

... ...

...

Figure 36-A simple system NIG.

The inter-network representation of the DCCFP(ρ2) is drawn in Figure 37. Start and end

networks of each message in this representation are derived by finding the networks

where the message’s sender and receiver nodes are members. For example, the sender

90

and receiver nodes of message (call node) C are nodes n1 and n2, which are members

of Network1 and Network2, respectively. In addition to the traffic imposed on networks

they start and end, messages like C have an implicit traffic on networks that are not their

immediate parent in NIG, but are in the network paths from their start to end nodes. For

example, C entails an implicit traffic on SystemNetwork in addition to Network1 and

Network2. Other cases like this can also be identified from NIG.

System Network

ne
tw

or
ks

Network2

Network1

time (x100 ms)

implicit traffic

Network3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C D

E H I

F

FC

G

G

Figure 37-Timed inter-network representation of a DCCFP.

91

Chapter 7

CONSIDERING INTER-SD CONSTRAINTS

As discussed in Section 5.3, executing any arbitrary sequence of use cases (and thus their

corresponding SDs) in a SUT might not be always valid or possible. This might be due to

the constraints enforced by the business logic of a SUT on the sequence (order) of SDs

and also the conditions that have to be satisfied before a particular SD can be executed.

Modified Interaction Overview Diagrams (MIOD) were proposed in Section 5.3 to model

sequential and conditional inter-SD constraints. We discussed how such constraints can

be modeled by a MIOD.

As we will discuss in Chapter 9, our stress test technique will identify the most data-

centric messages of each SD and will try to either run SDs concurrently or will run a

sequence of SDs which impose the maximum amount of network traffic. However, test

requirements should comply with the inter-SD constraints.

In the following sections, we propose two methods to consider inter-SD constraints in our

stress testing context, assuming that a MIOD is given. The method in Section 7.1 will be

used to derive the Independent-SD Sets (ISDSs) in a SUT. An ISDS is a set of SDs, in

92

which any two SDs are independent, thus the entire set can be run concurrently. In

other words, there are no inter-SD sequential constraints between any two of the SDs in

an ISDS to prevent from doing so. Our stress test technique in Chapter 9 will make use of

ISDS by calculating the maximum traffic of each ISDS by adding the maximum traffic of

its SDs. Then, among all ISDS of a MIOD, the ISDS with maximum traffic will be

chosen as the ISDS which entails the maximum stress. Then after, the SDs of the chosen

ISDS will be scheduled in a way to maximize the instant traffic in a particular time

instant.

The method proposed in Section 7.2 will be used to derive the Concurrent SD Flow Paths

(CSDFP) and CCFP/DCCFP Sequences (CCFPS/DCCFPS). Similar to the concept of

CCFP, a CSDFP is a path from a MIOD’s start node to a final node. The CSDFPs of a

MIOD specify the allowed sequences of SDs in a system. According to this definition,

any sequence of SD in a SUT which is not a CSDFP is not allowed to be executed.

On the other hand, we defined CCFP and DCCFP in Chapter 6 and saw that each SD can

have one or more such paths. We define CCFP/DCCFP Sequences (CCFPS/DCCFPS) as

the sequences of CCFPs/DCCFPs which are built from a CSDFP. Further explanations

are provided in Section 7.2. A variation of our stress test technique in Chapter 9 will

make use of CSDFP by calculating the maximum traffic of each CSDFP. Then, among all

CSDFPs of a MIOD, the CSDFP with maximum traffic will be chosen as the CSDFP

which entails the maximum stress.

93

7.1 Independent-SD Sets

An Independent-SD Set (ISDS) is a set of SDs that can be executed concurrently, i.e.

there are no sequential constraints between any two of the SDs in the set to prevent it.

Assuming that a MIOD is given, we propose a technique in this section to find all ISDSs

of the MIOD. As an example, let us consider the MIOD of a library system as shown in

Figure 38. This MIOD is the completed version3 of the activity diagram shown in [60].

For brevity, the SDs are labeled by capital letters from A to O. The MIOD is modeled

using the use case diagram given in Appendix A of [60] and some typical business logic

assumptions of the library system.

TitleReservationUser

LibrarianBorrower

ItemUser Title LibraryLoan

Add User Add Title

Add Item

Monitor System

Borrow Loan Copy
Remove Item

Remove Title

Collect Fine Renew Loan

Return Loan Copy

[num_of_renewals<=2]

Remove User

Search User Find Title

Make Reservation

Remove Reservation

A B

C

D

E F G

H

J KI

L M

N

O

Figure 38- The MIOD of a library system.

3 The sequential constraints of the SDs (use cases) for the actor Borrower and the

conditional constraint of the SD RenewLoan are added.

94

7.1.1 Definitions

We rephrase here the definition of dependent/independent SDs and an ISDS in the

context of a MIOD. A set of SDs are said to be independent if there are no inter-SD

constraints between any two of the SDs in a MIOD to prevent them from being executed

concurrently. As discussed in Section 5.3, sequential and conditional constraints among

SDs are modeled in a MIOD. An edge between two SDs (from a tail SD to a head SD) in

a MIOD specifies that the tail SD must be executed in order for the head SD to be

executed, but the tail SD may be executed without any execution of the head SD. In

addition, specific situations require that several SDs be executed independently (without

any sequential dependencies between them) for another SD to be executed. This is

modeled by join and fork synchronization bars in a MIOD, respectively.

Therefore, we can define a dependency relationship between any two SDs in a MIOD.

Two SDs SD1 and SD2 are dependent if there is at least one path in the MIOD from one

of them to the other one. For example SDs AddUser and ReturnLoanCopy are dependent

in the MIOD of Figure 38. Conversely, two SDs are independent if there is no path in the

MIOD from one of them to the other one. For example SDs AddUser and AddTitle are

independent in the MIOD of Figure 38. Similarly, two sets of SDs are said to be

independent if all the SDs of one of them are independent from all the SDs of the other

one.

In a MIOD, an Independent-SD Set (ISDS) is a maximal set of independent SDs. By

maximal, we mean that no other SD can be added to the set. For example, the set of SDs

{AddUser, AddTitle} is a set of independent SDs in Figure 38, however it is not maximal

according to our definition, since, for instance, SD MonitorSystem can be added to this

95

set while the independence relationship still holds among all the SDs in the set. In fact,

{AddUser, AddTitle, MonitorSystem} is an ISDS.

7.1.2 Derivation of Independent-SD Sets

According to the discussions in the previous section, ISDSs of a MIOD can be derived by

examining SDs of a MIOD and deriving all possible maximal sets of SDs that are

independent. Identifying ISDSs from a MIOD is a graph-based problem. If we first build,

from a MIOD, a graph where nodes are SDs and edges link independent SDs, then

finding ISDSs amounts to finding maximal-complete subgraphs4, a well-known graph-

based problem [74] for which there exist efficient solutions (e.g., [74]).

Let us propose a graph notation referred to as Independent SD Graph (ISDG)=(N,E),

where N is the set of SDs of a MIOD and there is an edge in E between two SDs if they

are independent according to the definition given in the previous section. For example,

the ISDG corresponding to the MIOD in Figure 38 is shown in Figure 39.

Every maximal-complete subgraph of an ISDG is an ISDS. For example, the maximal-

complete subgraph {A,B,G,H} is shown with dashed edges in the ISDG of Figure 39,

which corresponds to a ISDS.

4 A maximal-complete subgraph is a complete subgraph that is not contained in any other

complete subgraph. A complete subgraph of a graph is a subgraph in which there exists

an edge between any pair of nodes [74] R. E. Tarjan, "Depth-First Search and Linear

Graph Algorithms," Society for Industrial and Applied Mathematics' Journal on

Computing, vol. 1, 1972.

96

When deriving Independent-SD Sets, the effect of multi-SDs (Section 5.4) will be as

the following. After an ISDS is derived using the algorithm mentioned above, each SD of

the ISDS is checked to see if it is a multi-SD. If yes, the multi-SD is replaced with two

parentheses similar to the technique we used in [50, 59] to derive CCFPs of a SD. The

number of SDs between two parentheses is equal to the number modeled by the tagged-

value instances annotated to the multi-SD. For example consider ISDS={A,B,C} derived

from the MIOD in Figure 40. In this MIOD, SD A is a multi-SD where three concurrent

instances of it can be executed.

A

B

F

G

H

E

KI JL M N

O

C D

Figure 39-The Independent SD Graph (ISDG) corresponding to the MIOD in

Figure 38. The ISDS={A,B,G,H} is shown with dashed edges.

97

A
instances=3

MIOD

B C

Figure 40-A MIOD with a multi-SD construct.

Since SD A is a multi-SD, we modify the ISDS as the following.

}C,B,
A
A
A

{ISDS}C,B,A{ISDS
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⇒=

The above ISDS transformation means that, if any SD is independent from a multi-SD, it

will be independent from its multi instances, too.

7.1.3 Algorithm Complexity

The brute-force algorithm to build an ISDG would be to check all pairs of SDs of a

MIOD and build an edge between them in the ISDG if the two SDs are independent. This

will have the complexity of O(n3), where n is the number of SDs.

Tarjan [74] has devised an O(n) algorithm for determining maximal-complete subgraphs

of a graph. Therefore consider the complexity to build an ISDG, O(n2), and the

complexity to derive its maximal-complete subgraphs, the overall complexity to derive

ISDSs will be O(n2).

98

7.2 Concurrent SD Flow Paths, CCFP and DCCFP Sequences

To account for sequential and conditional inter-SD constraints in test cases, we propose

Concurrent SD Flow Paths (CSDFP), CCFP and DCCFP Sequences (CCFPS and

DCCFPS) in this section.

7.2.1 Concurrent SD Flow Paths

We discussed in Section 5.3 how to model the sequential and conditional constraints

among SDs using a MIOD. Similar to the concept of CCFP, which was made from a

CCFG, we define a Concurrent SD Flow Path (CSDFP) to be a sequence of SDs from a

start to an end node of a MIOD. In other words, a CSDFP is a sequence of SDs that are

allowed to be executed in a system (according to the constraints modeled in a MIOD).

There is a hierarchical relationship between MIODs and CCFGs, and also CSDFPs and

CCFPs. To better illustrate this relationship, consider the example given in Figure 41,

where a MIOD (a) and the CCFG (b) of one of the SDs in the MIOD are shown.

99

SD2

SD4

SD1

SD5

SD6

[exp]

[!exp]

mn2 mn3

mn1
[!exp]

mn4

[exp]

MIOD

CCFG(SD3)

SD3

mn2 mn3

mn1
[!exp]

mn4

[exp]

(a) (b)

Zoom

Figure 41-An example MIOD and the CCFG of one of its SDs.

The MIOD shows the system-level flow paths, where the flow paths are built from SDs,

e.g., SD1 and SD2. In turn, whenever the control is on a SD, the CCFG of the SD

determines which control flow should be followed. We have actually enlarged the CCFG

of SD3 in Figure 41 to better represent the hierarchical relationship.

In order to find CSDFPs of a MIOD, we use the same technique as we used in [50, 59]

(and discussed in Chapter 6) to derive CCFPs of a SD. This is doable since both MIOD

and CCFG are extensions of ADs. For example, the MIOD in Figure 41 has the following

two CSDFPs:

65
3

2
12

4
3

2
11

SDSD
SD
SD

SDCSDFP

SD
SD
SD

SDCSDFP

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

As another example, we list here some of the CSDFPs (out a total of 62) which can be

derived from the MIOD in Figure 38:

100

FKCSDFPEOCSDFPFHJKCSDFPGCSDFP

ILO
FH
E

CSDFPCILMLMLNO
FB
EA

CSDFPCDO
FB
EA

CSDFPCD
FB
EA

CSDFP

====

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

8765

4321

7.2.2 Concurrent Control Flow Paths Sequence

We defined CSDFP in the previous section. Similar to the concept of control flow paths,

a system’s set of CSDFPs represents the possible sequences of SDs a system might

follow in a typical execution. However, a SD usually contains more than one control flow

paths, out of which, only one will execute in a particular run. We discussed CCFP and

DCCFP in Chapter 6 as concepts to represent these possible execution paths of a SD. To

incorporate CCFP and DCCFP in CSDFPs, we define two new concepts: CCFPS

(Concurrent Control Flow Paths Sequence) and DCCFPS (Distributed CCFPS) to

represent different sequences of scenarios a CSDFP might follow in different executions.

A CCFPS can be derived from a CSDFP by substituting each SD by one of its CCFPs.

Similarly, a DCCFPS can be derived from a CSDFP by substituting each SD by one of its

DCCFPs.

For example, let us consider the example in Figure 41. SD3 has two CCFPs as:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

=

4

3

2

2,3

11,3

mn
mn
mn

CCFP

mnCCFP

where mni is the message node corresponding to message mi (not shown) in SD3. Suppose

DCCFP3,1 and DCCFP3,2 are the corresponding DCCFPs of the above two CCFPs.

Similarly, assume that SD1, SD2, SD4, SD5 and SD6 have the following sets of CCFPs. Let

us also identify the corresponding DCCFPs by DCCFPi,j (jth DCCFP for SD i).

101

}CCFP,CCFP,CCFP,CCFP{)SD(CCFP
}CCFP{)SD(CCFP

}CCFP,CCFP,CCFP{)SD(CCFP
}CCFP,CCFP{)SD(CCFP

}CCFP,CCFP,CCFP{)SD(CCFP

,,,,

,

,,,

,,

,,,

46362616

15

312414

2212

312111

6
5

44
2
1

=

=

=

=

=

We derived the CSDFPs of the MIOD in the previous section as:

65
3

2
12

4
3

2
11

SDSD
SD
SD

SDCSDFP

SD
SD
SD

SDCSDFP

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

By substituting each SD of CSDFP1 by one of their corresponding CCFPs, for example,

the following CCFPSs can be derived:

14
13

22
213

24
23

12
112

34
13

22
311

,
,

,
,

,
,

,
,

,
,

,
,

CCFP
CCFP
CCFP

CCFPCCFPS

CCFP
CCFP
CCFP

CCFPCCFPS

CCFP
CCFP
CCFP

CCFPCCFPS

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Similarly, the following DCCFPS can be derived from CSDFP2:

2615
23

22
112

4615
13

22
311

,,
,

,
,

,,
,

,
,

DCCFPDCCFP
DCCFP
DCCFP

DCCFPDCCFPS

DCCFPDCCFP
DCCFP
DCCFP

DCCFPDCCFPS

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

As it can be realized from the definitions of CCFPS and DCCFPS, when the number of

SDs and their CCFPs increase, number of CCFPS and DCCFPS can increase

exponentially. Ways to cope with this combinatorial explosion problem must be

investigated. One such approach is to use available inter-SD control and data flow

information to eliminate infeasible CCFPSs, e.g., executing CCFP1,3 from SD1 followed

102

by CCFP3,2 from SD2 (in CSDFP1) may not be feasible because of the input values to

be selected and the resulting system states.

Another important issue is that the current automatic procedure to derive CCFPS (and

DCCFPS) may produce infeasible (one could say illegal) CCFPS (DCCFPs). A form of

data flow analysis has to be done on the set of derived CCFPS (DCCFPs) to eliminate the

infeasible (illegal) ones. This is one of our future works.

7.2.3 Duration of a Concurrent Control Flow Path Sequence

Some of our stress test requirement algorithms in Chapter 9 will need the duration (time

length) of a CCFPS. We present Algorithm 1 to recursively calculate the duration of a

CCFPS using the time length of the CCFPs in the sequence.

1. Function Duration(ccfps: CCFPS): integer

2. if ccfps is atomic (only made of one CCFP)

3. return ()endTime.m
ccfpsm∈∀

max

4. else if ccfps is the serial concatenation of several CCFPSs (i.e.,
nccfpsccfpsccfps L1=)

5. return Duration(ccfps1)+…+ Duration(ccfpsn)

6. else if ccfps is the concurrent combination of several CCFPSs (i.e.,

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

nccfps

ccfps
ccfps L

1)

7. return max(Duration(ccfps1),…, Duration(ccfpsn))

8. End Function

Algorithm 1-Calculating the duration of a Concurrent Control Flow Path Sequence

(CCFPS).

Line 2 of Algorithm 1 is the stopping criterion of the recursion. It is when ccfps (the

given CCFPS) is an atomic CCFPS (only made of one CCFP). In this case, the duration

103

of ccfps is equal to the duration of its one and only CCFP, which is calculated by line

3. As time constraints are modeled in SDs using the UML-SPT profile, the time reference

at the beginning of every SD (and hence its CCFPs) is set to zero (see Figure 27 as an

example). Therefore, the duration of a CCFP is equal to the end time of its latest message

(maximum of m.endTime’s). For details on our message formalism, refer to Section 6.3.

Lines 4-5 are executed if ccfps is a serial concatenation of several other CCFPSs. Since

the CCFPSs execute serially in this case, the total duration is the summation of their

individual durations. If ccfps is a concurrent combination of several other CCFPSs, lines

6-7 will be used. For a concurrent combination of CCFPSs, we assume that all of the

CCFPSs start at the same time. Therefore, the duration will be the longest duration of the

enclosed CCFPSs.

For example, we calculate the time duration of CCFPS1 discussed in Section 7.2.2. For

brevity, we use pi,j for CCFPi,j. Suppose the duration of each of the individual CCFPs of

CCFPS1 are as the follows: CCFP1,3 (2800 ms), CCFP2,2 (1300 ms), CCFP3,1 (1000 ms),

and CCFP4,3 (1000 ms). To better illustrate how Algorithm 1 works, the call tree of the

recursive algorithm Duration applied to CCFPS1 is shown in Figure 42. Since the

CCFPS1 is a serial concatenation of three CCFPSs itself, three recursive calls are made,

whose results will be added upon return. One of these CCFPSs (⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

13

22

,

,

ρ
ρ

), is the concurrent

combination of two CCFPs, therefore the maximum value of their durations are returned

as the durations of this CCFPS and so on.

104

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
34

13

22
31 ,

,

,
,Duration ρ

ρ
ρ

ρ

()22 ,Duration ρ ()13,Duration ρ

max

1000 ms1300 ms

1300 ms 1000 ms

5100 ms

2800 ms

()31,Duration ρ ()34 ,Duration ρ

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

13

22

,

,Duration
ρ
ρ

+

Figure 42-The call tree of the recursive algorithm Duration applied to CCFPS1.

Note that the duration of a DCCFPS is equal to duration of its corresponding CCFPS,

which is made by replacing all the DCCFPs with the corresponding CCFPs. This is

because in order to run a DCCFP, the corresponding CCFP should be executed. As

discussed in Section 6.4, a DCCFP is just a filtered CCFP where only distributed

messages are selected.

105

Chapter 8

RESOURCE USAGE ANALYSIS OF DISTRIBUTED

TRAFFIC

As we saw in the system model of this work (Figure 11), each node of the system can

have several running processes. Different processes often need to communicate with

other processes on other nodes of the system to perform a use case. In a typical

collaboration between two distributed objects in a SD, the sender object calls an

operation of the receiver object via a message (usually with parameters); the message is

handled (executed) by the receiver object, and if the message was a call, finally the return

values are returned to the sender object as a reply message. Distributed call and reply

messages have to go over the network connection between the sender and receiver

objects, and entail distributed traffic on the connecting networks. We assume two

distributed traffic types: data and message. Data traffic is the amount of data transferred

by distributed messages, which is dependent on the messages sizes. On the other hand,

message traffic is the number of messages being transmitted, regardless of their sizes.

106

In order to study and analyze distributed traffic usage in a current context and to

devise network-aware stress test requirement in a SUT, this section aims to formalize the

distributed traffic usage of each message and each DCCFP in a system. In order to do so,

a method will be proposed in Section 8.1 to estimate data size of a distributed message (a

message which goes from a node to a different one). Section 8.2 will provide formal

definition of membership relationships between nodes and networks. Different attributes

of distributed traffic in our formalism will be proposed in Section 8.3, which will include:

Traffic location: nodes vs. networks (Section 8.3.1); Traffic direction (for nodes only): in,

out, or bidirectional (Section 8.3.2); Traffic type: data traffic vs. number of messages

(Section 8.3.3); Traffic duration: instant vs. interval (Section 8.3.4) – whether traffic is

measured in one single time instant or during a period of time. They will allow us to

measure traffic usage in different ways, and thus better focus the stress testing activity,

for instance on a specific node or network, or on the incoming traffic to a node.

We will then discuss in Section 8.4 the aspects we consider while estimating network

traffic usage. The estimations will be formalized by means of traffic functions for

DCCFPs in Section 8.5. The resource usage analysis technique presented in this section

will be used in Chapter 9 and Chapter 10.

8.1 Estimating the Data Size of a Distributed Message

In order to measure and analyze the amount of traffic every distributed message entails

on a network, we need to have a method to estimate the data size of a distributed

message. The following representation was presented for messages of a DCCFP in

Section 6.2:

107

message=(sender, receiver, msgSort, methodOrSignalName, parameterList,

returnList, startTime, endTime msgType)

By looking at the above representation, we find out that the most data-centric parts are

parameterList and returnList, respectively, which actually go through a network. These

two fields, i.e. parameterList and returnList, were defined as parameterList=

<(p1,C1,[in|out]), ..., (pn,Cn,[in|out])> and returnList=<(var1=val1,C1), …,

(varn=valn,Cn)>, respectively. Therefore, it can be said that the most data centric part of a

message are essentially parameters pi and return values vali, respectively. Therefore, a

simple solution to estimate data size of each message is to find a way to estimate the max

(or average) data sizes for each class type Ci in both of sets parameterList and returnList.

An intuitive way to estimate the data size of a set of classes will be to add up data sizes of

all classes in the set. Let us define the data size of a class to be the total summation of

sizes of its attributes in bytes. (This is performed recursively if a class attribute has a non-

primitive type.) Therefore the total the size of the classes in a parameterList and

returnList can be a rough estimate for the data sizes of call and reply messages. Formally,

the Distributed Traffic Usage (DTU) functions for different types of messages are

presented in Equation 1.

108

∑
∑
∑

∈

∈−

∈−

=∈∀

=

=

=

⎪
⎩

⎪
⎨

⎧

=
=
=

=∈∀

→

attributes.Ca i

returnList.msg)C,(|C i

istparameterL.msg)C,(|C i

i

ii

ii

)a(dataSize)C(dataSize:amclassDiagrC

)C(dataSize)msg(DTReply

)C(dataSize)msg(CallDT
)meOrSignalNamsg.method(dataSize)msg(SignalDT

'Reply'msgType.msg)msg(DTReply
Call''msgType.msg)msg(CallDT

 Signal''msgType.msg)msg(SignalDT
)msg(DTU:Messagemsg

RealMessage:DTU

 if;
 if;
 if;

Equation 1- Distributed Traffic Usage (DTU) functions for different types of

messages.

A dash (-) in Equation 1 indicates that a field can take any arbitrary value (a “don’t care”

field). Note the format of parameterList and returnList, as mentioned above:

msg.parameterList (msg.returnList) is the ordered set of parameters (returns) for a call

(reply) message. dataSize(Ci) is a function returning the data size of the class Ci.

C.attributes denotes the set of attributes of class C. dataSize(ai) is the size of an attribute

ai of class C, which can be calculated by its attribute type. If the attribute type is an

atomic type, like int, long, bool, its size (in bytes) is dependent on the target

programming language. For example, the data sizes of some primitive data types in Java

are shown in Table 5 (adopted from [75]). In case an attribute ai of a class is itself an

object with another class type, the size of that attribute, size(ai), will be the size of its

class type and can be calculated recursively.

As an example, suppose a call message msg1 with parameterList=<(o1,A),(o2,B)>, where

classes A and B are defined in the class diagram of Figure 43. Using the class

specifications of A and B, we can estimate the size of the message msg1 as:

size(msg1) = size(A) + size(B) = (8x(100+500)) + (8x(100+500)+8x400) = 12.8KB

109

Data Type Description Size

byte Byte-length integer 1 Byte

short Short integer 2 Bytes

int Integer 4 Bytes

long Long integer 8 Bytes

Table 5-Data size of some of the primitive data types in Java (adopted from [75]).

-field1 : long[100]
-field2 : long[500]

A

-new_field_b : long[400]
B

-new_field_c : long[200]
C

Figure 43-A class diagram showing three classes with data fields.

8.1.1 Effect of Inheritance

While estimating the data size of a class (and the messages using it), one consideration

would be to take into account the inheritance relationships the class might be engaged in.

This might affect the size of the messages making use of that particular class in their

parameterList or returnList.

For example, suppose the method signature of a method m of a receiver object to be

m(o1,o2:A):A, which basically means that two parameters of class type A are passed to the

method m and an object of the type A is returned. Class A is defined in the class diagram

of Figure 43. Since B and C are both sub-classes of A, therefore an object of type B or C

can also be the actual parameters of the method m at runtime, which in this case will

110

cause the message to have difference data sizes, since classes B and C each have an

extra local defined attribute. Therefore, the inheritance relationships of classes can be

used to find the maximum possible data size of a class while estimating the data sizes.

8.1.2 Messages with Indeterministic Sizes

As mentioned in Section 8.1, the most data centric parts of a message (call or reply) are

parameterList and returnList, respectively. In their formal representation, we assumed

that these two lists are ordered sets of tuples of class types together with object values.

We saw that the data sizes of such messages can be estimated using Equation 1.

We assume, in this work, having parameter and return values with classes of fixed data

size. However there might also be parameters or return values that are not types of classes

whose sizes can be measured precisely. For example, an input parameter of a call

message might be of type, say, String in C++. The size of such an object might change

depending on the length of the string assigned to it. As another example, suppose a call

message like store(data:BLOB) in a distributed database system. This message is a

generic example of messages sent between distributed database servers in such system,

which asks the receiver of the message to save a big pile of data of type BLOB (Binary

Large OBject)5 in its own local database. Apparently, similar to the case of String class

5 A Binary Large OBject (or BLOB) is a collection of binary data stored as a single entity

in a database management system. BLOBs are typically images, audio or other

multimedia objects, though sometimes binary code is stored as a BLOB [76]

111

type, a data object of type BLOB may have variant sizes in different situations.

Therefore, Equation 1 can not be applied to estimate data size of a message in those

cases.

One simple approach to estimate data size of messages having parameter or return lists

with items of indeterministic data sizes is to measure sizes in a statistical fashion.

Statistical distribution of the size of such messages can be derived by monitoring the

message size in different runs, or by using information from data profiles, presented as

part of an extended operational profile model [77]. Runtime monitoring techniques (such

as [56]) can be utilized to monitor and derive such distributions.

8.2 Formalizing Relationships between Nodes and Networks

We saw earlier in Section 5.5 that a tree structure named NIG (Network Interconnectivity

Graph) can be generated from a UML network deployment diagram, to represent the

interconnection of the nodes and networks in a system. The NIG of a system is shown in

Figure 44, where there are seven nodes (n1,…,n7) and four networks (including system

network).

To facilitate traffic usage analysis we formalize in the following sub-sections the

following concepts:

• Node-network and network-network membership

• Network paths function

 Wikipedia, "Definition of Binary Large OBject (BLOB)," in

http://en.wikipedia.org/wiki/Binary_large_object, Last accessed: Feb. 2006..

112

Network2

System
Network

Network1

Network3n1 n2 n3 n4 n5

n6 n7

Figure 44-A Network Interconnectivity Graph (NIG).

8.2.1 Node-Network and Network-Network Memberships

To formally specify if a node is a member of a network, we can define function

member_of() as:

⎩
⎨
⎧

=
otherwise ;

NIG ain and between connectiondirect a is thereif
false

nodnet;true
)net,nod(isMemberOf

Equation 2-Node-network membership function.

Similarly, a membership function can be defined among networks as:

⎪⎩

⎪
⎨
⎧

=
otherwise ;

names rulen associatioubnet supernet/s
NIG with ain and between connectiondirect a is thereif

false

nodnet;
true)net,net(isMemberOf ersupsub

Equation 3-Network-network membership function.

For example, the following relations hold in the NIG shown in Figure 44:

• isMemberOf(n2, Network1)= true

• isMemberOf(n3, Network3)= false

• ∀ ni: isMemberOf(ni, SystemNetwork)= true

113

• isMemberOf(n7, Network2)= true

• isMemberOf(Network2, SystemNetwork)= true

8.2.2 Network Paths Function

A network path function can be defined between any two nodes (the sender and the

receiver of a typical distributed message) in a system. Recall from Section 5.5 that given

a sender (ns) and a receiver node (nr), there can be several network paths between two

nodes. Thus, we devise a function to calculate the ordered sets of networks, which a

message sent from ns will go through until it reaches nr. NIG can be used to derive

network paths. For example assuming the NIG of Figure 44, the network paths (only one

in this case) between n4 (as the sender node) and n6 (as the receiver node) will be:

getNetworkPaths (n4, n6)={<Network2, Network3>}

Recall that there can generally be several paths (routes) between two nodes in a network.

Routing algorithms are usually used to maximize the network bandwidth and/or balance

load in large networks by sending data through various paths between two nodes. Thus,

we have considered a generalized case for this function to account for several paths

between any two given nodes.

8.3 Distributed Traffic Usage Attributes

In the current resource usage analysis, we consider four attributes for distributed traffic

usage:

• Traffic location: nodes vs. networks (Section 8.3.1)

• Traffic direction (for nodes only): in, out, or bidirectional (Section 8.3.2)

114

• Traffic type: data traffic vs. number of messages (Section 8.3.3)

• Traffic duration: instant vs. interval (Section 8.3.4)

8.3.1 Location: Nodes vs. Networks

If the intermediate network nodes (such as routers and gateways) are left out from the

system software point of view, distributed traffic can essentially go through two places in

a system: nodes or networks. In a typical distributed message scenario, the message is

initiated from the sender node, and travels along the network path from the sender to

receiver node. The network path (defined in Section 8.2.2) is made up of one or more

networks in the system. Finally, the message arrives at the destination node, where it is

supposed to be handled appropriately (depending on its type: call or reply). We define

traffic location to be the locality of traffic flow in a system, which can be either a network

or a node.

Let us consider an example. A system made of four nodes and three networks is shown in

Figure 45. Topological and NIG representations of the system’s network

interconnectivity are shown in this figure. Nodes n1 and n2 are members of Network1.

Nodes n3 and n4 are members of Network2. Network1 and Network2 are connected through

System Network.

115

n1 n2

Network2

n3 n4

Topological representation

System Network

Network1 Network2

System
Network

Network1

n1 n2 n3 n4

NIG (Network Interconnectivity Graph)

Figure 45-A system made up of four nodes and three networks.

Considering the system topology shown in Figure 45, suppose there are several processes

running on each node and several SDs in the system. For simplicity, let us consider only

three DCCFPs, which are extracted from SDs by the control flow analysis technique

described in Chapter 6. To clarify the difference between traffic location in term of nodes

or networks, the timed inter-node and inter-network representations (Section 6.5) of the

three mentioned DCCFPs are shown in Figure 46-(a) and (b), respectively.

As it can be seen in Figure 46-(a), DCCFP1 has two call and reply messages between

nodes n1 and n2, which both are members of Network1 (according to the NIG in Figure

45). Therefore, traffic entailed by DCCFP1 only goes through Network1, as shown in

timed inter-network representation of DCCFP1 in Figure 46-(b). DCCFP3 has messages

going across Network1 and Network2, which have to go via SystemNetwork. This is shown

in representation of DCCFP3 in Figure 46-(b), where messages with gray lines represent

“implicit traffic”, imposed by the original traffic imposed by the message. For example,

the first call message of DCCFP3 goes from Network1 (time=1ms) to Network2

(time=3ms) and in addition to traffics made on Network1 and Network2, this message puts

an implicit traffic on SystemNetwork.

116

DCCFP3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n1

n2

n3

DCCFP1

time (ms)

n1

n2

no
de

s

DCCFP2

n3

n4

n4 System Network

ne
tw

or
ks

Network2

Network1

Network1

DCCFP3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

DCCFP1

time (ms)

DCCFP2

Network2

(a) Timed Inter-Node Representation of DCCFPs (b) Timed Inter-Network Representation of DCCFPs
implicit traffic

Figure 46-Timed inter-node and inter-network representations of three DCCFPs.

8.3.2 Direction (for nodes only): In, Out, Bidirectional

As discussed above, traffic location can be either a network, or a sender/receiver node. In

case of a node, we can think of three traffic measurements in terms of the traffic

direction. In our definition, traffic direction of a node can be either in, out or

bidirectional form. This is due to the fact that a node is an end point of traffic in the

system. Since a network in the system only relays the traffic, i.e., it transmits the traffic to

other networks/nodes, we therefore only consider the bidirectional traffic for networks.

For simplicity, when we talk about traffic for networks in this report, we implicitly mean

the bidirectional traffic for networks.

For example, consider the timed inter-node network representation of DCCFP1 in Figure

46-(a). Node n1 sends traffic on time intervals (1-2ms) and (8-11ms) (out traffic for n1),

while it receives traffic on time intervals (4-7ms) and (12-13ms) (in traffic for n1). n1 is

idle (not sending nor receiving any traffic) in other times.

117

8.3.3 Type: Amount of Data vs. Number of Network Messages

From a system-software point of view, distributed traffic has two types:

1. The amount of data, and

2. The number of distributed messages

For example, consider a simple system made up of two nodes nA and nB. Node nA might

rarely communicate with nB, but when sending a message, nA sends huge amounts of data

to nB, while nB frequently sends queries to nA, and gets replies. However each request

from nB to nA and the corresponding reply has a small data size going back and forth.

Therefore, it is useful to analyze and measure distributed traffic according to both types.

We discussed how to estimate the data size of a distributed message in Section 8.1. For

the analysis of distributed traffic imposed by a distributed message in terms of number of

messages, the analysis is straight forward and we can just count each distributed message

(either call or reply) as one message over a network. To compare data traffic versus

message traffic, let us consider the example in Figure 47.

To compare data versus message traffic, let us look at the control flow path CCFP2 in

CCFG(M) shown in Figure 47. Let us show the DCCFP of CCFP2 as DCCFP2. Note that,

for simplicity, only the CCFG nodes inside CCFG(M) are shown for DCCFP2 in Figure

47 and not those belonging to CCFG(P) and CCFG(N). If we consider data traffic as the

distributed traffic, we measure the amount of data (in bytes) sent on the network by

DCCFP2. In the time interval shown in the SD M (Figure 47), DCCFP2 has one call

message m2(op) and one reply message rv2=m2(op). Call message m2(op) is sent from

node n1 to n2, where the parameter of the message (op) can be of any data size. For

118

simplicity let us assume that the size of message m2(op) is 10 KB and the size of

returned message rv2=m2(op) is 50 KB (these can be calculated using the method in

Section 8.1). With these assumptions, we can draw a distributed traffic diagram showing

data traffic for DCCFP2 as shown in Figure 48. The x-axis is time in milliseconds and

only the time interval shown in the SD M is considered.

n1 n2

p1_1 p1_2

...

p2_1 p2_2

...

hhhhhhhhhhhhhhhhhhh

...

m1(p1,p2)

Network

jhhhhhhhhhhhhhhkjjjffff

...

m(p1,p2)

rv1=m1(p1,p2)

m2(op)

rv2=m2(op)

CCFG(M)

[cond == TRUE]

...

m1(p1,p2) m2(op)

CCFP1 CCFP2
jhhhhhhhhhhhhhhkjjjffff

...

m2(op)

sd M

[cond == TRUE]

[else]

alt

Nref

Pref

sd N sd P

o1
{node=n1 ,process=p1_1}

o2
{node=n2 ,process=p2_1}

o3
{node=n2 ,process=p2_2}

[else]

...

rv2rv1

«RTstimulus»
{RTstart=(1,'ms')
RTend=(2,'ms')}

«RTstimulus»
{RTstart=(4,'ms')
RTend=(5,'ms')}

«RTstimulus»
{RTstart=(1,'ms')
RTend=(3,'ms')}

«RTstimulus»
{RTstart=(6,'ms')
RTend=(7,'ms')}

Figure 47-A typical system composed of two nodes and four processes.

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8

time (ms)

to
ta

l n
et

w
or

k
tr

af
fic

(d
at

a
tr

af
fic

) -
 in

 K
B

Figure 48-Network traffic diagram (data traffic) of DCFP2 in Figure 47.

119

On the other hand, if we consider number of distributed messages as the distributed

traffic, the distributed traffic diagram of DCCFP2 will be as Figure 49 shows. Each call or

reply message counts for one unit of distributed message in this analysis.

0

1

2

0 1 2 3 4 5 6 7 8

time (ms)

to
ta

l n
et

w
or

k
tr

af
fic

(#
 o

f m
es

sa
ge

s)

Figure 49-Network traffic diagram (number of distributed messages) of DCFP2 in

Figure 47.

Each of the above two distributed traffic types (amount of data vs. number of messages)

can be analyzed at different levels of granularity in a system: message-level (in a SD),

DCCFP-level (in a SD), SD-level, process-level, node-level, or the entire system.

Different levels of granularity can be extracted from the system metamodel as shown in

Figure 11. An example of such analysis is given in Section 8.4. The granularity

considered in this work is message-level, unless otherwise mentioned.

8.3.4 Duration: Instant vs. Interval

In the previous sections, we analyzed distributed traffic per each time instant. When

analyzing traffic, we define two types of time analyses: instant and interval. Instant

traffic is the amount of traffic measured in one time instant. In a similar way, one can

analyze the distributed traffic over an interval of time. We refer to this type of traffic as

interval traffic.

120

We saw that a DCCFP might have different usage levels of distributed traffic in

different time instants. Therefore we can add up instant duration traffic values over a

given amount of time to get the traffic value over an interval. For example, data and

message traffic diagrams of DCCFP2 were shown in Figure 48 and Figure 49,

respectively. Those diagrams show the instant traffic of DCCFP2. Suppose we want to

see how much data and message traffic DCCFP2 imposes during a given interval of time,

say 10 ms. Considering Figure 48, it can be said that CCFP2 imposes 60 KB data traffic

and two units of message traffic during the first 10 ms from its start time.

As another example, suppose the data traffic into a node n is to be analyzed (in-data

traffic). Note that the level of granularity in this case is a node. The node under study has

many processes running on it and processes communicate with other nodes in the system.

A typical in-data traffic diagram of n can be sketched as shown in Figure 50, which is

actually derived by adding all message-level traffic values for all the messages sent to n.

time (ms)

in
-d

at
a

tra
ffi

c
(K

B
)

3 ms

tinstanttinterval-from tinterval-to

Figure 50-“In-data” traffic diagram of a node, highlighting difference between

instant and interval (3ms) traffic.

According to Figure 50, if one wants to find the time when maximum instant traffic

happens in n, the answer would be time= tinstant. However, if the question is to find an

121

interval of time (say 3 ms) when the maximum interval traffic happen in n, then the

answer would be (tinterval -from, tinterval -to).

8.4 Aspects to Consider when Estimating Network Traffic Usage

We consider the following aspects when estimating network traffic usage and discuss

their effects on the formalized traffic functions (Section 8.5) in Section 8.5.

- Effects of multiple network paths between nodes (Section 8.4.1)

- Delay in network transmissions (Section 8.4.2)

- Effects of concurrent processes on distributed traffic (Section 8.4.4)

8.4.1 Effects of Multiple Network Paths between Nodes

Recall from Section 8.2.2 that there can be in general several network paths between a

pair of nodes. Thus, in general, the data sent from a node to another is actually divided

into several parts and is transmitted through several paths. Such a dispatching is handled

by networking components of a system (e.g., routers and network protocols). Consider

the example Network Interconnectivity Graph (NIG) in Figure 51, where there are three

network paths from srcNode to destNode: {<neta, netb>, <netc, netd, nete>,<netc, netf,

netg>}. In the current work, for simplification, we assume that the data sent from a source

node (e.g., srcNod) to a destination (e.g., destNode) is divided into equal parts and is

transmitted through all the paths between the two nodes. In other words, we assume that

the networks of a SUT are not adaptive (do not have intelligent load balancing features).

For example, assuming that 300 KB of data is going to be sent from srcNode to destNode

in the NIG in Figure 51, we assume that the data is divided into three equal 100 KB

122

pieces (by network components) and each of the pieces will be sent via one of the

three paths between the two nodes. Considering networks neta and netc in this NIG, we

can thus conclude that 1/3 and 2/3 of the data are transmitted through each of these

networks, respectively.

«node»
srcNode

«network»
neta

«node»
destNode

«network»
netb

«network»
netd

«network»
netc

«network»
nete

«network»
netg

«network»
netf

Figure 51-Example Network Interconnectivity Graph (NIG).

Furthermore, we assume that the network paths’ dispatching policy does not change

during the transmission of a message, i.e., the transmission shares of each of the involved

networks stay the same during the entire transmission. For example, the share of neta and

netc in the above example stay at same ratios of 1/3 and 2/3 during the transmission of a

message. In real complex DRTS, adaptive dispatching policies are usually used to

balance load in each time instant. For example, assuming that such a policy is in place for

the NIG in Figure 51, most of the data of a large message might be transmitted via the

neta netb path in a first interval of the message transmission, while the policy routes the

traffic via the netc netd nete path in the last interval of the transmission. To relax such a

limitation, more information from the routing and network protocols involved in a SUT

should be provided such that we can calculate the transmission shares of each

123

network/path in each time instant. This would help to derive more precise stress test

requirements.

Therefore, we devise a function called netTransmissionShare (Equation 4) based on the

above simplifications to calculate such shares. If the given network is a member of at

least one path between the two nodes, the function returns the ratio of the number of

paths between two nodes in which the network is a member of, to the total number of

paths between two nodes. Otherwise, the function returns 0.

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∉

=
∧∈∈=

∧∈

=

)nNodedestinatio,sourceNode(PathsgetNetworknetwork;

)nNodedestinatio,sourceNode(PathsgetNetworkallPaths
}pathnetwork|)nNodedestinatio,sourceNode(PathsgetNetworkpath{paths

)nNodedestinatio,sourceNode(PathsgetNetworknetwork;

|allPaths|
|paths|

)nNodedestinatio,sourceNode,network(ssionSharenetTransmi

0

Equation 4-A function to calculate the shares of a network in data transmissions

between two nodes.

To avoid the above simplification (equal shares for all network paths between two

nodes), the netTransmissionShare function can be modified in future works to

incorporate more realistic cases in adaptive networks and networks with intelligent load

balancing. For example, in real-world applications, more traffic is usually sent through

networks with higher bandwidths. The netTransmissionShare function is used in the

network traffic usage formulas in the rest of this article to calculate the amount of traffic

on a specific network. This will enable our test methodology to have a rough estimate of

anticipated traffic on a network, and thus, to find test requirements, which if executed,

will lead to high traffic (stress).

124

8.4.2 Delay in Network Transmissions

There are usually inevitable delays in network transmissions [78]. For example, after a

message is sent to a network to be transmitted, it usually takes a short time for the

network to start the actual transmission of data. In the communication networks

community, such delays are usually analyzed and measured using probability

distributions [79], e.g., normal or gamma distributions. We thus consider such delays and

their corresponding probability distributions as a source of imprecision in our quantitative

analysis of network traffic usage in this chapter and test requirements derivation process

in Chapter 9, which will be based on the quantitative analyses in the current chapter.

Assuming that transmission delay probability distributions have been analyzed and

calculated for a SUT, let us discuss how such information can be modeled in a Network

Deployment Diagram (NDD). As modeling such information is not mentioned in the

UML 2.0 specification, we define a tagged-value called transmissionDelay which can be

annotated to networks in a NDD. This tagged-value takes values of type RTtimeValue,

defined in the UML-SPT profile [12]. Two of such value types are probability

distributions (discussed in more detail in Section 10.1) and exact timing values (e.g., 2

ms). For example, the NDD in Figure 52 is annotated with network transmission delay

information using the transmissionDelay tagged-value: networks neta, netb and netc have

been specified as having delays with normal distributions characterized by two

parameters. For networks with no transmissionDelay tagged-values, we assume that

transmission delays are 0. In this example, when a message is sent from srcNode to

destNode through the network path netanetcnetd, the first network packet of the message

125

starts to be delivered to destNode, after 25 (15+10) ms on average, due to delays in

two of the involved networks.

«node»
srcNode

«network»
neta

«node»
destNode

«network»
netb

«network»
netd

«network»
netc

«network»
nete

transmissionDelay=
((’normal’, 15, 1), ms)

transmissionDelay=
((’normal’, 5, 1), ms)

transmissionDelay=
((’normal’, 10, 2), ms)

Figure 52-A Network Deployment Diagram (NDD) annotted with network

transmission delay information.

Therefore, we define a function called expNetworkDelay (Equation 5) based on the above

discussions to calculate the expected cumulative transmission delay from a source node to

a network (or a destination node). Recall from Section 8.4.1 that we assumed multiple

network paths between two nodes (or a node and a network). Thus, we estimate the

cumulative transmission delay between a source and a destination to be the average of

cumulative transmission delays of all paths between them. The cumulative transmission

delay of a path is calculated by adding the delays of all the networks in the path.

Furthermore, since delays are usually measured by probability distributions, we thus use

the expected values of such distributions. EDV in Equation 5 stands for Expected Delay

Value, and EDV(net) returns the expected value of the transmission delay probability

distributions of network net.

126

destsrcNodeP

)net(EDV|P|)dest,srcNode(ayNetworkDelexp
Ppath pathnet

 to from paths ofSet

1

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ ∑

∈∀ ∈∀

Equation 5-A function to calculate the data transmissions delay of network between

a source node and a network (or a destination node).

Note the averaging all the cumulative transmission delays for all paths between a source

and a destination in a NDD is a simplification of real-life systems.

To avoid this simplification, the expNetworkDelay function (the 1/|P| expression, in

specific) can be modified in future works to incorporate different weighting mechanism

for adding up the cumulative delays for all paths between a source and a destination in a

NDD, e.g., some paths might be rarely used, thus they should have less impact on the

cumulative network delay.

8.4.3 Traffic Distribution of Messages with Durations more than a Time Unit

When the durations of a (data-intensive) distributed message is more than a time unit,

analyzing the network traffic entailed by transmission of the message can be complicated.

Different mathematical traffic distribution models for large data messages have been

studied in the computer and communication networks literature (e.g., [80, 81]). Such

models take into account the different physical properties of the deployed network of a

SUT and investigate statistically the traffic flow of large messages across the network.

The simplest traffic model studied in the literature is the one with uniform distribution, in

which it is assumed that equal portions of a large message will be transmitted in each

time instant. For example, consider a distributed message msg with data size of 20 MB

whose execution time duration (end time – start time) is 10 time units (say 4 s). By using

127

the uniform distribution as the traffic model, we can estimate that 5 MB portions of

the message will be transmitted in each second. It has been shown (e.g., [81]) that

uniform distribution can be used as an acceptable approximate traffic model in many

applications. Thus, for the sake of simplicity, we choose such a model in this thesis and

will use it in the design of our traffic usage analysis functions in Section 8.5.

8.4.4 Effect of Concurrent Processes

According to the SUT model in Figure 11, several processes can run concurrently on a

single node. Each of the processes might be in the process of running a method.

Therefore, the distributed traffic caused by the node will be the sum of the traffics by all

its concurrent processes. For example, the data traffic diagram of a node with two

processes Process1 and Process2 over an interval of 10 milliseconds is shown in Figure

53. It is evident that a node’s total traffic in a single time instant is the sum of the traffic

caused by each of its processes.

0

5

10

15

20

25

30

0 5 10

time (ms)

ne
tw

or
k

da
ta

 tr
af

fic
 (K

B
)

Node

Process2

Process1

Figure 53-The data traffic diagram of a node with two processes.

128

8.5 A Class of Traffic Usage Analysis Functions

As discussed in Chapter 6, each SD can have several DCCFPs, where each DCCFP is a

path in a SD’s CCFG and includes only distributed call and reply messages. Different

attributes of distributed traffic were also discussed in Section 8.3 which included:

location, direction, type and duration.

In this section, a class of functions is proposed to measure distributed traffic entailed by

DCCFPs. The functions aim to take into account the traffic attributes mentioned earlier.

First, the naming convention of the functions is given in Section 8.5.1. Formal definitions

of the functions are then proposed in Section 8.5.2 along with some examples on how the

function values can be calculated.

8.5.1 Naming Convention

A tree structure denoting the traffic functions’ naming convention and their input

parameters is shown in Figure 54.

Traffic Direction

Traffic Location

Traffic Duration

Traffic Type
DT MT DT MT DT MT DT MT DT MT DT MT

Ins Int Ins InsInt Int

Net Nod

In Out

Net: Network
Nod: Node

Ins: Instant
Int: Interval

DT: Data Traffic
MT: Message Traffic

In
Out

Obj
Obj: Object

Bi: Bidirectional
Bi

DT MT DT MT

Ins Int

Input Parameters (p,net,t) (p,net,int) (p,nod,t) (p,nod,int)
(p,nod,t) (p,nod,int) (p,nod,t) (p,nod,int)

(p,obj,t) (p,obj,int) (p,obj,t) (p,obj,int)

Figure 54-Naming convention for the traffic usage functions.

129

The root node of the tree has a null label. A function name is determined by

traversing from the root to a leaf node and concatenating all the node labels in order. The

top four layers of the tree in Figure 54 correspond to the four query attributes discussed in

Section 8.3. By counting the number of paths from the root node of the tree to leaf nodes,

we would get 28 paths (4 for networks, and 12 for node and object categories each). This

means that there will be 28 different traffic functions to be formalized.

The bottom layer in Figure 54 specifics the input parameters of a traffic function with the

name made by traversing from the root to a leaf node. For example, consider the path

specified by the bold line in Figure 54. This path represents function NetInsDT.

According to the bottom layer, the input parameters of this function would be (ρ, net, t).

This function returns the instant (Ins) data traffic value (DT) of a given DTCCFP (ρ) for a

given network (net) at a given time (t). Input parameters with int in the bottom layer in

Figure 54 correspond to the functions with interval duration. The start and end times of

an interval, i.e., int=(start, end), should be provided for such functions. For functions

with node or object traffic location, the input parameters include either nod or obj as

traffic location, respectively.

More detailed descriptions of the functions are given next. Functions with network, node

and object traffic location are described in Sections 8.5.2.1, 8.5.2.2 and 8.5.2.3,

respectively.

8.5.2 Functions

In this section, traffic functions are listed using the naming convention given in Figure

54. The functions are grouped according to the top layer (traffic location) of the tree in

130

Figure 54. Mathematical formulas to calculate some traffic functions are provided

below. Other traffic functions can be derived in similar fashion. In the following

mathematical formulas, for brevity, msg.start and msg.end stand for msg.startTime and

msg.endTime. msg.s.n and msg.r.n stand for msg.sender.node and msg.recevier.node.

8.5.2.1 Traffic Location: Network

1. NetInsDT: returns the value of instant data traffic, a given DCCFP entails on a given

network from a given time instant t.

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∈
∧≤≤

+
∧∈∃

=

∑

otherwise;0

)node.receiver.msg,oden.sender.msg
(PathsgetNetworknet

end.msgt)oden.sender.msg,net
(ayNetworkDelexpstart.msg

msg|msg;

)msg(dur/)msg(size
).node.receiver.msg,oden.sender.msg,net

(ssionSharenetTrnasmi

)t,net,(NetInsDT

ii

ii

i

ii

msg
ii

ii
i

ρ

ρ

where size() returns the size of a message in bytes as described in Section 8.1. dur()

returns the time duration of a message which can be calculated as:

dur(m)=m.startTime–m.endTime. Since a message can span over several time units,

our definition for the data traffic value of a message at a time unit is its total data size

divided by its duration, which will give the message’s traffic per time unit. Function

netTransmissionShare (Equation 4 in Section 8.4.1) returns a coefficient which

denotes the share of the network net in data transmissions between the sender and

receiver objects of a message. Function expNetworkDelay (Equation 5 in Section

8.4.2) returns the delay time distance between net and the sender of each message.

This function is used to account for transmission delays in network paths in our

quantitative analysis of network traffic usage here and the test requirements

derivation process in Chapter 9.

131

2. NetInsMT: returns the value of instant message traffic, a given DCCFP entails on

a given network at a given time instant.

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∈
∧≤≤

+
∧∈∃

=

∑

otherwise;0

)node.receiver.msg,oden.sender.msg
(PathgetNetworknet

end.msgt)oden.sender.msg,net
(ayNetworkDelexpstart.msg

msg|msg;
)node.receiver.msg,oden.sender.msg,net

(ssionSharenetTrnasmi

)t,net,(NetInsMT

ii

ii

i

ii

msg iii

ρ

ρ

3. NetIntDT: returns the value of interval data traffic, a given DCCFP entails on a given

network during a given time interval. NetIntDT can be calculated using NetInsDT.

∑ =

=
=

endintt

startintt
tnetNetInsDTintnetNetIntDT .

.
),,(),,(ρρ

4. NetIntMT: returns the value of interval message traffic, a given DCCFP entails on a

given network during a given time interval.

∑ =

=
=

endintt

startintt
tnetNetInsMTintnetNetIntMT .

.
),,(),,(ρρ

8.5.2.2 Traffic Location: Node

1. NodInInsDT: returns the value of instant data traffic, a given node receives by

running a given DCCFP at a given time instant. “In” denotes that the traffic direction

is towards the node as explained in Section 8.3.2.

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
∧≤≤

∧∈∃

=

∑

otherwise;0

nodnode.receiver.msg
end.msgtstart.msg

msg|msg;)msg(dur/)msg(size

)t,nod,(NodInInsDT
i

ii

ii
msg

ii
i

ρ

ρ

2. NodInInsMT: returns the value of instant message traffic, a given node receives by

running a given DCCFP at a given time instant.

132

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
∧≤≤

∧∈∃

=

otherwise;0

..
..

|;||

),,(nodnodereceivermsg
endmsgtstartmsg

msgmsgmsg

tnodNodInInsMT
i

ii

iii ρ

ρ

3. NodInIntDT: returns the value of interval data traffic, a given node receives by

running a given DCCFP during a given time interval.

∑ =

=
=

endintt

startintt
tnodNodInInsDTintnodNodInIntDT .

.
),,(),,(ρρ

4. NodInIntMT: returns the value of interval message traffic, a given node receives by

running a given DCCFP during a given time interval.

∑ =

=
=

endintt

startintt
tnodNodInInsMTintnodNodInIntMT .

.
),,(),,(ρρ

5. NodOutInsDT: returns the value of instant data traffic, a given node sends by running

a given DCCFP at a given time instant. “Out” denotes that the traffic direction is from

the node as explained in Section 8.3.2.

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
∧≤≤

∧∈∃

=

∑

otherwise;0

nodnode.sender.msg
end.msgtstart.msg

msg|msg;)msg(dur/)msg(size

)t,nod,(TNodOutInsD
i

ii

ii
msg

ii
i

ρ

ρ

6. NodOutInsMT: returns the value of instant message traffic, a given node sends by

running a given DCCFP at a given time instant.

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
∧≤≤

∧∈∃

=

otherwise;0

..
..

|;||

),,(nodnodesendermsg
endmsgtstartmsg

msgmsgmsg

tnodTNodOutInsM
i

ii

iii ρ

ρ

7. NodOutIntDT: returns the value of interval data traffic, a given node sends by running

a given DCCFP during a given time interval.

133

∑ =

=
=

endintt

startintt
tnodTNodOutInsDintnodTNodOutIntD .

.
),,(),,(ρρ

8. NodOutIntMT: returns the value of interval message traffic, a given node sends by

running a given DCCFP during a given time interval.

∑ =

=
=

endintt

startintt
tnodTNodOutInsMintnodTNodOutIntM .

.
),,(),,(ρρ

9. NodBiInsDT: returns the value of instant data traffic, a given node “sends or receives”

by running a given DCCFP at a given time instant.

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=∨=
∧≤≤

∧∈∃

=

∑

otherwise;0

)nodnode.receiver.msgnodnode.sender.msg(
end.msgtstart.msg

msg|msg;)msg(dur/)msg(size

)t,nod,(NodBiInsDT
ii

ii

ii
msg

ii
i

ρ

ρ

10. NodBiInsMT: returns the value of instant message traffic, a given node “sends or

receives” by running a given DCCFP at a given time instant.

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=∨=
∧≤≤

∧∈∃

=

otherwise;0

)....(
..

|;||

),,(nodnodereceivermsgnodnodesendermsg
endmsgtstartmsg

msgmsgmsg

tnodNodBiInsMT
ii

ii

iii ρ

ρ

11. NodBiIntDT: returns the value of interval data traffic, a given node “sends or

receives” by running a given DCCFP during a given time interval.

∑ =

=
=

endintt

startintt
tnodNodBiInsDTintnodNodBiIntDT .

.
),,(),,(ρρ

12. NodBiIntMT: returns the value of interval message traffic, a given node “sends or

receives” by running a given DCCFP during a given time interval.

∑ =

=
=

endintt

startintt
tnodNodBiInsMTintnodNodBiIntMT .

.
),,(),,(ρρ

134

8.5.2.3 Traffic Location: Object

We only present the ObjInInsDT and ObjInInsMT functions next. The other functions for

the object traffic location (ObjInIntDT, ObjInIntMT, ObjOutInsDT, ObjOutInsMT,

ObjOutIntDT, ObjOutIntMT, ObjBiInsDT, ObjBiInsMT, ObjBiIntDT, and ObjBiIntMT)

can be derived similar to the functions of the node traffic location.

1. ObjInInsDT: returns the value of instant data traffic, a given object receives by

running a given DCCFP at a given time instant.

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
∧≤≤

∧∈∃

=

∑

otherwise;0

objobject.receiver.msg
end.msgtstart.msg

msg|msg;)msg(dur/)msg(size

)t,obj,(ObjInInsDT
i

ii

ii
msg

ii
i

ρ

ρ

where r and o are shorthand notations for receiver node and object fields of a

message.

2. ObjInInsMT: returns the value of instant message traffic, a given object receives by

running a given DCCFP at a given time instant.

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
∧≤≤

∧∈∃

=

otherwise;0

..
..

|;||

),,(objobjectreceivermsg
endmsgtstartmsg

msgmsgmsg

tobjObjInInsMT
i

ii

iii ρ

ρ

An Example

An example is given here to show how a distributed traffic function can be calculated.

Let a DCCFP ρ=<CM1,CM2,RM1,RM2> and the messages of ρ are as the following:

CM1=((o1,O1,n1),(o2,O2,n2),t,<(p1:-),(p2:-)>,1,2)

CM2=((o2,O2,n2),(o3,O3,n3),u,<(p3:-),(p4:-)>,3,5)

RM1=((o3,O3,n3),(o2,O2,n2),<(x=u(-),-)>,8,9)

135

RM2=((-,-,-,N),(o1,O1,n1),<(y=t(-),-)>,12,13)

Let us suppose a SUT’s NIG to be the one shown in Figure 36. Also suppose that the

sizes of the four messages of DTCCFP ρ have been calculated using the RUF in Equation

1 and are 90 (CM1), 80 (CM2), 30 (RM1), and 50 (RM2) kilobytes. Using the above

information, the following usage functions can be calculated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

NetInsDT(p,Network,t)

t (ms)

100

K
B

90
40 40 30

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

NetInsMT(p,Network,t)

t (ms)

1

#

KB
NetworkNetInsDTNetworkNetInsDT

tNetworkNetInsDT

NetworkNetIntDT

t

1103040400
)8,,()2,,(

),,(

))9,2(,,(
8

2

=++++=
++=

=∑ =

L

L ρρ

ρ

ρ

136

Chapter 9

TIME-SHIFTING STRESS TEST TECHNIQUE

This section describes the excerpts from our first, simple heuristic-based stress test

technique to stress test distributed traffic. The technique, referred to as Time-Shifting

Stress Test Technique, is an optimization technique which is based on shifting DCCFPs

along the time axis to find the time instant when maximum possible stress can occur.

The chapter is structured as follows. The problem statement is revisited in Section 9.1,

where we express the problem using the formalism given in Chapter 5 to Chapter 8. Note

that an initial problem statement was given in Section 2.2, where it was discussed in a

general form, without prior knowledge of the modeling and formalism proposed in

Chapter 5 to Chapter 8. Section 9.2 presents the heuristic of our stress test strategy. An

example is presented in Section 9.3 to illustrate the heuristic.

Since we believe that GASTT is more interesting in terms of approach than TSSTT, due

to space constraints, we do not report the details of TSSTT in this thesis. Interested

readers can refer to [82] for extensive discussion on TSSTT. A shorter version of how

137

TSSTT works is also reported in [83]. We present in Section 9.4 only excerpts from

TSSTT.

9.1 Problem Statement: Revisited

Having formalized the input and test model needs for our stress test technique in Chapter

5-Chapter 8, we re-state the problem in a more precise manner as follows:

Suppose the UML 2.0 model of a distributed SUT is given. As we discussed earlier,

the model should include at least the SUT’s sequence diagrams, class diagrams, the

network deployment diagram(s) showing interconnectivity and the network hierarchy

of the system, and inter-SD constraints are specified using a MIOD. Suppose the CFA

of system’s SDs is done using the techniques in Chapter 6, that Inter-SD constraints

are analyzed according to the techniques in Chapter 7, that SUT’s Independent-SD

Sets (ISDSs) and Set of SD Sequences (SSDS) are derived, and that the distributed

traffic of the system is formalized as stated in Chapter 8. The problem is to

automatically find and schedule a subset of system DCCFPs which will put a given

set of networks or nodes under stress according to a given stress test strategy (defined

in terms of location, direction, type or duration) in order to maximize the chance of

exhibiting distributed traffic faults.

9.2 Stress Test Heuristic

Given a specific test objective for stress testing, for instance the data traffic over a

specific network in the SUT, our heuristic is to first identify, for each DCCFP of SDs, a

message (or a set of messages) which imposes maximum traffic. Let us refer to such

messages as maximum stressing messages. Intuitively, if in a given SD’s DCCFP, none of

138

the messages match the test objective (e.g., messages do not involve the selected

network to be stress tested), then the SD’s DCCFPs is discarded. If all the DCCFPs of a

SD are discarded, then the SD is discarded. As a second step, using the start times of the

maximum stress messages selected in each DCCFP, the selected DCCFPs are scheduled

in a way that maximizes stress for the test objective. In the example above, selected

DCCFPs are scheduled such that the maximum stress messages happen at the same time,

thus resulting in maximum data traffic over the network under stress test.

A stress test requirement set will be generated by our technique. Assuming that the SUT

has n SDs (SD1, …, SDn), a test requirement set will be a schedule of a selected set of

SDs’ DCCFPs and is an ordered set in the form of:

<(ρ1max, αρ1max), …, (ρnmax, αρnmax)>

where each scheduled DCCFP is represented as a tuple (ρimax, αρimax). ρimax is the DCCFP

in the DCCFP set of SDi, that maximizes the test objective. αρimax is the start time of

DCCFP ρimax in the schedule. Our test heuristic is illustrated next on a simple example.

9.3 An Example to Illustrate the Heuristic

Suppose a typical SUT whose NIG is shown in Figure 55: nodes n1, n2 and n3 can

communicate over a network (SystemNetwork).

System
Network

n1 n2 n3

Figure 55-A simple system NIG.

139

For simplicity, let us assume that the CFA of the system’s SDs yielded four DCCFPs

(DCCFP1,...,DCCFP4). The timed inter-node representations (described in Section 6.5) of

those DCCFPs are shown in Figure 56-(a), where each DCCFP includes several

distributed messages. For example, among DCCFP1‘s messages, there is a call message

starting in time t=1ms from node n2 to node n3 which lasts until time t=4ms and a return

message from n2 to n1 from time=9 to time=10.

Let us further suppose that we want to derive test requirements for network instant data

traffic (NetInstDT) stress for network SystemNetwork: i.e., we want to schedule the

execution of DCCFPs and find a time instant when we can maximize data traffic over

SystemNetwork. To visualize the data traffic incurred by DCCFP1,...,DCCFP4 over the

network SystemNetwork, NetInsDT(DCCFPi,SystemNetwork,t) is depicted in Figure 56-

(b) for each DCCFP. Again for simplicity, the calculation steps of those functions are not

shown.

The next step of the heuristic is to find the maximum stress messages of each DCCFP.

This is shown graphically in Figure 56-(b) by dashed lines around such messages. Recall

that the criterion to find these messages is that the target of the stress test, in our case

SystemNetwork, must be part of the path in a message’s sender to receiver. Furthermore,

the size of such messages has the maximum value among all messages of a DCCFP. In

our example, since all nodes (n1, …, n3) are members of the system network, therefore all

distributed messages go through this network.

After finding maximum stress messages in each DCCFP, the next (and final) step in the

derivation of stress test requirements is to use the start times of the maximum stress

messages we have identified in each DCCFP to schedule the DCCFPs such that these

140

maximum stress messages all run concurrently. This is illustrated in Figure 56-(c). As

shown, DCCFP1, DCCFP2, DCCFP3, and DCCFP4 will be scheduled to start running at

times 0, 8, 6 and 9 (milliseconds) respectively. With this schedule, the highest data traffic

stress in the system network will occur at time=9ms from the start of the test execution.

0
35

0
70

00
30 30 30 0

60
0

40
0

80

DCCFP1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n1

n2

n3

DCCFP4

time (ms)

n1

n2

no
de

s DCCFP3

n2

n3

DCCFP2

n1

n2

n3

NetInsDT(DCCFP1, SystemNetwork, t)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

NetInsDT(DCCFP4, SystemNetwork, t)

NetInsDT(DCCFP3, SystemNetwork, t)

NetInsDT(DCCFP2, SystemNetwork, t)

D
T

(in
 K

B)

0
65 65 65

00

90 90

0 20 0 0
30 30 30

0 0 0 0 00 0 0
60 60 60

0 0 0 0

70
0

45
0 0

80 80

0 0
60 60 60

0
70 70

time (ms)

maximum stress message
for each DCCFP

0
35

0
70

0
30 30 30 0

60
0

40
0

80

NetInsDT(DCCFP1, SystemNetwork, t)

NetInsDT(DCCFP4, SystemNetwork, t)

NetInsDT(DCCFP3, SystemNetwork, t)

NetInsDT(DCCFP2, SystemNetwork, t)

D
T

(in
 K

B
)

0
65 65 65

0

90 90

0 20 0 0
30 30 30

0 0 0 00 0 0
60 60 60

0 0 0 0

70
0

45
0

80 80

0 0
60 60 60

0
70 70

time (ms)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time instance when
traffic is maximized.

(b) Deriving NetInsDT(DCCFPi, SystemNetwork, t)
functions and finding maximum stress messages(a) Timed inter-node representation of DCCFPs

(c) Deriving instant stress schedule

call mesage

reply mesage

Figure 56-Heuristic to stress test instant data traffic on a network.

141

9.4 Excerpts

Since we believe that GASTT is more interesting in terms of approach than TSSTT, due

to space constraints, we do not report the details of TSSTT in this thesis. Interested

readers can refer to [82] for extensive discussion on TSSTT. A shorter version of how

TSSTT works is also reported in [83]. We present next only excerpts from TSSTT.

One of TSSTT strategies is referred to as StressNetInsDT(net), which derives stress test

requirements for stress testing a network in an instant with data traffic type. To better

understand this stress test strategy, the UML activity diagram in Figure 57 depicts the

flow of activities to generate stress test requirements of StressNetInsDT(net).

StressNetInsDT(net)

1-Find maximum traffic DCCFP of each SD

1.1-Find the
maximum traffic
value, time and

messages of each
DCCFP over network

net

2-Among all ISDSs,
choose the ISDS with
maximum traffic over

network net

3-Schedule the SDs in
ISDSmax so that all their

maximum stress
messages happen at

the same time

ISDSmax

Stress Test
Requirements

Control Flow
Model (CFM)

Network Traffic
Model (NTM)

Inter-SD
Constraint Model

(ISDCM)
1.2-Among all of
DCCFPs of a SD,

find the DCCFP with
maximum traffic

value over network
net

Maximum traffic value,
time and messages of

each DCCFP

Maximum
traffic

DCCFP of
each SD

net: Requested
Network

Figure 57-Activity diagram of stress test strategy StressNetInsDT(net).

To better clarify the idea, let us recall that a MIOD is composed of several ISDSs, an

ISDS is a set of several SDs, a SD has several DCCFPs, and each DCCFP is composed of

several messages.

To generate stress test requirements, the algorithm (activity 1.1 of Figure 57) first finds

the maximum traffic messages of each DCCFP. Using the maximum traffic message, the

maximum traffic DCCFP of each SD is then chosen (activity 1.2). Then we can

142

determine the maximum traffic of each ISDS (summing the maximum traffic for each

selected DCCFPs of each SD in the ISDS). Then, among all ISDSs of a MIOD the ISDS

with maximum traffic is chosen (activity 2 of Figure 57).

143

Chapter 10

GENETIC ALGORITHM-BASED STRESS TEST

TECHNIQUE

As discussed in Section 5.3, we consider three types of SD constraints in the current

work:

• Sequential constraints: Constraints which define a set of valid SD sequences.

• Conditional constraints: Conditional constraints are related to sequential

constraints and indicate the condition(s) that have to be satisfied before a

sequence of SDs can be executed. They also define valid SD sequences

• Arrival-pattern constraints: These constraints relate to timing of SDs, that is when

a SD can start running. Considering each SD alone, it might only be allowed to be

executed in some particular time instants.

Our approach in considering the above set of constraints when generating stress test

requirements was as follows. We proposed a test requirement generation technique, as an

optimization problem, in Chapter 9 which took into account the first two types of

144

constraints (sequential and conditional). The test technique was referred to as Time-

Shifting Stress Test Technique (TSSTT). A more complex optimization algorithm, based

on genetic algorithms, will be presented in this chapter which will consider all three types

of constraints (sequential, conditional and arrival-pattern). The ideas of the optimization

algorithm in this section, referred to as Genetic Algorithm-based Stress Test Technique,

are built on the main concepts of the TSSTT.

We first discuss in Section 10.1 the types of arrival patterns presented by the UML-SPT

profile and that we consider in this chapter. In order to study the arrival patterns and their

impact on our test techniques, the timing characteristics of arrival patterns are analyzed in

Section 10.2. Along with such timing characteristics, the concept of Accepted Time Sets

is introduced in Section 10.3. Section 10.4 formulates the problem as an optimization

problem, which accounts for arrival-pattern constraints. Section 10.5 describes the

impacts of arrival patterns on various stress test strategies (Section 9.4).

Based on such impacts, instant and interval stress test strategies with arrival patterns are

addressed separately. The derivation of instant stress test requirements while considering

arrival patterns is presented in Sections 10.6-10.7. Our choice of the optimization

methodology is described in Section 10.6. By optimization methodology, we mean the

type of optimization technique used for the stress technique derivation technique

presented in this chapter, such as traditional techniques including Linear Programming

(LP), Dynamic Programming (DP) and Branch and Bound (BB) or evolutionary

algorithms such as Genetic algorithms and Ant Colony. For reasons explained in Section

10.6, genetic algorithms are selected and the optimization problem is formulated to be

145

solvable by a specific genetic algorithm in Section 10.7. Section 10.8 presents a

variation of the TSSTT using genetic algorithms to derive interval stress test

requirements.

10.1 Types of Arrival Patterns

Arrival-Pattern constraints (APC) relate to the timing of SDs, that is when a SD can start

running. APCs can be modeled using the UML-SPT profile, as explained in Section 2.4.

As proposed in Section 4.2.2 of the UML-SPT profile [12], RTarrivalPattern tagged-

values can be used to model the pattern in which a SD is triggered. Five arrival patterns

are defined [12] in BNF (Backus-Nauer Form):

 <bounded> ::= ‘bounded’, <time-value1>, <time-value2>

Describes a bounded inter-arrival pattern, where <time-value1> is the minimal

interval between successive arrivals and the <time-value2> is the maximum. Both

values are expressed using the RTtimeValue type. RTtimeValue is another tagged-

value which is a general format in the UML-SPT profile [12] for expressing time

value expressions, e.g., (20, ms). Obviously, the maximum interval value between

successive arrivals should be greater than the minimum value.

For example, (‘bounded’, (2, ms), (5, ms)) specifies a bounded pattern where the

minimum and maximum time distances between successive arrivals are 2 ms and 5

ms, respectively. An event timing such as <0, 3, 7, 9, 14, 16>, where all times values

are in ms, satisfies this arrival pattern.

 <bursty> ::= ‘bursty’, <time-value>, <integer>

146

This expression describes a bursty inter-arrival pattern, where <time-value> is the

burst interval expressed using the RTtimeValue type and <integer> denotes the

maximum number of events that can occur during that interval.

For example, (‘bursty’, (5, ms), 2) specifies a bursty inter-arrival pattern where there

can be up to two arrivals in every 5 ms interval. The event timing <0, 4, 7, 12, 14>,

where all times values are in ms, satisfies this arrival pattern.

 <irregular> ::= ‘irregular’, <time-value> [, <time-value>]*

This expression describes an irregular inter-arrival pattern, where the ordered list of

time values (expressed using the RTtimeValue type) represents successive inter-

arrival times.

For example, (‘irregular’, (1, ms), (5, ms), (6, ms), (8, ms), (10, ms)) specifies a

irregular pattern where the arrivals occur at specified time instants.

 <periodic> ::= ‘periodic’, <time-value1> [, <time-value2>]

This expression describes periodic inter-arrival patterns, where <time-value1> defines

the period and the optional <time-value2> denotes the maximal deviation (from the

period value). Both values are expressed using the RTtimeValue type.

For example, (‘periodic’, (6, ms), (1, ms)) specifies a periodic inter-arrival pattern,

where the period and the deviation values are 6 and 1 ms.

 <unbounded> ::= ‘unbounded’, <PDF-string>

This expression describes a pattern specified by a Probability Distribution Function

(PDF) defined in RTtimeValue‘s BNF expression in Section 4.2.2 of [12]. The types

of PDFs supported are: Bernoulli, binomial, exponential, gamma, geometric,

147

histogram, normal (Gaussian), Poisson, and uniform. Different PDF types are

explained below using BNF, mathematical PDF formulas, and an example graph of

the PDF.

o The Bernoulli distribution has one parameter, a probability p:

<bernoulliPDF> ::= ‘bernoulli’, <Real>

 0 1

P(x) for p=0.6

x

40
60

0.2

0.4

0.6

⎩
⎨
⎧

=
=−

=
1for
0for 1

np
np

)n(P

o The binomial distribution has two parameters: a probability p and the number

of trials N (a positive integer):

<binomialPDF> ::= ‘binomial’, <Real>, <Integer>6

P(x)

x0 10 20
40

80
100

80

40
20 10 0 0

nNn
p)p(p

n
N

)N|n(P −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 1

o The exponential distribution has one parameter, the mean value λ:

<exponentialPDF> ::= ‘exponential’, <Real>

6 This is written in the UML-SPT as <binomialPDF> ::= “ ‘binomial’ ,” <Integer>6, in

page 4-33 of [12] Object Management Group (OMG), "UML Profile for

Schedulability, Performance, and Time (v1.0)," 2003.. We have altered the BNF to

conform to the PDF’s mathematical definition.

148

P(x)

x

xe)x(P λλ −=

o The gamma distribution has two parameters (a positive integer h and a mean

λ):

<gammaPDF> ::= ‘gamma’, <Integer>, <Real>

P(x)

x

x
h

e
)!h(

)x()x(P λλλ −
−

−
=

1

1

o The histogram distribution has an ordered collection of one or more pairs

which identify the start of an interval and the probability that applies within

that interval (starting from the leftmost interval) and one end-interval value

for the upper boundary of the last interval:

<histogramPDF> ::= ‘histogram’, {<Real>, <Real>}*, <Real>

0 1 2 3 4 5 6 7

P(x)

0.8

x10
30 30 40 40

20 20
0

0.2

0.4

0.6

An example:

‘histogram’, {(0ms,0.1)}, {(1ms,0.3)},

{(3ms,0.4)), {(5ms,0.2)},7ms

o The normal (Gauss) distribution has a mean value μ and a standard deviation

value σ (greater than 0):

(h,λ)=(1,1)

(h,λ)=(1,2)

149

<normalPDF> ::= ‘normal’, <Real>, <Real>

P(x)

x

2

2

2

2
1 σ

μ

πσ

)x(

e)x(P
−−

=

o The Poisson distribution has a mean value v:

<poissonPDF> ::= ‘poisson’, <Real>

P(x)

x0 10 20
40

80
100 85

50 35 25 15 5
3z

!n
ev)n(P

vn

v

−

=

o The uniform distribution has two parameters designating the start a and end b

of the sampling interval:

<uniformPDF> ::= ‘uniform’, <Real>, <Real>

P(x)

x
a b

⎪
⎩

⎪
⎨

⎧

>

<<
−

<

=

bx

bxa
ab

ax
)x(P

for 0

for 1
for 0

10.2 Analysis of Arrival Patterns

In order to study the arrival patterns and their impact on the test techniques presented in

Chapter 9, the timing characteristics of arrival patterns as well as the test techniques

should be analyzed. Furthermore, given an arrival time, we should be able to determine if

it satisfies an arrival pattern (AP). Satisfying an AP, in this context, implies that an arrival

time is legal given the AP.

150

The pseudo-code, shown in Figure 58, determines if a DCCFP arrival time satisfies

an AP. The AP can be any of the following: {‘bounded’, ‘bursty’, ‘irregular’, ‘periodic’,

‘unbounded’}. The pseudo-code is described in detail next.

Function IsAPCSatisfied(arrivalTime, AP)

AP∈{‘bounded’, ‘bursty’, ‘irregular’, ‘periodic’, ‘unbounded’}

1 Switch AP {

2 ‘bounded’:

3 If arrivalTime is in one of the intervals of the bounded pattern, then Return True

4 Else Return False

5 ‘bursty’: Return True

6 ‘irregular’:

7 If arrivalTime is one of the time values in the AP list, then Return True

8 Else Return False

9 ‘periodic’:

10 If there exists an arbitrary integer k such that arrivalTime∈[kp-d… kp+d], where p and d are

the period and the derivation values of the AP: then Return True

11 Else: Return False

12 ‘unbounded’, i.e., AP has a Probability Distribution Function (PDF), (Section 10.1):

13 Return True

14} // end switch

Figure 58- Pseudo-code to check if the arrival pattern AP is satisfied by an arrival

time.

If AP is bounded, IsAPCSatisfied() returns true if the arrival time is inside the time

intervals specified by the bounded pattern. Such a pattern is identified by a minimal and a

maximal interval time (MinIAT, MaxIAT). We assume that MinIAT and MaxIAT of a

bounded arrival pattern can not be equal. If the two values are equal, the arrival pattern is

equivalent to a periodic one. For example, a bounded AP where MinIAT=MaxIAT=3ms,

is indeed a periodic arrival pattern with period=3ms. Consider a bounded arrival pattern

151

with MinIAT=4ms and MaxIAT=5ms. The gray eclipses in the timing diagram in

Figure 59 depict the Accepted Time Intervals (ATI) of the arrival pattern. ATI here

means the time intervals where an arrival pattern is satisfied.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time (ms)

...

Accepted Time Interval (ATI)

Legend

Figure 59-Accepted Time Intervals (ATI) of a bounded arrival pattern (‘bounded’,

(4, ms), (5, ms)), i.e. MinIAT=4ms, MaxIAT=5ms.

Note that the ATIs of a bounded AP denote all possible arrival times, regardless of

specific previous arrival times in a single scenario. The curved arrows in Figure 59

denote how an ATI is derived from the previous one. For the AP discussed above,

assuming that the arrival pattern starts from time=0, the first ATI is [4..5ms]. If an event

arrives in time=4ms, according to the fact that MinIAT=4ms and MaxIAT=5ms, the next

event can arrive in interval [8…9ms]. Similarly, if an event arrives in time=5ms,

according to the fact that MinIAT=4ms and MaxIAT=5ms, the next event can arrive in

interval [9...10ms]. In a similar fashion, the value in between 4 and 5 ms will cause the

next arrival time to be in the range [8…10ms]. Therefore, the second ATI is [8…10ms].

The next ATIs are [12…15ms], [16…20ms], [20…25ms], [24…30ms] and so on.

If the arrival pattern is bursty, the function in Figure 58 always returns true. This is

because any arrival time satisfies a bursty arrival pattern. For example, consider the

arrival pattern (‘bursty’, (5, ms), 2), which indicates that there can be up to two arrivals in

152

every 5 ms interval. The gray eclipses in the timing diagram in Figure 60 depict the

Accepted Time Intervals (ATI) of this arrival pattern.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time (ms)

...

Figure 60-Accepted Time Intervals (ATI) of the bursty arrival pattern (‘bursty’, (5,

ms), 2).

As it can be seen, given a bursty pattern, a single arrival can happen at any time instant,

with the constraint that number of arrival in the bursty interval is less than the specified

number. For example, up to two arrivals can occur in any of the ATI’s of the above

pattern. Furthermore, since our aim is to schedule only one DCCFP of a SD execution in

a specific time instant (to generate a stress test requirement), we can choose any time

instant.

If the arrival pattern is irregular, the function returns true (indicating that arrival pattern

constraints are satisfied), if the arrival time is one of the elements in the irregular

pattern’s set. For example, (‘irregular’, (1, ms), (5, ms), (6, ms), (8, ms), (10, ms))

specifies a bursty pattern where the arrival occurs at specified time instants. In this case,

if the arrival time is 5 ms, for example, the arrival pattern constraint is satisfied. Since the

accepted arrival times for an irregular arrival pattern are not intervals, but rather time

instants, we refer to them as Accepted Time Points (ATP). An example is shown in Figure

61.

153

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

...

Figure 61-Accepted Time Points (ATP) of the irregular inter-arrival pattern

(‘irregular’, (1, ms), (5, ms), (6, ms), (8, ms), (10, ms)).

For a periodic arrival pattern, the arrival pattern constraints are satisfied if the start time

falls in an interval around periods within the given deviation interval. For example,

Accepted Time Intervals (ATI) of the periodic inter-arrival pattern (‘periodic’, (5, ms),

(1, ms)) are shown in Figure 62. Only arrival times in any of the ATIs satisfy the arrival

pattern.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time (ms)

...

Figure 62-Accepted Time Intervals (ATI) of the periodic inter-arrival pattern

(‘periodic’, (5, ms), (1, ms)).

If the arrival pattern is unbounded, the function IsAPCSatisfied in Figure 58 always

returns true. Unbounded arrival patterns correspond to a Probability Distribution

Function (PDF). As discussed in Section 10.1, such PDFs specify the probability which

an arrival occurs in a specific time instant. For example, the PDF of (‘poisson’, (5, ms))

arrival pattern is shown in Figure 63.

154

time (ms)0 1 2 3 4 5 6 7 8 9 10 11 12 13

P(time)

0.1

0.2

Figure 63-Probability Distribution Function (PDF) of (‘poisson’, (5, ms)) arrival

pattern.

Assuming that a first arrival occurs in 4 ms, the second arrival time is based on the above

PDF, which can be any time after 4 ms, since the probability decreases as time goes by,

but it never becomes zero. Other unbounded arrival patterns have similar behaviors to the

poisson PDF, as discussed above. Therefore, any single arrival time satisfies an

unbounded arrival patterns.

10.3 Accepted Time Sets

To facilitate our discussions in the next sections, we define the concept of Accepted Time

Set (ATS) for each SD. An ATS is the set of time instants or time intervals when a SD is

allowed to be triggered, according to its arrival pattern. An ATS can be derived from the

arrival pattern of the corresponding SD. The ATS metamodel in Figure 64-(a) defines the

fundamental concepts.

155

ATS

SD

1*

ATI ATP

-End3

1

-End4*

-End3

1
-End4*

UML-SPT::
RTtimeValue

*

*

1** *

0..1*

startTime

endTime

(a) (b)

ATS: Accepted Time Set
ATI: Accepted Time Interval
ATP: Accepted Time Point

()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

4434421

321

K
48476876

44 344 21

876876

ATI

nedunconstrai

ATP

irregular

endTimestartTime

ATI

endTimestartTime

bounded

null,,ms)(ATS

,ms)(,,ms)(,,ms)(,,ms)(,,ms)(ATS

,,ms)(,,ms)(,,ms)(,,ms)(ATS

0

108651

10854

Invariants:

context ATS
inv hasATInoATP: self.ati->size()>0 implies self.atp->size()=0
inv hasATPnoATI: self.atp->size()>0 then self.ati->size()=0
inv unconstrainedATS:
 self.ati->exists(i|i.endTime->isEmpty()) implies self.ati->size()=1

Examples:

Figure 64-(a): Accepted Time Set (ATS) metamodel. (b): Three instances of the

metamodel.

Each SD has an ATS. An ATS is made of several Accepted Time Points (ATP), for

irregular and periodic (with no deviation) arrival patterns, or several Accepted Time

Intervals (ATI), for the other arrival patterns. This is because irregular and periodic (with

no deviation) arrival patterns specify the time instants when a SD can be triggered. On

the other hand, all the other arrival patterns deal with time intervals. The mutual

exclusion between ATIs and ATPs is shown by two OCL invariants (hasATInoATP and

hasATOnoATI) in Figure 64-(a). Each ATI has a start time and an end time of type

RTtimeValue (from the UML-SPT), denoting the start and end times of an interval. ATP

is of type RTtimeValue too. The end time of an ATI can be null, which denotes an ATI

which has no upper bound (this is further justified below).

Three examples of an ATS are illustrated in Figure 64-(b), which comply with the

metamodel in Figure 64-(a). ATSbounded is the ATS corresponding to the arrival pattern

whose timing diagram was shown in Figure 59. ATSirregular corresponds to the arrival

156

pattern in Figure 61. ATS unconstrained is an ATS for SDs which do not have any arrival

pattern, i.e., can be triggered any time.

Our convention to represent an unconstrained ATS is to leave the end time of its only

interval as null: it is unconstrained so no upper bound can be defined. Such an ATS has

only one ATI from time 0 to ∞. This constraint has been formalized by the third OCL

invariant (unconstrainedATS) in Figure 64-(a). Note that one could need to consider other

kinds of constraints such as the following, that we refer to as partly-constrained ATS:

() (){ }null,ms)(,ms)(,ms)(ATS strainedpartly-con ,5,3,0= , where the corresponding SD can be triggered

in all times, except interval [3ms…5ms]. In such an ATS, there is at least one ATI where

the end time is null. However, modeling arrival patterns which lead to partly-constrained

ATSs is not currently possible using the UML-SPT. Since we assumed the UML-SPT as

the modeling language to model arrival patterns in this work, we assume that there will

not be any SD with a partly-constrained ATS.

Our GA-based algorithm in Section 10.7 will require computing the intersection of the

ATSs of two SD. This will enable our algorithm to generate GA individuals (test

requirements) with high stress values. Therefore, we define an intersection operator (∩)

for any pair of ATSs: Equation 6. For brevity, startTime and endTime have been replaced

by s and e.

157

{ }

() ()(){ }

() ()()
444444444444444444 8444444444444444444 76

444444444444444444 8444444444444444444 76

4444444 84444444 76

ATIsCommon

2121

212112122211

ATIsin ATPsCommon

12112122

ATPsCommon

2121

21

minmax

 ATSs

⎭
⎬
⎫

⎩
⎨
⎧

=∧=
>∧<∨>∧<∈∈∃

∪

∠∧∈∈∃∨∠∧∈∈∃∧∈∪

∈∧∈∧∈=∩

∀

)e.ati,e.ati(e.ati)s.ati,s.ati(startTime.ati
s.atie.atie.atis.atis.atie.atie.atis.ati:atsati,atsati|ati

atiatpatsatp:atsatiatiatpatsatp:atsatiATPatp|atp

atsatpatsatpATPatp|atpatsats

:ats,ats

Equation 6-Intersection of two ATSs.

The membership operators (∈) between an ATI/ATP and an ATS denote if an ATI/ATP

is a member of an ATS. For example, considering the ATP (1,ms) in Figure 64-(a),

(1,ms)∈ATSirregular.

The output of the formula is the union of three sets: (a) common ATPs (in the case the

two ATSs contain only ATPs), (b) common ATPs in ATIs (in case one ATS contains

only ATIs and the other contains only ATPs), and (c) common ATIs (in case the two

ATSs contain only ATIs). In case (a), the result is the set of ATPs (atp∈ATP means that

atp is an ATP) that belong to both ATSs ats1 and ats2. The membership operators (∈)

between an ATI/ATP and an ATS denote if an ATI/ATP is a member of an ATS. For

example, considering the ATP (1,ms) in Figure 64-(b), (1,ms)∈ATSirregular. In case (b), the

result is the set of ATPs in one ATS (e.g., ats1) for which there exists an ATI in the other

ATS (e.g., ats2), such that the (ATP) time point is inside the (ATI) time interval. The

formula uses a (in-range) operator ∠ to compare a time point (i.e., an ATP) and a time

interval (i.e., an ATI): atiatpendTime.atiatpstartTime.ati:ATIATP,atiatp ∠⇔≤≤∈∈∀ . In

case (c), the result is the set of overlapping time intervals. The rationale for finding

overlapping (common) intervals of two ATSs is illustrated in Figure 65.

158

startTime1 endTime1

startTime2 endTime2

Intersection operator

startTime1

endTime2

Overlapping interval

ati1

ati2

ats1

ats2

Figure 65- Illustrating the overlap of two ATSs’ intervals.

Note that the union of the above three sets is allowed in the current context from the set

theory point of view, since as the metamodel in Figure 64-(a) shows, ATS is a hybrid set

of two element types: ATI and ATP. Therefore, a set of type ATIs together with another

set of type ATP can be the operands of a union operator, yielding an ATS. Two

examples, showing how intersections of two ATSs can be calculated using Equation 6,

are illustrated in Figure 66: between an ATS made of ATIs and an ATS made of ATPs

(upper part of the figure); between two ATSs made of ATIs (lower part of the diagram).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

time (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

time (ms)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (ms)

Figure 66-Example intersections of two ATSs.

Based on the above definition of intersection between two ATSs, the intersection of

several ATSs can be defined as: ()() nn atsatsatsatsatsats ∩∩∩=∩∩∩ KK 2121

∩

∩

159

10.4 Formulating the Problem as an Optimization Problem

The problem of generating stress test requirements can be formulated as an optimization

problem, as presented in Figure 67.

Objective: Maximize the traffic on a specified network or node (at a time instant or a period of time)

Variables:

− A subset of DCCFPs and the number of instances of each DCCFP with maximum traffic on a

specified network or node

− Schedule to run the selected DCCFP instances

Constraints:

− Inter-SD sequential and conditional constraints

− SD arrival patterns

Figure 67-Formulating the problem of generating stress test requirements as an

optimization problem.

10.5 Impact of Arrival Patterns on Stress Test Strategies

In Section 9.4, we discussed 32 Time-Shifting Stress Test Technique (TSSTT) such as:

instant stress test towards a node with maximum data (StressNodInInsDT). We discuss

here the impact of arrival patterns on those strategies and determine which strategies have

to be tackled differently when considering arrival pattern constraints for a SUT.

Since arrival patterns enforce constraints on the start times of SDs (and hence DCCFPs),

they will have an impact on TSSTT test strategies, which assume non-constrained start

times for DCCFPs. Specifically, since TSSTT test strategies were grouped into two

categories, namely instant and interval test strategies, we expect that arrival patterns will

impact differently the two groups of strategies. This is the purpose of the following sub-

sections.

160

10.5.1 Impact on Instant Stress Test Strategies

As we discussed in Section 9.4, instant stress test strategies search among all ISDSs and

find the one with maximum instant stress. Then the SDs of the selected ISDS are

scheduled to yield the maximum stress. As an example, consider Figure 68-(a), where an

ISDS with three SDs (SD1, SD2, and SD3) has been chosen and the SDs can be freely

scheduled since none of them has an arrival pattern constraint. Conversely, consider

Figure 68-(b) with the same SDs but with arrival pattern constraints, as shown by the

ATIs on the time axis. SDs can not then be scheduled freely in any arbitrary time instants.

The heuristics to find maximum possible stress, while respecting arrival patterns, will

consist in searching among the ATS of every SD and find a time instant when the

summation of traffic values entailed by DCCFPs from all the SDs is maximized. One of

such possible schedules is shown in Figure 68-(b).

This means that deriving instant stress test requirements while considering arrival

patterns requires a global search for an optimum result all across the ATSs of SDs with

arrival patterns. SDs without arrival patterns (with unconstrained ATSs) do not need to be

searched for a start time, since they can be scheduled anywhere on the time axis.

10.5.2 Impact on Interval Stress Test Strategies

Interval stress test strategies (Section 9.4) aim at increasing the chances of traffic faults

by invoking a sequence of SDs, referred to as Concurrent SD Flow Path (CSDFP), which

entails the maximum possible interval stress. A CSDFP is a path in a MIOD. It is

assumed that each SD of a CSDFP is allowed to be invoked after all previous SDs in the

sequence (a path in the MIOD). As to the scheduling of a SD with arrival pattern in a

161

CSDFP, the SD can start its first execution according to its arrival pattern as soon as

all the previous SDs have finished executing (thus satisfying the sequential constraints of

a SD). For example, consider Figure 68-(d), where a CSDFP with five SDs have been

chosen and two of the SDs (SD2 and SD5) have arrival patterns. The flow of SDs in the

CSDFP is as follows:

54
3

2
1 SDSD

SD
SD

SD ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ρ

As the CSDFP indicates, SD5 can start as soon as SD4 is finished. This is shown in Figure

68-(c), where no SD has an arrival pattern and SD5 can start immediately as soon as SD4

has finished. However, in the case when SD5 has an arrival pattern, it cannot start until

the first time instant in its ATS. Considering the fact that the goal of the interval stress

test strategies is to maximize stress within a time interval (maximize possible stress in the

shortest possible time of a CSDFP), the impact of arrival patterns on interval stress test

strategies will constrain when the optimization technique can schedule each SD in its

earliest ATS. SDs with arrival patterns can no longer start immediately after all their

preceding SDs (in the MIOD) have been completed.

162

time (ms)

SD3

SD2

SD1

SD4

SD5

Time length of the CSDFP

time (ms)

SD3

SD2

SD1

time (ms)

SD3

SD2

SD1

SD4

SD5

Start time for arrival
pattern of SD5

ATIs of SD5

Time length of the CSDFP
ATIs of SD2

Start time for arrival
pattern of SD2

time (ms)

SD3

SD2

SD1

ATIs of SD2

ATIs of SD1

ATIs of SD3

ISDS={SD1,SD2,SD3}

Without arrival patterns With arrival patterns

Without arrival patterns With arrival patterns

54
3

2
1 SDSD

SD
SD

SDρ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Instant stress test strategies:

Interval stress test strategies:

(a) (b)

(c) (d)

Figure 68-Impact of arrival patterns on instant (a)-(b) and interval (c)-(d) stress test

strategies.

We now discuss the extent to which the impact of arrival patterns complicates the

optimization technique of the interval stress test strategies. Interval stress test strategies

need to account for the ATSs of SDs with arrival patterns. Recall that we want to

maximize traffic over a period of time, and that this period of time is the overall duration

of the execution of all the SDs (i.e., the selected CSDFP). Since the total traffic does not

depend on the scheduling, but rather on the selected DCCFP of each SD, scheduling has

only an impact on the overall duration of execution of all the SD. For each SD, the

earliest time point in its ATS is considered as this reduces the overall duration of

execution. We thus at the same time maximize traffic (selection of DCCFPs for SDs) and

minimize the period of interest (scheduling), thus resulting in the highest stress.

Therefore, no complicated global search is required in this case. Note however, that the

163

time length of CSDFPs will increase, compared to the case when none of the SDs of a

CSDFP have an arrival pattern (refer to Figure 68-(c) and Figure 68-(d) as an example).

To provide more insights, we now discuss why and how the test requirements generated

by the TSSTT (Chapter 9) might not comply with SD arrival pattern constraints. We

consider an example to illustrate the idea. We described in Section 2.4 how SD arrival

patterns can be modeled using the UML-SPT profile tagged-values. Figure 69-(a) depicts

two (partial) SDs, each having an arrival pattern constraint. We described in Section 10.1

the types of arrival patterns defined by the UML-SPT profile that we consider in this

chapter. The arrival pattern of SD1 in Figure 69-(a) is irregular, and it has three arrival

times (10, 25 and 70 ms). SD2 is periodic, where period=15 ms and the maximal deviation

of the period is 2 ms.

Based on the arrival pattern information of Figure 69-(a), and assuming that the

maximum duration of DCCFPs of SD1 and SD2 are 15 ms and 10 ms, respectively, a

timing diagram as the one in Figure 69-(b) can be drawn to show the effect of SD arrival

pattern constraints on scheduling SDs. Arrival times of SD1 are fixed, as specified by its

arrival pattern. However, there can be up to a 2 ms deviation in the arrival time of SD2.

For example, assuming that SD2 starts at time=0, its next arrival times can be 13-17 ms,

28-32 ms and so on.

Based on arrival pattern information, we define the concept of Valid and Invalid SD

Schedule (VSDS and IVSDS). Given a set of arrival patterns, a VSDS is a schedule of SDs

(their start times) in which the start time of each SD satisfies its arrival pattern. For

164

example, if we show a schedule of SDs in a similar notation as output stress test

requirements in Section 9.2, <(SD1, 10 ms), (SD2, 14ms)>7 is a VSDS. On the other hand,

<(SD1, 0 ms), (SD2, 0ms)> is an IVSDS, given the arrival patterns in Figure 69. These

two schedules are depicted in Figure 69-(c).

(a) Modeling SD arrival pattern constraints

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
time (ms)

SD1

SD2

«RTstimulus»
{RTarrivalPattern=
'irregular',(10,'ms'),(25,'ms'),(70,'ms')}

m1

SD1

«RTstimulus»
{RTarrivalPattern=
'periodic',(15,'ms'),(2,'ms')}

m2

SD2

31

13 17

43 60 75

7025

15

10

91 104 120 137

28 32 43 57 58 62 73 77 88 92 113 117 118 122 133 137

(c) Examples of Valid/Invalid SD schedules

SD1

SD2

A valid SD schedule

SD1

SD2

10 14 time(ms)

(b) Timing diagram showing the effect of SD arrival pattern constraints on scheduling SDs

0 time(ms)

An invalid SD schedule

Figure 69-SD arrival pattern constraints.

10.5.3 How Arrival Patterns are Addressed by Stress Test Strategies

As discussed above, the impacts of arrival patterns on instant and interval stress test

strategies are different. As we discussed, no complicated global search is required for the

7 Meaning that SD1 and SD2 start at time=10 and 14 ms, respectively.

165

case of interval stress test strategies, while considering arrival patterns in instant

stress test strategies needs a global search of an optimum result across all ATSs of SDs

with arrival patterns.

We separate the two cases, i.e., instant and interval test requirements, and address them

separately. Derivation of instant stress test requirements while considering arrival

patterns is presented in Sections 10.6-10.7, based on a Genetic Algorithm. Section 10.8

presents a variation of the technique in Chapter 9 to derive interval stress test

requirements while complying with arrival patterns.

10.6 Choice of the Optimization Methodology: Genetic Algorithms

A variety of methods exist for solving optimization problems. Perhaps the most common

techniques are linear and global optimization techniques. In linear optimization, or linear

programming (LP) as it is more commonly known, the objective/fitness function, as well

as all constraints, are linear functions of the decision variables to be solved. Linear

programming solutions are optimal as the search is performed on the intersections of the

constraints [84]. Global optimization solutions, also known as meta-heuristic solutions,

continually search for better solutions by altering a set of current solutions [85]. This is

typically used when the solutions lie on an uneven solution space, characterized by

multiple peaks and valleys. These peaks and valleys can result in locally optimal

solutions; one where no other solution in the vicinity have better solutions. Global

optimization solutions aim at avoiding local optima, reaching global ones instead.

Simulated annealing, tabu search, ant colony and genetic algorithms are among the most

common global optimization solutions.

166

For the test requirement generation problem at hand, which is actually a scheduling

problem, the number of SDs and DCCFPs only depend on the SUT. As the number of

SDs and DCCFPs increases and their arrival patterns get more complex, the different

combinations representing solutions can grow exponentially. As a result, linear

programming cannot be used, as they would lead to a combinatorial explosion problem

[86]. Furthermore, any small change in the number of SDs and DCCFPs or the execution

times may cause great changes in the solution. The solution space of the problem is thus

uneven, characterized by multiple peaks and valleys. Last, the AP of a single SD can

potentially impose a set of complex time interval constraints which are disjoint and of

different duration. Thus, we have a set of non-linear constraints in our optimization

problem and a global optimization technique is needed.

Genetic Algorithms (GA) are based on concepts adopted from evolutionary theory [87].

GAs involve a search from a population of solutions rather than a single solution. With

each iteration of a GA, solutions with the highest fitness are recombined and mutated,

and solutions with the lowest scores are eliminated. Tabu search (TS) is another global

optimization technique which avoids cycles by penalizing moves that take the solutions

to points previously visited in the solution space. In the Simulated Annealing (SA)

method, each point of the search space is compared to a state of some physical system,

and a so called energy function (to be minimized) is interpreted as the internal energy of

the system in that state. Therefore the goal is to bring the system, from an arbitrary initial

state, to a state with minimum possible energy. At each step, the SA heuristic considers

some neighbors of the current state s, and probabilistically decides between moving the

system to state s' or staying put in state s. The probabilities are chosen so that the system

167

ultimately tends to move to states of lower energy. Typically this step is repeated

until the system reaches a state which is good enough for the application, or until a given

computation budget has been exhausted [85].

According to the global optimization literature, GAs and SA are very similar. Some

studies, such as [88] indicate that SA outperforms GAs, while others, such as Chardaire

et al. [89] claim that GAs produce solutions equivalent or superior to SA. Most

researchers, however, seem to agree that because GAs maintain a population of possible

solutions, they have a better chance of locating the global optimum compared to SA and

TS which proceed one solution at a time [90, 91]. Furthermore, because SAs maintain

only one solution at a time, good solutions may be discarded and never regained if

cooling occurs too quickly. Similarly, TS may miss the optimum solutions. Alternatively,

steady state GAs, one of the variations of GAs, accept newly generated solutions only if

they are fitter than previous solutions. Furthermore, GAs are usually more flexible and

more scalable than other non-linear optimization methodologies, and lend themselves to

parallelism, as they manipulate whole populations: computations for different parts of the

population can be dispatched to different processors. SA, on the other hand, cannot easily

run on multiple processors because only one solution is constantly manipulated [90].

Hence, we adopt GA as our optimization technique methodology. An overview on

Genetic Algorithms is provided in Appendix A.

10.7 Tailoring Genetic Algorithm to Derive Instant Stress Test Requirements

A GA is used to solve the optimization problem of finding DCCFPs and their seeding

times such that the maximum instant traffic on a network or a node increases. To solve

the optimization algorithm for deriving instant stress test requirements, this section

168

describes the different components of the GA, tailoring them to our problem. We

define a chromosome representation in Section 10.7.1. Constraints defining legal

chromosomes are formulated in Section 10.7.2. Derivation of the initial GA population is

discussed in Section 10.7.3. The concept of a time search range which is needed in our

GA for the initialization process as well as the operators is discussed in Section 10.7.4.

The objective (fitness) function is described in Section 10.7.5. GA operators (crossover

and mutation) are finally presented in Section 10.7.6.

10.7.1 Chromosome

Chromosomes define a group of solutions to be optimized. The representation of

chromosomes and their length have to be defined in a GA algorithm [87]. We discuss the

chromosome representation of our application in Section 10.7.1.1. Chromosome length is

described in Section 10.7.1.2.

10.7.1.1 Representation

In our application, we need to optimize the selection of SDs’ DCCFPs and their schedule,

i.e., their start times. Thus, we need to encode both DCCFP identifiers and their arrival

times in a chromosome.

A gene can be depicted as a pair (ρi,selected, αρi,selected), where ρi,selected is a selected DCCFP

of SDi, and αρi,selected is the start time of ρi,selected. Together, the pair represents a schedule

of a specific DCCFP. If no DCCFP is selected from a SD (because the SD does not have

a traffic over a particular network, for example), the gene is denoted as null: this is to

ensure that the number of genes in each chromosome remains constant as this facilitates

the definition of mutation/cross-over operators and fitness function. This representation is

169

the same as the general form of a stress test requirement (the output of the technique

in Chapter 9).

To formalize the concepts we employ, a metamodel is depicted in Figure 70-(a).

Chromosome is composed of a sequence of Gene ordered in the same order as SDs

(Recall that we assume SDs are indexed). The Initialization, Crossover and Mutation

operators are all defined in Chromosome, as well as the objective function, Evaluate.

These functions will be defined in Section 10.7.6.

-startTime: RTtimeValue
Gene

-End31 -End4*

Chromosome

Gene Gene

(a) (b)

1..*

(DCCFP1,2, (1, ‘2ms’)) (DCCFP2,2, (6, ‘9ms’))

ISDS

DCCFP

-End31 -End4*

-End31
-End4*

sd

isds

selectedDCCFP

0...1

1

1..*

*

*

*

sd

dccfp

1 *

An instance:

SUT

-End31 -End4*
sut

isds

sd

1

*

ap

Chromosome

+Initialize(Chromosome &ch)
+Mutate(Chromosome &ch)
+Crossover(const Chromosome & parent1,

const Chromosome & parent2,
Chromosome * child1,
Chromosome * child2)

+Evaluate(Chromosome &ch)

context Gene:
inv self.selectedDCCFP.sd=sd

-numOfMultipleSDInstances:Int
SD

-type
ArrivalPattern

isds*

1

gene

context Chromosome:
inv self.gene.sd.isds = self.isds
inv self.gene->size() = self.isds.sd->size()

Figure 70-(a): Metamodel of chromosomes and genes in our GA algorithm. (b): Part

of an instance of the metamodel.

Each Gene is associated with a SD. Furthermore, it has an association (selectedDCCFP)

to zero (if no DCCFP is chosen) or one DCCFP, and has an attribute: startTime, which is

the time value to trigger dccfp, and is of type RTtimeValue (defined in the UML-SPT).

Each DCCFP belongs to a SD, whereas each SD can have several DCCFPs and has an

attribute: numOfMultipleSDInstances, which is the number of multiple SD instances

which are allowed to be triggered concurrently (Section 5.4). Furthermore, Each SD can

170

be a member of several ISDSs. Arrival pattern information of SDs is stored in

instances of a class ArrivalPattern (attributes of such a class can be easily defined based

on the discussions in Section 10.1, such as type and AP parameters), and are accessible

by the ap association. Each ISDS can have one or more SDs. Finally, a SUT (model) has

one or more ISDSs. Recall that we are optimizing traffic at a given instant and what

matters is thus the number of SDs that can be triggered concurrently. We therefore do not

need to model sequential and conditional constraints.

An example of a chromosome and a gene is illustrated in Figure 70-(b), which complies

with the metamodel in Figure 70-(a). The chromosome is composed of two genes, since it

is assumed that the SUT has two SDs: SD1 and SD2. DCCFP1,2 and DCCFP2,2 are

selected DCCFPs of SD1 and SD2, respectively. The genes indicate that the DCCFPs’ start

times are 2 ms and 9 ms, respectively.

10.7.1.2 Length

The length of chromosomes, i.e., the number of genes in the chromosomes, is fixed and is

equal to the number of SDs in a SUT. This is due to the fact that each gene of a

chromosome corresponds to a SD, and we have a fixed number of SDs per SUT.

Furthermore, as discussed in Section 10.7.1.1, if no DCCFP is selected from a SD

(because the SD does not have traffic over a particular network, for example), the

selected gene of a Gene is represented as null (the reasons for have 0..1 multiplicity on

the selectedDCCFP association). Therefore, the chromosome length remains the same at

all times.

171

10.7.2 Constraints

Inter-SD and arrival pattern constraints should be satisfied when generating new

chromosomes from parents, otherwise, GA backtracking procedures [87] should be used.

Backtracking, however, has its drawbacks: it is deemed expensive because time

consuming. Some GA tools incorporate backtracking while others do not. To allow for

generality, we assume no backtracking methodology is available. Therefore, we have to

ensure that the GA operators always produce chromosomes which satisfy the GA’s

constraints. In order to do so, we formally express inter-SD and arrival pattern constraints

in the context of our GA.

10.7.2.1 Constraint #1: Inter-SD constraints

We incorporated inter-SD constraints in ISDSs (Chapter 7). A set of DCCFPs are allowed

to execute concurrently in a SUT only if their corresponding SDs are members of an

ISDS. As discussed in Section 10.7.1.1, each chromosome is a sequence of genes, where

each gene is associated with zero or one DCCFP. Therefore, a chromosome satisfies

Constraint #1 only if the SDs of DCCFPs corresponding to its genes are members of a

same ISDS. In other words, each chromosome corresponds to one ISDS. We can

formulate the above constraint as a class invariant on class Chromosome (Figure 70-(a))

as presented in Figure 71.

context Chromosome

inv: self.gene.selectedDCCFP.sd.isds->asSet->size=1

Figure 71- Constraint #1 of the GA (an OCL expression).

172

10.7.2.2 Constraint #2: Arrival pattern constraints

Given a chromosome, the OCL function in Figure 72 can be used to determine if the

chromosome (the scheduling of its genes) satisfies the Arrival Pattern Constraints (APC)

of SDs. The function IsAPCSatisfiedByAChromosome(c :Chromosome) returns true if all

genes of the chromosome satisfy the APCs. The OCL function makes use of function

IsAPCSatisfied(startTime, AP), defined in Section 10.2.

1 IsAPCSatisfiedByAChromosome(c:Chromosome)

2 post: result=

3 if c.gene->exits(g| g.selectedDCCFP.notEmpty and

not IsAPCSatisfied(g.startTime, g.sd.ap) then

4 false

5 else

6 true

7 endif

Figure 72-Constraint #2 of the GA (an OCL function).

10.7.3 Initial Population

Determining the population size of a GA is challenging [85]. A small population size will

cause the GA to quickly converge on a local minimum because it insufficiently samples

the search space. A large population, on the other hand, causes the GA to run longer in

search for an optimal solution. Haupt and Haupt in [87] list a variety of works that

suggests adequate population sizes. The authors reveal that the work of De Jong [92]

suggests a population size ranging from 50 to 100 chromosomes. Grefenstette et al. [93]

recommend a range between 30 and 80, while Schaffer and his colleagues [94] suggest a

smaller population size, between 20 and 30.

173

We choose 80 as the population size as it is consistent with most of experimental

results. The GA initial population generation process should ensure that the two

constraints of Section 10.7.2 are met. The pseudo-code to generate the initial set of

chromosomes is presented in Figure 73. As indicated by the constraint #1 (Section

10.7.2.1), each chromosome corresponds to an ISDS. Therefore, line 1 of the pseudo-

code chooses a random ISDS and the initialization algorithm continues with the selected

ISDS to create an initial chromosome. Note that to generate our GA’s initial population,

CreateAChromosome() is 80 times.

Function CreateAChromosome(): Chromosome

c: Chromosome

1 ISDS=a random ISDS in the set of ISDSs

// selecting genes (DCCFPs)

2 For all SDi∈ISDS do

3 c. genei.selectedDCCFP= a random DCCFP from SDi

4 c. genei.sd = SDi

5 For all SDi∉ISDS do

6 c. genei=null

7 c. genei.sd = SDi

// initial scheduling of genes (DCCFPs)

8 Intersection=ATS(SD1) ∩ ATS(SD2) ∩… ∩ATS(SDi), for all SDi∈ISDS

9 If Intersection≠φ then

10 Choose a random time instant tschedule in Intersection

 // schedule all genes’ start time to tschedule

11 For all c. genei ≠null

12 c. genei.startTime= tschedule

13 Else // Intersection=φ, SDs of ISDS do not have overlapping start times

 // schedule each gene with a random time in the ATS of its SD

14 For all c. genei ≠null do

15 c. genei.startTime= A random time instant ti in ATS(SDi)

16 End If

17 Return c

Figure 73-Pseudo-code to generate a chromosome for the GA’s initial population.

174

For each SD in the ISDS selected in line 1, lines 2-4 choose a random DCCFP and

assign it to the corresponding gene (i.e. genei corresponds to SDi). Other genes of the

chromosome (those not belonging to the selected ISDS) are set to null (lines 5-7). An

initial scheduling is done on genes in lines 8-16. The idea is to schedule the DCCFPs in

such a way that the chances that DCCFPs’ schedules overlap are maximized. This is done

by first calculating the intersection of ATSs for SDs in the selected ISDS (line 8), using

the intersection operator described in Section 10.2. If the intersection set is not null

(meaning that the ATSs have at least one overlapping time instant), a random time instant

is selected from the intersection set (line 10). All DCCFPs of the genes are then

scheduled to this time instant (lines 11-12).

If the intersection set is null, it means that the ATSs do not have any overlapping time

instant. In such a case, the DCCFP of every gene is scheduled differently, by scheduling

it to a random time instant in the ATS corresponding to its SD (lines 14-15).

Following the algorithm in Figure 73, we ensure the initial population of chromosomes

complies with both constraints of Section 10.7.2. In the case when the intersection of SD

ATSs is null, one might wonder whether there are still any possibilities to run SDs

concurrently to have maximum stress. The answer to this question is twofold:

• Although the ATS intersection of all SDs in the selected ISDS is null, a subset of SDs

might still have a non-null ATS intersection. Triggering these SD concurrently can

lead to traffic faults. For example, consider the timing diagram in Figure 74, where

the ATS intersection of three SDs (SD1 …SD3) is null. Although there is no single

time instant, when the three SDs can be triggered concurrently, a subset of them (SD1

and SD2) have a non-empty ATS intersection, which allow them to be triggered

175

concurrently. This situation can be made possible in a chromosome by our

mutation operator (Section 10.7.6.2), since as we will discuss, our mutation operator

will shift each SD in its ATSs to create a new offspring.

• Another situation when the high stressing messages of a set of SDs with empty ATS

intersection might be triggered is when the execution of a SD is long enough such

that it spans over the ATS intersection of other SDs. For example, SD3 in Figure 74

has been triggered in one of its allowed times and continues to the ATS intersection

of SD1 and SD2. In such a case, messages from all three SDs overlap (in the time

domain) and thus may trigger high stress scenarios. Such a situation can also be made

possible by our mutation operator (Section 10.7.6.2).

SD2

SD1

SD3

SD3

SD2

SD1

ATS of a SD

Execution of SDi SDi

time

time

time

Figure 74-An example where the ATS intersection of all SDs is null, but they can

overlap.

10.7.4 Determining a Maximum Search Time

One important issue in our GA design is the range of the random numbers chosen from

the ATS of a SD with an arrival pattern. As discussed in Section 10.3, the number of

ATIs or ATPs in some types of APs (e.g. periodic, bounded) can be infinite. Therefore,

choosing a random value from such an ATS can yield very large values, thus creating

implementation problems.

176

Another direct impact of such unboundedness on our GA is that it would significantly

decrease the probability that all (or a subset) of start times of DCCFPs (corresponding to

the genes of a chromosome) overlap or be close to each other. If the maximum range

when generating a set of random numbers is infinity, the probability that all (or a subset)

of the generated numbers are relatively close to each other is very small. Thus, to

eliminate such problems, we introduce a solution: GA’s Maximum Search Time. This

maximum search time is essentially an integer value (in time units) which enforces an

upper bound on the selection of random values for start times of DCCFPs, chosen from

an ATS. The GA maximum search time will be used in our GA operators (Section 10.7.6)

to limit the maximum ranges of generated random time values.

Different values of Maximum Search Time (MST) for a specific run of our GA might

produce different results. For example, if the search range is too limited (small maximum

search time), not all ATIs and ATPs in all ATSs will be exercised. On the contrary, if the

range is too large (compared to maximum values in ATSs), it will take a longer time for

the GA to converge to a maximum plateau, since the selection of random start times for

DCCFPs will be sparse and the GA will have to iterate through more generations to settle

on a stable maximum plateau (in which start times are relatively close to each other).

The impact of MST on exercising the time domain is illustrated in Figure 75 using an

example, where the ATSs of three APs (a periodic, a bounded and a bursty one) are

depicted. Four maximum search times (MSTi) have been arbitrarily chosen. The search

range specified by MST1 (Search Range1) is not a suitable one since only time values in

the first ATI of the bounded ATS will be chosen thus preventing the GA from searching

all possible start times in the ATS range of the depicted bounded AP. This will limit the

177

search space, thus reducing the chances of finding the most stressful situations.

Following a similar reasoning, the search range specified by MST2 (Search Range2) is not

a suitable one either. MST3 and MST4 specify ranges in which a complete search over the

possible ATS values can be performed. Comparing the last two, the latter does not

provide any advantage in terms of completeness of the search range over the former,

while at the same time causing a slower convergence of the GA. Therefore, MST3 is a

preferable maximum search time over MST4. Note that the ATS of the bursty AP in

Figure 75 does not play any role in determining a suitable maximum search time, since

by having an unrestricted ATS, regardless of the choice of such a MST, any start time can

be chosen for a bursty AP.

A bounded AP

A bursty AP

A Periodic AP

MST1

MST: Max Search Time

MST2 MST3 MST4

Search Range1

Search Range2

Search Range3

Search Range4

Figure 75-Impact of maximum search time on exercising the time domain.

As we saw in the above example, a suitable maximum search time depends on the

occurrence and intersections of different ATSs. We discuss below how a suitable

maximum search time can be estimated for a set of ATSs based on a set of heuristics. In

order to do this, we group the types of arrival patterns (AP) into two groups:

• Bounded Arrival Patterns: APs which result in ATSs where the number of

ATIs or ATPs is finite. Only irregular APs match this description.

178

• Unbounded Arrival Patterns: APs which result in ATSs where the number

of ATIs or ATPs is infinite. With this definition, periodic, bounded,

unbounded, and bursty APs are unbounded.

If all APs are irregular, then a suitable MST (MSTsuitable) will be the maximum of all latest

irregular arrival times in all ATSs. For example, the ATSs of three irregular APs are

depicted in Figure 76. A MSTsuitable will be the last arrival time of the third AP (as

depicted), which has the maximum time value. This maximum search time will allow the

GA to effectively search in the time domain, considering all possible start times from all

APs.

Three
irregular
APs

A suitable maximum
search time

Figure 76- The ATSs of three irregular APs.

If APs are infinite, the occurrence and intersection of different ATIs in the APs should be

taken into account. Since only periodic, irregular, and bounded APs have discrete ATSs

(Section 10.3), we only consider them in finding a suitable maximum search time.

Unrestricted APs (bursty and unbounded) do not impose any restrictions on the selection

of a suitable maximum search time, since any time value is acceptable by a bursty or an

unbounded AP.

We present in Table 6 a set of heuristics to identify a MSTsuitable based on a given set of

periodic, irregular, and bounded APs. In the heuristics, ap.type denotes the type of an AP,

e.g., ‘bounded’, ‘periodic’.

179

Heuristics Rationale

1)1irregular''
maxATP.ap,,maxATP.ap(maxMST ntype.ap|apsuitable

ii

L
=∀

≥ This heuristic will allow the GA to

effectively search in the time domain,

considering all possible start times from

all irregular APs.

2)1bounded''
URSP.ap,,URSP.ap(maxMST ntype.ap|apsuitable

ii

L
=∀

≥ This heuristic will provide a full search

coverage on all bounded APs

simultaneously.

3

)1periodic''

1periodic''

deviation.ap,,deviation.ap(max

)period.ap,,period.ap(LCDMST

ntype.ap|ap

ntype.ap|apsuitable

ii

ii

L

L

=∀

=∀
+≥

The time range around this LCD value can

yield schedules when all the periodic SDs

can start simultaneously.

This heuristic can also be used when

generating the initial GA population to set

start times close to this LCD value which,

in turn, can potentially yield stress test

schedules with high ISTOF values.

Table 6-A set of heuristics to identify a suitable MST (MSTsuitable).

Heuristic #1 denotes that a MSTsuitable should be greater than the maximum value among

all maximum ATPs of irregular APs. The rationale beyond this heuristic is the same as

the case when all APs of a TM are irregular (discussed above). ap.maxATP denotes the

maximum ATP of an irregular AP and can be calculated using the formula in Equation 7.

⎩
⎨
⎧ =>∈∀∧∈

=∈∀
elseundefined

irregular'' if
;

type.ap;atpatp:ATS.apatpATS.apatp|atp
maxATP.ap:APap maxmaxmax

Equation 7-A formula to calculate the maximum ATP (maxATP) of an irregular AP.

Heuristic #2 is meant to provide a full search coverage on all bounded APs

simultaneously. Recall from Section 10.3 that every bounded ATS has an ATI whose end

time is infinity. Furthermore, all time instants after the start time of such an ATI are

accepted arrival times. If the MST value is chosen to be greater than all such start times

180

among all bounded APs, the GA will be able to have a full search coverage on all of

the APs, and thus, maximizing the chances of finding a test schedule with high stress

value. To better formalize heuristic #2, we refer to such a start time as the bounded AP’s

Unbounded Range Starting Point (URSP). The URSP of a bounded AP can be calculated

using the formula in Equation 8, given the ATIs of the AP.

⎩
⎨
⎧ =∈

=∈∀
elseundefined

bounded'' if
;

type.ap;ATS.ap)'null',rtlastATIsta(|rtlastATIsta
URSP.ap:APap

Equation 8-A formula to calculate the Unbounded Range Starting Point (URSP) of a

bounded AP, given the ATIs of the AP.

For example, the URSP of the bounded APs in Figure 77 are denoted as URSPi. If the

minimum and maximum inter-arrival times (minIAT and maxIAT) of a bounded AP are

given, the formula in Equation 9 can be used to calculate the value of the URSP. The

proof of this formula is given in Appendix B.

⎪⎩

⎪
⎨
⎧

=⎥⎥
⎤

⎢⎢
⎡

−=∈∀
elseundefined

bounded'' if

;

type.ap;.minIAT
minIATmaxIAT

minIAT
URSP.ap:APap

Equation 9-A formula to calculate the Unbounded Range Starting Point (URSP) of a

bounded AP, given the minimum and maximum inter-arrival times (minIAT and

maxIAT) of the AP.

Heuristic #3 is meant to provide a time range when all the periodic SDs can be triggered

simultaneously or close-enough to each other. The Least Common Denominator (LCD)

value of all the period values of the periodic APs provides one such a time range. The

time range around this LCD value can yield schedules with potential high stress values.

181

The maximum value of the periodic APs’ deviations is also included in the heuristic

#3 to increase the chances of finding a potential schedule with a high stress value.

A MSTsuitable value should be calculated by considering all three heuristics in Table 6, i.e.,

a MSTsuitable is equal to the maximum value among the three right-hand side in the three ≥

inequalities. To better explain the above set of heuristics, an example with three irregular,

three periodic, and three bounded APs is shown in Figure 77 and the process of deriving

a MSTsuitable for this particular example is described next.

Bounded APs

Periodic APs

A suitable MST

URSP1

URSP2

URSP3

...

...

.

...

...

...

URSPmax

(‘periodic’, (period1, ms), (devi, ms))

LCD (Least Common
Denominator) of periodi’s

(‘periodic’, (period2, ms), (dev2, ms))

(‘periodic’, (period3, ms), (dev3, ms))

(‘bounded’, (minIAT1, ms), (maxIAT1, ms))

(‘bounded’, (minIAT2, ms), (maxIAT2, ms))

(‘bounded’, (minIAT3, ms), (maxIAT3, ms))

Irregular APs

Maximum of maxATP’s for all
irregular APs

Figure 77-Illustration showing the heuristic of choosing a suitable maximum search

time.

The maximum value of maxATP’s for the three irregular APs is shown. Heuristic #1

denotes that a MSTsuitable should be greater than this value.

182

The URSP of each bounded AP has been calculated using the formula in Equation 9

based on the minIATi and maxIATi of each AP, and is denoted as URSPi. The maximum

value among all URSPi’s is referred to as URSPmax. Heuristic #2 denotes that a MSTsuitable

should be greater than this value.

Finally, the LCD of the period values of the periodic APs is calculated based on the

values of periodi and is shown. Heuristic #3 denotes that a MSTsuitable should be greater

than the sum of this value and the greatest deviation value among all periodic APs. A

MSTsuitable (shown by a bold line) is the smallest time value which satisfies the above

three heuristics.

10.7.5 Objective (Fitness) Function

Optimization problems aim at searching for a solution within the search space of the

problem such that an objective function is minimized or maximized [85]. In other words,

the objective function can aim at either minimizing the value of chromosomes or

maximizing them. The objective function of a GA measures the fitness of a chromosome.

Recall from Section 10.4 that our optimization problem is defined as follows: What

selection and what schedule of DCCFPs maximize the traffic on a specified network or

node (at a specified time instant)?

Recall from Section 10.2 that we only apply our GA-based technique to instant test

objectives. Therefore, let us refer to the objective function in this section as Instant Stress

Test Objective Function (ISTOF). The ISTOF should measure the maximum instant

traffic entailed by a schedule of DCCFPs, specified by a chromosome. Using the network

formalism in Chapter 8, we define ISTOF in Equation 10.

183

Note that what we define below as the ISTOF formula is only for the stress test

objective: location=network, direction=none, and type=data traffic. Other values for

these parameters would lead to a different ISTOF measure by simply using other

distributed traffic usage functions from the set of functions defined in Section 8.5.

()])dccfp.g(LengthstartTime.g),startTime.g([eSearchRang

tancestipleSDInsg.numOfMul)t,net,dccfp.g(NetInstDT)c(ISTOF:Chromosomec
alReChromosome:ISTOF

gene.cggene,cg

gene.cgeSearchRangt

+=

×=∈∀

→

∈∀∈∀

∈∀∈∀
∑

maxmin

max

Equation 10- Instant Stress Test Objective Function (ISTOF).

The first line of Equation 10 indicates that the input and output domains of ISTOF are

chromosomes and real numbers. c.Length(dccfp) is a function to calculate the time

duration of a DCCFP (modeled in the corresponding SD using the UML-SPT tagged-

values). Such a calculation can be done as follows:

()end.mmax)(Length
)(CCFPmij

ijρ
ρ

∈∀
=

net is the given network to stress test. NetInsDT is the distributed traffic usage function to

measure the instant data traffic in a network (Section 8.5.2.1). The value of NetInsDT is

multiplied by the gene’s numOfMultipleSDInstances value. When multiple instances of a

DCCFP are triggered at the same time, the entailed traffic at each time instant is

proportional to the number of instances.

The heuristic underlying the ISTOF formula is that it tries to find the maximum instant

data traffic considering all genes in a chromosome. The search is done in a predetermined

time range. The starting point of the search is the minimum startTime (the start time of

the earliest DCCFP), and the ending point of the range is the end time of the latest

184

DCCFP, which is calculated by taking maximum values among start times plus

DCCFP lengths.

To better illustrate the idea behind ISTOF, let us discuss how ISTOF for the chromosome

in Figure 70-(b) is calculated. The calculation process is shown in Figure 78. The

chromosome contains two genes, which correspond to DCCFP1,2 and DCCFP2,2. The

search range is [2ms, 20ms]. ISTOF sums the NetInsDT values in this range and finds the

maximum value. The output value of ISTOF is 110 KB.

NetInsDT(DCCFP2,2, SystemNetwork, t)

0

80 80

0
40 40 40

0 20 20

NetInsDT(DCCFP1,2, SystemNetwork, t)

0
40 40 40 40

0

90 90

0 20 0 0
30 30 30

D
T

(in
 K

B
)

t (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
T

(in
 K

B
)

Search range

ISTOF

0

80 80 80
40 20 20 0

D
T

(in
 K

B
)

t (ms)

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

90 90

0 20 0 0
30

110110

ISTOF=110

A chromosome

Gene Gene

(DCCFP1,2, 2ms) (DCCFP2,2, 9ms)

Figure 78-Computing the Instant Stress Test Objective Function (ISTOF) value of a

chromosome.

10.7.6 Operators

Operators enable GAs to explore a solution space [87] and must therefore be formulated

in such a way that they efficiently and exhaustively explore it. If the application of an

operator yields a chromosome which violates at least one of the GA’s constraints, the

operation is repeated to generate another chromosome. This is an alternative to GA

backtracking and is done inside each operator, i.e., each operator generates temporary

children first and checks if they do not violate any constraints (Section 10.7.2). If the

185

temporary children satisfy all the constraints, they are returned as the results of the

operator. Otherwise, the operation is repeated. Furthermore, operators should be

formulated such that they explore the whole solution space. We define the crossover and

mutation operators next.

10.7.6.1 Crossover Operator

Crossover operators aim at passing on desirable traits or genes from generation to

generation [87]. Varieties of crossover operators exist, such as sexual, asexual and multi-

parent. The former uses two parents to pass traits to two resulting children. Asexual

crossover involves only one parent. Multi-parent crossover combines the genetic makeup

of three or more parents when producing offsprings. Different GA applications call for

different types of crossover operators. We employ the most common of these operators:

sexual crossover.

The general idea behind sexual crossover is to divide both parent chromosomes into two

or more fragments and create two new children by mixing the fragments [87]. Pawlowsky

dubs this n-point crossover [95]. In n-point crossover, the two parent chromosomes are

aligned and cut into n+1 fragments at the same places. Once the division points are

identified in the parents, two new children are created by alternating the genes of the

parents [95].

In our application, since each gene corresponds to a SD, we consider the fragmentation

policy to be on each gene, making the size of each fragment to be one gene. Therefore,

assuming n is the number of genes, the resulting crossover operator (using Pawlosky’s

terminology [95]) is (n-1)-point, and is denoted nPointCrossover. In our application, the

186

mixing of the fragments is additionally subject to a number of constraints (Section

10.7.2): A newly generated chromosome should satisfy the inter-SD and arrival pattern

constraints. We ensure this by designing the GA operators in a way that they would never

generate an offspring violating a constraint.

 Whether the alternation process of the nPointCrossover operator starts from the first

gene of one parent or the other is determined by a 50% probability. To further introduce

an element of randomness, we alternate the genes of the parents with a 50% probability,

hence implementing a second crossover operator, nPointProbCrossover. In

nPointCrossover, the resulting children have genes that alternate between the parents. In

nPointProbCrossover, the same alternation pattern occurs as nPointCrossover, but

instead of always inheriting a fragment from a parent, children inherit fragments with a

probability of 50%.

It is important to note that, for both crossover versions, if the set of genes (their

corresponding SDs) do not belong to an ISDS, constraint #1 (Section 10.7.2.1) will be

violated. In such a case, we do not commit the changes and search for different parent

chromosomes (by applying the operator again). Regarding constraint #2 (Section

10.7.2.2), note that since the parents are assumed to satisfy the arrival pattern constraint,

and the crossover operators do not change the start times of genes’ DCCFPs, the child

chromosomes are certain to satisfy such constraint. The start times of DCCFPs will be

changed (mutated) by our mutation operator (described in the next section) and the

arrival pattern constraint will be checked when applying that operator.

An activity diagram for depicting the crossover operators is shown in Figure 79. Note

that the crossover operator function in the diagram can be any of the two

187

nPointCrossover or nPointProbCrossover operators (specified by the operator type,

given as a parameter to the activity diagram).

Crossover
Operator
Function

Child 1

Child 2

Add to the
Population

[constraint 1]

[constraint 1]

Remove Parent 1

Remove Parent 2

Discard

Discard

[not constraint 1]

Crossover Operator

Parent 1

Parent 2

Crossover operator type
{nPointCrossover,

nPointProbCrossover}

[not constraint 1]

Figure 79-Crossover operators.

Let us consider the example in Figure 80 to see how our two crossover operators work.

The number of genes in each parent chromosome is five (assuming that there are five

SDs in the SUT). Assume that SD numbering is the same as gene numbering and

ISDS1={SD1, SD3, SD4, SD5}. Parent 1 has genes corresponding to DCCFPs in {SD1, SD4,

SD5}⊂ ISDS1. Parent 2’s genes are DCCFPs in {SD1, SD3, SD4}⊂ISDS1. The results of

applying nPointProbCrossover and nPointCrossover are shown in Figure 80.

In nPointCrossover, the fragments of Parent 1 and Parent 2 are alternately interchanged.

Using the same example for nPointProbCrossover, one possible outcome appears in

Figure 80-(c). Bold genes indicate the fragments interchanged by nPointProbCrossover.

All four generated children conform to constraint #1, i.e., the SD corresponding to their

genes belong to one ISDS (ISDS1), as well as constraint #2..

188

The advantages of nPointProbCrossover are twofold. It introduces further

randomness in the crossover operation. By doing so, it allows further exploration of the

solution space. However, nPointProbCrossover has its disadvantages: the resulting

children may be replicas of the parents, with no alteration occurring. This is never the

case with nPointCrossover; resulting children are always genetically distinct from their

parents.

Parent 1 (p1,1, 3ms) null

Parent 2

null (p4,1, 4ms) (p5,2, 7ms)

(p1,2, 2ms) null (p3,4, 5ms) (p4,2, 6ms) null

(p1,1, 3ms) null null (p4,2, 6ms) (p5,2, 7ms)

(p1,2, 2ms) null (p3,4, 5ms) (p4,1, 4ms) null

Child 1

Child 2

(p1,2, 2ms) null null (p4,1, 4ms) null

(p1,1, 3ms) null (p3,4, 5ms) (p4,2, 6ms) (p5,2, 7ms)

Child 1

Child 2

nPointProbCrossovernPointCrossover
(a)

(b) (c)

Figure 80-Two example uses of the crossover operators.

Crossover rates are critical. A crossover rate is the percentage of chromosomes in a

population being selected for a crossover operation. If the crossover rates are too high,

desirable genes will not be able to accumulate within a single chromosome whereas if the

rates are too low, the search space will not be fully explored [87]. De Jong [92]

concluded that a desirable crossover rate should be about 60%. Grefenstette et al. [93]

built on De Jong’s work and found that crossover rates should range between 45% and

95%. Consistent with the findings of De Jong and Grefenstette, we apply a crossover rate

of 70%.

10.7.6.2 Mutation Operator

Mutation aims at altering the population to ensure that the GA avoids being caught in

local optima. The process of mutation proceeds as follows: a gene is randomly chosen for

189

mutation, the gene is mutated, and the resulting chromosome is evaluated for its new

fitness. We define three mutation operators that (1) mutate a non-null gene (a gene with

an already assigned DCCFP) in a chromosome by altering either its DCCFP, (2) mutate

the start time of a non-null gene, or (3) mutate the entire chromosome by assigning

another ISDS to it (i.e., assign to each gene of the chromosome to mutate a randomly

selected DCCFP from the corresponding SD of a randomly selected ISDS and a start time

from the ATS of that SD in a range up to GA’s maximum search time). The mutation

operators are referred to as DCCFPMutation, startTimeMutation, and ISDSMutation,

respectively.

The idea behind the DCCFPMutation operator is to choose different DCCFPs of the SD,

corresponding to a gene. The idea behind the startTimeMutation operator is to move

DCCFP executions along the time axis. The aim of the operators is to find the optimal

DCCFPs and start times at which instant traffic of the selected genes (DCCFPs) is

maximized. This is done in such a way that the constraints we defined on the

chromosomes are met (Section 10.7.2).

Since the mutation operators alter non-null genes only, they do not change the set of SDs

corresponding to a chromosome, thus ensuring that constraint #1 is satisfied (the set of

SDs will still belong to the same ISDS). However, start times are changed by the

mutation operator startTimeMutation, resulting in a possible violation of constraint #2.

The output of the DCCFPMutation operator will always adhere to constraint #2, since the

start times are unchanged by the operator. One way of making sure that a generated

chromosome by the startTimeMutation operator satisfies the arrival pattern constraints is

to set the new start times to a random value in the range of accepted arrival time values of

190

a SD, i.e., Accepted Time Sets (ATS) – (Section 10.2). Therefore, we design the

startTimeMutation operator in such a way that the altered start times are always among

the accepted one. In other words, there will be no need to backtrack in this case.

The above descriptions of the three mutation operators can be illustrated as two activity

diagrams in Figure 81 to Figure 83, respectively. Note that the manipulations used in

these two figures are in the chromosome and genes metamodel domain (Figure 70). For

example, g.selectedDCCFP denotes the DCCFP assigned to a gene. ATS(sd) return the

ATS of SD sd.

Mutation rates are critical. Mutation rate is the percentage of chromosomes in a

population being selected for mutation. Throughout the GA literature, various mutation

rates have been used. If the rates are too high, too many good genes of a chromosome are

mutated and the GA will stall in converging [87]. Back [96] enumerates some of the more

common mutation rates used. The author states that De Jong [92] suggests a mutation rate

of 0.001, Grefenstette [93] suggests a rate of 0.01, while Schaffer et al. [94] formulated

the expression length/. λ751 (where λ denotes the population size and length is the

length of chromosomes) for the mutation rate. Mühlenbein [97] suggests a mutation rate

defined by 1/length. Smith and Fogarty [98] show that, of the common mutation rates,

those that take the length of the chromosome and population size into consideration

perform significantly better than those that do not. Based on these findings, we apply the

mutation rate suggested by Schaffer et al.: length/. λ751 .

191

Choose a
random gene

A randomly chosen gene g of
chromosome c

DCCFPMutation Operator

A randomly chosen
chromosome c

Replace g.selectedDCCFP
with a randomly selected

DCCFP from g.sd

DCCFP sets of SDs

New chromosome c’

Figure 81- DCCFPMutation operator.

Choose a
random gene

A randomly chosen gene g
of chromosome c

startTimeMutation Operator

A randomly chosen
chromosome c

Replace g.startTime with a
randomly selected start time from
ATS(g.sd), in a range up to GA’s
MST (Maximum Search Time)

DCCFP sets of SDs

New chromosome c’

Figure 82- startTimeMutation operator.

ISDSMutation Operator

A randomly chosen
chromosome c

Assign to each gene of c a randomly selected DCCFP
from the corresponding SD of isds and a start time from

the ATS of that SD in a range up to GA’s MST
(Maximum Search Time)

A randomly chosen
ISDS isds

New chromosome c’

Figure 83- ISDSMutation operator.

10.8 Interval Stress Test Strategies accounting for Arrival Patterns

As discussed in Section 10.5, interval stress test strategies need to account for the ATSs

of SDs with arrival patterns. For such SDs, the earliest time points in their ATSs are

192

considered (to cause the most stressful situation, that is the shortest overall SDs

execution). Therefore, no complicated global search (such as the GA used for the instant

stress strategies) is required in this case. The time length of CSDFPs will increase in such

a case, compared to the case when there is no SD in a CSDFP with arrival patterns (refer

to Figure 68-(c) and Figure 68-(d) as an example). We present an pseudo-code in

Algorithm 2, referred to as APStressNetIntDT, which takes into account arrival patterns.

193

1. Find the DCCFP of each SD with maximum unit data traffic

1.1. For each SDi

1.1.1. For each DCCFP ρij of SDi // Finding maximum stress message of each DCCFP

Calculate Unit Data Traffic (UDT) of ρij, using:

()
)(Duration

)t,net,(NetInsDT
)net,(NetUDT

ij

t
ij

ij ρ

ρ
ρ

∑
=

where)(Duration ijρ is the time length of DCCFP ρij and can be calculated as:

()end.mmax)(Duration
)(CCFPmij

ijρ
ρ

∈∀
=

where)(ijCCFP ρ is the CCFP corresponding to DCCFP ρij.

1.1.1. Among all DCCFPs ρij of SDi, find the one with maximum unit data traffic

),(),(

:)(,
),(

maxmax

max
max netNetUDTnetNetUDT

SDDCCFP
netSDTDCCFPMaxNetPerD

ii

iiji
ii ρρ

ρρ
ρ

≥

∈∀
=

If no DCCFP in SDi is found with the above criteria, the function returns null.

2. Choose a CSDFP (Concurrent SD Flow Path) with maximum stress: // Inter-SD constraints are

considered here

2.2 For each CSDFPi // Calculate each CSDFP’s Unit Data Traffic (UDT)

()()net,TMaxNetIntD,CSDFPSBuildDCCFPionminAPDurat

)t,net),net,SD(TDCCFPMaxNetPerD(NetInsDT
)net,CSDFP(NetUDT

i

CSDFPSD t
i

i

∑ ∑
∈∀ ∀=

where minAPDuration is an extended version of the function Duration (presented in

Section 7.2.3) that calculates the minimum time length of a DCCFPS (DCCFP

Sequence) given the arrival pattern of its SDs. Arrival pattern constraints are

considered in this step, affecting the length of DCCFPSs, and hence helping the

algorithm to find the DCCFPS with highest stress per time unit. BuildDCCFPS is

function that builds a DCCFPS from the given CSDFPi using the given criteria:

net,TDCCFPMaxNetIntD .

2.2 Among all CSDFPs, find the sequences with maximum)net,CSDFP(NetUDT i
 and return it as

output (CSDFPmax)

Algorithm 2-Derivation of interval stress test requirements for data traffic on a

given network, considering arrival patterns (APStressNetIntDT).

194

In the algorithm, minAPDuration(aDCCFPS), in Step 2.1, is a variation of function

Duration (presented in Section 7.2.3) that calculates the minimum time length of a

DCCFPS (DCCFP Sequence) given the arrival pattern of its SDs. Arrival pattern

constraints are accounted for in this step, affecting the length of DCCFPSs, and hence

helping the algorithm to find the DCCFPS with highest stress per time unit.

BuildDCCFPS is a function that builds a DCCFPS from the given CSDFPi using the

given criteria net,TDCCFPMaxNetIntD . The pseudo-code of minAPDuration() is shown in

Algorithm 3 which is very similar to that of Duration(), presented in Section 7.2.3. The

only difference is how the duration of an atomic CCFPS is calculated. The illustration in

Figure 84 shows the impact of arrival patterns in the actual duration of a CCFP. On the

left-hand side of this figure, the duration of a CCFP has been calculated using Duration,

since the CCFP’s corresponding SD does not have an arrival pattern. Conversely, the

right-hand side of the figure shows the case when the corresponding SD of a CCFP has

an arrival pattern. The ATIs of the arrival pattern are depicted. In this case, the actual

duration of the CCFP has been calculated using minAPDuration, which is the summation

of the CCFP’s duration plus the minimum arrival time of the corresponding SD, based on

its arrival pattern.

The idea is formalized in the calculation of the function earliestAT (arrival time) in

Equation 11 which calculates the earliest arrival time of a SD given its arrival pattern. If

a SD does not have an arrival pattern, earliestAT returns 0, meaning that the SD can start

immediately, given that its sequential/conditional SD constraints are satisfied.

195

time (ms)

ccfp

ATIs of SDAP

minAPDuration(ccfp)

time (ms)

ccfp

Duration(ccfp)

Without arrival patterns With arrival patterns

earliestAT(SDAP)

Figure 84-Impact of arrival patterns on the duration of a CCFP.

1. Function minAPDuration(ccfps: CCFPS): integer

2. if ccfps is atomic (only made of one CCFP)

3. return () ccfpsccfpSDearliestATendTimem ccfpsccfpsm
 of CCFPonly the|)(.max =+

∈∀

4. else if ccfps is the serial concatenation of several CCFPSs (i.e.,
nccfpsccfpsccfps L1=)

5. return minAPDuration (ccfps1)+…+ minAPDuration (ccfpsn)

6. else if ccfps is the concurrent combination of several CCFPSs (i.e.,

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

nccfps

ccfps
ccfps L

1)

7. return max(minAPDuration (ccfps1),…, minAPDuration (ccfpsn))

8. End Function

Algorithm 3-Calculating the minimum duration of a Concurrent Control Flow Path

Sequence (CCFPS), accounting for arrival patterns.

⎩
⎨
⎧

= ∈∀

else;0
pattern arrivalan has if;)(min

)()ATS(
SDatp

SDearliestAT SDatp

Equation 11- Function returning the earliest arrival time of a SD based on its

arrival pattern.

For example, let us calculate the duration of the following CCFPS:

4
3

2
1 ρ
ρ
ρ

ρ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=CCFPS

196

where each ρi is a CCFP of SDi. Assume the duration of each of the individual CCFPs

and arrival patterns of their corresponding SDs are given as in Table 7. Following the

analysis in Section 10.2 and 10.3, we first compute the Accepted Time Sets (ATS) of the

SDs. The result of earliestAT(SD) for each SD is also shown. For example, since the AP

of SD1 is bursty, its earliest arrival time can be 0ms.

CCFP Duration SD Arrival Pattern earliestAT(SD)

CCFP1 2800 ms SD1 (‘bursty’, (500, ms), 2) 0ms

CCFP2 1300 ms SD2 No arrival pattern 0ms

CCFP3 1000 ms SD3 (‘periodic’, (500, ms), (100, ms)) 400ms

CCFP4 1000 ms SD4 (‘bounded’, (500, ms), (600, ms)) 500ms

(a) (b)

Table 7-(a): Durations of several CCFPs. (b): Arrival patterns of several SDs.

The call tree of the recursive algorithm minAPDuration applied to CCFPS is shown in

Figure 85. Since CCFPS1 is a serial concatenation of three CCFPSs itself, three recursive

calls are made, whose results will be summed upon return. One of these CCFPSs (
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

3

2

ρ
ρ),

is the concurrent combination of two CCFPs, therefore the maximum value of their

durations are returned as the durations of this CCFPS. For example

minAPDuration(ρ3)=1000+400=1400ms.

197

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
4

3

2
1 ρ
ρ
ρ

ρionminAPDurat

()2ρionminAPDurat ()3ρionminAPDurat

max

1400 ms1300 ms

1400 ms 1500 ms

5700 ms

2800 ms

()1ρionminAPDurat ()4ρionminAPDurat

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

3

2

ρ
ρ

ionminAPDurat

+

Figure 85-Call tree of the recursive algorithm minAPDuration applied to a CCFPS.

10.9 Impacts of Uncertainty in Timing Information on our Stress Test Methodology

We discussed the possible uncertainty in timing information (execution times of

messages) in Section 5.1.1.2. Now that we already presented the simpler version of our

stress test methodology (Time-Shifting Stress Test Technique) in the earlier sections of

the current chapter, we can now discuss the impacts of uncertainty in timing information

on TSSTT. Since each of our instant and interval stress test strategies consider time

differently (the former focuses on time instants and the latter on time intervals), the

impacts of time uncertainty are likely to be different on each of the two strategies, as

described next.

Recall the heuristics of our instant stress test strategy (Section 9.2), where the shifting

(scheduling) of CCFPs along the time axis is performed such that the instant traffic (on a

specific network) is maximized. Referring to Figure 56 as an example showing our stress

test heuristics, it can be observed that if the start and/or end times of any message are

changed (an effect of uncertainty in timing information), the output stress test

requirements might change dramatically. Such an impact (in an optimal output) is

198

specially great if there are uncertainties in timing information of maximum stressing

message(s) of DCCFPs. Such uncertainties will most probably change the output test

requirement by shifting an involved DCCFP along time axis or by entirely changing the

ISDS associated with the test requirement.

Investigating the impacts of uncertainty in timing information on outputs of our stress test

methodology can actually be performed by adopting sensitivity analysis8 theories from

the optimization field. Based on the above discussions, we expect that our optimization

problem (stress test methodology) is quite sensitive to uncertainty in timing information.

Informally, it can be stated as the average variance (as a measure of uncertainty) in

timing information in a SUT increases, the preciseness of the output stress test

requirements generated by our methodology decreases. The preciseness of a test

requirement in this context corresponds to the certainty by which executing test cases

corresponding to that test requirement will maximize traffic on a given network (or a

node).

The formal (mathematical) sensitivity analysis of the impacts of uncertainty in timing

information on our stress test methodology would require more discussions that, due to

space shortage and our project boundaries, we leave to future works.

8 A procedure to determine the sensitivity of the optimal result of an optimization

problem to changes in its parameters (e.g. constraints and coefficients). If a small change

in a parameter results in relatively large changes in the optimal result, the problem is said

to be sensitive to that parameter.

199

One possible ad-hoc idea to help our stress test methodology cope with uncertainty in

timing information is to focus on the middle time-unit portion of maximum stressing

messages (whenever it exists) when attempting to build a stress test schedule. To better

express this idea, consider Figure 56-(c) where the first portions of four maximum

stressing messages (in the four DCCFPs) are considered to build a stress test schedule.

Furthermore, assume that there is uncertainty on the start and end times of the only call

message of DCCFP3. The above idea suggests to slightly change the stress test schedule

so that the middle portion of DCCFP3 (from 4 to 5 ms in Figure 56-(b)) is triggered on

the maximum stress time instant. The heuristic behind the above ad-hoc idea is that: if the

start or the end time of the only call message of DCCFP3 slightly differs (less than a 1

ms) at test runtime, the hope is that the stress test can still maximize the amount of traffic.

Of course, the success of such slight changes in DCCFP schedules of a stress test

requirement in coping with uncertainty in timing information is dependent on several

factors, such as: (1) the levels of timing uncertainty, i.e. low chances of highest possible

traffic if there are high levels of uncertainty in the durations of the involved messages, (2)

the time durations of the involved messages, i.e., low chances of highest possible traffic if

the durations of the involved messages are relatively short.

10.10 Wait-Notify Stress Test Technique

Recall from Section 5.1.1.3 where we discussed messages with unpredictable execution

times (or start/end times). After using different schedulability analysis techniques to

estimate execution times of messages in a SUT, there might still be messages whose

execution times are unpredictable, or no WCET/BCET can be found for them. Examples

200

of such messages are those with data-intensive parameters whose data sizes can not

be estimated by any means in advance.

Estimating the execution times of such messages will lead to great amounts of

uncertainty in such time values, which might lead to great deals of indeterminism in our

stress test methodology and the output test requirements it will generate (Section 10.9).

Thus, we will present in the current section a different version of our stress test

methodology, referred to as Wait-Notify Stress Test Technique (WNSTT), which can be

used to stress test systems with at least one message with unpredictable execution time.

The underlying ideas of WNSTT is taken from the barrier scheduling heuristics [21] for

finding concurrent bugs in Java programs. To find concurrent bugs, the authors of [21]

created interesting interleavings (interesting here means effective at finding bugs) related

to a given shared variable by installing thread barriers before and after accessing the

variable. The barrier is implemented by using a counting semaphore. The semaphore

causes threads to wait just before the shared variable is accessed. When more than one

thread is waiting, then the Java statement notifyAll() is used to simultaneously advance

the waiting threads. Thus, threads access the variable simultaneously. As a result, the

probability of a data race occurring increases and with it the probability of a concurrent

bug manifesting.

We adopt the barrier scheduling heuristics to devise WNSTT as follows. To increase the

chances of manifesting real-time faults, WNSTT intends to generate stress test

requirements by installing barriers before messages which entail maximum traffic

(among all messages of a DCCFP) on a given network (or a node). The barrier can be

implemented by using a counting semaphore. The semaphore causes all DCCFPs (of an

201

ISDS, chosen among all ISDSs such that total instant traffic is maximal) to wait just

before each of the involved messages are triggered. When all the DCCFPs (of the chosen

ISDS) is waiting, then all the DCCFPs are notified to simultaneously trigger the waiting

messages. Thus, all the maximum stressing messages send their instant traffic

simultaneously. As a result, the probability of a traffic fault occurring increases and with

it the probability of a real-time bug manifesting.

The above heuristics of the WNSTT are illustrated with an example in Figure 86. Barriers

are installed before messages which entail maximum traffic (among all messages of a

DCCFP).

Figure 86-Heuristics of the Wait-Notify Stress Test Technique (WNSTT).

202

Chapter 11

AUTOMATION AND ITS EMPIRICAL ANALYSIS

To improve automation for the two stress test techniques, namely Time-Shifting Stress

Test Technique (TSSTT) in Chapter 9, and Genetic Algorithm-based Stress Test

Technique (GASTT) in Chapter 10, we implemented a prototype tool, referred to as

GARUS (GA-based test Requirement tool for real-time distribUted Systems). Note that

GARUS supports both GASTT and TSSTT. Although it is primarily implemented for

GASTT, it can be used for TSSTT as well. This is done by simply specifying that none of

the SDs of a SUT have arrival patterns. This will be discussed in detail in Section 11.2.

We used GAlib [99], an open source C++ library for GAs. An overview of GAlib is

presented in Section 11.1. Section 11.2 describes our tool. Section 11.3 reports how we

validated the test requirements generated by GARUS and the efficiency and effectiveness

of our GA through empirical means.

11.1 GAlib

The library used to implement our GA-based tool was GAlib [99]. GAlib was developed

by Matthew Wall at the Massachusetts Institute of Technology. GAlib is a library of C++

203

objects. The library includes tools for implementing genetic algorithms to do

optimization in any C++ program using any chromosome representation and any genetic

operators. The library has been tested on multiple platforms, specifically DOS/Windows,

MacOS and UNIX. It can also be used with parallel virtual machines to evolve

populations in parallel on multiple CPUs.

Figure 87 illustrates the basic GAlib class hierarchies. Only the major classes of the

library are shown. For complete class listing, the reader is referred to [99].

GAScalingScheme

GANoScaling

GALinearScaling

GAPowerLawScaling

GASharing

GASigmaTruncationScaling

GASelectionScheme

GARankSelector

GARouletteWheelSelector

GATournamentSelector

GAUniformSelector

GASRSSelector

GADSSelector

GASUSSelector

GAGeneticAlgorithm

GASampleGA

GASteadyStateGA

GAIncrementalGA

GADemeGA

GAPopulation

GAStatistics

GAParameterList

GAGenome

GABinaryString GAList<T> GATree<T> GAArray<T>

GAListGenome<T> GATreeGenome<T>
GA1DArrayGenome<T>

GA2DArrayGenome<T>

GA3DArrayGenome<T>

GA1DBinaryStringGenome

GA2DBinaryStringGenome

GA3DBinaryStringGenome

Figure 87-Basic GAlib class hierarchy (adopted from [99]).

GAlib defines many options. It supports four types of genetic algorithms: simple, steady

state, incremental and deme. The former three types are described in Appendix A. The

deme genetic algorithm evolves multiple populations in parallel using a steady state

algorithm. During each population, some individuals are migrated between the

populations [99]. GAlib also supports various selection methods for choosing an

204

individual for mutation and crossover. These include rank selection, roulette wheel,

tournament, stochastic remainder sampling (SRS), stochastic uniform sampling (SUS)

and deterministic sampling (DS).

11.2 GARUS9

GARUS (GA-based test Requirement tool for real-time distribUted Systems) is our

prototype tool for deriving stress test requirements. Section 11.2.1 presents the class

diagram of GARUS. The overview activity diagram of GARUS is described in Section

11.2.2. The input/output file formats are presented in Section 11.2.3 and Section 11.2.4,

respectively.

11.2.1 Class Diagram

The simplified class diagram of GARUS is shown in Figure 88. The classes in the class

diagram are grouped in three packages: TestModelGenerator, TestModel and GA.

To simplify the implementation of GARUS, we assume that a TM has already been built

from a given UML model and a set of test parameters by a test model generator (the

TestModelGenerator package). The TM is also assumed to be filtered by the given set of

test parameters. For example, if test parameters are for a StressTestNetInsDT test strategy

9 The source code of the tool, as well as sample input/output files for several systems

under test, a random input model generator, and the data files for empirical GA

validations of the tool are available from the World Wide Web [100] V. Garousi,

"GARUS (Genetic Algorithm-based test Requirement tool for real-time distribUted

Systems)," in http://squall.sce.carleton.ca/tools/GARUS, 2006..

205

over a network net, all DCCFPs in the CFM and network usage pattern parts of a TM

are assumed to have been filtered by that particular network. Thus, we would ideally have

a package in GARUS that handles this. However, to simplify the implementation of

GARUS, the package is currently bypassed (the filtered TM is built manually from a

UML model).

The classes in the TestModel package store information about the test model of a SUT.

The GA package includes the GA domain-specific classes, which solve the optimization

problem and derive stress test requirements.

One object of class TestModel and one object of class GASteadyState GA are instantiated

at runtime for a SUT. The connection between the two packages is achieved via class

DCCFP (in the TestModel package) and class GARUSGene (in the GA package).

-End71 -End8*

ISDS

SD

DCCFP

-End71 -End8*

-End71 -End8*

-End71 -End8*

* ISDSs

* SDs

* DCCFPs

* NTUPs

GARUSGene

TestModel GA

+Initializer()
+Mutator()
+Evaluator()
+Comparator()
+nPointCrossover()
+nPointProbCrossover()

GARUSGenome

GAlib::GA1DArrayGenome

GAlib::GAGenome

-End7

1

-End8

*

UML-SPT::RTtimeValue

DCCFP
0..1

0..1 startTime

* genes
[ordered]

time
1NTUP

GARUS

GAlib::GASteadyStateGA

ga
-End71 -End8

*

genomes

+readTestModel()

TestModel

+initialize()
+evolve()

GAlib::GAGeneticAlgorithm

noAP

+getARandomArrivalTime()

AP

boundedAP

burstyAP

irregularAP

periodicAP

unboundedAP

arrivalPattern
1

periodValue
deviationValue

burstIntervalLength
maxNumOfArrivals

minIAT
maxIAT
ATIs:List<ATI>

numOfPoints
points:List<unsigned int>

TestModelGenerator

UMLModel

TestParameters

Figure 88-Simplified class diagram of GARUS.

206

Abstract class AP in the TestModel package realizes the implementation of arrival

patterns. Six subclasses are inherited from class AP, five of which correspond to the five

types of arrival patterns (Section 10.1). Objects of type class noAP are associated with

SDs which have no arrival patterns. Due to the implementation details, this choice was

selected instead of setting the arrivalPattern association of such SDs to null. Function

getARandomArrivalTime() is used in the mutation operator of GARUS (Mutation() in

class GARUSGenome) and, for each subclass of AP, it returns a random arrival time in

the corresponding ATS (Section 10.3) according to the type of arrival pattern.

11.2.2 Activity Diagram

The overview activity diagram of GARUS is presented in Figure 89. The test model of a

SUT is given in an input file. GARUS reads the test model from the input file and creates

an object named tm of type TestModel, initialized with the values from the input test

model. Then, an object named ga of type GAlib::SteadyStateGA is created, such that tm

is used in the creation of ga’s initial population (Section 10.7.3). Note that object ga has a

collection of chromosomes of type GARUSGenome, and each object of type

GARUSGenome has an ordered set of genes of type GARUSGene (refer to the class

diagram in Figure 88). Furthermore, ga’s parameters (e.g. mutation rate) are set to the

values as discussed in Section 10.7.

GARUS then evolves ga using the overloaded GA mutator and crossover operators

(Section 10.7.6). When the evolution of ga finishes, the best individual (accessible by

ga.statistics().bestIndividual()) is saved in the output file (see Section 11.2.4).

207

GARUS (GA-based test Requirement generator for real-time distribUted Systems)

Input File

Test Model of a
SUT

Output File

Stress Test
Requirements

Initialize an object of
type

GASteadyStateGA
Evolve ga

ga:GASteadyStateGA

Read the input file
into an object of type

TestModel

tm:TestModel

ga.statistics()
.bestIndividual()

Figure 89-Overview activity diagram of GARUS.

11.2.3 Input File Format

The input file provided to GARUS contains the test model (TM) of a SUT. As it was

shown in Figure 10, a TM consists a CFM (including DCCFPs), inter-SD constraint

(ISDSs) and distributed traffic usage patterns.

Referring to Figure 10, stress test parameters are also part of the input. As discussed in

Chapter 9, stress test parameters are in fact the type of stress test technique (e.g.

StressTestNetInsDT and StressTestNodInIntMT) and a set of parameters specific to the

technique (e.g. a node name and a period’s start/end times for the StressTestNodInIntMT

stress test technique). Furthermore, as it was discussed in the algorithms and equations in

Chapter 8, a test model can be filtered based on different attributes discussed in

distributed traffic usage analysis (e.g. location, direction, and period).

The input file is in a format to accommodate a filtered TM. For example, if test

parameters are for a StressTestNetInsDT test strategy over a network net, all DCCFPs in

the CFM and network usage pattern parts of a TM are assumed to have been filtered by

that particular network. The input file format consists of several blocks, each specifying

208

different elements of a TM. GARUS input file format is shown using the BNF in

Figure 90.

The input file format can be best described using an example. An example input file is

shown in Figure 91. Different blocks are separated with a gray highlight. The TM starts

with a block of two ISDSs ISDS0 and ISDS1 (ISDSsBlock in Figure 90). For example,

ISDS0 consists of three SDs: SD0, SD1, and SD2.

The second block of the input file shows SDs (SDsBlock in Figure 90). There are five

SDs: SD0,…, SD4. Each SD line consists of a SD name, number of concurrent multiple

instances allowed, followed by the number of its DCCFPs and their names. For example

SD2 has two DCCFPs named p21 and p22.

hTimeGAMaxSearc
) value(time::DTUPP

DTUPPDTUPPCCFPnDTUPPsInDDCCFPName::DCCFP

DCCFPDCCFP::kDCCFPsBloc

irregularAPTypeAPointAPointintsInAPnArrivalPo
boundedAPTypemaxIATminIAT
periodicAPTypealuedeviationVeperiodValu

unbounded,bursty,pattern_arrival_noAPType

::rsAPParamete

unbounded|bursty|irregular|bounded|periodic|pattern_arrival_no::APType
rsAPParameteAPTypeSDName::SDAP

SDAPSDAP::SDAPsBlock

DCCFPNameDCCFPNameDnDCCFPsInScestannsnMultipleISDName::SD
SDSDnSDs::SDsBlock

SDNameSDNamenSDsInISDSISDSName::ISDS
ISDSISDSnISDSs::ISDSsBlock

kDCCFPsBlocSDAPsBlockSDsBlockISDSsBlock::ormatinputFileF

iii

CCFPnNTUPPsInDiii

DnDCCFPsInSnDCCFPs

nDCCFPs

iintsInAPnArrivalPoi

iii

iii

i

i

i

iiii

nSDs

DnDCCFPsInSiiii

nSDs

nSDsInISDSiii

nISDSs

i

iSD
i

i

i

i

=

=

∑

=

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
=
=
∈∈

=

=
=

=

=
=

=
=

=

∀

=

K

4444 34444 21
K

K

K

K

K

K

K

1

1

1

1

1

1

1

1

 if;
 if;
 if;

 }{ if;

Figure 90-GARUS input file format.

The third block shows SD Arrival Pattern (AP) - (SDAPsBlock in Figure 90). Each line in

this block consists of a SD name, followed by its AP type and a set of parameters specific

to that AP type. For example, SD1 has a periodic arrival pattern. The period and deviation

209

values of this periodic arrival pattern are 4 and 2 units of time. Note that units for all

time values in an input file are assumed to be the same, and hence they are not specified.

It is up to a user to interpret the unit of time. If the AP of a SD is bounded, the minimum

and maximum inter-arrival time (minIAT, maxIAT) are specified. In case when a SD has

no arrival pattern (no_arrival_pattern keyword), or it is bursty or unbounded, no

additional parameters need to be specified. This is because such APs do not impose any

timing constraints in our stress test requirement generation technique. Refer to Sections

10.2 and 10.5 for further details.

The next block in an input file is the DCCFPsBlock. The number of DCCFPs in a

DCCFPsBlock, is equal to the sum of DCCFPs of all SDs, specified in the SDsBlock. For

example, in the example input file in Figure 91, this total is equal to: 5 (SD0) + 3 (SD1) +

2 (SD2) + 1 (SD3) + 4 (SD4)=15. All 15 DCCFPs have been listed, each following by its

DTUP (Distributed Traffic Usage Pattern). The format for specifying DTUP of a DCCFP

is described next. As discussed in Section 8.5, the DTUP of a DCCFP (with a fixed

traffic location, direction and type) is a 2D function where the Y-axis is the traffic value

and the X-axis is time. The non-zero values of a DTUP are specified in an input file.

Each such value is specified by a pair consisting of the corresponding time and traffic

values, and is referred to as a DTUPP (Distributed Traffic Usage Pattern Point). For

example, DTUPPs of the DTUP in Figure 92 are: (1, 90), (3, 40), (4, 40), (8, 30), and (12,

50). For example, in the input file in Figure 91, p41 has two DTUPPs: (4, 20) and (7, 4).

The “,” symbol between time and traffic values is eliminated in the input file to ease the

parsing process.

210

2
ISDS0 3 SD0 SD1 SD2
ISDS1 4 SD0 SD2 SD3 SD4
5
SD0 1 5 p01 p02 p03 p04 p05
SD1 1 3 p11 p12 p13
SD2 1 2 p21 p22
SD3 1 1 p31
SD4 1 4 p41 p42 p43 p44
SD0 periodic 5 0
SD1 periodic 4 2
SD2 bounded 4 5
SD3 no_arrival_pattern
SD4 irregular 5 2 3 6 8 9
p01 5 (2 10) (3 5) (6 7) (12 20) (15 9)
p02 2 (1 5) (4 20)
p03 3 (3 5) (5 10) (6 7)
p04 2 (3 9) (6 35)
p05 1 (5 40)
p11 2 (4 4) (7 3.4)
p12 3 (1 1) (2 9) (5 6)
p13 5 (2 3) (5 4) (7 1) (9 6) (11 20)
p21 1 (4 30)
p22 4 (2 20) (3 10) (7 15) (9 30)
p31 3 (3 3) (5 9) (7 20)
p41 2 (4 20) (7 4)
p42 6 (2 3) (5 6) (8 8) (10 1) (12 9) (15 10)
p43 5 (4 2) (6 7) (10 5) (12 3) (15 2)
p44 2 (4 32) (6 10)

25

Figure 91-An example input file of GARUS.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

NetInsDT(p,Network,t)

t (ms)

100

KB 90
40 40 30

50

Figure 92-An example DTUP of a DCCFP.

The last piece of information in the input file is a Real value, referred to as

GAMaxSearchTime (Section 10.7.4). This value (in time units) specifies the range (from

zero) in which the GA tries to search for a best result. The initialization and the mutation

operators use this maximum search value to select a random start time for the DCCFP of

211

a gene. For example, the GAMaxSearchTime in the input file in Figure 91 is 25 time

units. Therefore, the GA operators in GARUS will choose random seeding times for

DCCFPs in the range of [0…25] time units. The higher the GAMaxSearchTime value, the

more broad the GA’s search range. However, we expect that higher GAMaxSearchTime

values deteriorates our GA’s performance in converging, since the higher the

GATimeSearchRange value, the less probable that multiple DCCFPs overlap with each

other. A suitable GAMaxSearchTime can be calculated using the two heuristics we

presented in Section 10.7.4. However, to allow variability of choices for

GAMaxSearchTime in our experimentation, we assume that such a time instant has been

calculated by a tester and is given in the input file.

11.2.4 Output File Format

GARUS exports the stress test requirements to an output file, whose name is specified in

the command line. If no output file name is given by the user, the output is simply printed

on the screen. Furthermore, the output file also contains standard GAlib statistics,

including the numbers of selections, crossovers, mutations, replacements and genome

evaluations since initialization, as well as min, max, mean, and standard deviation of each

generation. The main output is the stress test requirements, while GA statistics are just

informative values for debugging purposes. The format of stress test requirements in an

output file is shown in Figure 93-(a). An example set of stress test requirements is

presented in Figure 93-(b), which is generated by GARUS for the input file in Figure 91.

212

lueinteger vaan timestress Max.
efloat valu aISTOF

start timeDCCFPSD

111

=
=

−−−−−−−−−−−−−−−−−−−−−−−−−−−

nSDsnSDsnSDs startTimeCFPNameSelectedDCSDName

startTimeCFPNameSelectedDCSDName
KKK

SD DCCFP start time
---- ---- ----------
SD0 p04 10
SD1 p12 14
SD2 p21 12
SD3 none
SD4 none

ISTOF=74
Max stress time=16 A stress test

schedule

(a) (b)

Figure 93-(a): Stress test requirements format in GARUS output file. (b): An

example.

The first block of the output file is a stress test schedule which, if executed, entails

maximum traffic. Each line in the first block of the output file corresponds to a SD of the

SUT, and specifies a selected DCCFP with a start time to trigger. For example, Figure

93-(b) indicates that p04 of SD0, p12 of SD1, and p21 of SD2 should be triggered at start

times 10, 14 and 12 unit of time, respectively. No DCCFP has been specified to be

triggered for SD3 and SD4. This is because a set of stress test requirements corresponds

to an ISDS in a SUT, and as shown in Figure 91, the SUT we used for these results has

two ISDSs and SD0, SD1 and SD2 are members of one of them. In other words,

triggering all SDs SD0 …SD4 is not allowed in this SUT. Note that GARUS never

schedules a DCCFP in a start time which is not allowed according to SDs’ arrival

patterns.

11.3 Validation of Test Requirements Generated by GARUS

Along with a stress test requirement, GARUS also generates a maximum traffic value and

a maximum traffic time. The maximum traffic value is in fact the objective function

value of the GA’s best individual at the completion of the evolution process. The

213

objective function was described in Section 10.7.4, and was referred to as Instant

Stress Test Objective Function (ISTOF). The maximum traffic time is the time instant

when the maximum traffic happens. For example the ISTOF value and maximum traffic

time for the SUT specified by the input file in Figure 91 are 74 (unit of traffic, e.g. KB)

and 16 (unit of time, e.g. ms), respectively.

Test requirements generated by GARUS can be validated according to at least six

criteria:

1. Satisfaction of ATSs by start times of DCCFPs in the generated stress test

requirements (Section 11.3.1): As explained in Section 10.7, each chromosome

(including the final best chromosome) should satisfy this constraint, i.e., the start

times of each DCCFP in the final best chromosome of the GA should be inside

the Accepted Time Set (ATS) of its corresponding SD.

2. Checking ISTOF values (Section 11.3.2): As a heuristic, GAs do not guarantee to

yield optimum results, and checking that the ISTOF value of the final best

chromosome is the maximum possible traffic value among all interleavings is a

NP-hard problem. It is, therefore, not possible to fully check how optimal GA

results are. However, simple checks can be done to determine if, for example,

GARUS has been able to choose the DCCFP with maximum traffic value among

all DCCFPs in a SD.

3. Repeatability of GA results across multiple runs (Section 11.3.3): It is important

to assess how stable and reliable the results of the GA will be. To do so, the GA is

executed a large number of times and we assess the variability of the average or

best chromosome’s fitness value.

214

4. Convergence efficiency across generations towards a maximum (Section

11.3.4): In order to assess the design of the selected mutation and cross-over

operators, as well as the chosen chromosome representation, it is useful to look at

the speed of convergence towards a maximum fitness plateau [101]. This can be

measured, for example, in terms of number of generations required to reach the

plateau. This can be easily computed as, for each generation, GAlib statistics

provide min, max, mean, and standard deviation values.

5. Impacts of variations in test model size (scalability of the GA) - (Section 11.3.6):

Assessing how The GA performance and its repeatability are affected with

different test model sizes.

6. Impacts of variations in parameters other than test model size - (Sections 11.3.7-

11.3.9): Assessing how the GA performance and its repeatability are affected

when it is applied to different test models with different properties. In the current

work, we investigate the impacts of variations in arrival pattern types (Section

11.3.7), arrival pattern parameters (such as periodic arrival pattern period and

deviation, and bounded arrival pattern minimum and maximum inter-arrival time

values) (Section 11.3.8), and GA maximum search time (Section 11.3.9) on the

GA results and on its repeatability aspect, respectively.

Using the above six criteria, we analyze the stress test requirements generated by running

GARUS on a set of experimental test models, which were designed to test the

repeatability and scalability aspects of our GA. We discuss in Section 11.3.5 how we

designed the set of the experimental test models, which will be used in the rest of this

chapter as a test-bed for our experiments and validations.

215

11.3.1 Satisfaction of ATSs by Start Times of DCCFPs in the Generated Stress

Test Requirements

We check whether the start times of the DCCFPs in the generated stress test requirements

satisfy the ATSs of the corresponding SDs. In order to investigate this, we first derive the

ATSs of the SDs in the test model corresponding to the input file in Figure 91. Consistent

with discussions in Section 10.3, they are shown in Figure 94.

ATS of a SD

Execution of a
DCCFP DCCFPName

SD2

SD1

SD3

SD0

SD4

time...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time...

...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time...

Legend

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time

p01

p21

p31

p44

maximum instant traffic

Figure 94-ATSs of the SDs in the TM in Figure 91, and a stress test schedule

generated by GARUS.

For example, as SD0 has a periodic AP with period value=5 and zero deviation, its ATS

comprises time instants 5, 10, 15 and so on. Since SD3 has no AP, therefore its ATS

includes all the time instants from zero to infinity. As an example, the stress test schedule

generated by run number 2 in Table 10 has been depicted in Figure 94. This stress test

schedule includes p01 from SD0, no DCCFPs from SD1, p21 from SD2, p31 from SD3,

and p44 from SD4 to be triggered on time instants 10, 8, 5, and 8, respectively. The time

216

instant when the maximum traffic occurs (time=12) is depicted with a vertical bold

line. The ISTOF value at this time is 92 units of network traffic.

As it can be seen in Figure 94, the start times of all selected DCCFPs in the stress test

schedule reside in the ATSs of the respective SDs. This is explained by the way the initial

population of chromosomes is created (Section 10.7.3) and the allowability property of

our mutation operator (Section 10.7.6.2). The start time of each DCCFP is always chosen

from the ATS of its corresponding SD. This is achieved by building the ATS of each SD

according to its type of AP when GARUS initializes a test model. Then, when a random

start time is to be chosen for a DCCFP, method getARandomArrivalTime(), which is

associated with a SD is invoked on an object from a subclass of the abstract class AP.

Refer to Figure 88 for details.

11.3.2 Checking the extent to which ISTOF is maximized

As a test to check if GARUS is able to choose the DCCFP with maximum traffic value

among all DCCFPs of a SD, we artificially modify DTUPs of the DCCFPs in the test

model of Figure 91 such that one DCCFP of each SD gets a much higher peak value in its

DTUP. The modified values are shown in bold in Figure 95.

For example, the DTUP value of p03 at time=5 was 10, whereas its new value is 500.

This value is an order of magnitude larger than all other DTUP values of other DCCFPs

in SD0. We then run GARUS with this modified TM for a large number of times and see

if the DCCFPs with high DTUP values are part of the output stress test schedule

generated by GARUS.

217

We executed GARUS 10 times with this TM, and the 10 schedules generated by

GARUS had the format described in Table 8, where x stands for values which changed

across different runs. As expected, DCCFPs p21, p31, and p42 were present in all 10

stress test schedules, thus suggesting that GARUS selects the correct DCFFPs. On the

other hand, different DCCFPs from SD0 were reported in the output schedules. This can

be explained as SD0’s ATS contains specific time points (5, 10, 15, and so on) and p03

(the modified DCCFP) will therefore not be able to have an effect on the maximum

possible instant traffic (at time=16 or 17) since its modified DTUP point is at time=5.

--DCCFPs
p01 5 (2 10) (3 5) (6 7) (12 20) (15 9)
p02 2 (1 5) (4 20)
p03 3 (3 5) (5 500) (6 7)
p04 2 (3 9) (6 35)
p05 1 (5 40)
p11 2 (4 4) (7 3.4)
p12 3 (1 1) (2 900) (5 6)
p13 5 (2 3) (5 4) (7 1) (9 6) (11 20)
p21 1 (4 300)
p22 4 (2 20) (3 10) (7 15) (9 30)
p31 3 (3 3) (5 9) (7 700)
p41 2 (4 20) (7 4)
p42 6 (2 3) (5 6) (8 800) (10 1) (12 9) (15 10)
p43 5 (4 2) (6 7) (10 5) (12 3) (15 2)
p44 2 (4 32) (6 10)

Figure 95-Modified DCCFPs of the test model in Figure 91.

SD DCCFP Start Time
SD0 x x
SD1 none
SD2 p21 x
SD3 p31 x
SD4 p42 x

ISTOF=1500 or 1520
Max stress time=16 or 17

Table 8-Output format of 10 schedules generated by GARUS.

218

The reason why p12 (from SD1) is not selected in any of the outputs across different

runs is that a set of DCCFPs are generated by GARUS as a stress test schedule only if the

SDs corresponding to the DCCFPs belong to one ISDS. The set of SDs {SD0, SD1, SD2,

SD3, SD4} does not belong to an ISDS. Furthermore, among all ISDSs (ISDS0={SD0,

SD1, SD2} and ISDS1={SD0, SD2, SD3, SD4}) of the test model, the maximum instant

traffic of ISDS1 has a larger value than that of ISDS0, thus not letting SD1 (and all of its

DCCFPs) play a role in the output stress test schedules.

11.3.3 Repeatability of GA Results across Multiple Runs

Since GAs are heuristics, their performance and outputs can vary across multiple runs.

We refer to such a GA property as repeatability of GA results. This property is

investigated by analyzing maximum ISTOF values as they are the fitness values of

chromosomes in our GA. We furthermore analyze maximum stress time values as such a

time value denotes the time instant when a stress situation actually occurs.

Figure 96-(a) depicts the distributions of maximum ISTOF and stress time values for

1000 runs of test model corresponding to the input file in Figure 91. From the ISTOF

distribution, we can see that the maximum fitness values for most of the runs are between

60 and 72 units of traffic. Descriptive statistics of the fitness values are shown in Table 9.

Average and median values are very close, thus indicating that the distribution is almost

symmetric.

Min Max Average Median Standard Deviation

50 92 66.672 65 6.4

Table 9-Descriptive statistics of the maximum ISTOF values over 1000 runs. Values

are in units of data traffic (e.g. KB).

219

ISTOF Max stress time ISTOF Max stress time

50

60

70

80

90

10

20

30

40

50

50

60

70

80

90

10

20

30

40

50

60

(a) (b)

Figure 96-(a): Histogram of maximum ISTOF and stress time values for 1000 runs

of test model corresponding to the input file in Figure 91. (b): Corresponding max

stress time values for one of the frequent maximum ISTOF values (72 units of

traffic).

Such a variation in fitness values across runs is expected when using genetic algorithms

on complex optimization problems. However, though the variation above is not

negligible, one would expect based on Figure 96-(a) that with a few runs a chromosome

with a fitness value close to the maximum would likely be identified. Since each run lasts

a few seconds, perhaps a few minutes for very large examples, relying on multiple runs to

generate a stress test requirement should not be a practical problem.

Corresponding portions of max stress time values for the most frequent maximum ISTOF

value (72 units of traffic) have been highlighted in black in Figure 96-(b). As we can see,

these maximum stress time values are scattered across the time scale (e.g., from 10 to 60

units of time). This highlights that a single ISTOF value (maximum stress traffic) can

happen in different time instants, thus suggesting the search landscape for the GA is

220

rather complex for this type of problem. Thus, a strategy to further explore would be

for testing to cover all (or a subset of) such test requirements with maximum ISTOF

values in different time instants. Indeed, although their ISTOF value are the same, a

SUT’s reaction to different test requirements might vary, since a different DCCFP (and

hence set of messages) in a different stress time instant may be triggered. This might in

turn lead to uncovering different RT faults in the SUT.

11.3.4 Convergence Efficiency across Generations

Another interesting property of the GA is the number of generations required to reach a

stable maximum fitness plateau. The distribution of these generation numbers over 1000

runs of test model corresponding to the input file in Figure 91 is shown in Figure 97,

where the x-axis is the generation number and the y-axis is the probability of achieving

such plateau in a generation number. The minimum, maximum and average values are

20, 91, and 52, respectively. Therefore, we can state that, on the average, 52 generations

of the GA are required to converge to the final result (stress test requirement). The

variation around this average is limited and no more 100 generations will be required.

This number is in line with the experiments reported in the GA literature [87] but is

however likely to be dependent on the number and complexity of SDs as well as their

ATSs.

221

0

0.01

0.02

0.03

0.04

0.05

0.06

20 31 41 51 61 71 89

Generation num ber

Pr
ob

ab
ili

ty
 o

f a
ch

ei
vi

ng
 a

 m
ax

im
um

fit

ne
ss

 p
la

te
au

Figure 97-Histogram of the generation numbers when a stable maximum fitness

plateau is reached in 1000 runs of the test model corresponding to the input file in

Figure 91 by GARUS.

From the initial to the final populations in the test model corresponding to the input file in

Figure 91, the maximum fitness values typically increase by about 80%, which can be

considered a large improvement. So, though we cannot guarantee that a GA found the

global maximum, we clearly generate test requirements that will significantly stress the

system.

The variability in the objective function and start times as well as detailed information for

the first five runs of the test model corresponding to the input file in Figure 91 are

reported in Table 10. We can clearly see from the table that in a single run when the

generation number increases, the population converges (i.e. deviation value decreases).

222

For example, in the outputs reports in Table 10, the value of the deviation10 column

decreases continuously from 8.95 at generation #0 to 0.00 in generation #80. Also notice

the convergence of minimum and mean values towards the maximum (ISTOF) values

when the generation number increases.

Run # Generation

Mean Max
(ISTOF)

Min Deviation

Best individual

1 0 36.74 55 30 8.95 SD DCCFP start time
 10 44.47 58 38 7.04 ---- ---- ----------
 20 52.46 61 41 6.44 SD0 p05 25
 30 61.14 66 55 5.86 SD1 none
 40 67.23 71 61 4.90 SD2 p22 21
 50 71.43 79 70 4.21 SD3 p31 23
 60 74.62 85 70 3.01 SD4 p42 2
 70 82.03 88 72 2.95
 80 90.00 90 90 0.00 ISTOF=90
 90 90.00 90 90 0.00 Max stress time=30
 100 90.00 90 90 0.00

2 0 36.45 58 30 8.82 SD DCCFP start time
 10 43.84 60 36 7.13 ---- ---- ----------
 20 51.23 65 41 6.97 SD0 p01 10
 30 57.82 66 50 5.45 SD1 none
 40 64.70 73 59 5.27 SD2 p21 8
 50 72.52 76 62 5.04 SD3 p31 5
 60 80.50 82 80 3.39 SD4 p44 8
 70 81.34 84 80 3.78
 80 83.78 86 80 2.58 ISTOF=92
 90 91.64 92 80 2.05 Max stress time=12
 100 92.00 92 92 0.00

10 Deviation of a population in GAlib is defined as the standard deviation of individuals'

objective scores [87] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms: Wiley-

Interscience, 1998..

223

3 0 36.93 49 30 7.98 SD DCCFP start time
 10 45.36 50 39 7.94 ---- ---- ----------
 20 54.05 58 44 7.63 SD0 p04 15
 30 62.35 68 52 6.93 SD1 none
 40 70.01 72 65 3.46 SD2 p22 19
 50 73.63 74 72 1.49 SD3 p31 14
 60 75.00 75 75 0.00 SD4 p44 9
 70 75.00 75 75 0.00
 80 75.00 75 75 0.00 ISTOF=75
 90 75.00 75 75 0.00 Max stress time=21
 100 75.00 75 75 0.00

4 0 37.03 53 30 8.94 SD DCCFP start time
 10 45.37 58 37 8.14 ---- ---- ----------
 20 55.14 60 43 7.21 SD0 p05 15
 30 66.63 69 52 7.08 SD1 none
 40 73.29 78 70 6.22 SD2 p22 18
 50 79.02 80 72 2.62 SD3 p31 13
 60 80.00 80 80 0.00 SD4 p43 9
 70 80.00 80 80 0.00
 80 80.00 80 80 0.00 ISTOF=80
 90 80.00 80 80 0.00 Max stress time=20
 100 80.00 80 80 0.00

5 0 37.54 55 30 8.44 SD DCCFP start time
 10 45.60 58 39 7.50 ---- ---- ----------
 20 54.09 64 48 6.93 SD0 p05 5
 30 61.67 66 52 6.32 SD1 none
 40 68.42 69 65 2.52 SD2 p21 12
 50 70.37 71 70 0.78 SD3 p31 11
 60 71.14 72 70 0.99 SD4 p44 6
 70 72.00 72 72 0.00
 80 72.00 72 72 0.00 ISTOF=72
 90 72.00 72 72 0.00 Max stress time=10
 100 72.00 72 72 0.00

 Table 10-Summary of GARUS results for five runs.

224

11.3.5 Our Strategy for Investigating Variability/Scalability

To assess and validate test requirements generated by GARUS, we design a set of

different test models (referred to as experimental test models), and execute GARUS with

each of them as input. Note that these test models are in the input file format, described in

Section 11.2.3. To ensure variability in the experimental test models, a set of

experimental test models were designed based on the following criteria:

• Test models with variations in test model sizes (Section 11.3.5.3)

• Test models with variations in SD arrival patterns (Section 11.3.5.4)

• Test models with variations in the GA’s maximum search time (Section

11.3.5.5)

Since most of the input files containing the test models are large in size, we do not list

them in this article. As an example, the contents of one input file corresponding to one of

the test model in this section are shown in Appendix B. We discuss next a set of

variability parameters, we used in our experiments to incorporate variability in different

test models based on the above criteria.

11.3.5.1 Variability Parameters

The variability parameters used in our experiments are listed in Table 11, along with their

explanations. The parameters are grouped into three groups corresponding to the above

three criteria: (1) Test model size, (2) SD arrival patterns, and (3) Maximum search time.

We have defined eight parameters under the group of ‘test model size’ to incorporate

variability in different sizes perspectives in experimental TMs. Each parameters in this

group correspond to a sizes perspective, e.g., number of ISDSs, number of SDs, and

225

minimum number of DCCFPs per SD. For example, a large TM might have many

ISDSs (by setting large values for nISDSs), while another large TM can have many

DCCFPs per SD (by setting large values for minnDCCFPs and maxnDCCFPs).

Parameter Group Parameter Parameter Explanation
nISDSs # of ISDSs
nSDs # of SDs in TM
minISDSsize min. # of SDs per ISDS
maxISDSsize max. # of SDs per ISDS
minnDCCFPs min. # of DCCFPs per SD
maxnDCCFPs max. # of DCCFPs per SD
minnDTUPPs min. # of DTUPPs per DCCFP

Test model size

maxnDTUPPs min. # of DTUPPs per DCCFP
APtype type of AP
minAPperiodicPeriod min. period value
maxAPperiodicPeriod max. period value
minAPperiodicDeviation min. deviation value
maxAPperiodicDeviation max. deviation value
minAPboundedMinIAT min. value for min. inter-arrival time
maxAPboundedMinIAT max. value for min. inter-arrival time
minAPboundedMaxIATafterMin min. distance between maxIAT and

minIAT
maxAPboundedMaxIATafterMin max. distance between maxIAT and

minIAT
minnAPirregularPoints min. # for irregular points
maxnAPirregularPoints max. # for irregular points
minAPirregularPointsValue min. time value for irregular points

SD arrival patterns

(all parameter values are in
time units, except
minnAPirregularPoints and
maxnAPirregularPoints)

maxAPirregularPointsValue max. time value for irregular points
Maximum search time MaximumSearchTime GA maximum search time

Table 11- Variability parameters for experimental test models.

Parameters prefixed with min and max serve as statistical means, which enable us to

incorporate statistically-controlled randomness into the sizes of our experimental TMs.

For example, we can control the minimum and maximum number of DCCFPs per SD in a

TM by minnDCCFPs and maxnDCCFPs parameters. Such a statistical range for number

of SDs per ISDSs, DCCFPs per SD, and DTUPPs per DCCFP also conforms to real-

226

world models, where for example, there are not variant number of DCCFPs per SDs

in a TM. Our experimental TMs with variations in TM sizes based on the variability

parameters are presented in Section 11.3.5.3.

The second group of the variability parameters (SD arrival patterns) is designed to

incorporate variability in different SD arrival pattern properties of our experimental TMs.

All parameter values in this group are in time units, except minnAPirregularPoints and

maxnAPirregularPoints. The first parameter in this group (APtype) determines the type

of APs to be assigned for the SD of an experimental TM. APtype is of type enumeration

with possible values of:

• no_arrival_pattern: All SDs of the TM will have no APs, i.e., any arrival time

in test schedules is accepted for all SDs.

• periodic: All SDs of the TM will have periodic APs. Each AP’s parameters

are set to the four *APperiodic* variability parameters.

• bounded: All SDs of the TM will have bounded APs. Each AP’s parameters

are set to the four *APbounded* variability parameters.

• irregular: All SDs of the TM will have irregular APs. Each AP’s parameters

are set to the four *APirregular* variability parameters.

• mixed: Different SDs of a TM have different arrival patterns. The type of AP

for a SD is chosen from (no_arrival_pattern, periodic, bounded, or irregular)

with equal probabilities

Parameters with APperiodic, APbounded and APirregular substring are specific to

periodic, bounded and irregular APs, respectively, and specify the range of values to be

227

set for specific parameters of these AP. For example, minAPperiodicPeriod,

maxAPperiodicPeriod, minAPperiodicDeviation, and maxAPperiodicDeviation specify

min./max. period values, and min./max. deviation values for periodic APs of SDs. If they

are set to 5ms, 10 ms, 2ms, and 3ms respectively, the following APs might be generated

in an experimental TMs: (‘periodic’, (6, ms), (2, ms)), (‘periodic’, (8, ms), (3, ms)),

(‘periodic’, (10, ms), (3, ms)), and (‘periodic’, (6, ms), (3, ms)). Our experimental TMs

with variations in SD arrival patterns time based on the parameters in the second group

are presented in Section 11.3.5.4.

The third group of the variability parameters (maximum search time) has only one

parameter (MaximumSearchTime) which is designed to incorporate variability in GA

maximum search time (Section 10.7.4) of our experimental TMs. Our experimental TMs

with variations in maximum search time based on the MaximumSearchTime parameters

are presented in Section 11.3.5.5.

11.3.5.2 Random Test Model Generator

To facilitate the generation of experimental TMs based on the variability parameters

(Section 11.3.5.1), we developed a random test model generator (RandTMGen) in C++. A

simplified activity diagram of RandTMGen is shown in Figure 98, where the value for

variability parameters are provided as input, and an experimental TM is generated (in

input file format of Figure 90).

228

Random Test Model Generator (RandTMGen)

Values for variability
parameters

A random test model (in
input file format)

Generate a random test model based on the
values for variability parameters

(uniform distribution is used.)

Figure 98-Simplified activity diagram of our random test model generator.

For the pair of parameters specifying min./max. of a feature, e.g. minnDCCFPs and

maxnDCCFPs, RandTMGen uses uniform distribution to generate a value in the range of

[minnDCCFPs, maxnDCCFPs]. This is a design decision, which can be modified easily,

i.e., any other distribution can be used to generate a random value in [minnDCCFPs,

maxnDCCFPs]. As an example on how RandTMGen generate a random value in a range,

assume minnDCCFPs=3 and maxnDCCFPs=8. In such a case, all the integer values in

the range of [3, 8] are chosen by an equal probability to be set for the number of DCCFPs

per a SD in a TM.

In the following three subsections, we describe the parameters provided to RandTMGen

to generate a set of experimental test models to ensure variability in test models as well as

the scalability of GARUS.

11.3.5.3 Test Models with Variations in Sizes

In order to investigate the performance and size scalability of our GA (implemented in

GARUS), six test models with different sizes were generated using RandTMGen as

reported in Table 12.

The SDs of the each of the above test models were assigned arbitrary (mixed) arrival

patterns (no_arrival_pattern, periodic, bounded, or irregular) with equal probabilities.

229

Depending on the selected arrival pattern type for a SD, the AP variability parameters

were set as follows.

230

Test Models

Parameters

tm1
(small)

Figure 91

tm2
(many
ISDSs)

tm3
(many SDs

in TM)

tm4
(many SDs
per ISDS)

tm5
(many

DCCFPs
per SD)

tm6
(many

DTUPs per
DCCFP)

nISDSs 2 100 10 10 10 2

nSDs 5 50 200 50 10 5

minISDSsize 3 2 2 20 2 2

maxISDSsize 4 5 5 30 5 5

minnDCCFPs 1 1 2 1 10 1

maxnDCCFPs 5 3 5 3 50 5

minnDTUPPs 2 1 1 1 1 50

maxnDTUPPs 6 10 10 10 10 100

Table 12-Experimental test models with different sizes.

• Periodic arrival pattern

 minAPperiodicPeriod=5

 maxAPperiodicPeriod=10

 minAPperiodicDeviation=0

 maxAPperiodicDeviation=3

• Bounded arrival pattern

 minAPboundedMinIAT=2

 maxAPboundedMinIAT=4

 minAPboundedMaxIATafterMin=2

 maxAPboundedMaxIATafterMin=5

231

• Irregular arrival pattern

 minnAPirregularPoints=5

 maxnAPirregularPoints=15

 minAPirregularPointsValue=1

 maxAPirregularPointsValue=30

Note that the above value for the AP variability parameters are chosen to be typical

values, as our main intention in designing TMs tm1,…, tm6 is to experiment our GA’s

behavior and scalability aspect with reaction to different TM sizes.

11.3.5.4 Test Models with Variations in SD Arrival Patterns

To investigate the effect of variations in SD arrival patterns in generated test

requirements by GARUS, 12 test models were generated using RandTMGen based on

two variation strategies as reported in Table 13. The two AP-related variation strategies

we followed when generating TMs in this section were:

1. Different-AP-Types: Comparing generated test requirements for TMs with

different AP types

2. Same-AP-Different-Parameters: Comparing generated test requirements for TMs

with a same AP type, but different AP variability parameters (e.g.

maxAPperiodicPeriod, maxAPboundedMinIAT and minnAPirregularPoints).

A dash “-“ in a cell of Table 13 indicates that the parameter (corresponding to the cell)

does not apply to the corresponding TM. For example, all SDs in tm8 are supposed to be

periodic. Therefore, only periodic AP parameters apply to this TM. The following TM-

size parameters were used for the test models in Table 13.

232

 AP-related variation strategies

 Different-AP-Types Same-AP-Different-Parameters

Test Models

Parameters

tm
7

tm
8

tm
9

tm
10

tm
11

tm
12

tm
13

tm
14

tm
15

tm
16

tm
17

tm
18

APtype

no_arrival_pattern

periodic

bounded

irregular

m
ixed

periodic

periodic

periodic

bounded

bounded

irregular

irregular

minAPperiodicPeriod - 5 - - 5 5 5 20 - - - -

maxAPperiodicPeriod - 10 - - 10 5 5 25 - - - -

minAPperiodicDeviation - 0 - - 0 1 5 1 - - - -

maxAPperiodicDeviation - 3 - - 3 5 5 2 - - - -

minAPboundedMinIAT - - 2 - 2 - - - 50 2 - -

maxAPboundedMinIAT - - 4 - 4 - - - 60 4 - -

minAPboundedMaxIATafterMin - - 2 - 2 - - - 2 60 - -

maxAPboundedMaxIATafterMin - - 5 - 5 - - - 5 70 - -

minnAPirregularPoints - - - 5 5 - - - - - 50 5

maxnAPirregularPoints - - - 15 15 - - - - - 100 15

minAPirregularPointsValue - - - 1 1 - - - - - 1 100

maxAPirregularPointsValue - - - 30 30 - - - - - 30 200

Table 13-Experimental test models with variations in SD arrival patterns.

As these parameters denote, the size of TMs tm7, …, tm18 have been chosen to be

relatively medium (a typical setting) as our main intention in designing these TMs is to

experiment our GA’s behavior and output results with reaction to variations in SD arrival

patterns.

 nISDSs=10

233

 minISDSsize=5

 maxISDSsize=10

 nSDs=20

 minnDCCFPs=2

 maxnDCCFPs=5

 minnDTUPPs=1

 maxnDTUPPs=10

We discuss next our rationale of designing each TM based on the two above variation

strategies (Different-APs and Same-AP-Different-Parameters).

 Different-AP-Types: The four TMs tm7… tm11 are intended to investigate the

impacts of variations in AP types on repeatability and convergence efficiency of

the GA outputs. Each of these TMs have different criteria to assign APs to SDs,

as discussed in Section 11.3.5.1.

 Same-AP-Different-Parameters: Sets of two or more TMs where SDs in each TM

have the same AP, but different AP parameters. For example, all SDs in tm12,

tm13 and tm14 have periodic APs, but have different values for

minAPperiodicPeriod, maxAPperiodicPeriod, minAPperiodicDeviation or

maxAPperiodicDeviation. tm15 and tm16 are our pair of experimental test models

with bounded APs. TMs tm17 and tm18 have SDs with irregular APs. Such a

variation strategy will enable us to study the impacts of variations in AP

parameters on repeatability and convergence efficiency of the GA outputs.

234

11.3.5.5 Test Models with Variations in the GA Maximum Search Time

To investigate the effect of variations in maximum search time (Section 10.7.4) on

GARUS test requirements by GARUS, we created the following two test models using

our random test model generator. As an example, the contents of the input file

corresponding to tm20 is shown in Appendix B.

• tm19: SUT components (SDs, DCCFPs, ISDSs, etc.) are the same as tm1, but the

MaximumSearchTime is 5 time units instead of 50 in tm1.

• tm20: SUT components (SDs, DCCFPs, ISDSs, etc.) are the same as tm1, but the

MaximumSearchTime is 150 time units instead of 50 in tm1.

11.3.6 Impacts of Test Model Size (Scalability of the GA)

We investigate how the GA performance and its repeatability are affected when it is

applied to test models with different sizes. We study scalability by analyzing the impact

of variations in test model size on the following metrics:

 Execution time

 Repeatability of maximum ISTOF values

 Repeatability of maximum stress time values

 Convergence efficiency across generations

11.3.6.1 Impact on Execution Time

To investigate the impact of test model size on the execution time of our GA, the average,

minimum and maximum execution times over all the 1000 runs, by running GARUS with

tm1…tm6 on an 863MHz Intel Pentium III processor with 512MB DRAM memory are

235

reported in Table 14. As we can see in the table, minimums and maximums of the

statistics in Table 14 for each test model are relatively close to the corresponding average

value. Therefore, we use the average values to discuss the impacts of test model size on

execution time of our GA. To better illustrate the differences, the average values are

depicted in Figure 99.

Test Model Min Max Average Median Standard
Deviation

tm1 (small) 46 125 58 62 11.34

tm2 (many ISDSs) 743 1,150 1,089 375 44.79

tm3 (many SDs in TM) 1,015 2,219 1,240 1,171 199.10

tm4 (many SDs per ISDS) 734 1,641 809 782 97.61

tm5 (many DCCFPs per SD) 141 597 263 250 62.83

tm6 (many DTUPs per DCCFP) 734 1,375 820 797 74.74

Table 14-Execution time statistics of 1000 runs of tm1…tm6.

tm1

0 500 1000 1500

tm6tm4
tm2 tm3tm5

duration (ms)

Figure 99-Visualization of the average values in Table 14.

Average duration of the GA run of test model tm1 (58 ms) is the smallest among all. This

is expected since TM tm1 has the smallest size in terms of test model components

(ISDSs, SDs, and DCFFPs). tm3 has the highest average execution time among the six

TM runs. Durations of tm2, tm6, tm4, and tm5 are next in decreasing order. Based on the

above order of execution values, we can make the following observations:

 The execution time of the GA is strongly sensitive to an increase in number of

SDs in a TM. The more SDs in a TM, the longer a single run of our GA takes

236

(e.g. tm3). This can be explained as the number of genes per chromosome in

our GA is the same as the number of SDs in a TM. Thus, as the execution results

indicate, the execution time of our GA sharply increases when the number of

genes per chromosome increases. Such an increase impacts all functional

components of the GA, the two operators (Section 10.7.6) and the fitness

evaluator (Section 10.7.5).

 As expected, the execution time of our GA is also highly dependent on the

number of ISDSs (e.g. tm2). As the number of ISDSs increases, the size of initial

population grows, and so does the number of the mutations and crossovers

applied in each generation. The number of times the operators are applied is

determined by the mutation and crossover rates and the size of initial population.

 The execution time of our GA is also dependent on an increase in number of SDs

per ISDS (e.g. tm4), as well as an increase in number of DTUPs per DCCFP (e.g.

tm6). As the number of SDs per ISDS increases, the number of non-null genes per

chromosome will increase. This will, in turn, lead to more mutations and

crossovers and an increase in computation for the fitness evaluator. Similarly, an

increase in number of DTUPs per DCCFP will lead to an increase in fitness

computation time (Section 10.7.5).

 The execution time of our GA is not as dependent on an increase in number of

DCCFPs per SD (e.g. tm5), when compared to other TM components. This can be

explained as there will not be any change in chromosome size, nor in the initial

population in that case. Even the frequency of mutations and crossovers will not

change. For example, as the mutation operator chooses a random DCCFP among

237

all DCCFPs of a SD, there will be no effect in terms of execution time if the

number of DCCFPs per SD increases. The small difference between average

durations of tm5 and tm1 in Figure 99 is due to the fact that tm5’s number of SDs

is slightly more than that of tm1.

11.3.6.2 Impact on Repeatability of Maximum ISTOF Values

To investigate the impact of test model size on the repeatability of maximum ISTOF

values generated by our GA, Figure 100 depicts the histograms of maximum ISTOF

values for 1000 runs on each of the test models tm1,…,tm6. The corresponding

descriptive statistics are shown in Table 15. Average and median values of all

distributions are very close, thus indicating that the distributions are almost symmetric.

We can see from the ISTOF distributions that the maximum fitness values for most of

tm1 runs, for example, are between 60 and 74 units of traffic. Referring to Figure 100, the

variations in fitness values across runs is expected when using genetic algorithms on

complex optimization problems. However, though the variation above is not negligible,

one would expect based on Figure 100 that with a few runs, a chromosome with a fitness

value close to the maximum would likely be identified. To discuss the practical

implications of multiple runs of GARUS to get a sub-maximum result (stress test

requirement) for tm1, we can perform an analysis by using the probability distributions of

maximum ISTOF values in the histogram of Figure 100-(a).

In the distributions of maximum ISTOF values for , as it can be easily seen in Figure 100-

(a), 1000 runs of GARUS has generated mainly three groups of outputs: values between

70 and 80 units of traffic (group70 in Figure 100-(a)), [60,70] and [50,60]. Obviously, the

238

goal of using GARUS is to find stress test requirements which have the highest

possible ISTOF values. Thus, the strategy is to run GARUS for multiple times and

choose a test requirement with the highest ISTOF value across all runs.

The practical implication of multiple runs to achieve a test requirement with the highest

ISTOF value is to predict the minimum number of times GARUS should be executed to

yield an output with an ISTOF value in group70 in Figure 100-(a). By looking into the

raw data of the distribution (a), we found out that 425 (of 1000) values in the histogram

belong to group70. Thus, in a sample population of 1000 GARUS outputs, the

probabilities that an output belongs to group70 is p(group70)=0.425. Thus, to predict the

minimum number of times GARUS should be executed to yield an output with an ISTOF

value in group70, we can use the following probability formula:

p(a test requirement with an ISTOF value in group70 is yielded in a series of n runs of

GARUS)=

()).()()group(p)group(p nn 42500.575111 1
70

1
70

−− −=−−

The above probability function is depicted in Figure 101, for n=1…15. Figure 101-(b)

depicts a zoom-out of the curve in Figure 101-(a) for n=0…40. For values of n higher

than 15, the value of the above function is very close to 1, meaning that one can get a

stress test requirement with a ISTOF value in the range [70, 80] in 15 runs. Since each

run lasts a few seconds (Section 11.3.6.1), perhaps a few minutes for very large

examples, relying on multiple runs to generate a stress test requirement should not be a

practical problem.

239

50

60

70

80

90

(a)-tm1 (small)

200

300

(b)- tm2 (many ISDSs)

170

190

210

230

250

270
280

300

(c)- tm3 (many SDs in

TM)

300

400

500

(d)- tm4 (many SDs per

ISDS)

200

300

(e)- tm5 (many DCCFPs

per SD)

400

500

(f)- tm6 (many DTUPs

per DCCFP)

Figure 100-Histograms of maximum ISTOF values (y-axis) for 1000 runs of each

test model. The y-axis values are in traffic units.

Test Model Min Max Average Median Standard Deviation

tm1 (small) 65 112 81.66 81 7.0

tm2 (many ISDSs) 171 367 255 260 36.9

tm3 (many SDs in TM) 171 306 220 217 25.2

tm4 (many SDs per ISDS) 299 502 364 360 32.9

tm5 (many DCCFPs per SD) 171 352 230 231 32.2

tm6 (many DTUPs per DCCFP) 333 494 404 406 36.8

Table 15-Descriptive statistics of the maximum ISTOF values for each test model

over 1000 runs. Values are in units of data traffic.

group7

240

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15

Number of runs (n)

Pr
ob

ab
il

it
y

of
 a

t l
ea

st
 o

ne

ou
tp

ut
 in

 g
ro

up
_7

0

Figure 101- Probability of the event that at least one test requirement with an

ISTOF value in group70 is yielded in a series of n runs of GARUS.

We discuss two main observations based on the results shown in Figure 100.

 In all of the histograms, despite the fact that the results correspond to 1000 runs of

different test models which were designed to test the scalability and repeatability

properties of our GA, the maximum ISTOF values of the outputs produced by the

GA lie in rather small intervals. For example as shown in Figure 100-(f), the

maximum ISTOF values generated for tm6 range in [330…500] units of traffic.

 In terms of scalability, histograms in (b), (c), (d), (e), and (f) suggest that the GA

can reach a maximum plateau when the size of a specific component (SD, ISDS,

DCCFP, etc) of a given TM is very large.

11.3.6.3 Impact on Repeatability of Maximum Stress Time Values

To investigate the impact of test model size on the repeatability of maximum stress time

values generated by our GA, Figure 102 depicts the histograms of maximum stress time

values for 1000 runs on each of test models tm1, …, tm6. The corresponding descriptive

241

statistics are shown in Table 16. We discuss four main observations based on the

results shown in Figure 102.

 Average and median values of distributions in (d), (e), and (f) are quite close, thus

indicating that the distributions are almost symmetric. Conversely, distributions in

(a), (b), and (c) are not symmetric. This reveals that for tm4 (d), tm5 (e), and tm6

(f), the GA might produce maximum stress time values with peak values only at

some points. For tm1 (a), tm2 (b), and tm3 (c), the GA generated stress time

values with low standard deviation. Furthermore, these distributions are skewed

towards the minimums. Thus, one has to run the GA many number of times to get

a value close to the maximums.

 Distributions in (d) and (e) are quite flat. This can be explained as for tm4 (d) tm5

(e), the number of alternatives to yield a best chromosome by the GA is higher

than the others. Furthermore, large sets of best chromosomes can yield different

maximum stress time values due to the random start times selected from the legal

start times of DCCFPs.

 The standard deviation value for tm1 (a) is relatively smaller than the other

distributions because of the smaller range of maximum ISTOF values in tm1

results.

 The standard deviation of distribution (f), tm6, is much higher than the five others.

This can be explained by the higher number of DTUPs per DCCFP (50-100) in

tm6, compared to the other TMs (1-10). This will, in turn, result in a wider range

in the time domain for the GA to search in and find best individuals. As it can be

seen in Figure 102, the range of minimum and maximum values in distribution

242

(f), [87, 2128], is much larger than the other five distributions, which is also

resulted from the aforementioned property of tm6.

10

20

30

40

50

(a)-tm1 (small)

0

100

200

300

400

500

600

(b)-tm2 (many ISDSs)

0

100

200

300

400

500

600

(c)-tm3 (many SDs in

TM)

0

100

200

300

400

500

600

700

(d)-tm4 (many SDs

per ISDS)

0

100

200

300

400

500

600

(e)-tm5 (many

DCCFPs per SD)

0

1000

2000

(f)- tm6 (many DTUPs

per DCCFP)

Figure 102-Histograms of maximum stress time values for 1000 runs of each test

model. The y-axis values are in time units.

243

Test Model Min Max Average Median Standard
Deviation

tm1 (small) 6 56 22 20 12

tm2 (many ISDSs) 11 602 103 61 108.8

tm3 (many SDs in TM) 16 618 180 123 135.2

tm4 (many SDs per ISDS) 7 655 301 296 147.0

tm5 (many DCCFPs per SD) 19 626 298 289 149.0

tm6 (many DTUPs per DCCFP) 87 2128 937 933 373

Table 16-Descriptive statistics of the maximum stress time values for each test

model over 1000 runs. Values are in time units.

11.3.6.4 Impact on Convergence Efficiency across Generations

Another interesting property of the GA to look at is the number of generations required to

reach a stable maximum fitness plateau. To investigate the impact of test model size on

convergence efficiency across generations in the GA, Figure 103 depicts the histograms

of the generation numbers required to reach a stable maximum fitness plateau over 1000

runs of test models tm1, …, tm6. The corresponding descriptive statistics are shown in

Table 17. On the average, 49-50 generations of the GA were required to converge to the

final result (a stress test requirement) for tm1, …, tm6. We therefore see that the TM size

does not affect the convergence efficiency across generations in our GA.

The variations around this average in different TMs are limited and no more 100

generations will be required. This number is in line with the experiments reported in the

GA literature [87]. As we can see, test model size does not have an impact on

244

convergence efficiency across generations, and the GA is able to reach a stable

maximum fitness plateau after about 50 generations on average, independent of test

model size.

30

40

50

60

70

80

90

100

(a)- tm 1 (small)

30

40

50

60

70

80

90

100

(b)- tm 2 (many ISDSs)

20

30

40

50

60

70

80

90

100

(c)- tm 3 (many SDs in

TM)

30

40

50

60

70

80

90

100

(d)- tm 4 (many SDs per

ISDS)

10

20

30

40

50

60

70

80

90

100

(e)- tm 5 (many DCCFPs

per SD)

20

30

40

50

60

70

80

90

100

(f)- tm 6 (many DTUPs

per DCCFP)

Figure 103- Histograms of the generation numbers when a stable maximum fitness

plateau is reached in 1000 runs of each test model.

245

Test Model Min Max Average Median Standard
Deviation

tm1 (small) 27 98 49 47 10.78

tm2 (many ISDSs) 28 96 50 49 10.44

tm3 (many SDs in TM) 23 97 50 49 10.84

tm4 (many SDs per ISDS) 25 98 49 49 10.63

tm5 (many DCCFPs per SD) 17 96 49 49 11.77

tm6 (many DTUPs per DCCFP) 27 98 50 48 10.74

Table 17-Minimum, maximum and average values of the generation numbers when

a stable maximum fitness plateau is reached in 1000 runs of each test model.

11.3.7 Impacts of Arrival Pattern Types

The impact of variations in arrival pattern types are investigated by running GARUS with

test models tm7…tm11. The results are reported in the following four subsections.

 Impact on Execution Time

 Impact on Repeatability of Maximum ISTOF Values

 Impact on Repeatability of Maximum Stress Time Values

 Impact on Convergence Efficiency across Generations

11.3.7.1 Impact on Execution Time

We computed the average, minimum and maximum execution times over all the 1000

runs, by running GARUS with test models tm7…tm11 on an 863MHz Intel Pentium III

processor with 512MB DRAM memory (Table 18). Minimums and maximums of the

statistics in Table 18 for each test model run are relatively close to the corresponding

246

average value. Therefore, we use the average values to discuss the impacts of

variations in arrival patterns on execution time. To better illustrate the differences, the

average values are depicted in Figure 104.

Recall from Section 11.3.5.4 that test models tm7…tm11 have been designed such that

they all have the same number of SDs, CCFPs, and DTUPPs (same TM size). Based on

the values depicted in Figure 104, the average execution times of the test models

tm7…tm11 with the same test model size, but different arrival patterns for SDs, are

relatively close to each other (within 100 ms). This indicates that execution time is not

strongly dependent on SD arrival patterns in a test model. Furthermore, as we discuss

below, the difference in execution times are mainly due to the implementation details of a

method of class AP in GARUS.

Test Model Min Max Average Median Standard
Deviation

tm7 (all SDs with no arrival patterns) 234 593 296 281 51.27

tm8 (all SDs with periodic arrival patterns) 234 625 290 266 50.47

tm9 (all SDs with bounded arrival patterns) 250 594 295 281 53.78

tm10 (all SDs with irregular arrival patterns) 156 344 186 172 29.12

tm11 (SDs with arbitrary arrival patterns) 217 245 231 224 61.23

Table 18-Execution time statistics of 1000 runs of tm7…tm11.

0 500
tm9tm10 tm8

tm7

duration (ms)

tm11

Figure 104-Visualization of the average values in Table 18.

247

The execution times of two of these test models (tm8 and tm9), are slightly higher

than those of tm7 and tm10. The difference between the two TM groups (tm8 and tm9

versus tm7 and tm10) can be explained by an implementation detail of GARUS. Function

getARandomArrivalTime, a member function of class AP (Figure 88), is overridden

in each of AP’s subclasses. The time complexity of this function in noAP and

irregularAP classes is O(1), i.e., choosing a random value from a range or an array,

respectively. However, the implementation of the function in periodicAP and boundedAP

classes required some extra considerations (related to the ATSs of periodic and bounded

APs), and thus the time complexities of the function are not constant anymore, but

dependent on the specific arrival pattern parameters.

The execution time of tm11, in which each SD can have an arbitrary arrival pattern, is

placed somehow close to the average value of the other four TMs (tm7, tm8, tm9, and

tm10). This is as predicted since the APs of SDs in tm11 are a mix of APs in the other

four, thus leading to such an impact in its average execution time.

11.3.7.2 Impact on Repeatability of Maximum ISTOF Values

To investigate the impact of variations in arrival pattern types on the repeatability of

maximum ISTOF values, Figure 105 depicts the histograms of maximum ISTOF values

for 1000 runs on each of the test models tm7,…, tm11. The corresponding descriptive

statistics are shown in Table 19.

As we can see, there are no big differences among the five distributions. The histogram

of maximum ISTOF values for tm8 is the only noticeable difference, in which the

distribution is flatter than the four others (with more peaks and valleys). This is perhaps

248

due to the specific ATS properties of periodic arrival patterns (the arrival pattern type

of SDs in tm8).

Another observation is that the histograms in Figure 105-(a) and Figure 105-(c) are quite

similar. Recall from Sections 10.2-10.3 that the ATS of a bounded arrival pattern covers

the entire time domain except few time intervals close to zero. Therefore, if the common

unconstrained time intervals of a set of bounded arrival patterns are considered, they

resemble a set of SD with no arrival patterns. The effect of such a property, thus, shows

itself in the two histograms.

300

400

.05 .10 .15

Probability

(a)- tm7 (all SDs with

no arrival patterns)

300

400

.05 .10 .15

Probability

(b)- tm8 (all SDs with

periodic arrival

patterns)

300

400

.05 .10 .15

Probability

(c)- tm9 (all SDs with

bounded arrival

patterns)

300

400

.05 .10 .15 .20

Probability

(d)- tm10 (all SDs with

irregular arrival

patterns)

300

400

.05 .10 .15 .20

Probability

 (e)- tm11 (SDs with

arbitrary arrival

patterns)

Figure 105-Histograms of maximum ISTOF values for 1000 runs of each test model.

The y-axis values are in traffic units.

249

Test Model Min Max Average Median Standard
Deviation

tm7 (all SDs with no arrival patterns) 240 448 305 304 27.7

tm8 (all SDs with periodic arrival patterns) 216 404 279 279 27.0

tm9 (all SDs with bounded arrival patterns) 232 448 306 304 28.8

tm10 (all SDs with irregular arrival patterns) 234 420 294 289 28.41

tm11 (SDs with arbitrary arrival patterns) 248 459 309 307 25.72

Table 19-Descriptive statistics of the maximum ISTOF values for each test model

over 1000 runs. Values are in units of data traffic.

11.3.7.3 Impact on Repeatability of Maximum Stress Time Values

To investigate the impact of variations in arrival pattern types on the repeatability of

maximum stress time values, Figure 106 depicts the histograms of maximum stress time

values for 1000 runs on each of test models tm7,…, tm11. The corresponding descriptive

statistics are shown in Table 20.

We attempt below to interpret the distributions shown in Figure 106.

 Distributions (a) and (c) are skewed towards their minimum values. For example,

the mode of (a) is around 70 units of traffic which is closer to 0 (the minimum)

than 620 (the maximum). This can be explained based on the early start times of

DTUPs in DCCFPs of the fittest GA individual generated for tm7 and tm9. Since

the ATS of tm7 is unconstrained and the one for tm9 has only few constrained

ATIs, the GA chooses the common start times of maximum stressing DCCFPs as

early as possible.

250

0

100

200

300

400

500

600

.05.10 .20

Probability

(a)- tm7 (all SDs

with no arrival

patterns)

100

200

300

400

500

600

.02 .04 .06 .08

Probability

(b)- tm8 (all SDs

with periodic arrival

patterns)

100

200

300

400

500

600

.05 .15 .25

Probability

(c)- tm9 (all SDs

with bounded arrival

patterns)

100

200

.05 .10 .15 .20

Probability

(d)- tm10 (all SDs

with irregular arrival

patterns)

100

200

300

400

500

600

.05 .10 .15

Probability

(e)- tm11 (SDs with

arbitrary arrival

patterns)

Figure 106-Histograms of maximum stress time values for 1000 runs of each test

model. The y-axis values are in time units.

Test Model Min Max Average Median Standard
Deviation

tm7 (all SDs with no arrival patterns) 12 622 140 119 105.7

tm8 (all SDs with periodic arrival patterns) 58 655 347 346 129.8

tm9 (all SDs with bounded arrival patterns) 33 618 137 118 105.0

tm10 (all SDs with irregular arrival
patterns)

22 211 89 66 43.0

tm11 (SDs with arbitrary arrival patterns) 29 669 214 184 157.04

Table 20-Descriptive statistics of the maximum stress time values for each test

model over 1000 runs. Values are in time units.

 The distribution in (b), corresponding to tm8, is flatter than the others. This can be

explained based on the specific ATS properties of periodic arrival patterns (the

arrival pattern type of SDs in tm8). The intersection of several periodic ATSs will

be a discrete unbounded ATS (refer to Figure 107 for an example). Therefore,

given a TM with periodic SDs, the GA might converge to any of the common

ATPs in the intersection of all periodic ATSs.

251

 Another observation is that the histograms in (a) and (c) are quite similar.

Recall from Sections 10.2 and 10.3 that the ATS of a bounded arrival pattern

covers the entire time domain except few time intervals close to zero. Therefore,

if the common unconstrained time intervals of a set of bounded arrival patterns

are considered, they resemble a set of SD with no arrival patterns. Such similarity

is visible in the two histograms.

In
te

rs
ec

tio
n

ATS1

ATS2

ATS3

Intersection ATS

...

...

...

...

Figure 107- The intersection of several periodic ATSs is a discrete unbounded ATS.

11.3.7.4 Impact on Convergence Efficiency across Generations

Regarding the impact of arrival patterns on convergence efficiency across generations in

the GA, Figure 108 depicts the histograms of the generation numbers when a stable

maximum fitness plateau is reached in 1000 runs of test models tm7,…, tm11. The

corresponding descriptive statistics are shown in Table 21. It is interesting to see that, on

average, 49-50 generations were required to converge to the final result (a stress test

requirement) across all TMs: tm7,…, tm11.

The standard deviations variations of the distributions are limited and no more 100

generations are required in all cases. Therefore, variations in arrival pattern types do not

have a significant impact on convergence efficiency across generations, and the GA is

252

able to reach a stable maximum fitness plateau after about 50 generations on average,

independent of any arrival pattern types.

30

40

50

60

70

80

90

(a)- tm 7 (all SDs

with no arrival

patterns)

20

30

40

50

60

70

80

90

100

(b)- tm 8 (all SDs

with periodic arrival

patterns)

20

30

40

50

60

70

80

90

100

(c)- tm 9 (all SDs

with bounded arrival

patterns)

30

40

50

60

70

80

90

(d)- tm 10 (all SDs

with irregular arrival

patterns)

20

30

40

50

60

70

80

90

100

(e)- tm 11 (SDs with

arbitrary arrival

patterns)

Figure 108- Histograms of the generation numbers when a stable maximum fitness

plateau is reached in 1000 runs of each test model.

Test Model Min Max Average Median Standard
Deviation

tm7 (all SDs with no arrival patterns) 30 90 50 48 9.97

tm8 (all SDs with periodic arrival patterns) 28 97 50 49 10.36

tm9 (all SDs with bounded arrival patterns) 30 98 50 49 10.86

tm10 (all SDs with irregular arrival patterns) 27 88 49 48 9.35

tm11 (SDs with arbitrary arrival patterns) 28 96 58 57 11.58

Table 21-Minimum, maximum and average values of the generation numbers when

a stable maximum fitness plateau is reached in 1000 runs of each test model.

11.3.8 Impacts of Arrival Pattern Parameters

The impact of variations in arrival pattern parameters were investigated by running

GARUS on experimental test models in which all SDs were periodic (tm8, tm12, tm13,

and tm14), bounded (tm9, tm15 and tm16, or irregular (tm10, tm17 and tm18) (Table 13).

The combinations of TMs to investigate in this section were chosen to study the impacts

253

of arrival pattern parameters such the period and deviations values of a periodic AP,

and minimum/maximum inter-arrival values of a bounded AP. The results are reported in

the following four subsections.

 Impact on Execution Time

 Impact on Repeatability of Maximum ISTOF Values

 Impact on Repeatability of Maximum Stress Time Values

 Impact on Convergence Efficiency across Generations

11.3.8.1 Impact on Execution Time

We computed the average, minimum and maximum execution times over all the 1000

runs, by running GARUS on test models tm8, tm9, tm10, tm12,…tm18 on an 863MHz

Intel Pentium III processor with 512MB DRAM memory (Table 22).

Minimums and maximums of the statistics in Table 22 for each test model run are

relatively close to the corresponding average value. Therefore, we use the average values

to discuss the impacts of variations in arrival patterns on execution time. Based on the

execution values in Table 22, we can make the following observations:

 The GA execution takes longer time for higher numbers of periodic ATIs in a

specific maximum search time. The distribution mean and median values for

execution times of tm12 (AP period value=5) and tm13 (AP period value=5) are

higher than those of tm8 (AP period values from 5 to 10) and tm14 (AP period

value from 20 to 25). This is explained by an implementation detail of GARUS.

Function getARandomArrivalTime, a member function of class AP (Figure

88), is overridden in each of AP’s subclasses. The explanations can be made

254

similar to the discussions in Section 11.3.7.1. As the period value of an AP

increases, the number of periodic ATIs in a specific maximum search time

decreases. This, in turn, reduces the GA’s execution time.

 Increasing the minimum inter-arrival time range (from [2,4] in tm9 to [50,60] in

tm15) in bounded APs has increased the average (from 590 in tm9 to 667 in tm15)

and median execution times (from 562 in tm9 to 657 in tm15). This is explained

by formula ⎡ ⎤)minIATmaxIAT(minIATk −= (proved in Appendix C), where k is the

number of ATIs for a bounded AP. Due to the implementation detail in member

function getARandomArrivalTime of class AP (Section 11.3.7.1),

increasing the number of ATIs in a bounded AP will increase execution time.

Note that the denominator value in the above formula is the same in both tm9 and

tm15, by using the minAPboundedMaxIATafterMin parameter (Table 11), while

the nominator value is changed.

 Increasing the different between minimum and maximum inter-arrival time range

(from [2,5] in tm9 to [60,70] in tm16) in bounded APs has decreased the average

(from 667 in tm9to 503 in tm16) and median execution times (from 657 in tm9to

494 in tm16). This is explained again by the above formula and the

implementation detail in member function getARandomArrivalTime of

class AP (Section 11.3.7.1), whereas decreasing the number of ATIs in a bounded

AP will decrease execution time. Note that the nominator value in the above

formula is the same in both tm9 and tm16, while the denominator value is

changed.

255

Test Model
Group

Test
Model

Min Max Average Median Standard
Deviation

tm8 468 1,250 580 532 100.94

tm12 625 1,359 746 703 123.13

tm13 640 1,547 758 703 125.11

periodic

tm14 393 1,109 519 556 101.55

tm9 500 1,188 590 562 50.56

tm15 625 890 667 657 22.92

bounded

tm16 447 853 503 494 35.50

tm10 312 688 372 344 58.24

tm17 453 1235 582 531 97.77

irregular

tm18 500 984 557 532 64.4

Table 22-Execution time statistics of 1000 runs of tm8, tm9, tm10, tm12,…tm18.

11.3.8.2 Impact on Repeatability of Maximum ISTOF Values

To investigate the impact of variations in arrival pattern parameters on the repeatability

of maximum ISTOF values, Figure 109 depicts the histograms of maximum ISTOF

values for 1000 runs on each of the test models tm8, tm9, tm10, tm12,…tm18. The

corresponding descriptive statistics are shown in Table 23. We discuss three main

observations based on the results shown in Figure 109.

 Among TMs with all periodic APs (tm8, tm12, tm13, and tm14), tm13 has the

highest maximum ISTOF value (500). This is because the APs in tm13 have

both period and deviation values of 5, which means that the corresponding

ATSs are virtually unconstrained, i.e., all time instants are accepted. This, in

turn, lets the GA search the entire time domain and find the best possible

256

stress test schedule. The ATSs of other three TMs (tm8, tm12, and tm14)

are constrained and do not include any time instant in the time domain.

Test Model
Group

periodic
300

400

.05 .10 .15

Probability

(a)-tm8

300

400

.10 .20 .30 .40

Probability

(b)- tm12

300

400

500

.05 .10 .15 .20

Probability

(c)- tm13

300

400

.05 .10.15.20 .25

Probability

(d)- tm14

bounded 300

400

.05 .10 .15

Probability

(e)-tm9

300

400

.05.10 .15.20 .25

Probability

(f)- tm15

300

400

.05 .10 .15 .20

Probability

(g)- tm16

irregular 300

400

.05 .10 .15 .20

Probability

(h)-tm10

300

400

500

.03 .08 .13

Probability

(i)- tm17

300

400

500

.05 .10 .15 .20

Probability

(j)- tm18

Figure 109-Histograms of maximum ISTOF values for 1000 runs of each test model.

The y-axis values are in traffic units.

257

 Increasing the number of arrival points (from [5,15] in tm10 to [50,100] in

tm17) in irregular APs has increased the highest maximum ISTOF value (from

420 in tm10 to 490 in tm17). This is because as the number of arrival points

increases, the number of possible stress test requirements increases, and so

does the chances of finding a stress test requirement with the highest stress

value.

 Increasing the location of arrival points (from [1,30] in tm10 to [100,200] in

tm18) in irregular APs does not have a significant impact on the distribution

of maximum ISTOF values. This is because such a change will only shift (in

time domain) the time instant when stress traffic will be entailed (maximum

stress time).

Test Model
Group

Test Model Min Max Average Median Standard
Deviation

tm8 216 404 279 279 27.0

tm12 273 476 323 317 26.65

tm13 287 500 331 323 27.8

periodic

tm14 240 435 298 296 25.21

tm9 232 448 306 304 28.8

tm15 249 507 306 297 22.29

bounded

tm16 260 449 317 310 28.34

tm10 234 420 294 289 28.41

tm17 268 490 348 345 33.58

irregular

tm18 262 556 329 330 35.01

Table 23-Descriptive statistics of the distributions in Figure 109.

258

11.3.8.3 Impact on Repeatability of Maximum Stress Time Values

To investigate the impact of variations in arrival pattern types on the repeatability of

maximum stress time values, Figure 110 depicts the histograms of maximum stress time

values for 1000 runs on each of test models tm8, tm9, tm10, tm12,…tm18. The

corresponding descriptive statistics are shown in Table 24. We discuss three main

observations based on the results shown in Figure 110.

 The difference between the mode and other values of the distribution (d) is slightly

more than such a difference in distributions (a), (b) or (c). This can be explained as

tm14, corresponding to the distribution (d), has relatively high period values ([20-25])

compared to the other three TMs. This, in turn, affects the GA by providing less

chances of finding overlaps between different ATSs in a TM. Because of this, the

number of such overlaps are maximized in fewer instants in the time domain in tm14

compared to the other three.

 Among TMs with bounded AP, distributions (e) and (g) are skewed towards their

minimum values, while the values in (f) are distributed almost evenly across the

distribution’s range, i.e., the distribution is not skewed neither towards its minimum

nor it maximum value. This can be explained by the different values of the

Unbounded Range Starting Point (URSP), Section 10.7.4., in the bounded APs of the

above three TMs. As shown in Appendix C, the URSP of a bounded AP can be

calculated by: ⎡ ⎤.minIAT)minIATmaxIAT(minIATURSP −= . Therefore, the URSP value of

tm15 is higher than those of tm9 and tm16, since the range of minIAT in tm15 is

higher than those in tm9 and tm16, while the denominator of the above formula are in

the same range. For example, considering a bounded AP in tm15 with minIAT=55

259

and maxIAT=58, the URSP will be 1045 units of time. This value is even higher

than the maximum search time (500 units of time) set in all the above three TMs.

Therefore, there will not be any unconstrained ATI in the ATSs of tm15, and thus the

GA will not be able to do an unconstrained search for stress test requirements in time

domain. Such a search is possible in tm9 and tm16 because their URSPs will be inside

the specified maximum search time. For example, one example URSP for a SD AP in

tm9 with minIAT=3 and maxIAT=5 is 6 units of time, which is < 500.

 As discussed in the previous subsection, increasing the location of arrival points

(from [1,30] in tm10 to [100,200] in tm18) in irregular APs does not have a

significant impact on the distribution of maximum ISTOF values. However, as we

can see by comparing distributions (h), (i) and (j), such an increase shifts (in time

domain) the time instant when stress traffic will be entailed (maximum stress time).

As we can see, both average and median values in distribution (j), corresponding to

tm18, are higher than those in distribution (h), corresponding to tm10.

Test Model Group Test Model Min Max Average Median Standard
Deviation

tm8 58 655 347 346 129.8

tm12 18 613 332 337 131.54

tm13 49 664 334 334 131.15

periodic

tm14 41 631 333 337 125.3

tm9 33 618 137 118 105.0

tm15 72 657 366 362 139.32

bounded

tm16 26 615 151 115 109.11

tm10 22 211 89 66 43.0

tm17 14 235 67 59 32.54

irregular

tm18 136 372 239 242 40.39

Table 24-Descriptive statistics of the distributions in Figure 110.

260

Test Model
Group

periodic

100

200

300

400

500

600

.02 .04 .06 .08

Probability

(a)-tm8

0

100

200

300

400

500

600

.01 .03 .05 .07

Probability

(b)- tm12

100

200

300

400

500

600

.01 .03 .05 .07

Probability

(c)- tm13

100

200

300

400

500

600

.02 .04 .06 .08

Probability

(d)- tm14

bounded

100

200

300

400

500

600

.05 .15 .25

Probability

(e)-tm9

100

200

300

400

500

600

.03 .05 .08 .10

Probability

(f)- tm15

0

100

200

300

400

500

600

.05 .10 .15 .20

Probability

(g)- tm16

irregular
100

200

.05 .10 .15 .20

Probability

(h)-tm10

100

200

.05.10 .20

Probability

(i)- tm17

200

300

.05 .10 .15 .20

Probability

(j)- tm18

Figure 110- Histograms of maximum stress time values for 1000 runs of each test

model. The y-axis values are in time units

261

11.3.8.4 Impact on Convergence Efficiency across Generations

Regarding the impact of arrival patterns on convergence efficiency across generations in

the GA, Figure 111 depicts the histograms of the generation numbers when a stable

maximum fitness plateau is reached in 1000 runs of test models tm8, tm9, tm10,

tm12,…tm18. The corresponding descriptive statistics are shown in Table 25. On

average, 49-59 generations were required to converge to the final result (a stress test

requirement) across all TMs: tm8, tm9, tm10, tm12,…tm18. No more 100 generations are

required in all cases.

As we can see, variations in arrival pattern parameters has a slight impact on convergence

efficiency across generations. We discuss such impacts individually for each of the three

test model groups:

 TMs with periodic APs (tm8, tm12, tm13, and tm14): The results for tm13

converge relatively faster than the other three (almost the same), as the minimum,

average and medians denote. This can be explained as the APs in tm13 are

periodic with both period and deviation values of 5. This AP resembles to a

unconstrained ATS, in which all time instant are accepted. Therefore, the GA will

have better chances to find “fit” individuals earlier. In the other three, more

applications of the GA operators are required to converge the population.

 TMs with bounded APs (tm9, tm15 and tm16): As the corresponding minimum,

average and medians denote, the results for tm16 converge relatively faster than

the other two (almost the same). This can be explained by the URSP formula for

bounded APs (⎡ ⎤.minIAT)minIATmaxIAT(minIATURSP −=). By calculating the range

262

of URSPs based on the given ranges of minIAT and maxIAT, tm16 has the

lowest value of URSP among the above set of TMs with bounded APs (tm9, tm15

and tm16). By having a smaller value for URSP, our GA can search the time

domain (up to maximum search time) to a greater extent, thus, yielding a faster

convergence.

 TMs with irregular APs (tm10, tm17 and tm18): As the corresponding minimum,

average and medians denote, the results for tm17 converge relatively faster than

the other two. This can be explained by the higher number of irregular arrival

points in tm17, i.e., the range of [50,100] compared to [5,10] in tm10and tm18. By

having a higher number of irregular arrival points, our GA can search the time

domain (up to maximum search time) to a greater extent, thus, yielding a faster

convergence.

Test Model Group Test Model Min Max Average Median Standard
Deviation

tm8 42 99 57 56 10.45

tm12 41 99 58 57 10.94

tm13 28 97 50 49 10.81

Periodic

tm14 43 99 58 57 11.70

tm9 39 97 58 57 11.0

tm15 40 99 58 57 10.86

Bounded

tm16 30 98 50 49 10.48

tm10 44 99 59 58 11.27

tm17 27 88 49 48 9.35

Irregular

tm18 36 96 59 57 11.09

Table 25-Descriptive statistics of the distributions in Figure 111.

263

Test Model
Group

periodic

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

(a)-tm8

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

(b)- tm12

20

30

40

50

60

70

80

90

100

.05 .10 .15 .20 .25

Probability

(c)- tm13

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

(d)- tm14

bounded

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

(e)-tm9

30

40

50

60

70

80

90

100

.05 .10 .15 .20 .25

Probability

(f)- tm15

20

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

(g)- tm16

irregular

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

(h)-tm10

30

40

50

60

70

80

90

.05 .10 .15

Probability

(i)- tm17

30

40

50

60

70

80

90

100

.05 .10 .15 .20 .25

Probability

(j)- tm18

Figure 111- Histograms of the generation numbers when a stable maximum fitness

plateau is reached in 1000 runs of each test model.

264

11.3.9 Impact of Maximum Search Time

We report in this section the impact of variations in GA maximum search time on

execution time, repeatability of outputs (maximum ISTOF and stress time values), and

also maximum plateau generation numbers. Maximum search time is the range of the

random numbers chosen from the ATS of a SD with arrival pattern (Section 10.7.4).

We first compare GA results for TMs tm1, tm19 and tm20 in Figure 112. As described in

Section 11.3.5.5, tm19 and tm20 have the same SUT components (SDs, DCCFPs, ISDSs,

etc.) as tm1, but the GATimeSearchRange value for tm19 and tm20 are 5 and 150 time

units, respectively, instead of 50 in tm1. Therefore, comparing GA results for tm1, tm19

and tm20 should reveal the impact of maximum search time on all variables of interest.

The corresponding descriptive statistics are shown in Table 26.

There are 12 graphs (3 rows in 4 columns) in Figure 112. Three rows correspond to

different maximum search time, while columns relate to GA variables (execution time,

maximum ISTOF values, maximum stress time values, and maximum plateau generation

number).

In terms of execution time, variations in maximum search time do not have an impact.

Across 1000 runs, all three TMs (tm1, tm19 and tm20) show execution times in the range

[45 ms, 130 ms]. Since a change in maximum search time only changes the range in

which a random time from an ATS is selected, it is not surprising that there is no effect

on the workload of different GA components.

265

 Impact on

 Execution time Maximum ISTOF
values

Maximum stress time
values

Max Plateau
Generation #

5

(tm19)

50

60

70

80

90

100

110

120

130

.10.20 .40.50

Probability

60

70

80

.05.10.15 .25

Probability

6

7

8

9

10

11

.10 .20 .30 .40

Probability

20

30

40

50

60

70

80

90

.05 .10 .15 .20 .25

Probability

50

(tm1)

50

60

70

80

90

100

110

120

130

.10 .30 .50

Probability

50

60

70

80

90

.10 .20 .30 .40

Probability

10

20

30

40

50

.05 .10 .15 .20 .25

Probability

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability
 G

A
 M

ax
im

um
 S

ea
rc

h
T

im
e

(t
im

e
un

its
)

150

(tm20)

50

60

70

80

90

100

110

120

130

.10 .30 .50

Probability

40

50

60

70

80

90

100

110

.10 .20 .30 .40

Probability

0

100

.10 .30 .50

Probability

20

30

40

50

60

70

80

90

100

.05 .10 .15 .20

Probability

Figure 112- Impact of variations in maximum search time on the GA’s behavior and

outputs.

266

As the maximum search time increases across the three test models (5 in tm19 to 50

in tm1 and 150 in tm20), the maximum of maximum ISTOF values across 1000 runs of a

TM increases, i.e. 82 traffic units for tm19, 91 traffic units for tm1 and 110 traffic units

for tm20. This can be explained by an increase in the size of GA’s time search range (in

ATSs) from tm19 to tm1 and tm20. From another perspective, the difference between the

maximum and minimum of maximum ISTOF values also increases with the maximum

search time. The differences between the maximum and minimum of maximum ISTOF

values for tm19, tm1 and tm20 are 20 (82-62), 41 (91-50), and 69 (110-41) respectively.

This can also be explained by the increase in the size of GA’s time search range (in

ATSs) from tm19 to tm1 and tm20.

In terms of maximum stress time values, similar patterns to maximum ISTOF values can

be observed among the three distributions in column ‘maximum stress time values’ of

Figure 112. In terms of maximum plateau generation number, we can see that the

increase in maximum search time slightly delays convergence across generations, i.e., the

maximum plateau generation number in tm19 runs is reached at 91, while it is 100 for

both tm1 and tm20 runs.

267

Distribution Group Test Model Min Max Average Median Standard
Deviation

tm1 46 125 58 62 11.34

tm19 46 125 65 62 16.86

Execution time

tm20 46 125 69 63 17.50

tm1 65 112 81 81 7.0

tm19 60 82 73 72 4.67

Maximum ISTOF
values

tm20 42 112 61 62 6.79

tm1 6 56 22 20 12

tm19 6 11 8 9 1.54

Maximum stress time
values

tm20 9 156 31 13 37.56

tm1 27 98 49 47 10.78

tm19 26 94 48 46 10.52

Max Plateau
Generation #

tm20 27 99 48 47 10.69

Table 26-Descriptive statistics of the distributions in Figure 112.

268

Chapter 12

CASE STUDY

A comprehensive case study is presented in this chapter. An overview of the types of

targeted systems by our stress test technique is provided in Section 12.1. Section 12.2

discusses the requirements for a suitable case study. As discussed in Section 12.2, none

of the systems in our survey meets the requirements. Therefore, we developed a

prototype system introduced in Section 12.3, based on actual specifications. The system

is referred to as SCAPS (A SCADA-based Power System). The UML design model of

SCAPS is also given in Section 12.3. Section 12.4 presents the stress test architecture

used in our case study. Some descriptions of the stress test execution environment are

given in Section 12.5. Using the UML design model of SCAPS, the building process of a

corresponding stress test model (required by our test technique) is described in Section

12.6. Stress testing SCAPS by time-shifting stress test technique is described Section

12.7. In each of the last two sections, stress test results are also reported, which are used

to assess the effectiveness of our stress test techniques at triggering network traffic-

related failures. Stress Testing SCAPS by Genetic Algorithm-based stress test technique

is presented Section 12.8.

269

12.1 An Overview of Target Systems

Our stress test technique can be used to stress test systems which are distributed, hard

real-time, and safety-critical. We present a brief introduction here on two important

groups of such systems.

1. Distributed Control Systems (DCS)

2. Supervisory Control and Data Acquisition (SCADA) Systems

Although some systems can fall in both categories, it is more convenient to discuss them

separately.

A Distributed Control Systems (DCS) [4] is a computer-based control system where

sections of a plant have their own processors, linked together to provide both information

dissemination and manufacturing coordination. A DCS system is used in industrial and

civil engineering applications to monitor and control distributed equipment with remote

human intervention. A DCS system is generally, since the 1990s, digital, and normally

consist of field instruments, connected via wiring to computer buses or electrical buses to

multiplexer/demultiplexers, analog to digital converters, and Human-Machine Interface

or control consoles. A DCS is a very broad umbrella that describes solutions across a

large variety of industries, including: Electrical power distribution grids and generation

plants; Environmental control systems; Traffic signals; Water management systems;

Refining and chemical plants.

SCADA stands for Supervisory Control And Data Acquisition. As the name indicates,

SCADA systems are not full control systems (like DCS), but they rather focus on

supervisory aspects of a system. As such, it is a software package that is executed on top

270

of hardware to which it is interfaced, in general via Programmable Logic Controllers

(PLCs), or other commercial hardware modules [102]. SCADA systems interact with

their controlled environment via input/output (I/O) channels.

SCADA systems are used not only in industrial processes, e.g., steel making [5], power

generation (conventional and nuclear) and distribution [103-107], chemistry and oil

[108], but also in facilities such as nuclear fusion [109, 110]. The size of such plants

ranges from a few to several thousands I/O channels. SCADA systems evolve rapidly and

are now penetrating the market of plants with a number of I/O channels of several 100 K.

SCADA and DCS are related but they are different in important ways. A DCS is process-

oriented as it focuses on the control process (such as a chemical plant), and presents data

to operators. On the other hand, a SCADA system is data-gathering oriented, where the

control centre and operators are the main focus points. The remote equipment is merely

there to collect the data--though it may also do some very complex control process.

A DCS operator station is normally intimately connected with its I/O (through local

wiring, field bus, networks, etc.). When the DCS operator wants to see information he

usually makes a request directly to the field I/O and gets a response. Field events can

directly interrupt the system and advise the operator.

A SCADA system must operate reasonably when field communications fail. The quality

of the data shown to the operator is an important facet of a SCADA system operation.

SCADA systems often provide special event processing mechanisms to handle conditions

that occur between data acquisition periods. A typical architecture of SCADA systems is

shown in Figure 113.

271

Dedicated Server

`

Client

`

Client

Controller Controller Controller Controller Controller

Ethernet

Data Server Data Server

...

Figure 113-A typical architecture of SCADA systems.

12.2 Choosing a Target System as Case Study

There are various distributed, real-time prototype systems in academia (e.g. [111], [112],

[104]) and also real systems in industry (e.g. [113], [114], [115], [116]), which are

currently in use.

12.2.1 Requirements for a Suitable Case Study

We group the requirements for a suitable case study into two groups: (1) system’s

functional features and behaviors, and (2) modeling technique. A suitable case study

should have the following functional features and behaviors:

• Requirement 1: It should be distributed, hard real-time, and preferably safety-

critical, in which deadline misses can lead to catastrophic results, as our stress test

technique tries to force the system to exhibit distributed traffic faults which will,

in turn, lead to (hard) real-time faults.

272

• Requirement 2: The system should be preferably data-intensive, i.e., a

distributed system in which most (or at least some) of the messages exchanged

among distributed nodes have large data sizes. Again, our stress test technique

tries to find the most data intensive distributed messages and produces schedules

so that such messages run concurrently.

• Requirement 3: It should be possible to run the system on a typical

hardware/software platform in a research institute. We can replace the embedded

components and special hardware with test stubs or component simulators, if

necessary.

Since our stress test technique needs a SUT’s design model, a suitable case study should

also meet the following requirements in terms of modeling technique:

• Requirement 4: The design model or source code of the system should be

available. The design model can be built by reverse engineering the source code.

However reverse engineering of UML models of a system from its source code is

usually costly for large systems.

• Requirement 5: The design model should be in UML 2.0, since our test technique

needs it to be so. Since UML 2.0 has enhanced compared to its previous versions,

models based on UML 1.x are also suitable.

12.2.2 None of the Systems in our survey Meets the Requirements

None of the existing systems we are aware of meets all of the above requirements. We

provide a brief, structured summary below:

273

• Requirement 1: Not all distributed systems we surveyed are hard RT and

safety-critical. For example QADPZ (Quite Advanced Distributed Parallel

Zystem) [111] is a distributed system, but does not have safety-critical

constraints.

• Requirement 2: None of the systems we surveyed which meets other requirements

also meets this one, such as the RT distributed factory automation system [112]

which was RT, but not data intensive.

• Requirement 3: Most systems need special software/hardware platforms to run on,

which can not easily be deployed and executed in an academic setting, like ours.

We are even flexible in replacing the embedded components and special hardware

with test stubs or component simulators, if possible. However, doing this for a

complex system is not easy, for example COACH (Component Based Open

Source Architecture for Distributed Telecom Applications) [113] seemed to

satisfy the other requirements, but it did not have a well-document design.

Considering the huge size of the system (in the order of million lines of code), we

estimated that we can not have a good understanding of the system architecture

and carefully find the dependant components of each component and embed test

stubs for specific hardware components that we did not have and were required to

run the system.

• Requirement 4: The systems model/source code are not freely available or even

not available at all. This is either due to the fact that this information is sensitive

and/or classified, such as for JITC (The Joint Interoperability Test Command)

274

[114] and [104], or to the fact that the systems are very expensive, such as

CitectSCADA [115] and ElipseSCADA [116].

• Requirement 5: As a corollary of our discussion on requirement 4, no UML 2.0

model of the systems in our selection pool was available.

12.3 Our Prototype System: A SCADA-based Power System

Because none of the systems we surveyed meets the requirements, we decided to analyze,

design, and build our own prototype system by using the ideas and concepts from

existing distributed system technologies.

The Specifications of our SCAda-based Power System (SCAPS) is described in Section

12.3.1. In Section 12.3.2, we discuss how and why SCAPS meets our case study

requirements. We present the SCAPS’ UML design model in Section 12.3.3. Our stress

test objective is presented in Section 12.3.4. Relevant implementation issues are

presented in Section 12.3.5. Section 12.3.6 provides a brief description of SCAPS’

hardware and configuration.

12.3.1 SCAPS Specifications

We intend to design a SCADA power system which controls the power distribution grid

across a nation consisting of several provinces. Each province has several cities and

regions. Each city and region has several local power distribution grids. There is one

central server in each province which gathers the SCADA data from Tele-Control units

(TCs) from all over the province, installed in local grids, and perform the following real-

time data-intensive safety-critical functions as part of the Power Application Software

installed on the SCAPS servers:

275

• Overload monitoring and control (OM and OC): Using the data received from

local TCs, each provincial server identifies the overload conditions on a local grid

and cooperates with other provinces’ servers to reduce the load on overloaded

local grids. If the grid stays overloaded for several seconds and the load does not

get decreased, a system malfunction is to occur, such as hardware damage and

regional black-out. Due to the safety-critical nature of the system, overload

monitoring and overload control should be performed in less than 1,300 and 1,000

ms, respectively. Note that these values are in the range of real deadline values for

the OM and OC operations in operational SCADA-based power systems [103-

107].

• Detection of separated power system: Any separated (disconnected) grid should

be identified immediately by the central server, and proper precautions should be

made to balance the regional/provincial/national load due to this black-out so that

the rest of the system stays stable. Due to the safety-critical nature of the system,

detection of separated power system should be performed in less than 1,300 ms.

• Power restoration after network failure: This functionality provides emergency

strategies to prevent network disruption just after a network fault and later

presents strategies and switching operation of breakers and disconnectors to

restore power while keeping network’s reliability. Due to the safety-critical nature

of the system, this functionality should be performed in less than 1,000 ms.

It should be noted that we only focus on the real-time data-intensive safety-critical

functions of the SCAPS here. Therefore, our stress test technique will be more effective

in revealing faults if it is applied to such functions (use-cases) of a SUT. The above three

276

functions are typical functions performed by SCADA power systems [104, 117], and

will be shown in a use case diagram (Section 12.3.3.1), where we present the partial

UML model of SCAPS. Some of the non real-time, non safety-critical functions of these

systems, which we do not consider in our system, are [104, 117]:

• State estimation: Estimates most likely numerical data set to represent current

network

• Load forecasting: Anticipates hourly total loads (24 points) for 1-7 days ahead

based on the weather forecast, type of day, etc. utilizing historical data about

weather and load.

• Power flow control: Supports operators activities by providing effective power

flow control by evaluating network reliability for each several-minute time period

for the next several hours, considering anticipated total load, network

configuration, load flow, and contingencies.

• Economical load dispatching: Controls generator outputs economically according

to demand considering the dynamic characteristics of boiler controller of thermal

power generators while keeping ability to respond quickly to sudden load

changes.

• Unit commitment of generator: A suitable schedule for starting/stopping the

generators for the next 1-7 days is made using dynamic programming.

12.3.2 SCAPS Meets the Case-Study Requirements

To justify our decision, we discuss below how SCAPS meets all the requirements in

Section 12.2.1:

277

• Requirement 1: SCAPS is distributed, hard real-time, and safety-critical, as

discussed in Section 12.2.1.

• Requirement 2: TCs send large amounts of information about the status and load

of each component in their distribution grid to the provincial servers. SCAPS is

therefore data-intensive.

• Requirement 3: We design and build a SCAPS prototype, using the architecture of

existing similar systems. We had, however, to account for the limitation of our

research center’s hardware/software platforms when designing and implementing

the system in such a way to preserve the realism of our case study. For example,

we did not have access to dedicated power distribution hardware such as load

meters and sensors and we used stubs to emulate their behavior.

• Requirement 4: We develop the SCAPS UML model and source code, hence

ensuring we have a complete set of development artifacts.

• Requirement 5: Our SCAPS models make use of UML 2.0.

12.3.3 SCAPS UML Design Model

Consistent with the SCAPS specification in Section 12.3.1, its partial UML model is

provided below. What we mean by a partial model is one which mostly includes the

model elements required by our stress test approach, as discussed in Chapter 5. The UML

model, presented in this section, consists of the following artifacts:

• Use-Case diagram: Although this diagram is not needed by our testing technique,

we present it to provide the reader with a better understanding on the overall

functionality of the system.

• Network deployment diagram

278

• Class diagram

• Sequence diagrams

• Modified Interaction Overview Diagram (MIOD)

12.3.3.1 Use-Case Diagram

We design SCAPS to be used in Canada. To simplify the design and implementation, we

consider only two Canadian provinces in the system, Ontario (ON) and Quebec (QC). For

example, OM_ON stands for overload monitoring for the province of Ontario; and

DSPS_QC stands for Detection of Separated Power System (DSPS) for the province of

Quebec.

The use-case diagram is shown in Figure 114. A timer actor triggers Overload

Monitoring (OM) and Detection of Separated Power System (DSPS) use-cases according

to specified arrival patterns.

* *

Timer

Real-time data-intensive
safety-critical

Overload
Monitoring (OM)

Detection of
Separated Power System (DSPS)

Power Restoration
after Network Failure (PRNF)

Gathering data
from local TCs

*

*

*

*
ASA (Automatic

System
Agent)

Overload Control
(OC)

OM_ON

OM_QC

DSPS_ON

DSPS_QC

TCs (Tele-
Control units)

* *

«includes»

«includes»
«includes»

«includes»

«includes»

«includes»

«extends»

«extends»

«includes»

«includes»

Figure 114- Modified SCAPS Use-Case Diagram including a Timer actor.

279

12.3.3.2 Network Deployment Diagram

The Network Deployment Diagram (NDD) of SCAPS is shown in Figure 115.

«network»
Ontario

TC_YOW1

«network»
Canada

«network»
Quebec

«network»
Ottawa

«network»
Toronto

TC_YOW2

TC_YOW3

TC_YYZ1

TC_YYZ2

«network»
Montreal

TC_YMX1

TC_YMX2

«network»
Quebec City

TC_YQB1

TC_YQB2

SEV_ON SEV_QC

SEV_CA2SEV_CA1

Figure 115- SCAPS network deployment diagram.

The networks for the provinces of Ontario and Quebec are shown in the NDD. Only two

cities are considered in each of these two provinces. Three TCs (Tele-Control units) are

considered for the city of Ottawa, while other cities have two TCs. There is one server

(SEV_ON and SEV_QC) in each of the provinces. There are two servers at the national

level: SEV_CA1 is the main server. SEV_CA2 is the backup server, i.e., it starts to operate

whenever the main server fails.

12.3.3.3 Class Diagram

Part of the SCAPS class diagram which is required to illustrate the case study is shown in

Figure 116. The classes are grouped in two groups: entity and control classes [49, 118].

Entity classes are those which are used either as parameters (by inheriting from

SetFuncParameter) or return values (by inheriting from QueryFuncResult) of methods of

280

control classes. Control classes are those from which active control objects will be

instantiated and are the participating objects in SDs. All entity classes are data-intensive,

since grid and load data of power systems for each region (or city) usually contain huge

amounts of data [106, 119].

LoadData

Data-Intensive

GridData

LoadPolicyLoadStatusGridStructure GridStatus

+query(in dataType, out output:QueryFuncResult)
+setNewLoadPolicy(in policy:LoadPolicy)
+setNewGridStructure(in gs:GridStructure)

TC

+analyzeOverload(in load:LoadStatus)
+balanceLoadON(in loadON:LoadStatus, in loadQC:LoadStatus)
+balanceLoadQC(in loadON:LoadStatus, in loadQC:LoadStatus)
+buildNewGridStructureON(in gsON:GridStatus, in gsQC:GridStatus, out gs:GridStructure)
+buildNewGridStructureQC(in gsON:GridStatus, in gsQC:GridStatus, out gs:GridStructure)

ASA

+queryONData(in dataType, out output:QueryFuncResult)
+queryQCData(in dataType, out output:QueryFuncResult)

ProvController

QueryFuncResult

SetFuncParameter

Entity Classes

Control Classes

-End1*

-End2*

-End1*

-End2*

gridStatus loadStatus

Figure 116-SCAPS partial class diagram.

Furthermore, since there are two main groups of use-cases (overload and separated grid

handlers), we group entity classes by two abstract classes GridData and LoadData.

LoadStatus and GridStatus are the results of function query in class TC and

queryONData and queryQCData in class ProvController. LoadPolicy and GridStructure

are the parameters of set functions setNewLoadPolicy and setNewGridStructure in class

281

TC, respectively. For brevity, usage dependencies among classes have not been

shown in the class diagram, e.g. from ProvController to QueryFuncResult.

Tele-Control (TC) unit objects will be instantiated from class TC. Objects of class

ProvController and ASA will be deployed on provincial (SEV_ON and SEV_QC) and

national servers (the main server SEV_CA1 and the backup SEV_CA2), respectively.

12.3.3.4 Sequence Diagrams

To render the effort involved in our case study manageable, we simplified the design

model and implementation of SCAPS by only accounting for a subset of use cases and by

implementing stubs simulating some of the functionalities of the system. In doing so, we

tried to emulate as closely as possible the behavior of real SCADA-based power systems.

More precisely, we designed the SDs in ways that the simplifications did not impact the

types of faults (e.g., RT faults) targeted by our stress test technique. We incorporated

enough messages and alternatives in SDs to allow the generation of non-trivial stress test

requirements. Since we designed SCAPS as a hard RT system, we therefore modeled the

RT constraint using the UML SPT profile [12].

Eight SDs are presented in Figure 117-Figure 122. They correspond to use-cases in the

SCAPS use-case diagram (Figure 114). SDs OM_ON and OM_QC in Figure 117

correspond to the overload monitoring use case. For example, an object of type ASA

(Automatic System Agent) sends a message to an object of type ProvController

(provincial controller) in SD OM_ON to query Ontario’s load data. The result is returned

and is stored in ASAloadON. The object of type ASA then analyzes the overload situation

by analyzing the ASAloadON.

282

sd OM_ON

analyzeOverload(:ASA.loadON)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

ref
queryONData(“load”)

sd OM_QC

analyzeOverload(:ASA.loadQC)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_QC}

(a) (b)

queryONData(“load”)

:ASA.loadON

ref
queryQCData(“load”)

queryQCData(“load”)

:ASA.loadQC
{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(500,'ms')
RTend=(1200,'ms')}

{RTstart=(1200,'ms')
RTend=(1300,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(300,'ms')
RTend=(900,'ms')}

{RTstart=(900,'ms')
RTend=(1000,'ms')}

triggerOM_ON triggerOM_QC

{RTArrivalPattern=" 'periodic', (2400, 'ms'), (100, 'ms')"
RTduration < (5, 'ms')}

{RTArrivalPattern=" 'periodic', (2100, 'ms'), (100, 'ms')"
RTduration < (5, 'ms')}

Figure 117- SDs OM_ON and OM_QC (Overload Monitoring).

To find out how the timing information of the SDs in this section have been devised,

refer to Section 12.3.3.5.

The two SDs in Figure 118 (queryONData(dataType)) and Figure 119

(queryQCData(dataType)) are utility SDs which are used by the other SDs using the

InteractionOccurrence construct. As it was shown in the Network Deployment Diagram

(NDD) of SCAPS (Figure 115), five TCs (Tele-Control units) were considered for the

province of Ontario. Therefore, there is a parallel construct made up of five interactions

in the SD of Figure 118 which queries the load data from each of the five TCs. Reply

messages in queryONData(dataType) and queryQCData(dataType) have been labeled

based on the name of the sender object. For example, the reply message YOW1 is a reply

to the load query from the TC deployed on the node YOW1 (one of the TCs in the city of

Ottawa). The entire load data of each province is finally returned by an object of type

ProvController to the caller.

283

sd queryONData(dataType)

:ProvController
{node = SEV_ON}

:TC
{node = TC_YOW1}

:TC
{node = TC_YOW2}

:TC
{node = TC_YOW3}

:TC
{node = TC_YYZ1}

:TC
{node = TC_YYZ2}

par
query(dataType)

YOW1 query(dataType)

query(dataType)

query(dataType)

query(dataType)

YOW2

YOW3

YYZ1

YYZ2

queryONData(dataType)
{RTstart=(50,'ms')
RTend=(250,'ms')}{RTstart=(0,'ms')

RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(50,'ms')
RTend=(400,'ms')}

{RTstart=(50,'ms')
RTend=(280,'ms')} {RTstart=(50,'ms')

RTend=(150,'ms')}

{RTstart=(50,'ms')
RTend=(200,'ms')}

Figure 118-SD queryONData(dataType).

sd queryQCData(dataType)

:ProvController
{node = SEV_QC}

:TC
{node = TC_YMX1}

:TC
{node = TC_YMX2}

:TC
{node = TC_YQB1}

:TC
{node = TC_YQB2}

par
query(dataType)

YMX1 query(dataType)

query(dataType)

query(dataType)

YMX2

YQB1

YQB2

queryQCData(dataType)

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(100,'ms')
RTend=(300,'ms')}

{RTstart=(100,'ms')
RTend=(200,'ms')}

{RTstart=(100,'ms')
RTend=(200,'ms')}

{RTstart=(100,'ms')
RTend=(200,'ms')}

Figure 119-SD queryQCData(dataType).

OC (Overload Control) SD (Figure 120) checks if there is an overload situation in any of

the two provinces (using overloadIn() as a condition). If this is the case in any of the two

provinces, a new power distribution load policy is generated by an object of type ASA and

it is sent to the respective provincial controller (using setNewLoadPolicy()).

Similar to the OM_ON and OM_QC SDs, DSPS_ON and DSPS_QC SDs (Figure 121)

fetch grid connectivity data from the provincial controllers and check whether there is

any separated power system (using detectSeparatedPS()).

284

Similar to the OC SD (Figure 120), PRNF (Power Restoration after Network Failure)

SD (Figure 122) checks if there is any separated power system in any of the two

provinces (using anySeparationIn() as a condition). If this is the case in any of the two

provinces, a new power grid structure is generated by an object of type ASA and it is sent

to the respective provincial controller (setNewGridStructure()).

We assign to SCAPS SDs realistic arrival pattern constraints. A realistic periodic arrival

pattern value must be larger than the execution duration of the SD it is assigned to. This

is because an invocation of the SD should complete execution before it is re-executed

(due to a new event according to its arrival pattern). For example, recall from Section

12.3.3.4 that SD OM_ON’s duration is 1300 ms. We assume a periodic arrival pattern

value of, say, 2400 ms for it. Similarly, since the durations of DSPS_ON and DSPS_QC

are 1300 and 1100 ms, periodic arrival patterns with period and deviation values of 1700,

200 ms, and 1400, 200 ms are assigned to them, respectively. To account for time delays

in real-world, a deviation of 100 ms is considered for this periodic arrival pattern. Since

SCAPS is a reactive system, we assign periodic arrival pattern to its SDs. Reactive

systems usually check for environment changes periodically and take appropriate actions.

285

:ProvController
{node = SEV_QC}

sd OC

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

par

[overloadIn(:ASA:loadON)]

[else]

alt

newLoadON=balanceLoadON(:ASA.loadON, :ASA.loadQC)

setNewLoadPolicy(newLoadON)

[overloadIn(:ASA:loadQC)]

[else]

alt

newLoadQC=balanceLoadQC(:ASA.loadON, :ASA.loadQC)

setNewLoadPolicy(newLoadQC)

keepOldLoadPolicy()

keepOldLoadPolicy()

{RTstart=(0,'ms')
RTend=(300,'ms')}

{RTstart=(300,'ms')
RTend=(1000,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

{RTstart=(0,'ms')
RTend=(200,'ms')}

{RTstart=(200,'ms')
RTend=(800,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

Figure 120- SD OC (Overload Control).

sd DSPS_ON

detectSeparatedPS(:ASA.connectivityON)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

sd DSPS_QC

detectSeparatedPS(:ASA.connectivityQC)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_QC}

(c) (d)

ref
queryQCData(“connectivity”)

queryQCData(“connectivity”)

:ASA.connectivityQC

ref
queryONData(“connectivity”)

queryONData(“connectivity”)

:ASA.connectivityON
{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(600,'ms')
RTend=(1100,'ms')}

{RTstart=(1100,'ms')
RTend=(1300,'ms')}

{RTstart=(0,'ms')
RTend=(100,'ms')}

{RTstart=(500,'ms')
RTend=(900,'ms')}

{RTstart=(900,'ms')
RTend=(1100,'ms')}

triggerDSPS_ON

{RTArrivalPattern=" 'periodic', (1700, 'ms'), (200, 'ms')"
RTduration < (5, 'ms')}

triggerDSPS_QC

{RTArrivalPattern=" 'periodic', (1400, 'ms'), (200, 'ms')"
RTduration < (5, 'ms')}

Figure 121-SD DSPS_ON and DSPS_QC (Detection of Separated Power System).

286

:ProvController
{node = SEV_QC}

sd PRNF

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

par

[anySeparationIn(:ASA:connectivityON)]

[else]

alt

newGSON=buildNewGridStructureON(:ASA.connectivityON, :ASA.connectivityQC)

setNewGridStructure(newGSON)

[anySeparationIn(:ASA:connectivityQC)]

[else]

alt

newGSQC=buildNewGridStructureQC(:ASA.connectivityON, :ASA.connectivityQC)

setNewGridStructure(newGSQC)

{RTstart=(0,'ms')
RTend=(300,'ms')}

{RTstart=(300,'ms')
RTend=(1000,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

keepOldGridStructure()

keepOldGridStructure()

{RTstart=(0,'ms')
RTend=(400,'ms')}

{RTstart=(400,'ms')
RTend=(1000,'ms')}

{RTstart=(0,'ms')
RTend=(50,'ms')}

Figure 122-SD PRNF (Power Restoration after Network Failure).

12.3.3.5 Timing Information of Messages

Recall from Section 5.1.1.1 that three of the approaches used in the literature to estimate

timing information of messages in DRTSs are: (1) Static analysis and manual estimations

(such as [55]), (2) Runtime monitoring (such as [56]), and (3) Benchmarks (such as [49]).

In a real development environment, one of those techniques will necessarily be used.

Since our case study did not take place in a real development environment, the timing

information of the SDs in the previous section was derived according to a specific

procedure (a type of runtime monitoring) that is described next. Once a running system

was developed, the code was instrumented to log message durations. Such a runtime

monitoring technique was used to get a statistical overview of the time length of

287

messages at runtime prior to the testing phase. Statistical distributions of start and end

times of messages were derived by running the system and were used to set the message

timing information as specified in the SDs in the previous section. One important

objective in our data collecton process was to reduce the probe effects (due to

monitoring) as much as possible. We followed ideas from [1] to do so, e.g., having

simple, short log statements. Our measurements of the durations of those log statements

confirmed that their execution durations were negligible compared to the durations of the

measured messages, thus providing a minimal probe effect. Furthermore, since we were

using dedicated PC/OS configurations for our measurements (i.e., no other major

application was running on the machines), negligible side effects from the OS and other

applications affected our process. Refer to Sections 12.3.5 and 12.3.6 for further details

on SCAPS implementation details and runtime configurations. Furthermore, to simplify

the scheduling calculations in Sections 12.7 and 12.8, message durations were rounded to

the closest 100 ms, e.g., 86 ms for message queryONData() was rounded to 100 ms.

One other objective in estimating timing information was to obtain realistic values. We

considered two aspects: (1) system executions must be based on an operational profile,

and (2) real-time constraints from real SCADA systems should be accounted for. SCAPS

was executed according to an operational profile (Section 12.8.2.1), which will also be

used as a baseline for the comparison of our test results. Furthermore, recall from Section

12.3.1 that, due to the safety-critial nature of the system, overload monitoring and

overload control was specified to be performed in less than 1,300 and 1,000 ms,

respectively. Note that these deadlines are realistic ranges according to the SCADA

literature [103-107]. To have values in realistic ranges, the following control procedure

288

was followed. Since the system used as a case study was a prototype developed for

the specific purpose of our analysis, the design variables (e.g,, the data size of message

parameters transmitted over the network) were controlled in a way that the summation of

average message durations (derived from the above runtime monitoring technique) be

within the real-time deadline for SDs with real-time constraints. Such a control was done

in part by manipulating data sizes of function parameters and return values, e.g.,

parameter ASALoadON in Figure 117. For example, if a certain setting for data sizes of

function parameters led to a deadline miss at runtime, the data size of the function

parameter(s) leading to the deadline miss were reduced. Thus, we made sure that the no

deadline misses occured in the system execution based on the operational profile, e.g., the

total duration of messages in SD OM was within 1,300 ms. In other words, having set a

SD execution deadline, we derived its message durations by controlling system

parameters (design variables). Refactoring was performed to repeatedly change system

design parameters after runtime monitoring to make sure that all specified real-time

constraints were met.

In the context of real system modeling and testing, the above time estimation procedure

will typically be done in the reverse order: after estimating message durations with a

certain degree of uncertainty, a conservative SD execution deadline may be set and

documented in the system specification. If such a deadline does not satisfy the business

logic of a system (i.e., a long conservative duration for a short critical deadline), the

relevant system resources (e.g., network bandwidth) have to be increased to satisfy real-

time constraints. To study the impacts of uncertainty in estimating timing information,

289

one would need need to perform sensitivity analysis on our stress test generation

technique (Section 10.9).

12.3.3.6 Modified Interaction Overview Diagram

The MIOD of SCAPS is shown in Figure 123. The four dashed edges in Figure 123 are

due to the system’s reactive nature and indicate that the system will continue repeating

the two main functionality (overload monitoring and detection of separated power

systems) until it is stopped. Thus, those four edges will not be analyzed when deriving

the Independent-SD Sets (ISDSs) of SCAPS in Section 12.6.4.

As denoted in the SCADA-based power systems literature (e.g. [103-105, 107, 120]),

such systems have both soft and hard RT constraints. As discussed in Section 5.6, RT

constraints can be either specified at the SD level (on messages execution times) or at the

MIOD level (on SDs execution times). MIOD-level RT constraints are dependent on SD-

level constraints, since a SD’s actual execution time is the sum of the messages execution

times in one of its CCFPs, which executes in a particular run.

290

OM_ON OM_QC
DSPS_ON DSPS_QC

OC

[overloaded
status]

[normal load]

PRNF

[any separated TC]

[no separated TC]

[system shutdown] [system shutdown]

OM_STARTUP

«HRTaction»
{duration<(1000,'ms'),
criticality=1}

«HRTaction»
{duration<(1000,'ms'),
criticality=1}

«SRTaction»
{duration<(1300,'ms'),
missProb<(0.5)}

«SRTaction»
{duration<(1300,'ms'),
missProb<(0.2)}

SRTC1

SRTC2

HRTC1

HRTC2

Figure 123-SCAPS Modified Interaction Overview Diagram (MIOD).

We consider four MIOD-level RT constraints for SCAPS. Figure 123 shows two MIOD-

level Soft RT (SRT) and two Hard RT (HRT) constraints for SCAPS. We model them

using the extended stereotypes («SRTaction» and «HRTaction») from the UML-SPT

profile, as proposed in Section 5.6. The constraints are labeled (bold face text) to make it

easier to refer to them later, and are explained below.

1. SRT constraints

a. SRTC1: Detection of separated power systems (concurrent runs of

DSPS_ON and DSPS_QC) should be done in less than 1300 ms, with an

acceptable missing probability of 0.2 (20%). In other words, this

constraint must not be missed in more than 20% of the runs.

291

b. SRTC2: Overload monitoring (concurrent runs of OM_ON and

OM_QC) should complete within less than 1300 ms from its start time.

We set the acceptable missing probability of this SRT constraint to 0.5.

2. HRT constraints

a. HRTC1: As soon as a separated power system is detected, the power

restoration policy (PRNF SD) should be executed in less than 1000 ms.

We assign criticality=1 to this constraint.

b. HRTC2: As soon as an overload situation is detected, overload control

policy (OC SD) should be executed in less than 1000 ms. We assign

criticality11=1 to this constraint. As discussed in Section 5.6, criticality of

a HRT constraint ranges between 0 (for a HRT constraint with no critical

consequences) to 1 (for a constraint with highly critical consequences).

12.3.4 Stress Test Objective

In order to derive test requirements, recall that our stress test technique requires the

definition of test objectives according to the following template:

• Stress location: either a network or a node name

• Stress direction (only for nodes): in, out or bidirectional. Recall, only a

bidirectional stress direction is applicable to a network stress location. Since

11 As defined by UML SPT profile [12], criticality determines the extent to which the

consequences of missing a hard deadline are unacceptable.

292

networks are not end points of communication, “in” and “out” directions do

not apply to them.

• Stress type: data or number of messages

• Stress duration: instant or interval (with period value)

To stress test SCAPS using GASTT, we consider one of the test objectives chosen in

[82]:

Stress Test Objective: (Canada, -, data, instant)

12.3.5 Implementation

SCAPS was developed using Borland Delphi12, which is a well-known IDE (Integrated

Development Environment) for RAD (Rapid Application Development). Delphi is an

Object-Oriented (OO) graphical toolset for developing Windows applications in Pascal

programming language. Delphi was selected as it enables rapid development of prototype

applications without spending extensive time on programming details.

We developed a Delphi application for SCAPS. The application asks the user for the

node on which it is to run, e.g., SEV_CA1, SEV_ON, and TC_YOW1. Afterwards, the

business logic of the application changes accordingly. For example, if SEV_CA1 is

chosen, the application switches to the national server node, waiting for connections from

provincial nodes. When different copies of the application on different nodes have been

deployed and all nodes connections are ready, the system then starts functioning. A

12 www.borland.com/delphi

293

screenshot of the main screen of SCAPS is shown in Figure 124, where the

application is running as a SEV_CA1 node and has just accepted a connection from the

TC_YOW1 node.

Figure 124-A screenshot of the main screen of SCAPS.

We had to account for the limitation of our research center’s hardware/software platforms

when implementing the system in such a way to preserve the realism of our case study.

The parts of the system for which we had to incorporate stubs to emulate behavior were:

(1) dedicated power distribution hardware such as load and connectivity meters and

sensors, which are parts of the TC actors (refer to the SCAPS use-case diagram in Figure

114), and (2) complex functionalities of the power application software, such as the

analyzeOverload function in the ASA class to decide whether a load overload situation

has occurred, given an instance of the LoadPolicy class (refer to the SCAPS class

diagram in Figure 116).

As to the design of stubs for the dedicated power distribution hardware, there was no

need to try to emulate similar data to what is done in real systems, because as we will see

in Section 12.8.1, testing SCAPS in this work is based on triggering specific DCCFPs in

specific time instants. To enforce SCAPS to execute specific DCCFPs, we found it easier,

in terms of implementation and controllability, to embed a test driver component inside

294

SCAPS than manipulating data values so that specific edges of decision nodes are

taken. The test driver was responsible for guiding the control flow in each conditional

statement to follow the edges specified by a test case. In terms of returned values by stubs

for the dedicated power distribution hardware, for example function query() of class TC,

they only return a random large data object.

The implementation of stubs for complex functionalities of the power application

software was similar to that of the dedicated power distribution hardware. The results

generated by such functions were not really needed in our context to execute test cases.

However, we had to make sure the durations of such functions were as close as possible

to real world situations. We made realistic assumptions in such cases using the power

systems literature [103-105, 107, 120], e.g., we assumed that function analyzeOverload

of class ASA takes 100 ms to run (refer to the SDs OM_ON in Figure 117). As we had

embedded a test driver component inside SCAPS, we could easily use it to make the

control flow take specific paths inside each stubbed function.

12.3.6 Hardware and Network Specifications

The SEV_CA1 server application was deployed on a PC with Windows XP, Pentium 4

2.80 GHz CPU, with 2 GB of RAM and a 3COM Gigabit LOM network card. The

Quebec server SEV_QC and its regional tele-control units were deployed on a PC with

Windows 2000, 2 GHz CPU, 1 GB of RAM, and a 3COM Fast Ethernet Controller

network card. The Ontario server SEV_ON and its regional tele-control units were

executed as different applications on a Dell PowerEdge 2600 server with Windows 2000,

two Pentium 4 2.8GHz CPUs, and an Intel PRO/1000 XT network card. The LAN was a

100 Mbps network.

295

12.4 Stress Test Architecture

An overview of the SCAPS stress test architecture is shown in Figure 125. The sequence

of high-level steps to be performed by a tester to run a complete stress test procedure is

shown.

SCAPS
main

Tester

(4) Stress test cases:
-specific inputs/
conditions

(6) Test results:
 -Message start/end times
 Test verdicts:
 -passed/failed RT constraints

SCAPS
UML Design Model

Test Driver

(5) Running stress
test cases

Our
methodology

(1) Test objectives

(2) UML model

(3) Stress test requirements:
-CSDFPs (for periodic tests)
-DCCFPs (for instant tests)
-DCCFP start times
(for instant tests)

SCAPS

(6)

Figure 125-Overview of SCAPS Stress Test Architecture.

The steps are briefly explained below.

(1) The tester feeds the test objectives to the methodology. For example, we considered

three test objectives in our case study.

(2) The methodology uses the SCAPS UML model as input.

(3) The methodology uses the SCAPS UML model to generate test requirements for the

given test objectives and returns the test requirements to the tester. Note that this step

is completely automated.

(4) The tester devises appropriate test case for the test requirements. Note that this step is

currently done manually by the tester. The tester feeds the test cases into a test driver

which is responsible for running the test cases.

(5) The test driver runs the generated test cases by feeding them into the SUT. Note that

we have made the test driver a component of the SCAPS system in our current

implementation. Embedding the test driver inside SCAPS helped us simplify the

actual test environment and test executions. It also enabled us to reduce the probe

296

effects (due to monitoring) as much as possible. The probe effects resulting from

the test driver were negligible since the test driver only feeds specific test cases and

monitors the system. Feeding test cases consisted in setting the attributes of an

instance of a test class (in the test driver) to specific values and starting the system.

The resulting probe effect in this case was then the time to set specific variables to

specific values, which is in the range of several milliseconds, which is negligible

when compared to the SCAPS message durations (several hundreds of milliseconds,

as it can be seen in the SCAPS SDs in Figure 117-Figure 122). Monitoring SCAPS

consisted in exporting the time duration of statements into a log file, which again had

very negligible probe effects when compared to executing the statements of SCAPS’

main functionalities. Similar to the case when feeding test cases, the statements

responsible for monitoring SCAPS have short execution times. We furthermore

designed SCAPS to support a high level of controllability13. This included features

such as flexibility in scheduling DCCFPs (via a scheduler in the test driver).

(6) Test results are gathered from the SUT. They include: start/end times of distributed

messages and test verdicts on real-time constraints, which indicate whether each real-

time constraint has been adhered to in a particular run. Test results are both logged in

13 Controllability is an important property of a control system and plays a crucial role in

many control problems, such as stabilization of unstable systems by feedback, or optimal

control [121] Wikipedia, "Definition of Controllability," in

http://en.wikipedia.org/wiki/Controllability, 2005..

297

files and also displayed live in a text box to the tester. A high level of

observability14 has been designed in the output interface of SCAPS to better assess

the behavior of the system. For example, in order to make it more convenient for the

tester to notice real-time faults due to network-aware stress testing, we have

incorporated a built-in functionality in the SCAPS main module to monitor the time

duration of each message and SD, and report any real-time constraint violation.

12.5 Running Stress Test Cases

As shown in the SCAPS stress test architecture in Figure 125, we developed a test driver

module inside SCAPS to run test cases. In running the stress test cases, we adhered to the

following general principles to make our test environment as real as possible:

• Since we did not have access to a dedicated network infrastructure15 to run our

prototype tool (SCAPS), we ran all the test cases in late day hours (after 8 PM)

and on the weekends in order to mimic a dedicated network and minimize the

effects of unpredictable network delays in our test results. In public networks

14 Observability is a measure of how well the internal state of a system can be inferred by

knowledge of its external outputs [122] Wikipedia, "Definition of Observability," in

http://en.wikipedia.org/wiki/Observability, Last accessed: Feb. 2006..

15 What we mean by a dedicated network is a network which has been designed and

devoted to a particular safety-critical system (such as SCAPS) so that no other system is

using the network. This is usually done to avoid unpredictable network delays due to

indeterministic network traffic and also for security reasons.

298

(such as our institution’s network), the durations of different runs of a

distributed data intensive function may be different, due to variable network

traffic triggered by other activities in the network.

• Since any distributed system behavior is to some extent indeterministic (multiple

runs might exhibit different behavior), we run each test case several times and

calculate the mean values of the data collected to account for random variation.

12.6 Building the Stress Test Model for SCAPS

Using the given UML design model in Section 12.3.3, we first build the test model

required by our test technique.

12.6.1 Network Interconnectivity Tree

The Network Interconnectivity Graph (NIG) of SCAPS can be derived from the Network

Deployment Diagram (NDD) in Figure 115. The NIG is shown in Figure 126.

Quebec

Canada

Toronto Quebec City

TC_YYZ1

Ottawa

Ontario

TC_YYZ2TC_YOW1 TC_YOW3TC_YOW2

SEV_ON SEV_QC

TC_YMX1 TC_YMX2

Montreal

TC_YQB1 TC_YQB2

SEV_CA1 SEV_CA2

Figure 126- SCAPS Network Interconnectivity Graph (NIG).

299

12.6.2 Control Flow Analysis of SDs

We presented a technique in Chapter 6 to perform control flow analysis on UML 2.0

SDs. We presented the concept of CCFG (Concurrent Control Flow Graph) as a CFM

(Control Flow Model) for SDs. We apply the technique on the SDs of Section 12.3.3.4.

CCFGs shown in Figure 127 to Figure 132 correspond to SDs in Figure 117 to Figure

122. CCFGs have been labeled by following the convention: CCFG(SD_name).

Since SD OM_STARTUP does not have any distributed message and has only one CCFP,

it will not be relevant to our stress testing technique. Hence, there is no need to derive its

control flow information.

CCFG(OM_ON)

CCFG(queryONData)

:ASA.loadON=queryONData(“load”)

query(dataType)

YOW1

query(dataType) query(dataType)

YOW3

query(dataType)query(dataType)

YOW2 YYZ1 YYZ2

A2 A3 A4 A5 A6

A7 A8 A9 A10 A11

analyzeOverload(:ASA.loadON)

A13

queryONData(“load”)

A1

A12

Figure 127-CCFG(OM_ON).

300

CCFG(OM_QC)

CCFG(queryQCData)

:ASA.loadQCFD=queryQCFDData(“load”)

query(dataType)

YMX1

query(dataType) query(dataType)query(dataType)

YMX2 YQB1 YQB2

B2 B3 B4 B5

B6 B7 B8 B9

B10

B11

analyzeOverload(:ASA.loadQCFD)

queryQCData(“load”)

A1

Figure 128-CCFG(OM_QC).

CCFG(OC)

[overloadIn
(:ASA:loadON)]

setNewLoadPolicy(newLoadON) setNewLoadPolicy(newLoadQC)

[overloadIn
(:ASA:loadQC)]

[else] [else]

C1
C2

C3 C4

newLoadON=balanceLoadON
(:ASA.loadON, :ASA.loadQC)

newLoadQC=balanceLoadQC
(:ASA.loadON, :ASA.loadQC)

keepOldLoadPolicy()keepOldLoadPolicy()
C5 C6

Figure 129-CCFG(OC).

301

CCFG(DSPS_ON)

CCFG(queryONData)

:ASA.connectivityON=queryONData(“connectivity”)

query(dataType)

YOW1

query(dataType) query(dataType)

YOW3

query(dataType)query(dataType)

YOW2 YYZ1 YYZ2

D2 D3 D4 D5 D6

D7 D8 D9 D10 D11

D13

queryONData(“connectivity”)

D1

D12

detectSeparatedPS(:ASA.connectivityON)

Figure 130-CCFG(DSPS_ON).

CCFG(DSPS_QC)

CCFG(queryQCData)

:ASA.connectivityQC=queryQCData(“connectivity”)

query(dataType)

YMX1

query(dataType) query(dataType)

YQB1

query(dataType)

YMX2 YQB2

E2 E3 E4 E5

E6 E7 E8 E9

E10

E11

queryQCData(“connectivity”)

E1

detectSeparatedPS(:ASA.connectivityQC)

Figure 131-CCFG(DSPS_QC).

CCFG(PRNF)

[anySeparationIn
(:ASA:connectivityON)]

setNewGridStructure(newGSON) setNewGridStructure(newGSQC)

[anySeparationIn
(:ASA:connectivityQC)]

[else] [else]

F1 F2

F3 F4

newGSON=buildNewGridStructureON
(:ASA.connectivityON, :ASA.connectivityQC)

newGSQC=buildNewGridStructureQC
(:ASA.connectivityON, :ASA.connectivityQC)

keepOldGridStructure()keepOldGridStructure()
F5 F6

Figure 132-CCFG(PRNF).

302

12.6.3 Derivation of Distributed Concurrent Control Flow Paths

Using the technique presented in Chapter 6, the CCFPs and DCCFPs are derived from the

CCFGs shown in Figure 127 to Figure 132, and are shown in Figure 133. To ease future

references, we assign SDi and ρi,j indices to SDs and the DCCFPs of each SD,

respectively. Let us assign ρ0,0 to the only CCFP of SD OM_STARTUP, which does not

contain any distributed message.

{
{{{{

{{{{
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⇒

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⇒

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⇒

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⇒

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⇒

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⇒

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

4,63,62,61,6

6

1,5

5

1,4

4

4,33,32,31,3

3

1,2

2

1,1

1

6

5

4

5

6

3

4

3

6

5

42

31

10

95

84

73

62

11110

95

84

73

62

1

12

116

105

94

83

72

11312

116

105

94

83

72

1

6

5

4

5

6

3

4

3

6

5

42

31

10

95

84

73

62

11110

95

84

73

62

1

12

116

105

94

83

72

11312

116

105

94

83

72

1

,,,)(,)(

)_()_(

)_()_(

,,,)(,)(

)_()_(

)_()_(

ρρρρ

ρ

ρ

ρρρρ

ρ

ρ

F
F

F
F

F
F

F
F

PRNFDCCFP
F
F

FF
FF

PRNFCCFP

E

EE
EE
EE
EE

EQCDSPSDCCFPEE

EE
EE
EE
EE

EQCDSPSCCFP

D

DD
DD
DD
DD
DD

DONDSPSDCCFPDD

DD
DD
DD
DD
DD

DONDSPSCCFP

C
C

C
C

C
C

C
C

OCDCCFP
C
C

CC
CC

OCCCFP

B

BB
BB
BB
BB

BQCOMDCCFPBB

BB
BB
BB
BB

BQCOMCCFP

A

AA
AA
AA
AA
AA

AONOMDCCFPAA

AA
AA
AA
AA
AA

AONOMCCFP

SD

SD

SD

SD

SD

SD

321

4434421

43421

44 344 21

43421

4434421

43421

4434421

43421

Figure 133-CCFP and DCCFP sets of SDs in SCAPS.

303

12.6.4 Derivation of Independent-SD Sets

Using the method in Section 7.1 and the SCAPS MIOD (Figure 123), we derive SCAPS

Independent-SD Sets (ISDSs). We need to first derive the Independent-SDs Graph

(ISDG) corresponding to the MIOD. Using the algorithm presented in Section 7.1.2, the

ISDG shown in Figure 134 is derived from the MIOD of Figure 123. Note that we do not

include SD OM_STARTUP in this ISDG, since it does not have any distributed messages.

Furthermore, as discussed in Section 12.3.3.6, the four loop-edges (shown as dashed lines

in Figure 123) incorporated in SCAPS MIOD due to the system’s reactive nature are

discarded when deriving the ISDG in Figure 134.

As discussed in Section 7.1.2, this amounts to finding maximal-complete subgraph in a

graph. By finding the maximal-complete subgraph of the ISDG in Figure 134, the

Independent SD Sets of SCAPS can be derived. SCAPS has seven ISDSs:

},{},_,_{
},_,_{}_,_,_,_{

43

21

PRNFOCSDSOCQCDSPSONDSPSSDS
PRNFQCOMONOMSDSQCDSPSONDSPSQCOMONOMSDS

==
==

304

OM_ON

OM_QC

DSPS_ON

DSPS_QC

PRNF

OC

(a)

OM_ON

OM_QC

DSPS_ON

DSPS_QC

PRNF

OC

 (b)

OM_ON

OM_QC

DSPS_ON

DSPS_QC

PRNF

OC

 (c)

OM_ON

OM_QC

DSPS_ON

DSPS_QC

PRNF

OC

 (d)

Figure 134-(a):Independent-SDs Graph (ISDG) corresponding to the MIOD of

Figure 123. (b), (c) and (d): Three of the maximal-complete subgraphs of the ISDG

(shown with dashed edges), yielding three ISDSs.

12.6.5 Derivation of Concurrent SD Flow Paths

Using the method in Section 7.2 and the SCAPS MIOD (Figure 123), we derive SCAPS’

Concurrent SD Flow Paths (CSDFPs). As discussed in Section 7.2, in order to derive

CSDFPs from a MIOD, we can have an approach similar to the one used in the CFA of

SDs (Chapter 6) to derive the CCFPs of a CCFG. Any path from the start node to the

final node of the SCAPS MIOD yields a CSDFP.

305

Since there are loops in the SCAPS MIOD, the number of CSDFPs is infinite. The

rationale for having loops in this MIOD is to execute overload monitoring and separated

grid detection use cases repeatedly as long as the system is up and running. Referring to

the SCAPS MIOD (Figure 123), the control flow may take different paths across multiple

operation cycles of SCAPS. An operation cycle here denotes when SCAPS revisits the

two decision nodes just after the start node in its MIOD and repeats the overload

monitoring and separated grid detection scenarios. Therefore, depending on which path is

taken in each cycle, different CSDFPs can be derived as modeled by the grammar in

Figure 135.

ε|

_
_

_
_

_
|

_
_

_
_

_

|

_
_

_
_

_
|

_
_

_
_

_

CSDFP
PRNF

QCDSPS
ONDSPS

OC
QCOM
ONOM

STARTUPOM
CSDFP

PRNF
QCDSPS
ONDSPS

QCOM
ONOM

STARTUPOM

CSDFP

QCDSPS
ONDSPS

OC
QCOM
ONOM

STARTUPOM
CSDFP

QCDSPS
ONDSPS

QCOM
ONOM

STARTUPOM
CSDFP

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

Figure 135-A grammar to derive CSDFPs from SCAPS’ MIOD.

In order to limit the number of CSDFPs for the purpose of deriving stress test

requirements, we limited the number of cycles (in the MIOD) to derive CSDFPs. Some of

the CSDFPs which can be derived from the grammar in Figure 135 are shown in Figure

136.

306

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

PRNF
QC_DSPS
ON_DSPS

QC_OM
ON_OM

STARTUP_OM

QC_DSPS
ON_DSPS

OC
QC_OM
ON_OM

STARTUP_OM
CSDFP

QC_DSPS
ON_DSPS

OC
QC_OM
ON_OM

STARTUP_OM

PRNF
QC_DSPS
ON_DSPS

OC
QC_OM
ON_OM

STARTUP_OM
CSDFP

PRNF
QC_DSPS
ON_DSPS

OC
QC_OM
ON_OM

STARTUP_OM
CSDFP

PRNF
QC_DSPS
ON_DSPS

QC_OM
ON_OM

STARTUP_OM
CSDFP

QC_DSPS
ON_DSPS

OC
QC_OM
ON_OM

STARTUP_OM
CSDFP

QC_DSPS
ON_DSPS

QC_OM
ON_OM

STARTUP_OM
CSDFP

6

5

43

21

Figure 136-Some of the CSDFPs of SCAPS derived from the grammar in Figure

135.

There is only one cycle in the basic CSDFPs: CSDFP1, …, CSDFP4. CSDFP5 and

CSDFP6 are two of the possible CSDFPs which can be derived assuming two cycles.

Other CSDFPs can be derived by arbitrary concatenations of the basic CSDFPs.

12.6.6 Data Size of Messages

Note that, for brevity, we do not discuss the data structure of the entity data classes in

SCAPS (Figure 116). But according to the literature on SCADA-based power systems

[103-105, 107, 120], data items such as load status/policy and grid status/structure are

usually data-intensive and can be implemented using large data structures such as arrays.

As the exact (or statistical average) sizes of this data classes is needed by our stress test

technique, we assume the values given in Table 27 as the mean data sizes of the entity

data classes in Figure 116. These values are realistic size estimates of real grid and load

values according to the literature on SCADA-based power systems [123]. For example, an

307

instance of the load object of the power distribution grid of a city includes the load

values of the different hubs and components of the grid. This value can vary depending

on the size of the city as well as the complexity of the distribution grid. We assume the

data size to be in the order of several mega-bytes, which is reasonable assumption based

on what is reported in the literature.

Note that we assume the data sizes in Table 27 to be representative for instances of all

TCs. However, as different TCs are deployed in different cities/regions, the load or grid

status data can vary to a large extent. This can be easily accounted for by extending data

sub-classes and calculating the corresponding data sizes. For example, sub-classes like

OttawaLoadStatus and TorontoLoadStatus (with different data fields sizes) can be

derived from the class LoadStatus in Figure 116.

Data Class Mean Data Size
LoadStatus 4 MB
LoadPolicy 2 MB
GridStatus 3 MB
GridStructure 1 MB

Table 27-Mean data sizes of the entity data classes of SCAPS.

12.7 Stress Testing SCAPS by Time-Shifting Stress Test Technique

Since none of SCAPS SDs have arrival pattern constraints, we can use the simpler

version of our stress test technique (TSSTT, Chapter 9) to stress test SCAPS. Since we

believe that GASTT is more interesting in terms of approach than TSSTT, due to space

constraints, we do not report the details and results of our case study with TSSTT in this

thesis. Interested readers can refer to [82] for extensive discussion on this topic. Shorter

results are also reported in [83]. In that case study, we consider three stress test objectives

308

and describe how the stress test requirements and test cases corresponding to the

chosen test objectives are derived, respectively. We finally present our stress test results.

12.8 Stress Testing SCAPS by Genetic Algorithm-based Stress Test Technique

As a case study for the Genetic Algorithm-based Stress Test Technique (GASTT)-

(Chapter 10), we use it to stress test SCAPS. As it can be seen in the SCAPS UML design

model (Section 12.3), none of its SDs has arrival pattern constraints. Therefore, to

investigate the feasibility of results of stress testing SCAPS with GASTT, we first modify

SCAPS SDs by assigning to them realistic arrival pattern constraints.

The SCAPS UML design model (where some SDs are assigned pattern constraints) is

presented in Section 12.3.3. A stress test objective is described in Section 12.3.4. The use

of GARUS to derive stress test requirements corresponding to the stress test objective is

described in Section 12.8.1. Execution results for the derived stress test cases are reported

in Section 12.8.2. Finally, Section 12.8.3 draws a set of conclusions.

12.8.1 Using GARUS to Derive Stress Test Requirements

In this section, we use GARUS to derive stress test requirements for the above test

objective. The derivation of GARUS input files for the test objective is described in

Section 12.8.1.1. The GA execution and the repeatability of its results are discussed in

Section 12.8.1.2. The stress test requirements generated by GARUS are presented in

Section 12.8.1.3.

12.8.1.1 Input File

Recall from Section 11.2.3 that an input file passed to GARUS contains the test model of

a SUT. We furthermore assumed that the test model in an input file has already been

309

filtered according to the test parameters of a test objective (e.g. stress location, stress

direction). ‘Filtered’ in a sense that, for example, given a set of test parameters, only

those SDs messages are included in a TM, which comply with the criteria specified in the

test parameters. For example, SD messages going through a specified network are

included. We use the SCAPS test model (Section 12.6) to build an input file (Figure 137)

corresponding to the above test objective. This input file is based on the format presented

in Section 11.2.3.

--ISDSs

4

ISDS1 4 OM_ON OM_QC DSPS_ON DSPS_QC

ISDS2 3 OM_ON OM_QC PRNF

ISDS3 3 DSPS_ON DSPS_QC OC

ISDS4 2 PRNF OC

--SDs

6

OM_ON 1 1 p11

OM_QC 1 1 p21

OC 1 4 p31 p32 p33 p34

DSPS_ON 1 1 p41

DSPS_QC 1 1 p51

PRNF 1 4 p61 p62 p63 p64

--SD_Arrival_Patterns

OM_ON periodic 24 1

OM_QC periodic 21 1

OC no_arrival_pattern

DSPS_ON periodic 17 2

DSPS_QC periodic 14 2

PRNF no_arrival_pattern

--DCCFPs

p11 7 (5 2.8) (6 2.8) (7 2.8) (8 2.8) (9 2.8) (10 2.8) (11 2.8)

p21 6 (3 2.66) (4 2.66) (5 2.66) (6 2.66) (7 2.66) (8 2.66)

p31 8 (2 0.33) (3 0.61) (4 0.61) (5 0.61) (6 0.61) (7 0.61) (8 0.33) (9

0.33)

p32 7 (3 0.28) (4 0.28) (5 0.28) (6 0.28) (7 0.28) (8 0.28) (9 0.28)

p33 6 (2 0.33) (3 0.33) (4 0.33) (5 0.33) (6 0.33) (7 0.33)

p34 0

p41 5 (6 3) (7 3) (8 3) (9 3) (10 3)

p51 4 (5 3) (6 3) (7 3) (8 3)

310

p61 7 (3 0.14) (4 0.3) (5 0.3) (6 0.3) (7 0.3) (8 0.3) (9 0.3)

p62 7 (3 0.14) (4 0.14) (5 0.14) (6 0.14) (7 0.14) (8 0.14) (9 0.14)

p63 6 (4 0.16) (5 0.16) (6 0.16) (7 0.16) (8 0.16) (9 0.16)

p64 0

--GASearchTimeRange

200

Figure 137- Input File containing SCAPS Test Model for a GASTT Test Objective.

The first block (--ISDSs) of the input file lists SCAPS’ four ISDSs. SD data descriptions

(--SDs) then follow. We explained earlier that only one copy of each SD will be triggered

in SCAPS at a single time instant (as denoted the parameters set to ‘1’ after SDs’ names

in --SDs block). Numbers and names of DCCFPs for each SD (e.g. DCCFP p11 for

OM_ON) are taken from Section 12.6.3. Arrival pattern data are extracted from SDs in

Section 12.3.3.4. Note that, for brevity, the time unit is assumed to be 100 ms. For

example, the first DTUPP of DCCFP p11, states that it entails 2.8 units of traffic in time

instant 500 ms (5x100ms). Finally, the GA time search range has been set to 200 time

units (20,000 ms). This value was selected using the heuristics in Section 10.7.4.

Our experimentation of different values for the GA time search range also confirmed that

200 time units is a suitable value. To explain how we come to this conclusion, a timing

diagram showing the relationship between ATSs of SCAPS SDs and their possible

execution durations, shown as data series d(sd_name), in 50 time units is shown in Figure

138.

311

0 10 20 30 40 50

Time unit

d(PRNF)

PRNF

d(DSPS_QC)

DSPS_QC

d(DSPS_ON)

DSPS_ON

d(OC)

OC

d(OM_QC)

OM_QC

d(OM_ON)

OM_ON

Figure 138-Relationship between ATSs of SCAPS SDs and their execution

durations, d(sd_name), to each other in 50 time units.

For example, as the period and deviation values of the periodic AP for SD OM_ON are

24 and 1 time units, its ATS has been depicted as ATIs: [23, 25], [47, 49] and etc. The

execution duration of a SD is the longest interval made of the difference between the

minimum and maximum timing values of a DCCFP of the SD. For example, referring to

the input file in Figure 137, the minimum and maximum timing values in the DCCFP p11

of SD OM_ON are 5 and 11 time units. Therefore, considering an ATI such as [23, 25] in

which an execution of SD OM_ON can be started, the distributed messages of such an

execution can take place in interval of [23+5=28, 25+11=36], as depicted in Figure 138.

The rationale of analyzing the ATSs and execution durations of SDs is to find a suitable

GA time search range. Since SDs OC and PRNF have no arrival patterns, they can be

triggered in any time instant.

312

As we can easily see in Figure 138, there will not be any chance for our GA algorithm

(GASTT) to find a time instant when the execution durations of all six SDs overlap, and

thus generating a stress test schedule to entail maximum traffic on the network. This is

because the intersection of all execution durations in Figure 138 is simply null. This is

why 50 time units is not a suitable GA time search range. We now discuss how the

overlapping between ATSs and SD execution durations change by increasing the search

range from 50 to, say, 200 time units (Figure 139).

When the search range is increased to 200 time units, the situation changes and as it can

be calculated (and seen in Figure 139, the six execution durations will overlap in time

instants: 106-107, 128-130, and 173-176. Therefore, there will be chances of overlapped

executions of SDs in the random schedules generated during GASTT’s operation. This

will, in turn, enable GASTT to generate GA individuals which have higher fitness values

(entailed traffic values). Increasing the search range to values more than 200 will not

increase GASTT’s chances in generating better individuals (better stress test

requirements), since as long as there is overlapping time among the six execution

durations, there are chances to find such test requirements. However, an increase in the

search range will deteriorate our GA’s performance, since it will take longer time for the

GA to converge to a maximum plateau. This is because the selection of random start

times for DCCFPs will be sparser (compared to when the range is 200) and GA has to

iterate through more generations to settle on a stable maximum plateau (Section 10.7.4).

Refer to Sections 11.3.9 for the impacts of variations in GA maximum search time on our

GA’s performance.

313

0 20 40 60 80 100 120 140 160 180 200

Time unit

d(PRNF)

PRNF

d(DSPS_QC)

DSPS_QC

d(DSPS_ON)

DSPS_ON

d(OC)

OC

d(OM_QC)

OM_QC

d(OM_ON)

OM_ON

Figure 139--Relationship between ATSs of SCAPS SDs and their execution

durations, d(sd_name), to each other in 200 time units.

12.8.1.2 GA Execution and the Repeatability of Results

Similar to discussions in Section 11.3, since GARUS is based on GAs, the stability and

repeatability of results across multiple runs need to be investigated as GAs are by

definition a heuristic. Therefore, GARUS was executed 100 times with the above input

test file. Histograms of maximum ISTOF values, maximum stress time values, and

maximum plateau generation number are depicted in Figure 140.

Each execution had the duration of 326 ms on average. Therefore, running GARUS for

100 times was not a practical problem from a time standpoint. As we can see in Figure

140-(a), 100 runs of the test model generated five different ISTOF values. The

corresponding maximum stress time values are spanned in the range of [21…198] time

units (each time unit=100 ms). As the histogram in Figure 140-(c) shows, GARUS was

able to converge to a maximum plateau in 29 to 82 generations (48 on average) across the

100 runs.

314

6

6.5

7

7.5

8

8.5

9

(a)-Maximum ISTOF values

0

50

100

150

200

(b)-Maximum stress time values

30

40

50

60

70

80

(c)-Generation number when a

maximum plateau is first reached

Figure 140-Histograms of 100 GARUS Outputs for a SCAPS Test Objective.

We now discuss the practical implications of multiple runs of GARUS to get stable

results. For the particular case study in this chapter, as it can be easily seen in Figure 140-

(a), 100 runs of GARUS has generated mainly two groups of outputs: a group with

maximum ISTOF values of between 8.25 and 9 units of traffic (groupA in Figure 140-(a)),

and the one with values between 6 and 6.5 (groupB in Figure 140-(a)). Obviously, the

goal of using GARUS is to find stress test requirements which have the highest possible

ISTOF values. Thus, the strategy is to run GARUS for multiple times and choose a test

requirement with the highest ISTOF value across all runs.

The practical implication of multiple runs to achieve a test requirement with the highest

ISTOF value is to predict the minimum number of times GARUS should be executed to

yield an output with an ISTOF value in groupA in Figure 140-(a). Such an analysis can be

performed by using the probability distributions of the above two groups of maximum

ISTOF values in the histogram of Figure 140-(a). 54 and 46 (of 100) values in the

histogram belong to groupA and groupB, respectively. Thus, in a sample population of 100

groupA

groupB

315

GARUS outputs, the probabilities that an output belongs to groupA or groupB are

p(groupA)=0.54 and p(groupB)=0.46, respectively.

The two outcomes of an output being in groupA or groupB are two mutually-exclusive

events16. Thus, to predict the minimum number of times GARUS should be executed to

yield an output with an ISTOF value in groupA, we can use the following probability

formula for two independent events:

For two mutually-exclusive events A and B with probabilities pA and pB,

the probability that A occurs at least once in a series of n samples (runs)

is:

p(event A occurs at least once in a series of n samples)=1- A
n

B pp 1−

Substituting groupA and groupB probabilities in the above formula will yield us:

p(a test requirement with an ISTOF value in groupA is yielded in a series of n runs of

GARUS)=

).().()group(p)group(p n
A

n
B 54046011 11 −− −=−

The above probability function is drawn in Figure 141. The probability values (y-axis)

are shown in linear scale in Figure 141-(a). Figure 141-(b) depicts a zoom-out of the

curve in Figure 141-(a) for n=0…10.

16 In probability theory, two events A and B are said to be mutually-exclusive if event A

happens, then event B cannot, or vice-versa.

316

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

Number of runs (n)

Pr
ob

ab
il

it
y

of
 a

t l
ea

st
 o

ne
 o

ut
pu

t i
n

gr
ou

p_
A

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10

Number of runs (n)

Pr
ob

ab
il

it
y

of
 a

t l
ea

st
 o

ne
 o

ut
pu

t i
n

gr
ou

p_
A

(b)

Figure 141- Probability of the event that at least one test requirement with an

ISTOF value in groupA is yielded in a series of n runs of GARUS for SCAPS.

As it can be easily seen in Figure 141, the probability values increases exponentially by

increasing number of runs (n) and converges to 1 very quickly in values above n=6.

Therefore, it can be said that one can achieve a good stress test requirement (with a value

in groupA) by running GARUS with SCAPS test model for about 6 times and selecting

the best output (with highest ISTOF value). Similar probabilistic analysis can be done

when using GARUS to generate test requirements for other SUTs.

317

12.8.1.3 Stress Test Requirements

As discussed above, 100 runs of the test model by GARUS generated five different

ISTOF values (Figure 140-(a)). Five of the test requirements reported by GARUS for

those five different ISTOF values are shown in Figure 142.

SD DCCFP start time

---- ---- ----------

OM_ON none

OM_QC none

OC p34 148

DSPS_ON p41 155

DSPS_QC p51 156

PRNF none

(a)- TR1 (ISTOF=6)

SD DCCFP start time

---- ---- ----------

OM_ON none

OM_QC none

OC p32 149

DSPS_ON p41 151

DSPS_QC p51 152

PRNF none

(b)- TR2 (ISTOF=6.28)

SD DCCFP start time

---- ---- ----------

OM_ON p11 23

OM_QC p21 21

OC none

DSPS_ON p41 19

DSPS_QC p51 12

PRNF none

(c)- TR3 (ISTOF=8.46)

SD DCCFP start time

---- ---- ----------

OM_ON p11 119

OM_QC p21 188

OC none

DSPS_ON p41 185

DSPS_QC p51 183

PRNF none

(a)- TR4 (ISTOF=8.66)

SD DCCFP start time

---- ---- ----------

OM_ON p11 71

OM_QC p21 85

OC none

DSPS_ON p41 70

DSPS_QC p51 68

PRNF none

(b)- TR5 (ISTOF=8.8)

Figure 142-Five Different Test Requirements (TR) generated by GARUS for a

SCAPS Test Objective.

As we can see, some of the test requirements (TR) generated by GARUS have different

combinations of DCCFPs (e.g. TR1, TR2 and TR3), while some have the same

combinations of DCCFPs, but with different schedules. For example, in TR3, TR4 and

TR5, DCCFPs p11, p21, p41 and p51 have been selected with different start times.

Since our stress test goal is to maximize the amount of traffic, we choose TR5, and stress

test SCAPS with its corresponding test case. The test requirement is to trigger DCCFPs

318

p11, p21, p41 and p51 from SDs OM_ON, OM_QC, DSPS_ON and DSPS_QC in

time units 71, 85, 70 and 68 respectively.

12.8.2 Test Results

Our fundamental approach to show the usefulness of our stress test technique in this work

is to observe the system and analyze the RT-constraint violations due to specific

schedules and subsets of DCCFPs, as generated by our technique. Results are then

compared with what we refer to as Operation Profile-based Test Cases (OPTC), which

act as the baseline of comparison described in Section 12.8.2.2. We discuss in Section

12.8.2.1 how we derive OPTCs.

In the presentation of the test results, we compare the statistical start and end times of

distributed messages (recall that we run test cases several times) and also determine if a

stress test case causes a RT-constraint violation. This will help us assess whether our

methodology is useful in terms of increasing the chances of exhibiting network traffic

faults which lead to RT failures.

Note that, in the test results we report, we analyze and discuss the MIOD-level soft and

hard RT constraints described in Section 12.3.3.6. SD-level constraints can be defined in

a similar way and the corresponding test results can also be analyzed.

12.8.2.1 Baseline of Comparisons

We define here the baseline of comparison we use to assess the effectiveness of our stress

test case. We consider Operation Profile-based Test Cases (OPTC) which are derived

from the operational profile [77] of a SUT. The operational profile of a system is defined

319

as the expected workload of the system once it is operational in the field. In other

words, OPTCs actually test a SUT in terms of its expected behavior in the field.

To derive OPTCs for SCAPS, we present an operational profile, which takes into account

the system’s business logic in the context of SCADA-based power systems. Using the

SCAPS MIOD (Figure 123) and CCFGs (Figure 127 to Figure 132), we model the

operational profile to be the probabilities for the true and false edges of conditions to be

taken. More precisely, we focus on the decision nodes in the CCFGs of SDs OC and

PRNF, Figure 129 and Figure 132, respectively. These two CCFGs are the only CCFGs

of SCAPS where there are alternatives in control flow.

The two decision nodes in CCFG(OC) check for overload status in load data for the

provinces of Ontario and Quebec. In case of overload in any of the provinces, a new load

policy is generated and is sent to the respective provincial server. Otherwise, a message is

sent to keep the old policy. As power systems are designed in such a way to minimize the

chances of overload, we assume the probabilities that the Ontario and Quebec grids

experience overload are %1 and %2, respectively. Thus the probabilities that the control

flow in decision nodes CCFG(OC) will follow the overload paths will be the same.

The above control flow path probabilities can be expressed as the operational profile of

SCAPS shown in Table 28, where probabilities of SD per province are shown and have

been mapped to paths after decision nodes.

320

SD CCFG Function-Province Path after Decision Node
in CCFG

Probability

Ontario overload %1 Overload monitoring-
Ontario Ontario normal load %99

Quebec overload %2

OC CCFG(OC)

Overload monitoring-
Quebec Quebec normal load %98

Separated power system
(SPS) in Ontario

%0.5 Detecting separated
power system -Ontario

No SPS in Ontario %99.5
Separated power system in
Quebec

%0.25

PRNF CCFG(PRNF)

Detecting separated
power system - Quebec

No SPS in Quebec %99.75

Table 28-An operational profile for SCAPS.

For example, Figure 143 shows a part of CCFG(OC) with edges outgoing from decision

nodes annotated with probabilities. The probability of an edge after a decision node in a

CCFG denotes the probability with which the control flow takes one of the subpaths

started with this edge.

CCFG(OC)

[else] [else]

... ...

... ...

Ontario overload (%1)

[overloadIn
(:ASA:loadON)]

[overloadIn
(:ASA:loadQC)]

Ontario normal load (%99)

Quebec overload (%2)

Quebec normal load (%98)

Figure 143-Part of CCFG(OC), annotated with probabilities of paths after decision

nodes.

Using the operational profile in Table 28, we can derive the probabilities of different

DCCFPs in OC and PRNF. When the probabilities of taking edges after decision nodes

321

are given, the probability of any DCCFP can be calculated. For example DCCFP ρ3,1

of SD OC corresponds to taking “Ontario overload” and “Quebec overload” edges of the

decision node in CCFG(OC), Figure 143. Using the operational profile in Table 28, the

probability to choose this DCCFP will be then %1x%2=%0.02. Using a similar approach,

the probabilities of taking other DCCFPs of SDs OC and PRNF have been calculated and

are shown in Table 29.

SD DCCFP Probability

ρ3,1 %0.02

ρ3,2 %0.98

ρ3,3 %1.98

OC

ρ3,4 %9702

ρ6,1 %0.00125

ρ6,2 ~%0.0049

ρ6,3 ~%0.0024

PRNF

ρ6,4 %0.9925

Table 29-Probabilities of taking DCCFPs of SDs OC and PRNF according to the

operational profile given in Table 28.

Now we discuss how a set of OPTCs can be derived from the SCAPS operational profile.

To derive OPTCs, we first derive Operation Profile-based Test Requirements (OPTR).

An OPTC is the set of inputs/conditions to a SUT that trigger an OPTR. An OPTR here

means any concurrent SD flow path (CSDFP) in the SCAPS MIOD and any

corresponding control flow path (CCFP) for each SD in the chosen CSDFP. In other

words, an OPTR corresponds to a DCCFPS (Section 7.2.2). The main constraint in

choosing an OPTR is to take into account the probabilities given in the operational

profile. The higher the probability of a flow path after a decision node, the more likely

the CCFPs containing that path will be selected. For example, assume that the following

CSDFP of SCAPS is selected.

322

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

PRNF
QC_DSPS
ON_DSPS

OC
QC_OM
ON_OM

STARTUP_OM

The set of probabilities given in the operational profile (Table 28) can be used to select

CCFPs for each of the SD in the above CSDFP. DCCFPs probabilities (Table 29) can

then be used to randomly select a DCCFP for each SD in a selected CSDFP.

12.8.2.2 Stress Test Results

Considering the test requirement TR5 in Figure 142, and by referring to the SCAPS

MIOD (Figure 123), we can see that SRTC1 and SRTC2 are visited by triggering TR5.

Therefore, we can say that the test objective in Section 12.3.4 is associated with SRTC1

and SRTC2, and thus we report here how the time difference between the start and end

events of the soft RT constraint SRTC1 (Figure 123) is affected when running test cases

corresponding to the test requirement TR5.

In order to determine if stress testing makes a difference in the duration of time between

the start and end events of the soft RT constraint SRTC1 when compared the results with

test cases based on operational profiles, we measured the executions of 500 randomly

selected OPT test cases. Note that all OPT test cases (their start times to be precise) were

derived in such a way that they did not violate the SDs’ arrival patterns (Section 12.3.3).

We then ran 500 test cases corresponding to TR5 and collected the duration of SRTC1

across all these runs. The comparison between Operational-Profile-based Test cases

(OPT) (Section 12.8.2.1) and stress test cases from GASTT (ST) is depicted by the two

execution time distributions in Figure 144. The 1,300 ms deadline of SRTC1 is shown

with a bold horizontal line. The x-axis is the test type and the y-axis is execution time.

323

The quantiles and the histograms of the three distributions are depicted. Quantiles of

the distribution are shown in Table 30.

Ti
m

e
(m

s)

1000

1100

1200

1300

OPT ST

Test Type

OPT ST

Figure 144-Execution time distributions of test suites corresponding to SRT

constraint SRTC1 by running operational profile test (OPT) and stress test cases

from GASTT (ST).

Level Min. 10% 25% Median 75% 90% Max.

OPT 953 1029 1059 1094 1125 1156 1241

ST 1211 1254 1263 1274 1285 1295 1327

Table 30-Quantiles of the distributions in Figure 144.

Due to the indeterminism of distributed environments, the duration of distributed

messages can be different across different executions, hence the variance in the

distributions of Figure 144. However, all OPT test executions satisfy SRTC1 whereas

SRTC1 is violated in almost 7.8% (39/500) of ST stress test cases. Our experiments

showed that test results corresponding to SRTC2 had a similar behavior when comparing

OPT and ST observations. Furthermore, the difference in average and median value

324

between OPT and ST distributions are large too, denoting the ability of ST test cases

in stressing the system.

12.8.3 Conclusions

In Section 12.3.3, to demonstrate the results of stress testing SCAPS with GASTT, we

modified SCAPS SDs by assigning to them realistic arrival pattern constraints. A stress

test objective to stress test SCAPS using GASTT technique was described in Section

12.3.4. The use of GARUS tool to derive stress test requirements was described in

Section 12.8.1. Results of executing the derived stress test cases were reported in Section

12.8.2. The results are promising as they suggest that stress test cases derived by GASTT

technique (using GARUS tool) can help increase the probability of exhibiting network

traffic-related faults in distributed systems, while respecting arrival pattern constraints of

a SUT’s SDs.

325

Chapter 13
GENERALIZATION OF OUR STRESS TEST

METHODOLOGY TO TARGET OTHER TYPES OF

FAULTS

We discuss in this chapter how our stress test methodology can be generalized to target

other types of resources (e.g. CPU or memory) than network traffic, or other types of

faults, such as distributed or resource unavailability faults (refer to our fault taxonomy in

Chapter 3). Note that although we discuss the fundamental heuristics of such

generalizations here, detailed stress test processes for targeting such faults need further

work based on the ideas we present. Considering the tree of generalized fault classes for

DRTSs in Figure 7, our stress test methodology can be generalized in at least two ways:

 Targeting other types of resources (Section 13.1)

 Targeting other types of faults (Section 13.2)

13.1 Targeting other Types of Resources

As discussed in Section 3.3, the type of faults targeted by our methodology in terms of

resource and distribution were overload usage and distributed traffic faults, respectively.

Network bandwidth was considered as the type of resource in targeted faults. As we

designed the stress test process in a structured and modular way (see Figure 10), to

326

generalize our methodology to target other types of resources, we only need to change

the parts of the methodology which are dependent on the type of the resource targeted.

By a careful look at the overview of the methodology (Figure 10), we can determine that

only the test model (TM) must be tailored to adapt the stress test methodology for other

resource types.

As discussed in Section 4.2.2, the test model of our methodology consists of four sub-

models: (1) network interconnectivity tree, (2) control flow analysis model, (3)

distributed traffic usage model, and (4) inter-SD constraints. Of these four sub-models,

only the distributed traffic usage model was specific to our particular resource type (i.e.

network bandwidth). This model was used to analyze the resource usage patterns of UML

SDs. Therefore, only this part needs to be changed if the methodology is to be used for

other types of resources. We propose in Section 13.1.1 a generalization of the traffic

usage analysis described in Chapter 8, under the form of a general resource usage

analysis framework. This framework is then used in Sections 13.1.2 and 13.1.3 to present

two other types of resource analyses for CPU and memory, respectively.

13.1.1 Resource Usage Analysis of other Types of Resources

The resource usage analysis of Chapter 8 is generalized into a Model-Based Resource

Usage Analysis framework (MBRUA), which we describe in Figure 145 by means of an

activity diagram.

327

Model-Based Resource Usage Analysis (MBRUA)

Model ProcessorUML Model
Sequence Diagrams

Concurrent Control
Flow Paths (CCFP)

Control Flow Analysis of
Sequence Diagrams

Resource
Usage Analysis

Resource Usage
Information

Resource Usage
Definition

Class Diagrams

Resource Usage
Query

Resource Usage
Function

Figure 145-Overview activity diagram of the Model-Based Resource Usage Analysis

(MBRUA) technique.

The activity diagram conforms to the general model-processing framework, proposed by

the UML Profile for Schedulability, Performance, and Time (UML-SPT) [12], where the

model analysis technique acts as the model processor. As defined by the UML-SPT, “a

model processor takes in a UML model, analyzes it and generates the analysis results”.

The MBRUA technique takes in the UML model of a system and a set of parameters (for

resource usage analysis) as input. The behavior models (SD, augmented with timing

information using UML-SPT [12]) are used to predict the behavior of a System Under

Analysis (SUA). The structure models (class diagrams) are used to find out about the

generalization (inheritance) relationships among classes and therefore be able to

appropriately handle polymorphic behaviors of objects in SD lifelines when analyzing

control flow [50, 59]. Furthermore, as it was discussed in Chapter 8, resource usage

analysis requires the structure of classes in a SUA to estimate data sizes of messages.

The technique then analyzes the control flow in the given model and generates

Concurrent Control Flow Paths (CCFP). CCFPs are then used by the resource usage

analysis activity to generate resource usage information. Resource usage definition,

328

function and query are specific input parameters for the resource usage analysis

activity, and are discussed next.

Resource Usage Definition (RUD) is a set of criteria which define how the usage of

resource usage should be quantified from behavior models. For example, as discussed in

Chapter 8, the RUD of network traffic usage is to filter CCFPs by selecting only

messages which are sent across different nodes. Such a CCFP was referred to as a

Distributed CCFP (DCCFP). A DCCFP is built from a given CCFP by removing all local

messages (sent between two objects on the same node) and keeping the distributed ones.

The formal definition of network traffic RUD was presented in Section 8.1.

A Resource Usage Measure (RUM) defines how the usage of a specific resource by

model constructs should be quantified. A RUM can be considered as a function from a set

of model elements to a Real value. We defined the RUM of network traffic usage in

Section 8.1.

A Resource Usage Query (RUQ) is a query to filter the Resource Usage Analysis (RUA)

results. For the network traffic usage analysis, we defined four query fields (attributes):

Traffic location: nodes, objects or networks.; Traffic direction (for nodes only): into,

from, or bidirectional; Traffic attribute (data traffic or number of messages); Traffic

duration: instant or interval (Section 8.3).

In the next two sections, we present the RUD and RUM for two additional resource

types: CPU and memory. Using the following definitions of RUD and RUM, our stress

test methodology can be generalized to target these two resource types instead of network

traffic

329

13.1.2 CPU

Our heuristics for calculating CPU usage using SD messages are as follows. Among call,

reply and signal messages, only call and signal messages consume CPU power. This is a

simplification of the fact that reply (return) messages only return values to the caller of a

message and the CPU usage entailed by reply messages is considered negligible. As an

example, let us consider a call message cm and its corresponding reply message rm. The

receiver object starts to execute a method body upon receiving the message cm from the

caller. Such an execution consumes CPU and finally the receiver returns a reply message

(rm) to the caller. The CPU usage entailed by rm is negligible compared to the execution

of cm, since it is basically copying the return results to a stack and returning back the

control to the caller. The practical impact of such simplification and more accurate

measures should however be investigated in future work

The CPU usage of each call message depends on the processing complexity of the

operation of the message, which can be either (1) predicted (calculated by a performance

tool), (2) measured (if an executable implementation of the SUA is available), (3)

required (coming from the system requirements or from a performance budget based on a

message, e.g., a required response time for a scenario), or (4) assumed (based on

experience) by modelers. These four alternatives denote the source of the information

and are defined in the Performance Modeling section of the UML–SPT[12]. Predicting

the processing complexity of an operation is a challenging task in the early design phase.

Existing works such as [124, 125] have proposed ways to predict CPU utilization using

330

different analysis models. The prediction in [124] is specific to rule-based systems17

(for instance used in telecommunication applications) and is done using a model of the

CPU cost per rule, referred to as a capacity model. The work in [125] uses fuzzy logic

and the concept of stochastic processes to predict CPU utilization of mainframe systems

based on a log file from the recent system behavior. Thus, the technique requires the

complete implementation or at least an earlier version of the system to be available. The

predicted values help system programmers tune a system’s performance by moving out

unimportant jobs during peak time. Another CPU utilization estimation heuristic was

proposed by Gomaa [49] in which a developer tries to implement pieces of code that are

representative enough of the foreseen implementation. The CPU utilization of the “early”

code is then measured to estimate the final code’s CPU utilization.

The Performance Modeling section of the UML–SPT [12] discusses ways to model CPU

usage in behavioral models. For example consider the SD in Figure 146, where message

op() is annotated with the PAdemand stereotype from the Performance Modeling section

of the UML–SPT. PAdemand (PA for Performance Analysis) is used to model the

resource demand of a scenario step (e.g., a message in a SD, or an activity in an activity

diagram). The right hand side of a PAdemand equality should be of type PAperfValue

17 Rule-based systems represent knowledge in terms of a set of rules that tell the system

what it should do or what it could conclude in different situations. A rule-based system

consists of a set of If-Then-Else rules, a set of facts, and some interpreter controlling the

application of rules, given the facts as inputs[126] A. Ligeza, Logical Foundations for

Rule-Based Systems: Springer, 2006..

331

(Performance Value), which is used to specify a complex performance value as

defined below.

PAperfValue=(“ <source-modifier> “,” <type-modifier> “,” <time-value> “)

where: <source-modifier>::=‘req’|‘assm’|‘pred’|‘msr’ is a string that defines the source

of the value: required, assumed, predicted, or measured. <type-

modifier>::=‘mean’|‘sigma’|‘kth-mom’, <Integer>|‘max’|’percentile,’<real>|‘dist’ is a

specification of the type of value meaning: average, variance, kth-moment (integer

identifies value of k), percentile range (real identifies percentage value), or probability

distribution. <time-value> is a time value described by the RTtimeValue type (defined by

in the General Time Modeling section of the UML–SPT). Thus, the PAdemand

annotation of the message op() in Figure 146 means that it is predicted that this message

will utilize 90% of the CPU (on n2).

SD

o1
{node=n1}

eo1 (Event
Occurrence)

o2
{node=n2}

op()

r
eo2 (Event
Occurrence)

PAdemand=
('pred','mean',90),

Figure 146-Modeling CPU usage example.

Based on our heuristics for CPU usage by SD messages, we present the RUD and RUM

for CPU resource analysis in Equation 12, where function CPUUsage(message) returns

the processing complexity value associated with a message. CPU usage is specific to

messages and not operations involved in those messages. The reason is that the same

332

operation used in different sequence diagrams may entail different CPU usages as

different computations may be triggered. As discussed above, for the sake of

simplification, the RUDCPU does not consider reply messages, but only call messages.

The RUMCPU of a message is simply equal to the processing complexity value of the

operation associated with the message. It is important when analyzing CPU usage to

consider event occurrences18 in SDs. For example consider the SD in Figure 146, and

assume op() is the only message considered in the RUA according to RUDCPU. Since the

processing of op() starts on object o2 at event occurrence eo1 and finishes at eo2, the

message consumes CPU power only in the time period between two event occurrences.

Note that this notion of resource usage over time is not incorporated in Equation 12, since

RUD and RUM are by nature not time-based. The issue should be further investigated

when designing a set of time-based RUA functions for CPU usage (similar to the ones in

Chapter 8 for network usage).

}''|{)(:
:

replyemsg.msgTypmsgmsgRUDTCCFP
TCCFPTCCFPRUD

CPU

CPU

=∧∈−=∈∀
→

ρρρρ

)()(: msgCPUUsagemsgRUMMessagemsg CPU =∈∀

Equation 12-RUD and RUM for CPU resource.

18 “EventOccurrences represent moments in time to which Actions are associated. An

EventOccurrence is the basic semantic unit of Interactions. EventOccurrences are ordered

along a Lifeline.” [127]

333

Another important consideration when analyzing CPU usage in distributed systems is

the locality of the usage. Similar in concept to the location attribute of network traffic

(Chapter 8), the CPU usage location denotes the particular CPU on which a message is

processed. For example, as shown in Figure 146, o1 and o2 are deployed on nodes n1 and

n2. Therefore, the actual execution of operation op() takes place on n2 and leads to CPU

usage on n2 only. The locality aspect of CPU usage is important because it is crucial for

engineers to determine the host CPU which must handle the processing load of a message

in a DRTS. Furthermore, we made a simplification in this section that the CPU utilization

of message during its execution is uniform. A more realistic but complex approach would

be to define a time-based function, which would predict a message’s CPU utilization at

each time instant during its execution.

13.1.3 Memory

Our heuristics for calculating memory usage by SD messages is as follows. Memory is

used by messages in two ways:

 Messages which associated method or signal name is create or destroy, or

 Temporary (heap) memory used by local variables as a result of message

invocations.

For example, consider the SD in Figure 147. Object o1 creates an object of class C3 and

destroys it after sending a message (m2) to it and receiving a reply (r2). Thus, temporary

(heap) memory corresponding to the data size of C3 is allocated and then de-allocated.

Furthermore, assume the source-code implementation of messages m1 and m2 results in

10 and 20 integer local variables, respectively. Assuming that each integer variable

334

consumes four bytes of memory, invocation of m1 and m2 will consume 40 and 80

bytes of heap memory. Estimating such information may be possible in late design stages

by using, for example, heuristics similar to the ones used in the COMET (Concurrent

Object Modeling and Architectural Design with UML) [10] object-oriented life cycle,

where Gomaa proposed a heuristic to estimate time durations of messages based on

benchmarks made of previously-developed similar messages. Such an approach can be

adapted to the estimation of number and types of local variables of a method by

comparing the functionality/role of a method at hand to benchmarks of previously-

developed methods local variables (in the same target programming language). It should

be acknowledged that this is in general a complex task which would need substantial

experience and skills from developers. Such information should then be provided by

modelers in an appropriate way, for example by using specific tagged-values.

SD

o1

m1

o2

r1
o3:C3

create
m2

r2

destroy

Figure 147-Memory usage analysis example.

Based on our heuristics for CPU usage by SD messages, we present the RUD and RUM

for memory usage in Equation 13, where function dataSize(class) returns the data size of

a class (Section 8.1). We consider the amount of memory allocated/de-allocated in

RUMMemory. A create message allocates memory space (denoted with +), while a destroy

335

message releases memory (denoted with -). Note that, for simplicity, the temporary

(heap) memory used by local variables resulting from message invocations has not been

incorporated into RUD or RUM. The temporary memory allocated in the beginning of an

operation by its local variables will be de-allocated upon return from the operation. Based

on this simplification, the granularity of the RUA which will use the RUD and RUM in

Equation 13 is assumed to be at the message level, and thus the invocation of operations

with local memory usage will not cause any change in the amount of memory space

consumed. However if a time-based RUA is to be performed, time-based RUD and RUM

should be defined where the intra-message-invocation memory usage should also be

accounted for. Furthermore, a part of such a RUA technique should make sure that there

is enough temporary memory space to invoke such messages. Similar to the locality

aspect of CPU usage, memory usage analysis should also take locality into account in the

context of distributed systems.

}},{|{)(:

:

destroycreatemeOrSignalNamsg.methodmsgmsgRUDTCCFP

TCCFPTCCFPRUD

Memory

Memory

∉∧∈−=∈∀

→

ρρρρ

⎩
⎨
⎧

=
=+

=∈∀
destroygnalNamemethodOrSimsgclasssendermsgdataSize-
creategnalNamemethodOrSimsgclassceiverermsgdataSize

msgRUMMessagemsg Memory . if;)..(
. if;)..(

)(:

Equation 13-RUD and RUM for memory resource.

13.2 Targeting other Types of Faults

We discuss in this section how our stress test methodology can be generalized to target

other types of faults, based on our fault taxonomy in Chapter 3. Since the main testing

aspect of our methodology is stress testing, we investigate next how stress testing can be

performed to increase chances of exhibiting the following three types of faults.

336

 Distributed unavailability faults (Section 13.2.1)

 Resource unavailability faults (Section 13.2.2)

 Concurrency faults (Section 13.2.3)

13.2.1 Distributed Unavailability Faults

As discussed in Section 3.1.2.1, Distributed Unavailability Faults (DUF) relate to the

availability (readiness for correct service) and reliability (continuity of correct service)

attributes of a system. The specification of most distributed systems usually dictates that

the system’s network links and nodes should be highly available and reliable. For

example, in a safety-critical system like a distributed air traffic control, the flight and

runway information should be updated frequently in the system’s central database.

Failing to do so, which might be caused for example by a DUF between a radar and the

controller, might result in disastrous consequences.

A DUF is said to have happened when a system component (either a network link or a

node) is no longer available and can not provide service to other components in the

system. For example, a distributed message from a source node may not reach the

destination node because one of the network links in the path from the source to the

destination node is exhibiting a DUF.

As we discussed in our methodology, triggering distributed traffic faults in a DRTS is not

straightforward, i.e., finding specific scenarios in behavior models of a SUT, and specific

start times to trigger each of those scenarios are not easy. Our traffic-aware stress test

methodology aimed at increasing the chances of exhibiting distributed traffic faults by

finding such specific test requirements. On the other hand, as the definition of a DUF

337

indicates, such a fault can be easily triggered when a node or a network becomes

unavailable, and hence, a simple test objective to test a SUT under DUFs is to simulate

the unavailability of a network or a node in each distributed message and observe the

reaction of the SUT. For example, consider a SUT identified by the SDs in Figure 148,

where most of the messages are distributed. Each pi,j is a process object deployed on a

specific node.

p1,3
{node=node1}

SD1

1.1

p2,2
{node=node2}

p3,1
{node=node3}

1.2

1.3

1.4

p2,3
{node=node2}

SD2

2.1

p3,1
{node=node3}

p3,2
{node=node3}

2.2

2.3

p4,1
{node=node4}

SD3

p4,2
{node=node4}

p4,3
{node=node4}

3.1

3.2

3.3

3.4

p1,1
{node=node1}

SD4

p2,1
{node=node2}

p4,3
{node=node4}

4.1

4.5

[cond]

[else]

alt

4.3

4.2

4.4

p1,2
{node=node1}

1.5

1.6

Figure 148-Four SDs with distributed messages.

In order to apply stress testing targeted at DUFs (i.e., generalize our stress test

methodology to such faults), we use the following heuristics but acknowledge that other

heuristics could be used. In order to maximize the impacts of a DUF (resulting failures),

the stress test objectives are:

1. The messages, in which the component originating the DUF is involved as the

receiver, are scheduled to be sent concurrently,

2. After such messages are sent, the unavailability of the component is emulated,

and the SUT’s reaction is assessed.

338

As an example of the above stress test objectives, assume that we want to maximize

the impacts of a DUF when node2 becomes unavailable in Figure 148. According to the

above heuristics, we choose the messages (each from the set of CCFPs for each SD)

which are sent towards node2, and schedule them to be sent concurrently. There are two

messages (1.1 and 4.1) in SD1 and SD4, which are sent towards node2. When there are

several messages in a SD towards a node, for which we are trying to stress test the

impacts of a DUF, different criteria can be used to choose the one which is predicted to

cause the worst impact due to a DUF, e.g., the strongest data dependency in the next

messages. Messages 1.1 and 4.1 are then sent concurrently (to node2). Then node2 is

emulated to be unavailable, and the impact of the DUF in node2 on the SUT is assessed.

Note that scheduling the chosen messages (and thus their corresponding CCFPs) to stress

test a SUT with DUFs can present challenges similar to the ones we faced in our

methodology, i.e., inter-SD constraints and SD arrival patterns.

13.2.2 Resource Unavailability Faults

Stress testing with respect to Resource Unavailability Faults (RUnF) can be done in a

similar way to testing with respect to DUFs. For example, assume a sensor as a resource

in a system. Suppose that p2,2 and p2,1 in SD1 and SD4 in Figure 148 are replaced with

object s:Sensor. Messages 1.1 and 4.1 can be selected from SD1 and SD4 to be sent

concurrently (to s:Sensor). Then s:Sensor is emulated to be unavailable, and the impact

of the RUnFs in s:Sensor to the SUT is assessed.

Note that the RUnF is rephrased depending on the type of a resource it is associated with.

For example, since the resource type was a sensor in the above example, a corresponding

RUnF occurs when the sensor is not available (not functioning properly). For CPU as the

339

resource type, the associated RUnF might be that a CPU’s utilization is already 100%

and it can not offer any extra processing power at a time instant. For memory, the

associated RUnF can be rephrased as: the memory is currently full and no extra memory

space is available.

13.2.3 Concurrency Faults

As discussed in Section 3.1.4, a concurrency fault is said to have occurred if the root

cause of a system failure is due to a fault in concurrency among processes. There might

be, for example, a shared resource that is accessed by several processes in a system. The

synchronization scheme and order in which a shared resource is accessed might lead to a

concurrency fault. Some types of concurrency faults are: deadlock, livelock, starvation

and data races (race conditions).

In order to generalize our stress test methodology to concurrency faults, we can merge

the ideas of our work and the existing techniques which target such faults, such as [20-22,

49] which aim at finding data-race related faults. For example, Ben-Asher et al. [23]

propose a set of heuristics to increase the probability of manifesting data-race related

faults in Java programs. The goal is to increase the chance of exercising data-races in the

program under test and thus increase the chance of manifesting concurrency faults that

are data-race related. The proposed technique first orders global shared variables

according to the number of times they are accessed by different processes. Then data-race

based heuristics are used to change the runtime interleaving of threads so that the

probability of fault manifestation increases. One of the proposed heuristics in [21] is

called barrier scheduling, in which barriers are installed before and after accessing a

particular shared variable. A barrier causes the processes accessing the variable to wait

340

just before accessing it. When a predefined number of processes are waiting, the

heuristic then simultaneously resumes all the waiting processes to access the shared

variable, for example using notifyAll() in Java.

We can use a similar approach to apply stress testing based on UML models toward

exhibiting concurrency faults. Such an approach can find the global shared objects

(corresponding to global shared variables in [21]) according to the number of times they

are targeted by different messages in different SDs. The data-race based heuristics (such

as barrier scheduling [21]) can then be used to derive test requirements from SDs such

that specific interleavings of messages towards global shared objects are triggered

concurrently so that the probability of concurrency faults increases.

The application of the barrier scheduling heuristics in the context of UML-based stress

testing is illustrated using an example in Figure 149. Assume that object O:C has been

identified as an global shared object to derive concurrency stress test requirements. Also

assume that the three SDs in Figure 149-(a) are the SD in the UML model of a SUT. The

concurrency stress test requirement is shown using a SD in Figure 149-(a), where the test

requirements have been modeled based on the UML testing profile.

341

SD1

o1 o:C

SD2

o2

set()

o:C

...

SD3

o3

set()

o:C

...

SD stressTestConcurrency

o1 o2 o3 o:C

CCFP1
ref

par

CCFP2
ref

CCFP3
ref

par

set()

set()

set()

Derivation of Concurrency
Test Requirements

(a)

(b)

set()
...

Figure 149-Heuristics for the application of the barrier scheduling heuristic in the

context of UML-based stress testing.

Among all the messages of a SD where the global shared object O is one of the two

participating objects, different criteria can be used to select the one which is expected to

cause the maximum stress in terms of a concurrency fault (e.g., following data flow

dependencies). Assume that the set() message has been identified in each of the three SDs

as such a message. Based on the barrier scheduling heuristic, the concurrency stress test

objective is to run the CCFP containing the set() message in each of the SDs and pause

the control flow just before the set() messages. Assume that CCFPi’s are the sub-CCFPs

of those CCFPs including only the messages before the set() message. CCFPi’s are

triggered in parallel before the three set() messages. This scenario is equivalent to the

barrier scheduling heuristic [21] in the context of UML-based stress testing. Although the

342

three set() messages are triggered concurrently, there might be very small differences

between their start and end times at runtime, thus enabling chances for concurrency

faults. This situation is inline with the Java-based concurrency testing discussions in [21].

343

Chapter 14

SUMMARY

The summary presented in this chapter includes the following:

- Conclusions (Section 14.1)

- Future research directions (Section 14.2)

14.1 Conclusions

A model-driven, stress test methodology aimed at increasing chances of discovering

faults related to distributed traffic in distributed systems was presented. The technique

uses as input a UML 2.0 model of a system, augmented with timing information. We

specified an adequate and realistic input test model which includes (1) a Network

Deployment Diagram (following the UML package notation) that describes the

distributed architecture in terms of system nodes and networks and (2) a Modified

Interaction Overview Diagram (following the UML 2.0 interaction overview diagram

notation) that describes execution constraints between sequence diagrams. Our stress

testing technique relies on a careful identification of control flow paths in UML 2.0

Sequence Diagrams and the distributed traffic they entail. This information is used to

344

generate stress test requirements composed of specific control flow paths (in

Sequence Diagrams) along with time values indicating when those paths have to be

triggered so as to stress the network to the maximum extent possible. To do so, we resort

to optimization algorithms. In the most complex case, when external system events

follow complex arrival patterns, we make use of a specifically tailored Genetic

Algorithm, which has shown promising initial results. .

Using the specification of a real-world distributed system, we designed and implemented

a system and described how the stress test cases were derived and executed using our

methodology. We furthermore reported the results of applying our stress test

methodology on this system and discussed its effectiveness in detecting violations of a

hard real-time constraint when compared to test cases based on an operational profile.

Our first results are promising as they suggest that our generated stress test cases

significantly increase the probability of exhibiting distributed traffic-related faults in

distributed systems.

Our test methodology, as presented in this thesis, has some limitations:

• Lack of automation regarding the creation of test models: Although we do not

have an automated tool to generate test models, such a tool can be developed

based on the discussions in Chapter 6-Chapter 8 and using technologies such as

Rational Software Architect (RSA) and Eclipse Modeling Framework (EMF).

This may lead, for example, to the refinement of the OCL consistency rules we

presented in Chapter 6: although we have made the effort to write a complete set

of correct rules, and validated them manually, only their use during the

345

implementation of a tool supporting our methodology will reveal whether they

are complete and correct.

• Uncertainty of timing information: Our methodology is based on design diagrams,

and relies in particular on timing information of SD messages. During design such

information is usually estimated, with hopefully a reasonable accuracy. How such

an estimation can be performed was outside of the scope of our work, and we

reported on existing techniques, and used them in our case study. It is therefore

clear that the results of our methodology depend on the quality of those estimates:

the more accurate the estimates the better the stress tests (i.e., more likely to

reveal problems). We have not performed any sensitivity analysis of our

methodology to those estimates but we acknowledge (Section 10.9) that the

methodology is likely to be sensitive. This will be further investigated in our

future work.

• We furthermore assumed that the SDs of a SUT are given as an input to our stress

test methodology. Thus, our methodology can not be applied to stress test systems

whose SDs are not be available, e.g., legacy systems. As a solution to this

limitation, SD reverse engineering techniques (e.g. [21]) can be used to build SDs

of a SUT first and then our technique may be applied. However, the cost-

effectiveness of such an approach has to be investigated

14.2 Future Research Directions

Our stress test methodology can be generalized to other distributed-type faults, such as

distributed unavailability of networks and nodes, and other resources such as CPU,

346

memory, and database usage. Stress testing a distributed system with respect to

distributed unavailability fault (Section 3.1.2.1) is to cause scenarios in which the

maximum stress on a system occurs when a node (or a network) becomes unavailable.

CPU or memory-aware stress testing will put a SUT under maximum possible usage of

CPU or memory and will increase the chances of exhibiting resource usage faults related

to CPU or memory.

In order to give a scheduled stress test requirement that will cause stress on network

traffic on a predicted time instant (or period), we required that all SD messages have

precise or statistical timing information (Section 5.1.1). We have thought of a heuristic to

derive stress test requirements when it is impossible (or hard) to determine such timing

information for messages. Such a heuristics will first determine the maximum stressing

messages. The corresponding stress test requirement will then be to wait before such

messages and advancing the execution when the execution is waiting before all such

maximum stressing messages. Two other research directions are: (1) How can we

account for data flow and parameters in the SD sequential constraint modeling?, and (2)

How can we account for the variation in the data traffic value of a distributed message

during its execution?.

As we discussed in Section 7.2.2, the current automatic procedure to derive CCFPS (and

DCCFPS) may produce infeasible (one could say illegal) CCFPS (DCCFPs). Another

future work is to do a form of data flow analysis on the set of derived CCFPS (DCCFPs)

to eliminate the infeasible (illegal) ones.

The UML Testing Profile [128] defines a language for designing, visualizing, specifying,

analyzing, constructing and documenting the artifacts of test systems. It is a test modeling

347

language that can be used with all major object and component technologies and

applied to testing systems in various application domains. The UML Testing Profile

(UML-TP) can be used in an integrated manner with UML to handle a system's test

artifacts [129]. Specifying the generated stress test requirements and the stress test

process of our methodology with the UML-TP would lead to having all software artifacts,

from analysis and design to specified test suites, modeled with UML. This would

facilitate traceability between analysis, design, and testing artifacts and since UML-TP

has paved the way for possible tools to execute test cases modeled in the UML-TP, test

automation could potentially be improved.

UML models can be statically verified to make sure that behavior models do not lead to

RT faults by checking if there is any possible scenario in which a RT fault can occur

under stress conditions in terms of different types of resources, e.g. network traffic, CPU

and memory. The verification can be applied on a system’s design model before it is

implemented. The overall procedure for the verification is to find the maximum possible

stress conditions of behavior models and check if, for example, the maximum possible

traffic exceeds the network bandwidth. Resource usage information can either be

modeled by modelers using resource usage modeling constructs proposed by the UML-

SPT, or can be predicted from models [129].

Performance bottlenecks of a DRTS can be pinpointed using PERT (Program Evaluation

and Review Technique) technique. Given the time duration of each use case in a system

and also their sequential constrains (using a MIOD), the PERT technique can be used to

find the critical paths in a MIOD, i.e., performance bottlenecks.

348

We saw in Chapter 9 that test objectives are parts of the input to our stress testing

technique, where the rest of the steps are done automatically. It is worth investigating if

the test objectives can also be derived automatically in the order of importance to be

stress tested first. More importance, in this context, means if the failure of a RT constraint

has more severity than another. This automated process can reduce the workload done by

testers.

Risk assessment/fault analysis of distributed-type faults, the investigation of QoS faults

and the impacts of stress on QoS in a system as well as implementation of a test model

generator from UML models are also worthwhile future research directions. A QoS fault

is said to have occurred when a system component does not function according to its QoS

requirement. We also intend to stress test more complex distributed systems using our

methodology and perform more empirical investigations of its effectiveness.

Furthermore, in the cases when stress tests show that there can be scenarios in which one

or more of the RT constraints can be violated in a SUT, such as the case in our case study

(Chapter 12), performance engineering techniques should be applied to redesign the

system and/or increase resources (for example, network capacities) or change the RT

constraint values to more realistic levels. Thus, a Stress-Test based Performance

Engineering (STPE) approach can be devised to assist testers and system analysts in

fixing the distribution-related faults. Following STPE, the designer uses stress test results

to evaluate the performance throughout of a SUT, analyze missed Real-Time constraints,

and provide guidelines to enhance performance and robustness of the system in terms of

Real-Time constraints.

349

Recall from Section 8.4.1 that we assumed the network paths’ dispatching policy does

not change during the transmission of a message, i.e., the transmission shares of each of

the involved networks stay the same during the entire transmission. To relax such a

limitation, a future work can be to get more information from the routing and network

protocols involved in a SUT so that we can calculate the transmission shares of each

network/path in each time instant. This will help to derive more precise stress test

requirements.

We recognized that the results of our methodology are likely to be sensitive to

uncertainty in timing information: if the variance (as a measure of uncertainty) in timing

information in a SUT increases, then the preciseness of the output stress test requirements

generated by our methodology will decrease, i.e., generated stress test cases will not

necessarily maximize traffic on a given network (or a node). Future work must

investigate the sensitivity of our stress test methodology to uncertainty in timing

information.

References

[1] J. J. P. Tsai, Y. Bi, S. J. H. Yang, and R. A. W. Smith, Distributed Real-Time Systems:
Monitoring, Visualization, Debugging, and Analysis: John Wiley & Sons, 1996.

[2] E. Weyuker and F. I. Vokolos, "Experience with Performance Testing of Software
Systems: Issues, an Approach and Case Study," IEEE Transactions on Software Engineering,
vol. 26, pp. 1147-1156, 2000.

[3] R. Kuhn, "Sources of Failure in the Public Switched Telephone Network," IEEE Computer,
vol. 30, pp. 31-36, 1997.

[4] S. Mackay, E. Wright, and J. Park, Practical Data Communications for Instrumentation and
Control: Newnes, 2003.

[5] S. C. Bhatia, "Industrial SCADA: SCADA Control Systems In Integrated Steel Plants," in
Proceedings of Power Quality Conference, pp. 225-233, 1998.

[6] M. Ivey, A. Akhil, D. Robinson, K. Stamber, and J. Stamp, "Accommodating Uncertainty
in Planning and Operations," Technical Report, Consortium for Electric Reliability
Technology Solutions 1999.

350

[7] F. J. Molina, J. Barbancho, and J. Luque, "Automated Meter Reading and SCADA
Application for Wireless Sensor Network," Lecture Notes in Computer Science, vol. 2865,
pp. 223-234, 2003.

[8] ABB Co., "ABB Group Annual Report,"
http://www.abb.com/Global/Clabb/CLABB155.NSF/viewunid/2DDB4104B522E26A0
4256C3000527EEB/$file/ABB_TECH_E-Annual2000.pdf 2000.

[9] K. P. Birman, J. Chen, K. M. Hopkinson, R. J. Thomas, J. S. Thorp, R. v. Renesse, and W.
Vogels, "Overcoming Communications Challenges in Software for Monitoring and
Controlling Power Systems," Proceedings of the IEEE, vol. 9, 2005.

[10] Object Management Group (OMG), "UML 2.0 Superstructure Specification," 2005.

[11] T. Pender, UML Bible: Wiley, 2003.

[12] Object Management Group (OMG), "UML Profile for Schedulability, Performance, and
Time (v1.0)," 2003.

[13] C. S. D. Yang, "Identifying Potentially Load Sensitive Code Regions for Stress Testing," in
Proceedings of MASPLA'96 (The Mid-Atlantic Student Workshop on Programming Languages
and Systems), State University of New York at New Paltz, NY, USA, April 1996.

[14] J. Zhang and S. C. Cheung, "Automated Test Case Generation for the Stress Testing of
Multimedia Systems," Journal on Software Practice and Experience, vol. 32, pp. 1411-1435,
2002.

[15] A. Avritzer and E. J. Weyuker, "The Automatic Generation of Load Test Suites and the
Assessment of the Resulting Software," IEEE Transactions on Software Engineering, vol. 21,
pp. 705-716, 1995.

[16] L. C. Briand, Y. Labiche, and M. Shousha, "Automating Stress Testing for Real-Time
Systems Using Genetic Algorithms," in Proceeding of Genetic and Evolutionary Computation
Conference, pp. 1021-1028, 2005.

[17] A. Avritzer and B. Larson, "Load Testing Software Using Deterministic State Testing," in
Proceedings of International Symposium on Software Testing and Analysis, pp. 82-88, 1993.

[18] W. Brauer, W. Reisig, and G. R. (eds.), "Petri-nets, Central Models and their Properties,"
in Advances in Petri-Nets, Part I. Proceedings of an Advanced Course, Bad Honnef (ed), Lecture
Notes in Computer Science, vol. 254: Springer, 1987.

[19] J. F. Allen, "Maintaining Knowledge about Temporal Intervals," Communications of the
ACM, vol. 26, pp. 832-843, 1983.

[20] D. Hovemeyer and W. Pugh, "Finding Concurrency Bugs in Java," in Workshop on
Concurrency and Synchronization in Java Programs, International Symposium on Principles of
Distributed Computing, 2004.

[21] Y. Ben-Asher, Y. Eytani, and E. Farchi, "Heuristics for Finding Concurrent Bugs," in
Workshop on Parallel and Distributed Systems: Testing and Debugging, International Parallel
and Distributed Processing Symposium, 2003.

[22] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur, "Multithreaded Java Program Test
Generation," IBM Systems Journal, vol. 41, pp. 111-125, 2002.

[23] S. D. Stoller, "Testing Concurrent Java Programs using Randomized Scheduling,"
Electronic Notes in Theoretical Computer Science, vol. 70, pp. 1-16, 2002.

351

[24] R. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools: Addison-
Wesley, 1999.

[25] I. P. Paltor and J. Lilius, "Digital Sound Recorder: a Case Study on Designing Embedded
Systems Using the UML Notation," TUCS Technical Report No. 234, Turku Centre for
Computer Science, Finland 1999.

[26] B. Douglass, Doing Hard Time, Developing Real-Time Systems with UML Objects,
Frameworks, and Patterns: Addison Wesley, 1999.

[27] D. Herzberg, "UML-RT as a Candidate for Modeling Embedded Real-Time Systems in
the Telecommunication Domain," in Proceedings of International Conference on the Unified
Modeling Language, pp. 331-338, 1999.

[28] L. Kabous and W. Neber, "Modeling Hard Real Time Systems with UML: The OOHARTS
Approach," in Proceedings of International Conference on the Unified Modeling Language, pp.
339-355, 1999.

[29] A. Lanusse, S. Gerard, and F. Terrier, "Real-Time Modeling with UML: The ACCORD
Approach," in Proceedings of International Conference on the Unified Modeling Language,
Mulhouse, France, pp. 319-335, 1998.

[30] J. Hakansson, L. Mokrushin, P. Pettersson, and W. Yi, "An Analysis Tool for UML
Models with SPT Annotations," in International Workshop on Specification and Validation of
UML Models for Real Time and Embedded Systems, 2004.

[31] S. Bernardi, S. Donatelli, and J. Merseguer, "From UML Sequence Diagrams and
Statecharts to Analysable Petri-net Models," in Proceedings of International Workshop on
Software and Performance, pp. 35-45, 2002.

[32] C. M. Woodside and D. C. Petriu, "Capabilities of the UML Profile for Schedulability
Performance and Time (SPT)," in Workshop SIVOES-SPT on the usage of the SPT Profile, held
in conjunction with the 10th IEEE Real-Time and Embedded Technology and Applications
Symposium RTAS'2004, Toronto, Canada, May 2004.

[33] D. C. Petriu, "Performance Analysis Based on the UML SPT Profile," in tutorial given at
QEST'2004, Enschede, The Netherlands, September 2004.

[34] D. C. Petriu and C. M. Woodside, "Extending the UML Profile for Schedulability
Performance and Time (SPT) for component-based systems," in Workshop SIVOES-SPT on
the usage of the SPT Profile, held in conjunction with the 10th IEEE Real-Time and Embedded
Technology and Applications Symposium RTAS'2004, Toronto, Canada, May 2004.

[35] B. P. Douglass, "Rhapsody 5.0: Breakthroughs in Software and Systems Engineering," I-
Logix Corp. whitepaper 2003.

[36] Object Management Group (OMG), "Unified Modeling Language Specification (v1.3),"
1999.

[37] Object Management Group (OMG), "Unified Modeling Language Specification (v1.5),"
2003.

[38] A. Avizienis, J.-C. Laprie, and B. Randell, "Fundamental Concepts of Dependability,"
Technical Report 01145, LAAS (Laboratory for Analysis and Architecture of Systems),
Toulouse, France 01-145, 2001.

[39] Y. Huang, P. Jalote, and C. Kintala, "Two Techniques for Transient Software Error
Recovery," Lecture Notes in Computer Science, vol. 774, pp. 159-170, 1994.

352

[40] J. Gray, "A Census of Tandem System Availability Between 1985 and 1990," IEEE
Transactions on Reliability, vol. 39, pp. 409-418, 1990.

[41] J. Gray, "Why do Computers Stop and What Can be Done About it?," in Proceedings of
International Symposium on Reliability in Distributed Software and Database Systems, pp. 3-12,
1986.

[42] M. Sullivan and R. Chillarege, "Software Defects and Their Impact on System Availability
- A Study of Field Failures in Operating Systems," in Proceedings of International
Symposium on Fault-Tolerant Computing, pp. 2-9, 1991.

[43] R. Chillarege, S. Biyani, and J. Rosenthal, "Measurement of Failure Rate in Widely
Distributed Software," in Proc. of 25th IEEE Intl. Symposium on Fault Tolerant Computing,
Pasadena, CA, USA, pp. 424-433, July 1995.

[44] I. Lee and R. K. Iyer, "Software Dependability in the Tandem GUARDIAN System," IEEE
Transactions on Software Engineering, vol. 21, pp. 455-467, 1995.

[45] A. S. Tanenbaum, Computer Networks, Fourth ed: Prentice Hall, 2003.

[46] A. Ganesh, N. O'Connell, and D. Wischik, Big Queues: Springer Publication, 2004.

[47] B. P. Douglass, Real Time UML: Advances in the UML for Real-Time Systems, 3rd ed:
Addison-Wesley Professional, 2004.

[48] J. M. Bacon, Concurrent Systems: Operating systems, Database and Distributed Systems, an
Integrated Approach, Second ed: Addison Wesley, 1997.

[49] H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications with UML:
Addison-Wesley, 2000.

[50] V. Garousi, L. Briand, and Y. Labiche, "Control Flow Analysis of UML 2.0 Sequence
Diagrams," in Proceedings of European Conference on Model Driven Architecture-Foundations
and Applications, LNCS 3748, pp. 160-174, 2005.

[51] J. Rumbaugh, I. Jacobson, and G. Booch, UML Reference Manual: Addison-Wesley, 1999.

[52] C. Larman, Applying UML and Patterns, 2nd edition ed: Prentice Hall, 2002.

[53] F. Fraikin and T. Leonhardt, "SeDiTeC-Testing based on Sequence Diagrams," in
Proceedings of International Conference on Automated Software Engineering, pp. 261-266, 2002.

[54] Y. Wu, M.-H. Chen, and J. Offutt, "UML-based Integration Testing for Component-Based
Software," in Proceedings of International Conference on COTS (Commercial-Off-The-Shelf)-
based Software Systems, pp. 251-260, 2003.

[55] P. P. Puschner and R. Nossal, "Testing the Results of Static Worst-Case Execution-Time
Analysis," in Proc. of IEEE Real-Time Systems Symp., pp. 134–143, 1998.

[56] H. Thane, "Monitoring, Testing and Debugging of Distributed Real-Time Systems," in
Department of Machine Design. Stockholm, Sweden: Royal Institute of Technology, 2000,
pp. 128.

[57] J. Axelsson, "A Method for Evaluating Uncertainties in the Early Development Phases of
Embedded Real-Time Systems," in International Conference on Embedded and Real-Time
Computing Systems and Applications, 2005.

[58] N. Nissanke, L. David, and F. Cottet, "Probabilistic Uni-processor Schedulability
Analysis," in International Workshop on Probabilistic Analysis Techniques for Real-time and
Embedded Systems, 2004.

353

[59] V. Garousi, L. Briand, and Y. Labiche, "Control Flow Analysis of UML 2.0 Sequence
Diagrams," Technical Report SCE-05-09, Carleton University,
http://www.sce.carleton.ca/squall/pubs/tech_report/TR_SCE-05-09.pdf, 2005.

[60] L. Briand and Y. Labiche, "A UML-based Approach to System Testing," Journal of Software
and Systems Modeling, vol. 1, pp. 10-42, 2002.

[61] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. GilChrist, F. Hayes, and P. Jeremaes,
Object-Oriented Development - The Fusion Method: Prentice Hall, 1994.

[62] R. J. A. Buhr, "Use Case Maps as Architectural Entities for Complex Systems," IEEE
Transactions on Software Engineering, vol. 24, 1998.

[63] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel, "Requirements by Contracts allow
Automated System Testing," in Proceedings of International Symposium on Software
Reliability Engineering, pp. 85-96, 2003.

[64] S. Muchnick, Advanced Compiler Design and Implementation, First ed: Morgan Kaufmann,
1997.

[65] OMG, "UML 2.0 Superstructure Final Adopted specification," 2003.

[66] H. R. Nielson and F. Nielson, "Infinitary Control Flow Analysis: a Collecting Semantics
for Closure Analysis," in Symp. on Principles of Programming Languages, pp. 332-345, 1997.

[67] J. Bauer, "A control-flow-analysis for multi-threaded java with security applications,"
Master’s thesis, Universitat des Saarlandes, 2001, pp. 97.

[68] P. D. Blasio, K. Fisher, and C. Talcott, "A Control-Flow Analysis for a Calculus of
Concurrent Objects," IEEE Trans. on Soft. Eng., vol. 26, 2000.

[69] D. L. Long and L. A. Clarke, "Task interaction graphs for concurrency analysis," in Proc.
Int. Conf. on Soft. Eng., pp. 44-52, 1989.

[70] A. T. Chamillard and L. A. Clarke, "Improving the accuracy of Petri net-based analysis of
concurrent programs," in Proc. Int. Symp. on Soft. testing and analysis, pp. 24-38, 1996.

[71] A. Rountev, S. Kagan, and J. Sawin, "Coverage Criteria for Testing of Object Interactions
in Sequence Diagrams," in Proc. Conf. Fundamental Approaches to Soft. Eng., pp. 289-304,
2005.

[72] M. Okazaki, T. Aoki, and T. Katayama, "Formalizing Sequence Diagrams and State
Machines using Concurrent Regular Expression," in Proceedings of International Workshop
on Scenarios and State Machines: Models, Algorithms, and Tools, pp. 74-79, 2003.

[73] J. Warmer and A. Kleppe, The Object Constraint Language: Getting Your Models Ready for
MDA: Addison Wesley, 2003.

[74] R. E. Tarjan, "Depth-First Search and Linear Graph Algorithms," Society for Industrial and
Applied Mathematics' Journal on Computing, vol. 1, 1972.

[75] Sun Microsystems, "Java Remote Method Invocation (RMI) Specification (version 1.4.2),"
2003.

[76] Wikipedia, "Definition of Binary Large OBject (BLOB)," in
http://en.wikipedia.org/wiki/Binary_large_object, Last accessed: Feb. 2006.

[77] M. S. Gittens, "The Extended Operational Profile Model for Usage-Based Software
Testing," Doctoral Thesis, University of Western Ontario, 2004.

354

[78] W. D. Shepherd, Network and Operating System Support for Digital Audio and Video:
Springer, 1994.

[79] F. L. Presti, N. G. Duffield, J. Horowitz, and D. Towsley, "Multicast-based inference of
network-internal delay distributions," IEEE/ACM Transactions on Networking, 2002.

[80] A. Adas, "Traffic Models in Broadband Networks," IEEE Communications Magazine, vol.
35, pp. 82-89, 1997.

[81] S. Sen and J. Wang, "Analyzing Peer-to-Peer Traffic across Large Networks," IEEE/ACM
Transactions on Networking, vol. 12, pp. 219-232, 2004.

[82] V. Garousi, L. Briand, and Y. Labiche, "Traffic-aware Stress Testing of Distributed
Systems based on UML Models," Technical Report SCE-05-13, Carleton University,
http://www.sce.carleton.ca/squall/pubs/tech_report/TR_SCE-05-13.pdf, 2005.

[83] V. Garousi, L. Briand, and Y. Labiche, "Traffic-aware Stress Testing of Distributed
Systems based on UML Models," in Proceedings of International Conference on Software
Engineering, pp. 391-400, 2006.

[84] S. I. Gass, Linear Programming : Methods and Applications, Fifth ed: Dover Publications,
2003.

[85] M. J. Atallah, Handbook of Algorithms and Theory of Computation: CRC (Chemical Rubber
Company) Press, 1999.

[86] J. W. Chinneck, "Practical Optimization: A Gentle Introduction," Systems and Computer
Engineering, Carleton University. Available at:
http://www.sce.carleton.ca/faculty/chinneck/po.html.

[87] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms: Wiley-Interscience, 1998.

[88] J. Lahtinen, P. M. Silander, and H. Tirri, "Empirical Comparison of Stochastic
Algorithms," in Proceedings of Nordic Workshop on Genetic Algorithms and their Applications,
pp. 45-60, 1996.

[89] P. Chardaire, A. Kapsalis, J. W. Mann, V. J. Rayward-Smith, and G. D. Smith,
"Applications of Genetic Algorithms in Telecommunications," in Proceedings of
Applications of Neural Networks to Telecommunications, pp. 290-299, 1995.

[90] S. W. Mahfoud and D. E. Goldberg, "Parallel Recombinative Simulated Annealing: A
Genetic Algorithm," Journal on Parallel Computing, vol. 21, pp. 1-28, 1995.

[91] S. Y. Mahfouz, "Design Optimization of Structural Steel Work," Ph.D. Thesis, Department
of Civil and Environmental Engineering, University of Bradford, 1999.

[92] K. De Jong, "Learning with Genetic Algorithms: An Overview," Machine Learning, vol. 3,
pp. 121-138, 1988.

[93] J. J. Grefenstette and H. G. Cobb, "Genetic Algorithms for Tracking Changing
Environments," in Proceedings of International Conference on Genetic Algorithms, pp. 523-
530, 1993.

[94] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das, "A Study of Control Parameters
Affecting Online Performance of Genetic Algorithms for Function Optimization," in
Proceedings of International Conference on Genetic algorithms, pp. 51-60, 1989.

[95] M. A. Pawlowsky, "Crossover Operators," in Practical Handbook of Genetic Algorithms
Applications, L. Chambers Ed., pp. 101-114, 1995.

355

[96] T. Back, "Towards a Practice of Autonomous Systems," in Proceedings of European
Conference on Artificial Life, pp. 263-271, 1992.

[97] H. Mühlenbein, "Parallel Genetic Algorithms, Population Genetics and Combinatorial
Optimization," in Proceedings of International Conference on Genetic algorithms, pp. 416-421,
1989.

[98] J. E. Smith and T. C. Fogarty, "Adaptively Parameterized Evolutionary Systems: Self
Adaptive Recombination and Mutation in a Genetic Algorithm," Proceedings of
International Conference on Parallel Problem Solving From Nature, pp. 441-450, 1996.

[99] M. Wall, "GAlib: A C++ Library of Genetic Algorithm Components," Documentation
version 2.4, Massachusetts Institute of Technology 1996.

[100] V. Garousi, "GARUS (Genetic Algorithm-based test Requirement tool for real-time
distribUted Systems)," in http://squall.sce.carleton.ca/tools/GARUS, 2006.

[101] S. J. Louis and G. J. E. Rawlins, "Predicting Convergence Time for Genetic Algorithms,"
Technical Report 370, Computer Science Department, Indiana University 1993.

[102] A. Daneels and W. Salter, "What is SCADA?," in Proceedings of International Conference on
Accelerator and Large Experimental Physics Control Systems, pp. 39-343, 1999.

[103] J. Brunton, G. Digby, and A. Doherty, "Design and Operational Philosophy for a Metro
Power Network SCADA System," in of International Conference on Power System Control
and Management, pp. 176-180, 1996.

[104] Y. Ebata, H. Hayashi, Y. Hasegawa, S. Komatsu, and K. Suzuki, "Development of the
Intranet-based SCADA for Power System," in Proceedings of IEEE Power Engineering
Society Winter Meeting, pp. 1656-1661, 2000.

[105] T. Seki, T. Tsuchiya, T. Tanaka, H. Watanabe, and T. Seki, "Network Integrated
Supervisory Control for Power Systems based on Distributed Objects," in Proceedings of
International Symposium on Applied Computing, pp. 620-626, 2000.

[106] M. Mavrin, V. Koroman, and B. Borovic, "SCADA in Hydropower Plants," in Proceedings
of International Symposium on Computer Aided Control System Design, pp. 624-629, 1999.

[107] E.-K. Chan and H. Ebenhoh, "The Implementation and Evolution of a SCADA System for
a Large Distribution Network," IEEE Transactions on Power Systems, vol. 7, pp. 320-326,
1992.

[108] D. Trung, "Modern SCADA Systems for Oil Pipelines," in Proceedings of International
Petroleum and Chemical Industry Conference, pp. 299-305, 1995.

[109] A. J. N. Batista, A. Combo, J. Sousa, and C. A. F. Varandas, "A Low Cost, Fully
Integrated, Event-driven, Real-time Control and Data Acquisition System for Fusion
Experiments," Review of Scientific Instruments, vol. 74, pp. 1803-1806, 2003.

[110] J. A. How, J. W. Farthing, and V. Schmidt, "Trends in Computing Systems for Large
Fusion Experiments," Fusion Engineering and Design, vol. 70, pp. 115-122, February 2004.

[111] Z. Constantinescu, P. Petrovic, A. Pedersen, D. Federici, and J. Campos, "QADPZ (Quite
Advanced Distributed Parallel Zystem)," in http://qadpz.sourceforge.net, 2003.

[112] A. Sauvé, C. Matthews-Dickson, and O. Peterson, "Real-Time Distributed Factory
Automation System," Fourth-year Engineering Project Report, Department of Systems
and Computer Engineering, Carleton University 2003.

356

[113] European Information Society Technologies (IST), "COACH (Component Based
Open Source Architecture for Distributed Telecom Applications," in
http://coach.objectweb.org, 2003.

[114] US military, "The Joint Interoperability Test Command," in http://jitc.fhu.disa.mil/, 2005.

[115] "CitectSCADA," in http://www.citect.com/products/citectscada, 2005.

[116] BWI Co., "ElipseSCADA," in http://www.bwi.com/proot/2775, 2004.

[117] N. Toshida, M. Uesugi, Y. Nakata, M. Nomoto, and T. Uchida, "Open Distributed
EMS/SCADA System," Hitachi Review, vol. 47, pp. 208-213, 1998.

[118] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering: Using UML, Patterns,
and Java, 2nd Edition ed: Prentice Hall, 2003.

[119] H. S. Kim, J. M. Lee, T. Park, J. Y. Lee, and W. H. Kwon, "Design of Networks for
Distributed Digital Control Systems in Nuclear Power Plants," in Proceedings of
International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine
Interface Technologies, pp. 629-633, 2000.

[120] B. Stojkovic and I. Vujosevic, "A Compact SCADA System for a Smaller Size Electric
Power System Control-a Fast, Object-Oriented and Cost-Effective Approach," in
Proceedings of IEEE Power Engineering Society Winter Meeting, pp. 695-700, 2002.

[121] Wikipedia, "Definition of Controllability," in http://en.wikipedia.org/wiki/Controllability,
2005.

[122] Wikipedia, "Definition of Observability," in http://en.wikipedia.org/wiki/Observability, Last
accessed: Feb. 2006.

[123] A. Makinen, M. Parkki, P. Jarventausta, M. Kortesluoma, P. Verho, S. Vehvilainen, R.
Seesvuori, and A. Rinta-Opas, "Power Quality Monitoring as Integrated with
Distribution Automation," in Proceedings of International Conference and Exhibition on
Electricity Distribution, pp. 172-172, 2001.

[124] A. Avritzer, J. P. Ros, and E. J. Weyuker, "Estimating the CPU Utilization of a Rule-based
System," ACM SIGSOFT Software Engineering Notes, vol. 29, pp. 1-12, 2004.

[125] Y. F. Wang, M. H. Hsu, and Y. L. Chuang, "Predicting CPU Utilization by Fuzzy
Stochastic Prediction," Computing and Informatics, vol. 20, pp. 67-76, 2001.

[126] A. Ligeza, Logical Foundations for Rule-Based Systems: Springer, 2006.

[127]

[128] L. Briand, Y. Labiche, and Y. Miao, "Towards the Reverse Engineering of UML Sequence
Diagrams," in Proceedings of International Working Conference on Reverse Engineering, pp.
57-66, 2003.

[129] Object Management Group (OMG), "UML 2.0 Testing Profile Specification," 2003.

[130] V. Garousi, L. Briand, and Y. Labiche, "A Unified Approach for Predictability Analysis of
Real-Time Systems using UML-based Control Flow Information," in International
Workshop on Modeling and Analysis of Real-Time and Embedded Systems (MARTES), in
conjunction with International Conference on Model Driven Engineering Languages and
Systems, 2005.

[131] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning: Addison-
Wesley, 1989.

357

[132] T.-P. Hong, H.-S. Wang, and W.-C. Chen, "Simultaneously Applying Multiple
Mutation Operators in Genetic Algorithms," Journal on Heuristics, vol. 6, pp. 439-455,
2000.

[133] E. S. H. Hou, N. Ansari, and H. Ren, "A Genetic Algorithm for Multiprocessor
Scheduling," IEEE Transactions on Parallel and Distributed Systtems, vol. 5, pp. 113-120,
1994.

[134] Wikipedia, "Definition of NP-hard," in http://en.wikipedia.org/wiki/NP_hard, Last accessed:
Feb. 2006.

358

Appendix A- Genetic Algorithms Overview

In [130-133], the authors describe GAs as a means of solving complex optimization

problems that are often NP-hard19 [134] in limited amounts of time. Optimization

problems are those that try to reach the best solution given the measurement of the

goodness of solutions. GAs are based on concepts adopted from genetic and evolutionary

theories. GAs are comprised of several components: a representation of the solutions,

referred to as the chromosomes, fitness of each chromosome, referred to as the objective

(fitness) function, the genetic operations of crossover and mutation which generate new

offspring, and selection operations which choose offspring fit for survival.

A chromosome models the problem solutions. Each element within a chromosome is

known as a gene. The collection of chromosomes used by the GA is called a population.

19 In computational complexity theory, NP-hard (Non-deterministic Polynomial-time

hard) refers to the class of decision problems that contains all problems H such that for

every decision problem L in NP there exists a polynomial-time many-to-one reduction to

H, written L ≤ H. Informally this class can be described as containing the decision

problems that are at least as hard as any problem in NP. This intuition is supported by the

fact that if we can find an algorithm A that solves one of these problems H in polynomial

time then we can construct a polynomial time algorithm for any problem L in NP by first

performing the reduction from L to H and then running the algorithm A [99] M.

Wall, "GAlib: A C++ Library of Genetic Algorithm Components," Documentation

version 2.4, Massachusetts Institute of Technology 1996..

359

Figure 150 illustrates these concepts in terms of representation of the Red/Green/Blue

(RGB) makeup of a population of three pixels on a screen. The chromosome in the figure

is composed of three genes. Each gene represents the red, green or blue components of a

pixel on a screen. Hence, the chromosome depicts one pixel’s RGB makeup. The

population portrays the makeup of three pixels on the screen.

1 1 0 1 1 0 1

0 1 1

1 1 0

Gene

Population

Chromosome

R R G B R G B

Figure 150-GA chromosome terminology.

The quality of a chromosome is its fitness. Fitness defines which chromosomes are closer

to the optimal solution. If the optimal solution for the population of Figure 150 is a pixel

with only a red component (i.e. a chromosome with RGB values 100), the first and the

last chromosomes of the population would be deemed fitter than the second one.

Both crossover and mutation operators are needed to explore the problem search space.

Crossover operators generate offspring from two parents based on the merits of each

parent, as demonstrated in Figure 151 through single point crossover20.

20 Single-point crossover is on type of crossover operators. There are other types such as

multi-point crossover.

360

1 0 1

0 1 1

R G B

Parent 1

Parent 2

Crossover operator

1 1 1

0 0 1

R G B

Child 1

Child 2

Figure 151-Illustration of crossover operator (single point crossover).

Taking the G gene of a chromosome as a division point common to both parents, the

parents alternate genes with respect to the division point in creating the children. Parent 1

contributes the RB components of Child 1, allowing Parent 2 to contribute the G

component. Similarly, Parent 2 contributes the RB components of Child 2, while Parent 1

contributes its G component. Hence, GAs use the notion of survival of the fittest by

passing superior traits from one generation to the next.

Mutation operators mutate, or alter, a single chromosome. Mutation aids the GA in

avoiding local minima. In the example in Figure 152, the red gene is mutated, resulting in

a chromosome with RGB values 010.

1 1 0

Original chromosome

Mutation operator 0 1 0

Mutated chromosome

R G B R G B

Figure 152-Illustration of mutation operator.

The process of selecting determines which individuals among the original populations,

mutated and child chromosomes will survive, hence retaining a constant population size.

An initial population of individuals (usually random) is first given to a GA. Working with

the population, the GA then selects and performs various crossover and mutation

operations, creating new chromosomes. The fitness of the new chromosomes (using the

objective function) is compared to others in the population. Fitter individuals are retained

361

while less fit ones are removed. The process of crossover, mutation, fitness

comparison and replacement continues until a termination criterion is reached. In most

cases, the termination criterion is a particular number of runs or generations of the

algorithm [133]. By adopting the GA process concept from [99], we can draw an activity

diagram for the process as shown in Figure 153.

Genetic Algorithm

Definitions

Chromosome
Representation

Initial Population
(usually random)

Evaluate Fitness

Choose Parents

Reproduce

Mutate

Test Coverage

Objective (Fitness)
Function

[Coverage
achieved]

[Coverage not
achieved]

Optimal Result

Figure 153-Activity diagram of the most general form of genetic algorithms (concept

from [87]).

A variety of replacement methodologies are defined for GAs, such as simple, steady state

and incremental. Each replacement methodology specifies how much of the population

should be replaced with each run or generation of the algorithm. The simple GA creates

an entirely new population of chromosomes with each generation of the algorithm. The

steady state algorithm, on the other hand, uses overlapping populations, leaving it up to

the user to determine the number of chromosomes to replace in each generation. Each

generation, the steady state GA produces, are stored in a temporary location. These are

then added to the population and the worst individuals are removed such that the

population such that the population size remains constant. In incremental genetic

algorithms, only one or two offspring chromosomes are generated. These are integrated

362

into the population in one of the following ways: replacing the parent, replacing a

random individual in the population, or replacing an individual that is similar to the

offspring.

363

Appendix B- Proof of the Formula to Calculate the Unbounded Range Starting

Point (URSP) of a Bounded Arrival Pattern

The following is the proof of formula (Equation 9) to calculate the Unbounded Range

Starting Point (URSP) of a bounded arrival pattern (AP), given the minimum and

maximum inter-arrival times (minIAT and maxIAT) of the AP The formula is used in

Section 10.7.4 for determining a suitable maximum search time for our GA.

Recall from Section 10.2 the concept of Accepted Time Intervals (ATI) for a bounded

arrival pattern. For example, the gray eclipses in the timing diagram in Figure 59 depict

the ATIs of the arrival pattern (‘bounded’, (4, ms), (5, ms)), i.e. minIAT=4ms,

maxIAT=5ms. To devise a formula to find the calculate the URSP of a bounded AP, we

formalize bounded APs time properties as demonstrated in Figure 154.

i+11 2 3 i-1 i

time

...

[minIAT,
maxIAT]

[2minIAT,
2maxIAT]

[3minIAT,
3maxIAT]

...

[(i-1).minIAT,
 (i-1).maxIAT]

d1 d2 d3

[i.minIAT,
 i.maxIAT]

[(i+1).minIAT,
 (i+1).maxIAT]

didi-1

Figure 154-Formalization of bounded APs time properties.

ATIs are indexed and are referred as ATIi. Recall from Section 10.2 (analysis of arrival

patterns) that each ATI’s start and end times are multiples of the AP’s minIAT and

maxIAT, respectively. For example, the consecutive ATIs of the arrival pattern

(‘bounded’, (4, ms), (5, ms)) are: [4 ms, 5 ms], [8 ms, 10 ms], [12 ms, 15 ms], [16 ms, 20

ms], and so on. In the parametric form, consecutive ATIs are shown in Figure 154 as:

[minIAT, maxIAT], [2minIAT, 2maxIAT], [3minIAT, 3maxIAT], [k.minIAT, k.maxIAT],

and so on. di denotes the closest distance between two neighboring ATIs ATIi and ATIi+1.

It is obvious that:

364

i.maxIATminIAT.1)(idi −+=

The URSP of a bounded AP appears when two consecutive ATIs overlap21, i.e., the start

time of the next ATI is smaller than or equal to the end time of the current ATI. This, in

turn, entails than dk ≤0 in such a case. k here denotes the index of the ATI whose start

time is the URSP of the bounded AP. Such a situation is visualized in Figure 155.

k

time

......

[k.minIAT,
 k.maxIAT]

[(k+1).minIAT,
 (k+1).maxIAT]

dk<0

k+1

URSP

Figure 155-Two overlapping ATIs.

Therefore, in order to find the value of URSP, we should find the k-th ATI’s start time

such that dk ≤0. To prove that for every bounded AP, there exists a URSP, we should

prove that there exists a dk ≤0. This can be proved if we show that the di values of a

bounded AP are descending, i.e., di> di+1. Since supposing that di will start from a

positive value and it is descending, it will at some point be equal to zero or less than zero.

Theorem. The di values of a bounded AP are descending, i.e., di> di+1.

Proof. We follow a proof-by-contradiction approach. Assume to the contrary that di≤di+1.

Then:

21 Two ATIs are said to be overlapped if they have at least one common ATP.

365

minIATmaxIAT
1).maxIAT(i1)minIAT1(ii.maxIAT1)minIAT(i

dd 1ii

≤
+−++≤−+

≤ +

We can see that, after taking the proof-by-contradiction approach, we have got a

conclusion which contradicts the assumption of minIAT<maxIAT for bounded APs

(Section 10.1). This means the proof of the main theorem, i.e., the di values of a bounded

AP are descending, i.e., di> di+1.

Therefore, in order to find the value of URSP, we should find k-th ATI’s start time such

that dk ≤0 (the smallest k). If we find the index, k, of the ATI, URSP can be found easily

by URSP=k.minIAT. The value of k can be found as the following:

integer.)an is (since

0
0

k
minIATmaxIAT

minIATk

minIATmaxIAT
minIATk

minIAT)minIATmaxIAT(k
k.maxIAT1)minIAT(k

dk

⎥⎥
⎤

⎢⎢
⎡

−
=⇒

−
≥⇒

≥−⇒
≤−+⇒

≤

Therefore, the URSP of a bounded AP can be calculated by:

.minIAT
minIATmaxIAT

minIATURSP ⎥⎥
⎤

⎢⎢
⎡

−
=

For example, the URSP of the bounded AP (‘bounded’, (4, ms), (5, ms)) is 16 ms which

can be verified visually in Figure 59.

ms.URSP 164
45

4
=⎥⎥

⎤
⎢⎢
⎡

−
=

366

Appendix C- Sample Test Models used in Validation of Test Requirements

Generated by GARUS

The following is the input test file corresponding to test model #20 (Section 11.3.5.5).

The test model does not correspond to a real system. It is among a set of experimental test

models generated by a random test model generator to validate GARUS test

requirements. Refer to Section 11.3.5.5 for details.

--ISDSs
10
ISDS0 6 SD14 SD3 SD11 SD9 SD19 SD17
ISDS1 6 SD7 SD17 SD10 SD18 SD13 SD9
ISDS2 6 SD8 SD3 SD17 SD9 SD6 SD5
ISDS3 5 SD3 SD15 SD8 SD1 SD11
ISDS4 9 SD0 SD1 SD13 SD7 SD6 SD11 SD17 SD12 SD5
ISDS5 5 SD11 SD1 SD18 SD16 SD6
ISDS6 8 SD6 SD13 SD2 SD5 SD11 SD12 SD7 SD15
ISDS7 9 SD3 SD14 SD6 SD2 SD13 SD12 SD4 SD5 SD10
ISDS8 6 SD2 SD9 SD17 SD19 SD15 SD4
ISDS9 7 SD11 SD12 SD14 SD5 SD15 SD2 SD17
--SDs
20
SD0 3 4 p0.0 p0.1 p0.2 p0.3
SD1 9 4 p1.0 p1.1 p1.2 p1.3
SD2 2 4 p2.0 p2.1 p2.2 p2.3
SD3 6 3 p3.0 p3.1 p3.2
SD4 2 4 p4.0 p4.1 p4.2 p4.3
SD5 4 2 p5.0 p5.1
SD6 2 4 p6.0 p6.1 p6.2 p6.3
SD7 9 3 p7.0 p7.1 p7.2
SD8 2 4 p8.0 p8.1 p8.2 p8.3
SD9 4 3 p9.0 p9.1 p9.2
SD10 8 2 p10.0 p10.1
SD11 9 3 p11.0 p11.1 p11.2
SD12 6 4 p12.0 p12.1 p12.2 p12.3
SD13 8 4 p13.0 p13.1 p13.2 p13.3
SD14 2 3 p14.0 p14.1 p14.2
SD15 8 2 p15.0 p15.1
SD16 5 3 p16.0 p16.1 p16.2
SD17 7 3 p17.0 p17.1 p17.2
SD18 3 4 p18.0 p18.1 p18.2 p18.3
SD19 1 4 p19.0 p19.1 p19.2 p19.3
--SD_Arrival_Patterns
SD0 no_arrival_pattern
SD1 bounded 3 5
SD2 periodic 9 1
SD3 irregular 9 14 20 6 5 27 21 7 19 25
SD4 bounded 2 5
SD5 irregular 6 3 20 22 9 22 24
SD6 no_arrival_pattern
SD7 periodic 9 1
SD8 irregular 11 5 24 1 25 16 11 12 26 17 27 26
SD9 bounded 2 6
SD10 bounded 2 5
SD11 bounded 3 6
SD12 irregular 5 10 21 11 9 21
SD13 no_arrival_pattern
SD14 irregular 11 25 29 20 2 3 1 9 1 24 29 17
SD15 periodic 6 0

367

SD16 bounded 2 5
SD17 no_arrival_pattern
SD18 no_arrival_pattern
SD19 no_arrival_pattern
--DCCFPs
p0.0 2 (42 13) (76 6)
p0.1 7 (29 8) (50 14) (93 17) (113 15) (148 13) (185 15) (234 6)
p0.2 6 (0 18) (28 6) (50 17) (82 17) (84 5) (130 18)
p0.3 6 (2 16) (3 17) (38 17) (46 12) (48 11) (89 15)
p1.0 3 (13 13) (51 15) (88 5)
p1.1 2 (26 17) (33 9)
p1.2 8 (31 16) (57 15) (85 8) (118 11) (163 6) (212 18) (261 8) (263 17)
p1.3 3 (40 9) (49 12) (52 15)
p2.0 5 (33 8) (69 11) (79 5) (115 8) (130 12)
p2.1 7 (1 9) (38 7) (48 11) (96 16) (132 9) (180 15) (218 17)
p2.2 9 (33 18) (77 8) (117 14) (143 12) (170 16) (189 15) (191 5) (204 15
) (239 8)
p2.3 9 (3 12) (37 7) (77 8) (96 13) (107 12) (110 18) (111 18) (136 16) (
182 17)
p3.0 2 (18 17) (30 6)
p3.1 5 (3 9) (42 19) (46 17) (61 12) (90 11)
p3.2 1 (42 19)
p4.0 2 (26 14) (61 7)
p4.1 6 (1 6) (2 10) (3 7) (43 9) (70 11) (102 15)
p4.2 8 (11 16) (58 14) (61 5) (76 7) (83 14) (103 10) (105 18) (110 14)
p4.3 2 (45 14) (74 17)
p5.0 9 (23 18) (36 19) (51 5) (84 17) (118 9) (142 11) (156 14) (164 15)
(194 9)
p5.1 7 (20 5) (28 16) (38 10) (60 11) (61 16) (79 7) (123 8)
p6.0 9 (7 11) (44 5) (79 7) (112 17) (112 11) (127 12) (134 13) (157 18)
(179 10)
p6.1 5 (23 15) (57 18) (75 19) (104 5) (136 13)
p6.2 4 (45 17) (78 6) (125 6) (164 17)
p6.3 8 (6 10) (42 5) (91 16) (98 9) (118 15) (125 10) (169 6) (182 16)
p7.0 2 (1 8) (41 7)
p7.1 1 (30 17)
p7.2 4 (6 6) (42 5) (85 16) (86 19)
p8.0 1 (45 19)
p8.1 9 (12 16) (27 10) (59 12) (105 12) (134 13) (170 13) (179 19) (182 6
) (195 6)
p8.2 1 (8 14)
p8.3 8 (43 9) (79 9) (83 11) (112 14) (137 8) (159 5) (190 9) (229 17)
p9.0 8 (26 15) (62 16) (102 7) (126 14) (143 14) (177 9) (226 19) (252 17
)
p9.1 9 (8 9) (32 7) (46 8) (89 5) (127 6) (166 17) (185 6) (186 15) (204
13)
p9.2 5 (10 18) (20 17) (51 10) (86 5) (108 6)
p10.0 2 (28 6) (29 7)
p10.1 2 (34 5) (48 7)
p11.0 9 (26 15) (36 13) (72 9) (113 11) (126 9) (163 6) (170 9) (212 8) (
238 12)
p11.1 3 (45 8) (58 12) (105 19)
p11.2 1 (26 8)
p12.0 3 (48 13) (93 8) (121 19)
p12.1 8 (36 16) (54 12) (82 18) (93 11) (132 15) (144 12) (192 11) (226 8
)
p12.2 9 (14 8) (56 11) (79 5) (114 5) (134 18) (160 7) (186 9) (228 15) (
262 6)
p12.3 4 (37 15) (62 8) (101 6) (143 7)
p13.0 2 (15 18) (45 19)
p13.1 2 (33 8) (51 5)
p13.2 7 (7 7) (46 15) (55 15) (75 17) (99 14) (103 18) (116 10)
p13.3 9 (7 11) (33 13) (77 9) (78 10) (122 5) (127 6) (160 18) (200 13) (
246 17)
p14.0 1 (3 19)
p14.1 3 (8 15) (40 18) (44 10)
p14.2 1 (11 11)
p15.0 5 (47 8) (50 10) (76 14) (103 17) (117 6)
p15.1 1 (3 18)
p16.0 4 (28 15) (37 7) (44 13) (90 17)

368

p16.1 9 (45 6) (81 9) (122 11) (128 17) (147 15) (195 17) (218 12) (223
7) (266 6)
p16.2 9 (41 17) (85 10) (114 9) (125 7) (173 9) (210 12) (258 9) (259 13)
(284 18)
p17.0 6 (10 6) (36 13) (75 16) (86 18) (103 5) (116 9)
p17.1 2 (32 6) (56 10)
p17.2 9 (10 8) (53 11) (78 15) (84 5) (103 9) (103 10) (120 17) (121 19)
(160 15)
p18.0 7 (5 7) (20 6) (34 12) (80 6) (102 9) (112 10) (124 8)
p18.1 8 (47 9) (53 14) (59 10) (96 12) (96 14) (139 17) (144 13) (162 17)
p18.2 2 (36 13) (74 10)
p18.3 4 (33 7) (80 16) (105 14) (109 12)
p19.0 2 (19 14) (38 8)
p19.1 8 (13 5) (41 6) (67 7) (100 12) (133 16) (162 8) (205 12) (213 10)
p19.2 3 (9 17) (31 8) (58 16)
p19.3 2 (0 10) (21 15)
--GATimeSearchRange

150

