
Adaptive Compression for Remote Visualization

Zoran Constantinescu

Department of Computer and Information Science
Norwegian University of Science and Technology

zoran@idi.ntnu.no

ABSTRACT

Using large data sets for scientific visualization provides more
detail and precision, thus making possible greater insights to re-
searchers. However, larger data sets require more computing re-
sources for rendering, resources usually not available locally. Re-
mote visualization techniques using client-server environments al-
low users to access such large datasets.

One possible solution for remote visualization is the use of com-
pression techniques, where images are generated and compressed
at the servers side, then the encoded images are transfered over a
data network, decompressed and displayed at the clients side.

One of the problems in remote visualization is to increase the
frame rate for the user. A possible solution is to reduce the amount
of data transfered over the network, in our case to choose an ef-
ficient compression algorithm. However, the better a compression
algorithm is, the more computing is necessary for both compres-
sion and decompression, increasing the time needed to process the
image. The choice of the most efficient compression depends also
on the content of the image.

We propose an adaptive compression method for selecting differ-
ent image compression algorithms for remote visualization. The se-
lection is made based on the performance of previously compressed
frames and network transfer delays. We use a reinforcement learn-
ing technique to select the compression algorithm for each indi-
vidual frame. The algorithm was tested using the SGI OpenGL
Vizserver, but it can be easily adapted to other remote visualization
systems.

Keywords: Remote Visualization, Compression, Vizserver

1 INTRODUCTION

Advances in computing power allows researchers to generate and
utilize progressively larger and more accurate data sets. Usually,
such data sets are generated using modern supercomputers or clus-
ters of commodity PCs. These computers typically have many
CPUs, large amounts of memory, increased I/O capability, and may
have specialized graphics hardware. Obtaining the insights offered
by these data sets is becoming more and more challenging for the
researchers. Transferring the full data set to the researcher’s desk-
top for visualization purposes is most of the time impossible, due to
the lack of memory and storage space of local desktop computers.

Scientific visualization research applies a client-server approach
to this problem. Remote visualization can be done using different
strategies. In a first scenario, the server renders the images and
streams them to the client. In a second scenario, the server is doing
some of the rendering calculations, such as geometry transforma-
tions or visibility determination, while the client is doing the final
rendering. Another scenario is where the client is doing all the ren-
dering computations.

Each of these scenarios has tradeoffs. For example, perform-
ing the rendering completely on the client side requires high-end
desktop computers, not always available to researchers. Perform-

ing some of the rendering on the server can greatly improve the vi-
sualization, however the low-end client resources may not provide
sufficient power to finish the rendering in time.

In the rest of the article we consider only the first scenario, where
the server is doing all the computations including the rendering, and
the client is responsible only with the display of the final image. Im-
age streaming makes possible remote visualization using low-end
desktop computers (thin clients), and can be made independently
from any visualization algorithm used.

However, image streaming can require significant network band-
width. For example, if we consider that the resolution of displayed
image is 640x512 pixels with 4 bytes for the RGB colors and the
alpha channel, then the size of such an image is 1.25 MBytes. The
maximum theoretical frame rate which can be obtained using a 100
MBps bandwidth network is 10 frames per second, considering that
the full bandwidth could be used. If we consider remote visualiza-
tion over a wide area network, then the achievable frame rate will
be much lower.

One possible solution to this problem, when using image stream-
ing over the network, is to use compression algorithms. The server
renders the image, then compresses that image and sends it over the
network. The client is then responsible for decompressing the en-
coded image and display it. Using different compression techniques
for the images, the amount of data transfered over the network can
be significantly reduced. How much an image can be compressed
depends essentially on the image content. This means that by using
different compression algorithm for the same image, different com-
pression rates can be obtained. The problem is to find an automatic
way of selecting the right compression algorithm.

Different methods based on analyzing the image and using the
compression algorithm that gives the best compressed size are pre-
sented in the literature. However, most of these methods can be
used only for certain types of images. In this paper we present an
algorithm for selecting the compression methods during a remote
visualization session without analyzing the content of the image.

We propose an adaptive algorithm for dynamically selecting one
of the compression algorithms to be used for each individual frame.
The selection is done using a reinforcement learning algorithm,
and it is based on different performance measures from the envi-
ronment: past and present frame rates, compressed image sizes,
compression times, estimated bandwidth. The compression method
which increases the overall frame rate is chosen. However, from
time to time, other compression methods are also used for short pe-
riods of time, in order to estimate the potential benefit of selecting
them.

Reinforcement learning is a computational approach to learning
whereby an agent tries to maximize the total amount of reward (the
frame rate in our situation) it receives when acting with a com-
plex, uncertain environment. As opposed to other machine learning
methods, in this method the learner is not told which actions to take,
but instead must discover which actions yield the most reward by
trying them. In many cases, the actions may affect not only the
immediate reward, but also the next situation and, through that, all
subsequent rewards.



Visualization
server

Image
decompression

Visualization
client

Display

transfer
network

Data storage
& calculations

Rendering

compression
Image

Figure 1: Remote visualization.

In the following sections, we first discuss related work, then
present some of the basics of image compression and reinforcement
learning. We then describe our adaptive algorithm for compression
used for remote visualization. We then present some experimen-
tal results using our adaptive algorithm for choosing between four
lossless compression methods (BZIP2, ZLIB, LZO, RLE). We use
a volume data set with a volume visualization software which is
using hardware based texture rendering for creating a typical vi-
sualization session. Finally, we discuss our conclusions and give
suggestions for future work.

2 RELATED WORK

Renderer implementations exploiting image compression have
mostly adopted relatively simple lossless schemes which rely on
frame differencing and run-length encoding. While these tech-
niques can deliver acceptable frame rates over local area networks,
their compression ratios are highly dependent on image content,
and are insufficient in slower networks.

SGI OpenGL Vizserver [7] is a product developed by Silicon
Graphics, Inc., to enable remote-visualization applications. Specif-
ically, OpenGL Vizserver is designed to provide users remote ac-
cess to graphics pipelines of Onyx2 Infinite Reality machines so
that they may view rendered output from visualization applica-
tions at geographically remote locations while utilizing the pow-
erful pipeline and memory of an Onyx2 machine located at a some
centralized place.

OpenGL Vizserver uses programmable compression modules to
compress and decompress frames of the rendered scene. It comes
with five standard modules (CCC, ICC, SCC, SICC, LCC) and an
API that provides the capability to develop new modules with user-
defined functionality. Each compression module has the capability
of taking advantage of frame-to-frame coherency inherent in most
visualizations by implementing an inter-frame compression scheme
where only the changing portions of each frame are compressed
and sent to the clients. The CCC, ICC, SCC, and SICC compres-
sion modules implement lossy compression algorithms. These four
schemes are derived from the Block Truncation Coding (BTC) al-
gorithm that compresses a 4x4 pixel block down to two colors plus
a 4x4 pixel mask. In addition to lossy compressors, there is also a

lossless compression module called LCC. This preserves the orig-
inal image quality while still saving bandwidth. In many cases the
savings are as high as 4x without any reduction in image quality.

A similar solution is presented in [3]. The framework provides
remote control to Open Inventor or Cosmo3D based visualization
applications. It allows transparent access to remote visualization
capabilities and allows sharing of expensive resources. A visualiza-
tion server distributes a visualization session to Java based clients
by transmitting compressed images from the server frame buffer.
Visualization parameters and GUI events from the clients are ap-
plied to the server application by sending CORBA (Common Ob-
ject Request Broker Architecture) requests.

Both of these two solutions require the user to explicitly select
the compression algorithm to be used. In most of the situations, the
user does not have any knowledge about the compression algorithm.

An adaptive compression algorithm for medical images was pre-
sented in [4]. The adaptive algorithm presented is based on a clas-
sification of digital images into three classes and followed by the
compression of the image by a suitable compression algorithm.

The content of the image is analyses based on a validation of the
relative number and absolute values of the wavelet coefficients. A
comparison between the original image and the decoded image will
be done by a difference criteria calculated by the wavelet coeffi-
cients of the original image and the decoded of the first and second
iteration step of the wavelet transform.

Compression of images was used in [5] for visualizing time-
varying volume data over a wide area network. The rendering was
done on a remote parallel computer and compression of the im-
ages was used for significantly reducing the cost of transferring
output images from the parallel computer to the local display. They
used lossy compression methods combined with lossless compres-
sion methods, which were capable of providing acceptable image
quality for many applications, while retaining desirable properties
such as efficient parallel compression and fast decompression. They
experimented with different combinations of the JPEG, BZIP and
LZO compression algorithms, and then selected the combination of
JPEG and LZO as giving the best frame rates for their system.



3 IMAGE COMPRESSION

The use of image compression algorithms can significantly improve
the amount of data transmitted over the network. All compression
algorithms are based on the same principle: compressing data by
removing redundancy from the original data. Any nonrandom col-
lection data has some structure, and this structure can be exploited
to achieve a smaller representation of the data, where no structure
is discernible. This is the case of using lossless compression al-
gorithms. An important feature of image compression is that in
many situations it can be lossy, being acceptable to lose image fea-
tures to which the human eye is not sensitive. Images can be lossy-
compressed by removing irrelevant information even if the original
image does not have any redundancy.

Different image compression algorithms can be used for differ-
ent types of images. Each type of image may feature redundancy,
but they are redundant in different way. This is why any given com-
pression method may not perform well for all images, and why dif-
ferent methods are needed to compress the different image types.

The choice of the best algorithm is not trivial, most of the time
requiring a certain experience with the algorithms. During a visu-
alization session, the type of image can also change, making even
more difficult to choose the appropriate algorithm.

One important factor which is important in choosing the com-
pression algorithm is the amount of computation needed for both
compressing and decompressing the image. More efficient algo-
rithms, capable of generating smaller compressed images are usu-
ally requiring more CPU power. This becomes very critical, es-
pecially for high resolution images. There is a tradeoff between
the amount of computation time needed to generate the compressed
image and the amount of time used to transfer it over the network.
There are cases when an investment in a more efficient compres-
sion algorithm can result in a higher frame rate, especially when
the remote visualization is done over low bandwidth networks.

In many situations, the actual network bandwidth available
which can be used is less that the maximum bandwidth. This is
the case when the remote visualization is done without having a
dedicated network connection between the visualization server and
client, especially when using wide area networks for visualization
over long distance. An additional problem is that this available net-
work bandwidth can change significantly during a remote visual-
ization session. This can be due to other data traffic in the network.

For our study, we used four lossless compression algorithms.
The choice was mainly made based on the performance of these
algorithms for general image compression and the availability of
optimal implementations as software libraries.

The first algorithm (ZLIB) is the so-called ”deflation” algorithm,
which is used in the popular programs zip and gzip. This is a dic-
tionary based compression method: it selects strings of symbols
and encode each string as a token using a dictionary. It is based
on the LZ77 compression method combined with static Huffman
encoding. The compression time and image sizes are pretty good,
however for certain image type compression can be very poor.

The second algorithm called Lempel-Ziv-Oberhumer (LZO), an
optimized dictionary based method, which is more suited for real-
time compression-decompression. It offers pretty fast compression
and very fast decompression, however it favors speed over com-
pression ratio. The resulting compressed images can be very large,
thus increasing the transfer time over the network.

The third algorithm used (BZIP2) is based on the Burrows-
Wheeler method, which is a compression method using block sort-
ing. The input stream is read block by block and each block is en-
coded separately as one string. The main idea is to start with a string
S of n symbols and to scramble (permute) them into another string
L which satisfies: (1) any area of L will tend to have a concentration
of just a few symbols; (2) it is possible to reconstruct the original

string S from L. The method is a general purpose method, which
works well on images and can achieve very high compression ra-
tios. The disadvantage of this algorithm is that it requires a lot of
computing, both compression and decompression being slow. Since
the algorithm is compressing individual blocks independently, it is
possible to use a parallel version of the compression to reduce the
time.

The last algorithm we used is a simple Run Length Encoder
(RLE). The idea behind this approach is the following: if a data
item d occurs n consecutive times in the input stream, replace the n
occurrences with the single pair nd. This is well suited for certain
types of images, with large areas containing the same pixel value.
The size of the compressed stream depends on the complexity of
the image. The more detail we have, the worse the compression
is. The algorithm being extremely simple, very efficient implemen-
tations could be implemented. It is also well suited for a parallel
encoding.

4 REINFORCEMENT LEARNING

Reinforcement learning [8] is a computational approach for goal-
directed learning from interaction. The learner is not told which ac-
tions to take, but instead must discover which actions yield the most
reward by trying them. Reinforcement learning is different from su-
pervised learning, the kind of learning from examples provided by
a knowledgeable external supervisor. In interactive problems it is
often impractical to obtain examples of desired behavior that are
both correct and representative of all the situations. In uncharted
situations, where one would expect learning to be most beneficial,
an agent must be able to learn from its own experience.

Environment

Agent

reward
actionstate
��� � ������	�����

Figure 2: The agent-environment interaction.

In reinforcement learning, the learner and decision maker is
called the agent. The thing it interacts with, comprising everything
outside the agent, is called the environment. These interact continu-
ally, the agent selecting actions and the environment responding to
those actions and presenting new situations to the agent. The envi-
ronment also gives rise to rewards, special numerical values that the
agent tries to maximize over time. More specifically, the agent and
environment interact at each of a sequence of discrete time steps,

. At each time step



, the agent receives some representation of

the environment’s state, �� , and on that basis selects an action, ��� .
One time step later, in part as a consequence of its action, the agent
receives a numerical reward, � ����� , and finds itself in a new state,
������� .

At each time step, the agent implements a mapping from states
to probabilities of selecting each possible action. This mapping is
called the agent’s policy. Reinforcement learning methods specify
how the agent changes its policy as a result of its experience. The
agent’s goal, roughly speaking, is to maximize the total amount of
reward it receives over the long run.

One of the challenges that arise in reinforcement learning is the
trade-off between exploration and exploitation. To obtain a lot of
reward, a reinforcement agent must prefer actions that it has tried
in the past and found to be effective in producing reward. But to



discover such actions, it has to try actions that it has not selected
before. The agent has to exploit what it already knows in order to
obtain reward, but it also has to explore in order to make better ac-
tion selections in the future. The agent must try a variety of actions
and progressively favor those that appear to be best.

Another key feature of reinforcement learning is that it explicitly
considers the whole problem of a goal-directed agent interacting
with an uncertain environment. All reinforcement learning agents
have explicit goals, can sense aspects of their environments, and
can choose actions to influence their environments. It is usually
assumed that the agent has to operate despite significant uncertainty
about the environment it faces.

5 ADAPTIVE COMPRESSION

The adaptive compression algorithm we are proposing is using a
reinforcement algorithm as presented in the previous section.

We consider the frame rates as the rewards for each time step.
An example of frame rate variation during a typical visualization
session is presented in figure 3. The figure shows the current and
average frame rates obtained by using the RLE (Run Length Encod-
ing) compression algorithm for two situations: one 100 MBps and
one 10 MBps network connection of the client to the LAN. There
are large variations in the current frame rate, especially when there
is enough available network bandwidth (in the left and right regions
of the figure). The average is done using the last ten frame rates.

0

5

10

15

20

0 100 200 300 400 500 600 700

frame #

Current and average frame rates for RLE compression [fps]

100 MBps
10 MBps

100 MBps (avg)
10 MBps (avg)

Figure 3: Frame rate variations and average.

Due to these large variations, the algorithm is making the selec-
tion of the compression algorithm based on these average values.
For each selected compression method, at least 10 frames will be
rendered using this method, providing this way a better estimate of
performance of the algorithm.

The adaptive algorithm works as follows: it starts with one of
the compression methods (LZO in our case) and it uses it for the
next 10 frames to get an estimate of its performance. After that, it
is trying in a similar way the other compression methods, and when
all the methods are tested it is choosing the best of the algorithms.

From time to time, another compression method, different from
the current one, is selected randomly and evaluated. If the new
method is providing a better performance, i.e. increased frame rate,
then it is selected as the next compression method. We used an
interval of 50 frames between trying another compression method.

Adaptive
compression

algorithm

Vizserver

state frame rate
selection� ����� � �����

� �

Figure 4: The adaptive algorithm.

6 EXPERIMENTAL RESULTS

We conducted tests using an SGI Onyx2 2400 parallel computer
as the remote visualization server. This computer consists of 32
R12000 RISC processors at 300 MHz, with a total memory of 16
GBytes and two Infinite Reality3 graphic pipelines. For the local
visualization client we used a desktop PC with a Pentium 3 pro-
cessor, running at 500 MHz, with 256 MBytes of memory. The
operating system used was Linux with a 2.4.19 kernel.

As a remote visualization system, we used the SGI OpenGL
Vizserver software. This software allows remote rendering of the
images on the SGI server, which are then compressed and sent over
the network to the client for display. The SGI Vizserver offers an
API for writing additional compression modules to be used.

SGI Vizserver
server

rendering display

module
decompression

decompressor

BZIP2
RLE

ZLIB
LZO

SGI Vizserver
client

adaptive
compression

module

compressor

BZIP2
RLE

ZLIB
LZO

network

Figure 5: Vizserver architecture.

We implemented four compression modules using the four loss-
less methods described in section 3. These modules are basically
wrappers for existing software libraries which implement the com-
pression methods. The modules give a simple interface to both the
compression and decompression, which is used by the adaptive al-
gorithm. This is implemented as a compression module for the SGI
Vizserver using the development API provided with the software.
The adaptive algorithm was implemented using the C++ program-
ming language.

We chose the SGI Vizserver for several reasons. First because
we had access to an SGI parallel visualization server which had it
available, and second, because the API used for the compression
modules is very simple, making it very easy the implementation of
different compression techniques. Another reason was that the use
of the vizserver is transparent to the applications used.

There were however some problems we experienced. One of
them is that the version we were using (3.1 beta) was quite unstable.



We had to go through many crashes of the server software while de-
veloping and experimenting with different compression algorithms.
One of the disadvantages in using SGI Vizserver is that the server
hardware must be an SGI computer. However, the algorithm we
implemented for the adaptive compression, together with the four
compression modules are very easy to adapt to other similar remote
visualization systems, due to the modular of implementation.

One possible useful parameter we didn’t have access to while
using the SGI Vizserver framework was the effective time required
to send each of the compressed frames over the network. The only
available parameters we could use were the compression time for
the frames and the time between two consecutive calls for the frame
compression algorithm.

In our experiment, the size of each frame was 640x512 pixels
with 4 bytes per pixel (RGB plus alpha channels). We used the
Volview program for visualizing a volume data set of 256x256x77
voxels of a CT scan. The Volview is part of the SGI Volumizer2
software, and is using hardware accelerated 3D texturing for vol-
ume visualization This is a direct data visualization techniques us-
ing textured data slices which are combined is a specific order using
a blending operator. This techniques takes advantage of graphics
hardware and resources by using OpenGL 3D-texture rendering,
allowing applications to obtain high interactive performances.

The experiments were conducted using two different network
connections between the client and the 100 MBps LAN contain-
ing the server. In the first situation, we connected the client using
a 100 MBps network card to the LAN. In the second situation, we
used a 10 MBps network card for connecting the client.

Using a modified version of the Volview program, we recorded
the translation and rotation vectors of the volume data for each
frame generated during a typical interactive visualization session.
We then played back the same session using the four different com-
pression methods and then the adaptive algorithm. Frame rate av-
erages for all five situations are presented in figures 6 and 7, for the
two network connection situations.

In both situations, the adaptive algorithm is searching for the best
algorithm in the beginning, thus giving low frame rates. However,
when it finds the best algorithm, it keeps it for the rest of the visu-
alization session.

7 CONCLUSIONS

As the amount and size of scientific data continues to increase, the
demand for high-resolution imaging will also increase. Remote vi-
sualization is one solution for making accessible remote data sets
to users with low capability desktop machines. Use of image com-
pression techniques permits remote visualization of larger resolu-
tion images or over lower bandwidth networks.

There are different compression methods for different kind of
images. Some of the methods give very good compression rates but
only for a certain types of images, while for other types of images
the compression is poor. The selection of the best compression al-
gorithm is still a matter of experience. One other problem is that in
most cases a better compression method also requires much more
computational power. There is a tradeoff between the size of the
compressed image and the amount of computation used in order to
obtain the optimal frame rate using remote visualization.

In this paper we presented an adaptive algorithm based on re-
inforcement learning for choosing one of the available compres-
sion methods in order to maximize the frame rate. Our experiments
show that such an algorithm can work in a dynamic and uncertain
environment, consisting of a visualization server, a visualization
client, and a network for transferring the compressed images be-
tween the server and the client.

One of the problems we experience with the current algorithm
is that, in certain situations, one of the compression methods which

is evaluated by the adaptive algorithm is giving really poor frame
rates. This affects the interactive responsiveness of the application.
One possible ’ improvement of the algorithm would be to use a dif-
ferent selection algorithm for evaluating the next possible method,
by making actions which give small rewards to be less likely to oc-
cur. In this way, compression methods which give poor frame rates
will be less probable to be selected in the future.

The modules for the compression methods and the adaptive al-
gorithm are available for download, both as source code and binary
at the following web site:
http://www.idi.ntnu.no/˜zoran/vizserver.

REFERENCES

[1] M. Burrows and D. Wheeler. A block-sorting lossless data
compression algorithm. Technical report, Digital Equipment
Corporation, Palo Alto, California, 1994.

[2] T. Chu, J. E. Fowler, and R. J. Moorhead II. Evaluation and
extension of sgi vizserver. In Visualization of Temporal and
Spatial Data for Civilian and Defense Applications III, 2001.

[3] K. Engel, O. Sommer, and T. Ertl. A framework for interactive
hardware accelerated remote 3d-visualization. In Proc. TCVG
Symposium on Visualization, VisSym’2000, 2000.

[4] Sergei Hludov, Claus Shroter, and Christoph Meinel. Adaptive
compression of image data. In Broadband European Networks
and Multimedia Services, SYBEN’98, 1998.

[5] Kwan-Liu Ma and David M. Camp. High performance visual-
ization for time-varying volume data over a wide area network.
In Proc. of Supercomputing 2000, 2000.

[6] David Salomon. Data Compression: The Complete Reference.
Springer-Verlag, 2000.

[7] SGI. Opengl vizserver 3.0 white paper. Technical report, Sili-
con Graphics, Inc., 2003.

[8] Richard S. Sutton and Andrew G. Barto. Reinforcement Learn-
ing: An Introduction. The MIT Press, 1998.



0

1

2

3

4

5

6

0 100 200 300 400 500 600 700

frame #

Average framerate - 100 MBps network [fps]

adap
rle

zlib
lzo

bzip2

Figure 6: Average frame rate - 100 MBps network.

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700

frame #

Average framerate - 10 MBps network [fps]

adap
rle

zlib
lzo

bzip2

Figure 7: Average frame rate - 10 MBps network.


