
A Desktop Grid Computing Approach
for

Scientific Computing and Visualization

by

Nicolae-Zoran Constantinescu-Fülöp

Doctoral Thesis

Submitted for the Partial Fulfillment of the Requirements
for the Degree of

doctor scientiarium

Department of Computer and Information Science
Faculty of Information Technology, Mathematics
and Electrical Engineering
Norwegian University of Science and Technology

May 2008

 2

Copyright © 2008 Nicolae Zoran Constantinescu Fülöp

ISBN 978-82-471-9158-3 (printed version)
ISBN 978-82-471-9161-3 (electronic version)
ISSN 1503-8181
Thesis at NTNU 2008:153
Printed in Norway by NTNU-trykk, Trondheim

 i

Abstract
Scientific Computing is the collection of tools, techniques, and theories required
to solve on a computer, mathematical models of problems from science and
engineering, and its main goal is to gain insight in such problems. Generally, it
is difficult to understand or communicate information from complex or large
datasets generated by Scientific Computing methods and techniques
(computational simulations, complex experiments, observational instruments
etc.). Therefore, support of Scientific Visualization is needed, to provide the
techniques, algorithms, and software tools needed to extract and display
appropriately important information from numerical data.

Usually, complex computational and visualization algorithms require
large amounts of computational power. The computing power of a single
desktop computer is insufficient for running such complex algorithms,
and, traditionally, large parallel supercomputers or dedicated clusters were
used for this job. However, very high initial investments and maintenance costs
limit the availability of such systems. A more convenient solution,
which is becoming more and more popular, is based on the use of non-
dedicated desktop PCs in a Desktop Grid Computing environment. Harnessing
idle CPU cycles, storage space and other resources of networked computers to
work together on a particularly computational intensive application does this.
Increasing power and communication bandwidth of desktop computers
provides for this solution.

In a desktop grid system, the execution of an application is orchestrated
by a central scheduler node, which distributes the tasks amongst the
worker nodes and awaits workers' results. An application only finishes when
all tasks have been completed. The attractiveness of exploiting desktop grids is
further reinforced by the fact that costs are highly distributed: every volunteer
supports her resources (hardware, power costs and internet connections)
while the benefited entity provides management infrastructures, namely
network bandwidth, servers and management services, receiving in exchange a
massive and otherwise unaffordable computing power. The usefulness of
desktop grid computing is not limited to major high throughput public
computing projects. Many institutions, ranging from academics to enterprises,
hold vast number of desktop machines and could benefit from exploiting the
idle cycles of their local machines.

In the work presented in this thesis, the central idea has been to provide
a desktop grid computing framework and to prove its viability by testing it
in some Scientific Computing and Visualization experiments. We present
here QADPZ, an open source system for desktop grid computing that have
been developed to meet the above presented needs. QADPZ enables users
from a local network or Internet to share their resources. It is a multi-platform,
heterogeneous system, where different computing resources from inside
an organization can be used. It can be used also for volunteer computing,

 ii

where the communication infrastructure is the Internet. QADPZ supports
the following native operating systems: Linux, Windows, MacOS and
Unix variants. The reason behind natively supporting multiple operating
systems, and not only one (Unix or Windows, as other systems do), is that
often, in real life, this kind of limitation restricts very much the usability of
desktop grid computing.

QADPZ provides a flexible object-oriented software framework that
makes it easy for programmers to write various applications, and for
researchers to address issues such as adaptive parallelism, fault-tolerance, and
scalability. The framework supports also the execution of legacy applications,
which for different reasons could not be rewritten, and that makes it suitable for
other domains as business. It also supports low-level programming languages
as C/C++ or high-level language applications, (e.g. Lisp, Python, and Java), and
provides the necessary mechanisms to use such applications in a computation.
Consequently, users with various backgrounds can benefit from using QADPZ.
The flexible object-oriented structure and the modularity allow facile
improvements and further extensions to other programming languages.

We have developed a general-purpose runtime and an API to support
new kinds of high performance computing applications, and therefore to
benefit from the advantages offered by desktop grid computing. This API
directly supports the C/C++ programming language. We have shown how
distributed computing extends beyond the master-worker paradigm (typical for
such systems) and provided QADPZ with an extended API that supports in
addition lightweight tasks and parallel computing (using the message passing
paradigm - MPI). This extends the range of applications that can be used to
already existing MPI based applications - e.g. parallel numerical solvers used in
computational science, or parallel visualization algorithms.

Another restriction of existing systems, especially middleware based, is
that each resource provider needs to install a runtime module with
administrator privileges. This poses some issues regarding data integrity and
accessibility on providers� computers. The QADPZ system tries to overcome
this by allowing the middleware module to run as a non-privileged user, even
with restricted access, to the local system.

QADPZ provides also low-level optimizations, such as on-the-fly
compression and encryption for communication. The user can choose from
different algorithms, depending on the application, improving both the
communication overhead imposed by large data transfers and keeping privacy
of the data. The system goes further, by providing an experimental, adaptive
compression algorithm, which can transparently choose different algorithms to
improve the application. QADPZ support two different protocols (UDP and
TCP/IP) in order to improve the efficiency of communication.

Free source code allows its flexible installations and modifications based
on the particular needs of research projects and institutions. In addition to being
a very powerful tool for computationally-intensive research, the open-

 iii

sourceness makes QADPZ a flexible educational platform for numerous small-
size student projects in the areas of operating systems, distributed systems,
mobile agents, parallel algorithms, etc. Open source software is a natural choice
for modern research as well, because it encourages effectively integration,
cooperation and boosting of new ideas.

This thesis proposes also an improved conceptual model (based on the
master-worker paradigm), which makes contributions in several directions: pull
vs. push work-units, pipelining of work-units, more work-units sent at a time,
adaptive number of workers, adaptive time-out interval for work-units, and
multithreading. We have also demonstrated that the use of desktop grids
should not be limited to only master-worker applications, but it can be used for
more fine-grained parallel Scientific Computing and Visualization applications,
by performing some specific experiments. This thesis makes supplementary
contributions: a hierarchical taxonomy of the main existing desktop grids, and
an adaptive compression algorithm for remote visualization. QADPZ has also
pioneered autonomic computing approach for desktop grids and presents
specific self-management features: self-knowledge, self-configuration, self-
optimization and self-healing. It is worth to mention that to the present the
QADPZ has over a thousand users who have download it (since July, 2001
when it has been uploaded to sourceforge.net), and many of them use it for
their daily tasks (see the appendix). Many of the results have been published or
are in course of publishing as it can be seen from the references.

 iv

 v

 vi

 vii

Preface
This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) for partial fulfillment of the requirements for the degree of
doctor scientiarium.

This doctoral work has been performed at the Department of Computer
and Information Science (IDI), Norwegian University of Science and
Technology (NTNU), Trondheim, under supervision of Prof. Richard E. Blake.

The thesis work has been funded by the Computational Science and
Engineering project, having the number #121455 from the Research Council of
Norway, during October 1999 � October 2003.

Acknowledgements
I would like to thank you to my supervisor Prof. Richard E. Blake, for challenge,
advice and support, to my friends from the 3rd floor for being there for
interminable discussions and working sessions (especially Jörg, Gerthory and
Pavel � co-worker to the QADPZ system), to all the people at IDI for their
support and kindness, and, of course, to my family.

I would also like to express my gratitude to the members of the evaluation
committee, Algimantas Juozapavicius, Anne C. Elster, and Brian Vinter, for
their valuable comments that have lead to significant improvements of this
thesis, and for smooth handling of the evaluation process.

 viii

 ix

Contents

ABSTRACT .. I

ACKNOWLEDGEMENTS..VII

CONTENTS.. IX

LIST OF FIGURES ...XIII

1 INTRODUCTION... 1

1.1 Problem description... 1

1.2 Research goals ... 5

1.3 Results and contributions ... 7

1.4 Outline of the thesis... 9

2 SCIENTIFIC COMPUTING ... 13

2.1 What is Scientific Computing (all about)?... 13

2.2 Mathematical Modeling .. 18
2.2.1 Modeling... 18
2.2.2 Validation.. 19

2.3 The Process of Numerical Solution... 21

2.4 The Computational Environment ... 23

3 SCIENTIFIC VISUALIZATION.. 27

3.1 Visualization.. 27

3.2 Scientific Visualization ... 31

3.3 Applications of Visualization .. 32

3.4 Algorithms for Scientific Visualization... 38

3.5 Visualization Environments... 41

3.6 Graphical excellence guidelines.. 41

4 COMPUTATIONAL GRIDS AND DESKTOP GRIDS 43

4.1 Distributed and Parallel Computing .. 43

4.2 Computational Grids and Applications... 45
4.2.1 A bit of Grid history .. 45

 x

4.2.2 Need for Computational Grid in Context .. 46
4.2.2.1 Data-Intensive Science .. 46
4.2.2.2 Simulation-Based Science ... 49
4.2.2.3 Remote Access to Experimental Apparatus 50
4.2.2.4 Virtual Community Science ... 50
4.2.2.5 Scenarios for grid use in the real-world ... 52

4.3 Premises for Computational Grid ... 53
4.3.1 Technical premises .. 53
4.3.2 Financial premises ... 55
4.3.3 Experiencing premises .. 59

4.4 Computational Grid Definition... 65

4.5 Short Taxonomy of Grid Applications... 68

4.6 Grid�s Integrability, Efficiency and Quality of Services 71

4.7 Desktop Grid Computing ... 74
4.7.1 SCEs� Capabilities and Requirements... 75
4.7.2 High-Throughput SCEs or Desktop Grids... 76
4.7.2.1 Key Components for Desktop Grids... 77
4.7.2.2 Requirements for Desktop Grids... 79
4.7.2.3 External Interfaces and Guarantees .. 89
4.7.2.4 Hardware Requirements .. 89
4.7.2.5 High-Throughput SCEs in Grids... 89

4.7.3 High-Reliability SCEs.. 90
4.7.3.1 External Interfaces and Guarantees .. 90
4.7.3.2 Hardware Requirements .. 90
4.7.3.3 High-Reliability SCEs in Grids .. 90

4.7.4 Dedicated High-Performance SCEs .. 91
4.7.4.1 Beowulf Clusters.. 92
4.7.4.2 Commercial Resource Virtualization Systems 92
4.7.4.3 External Interfaces and Guarantees .. 93
4.7.4.4 Hardware Requirements .. 93
4.7.4.5 Dedicated High-Performance SCEs in Grids................................... 93

4.7.5 Concluding comments .. 93

5 OVERVIEW AND TAXONOMY OF DESKTOP GRID SYSTEMS 97

5.1 Overview of Desktop Grid Systems ... 97
5.1.1 SETI@home - BOINC .. 97
5.1.2 distributed.net .. 99
5.1.3 Considerations on parallelism for SETI@home - distributed.net ... 100
5.1.4 PVM ... 101
5.1.5 Entropia... 104
5.1.6 Condor... 106

 xi

5.2 Hierarchical Taxonomy ... 107
5.2.1 Level 1, Infrastructure: resource, platform, scalability, security 107
5.2.2 Level 2, Models: computing model, architecture, data model........ 108
5.2.3 Level 3, SW.: application, architecture, administration, license.. 110

6 CONCEPTUAL MODEL ... 115

6.1 Introduction ... 115

6.2 The Master-Worker Model ... 115
6.2.1 Decomposition and Distribution of Work-units 116
6.2.1.1 Static decomposition, static distribution .. 119
6.2.1.2 Dynamic decomposition, static distribution.................................. 120
6.2.1.3 Dynamic decomposition, dynamic distribution 122

6.3 Improved Master-Worker Model .. 124
6.3.1 Pull vs. Push for work-units... 125
6.3.2 Pipelining of work-units... 126
6.3.3 Sending more work-units at a time... 128
6.3.4 Adaptive number of workers... 129
6.3.5 Adaptive timeout interval for work-units ... 130
6.3.6 Use of multithreading ... 131

6.4 Resource Estimation... 131
6.4.1 Network Performance... 131
6.4.2 Computing Power ... 132

6.5 Resource Monitoring ... 133

6.6 Scheduling ... 134

7 THE QADPZ SYSTEM.. 135

7.1 Description... 135

7.2 Justification for a New Desktop Grid System .. 135

7.3 Design and Implementation... 137
7.3.1 Requirements ... 137
7.3.1.1 System Requirements.. 137
7.3.1.2 Interface Requirements ... 139
7.3.1.3 Non-functional Requirements ... 139

7.3.2 Architecture .. 140
7.3.2.1 Job-view of the system.. 142
7.3.2.2 Slave... 144
7.3.2.3 Master.. 145
7.3.2.4 Client ... 146
7.3.2.5 User Interface ... 146

7.3.3 Communication ... 147

 xii

7.3.4 Parallel Computing ... 151
7.3.5 Interplatform operability.. 152
7.3.6 Security.. 152
7.3.7 Autonomic Computing Features... 153
7.3.7.1 Self-knowledge... 154
7.3.7.2 Self-configuration .. 155
7.3.7.3 Self-optimization.. 155
7.3.7.4 Self-healing ... 155

7.4 Get Started with QADPZ .. 156
7.4.1 User modes ... 156
7.4.2 Installation and maintenance features.. 158
7.4.3 Security.. 158
7.4.4 Architecture .. 159

8 THE QADPZ USAGE ON SOURCEFORGE.NET 163

9 SCIENTIFIC COMPUTING AND VISUALIZATION EXPERIMENTS...... 169

9.1 Computational Resource Monitoring... 169

9.2 Real word problem - Trondheim fjord... 172

9.3 Fluid flow around a cylinder - simulation... 174

9.4 Fluid flow around a cylinder - visualization... 177

9.5 Utilizing QADPZ for Evolutionary Computation 180

9.6 Adaptive Compression for Remote Visualization 180

10 CONCLUSIONS AND FUTURE WORK.. 193

SELECTIVE BIBLIOGRAPHY... 203

APPENDIX 1. FEEDBACK AND REACTIONS TO QADPZ 209

 xiii

List of Figures

Figure 2.1 From problem to solution in Scientific Computing 18
Figure 2.2 Validation of a mathematical model .. 21
Figure 3.1 Cave Painting in Lascaux... 28
Figure 3.2 Kotsushika Hokusai - The Greate Wave.. 28
Figure 3.3 Great wave discretization .. 30
Figure 5.1 SETI@home screenshot... 98
Figure 5.2 SETI@home architecture .. 98
Figure 5.3 distributed.net statistics screen ... 101
Figure 5.4 PVM Computing Model... 103
Figure 5.5 Entropia Sandbox Model ... 105
Figure 6.1 Master-Worker model .. 115
Figure 6.2 Decomposition and Distribution of Work-units................................. 117
Figure.6.4 Dynamic decomposition strategy ... 118
Figure 6.5 Computation times on workers: static decomp-static distrib........... 119
Figure 6.6 Computation times on workers: dyn. decomp-static distrib 121
Figure 6.7 Computation times on workers: dyn. decomp-dyn. distrib 124
Figure 6.8 Worker timeline in execution .. 125
Figure 6.9 Pull vs. Push technology .. 126
Figure 6.10 Pipelining of worker tasks ... 126
Figure 6.11 Worker timeline for unit pipeline... 127
Figure 6.12 Unit pipeline - worst case .. 127
Figure 6.13 More results at a time ... 128
Figure.6.14 Model timeout history.. 130
Figure 7.1 QADPZ requirements... 137
Figure 7.2 QADPZ system requirements ... 137
Figure 7.3 QADPZ interface requirements .. 139
Figure 7.4 QADPZ non-functional requirements ... 140
Figure 7.5 QADPZ coarse architecture ... 141
Figure 7.6 QADPZ detailed architecture.. 142
Figure 7.7 QADPZ close-up architecture ... 143
Figure 7.8 Simplified UML Diagram of QADPZ�s architecture.......................... 143
Figure 7.9 QADPZ job life .. 144
Figure 7.10 QADPZ slave info user interface .. 145
Figure 7.11 QADPZ job monitoring web-interface... 146
Figure 7.12 QADPZ resource monitoring web-interface 147
Figure 7.13 QADPZ slave configuration interface.. 148
Figure 7.14 QADPZ communication layers ... 150
Figure 7.15 Reliable UDP communication ... 150
Figure 7.16 MPI communication ... 151
Figure 8.1 QADPZ in Distributed Computing projects 164
Figure 8.2 QADPZ home page... 165

 xiv

Figure 8.3 QADPZ project summary .. 165
Figure 8.4 QADPZ download statistics .. 166
Figure 8.5 QADPZ downloads .. 166
Figure 8.6 QADPZ webhits statistics .. 167
Figure 9.1 Available desktop computers in laboratory (day 1) 169
Figure 9.2 Available desktop computers in laboratory (day 2) 170
Figure 9.3 Available desktop computers in laboratory (day 3) 170
Figure 9.4 Available desktop computers in laboratory (day 4) 171
Figure 9.5 Available desktop computers in laboratory (day 5) 171
Figure 9.6 Available desktop computers in laboratory (day 6) 171
Figure 9.7 Maps of the Trondheim fjord .. 172
Figure 9.8 Trondheim fjord (left: topography, right: grid) 173
Figure 9.9 Grid colored by salinity concentration .. 173
Figure 9.10 Trondheim fjord model .. 174
Figure 9.11 Velocity vector field - LIC representation ... 174
Figure 9.12 3D representation surface- vector field top layer 174
Figure 9.13 Execution times for the solver ... 176
Figure 9.14 Speedup for the simulation ... 177
Figure 9.15 Flow around cylinder grid... 177
Figure 9.16 Flow around cylinder (measurement and simulation).................... 178
Figure 9.17 Streamline... 179
Figure 9.18 Streakline .. 179
Figure 9.19 Flow around 3 cylinders .. 179
Figure.9.20 Remote visualization .. 182
Figure.9.21 The agent-environment interaction. ... 186
Figure.9.22 Frame rate variations and average ... 187
Figure.9.23 The adaptive algorithm.. 188
Figure.9.24 Vizserver architecture... 188
Figure.9.25 Average frame rate - 100 MBps network... 190
Figure.9.26 Average frame rate - 100 MBps network. .. 190

 1

1 Introduction

1.1 Problem description
Technology may be the product of knowledge and intense work. Nevertheless,
people want it to work like magic. And when technology users want to
accomplish something, the last thing they want to think about is how to do it.
That is why the scientific and engineering community, and increasingly the
business world, are welcoming Grid computing with the kind of enthusiasm
inspired by the Internet not long ago, when its standards and technologies
began the march toward near-universal connectivity, broad access to content,
and a new model for science, engineering, business and for life itself. That
development was extraordinary in many respects, not least because it was a
major step in Information Technology's historic evolution toward total
integration into our society. In that passage of Information Technology (IT) to
mass adoption, Grid computing could be as momentous as the Internet itself.

Grid computing is a model of distributed computing that uses
geographically and administratively disparate resources that are found on the
network. These resources may include processing power, storage capacity,
specific data, and other hardware such as input and output devices. In grid
computing, individual users can access computers and data transparently,
without having to consider location, operating system, account administration,
and other details. Moreover, the details are abstracted, and the resources are
virtualized. Grid computing seeks to achieve the secured, controlled and
flexible sharing of resources (for example, multiple computers, software and
data) among various dynamically created virtual organizations (Foster and
Kesselman, 2004) (Cummings, 2007), which are generally setup for collaborative
problem solving and access to grid resources are limited to those who are part
of the project. The creation of an application that can benefit from Grid
computing (faster execution speed, linking of geographically separated
resources, interoperation of software, etc.) typically requires the installation of
complex supporting software and an in-depth knowledge of how this complex
supporting software works.

Grid computing systems can be classified into two broad types. The first
type are heavy-weight, feature-rich systems that tend to concern themselves
primarily with providing access to large-scale, intra- and inter-institutional
resources such as clusters or multiprocessors. The second general class of Grid
computing systems is the Desktop Grids, in which cycles are scavenged from
idle desktop computers. The typical and most appropriate application for
desktop grid is comprised of independent tasks (no communication exists
amongst tasks) with a high computation to communication ratio.

In a desktop grid system, the execution of an application is orchestrated
by a central scheduler node, which distributes the tasks amongst the worker

 2

nodes and awaits workers' results. It is important to note that an application
only finishes when all tasks have been completed. The main difference in the
usage of institutional desktop grids relatively to public ones lies in the
dimension of the application that can be tackled. In fact, while public projects
usually embrace large applications made up of a huge number of tasks,
institutional desktop grids, which are much more limited in resources, are more
suited for modestly-sized applications. So, whereas in public volunteer projects
importance is on the number of tasks carried out per time unit (throughput),
users of institutional desktop grids are normally more interested in a fast
execution of their applications, seeking fast turnaround time.

The attractiveness of exploiting desktop grid systems is further
reinforced by the fact that costs are highly distributed: every volunteer supports
her resources (hardware, power costs and internet connections) while the
benefited entity provides management infrastructures, namely network
bandwidth, servers and management services, receiving in exchange a massive
and otherwise unaffordable computing power. The usefulness of desktop grid
computing is not limited to major high throughput public computing projects.
Many institutions, ranging from academics to enterprises, hold vast number of
desktop machines and could benefit from exploiting the idle cycles of their local
machines. In fact, several studies confirm that CPU idleness in desktop
machines averages 95% (Heap, 2003), (Domingues et al., 2005).

The needs for more accurate simulations, combined with advances in
computer hardware performance, are generating larger and larger amounts of
numerical results. Workstations, minicomputers, and image computers are
significantly more powerful and effective visualization tools than
supercomputers. It is a waste of super-computer cycles to use them to convert
this data into new pictures. Specialized graphic processors are more cost-
effective than supercomputers for specialized picture processing and/or
generation. Researchers must have easy access to local or distributed resources
for high quality computations and visualizations.

Scientific Computing (or Computational Science) is the field of study
concerned with constructing mathematical models and numerical solution
techniques, and with using computers to analyze and solve scientific and
engineering problems. In practical use, it is typically the application of
computer simulation and other forms of computation to problems in various
scientific and engineering disciplines. The field is distinct from computer
science (the mathematical study of computation, computers and information
processing). It is also different from theory and experiment, which are the
traditional forms of science and engineering. The Scientific Computing
approach is to gain understanding, mainly through the analysis of
mathematical models implemented on computers. As Richard Hamming has
observed many year ago, �the purpose of Scientific Computing is insight, not
numbers� (McCormick, 1988).

http://en.wikipedia.org/wiki/Mathematical
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Information_processing
http://en.wikipedia.org/wiki/Information_processing
http://en.wikipedia.org/wiki/Computer

 3

Scientific Computing programs often model real-world changing conditions,
such as weather, air flow around a plane, automobile body distortions in a
crash, the motion of stars in a galaxy, an explosive device, etc. Such programs
might create a 'logical mesh' in computer memory where each item corresponds
to an area in space and contains information about that space relevant to the
model. For example in weather models, each item might be a square kilometer;
with land elevation, current wind direction, humidity, temperature, pressure,
etc. The program would calculate the likely next state based on the current
state, in simulated time steps, solving equations that describe how the system
operates, and then repeat the process to calculate the next state.

Scientists and engineers develop software systems that implement the
models of the systems being studied and run these programs with various sets
of input parameters. Typically, these models require massive amounts of
calculations (usually floating-point) and are often executed on supercomputers
or distributed computing platforms.

Visualization could help overcome the dilemma of having information,
but not the right interpretation for it. Interactive computing and visualization
would be an invaluable aid during the scientific discovery process, as well as a
useful tool for gaining insight into scientific anomalies or computational errors.
Scientist needs an alternative to numbers. A cognitive possibility and technical
reality is the use of images. The ability of scientists to visualize complex
computations and simulations is absolutely essential to ensure the integrity of
the analysis, to provoke insights, and to communicate about them with others.
Scientific and Information Visualization are concerned with presenting data to
users by means of images. Both fields seek ways to help users explore, make
sense of, and communicate about data. They are active research areas, drawing
on theory in information graphics, computer graphics, human-computer
interaction and cognitive science.

Information Visualization and Scientific Visualization have overlapping
goals and techniques. There is currently no clear consensus on the boundaries
between these fields, but broadly speaking the two areas can be distinguished
as follows: Scientific Visualization deals primarily with data that has a natural
geometric structure (e.g. MRI data or wind flows), and Information
Visualization handles more abstract data structures.

A related term, Visual Analytics, focuses on human interaction with
visualization systems as part of a larger process of data analysis. Visual
analytics is considered the science of analytical reasoning supported by the
interactive visual interface. Its focus is on human information discourse
(interaction) within massive, dynamically changing information spaces. Visual
analytics research concentrates on support for perceptual and cognitive
operations that enable users to detect the expected and discover the unexpected
in complex information space. Technologies resulting from visual analytics find
their application in almost all fields, but are being driven by critical needs (and
funding) in biology and national security.

http://en.wikipedia.org/wiki/Floating-point
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/MRI

 4

Through a strong US government financial support Scientific Visualization
prospered specifically after the mid ´80s. A key event for the growth of
Scientific Visualization was the appearance of a report based on an NSF
sponsored workshop (McCormick et al., 1987). Scientific Visualization is a
relatively new, exciting field of computational science spurred on in large
measure by the rapid growth in computer technology, particular in graphics
workstation hardware and computer graphics software. Visualization tools are
beginning to impact our daily lives through usage in art (e.g. film animation),
and they hold great promise for scientific research and education. The goal of
visualization is to leverage existing scientific methods by providing new
scientific insight through visual methods. An estimated 50 percent of the brain�s
neurons are associated with vision. Visualization in Scientific Computing aims
to put that neurological machinery to work.

Moreover, there is every indication that the number of data sources will
multiply, as will the data density of these sources. For example, the definition of
a supercomputer is changing from its former meaning of 0.1 - 1.0 gigaflops
(billions of floating-point operations per second) to intermediate 1 - 10
gigaflops, and up-to-date 500Tflops (Top500, 2007). Also, current earth resource
satellites have resolutions 10 -100 times higher than satellites orbited just a few
years ago. Scientists involved in the computational sciences require these data
sources to conduct significant research; however, the flood of data generated
overwhelms them. Using an exclusively numerical format, the human brain
cannot interpret gigabytes of data each day, and therefore much information
will goes to waste.

Moreover, scientists not only want to analyze data that results from
super-computations, they want to interpret what is happening to the data
during super computations. Scientist wants to steer calculations in
close-to-real-time, they want to be able to change parameters, resolution, or
representation, and see the effects. Basically, scientists want to be able to
interact with their data.

Some of the domains and directions in which Scientific Computation and
Visualization are able to give valuable insight are listed here: engineering,
computational fluid dynamics, finite element analysis, electronic design
automation, simulation, medical imaging, geospatial, RF propagation,
meteorology, hydrology, data fusion, ground water modeling, oil and gas
exploration and production, finance, data mining/OLAP, numerical
simulations, orbiting satellites returning earth resource, military intelligence,
astronomical data, spacecraft sending planetary and interplanetary data,
earthbound radio astronomy arrays, instrumental arrays recording geophysical
entities, such as ocean temperatures, ocean floor features, tectonic plate and
volcanic movements, and seismic reflections from geological strata, medical
scanners employing various imaging modalities, such as computed
transmission and emission tomography, and magnetic resonance imagery.

There are many complex computational and visualization algorithms,

 5

which require large amounts of computational power. In many cases
the computing power of a single desktop computer is insufficient for
generating such complex visualizations, or it takes too long time to
generate them. The situation becomes more complicated when the data sets are
very large. Traditionally, large parallel supercomputers were used for
generating such complex visualizations. However, very high initial investments
and maintenance costs limited the availability of such systems to very few
research labs.

A more convenient solution, which is becoming more and more popular,
is based on commodity clusters, consisting of cheaper personal computers
connected by large bandwidth network. In a similar way, the cost of such
systems is still high due to the large number of cluster nodes required by the
computationally intensive applications.

An alternative approach is the use of non-dedicated desktop PCs in a
desktop grid computing environment. Harnessing idle CPU cycles and storage
space of networked computers to work together on a particularly
computational intensive application does this. Increasing power and
communication bandwidth of desktop computers are helping to make
distributed computing a more practical idea. By using existing desktop
computers from a local network, the cost of such an approach is low compared
with parallel supercomputers and dedicated clusters.

We finally conclude that science, industry, business and other domains
can benefit from Grids and Desktop Grids. However, at the risk of stating the
case too broadly, we make a more comprehensive statement. A primary
purpose of information technology and infrastructure is to enable people
to perform their daily tasks more efficiently or effectively. To the extent
that these tasks are performed in collaboration with others, grids are more
than just a niche technology, but rather a direction in which our
infrastructure must evolve if it is to support our social structures and the way
work gets done in our society.

1.2 Research goals
This thesis mainly deals with processing power as the vital resource. The
motivation for harnessing the available processing power on the network is
simple: to increase the size of problems that can be solved, to increase
performance and obtain results faster. Consider a typical local area network,
where many low-price machines on the network will be idle for significant
periods of time. If these wasted processor cycles could be utilized, they could
represent a significant processing resource. This approach provides a more
flexible and cost effective processing system. Normally, workstations may be in
use as desktop machines, but become part of a distributed computation
resource when not in use, for example, at night or during weekends.

 6

In many universities, research organizations, and, lately, enterprises, the
following recent trends can be identified: larger amounts of data are being
accumulated and manipulated; hardware performance of desktop computers
increases dramatically; new technological advancements stimulate use of
computing applications with extreme requirements for computational power;
use of computing, simulations, visualizations, and optimization in various
research fields and practical applications is accelerating and leads to very
high demands on computing power; and the pace of development
of high-performance servers hardly equals these trends, but for very high
financial costs. Increasing hardware performance of desktop computers
accounts for a low-cost high-performance computing potential that is waiting to
be efficiently put in use.

Distributed Computing harnesses the idle processing cycles of the
available workstations on the network and makes them available for
working on computationally intensive problems that would otherwise
require a supercomputer or a dedicated cluster of computers to solve.
A distributed computing application is divided to smaller computing tasks,
which are then distributed to the workstations to process in parallel. Results are
sent back to the server, where they are collected. The more PCs in a network,
the more processors available to process applications in parallel, and the faster
the results are returned. A network of a few thousand PCs can process
applications that otherwise can be run only on fast and expensive
supercomputers. This kind of computing can transform a local network of
workstations into a virtual supercomputer.

In this thesis we present a solution that has been developed to meet the
above needs. It consists of a conceptual model for desktop grid computing and
the system that has been developed according to it, QADPZ [�kwod �pi: �si:], a
modular, open source, object oriented implementation in C++, of a multi-user
and multi-platform desktop grid system. The computing power of large
number of idle desktop computers is utilized by automatically scheduled tasks
that are submitted, monitored, and controlled by users. Flexibility of the system
is implied by several user application modes. Task software and hardware
requirements and input/output files are handled automatically by the system.
Internal communication protocol is based on optionally encrypted XML
messages using public/private keys, user names and passwords. QADPZ can
operate both in conditions of an open Internet environment and of a closed local
network which supports the family of TCP/IP protocols. QAPDZ has important
autonomic features as well. The system is currently in use for research tasks in
the areas of large-scale Scientific Visualization, evolutionary computation,
simulation of complex neural network models, and other computationally
intensive applications. Besides that, QADPZ can also be used a as research
environment for studying different algorithms related to distributed
computing, different scheduling policies etc., or as an educational environment

 7

to study different aspects related to operating systems, distributed systems,
mobile agents, parallel algorithms, etc.

The QADPZ design goals have been ease of use at different user skill
levels, inter-platform operability, modularity and modifiability, client-master-
slave architecture using fast message based communication, security of
computers participating in QADPZ, and easy and automatic installation and
upgrade. In QADPZ, a small software program (slave service) runs on each
desktop workstation. As long as the workstation is not being utilized, the slave
service accepts tasks sent by the server (master). The available computational
power is used for executing a task. Human system administration required for
the whole system is minimal.

1.3 Results and contributions
In the work presented in this thesis, the central idea has been to provide a
desktop grid computing framework and to prove its viability by testing it in
some Scientific Computing and Visualization experiments. We present here
QADPZ, an open source system for desktop grid computing, which enables
users from a local network or even Internet to share their resources. It is a
multi-platform, heterogeneous system, where different computing resources
from inside an organization can be used. It can also be used for volunteer
computing, where the communication infrastructure is the Internet. QADPZ
supports the following native operating systems: Linux, Windows, MacOS and
Unix variants. The reason behind natively supporting multiple operating
systems, and not only one (Unix or Windows, as other systems do), is that
often, in real life, this kind of limitation restricts very much the usability of
desktop grid computing.

QADPZ provides a flexible object-oriented software framework
that makes it easy for programmers to write various applications, and
for researchers to address issues such as adaptive parallelism, fault-tolerance,
and scalability. The framework supports also the execution of legacy
applications, which for different reasons could not be rewritten, and that
makes it also suitable for other domains as business. It also supports either low-
level programming languages as C and C++ or high-level language
applications, like for example Lisp, Python, and Java, providing the necessary
mechanisms to use such applications in a computation. Consequently, users
with various backgrounds can benefit from using QADPZ. The flexible,
object oriented structure, the modularity of the system along with the
open-sourceness provide for easy improvements and further extensions to
other programming languages.

We developed a general-purpose runtime and an API to support new
kind of high performance computing applications, and therefore to benefit from
the advantages offered by desktop grid computing. We have shown how
distributed computing extends beyond the master-worker paradigm, typical for

 8

such systems, and provided QADPZ with an extended API which supports in
addition lightweight tasks creation and parallel computing, using the message
passing paradigm (MPI). The API directly supports the C/C++ programming
language. QADPZ supports parallel programs running on the desktop grid, by
providing an API in the C/C++ language, which implements a subset of the
MPI standard. This extends the range of applications that can be used in the
system to already existing MPI based applications, e.g. parallel numerical
solvers from computational science, or parallel visualization algorithms.

Another restriction of existing systems, especially middleware based, is
that each resource provider needs to install a runtime module with
administrator privileges (root, supervisor). This poses some issues regarding
data integrity and accessibility on providers� computers. The QADPZ system
tries to overcome this by allowing the middleware module to run as a non-
privileged user, even with restricted access, to the local system.

QADPZ provides also low-level optimizations, such as on-the-fly
compression and encryption for communication. The user can choose
from different algorithms, depending on the application, improving
both the communication overhead imposed by large data transfers and keeping
privacy of the data. The system goes further, by providing an experimental,
adaptive compression algorithm, which can transparently choose
different algorithms to improve the application. QADPZ also support two
different communication protocols (UDP and TCP/IP) in order to improve the
efficiency of communication.

Free availability of the source code allows its flexible installations and
modifications based on the individual needs of research projects and
institutions. In addition to being a very powerful tool for computationally-
intensive research, the open-source availability makes QADPZ a flexible
educational platform for numerous small-size student projects in the areas of
operating systems, distributed systems, mobile agents, parallel algorithms, and
others. More, free/open source software is a natural choice for modern
research, as well, because it encourages integration, cooperation and boosting of
new ideas, in a very effective way. We offered the QADPZ system as open
source from the beginning, at a time when very few such solution were free,
with all the positive implications of this for research and computationally
intensive applications.

This thesis proposes an improved conceptual model (based on the
master-worker paradigm), which makes contributions in several directions
(pull vs. push work-units, pipelining of work-units, more work-units sent at a
time, adaptive number of workers, adaptive time-out interval for work-units,
and multithreading).

Beside the extended master-worker conceptual model and the QADPZ
desktop grid system, this thesis make contributions in form of a hierarchical
taxonomy of the main existing desktop grids, and of an adaptive compression
algorithm for remote visualization. We have also been trying to demonstrate

 9

that the use of desktop grid computing should not be limited to only master-
worker type of application, but can be used also for more fine-grained parallel
applications, in the field of Scientific Computing and Visualization, by
performing some experiments in those domains. The system is currently used
for research tasks in the areas of large-scale scientific visualization, evolutionary
computation, simulation of complex neural network models, and other
computationally intensive applications. It is worth to mention that to the
present, the QADPZ has over a thousand downloads, from users who use it for
their tasks, as it can be seen in the appendix.

Some of the results of this thesis have already been published (they are
listed in the references) and some are in course of publication. Thus,
contributions that are already published concern: the QADPZ system
(Constantinescu and Petrovic, 2002) and (Constantinescu et al., 2002), QADPZ
proven to be useful in Scientific Computing � example of using it to solve the
Navier Stokes equation for fluid dynamics (Constantinescu, 2003), QADPZ as
an autonomic distributed computing system (Constantinescu, 2003), and the
hierarchical taxonomy of desktop grid systems built from users� perspective
(Constantinescu and Vladoiu, 2008). The paper on QADPZ�s autonomicity has
been highly cited since it has been published and considered as pioneering this
approach in desktop grids, as it can be seen in the appendix. The results on
QADPZ, as a viable desktop grid/volunteer computing open solution, which
can also use parallel computing techniques using the MPI layer - this is a novel
approach in desktop grid, on the improved master worker model, on the
adaptive compression algorithm for remote visualization, on master
virtualization, on QADPZ testing in some experimental scientific visualizations,
and on QADPZ development journey are in course of publication.

1.4 Outline of the thesis
This thesis consists of an abstract, ten chapters and one appendix. In the
abstract, the reader is familiarized briefly with the basic ideas from Scientific
Computing and Visualization, then it is shown that the computationally
intensive problems from those domains can be solved by using Desktop Grid
Computing Systems (that are briefly described), and finally, the desktop grid
framework which has been developed during this work, the QADPZ system, is
presented, along with the main contributions of this thesis. The first chapter,
Introduction, establish the boundaries of the problem to be solved, i.e. providing
an environment of desktop grid computing and proving its viability by testing
it in some computationally intensive experiments. In the beginning, it is shown
that, due to the fact that people need the technology to work like magic,
Grid and Desktop Grids are welcomed with the kind of enthusiasm inspired by
the Internet not so long ago. After that, Grid and Desktop Grids are briefly
introduced, with their features and challenges. Then, the Scientific Computing
and Scientific Visualization domains are presented in a few words, along with

 10

their specific requirements for huge computing power and other resources. The
importance of proper visualization to gain insight in the real world modeled
problems is then emphasized. Finally, it is revealed that grids are more than just
a niche technology, but rather a direction in which our infrastructure must
evolve if it is to support our social structures and the way work gets done in our
society. Before its end, Introduction includes also the research goals and the
thesis results and contributions.

The second chapter, Scientific Computing, tries to respond the question,
what is Scientific Computing all about?, and it concludes by the working
definition that says that it is the collection of tools, techniques, and theories
required to solve on a computer, mathematical models of problems in science
and engineering. The path from a scientific or engineering problem, via
mathematical modeling, numerical analysis and computer science that converge
through Scientific Computing to a solution is illustrated as well. Besides that,
specific problems of the process of numerical solution are presented, because of
their importance when using computers to find that solution (errors,
approximations etc.). Finally, the computing environment in which Scientific
Computing takes place, is discussed.

Scientific Visualization is the subject of the third chapter. It starts with
establishing the human nature of visualization, and then shifts to presentation
of various sorts of computer-based visualizations: interactive visualizations,
animations, abstract and model-based visualizations etc. Next, the main reasons
for the need of Scientific Visualization are presented, along with the domains
from which visualization has been bred. The chapter continues with detailed
descriptions of some applications of visualization, from which the critical
requirements of these applications arise. Then a few words about visualization
algorithms, environments and graphical excellence guidelines are provided.

The fourth chapter, Computational Grids and Desktop Grids, introduces the
main domain of this thesis. First, some basic ideas about distributed and
parallel computing are presented, and then a bit of grid history is brought to the
light. Further on, the need for computational grid along with its context is
established. Data-intensive science, simulations, remote apparatus and virtual
community science are briefly presented, along with their specific needs that
demand for grid facilities. Then, an argumentation, based on exemplifying
scenarios, that grid is needed also outside the scientific and engineering world,
to solve real day to day problems, is given. After establishing the need for it, the
premises (technical and financial) for making the Grid happen are summarized.
At this point, two milestone definitions for Grid are provided, and their key
elements are discussed. The chapter continues with a short taxonomy of grid
applications, and concludes the Grid part with some integrability, efficiency
and quality of services� issues. The second part of this chapter concerns Desktop
Grids, and it starts with introducing small composite elements, as basic
elements for desktop grids (high-throughput computing), high-reliability
clusters and high-performance clusters. The key components and requirements

 11

for desktop grids are given, along with detailed robustness, communication,
and security issues.

The fifth chapter, which is entitled Overview and Taxonomy of Desktop Grid
Systems, runs a survey of the most remarkable desktop grids (SETI@home-
BOINC, distributed.net, PVM, Entropia, and Condor), and, then synthesize a
hierarchical three level taxonomy for desktop grids. The first level refers to
infrastructure and includes resource type, the platform that runs at the
provider, scalability and security issues. The second one includes conceptual
model, architecture and data model, under the umbrella of models. The last
level concerns aspects related to software: application type, need for
administrator privileges, architecture of the support operating system, and
licensing. Before the end of the chapter, a table with the classification of the
main desktop grid systems according to this taxonomy is provided. Examining
few typical application scenarios has eased crafting a user-centric taxonomy.
We hope that our approach will help promote the introduced taxonomy as a
practice for its potential users.

The Conceptual Model chapter present first the master-worker model for
distributed computing, then gives some decompositions and distributions of
the work-units, and finally introduce an improved conceptual model, which
makes contributions in several directions (pull vs. push work-units, pipelining
of work-units, more work-units sent at a time, adaptive number of workers,
adaptive time-out interval for work-units, multithreading, resource estimation
and monitoring, scheduling).

The seventh chapter, The QADPZ system, deals with detailed
presentation of the desktop grid system that has been developed during this
thesis work. In the first place, a justification for the need for a new such system
is given. Then, in the Design and Implementation section, the requirements for
the system are reviewed, and the QADPZ architecture comes along, with details
about various components of this desktop grid framework (master, slave,
client). Detailed explanations about the communication mechanism are
provided further, here being included the parallel computing feature as well.
Interplatform operability, security, and autonomic computing features of
QADPZ bring to a close this section. Further on, a brief �get started�
documentation is provided.

The eighth chapter is dedicated to the QADPZ users and it refers to
QADPZ usage on sourceforge.net, reactions to it and feedback. Basically, we present
the screenshot-based history of the system since its upload to this site, with
emphasis on the number of hits and downloads of the systems. Within the
appendix of this thesis, the raw feedback and reactions to the system are listed.
These have been categorized into four main categories: feedback and support
requests from users who use QADPZ for their research and development tasks,
forum discussions, citations in papers, and working assignments, based on
QADPZ features, for students from some universities.

 12

The next chapter, Experiments of Scientific Computing and Visualization, presents
some experiments we have performed by using QADPZ and other support
systems: computational resource monitoring, real world problem: Trondheim
fjord, fluid flow around a cylinder � simulation and visualization, evolutionary
computation, and, finally, an adaptive compression for remote visualization.

The last chapter, Conclusions, re-states the need for Grid and Desktop
Grid facilities for solving both scientific and engineering problems (with their
complicated visualizations) and daily ones, then summarizes the contributions
of this thesis work and the future work ideas, and finally concludes with
asserting that, as we become capable of doing more and more with our
advanced technologies and as we hide those technologies and their
complexities from users, the results will indeed seem like magic.

 13

2 Scientific Computing

2.1 What is Scientific Computing (all about)?
The numerous millions of computers now installed worldwide are used for an
increasing puzzling variety of tasks: accounting and inventory control for
industry and government, airline and other reservation systems, limited
translation of natural languages, monitoring of process control, and so on. One
of the earliest - and still one of the largest - uses of computers was to solve
problems in science and engineering and, more specifically, to obtain solutions
of mathematical models that represent some physical situation. The techniques
used to obtain such solutions are part of the general area called Scientific
Computing, and the use of these techniques to obtain insight into scientific or
engineering problems is called computational science or engineering.
Scientific Computing is concerned with the design and analysis of algorithms
for solving mathematical problems that arise in many fields, especially
science and engineering.

Scientific Computing is distinguished from most other parts of computer
science in that it deals with quantities that are continuous. as opposed to
discrete. It is concerned with functions and equations whose underlying
variables time, distance, velocity, temperature, density, pressure, stress, and the
like are continuous in nature. Must of the problems of continuous mathematics
(for example, almost any problem involving derivatives, integrals, or
nonlinearities) cannot be solved exactly, even in principle, in a finite number of
steps and thus must be solved by a (theoretically infinite) iterative process that
ultimately converges to a solution. In practice one does not iterate forever, of
course, but only until the answer is approximately correct, "close enough" to the
desired result for practical purposes. Thus, one of the most imperative aspects
of Scientific Computing is finding rapidly convergent iterative algorithms and
assessing the accuracy of the resulting approximation. If convergence is
sufficiently rapid, even some of the problems that can be solved by finite
algorithms, such as systems of linear algebraic equations, may in some cases be
better solved by iterative methods.

Consequently, a second factor that distinguishes Scientific Computing is
its concern with the effects of approximations. Many solution techniques
involve a whole series of approximations of various types. Even the arithmetic
that is used is only approximate, because digital computers cannot represent all
real numbers exactly. In addition to having the usual properties of good
algorithms, such as efficiency, numerical algorithms should also be as reliable
and accurate as possible despite the various approximations made along the
way (Heath, 2002).

 14

Nowadays, there is hardly an area of science or engineering that does not use
computers for modeling. Trajectories for earth satellites and for planetary
missions are routinely computed. Engineers use computers to simulate the flow
of air about a spacecraft or other aerospace vehicle as it passes through the
atmosphere, and to verify the structural integrity of aircraft. Such studies are of
crucial importance to the aerospace industry in the design of safe and
economical aircraft and spacecraft. Modeling new designs on a computer can
save many millions of dollars compared to building a series of prototypes.
Similar considerations apply to the design of automobiles and many other
products, including new computers.

Astronomers and astrophysicists have modeled the evolution of stars,
and much of our basic knowledge about such phenomena as red giants and
pulsating stars has come from such calculations corroborated with
observations. Civil engineers study the structural characteristics of large
bridges, buildings, dams, and highways. Meteorologists use large amounts of
computer time to predict tomorrow's weather as well as to make much longer
range predictions, including the possible change of the earth's climate.
Biochemists visualize the effect of drugs on human cells. Ecologists and
biologists are increasingly using the computer in such diverse areas as
population dynamics (including the study of natural predator and prey
relationships), the flow of blood in the human body, and the dispersion of
pollutants in the oceans and atmosphere.

As the above examples suggest, many of the problems from Scientific
Computing come from science and engineering, in which the ultimate aim is to
understand some natural phenomenon or to design some device.
Computational simulation, as a representation and an emulation of a physical
system or process using a computer, can greatly enhance scientific
understanding by allowing the investigation of situations that may he difficult
or impossible to investigate by theoretical, observational, or experimental
means alone. In astrophysics, for example, the detailed behavior of two
colliding black holes is too complicated to determine theoretically and
impossible to observe directly or duplicate in the laboratory (Heath, 2002). To
simulate it computationally, however, requires only an appropriate
mathematical representation (in this case Einstein�s equations of general
relativity), an algorithm for solving those equations numerically, and a
sufficiently large computer on which to implement the algorithm.

Computational simulation is useful not just for exploring exotic or
otherwise inaccessible situations, however, but also for exploring a larger
variety of normal scenarios than could otherwise be investigated with
unreasonable cost and time. In engineering design, computational simulation
allows a large number of design operations to be tried much more rapidly,
inexpensively, and safely than with traditional prototyping methods. In this
context, computational simulation has become known as virtual prototyping. In
improving automobile safety, for example, crash testing is far less expensive

 15

and dangerous on a computer than in real life, and thus the space of all possible
design parameters can be explored much more thoroughly to develop an
optimal design.

The overall problem solving process in computational simulation usually
includes the following steps: develop a mathematical model usually expressed by
equations of some type of a physical phenomenon or system of interest, develop
algorithms to solve the equations numerically, implement the algorithms in software
systems, run the software on a computer to simulate the physical process
numerically, represent the computed results in some comprehensible form such as
graphical visualization, and, finally, interpret and validate the computed results,
repeating any or all of the preceding steps, if necessary.

The first step is often called mathematical modeling. It requires, specific
knowledge of the particular scientific or engineering disciplines involved, as
well as knowledge of applied mathematics. The next two steps that are
concerned with designing, analyzing, implementing, and using numerical
algorithms and software, are the main subject matter of Scientific Computing. It
is essential that all of these steps, from problem formulation to interpretation
and validation of results, be done properly for the results to be meaningful and
useful. The principles and methods of Scientific Computing can be studied at a
fairly broad level of generality, but the specific source of a given problem and
the uses to which the results will be put should always be kept in mind, as each
aspect affects and is affected by the others (Heath, 2002). For example, the
original problem formulation may strongly affect the accuracy of numerical
results, which in turn affects the interpretation and validation of those results.

A mathematical problem is said to be well-posed if a solution exists, is
unique, and depends continuously on the problem data. The latter condition
means that a small change in the problem data does not cause an abrupt,
disproportionate change in the solution. This property is especially important
for numerical computations, where such perturbations are usually expected.
Well-posedness is highly desirable in mathematical models of physical systems,
but this is not always achievable. For example, inferring the internal structure of
a physical system solely from external observations, as in tomography or
seismology, often leads to mathematical problems that are inherently
ill-posed in that distinctly different internal configurations may have
indistinguishable external appearances.

Even when a problem is well-posed the solution may still respond in a
highly sensitive (though continuous) manner to perturbations in the problem
data. To assess the effects of such perturbations, one must go beyond the
qualitative concept of continuity to define a quantitative measure of the
sensitivity of a problem. In addition, one must also take care to ensure that the
algorithm that is used to solve a given problem numerically does not make the
results more sensitive than is already inherent in the underlying problem. This
need leads to the notion of a stable algorithm.

 16

In seeking a solution to a given computational problem, a basic general strategy
is to replace a difficult problem with an easier one that has the same solution, or
at least a closely related solution. Examples of this approach include: replacing
of infinite-dimensional spaces with finite-dimensional spaces, replacing infinite
processes with finite processes (such as replacing integrals or infinite series
with finite sums, or derivatives with finite differences), replacing differential
equations with algebraic equations, replacing nonlinear problems with linear
problems, substituting high-order systems with low-order systems, changing
complicated functions with simple functions, such its polynomials, and
replacing general matrices with simpler form ones.

For example, to solve a system of nonlinear differential equations, one
might first replace it with a system of nonlinear algebraic equations, then
replace the nonlinear algebraic system with a linear algebraic system, then
replace the matrix of the linear system with one of a special form for which the
solution is easy to compute At each step of this process, we would need to
verify that the solution is unchanged, or is at least within some required
tolerance of the true solution.

To make this general strategy work for solving a given problem, we have
to have an alternative problem, or class of problems, that is easier to solve, and
a transformation of the given problem into a problem of this alternative type
that preserves the solution in some sense. Thus, much of the effort will go into
identifying suitable problem classes with simple solutions and solution-
preserving transformations into those classes.

Ideally, the solution to the transformed problem is identical to that of the
original problem, but this is not always possible. In the latter case the solution
may only approximate that of the original problem, but the accuracy can be
made arbitrarily good at the expensive of additional work and storage. Thus,
primary concerns are estimating the accuracy of such an approximate solution
and establishing convergence to the true solution in the limit.

The mathematical models of all of these problems are systems of
differential equations, either ordinary or partial. Differential equations come in
all "sizes and shapes" (Golub and Ortega, 1993) and even with the largest
computers we are nowhere near being able to solve many of the problems
posed by scientists and engineers. But there is more to Scientific Computing,
and the scope of the field is changing rapidly. There are many other
mathematical models, each with its own challenges. In operations research and
economics, large linear or nonlinear optimization problems need to be solved.

Data reduction, the condensation of a large number of measurements
into usable statistics, has always been an important, if somewhat ordinary, part
of Scientific Computing. However now there are available new tools (such as
earth satellites) that have increased our ability to make measurements faster
than our ability to assimilate them. Fresh insights are needed into ways to
preserve and use this exceptional information. In more developed areas of
engineering, what formerly were difficult problems to solve even once on a

 17

computer are in our days routine problems that are being solved over and over
with changes in design parameters. This has given rise to an increasing
number of computer-aided design systems. Similar considerations apply in a
variety of other areas.

Before presenting a definition, we must mention that delimiting the area
of Scientific Computing nowadays is tricky, especially the boundaries and
overlaps with other areas. Though we will agree to use the working definition
that says that �Scientific Computing is the collection of tools, techniques, and
theories required to solve on a computer, mathematical models of problems in
science and engineering� (Golub, 1997).

A preponderance of these theories, tools, and techniques was originally
developed in mathematics, many of them having their origin long before the
dawn of electronic computers. This set of mathematical theories and techniques
is called numerical analysis (or numerical mathematics) and constitutes a major
part of Scientific Computing. The development of the computers, however,
indicated a new approach of the solutioning the scientific problems. Many of
the numerical methods that had been developed for the purpose of hand
calculation (including the use of desk calculators for the actual arithmetic) had
to be revised and sometimes abandoned. Considerations that were irrelevant or
insignificant for hand calculation now became of chief importance for the
efficient and correct use of a large computer system. Many of these
considerations with regard to programming languages, operating systems,
management of large quantities of data, correctness of programs have been
subsumed under the discipline of computer science, on which Scientific
Computing now depends heavily.

Nevertheless mathematics itself continues to play a major role in
Scientific Computing: it provides the language of the mathematical models that
are to be solved and information about the appropriateness of a model (Does it
have a solution? Is the solution unique?), and it provides the theoretical
groundwork for the numerical methods and, increasingly, many of the tools
from computer science.

In summary, then, Scientific Computing draws on modeling in science
and engineering, numerical mathematics, and computer science to develop the
best ways to use computer systems to solve problems from science and
engineering. This relationship is depicted schematically in Figure 2.1, where the
informational flow from problem to solution in Scientific Computing is drawn.

 18

Figure 2.1 From problem to solution in Scientific Computing

2.2 Mathematical Modeling
As it was shown in the previous section, Scientific Computing is seen as the
discipline that achieves a computer solution for mathematical models of
problems from science and engineering. Therefore the first step in the overall
solution process is the formulation of an appropriate mathematical model of the
problem to be solved.

2.2.1 Modeling
The formulation of a mathematical model starts with a statement of the factors
to be considered. In many physical problems, these factors concern the balance
of forces and other conservation laws of physics. For example, in the
formulation of a model of a trajectory problem the basic physical law is
Newton's second law of motion, which requires that the forces acting on a body
equal the rate of change of momentum of the body. This general law must then

Problems from
Science and Engineering

Computer mathematical models

Computer Science Numerical Analysis

Computer System

Solution

Scientific Computing

 19

be specialized to the particular problem by enumerating and quantifying the
forces that will be of importance.

For example, the gravitational attraction of Jupiter will exert a force on a
rocket in Earth's atmosphere, but its effect will be so little compared to the
earth's gravitational force that it can usually be neglected. Other forces may
also be small compared to the dominant ones but their effects not so
easily dismissed, and the construction of the model will invariably be a
compromise between retaining all factors that could likely have a bearing on
the validity of the model and keeping the mathematical model sufficiently
simple that it is solvable using the tools at hand. Traditionally, only very simple
models of most phenomena were considered since the solutions had to be
achieved by hand, either analytically or numerically. As the power of
computers and numerical methods has developed, increasingly complicated
models have become solvable.

In addition to the indispensable relations of the model - which in most
situations in Scientific Computing take the form of differential equations - there
usually will be a number of initial or boundary conditions. For example, in the
predator-prey problem the initial population of the two species being studied is
specified. In studying the flow in a blood vessel, we may require a boundary
condition that the flow cannot penetrate the walls of the vessel. In some other
cases, boundary conditions may not be so physically evident but are still
essential so that the mathematical problem has a unique solution.

Or the mathematical model as first formulated may indeed have many
solutions, the one of interest to be selected by some constraint such as a
requirement that the solution be positive, or that it be the solution with
minimum energy (Golub and Ortega, 1993), (Leopold, 2001). In any case, it is
usually assumed that the final mathematical model with all appropriate initial,
boundary, and side conditions indeed has a unique solution. The next step,
then, is to find this solution. For problems of current interest, such solutions
rarely can be obtained in "closed form." The solution must be approximated by
some method, and the methods to be considered are numerical methods
suitable for a computer. In the next section we will consider the general steps to
be taken to achieve such a numerical solution.

2.2.2 Validation
Once we are able to compute solutions of the model, the next step usually is
called the validation of the model. This means a verification that the computed
solution is sufficiently accurate to serve the purposes for which the model was
constructed. There are two main sources of possible error. First, there invariably
are errors in the numerical solution. The general nature of these errors will be
discussed in the next section, and one of the major research themes is a better
understanding of the source and control of these numerical errors. But there is
also invariably an error in the model itself. As mentioned previously, this is a

 20

necessary aspect of modeling: the modeler has attempted to take into account
all the factors in the physical problem but then, in order to keep the model
tractable, has neglected or approximated those factors that would seem to have
a small effect on the solution. The question is whether neglecting these effects
was justified. The first test of the validity of the model is whether the solution
satisfies obvious physical and mathematical constraints.

For example, if the problem is to compute a rocket trajectory where the
expected maximum height is 100 kilometers and the computed solution shows
heights of 200 kilometers, obviously some blunder has been committed. Or, it
may be that we are solving a problem for which we know, mathematically, that
the solution must be increasing but the computed solution is not increasing.
Once such gross errors are eliminated, which is usually fairly easy, the next
phase begins, which is, whenever possible, comparison of the computed results
with whatever experimental or observational data are available. Many times
this is a clever undertaking, since even though the experimental results may
have been obtained in a controlled setting, the physics of the experiment may
differ from the mathematical model. For example, the mathematical model of
airflow over an aircraft wing may assume the idealization of an aircraft flying in
an infinite atmosphere, whereas the corresponding experimental results will be
obtained from a wind tunnel where there will be effects from the walls of the
enclosure. Neither the experiment, nor the mathematical model represents the
true situation of an aircraft flying in our finite atmosphere. The experience and
intuition of the investigator are required to make a human judgment as to
whether the results from the mathematical model are corresponding sufficiently
well with observational data (Heath, 1997).

At the outset of an investigation this is quite often not the case, and the
model must be modified. This may mean that additional terms - which have
been thought insignificant, but may not be - are added to the model.
Occasionally a complete revision of the model is required and the physical
situation must be approached from an entirely different point of view. In any
case, once the model is modified the cycle begins again: a new numerical
solution, revalidation, additional modifications, and so on. This process is
depicted schematically in Figure 2.2.

Once the model is estimated adequate from the validation and
modification process, it is ready to be used for prediction. This, of course, was
the whole purpose. We should now be able to answer the questions that gave
rise to the modeling effort: How high will the rocket go? Will the wolves eat all
the rabbits? Of course, we must always take the answers with a sound
skepticism. Our physical world is simply too complicated and our knowledge
of it too thin for us to be able to predict the future perfectly. Nevertheless, we
hope that our computer solutions will give increased insight into the problem
being studied, be it a physical phenomenon or an engineering design.

 21

Figure 2.2 Validation of a mathematical model

2.3 The Process of Numerical Solution
This section presents the general considerations that arise in the computer
solution of a mathematical model. Once the mathematical model is given, the
first thought typically is to try to find an explicit closed-form solution, but such
a solution will usually only be possible for certain, perhaps radical,
simplifications of the problem. These simplified problems with known
solutions may be of great utility in providing "check cases" for the more general
problem. After realizing that explicit solutions are not possible, one must turn
to the task of developing a numerical method for the solution. Implicit in the
thinking at the outset - and increasingly explicit as the development proceeds -
will be the computing equipment as well as the software environment that is
available. The approach may be quite different for a microcomputer or a cluster
than for a supercomputer. Nevertheless certain general factors must be
considered apart from the computer system to be used.

Perhaps the most important factor is that computers manipulate only a
finite number of digits or characters. Because of this, normally, we cannot do
arithmetic within the real number system as we do in pure mathematics. That
is, the arithmetic done by a computer is restricted to finitely many digits,
whereas the numerical representation of most real numbers requires infinitely
many. Therefore round-off errors can affect the final computed result in different
ways, from the possible accumulation of errors over a large number of
operations to catastrophic cancellation. Catastrophic cancellation is one way in
which an algorithm can be numerically unstable, although in exact arithmetic it
may be a correct algorithm. Indeed, it is possible for the results of a
computation to be completely erroneous because of round-off error even
though only a small number of arithmetic operations have been performed.

Detailed round-off error analyses have now been completed for a
number of the simpler and more basic algorithms such as those that occur in the
solution of linear systems of equations. A particular type of analysis that has

no

Formulation of
mathematical
model

Ready to predict

Solution of
mathematical
model

Validation is satisfactory

 22

proved to be very powerful is backward error analysis. In this approach the
round-off errors are shown to have the same effect as that caused by changes in
the original problem data. When this analysis is possible, it can be stated that
the error in the solution caused by round off is no worse than that caused by
certain errors in the original model. The question of errors in the solution is
then equivalent to the study of the sensitivity of the solution to perturbations in
the model. If the solution is highly sensitive, the problem is said to be ill-posed
or ill-conditioned, and numerical solutions are apt to be meaningless.

Another way that the finiteness of computers manifests itself in causing
errors in numerical computation is due to the need to replace "continuous"
problems by "discrete" ones. This type of error is usually called discretization
error or truncation error, and it affects, except in trivial cases, all numerical
solutions of differential equations and other "continuous" problems.

There is one more type of error that is somewhat akin to discretization
error. Many numerical methods are based on the idea of an iterative process. In
such a process, a sequence of approximations to a solution is generated with the
hope that the approximations will converge to the solution; in many cases
mathematical proofs of the convergence can be given. However, only finitely
many such approximations can ever be generated on a computer, and,
therefore, we must necessarily stop short of mathematical convergence, i.e.
having a convergence error.

If we rule out trivial problems that are of no interest in Scientific
Computing, we can summarize the situation with respect to computational
errors as follows. Every calculation will be subject to rounding error. Whenever
the mathematical model of the problem is a differential equation or other
"continuous" problem, there also will be discretization error, and in many cases,
especially when the problem is nonlinear, there will be convergence error.
These types of errors and methods of analyzing and controlling them need to
discussed more fully in concrete situations, but for us it is important to keep in
mind that an acceptable error is very much dependent on the particular
problem. Rarely is very high accuracy, let�s say 16 digits, needed in the final
solution; indeed, for many problems arising in industry or other applications
two or three digit accuracy is quite acceptable.

The other major consideration besides accuracy in the development of
computer methods for the solution of mathematical models is efficiency. By this
we will mean the amount of effort both human and computer required to solve
a given problem. For most problems, such as solving a system of linear
algebraic equations, there are a variety of possible methods, some going back
many tens or even hundreds of years. Clearly, we would like to choose a
method that minimizes the computing time yet retains suitable accuracy in the
approximate solution. This turns out to be a surprisingly difficult problem,
which involves a number of considerations. Although it is frequently possible
to estimate the computing time of an algorithm by counting the required
arithmetic operations, the amount of computation necessary to solve a problem

 23

to a given tolerance is still an open question except in a few cases. Even if
one ignores the effects of round-off error, surprisingly little is known.
In the past several years these questions have spawned the subject of
computational complexity. However, even if such theoretical results were
known, they would still give only approximations to the actual computing time,
which depends on a number of factors involving the computer system. And
these factors change as the result of new systems and architectures. Indeed, the
design and analysis of numerical algorithms should provide motivation and
directions for such changes.

Even if a method is intrinsically "good", it is extremely important to
implement the corresponding software in the best way possible, especially if
other people are to use it. Some of the criteria for a good software system,
besides functionality, are the following: maintainability, reliability, availability,
robustness, efficiency, user friendliness, simplicity, readability, validity,
verifiability, reusability, compatibility, portability, integrity, and, of course, a
well-written documentation.

2.4 The Computational Environment
As indicated in the last section, there is usually a long way from a mathematical
model to a successful software system. Such programs are developed within the
overall computational environment, which includes the computers to be used,
the operating system and other software systems, the languages in which the
program is to be written, techniques and software for data management and
visualization of the results, and programs that do symbolic computation. In
addition, network facilities allow the use of remote computers, as well as the
exchange of software and data.

The computer hardware itself is of primary importance. Scientific
Computing is done on computers ranging from small PC's, which execute
a few thousand floating-point operations per second, to supercomputers
capable of billions of such operations per second. Supercomputers that utilize
hardware vector instructions are called vector computers, while those that
incorporate multiple processors are called parallel computers. In the latter case,
the computer system may contain a few, usually very powerful processors or as
many as several tens of thousands of relatively simple processors. Generally,
algorithms designed for single processor "serial" computers will not be
satisfactory, without modification, for parallel computers. Indeed, a very active
area of research in Scientific Computing is the development of algorithms
suitable for vector and parallel computers, and also for desktop grid
or volunteer computing.

It is quite common to do program development on a workstation or PC
prior to production runs on a larger computer. Unfortunately, a program will
not always produce the same answers on two different machines due to
different rounding errors. This, of course, will be the case if different precision

 24

arithmetic is used. However, even when the precision is the same, two
machines may produce slightly different results due to different conventions for
handling rounding error. This is an unsatisfactory situation that has been
addressed by the IEEE standard for floating point arithmetic. Although not all
computers currently follow this standard, in the future they probably will, and
then machines with the same precision will produce identical results on the
same problem. On the other hand, algorithms for parallel computers often do
the arithmetic operations in a different order than on a serial machine and this
causes different errors to occur.

In order to be useful, computer hardware must be supplemented by
software systems, including operating systems and compilers for high level
languages. Although there are many operating systems, UNIX and its variants
have increasingly become the standard for Scientific Computing and essentially
all computer manufacturers now offer a version of UNIX for their machines.
This is true for vector and parallel computers as well as more conventional
ones. The use of a common operating system helps to make programs more
portable. The same is true of programming languages. Since its inception in the
mid 1950's, Fortran has been the primary programming language for Scientific
Computing. It has been continually modified and extended over the years, and
now versions of Fortran also exist for parallel and vector computers. Other
languages, especially the systems language "C�, are sometimes used for
Scientific Computing. However, it is expected that Fortran will continue to
evolve and be the standard for the foreseeable future, at least in part because of
the large investment in existing Fortran programs.

Many of the problems in Scientific Computing require huge amounts of
data, both input and output, as well as data generated during the course of the
computation. The storing and retrieving of these data in an efficient manner is
called data management. As an example of this in the area of computer-aided
design, a database containing all information relevant to a particular design
application, which might be for an aircraft, an automobile, or a dam - may
contain several billion characters. An engineer may use this database simply to
find all the materials with a certain property. On the other hand, the database
will also be used in doing various analyses of the structural properties of the
aircraft, which requires the solution of certain linear or nonlinear systems of
equations. Large data management programs for use in business applications
such as inventory control have been developed over many years, and some of
the techniques used there are now being applied to the management of large
databases for scientific computation. It is interesting to note that in many
Scientific Computing programs the number of lines of code to handle data
management is far larger than that for the actual computation.

The results of a scientific computation are numbers that may represent,
for example, the solution of a differential equation at selected points. For large
computations, such results may consist of the values of four or five functions at
a million or more points. Such a volume of data cannot just be printed.

 25

Scientific Visualization techniques allow the results of such computations to be
represented pictorially. For example, the output of a fluid flow computation
might be a movie, which depicts the flow as a function of time in either two or
three dimensions. The results of a calculation of the temperature distribution in
a solid might be a color-coded representation in which regions of high
temperatures are red and regions of low temperatures are blue, with a
gradation of hues between the extremes. Or, a design model may be rotated in
three-dimensional space to allow views from any angle. Such visual
representations allow a quick understanding of the computation, although
more detailed analysis of selected tables of numerical results may be needed for
certain purposes, such as error checking.

Another development that is having an increasing impact on Scientific
Computing is symbolic computation. Systems such as MACSYMA, REDUCE,
MAPLE, and MATHEMATICA allow the symbolic (as opposed to numerical)
computation of derivatives, integrals and various algebraic quantities.
For example, such systems can add, multiply and divide polynomials or
rational expressions, differentiate expressions to obtain the same results that
one would obtain using pencil and paper, and integrate expressions that have a
"closed form" integral. This capability can alleviate the hard work of
manipulating by hand lengthy algebraic expressions, perhaps as a prelude to a
subsequent numerical computation. In this case, the output of the symbolic
computation would ideally be a Fortran program. Symbolic computation
systems can also solve certain mathematical problems, such as systems of linear
equations, without rounding error. However, their use in this regard is limited
since the size of the system must be small. In any case, symbolic computation is
continuing to develop and can be expected to play an increasing role in
scientific computation.

 26

 27

3 Scientific Visualization
This chapter starts with establishing the human nature of visualization, and
then shifts to considerations on various sorts of computer-based visualizations:
animations, interactive visualizations, abstract and model-based visualizations
etc. Next, the main reasons for the need for Scientific Visualization are
presented, along with the domains from which visualization has been bred, and
the reasons for which visualization works. The chapter continues with detailed
descriptions of some applications of visualization, from which the critical
requirements of these applications arise. Then a few words about visualization
algorithms, environments and graphical excellence guidelines are provided.

3.1 Visualization
The Merriam-Webster Collegiate Dictionary (Webster, 1998) gives two
definitions for the term visualization:

1. the formation of mental visual images;
2. the act or process of interpreting in visual terms or of putting into visual

form.

The Oxford Dictionary (Oxford, 2002) gives similar definitions for the same
term visualization:

1. to form a mental vision, image, or picture of (something not visible or
present to sight, or of an abstraction);

2. to make visible to the mind or imagination.

Visualization has its ancestry in pictorial representations dating back to the
origins of man. Pictographs, for whatever reasons, are human generated
images. Through the centuries, we have had maps, human generated imagery
of different parts of the world for travel and warfare, paintings; imagery of
plans for architectural and novel devices; images to enhance stories, and many
more. Visualization is now part of our everyday life. From paintings and
photographs to maps, television, and to computer generated graphics and
virtual environments, we can see how it is used today in diverse ways. Some
impressive examples can be seen in Figure 3.1 and Figure 3.2.

The use of visualization to present information is not a new
phenomenon. It has been used in maps, scientific drawings, and data plots
for over a thousand years. Examples from cartography include Ptolemy's
Geographia (2nd Century AD), a map of China (1137 AD), and
Minard's map (1861) of Napoleon's invasion of Russia half a century earlier.
Most of the concepts learned in devising these images carry over in a
straightforward manner to computer visualization. Edward Tufte has written
two critically acclaimed books that explain many of these principles
(Tufte, 1997), (Tufte, 2001).

http://en.wikipedia.org/wiki/Cartography
http://en.wikipedia.org/wiki/Napoleon
http://en.wikipedia.org/wiki/Edward_Tufte

 28

Figure 3.1 Cave Painting in Lascaux

Figure 3.2 Kotsushika Hokusai - The

Great Wave

Computer graphics has from its beginning been used to study scientific
problems. However, in its early days the lack of graphics power often limited
its usefulness. The recent emphasis on visualization started in 1987 with the
special issue of Computer Graphics on Visualization in Scientific Computing.
Since then there have been several conferences and workshops, co-sponsored
by the IEEE Computer Society and ACM SIGGRAPH, devoted to the general
topic, and special areas in the field (for example volume visualization).

Most people are familiar with the digital animations produced to present
meteorological data during weather reports on television, though few can
distinguish between those models of reality and the satellite photos that are also
shown on such programs. TV also offers Scientific Visualizations when it shows
computer drawn and animated reconstructions of road or airplane accidents.
Some of the most popular examples of Scientific Visualizations are
computer-generated images that show real spacecraft in action, out in the void
far beyond Earth, or on other planets. Dynamic forms of visualization, such as
educational animation, have the potential to enhance learning about systems
that change over time.

Apart from the distinction between interactive visualizations and
animation, the most useful categorization is probably between abstract and
model-based Scientific Visualizations. The abstract visualizations show
completely conceptual constructs in 2D or 3D. These generated shapes are
completely arbitrary. The model-based visualizations either place overlays of
data on real or digitally constructed images of reality, or they make a digital
construction of a real object directly from the scientific data.

The success of visualization not only depends on the results, which it
produces, but also depends on the environment in which it has to be done. This
environment is determined by the available hardware, like graphical
workstations, disk space, color printers, video editing hardware, and network
bandwidth, and by the visualization software. For example, the graphical
hardware imposes constraints on interactive speed of visualization and on the
size of the data sets, which can be handled. Many different problems

http://en.wikipedia.org/wiki/Scientific_computing
http://en.wikipedia.org/wiki/IEEE_Computer_Society
http://en.wikipedia.org/wiki/ACM_SIGGRAPH
http://en.wikipedia.org/wiki/Meteorological
http://en.wikipedia.org/wiki/Television
http://en.wikipedia.org/wiki/Satellite_photo
http://en.wikipedia.org/wiki/Spacecraft
http://en.wikipedia.org/wiki/Planet
http://en.wikipedia.org/wiki/Educational_animation

 29

encountered with visualization software must be taken into account.
The user interface, programming model, data input, data output, data
manipulation facilities, and other related items are all important. The way in
which these items are implemented determines the convenience and
effectiveness of the use of the software package as seen by the scientist.
Furthermore, whether software supports distributive processing and
computational steering must be taken into account.

In our context, we consider visualization to mean a computer generated
image or collection of images, possibly ordered, using a computer representation of data
as its primary source and a human as its primary target (McCormick et al., 1987).
Computer generated data visualizations appeared in the late 40's when tables
became much too large for a human to comprehend and manage. These
visualizations, then called plots, were followed by the growth of computer
graphics and systems that permitted the rapid, often interactive, generation of
scientific data sets.

Visualization is a method of computing. It transforms the symbolic into
the geometric, enabling researchers to observe their simulations and
computations. Visualization offers a method for seeing the unseen. It enriches
the process of scientific discovery and fosters profound and unexpected
insights. In many fields it is already revolutionizing the way scientists do
science. Thus, a new definition has been added: a tool or method for interpreting
image data fed into a computer and for generating images from complex multi-
dimensional data sets (McCormick et al., 1987).

Visualization embraces both image understanding and image synthesis,
that is, it is a tool both for interpreting image data fed into a computer and for
generating images from complex multidimensional data sets. Visualization
studies those mechanisms in humans and computers �which allow them in
concert to perceive, use, and communicate visual information� (McCormick,
1988). It unifies the largely independent but converging fields of computer
graphics, image processing, computer vision, computer-aided design, signal
processing and user interfacing. An inspiring example can be seen in Figure 3.3.

The main reasons of need for Scientific Visualization are the following
ones: it will compress a lot of data into one picture (data browsing), it can reveal
correlations between different quantities both in space and time, it can furnish
new space-like structures beside the ones which are already known from
previous calculations, and it opens up the possibility to view the data
selectively and interactively in `real time'. By following the formation and the
deformation as well as the motions of these structures in time, one will gain
insight into the complicated dynamics.

As was mention before, we also want to integrate our simulation codes
into a visualization environment in order to analyze the data in real time and to
by-pass the need to store every intermediate result for later analysis. This is
possible by means of processing in which the simulation is distributed over a set
of high-performance computers and the actual visualization is done on a

 30

graphical distributive workstation. It is also very useful to have the possibility
to interactively change the simulation parameters and immediately see the
effect of this change through the new data. This process is called computational
steering and it will increase the effective use of CPU time.

Figure 3.3 Great wave discretization

Why does visualization work at all? Because humans are inherently visual beings,
with over half the brain being dedicated to visual information processing. The
bandwidth of the human visual system is greater than any other sense, allowing
humans to see and understand huge amounts of complex data quickly and
accurately. By transforming data into pictures, visualization takes advantage of
this enormous bandwidth and processing power of the human visual system.
The data is not only processed faster, but also with a different strategy: instead
of using conscious mechanisms (read something, translate it into a mental
model, then understand the mental model), visual processing uses preconscious
mechanisms, which are �hardwired, highly parallel processes that handle the
initial stages of analysis of the retinal patterns� (Friedhoff and Peercy, 2000).

The brain areas involved in higher order visual perception and cognition
are highly interlinked, such that the systems for seeing, understanding and
remembering are closely associated. This means that in certain situations
information can be more readily assimilated and communicated in a visual
format than in any other form. For example, we are very good at recognizing
objects, faces, and characters. Color information may be more appropriate for
categorizing different objects or data types. With good luminance contrast we
are very good in making fine spatial discriminations and to accurately
determine shape, motion or depth.

How people perceive an image can have a profound effect on the
meaning they attach to that image. Vision is also influenced by memory, context
and intention. Many visualization methods are exploiting the human
perceptual capacities and insensitivities. Since the appearance of the resulting

 31

images as perceived by the human observer is of primary importance, the
computation can be focused on those image features that can be readily
perceived. This can lead to simplification of computation by omitting from the
image details that will not make significant differences in its appearance.

3.2 Scientific Visualization
Today we are presented with a broader context within data visualization fits.
It encompasses scientific visualization, information visualization, database
visualization, software visualization and all the specific visualizations
(including biomedical and geospatial visualizations). Visualization of Scientific
Data, or Scientific Visualization describes the application of graphical methods to
enhance interpretation and meaning of scientific data, representation of data graphically
as a means of gaining understanding and insight into the data. This allows the
researcher to achieve insight into the system that is studied in ways previously
impossible. We will abbreviate Scientific Visualization to simply Visualization
throughout this work. Scientific data can be derived from various sources,
including measuring instruments, or may be obtained as a result of scientific
computations performed on large computers. However, data do not become
useful until some (or all) of the information they carry is extracted.

The goal of Scientific Visualization is to provide concepts, methods and
tools to create expressive and effective visual representations from scientific
data. Such visual representations will convey new insights and an improved
understanding of physical processes, mathematical concepts and other
quantifiable phenomena expressed in the data (Magnenat-Thalmann and
Thalmann, 1991). Together with quantitative analysis of data, such as offered by
statistical analysis, image and signal processing, visualization attempts to
explore all information inherent in scientific data in the most effective way.
Therefore, Scientific Visualization is expected to enhance and increase scientific
productivity. The discipline of Visualization in Scientific Computing is widely
recognized to have begun in the 1980s. Its birth marked by the production of a
key report for the US National Science Foundation (NSF). Interest in
visualization was stimulated by the happy coincidence of a number of factors.
Workstations had become powerful enough to display graphics on the
scientist's desktop and algorithmic developments were making the treatment of
large datasets tractable. Crucially, supercomputers could now run simulations
of complex phenomena and produce more data than could otherwise be
assimilated. The NSF report argued that continuing slowly computer graphics
provision was equivalent to a waste of these compute resources (Wright, 2007).

Scientific Visualization encompasses and unifies the fields of computer
graphics, image processing, high performance computing, computer vision,
signal processing, computer aided design, and human-machine interaction.
Visualization is a method of extracting meaningful information from complex
or voluminous datasets through the use of interactive graphics and imaging. It

 32

provides processes for steering the dataset and seeing the unseen, thereby
enriching existing scientific methods.

In this context, it is important to differentiate between Scientific
Visualization and presentation graphics. Presentation graphics is primarily
concerned with the communication of information and results in ways that are
easily understood. In Scientific Visualization, we seek to understand the data.
However, often the two methods are intertwined.

3.3 Applications of Visualization
Examples of the power of visualization to gain new insights into scientific data,
to understand complex concepts, or to aid in the quest for information are
plentiful. In this section we present some of the typical applications of
visualization in various fields.

Computation is emerging between theory and experiment as a partner in
scientific investigation. Computational science and engineering encompass a
broad range of applications with one common denominator: visualization.
Visualization tools are helping researchers understand and steer computations.
The list of research opportunities for visualization in Scientific Computing is
long and spans all of contemporary scientific endeavor.

The research opportunities actually described in this section represent a
select sampling of advanced scientific and engineering applications.
There are scientific opportunities for visualization in molecular modeling,
medical imaging, brain structure and function, mathematics, geosciences, space
exploration, astrophysics etc. Engineering opportunities for visualization
consist of computational fluid dynamics and finite element analysis.
Images and signals may be captured from cameras or sensors, transformed by
image processing, and presented pictorially on hard or soft copy output.
Abstractions of these visual representations can be transformed by computer
vision to create symbolic representations in the form of symbols and structures.
Using computer graphics, symbols or structures can be synthesized
into visual representations.

Molecular Modeling. The use of interactive computer graphics to gain
insight into chemical complexity began in 1964. Interactive graphics is now an
integral part of academic and industrial research on molecular structures and
interactions, and the methodology is being successfully combined with
supercomputers to model complex systems such as proteins and DNA.
Techniques range from simple black-and-white, bitmapped representations of
small molecules for substructure searches and synthetic analyses, to the most
sophisticated 3D color stereographic displays required for advanced work in
genetic engineering and drug design.

The attitude of the research and development community toward
molecular modeling has changed. What used to be viewed as a sophisticated
and expensive way to make pretty pictures for publication is now seen as a

 33

valuable tool for the analysis and design of experiments. Molecular graphics
complements crystallography, sequencing, chromatography, mass
spectrometry, magnetic resonance and the other tools of the experimentalist,
and is an experimental tool in its own right. The pharmaceutical industry,
especially in the new and flourishing fields of genetic and protein engineering,
is increasingly using molecular modeling to design modifications to known
drugs, and to propose new therapeutic agents.

Molecular modeling supports three general activities: synthesis, analysis
and communication. Interactive 3D images are essential to each of these areas,
to give scientists control of their data and access to information. Synthesis lets
scientists integrate information interactively in real time. The computer is used
to build or extend existing models by combining information and knowledge
from a variety of sources. Molecular fragments pieced together from a chemical
fragment database or a protein structure fitted into a 3D electron density map
typifies this modeling activity. Analysis enables scientists to interpret and
evaluate data by selectively displaying experimental and/or computational
results in a comprehensible framework. The display and comparison of any
number of macromolecular properties, such as chemical composition,
connectivity, molecular shape, electrostatic properties, or mobility
characteristics, all fall into the domain of modeling analysis. As more structures
become available for examination, and as more techniques are developed for
analysis, new patterns will emerge. This activity then feeds back to the
synthesis activities and new models for the next level of biomolecular
organization can be constructed. Communication takes place between computer
and scientist, and between scientist and scientist. It is important that the
information discovered about biological molecules be conveyed not only to the
structural scientist, but also to a larger body of scientists whose expertise can
add data and knowledge to increase overall understanding. Communication
can also bridge the gap between science and the general public, making
individuals aware of significant discoveries.

In an effort to make major inroads in these areas, scientists need access to
more powerful visualization hardware and software. Effort must be expended
on imaginative uses of graphics devices as windows on the microscopic world
of the molecule, as well as on integrating the complex numeric and symbolic
calculations used to simulate this world. There are currently two types of
images one can generate: realistic pictures of molecules (simulations that
resemble plastic models), and 3D line drawings (informative images that can be
manipulated in real time). Raster equipment is used to create realistic-looking
representations and animations, while vector hardware, used for real-time
display and interaction, is used to create line drawings. As raster hardware
improves, it is expected that raster and vector hardware will merge, allowing
increased flexibility in the representations of chemical properties.

Tachistoscopic stereo has been in use for over 15 years and is rapidly
gaining acceptance. The introduction of inexpensive liquid polarized screens

 34

and polarized glasses will accelerate this important development. Interaction
with the complex 3D world of the molecule is inhibited by the inherent 2D
nature of many interactive input devices, such as the mouse. The ability to
manipulate the 6 degrees of freedom of a molecule in space so it can interact
with another is currently done using dual 3-axis joysticks or similar devices.
Imaginative and inventive solutions are needed, such as magnetic motion
monitors, to allow multiple interactions.

Medical Imaging. Scientific computation applied to medical imaging has
created opportunities in diagnostic medicine, surgical planning for orthopedic
prostheses, and radiation treatment planning. In each case, these opportunities
have been brought about by 2D and 3D visualizations of portions of the body
previously inaccessible to view.

In each of these applications, image processing dominates; both
computer vision and computer graphics play a role in orthopedic prostheses
and radiation treatment planning. The research activity is experimental,
depending on volume-filled images reconstructed from measured data. The
bottleneck in each of these examples is in the generation of useful 3D images,
which requires further visualization research to increase spatial and temporal
resolution. Useful 3D visualization algorithms, the development of powerful
and portable visualization software, and relevant experimentation in visual
psychophysics are all areas of visualization research.

Diagnostic medicine. The imaging modalities of computed transmission
and emission tomography, magnetic resonance imaging and ultrasound,
enhanced at times by contrast agents or monoclonal antibodies, are leading to a
new understanding of both clinical and research questions in diagnosis.
Improved 3D visualization techniques are essential for the comprehension of
complex spatial and, in some cases, temporal relationships between anatomical
features both within and across imaging modalities. Computation will play an
increasingly central role in diagnostic medicine as information is integrated
from multiple images and modalities. Visualization, the cornerstone of
diagnostic radiology, must be smoothly combined with computation to yield
natural and accurate images that a diagnostician can understand in 3D.

Orthopedic prostheses. An emerging visualization application is the
fitting of prostheses to individuals for orthopedic reconstructions, such as
hip replacements. The 3D fit must be precisely individualized to minimize
rejection. Only through non-invasive 3D imaging can accurate specifications
be obtained, so that a custom hip replacement can be fabricated in advance
of a surgical procedure.

Radiation treatment planning. The use of ionizing radiation to destroy or
inhibit the growth of malignant tumors requires careful planning.
Misapplication of the radiation beam can jeopardize nearby normal tissue or
render therapy ineffective. The precision required for safe but effective
treatment is surprisingly high. Fortunately, recent computational advances
have made practical the extensive computations that are essential to predict

 35

radiation dosage accurately. Medical imaging allows these predictions
to be based on a patient's own anatomy. Before the radiation treatment
can be confidently applied, however, an effective means of visualizing
the treatment dosage in relation to the tumor and neighboring normal tissue
must be developed.

Brain structure and function. Visualization in 3D of human brain structure
and function is a research frontier of far-reaching importance. The complexity
of the brain limits understanding gained from the purely reductionistic
approach familiar to neurobiologists. For continued progress in brain research,
it will be necessary to integrate structural and functional information at many
levels of abstraction. Work on brain structure and function requires
computational support in four areas:

! acquisition of experimental data in digital image form from serial
histological sections, medical imaging instruments, drug receptor
studies and neurophysiological experiments;

! extraction of features from measured digital images to produce a 3D
map of brain structure and function;

! analysis of the abstract brain map to relate measured ~mages and
parameters to a standard brain geometry, to provide statistical
summaries across a series of brains and to compare an individual brain
with such statistical summaries.

! visualization of the results of data acquisition, feature extraction and
map analysis in a proper 3D context.

The massive data input needed to map the brain will eventually lead to the
invention or use of more advanced storage technologies. However, there is also
a gap in our present ability to do automatic feature extraction. Manual
recognition of features is inadequate for so large a problem. Automation will
require major advances in the field of volume image abstraction and modeling.
While the accomplishment of these tasks remains a monumental challenge,
selected pilot studies promise near-term resolution of several pivotal issues.
Brain mapping is a necessary first step toward modeling and simulating
biological brain functions at a systems level of description.

3D brain visualization. Large-scale volume memory modules capable of
storing 1 gigabyte of volume data are under design to model the brain from
serial histological sections. Renderings are then constructed from the
1024x1024x1024 array of voxels to compare the spatial distribution of neurons
and brain structures within one brain or, at increased resolution, within one
portion of the brain. Image processing can create complex representations with
brain parts made transparent, translucent or opaque. The volume memory
module will aid in the use and evaluation of spatial filtering and boundary
detection techniques in 3D brain imagery.

 36

3D image understanding. A neuroanatomist locates objects in a brain section by
matching the contour and regional data with a memorized model drawn from a
visual knowledge base, which can include references to atlases. An image
understanding system provides similar computer-based guidance for the semi-
automated image analysis task � e.g. at the stage of data input, an individual
can first identify a feature in one section and then let the system track the
feature in succeeding serial sections, label the sectional data and store the
information about the feature in a hierarchical database. Mapping of brain
interconnections in parallel throughout the brain, at least at the level of nerve
fiber tracts, remains a shortcoming in our mapping technology.

Brain mapping factory. Useful statistical experiments will eventually
require analysis of 50-100 brains or major brain portions. The magnitude of this
task is such that special automated facilities, called brain mapping factories, will
inevitably be required to map one brain per month. By centralizing the volume
image analysis it becomes possible to integrate and standardize scanning
instrumentation, stain technology, image analysis software, geometric modeling
and other brain mapping technologies, and to exploit economies of scale.
Subsequent brain analysis could take place at distributed workstations with
enhanced tools for image analysis.

Mathematics. In the computational study of partial differential equations
associated with gas dynamics, vortex formation, combustion and fluid flow, the
most effective means of analyzing output has been visualization. Using modern
supercomputers, novel parallel architectures and new mathematical algorithms,
important 3D physical processes can now be simulated. Geometric problems,
such as the generation of body centered coordinates, automatic mesh
generation, and so on, are mathematical in nature and will have to be solved
efficiently to conduct research in applied mathematics.

Visualization is making a tremendous impact in the mathematical study
of optimal form and more generally the calculus of variations, including the
theory of minimal surfaces, and surfaces of constant mean curvature. Computer
graphics has become an essential research tool in this and many other areas of
pure and applied mathematics. Hard problems, such as eigen value
optimization for regions with partially-free boundaries, are being attacked
successfully for the first time with these visualization tools. Mathematics is one
of the last sciences to become computerized; yet, it is already clear that
visualization, coupled with very high-speed numerical simulations, is having a
major influence in the field, even in areas long considered to be abstract. This
new mode of investigation makes collaboration with scientists in other
disciplines much easier for the mathematician; there is a common language of
computation and images. There is a strong need to increase the availability and
power of visualization tools for researchers within this discipline.

Computer Simulation. Science and engineering have undergone a major
transformation at the research level as well as at the development and
technology level. The modern scientist and engineer spend more and more time

 37

in front of a laptop, a workstation, or a parallel supercomputer and less and less
time in the physical laboratory or in the workshop. The virtual wind tunnel and
the virtual biology laboratory are not a thing of the future: they are already
here. The old approach of "cut and try" has been replaced by "simulate and
analyze" in several key technological areas such as aerospace applications,
synthesis of new materials, design of new drugs, and chip processing and
microfabrication. The new discipline of nanotechnology will be based primarily
on large-scale computations and numerical experiments. The methods of
scientific analysis and engineering design are changing continuously, affecting
both our approach to the phenomena that we study as well as the range of
applications that we address. Whereas there is an abundance of software
available to be used as almost a "black box", working in new application areas
requires good knowledge of fundamentals and mastering of effective new tools.

In the classical scientific approach, the physical system is first simplified
and set in a form that suggests what type of phenomena and processes may be
important and, correspondingly, what experiments are to be conducted. In the
absence of any known type of governing equations, dimensional inter
dependence between physical parameters can guide laboratory experiments in
identifying key parametric studies. The database produced in the laboratory is
then used to construct a simplified "engineering" model that, after field-test
validation, will be used in other areas of research, product development, and
design and possibly lead to now technological applications. This approach has
been used almost invariably in every scientific discipline, from engineering and
physics to chemistry and biology.

The simulation approach follows a parallel path but with some
significant differences. First, the phase of the physical model analysis is more
elaborate: the physical system is cast in a form governed by a set of partial
differential equations, which represent continuum approximations to
microscopic models. Such approximations are not possible for all systems, and
sometimes the microscopic model should be used directly. Second, the
laboratory experiment is replaced by simulation, that is, by a numerical
experiment based on a discrete model. Such a model may represent a discrete
approximation of the continuum partial differential equations, or it may simply
represent a statistical representation of the microscopic model.

Finite difference approximations on a grid are examples of the first case,
and Monte Carlo methods are examples of the second case. In either case, these
algorithms have to he converted to software using an appropriate computer
language, debugged, and run on a workstation, parallel super-computer or a
grid platform. The output is usually a large number of files of a few megabytes
to hundreds of gigabytes, being especially large for simulations of time-
dependent phenomena. To be useful, this numerical database needs to be put
into graphical form using various visualization tools, which may not always be
suited for the particular application considered. Visualization can be especially
useful during simulations where interactivity is required as the grid may be

 38

changing or the number of molecules may be increasing. The majority of
researchers have already followed the simulation approach across disciplines in
the past few decades.

Let us reexamine some of the requirements following the various steps in
the simulation approach. The first task is to select the right representation of the
physical system by making consistent assumptions to derive the governing
equations and the associated boundary conditions. The conservation laws
should be satisfied, the entropy condition should not be violated, and the
uncertainty principle should be honored.

The second task is to develop the right algorithmic procedure to
discretize the continuum model or represent the dynamics of the atomistic
model. The choices are many, but which algorithm is the most accurate one, or
the simplest one, or the most efficient one? These algorithms do not belong to a
discipline! Finite elements, first developed by the famous mathematician
Richard Courant and rediscovered by civil engineers, have found their way into
every engineering discipline as well as into physics, geology, and other fields.
Chemists, biologists, material scientists, and others practice molecular
dynamics simulations.

The third task is to compute efficiently in the ever-changing world of
supercomputing. How efficient the computation is translates to how realistic of
a problem is solved and therefore how useful the results can be to applications.
The fourth task is to assess the accuracy of the results in cases where no direct
confirmation from physical experiments is possible, such as in nanotechnology,
in bio-systems or in astrophysics. Reliability of the predicted numerical answer
is an important issue in the simulation approach because some of the answers
may lead to new physics or false physics contained in the discrete model or
induced by the algorithm but not derived from the physical problem. Finally,
visualizing the simulated phenomenon, in most cases in three-dimensional
space and in time, by employing proper computer visualization completes the
full simulation cycle the rest of the steps followed are similar to those of the
classical scientific approach.

3.4 Algorithms for Scientific Visualization
In this section we look at basic algorithms for Scientific Visualization. In
practice, a typical algorithm can be thought of as a transformation from one
data form into another. These operations may also change the dimensionality of
the data. For example, generating a streamline from a specification of a starting
point in an input 3D dataset produces a one-dimensional curve. The input may
be represented as a finite element mesh, while the output may be represented as
a polyline. Such operations are typical of Scientific Visualization systems that
repeatedly transform data into different forms and ultimately transform it into a
representation that can be rendered by the computer system. The algorithms
that transform data are the heart of data visualization.

 39

To describe the various transformations available, algorithms need to be
categorized according to the structure and type of transformation. Structure
refers to the effects that transformation has on the topology and geometry of the
dataset, and type means the type of dataset that the algorithm operates on.
Structural transformations can he classified in four ways, depending on how
they affect the geometry, topology, and attributes of a dataset. Here, we
consider the topology of the dataset as the relationship of discrete data samples
(one to another) that are invariant with respect to geometric transformation. For
example, a regular, axis-aligned sampling of data in three dimensions is
referred to as a volume, and its topology is a rectangular (structured) lattice
with clearly defined neighborhood voxels and samples.

On the other hand, the topology of a finite element mesh is represented
by a (unstructured) list of elements, each defined by an ordered list of points.
Geometry is a specification of the topology in space (typically 3D), including
point coordinates and interpolation functions. Attributes are data associated
with the topology and/or geometry of the dataset, such as temperature,
pressure, or velocity. Attributes are typically categorized as being scalar (single
value per sample), vectors (n-vector of values), tensor (matrix), surface normals,
texture coordinates, or general field data.

Given these terms, the following transformations are typical of Scientific
Visualization systems (Hansen and Johnson, 2005):

o Geometric transformations alter input geometry but do not change the
topology of the dataset. For example, if we translate, rotate, and/or
scale the points of a polygonal dataset, the topology does not change,
but the point coordinates, and therefore the geometry, do change;

o Topological transformations alter input topology but do not change
geometry and attribute data. Converting a dataset type from polygonal
to unstructured grid, or from image to unstructured grid, changes the
topology but not the geometry. More often, however, the geometry
changes whenever the topology does, so topological transformation is
uncommon;

o Attribute transformations convert data attributes from one form to
another, or create new attributes from the input data. The structure of
the dataset remains unaffected. Computing vector magnitude and
creating scalars based on elevation are data attribute transformations;

o Combined transformations change both dataset structure and attribute
data. For example, computing contour lines or surfaces is a combined
transformation.

We also may classify algorithms according to the type of data they operate on.
The meaning of the word "type" is often somewhat vague. Typically, "type"
means the type of attribute data, such as scalars or vectors. These categories
include the following (Hansen and Johnson, 2005):

 40

• Scalar algorithms that operate on scalar data. An example is the
generation of contour lines of temperature on a weather map;

• Vector algorithms that operate on vector data. Showing oriented arrows
of airflow (direction and magnitude) is an example of vector
visualization;

• Tensor algorithms operate on tensor matrices. One example of a tensor
algorithm is to show the components of stress or strain in a material
using oriented icons;

• Modeling algorithms generate dataset topology or geometry, or surface
normals or texture data. "Modeling algorithms" tends to be the catch-all
category for algorithms that do not fit neatly into any single category
mentioned above. For example, generating glyphs oriented according
to the vector direction and then scaled according to the scalar value is a
combined scalar/vector algorithm. For convenience, we classify such an
algorithm as a modeling algorithm because it does not fit squarely into
any other category.

Note that an alternative classification scheme is to refer to the topological type
of the input data (e.g.. image, volume, or unstructured mesh) that a particular
algorithm operates on. In the remainder of the chapter we will classify the type
of the algorithm as the type of attribute data on which it operates. Though, we
should be aware that alternative classification schemes do exist and may he
better suited to describing the true nature of the algorithm.

Most algorithms can be implemented specifically for a particular data
type or, mote generally, for treating any data type. The advantage of a specific
algorithm is that it is usually faster than a comparable general algorithm.
An implementation of a specific algorithm may also be more memory-efficient,
and it may better reflect the relationship between the algorithm and the dataset
type it operates on.

One example of this is contour surface creation. Algorithms for
extracting contour surfaces were originally developed for volume data,
mainly for medical applications. The regularity of volumes lends itself to
efficient algorithms. However, the specialization of volume-based algorithms
precludes their use for more general datasets such as structured or
unstructured grids. Although the contour algorithms can be adapted to these
other dataset types, they are less efficient than those for volume datasets. The
presentation of algorithms in this section favors more general implementations.
In some special cases, there exist performance-improving techniques for
particular dataset types.

In a typical visualization system, algorithms are implemented as filters
that operate on data. This approach is due in some part lo the success of early
systems like the Application Visualization System and Data Explorer and the
popularity of systems like SCIRun and the Visualization Toolkit that are built

 41

around the abstraction of data flow. This abstraction is natural because of the
transformative nature of visualization. The basic idea is that two types of
objects (data objects and process objects) are connected together into
visualization pipelines. The process objects, or filters, are the algorithms that
operate on the data objects and in turn produce data objects as output. In this
abstraction, filters that initiate the pipeline are referred to as sources and filters
that terminate the pipeline are known as sinks (or mappers). Depending on
their particular implementation, filters may have multiple inputs and/or may
produce multiple outputs.

3.5 Visualization Environments
In this section we present briefly some visualization environments, which are
distinguished by their cost, location and visualization technologies:

 Location Pros Cons Examples

Supercomputer machine
room

very
specialized

centralization flight
simulator

Minicomputer laboratory

high speed
LAN

specific
visualization

small
support staff

Viz lab, CAVE

Distributed laboratory lower cost

performance

small
support staff

Viz lab, CAVE

Workstation laboratory decentralization no support
staff

high
performance
graphics
desktop

Remote desktop very low cost limited
support staff

low
performance
desktop

3.6 Graphical excellence guidelines
According to Edward Tufte, �graphical excellence consists of complex ideas,
situations, phenomenon etc. communicated with clarity, precision, and
efficiency� (Tufte, 2001). Thus, graphical and visualization applications are
supposed to do the following:

 42

• show the data;
• induce the viewer to think about the substance rather than about

methodology, graphic design, the technology of graphic production, or
something else;

• avoid distorting what the data have to say;
• make large data sets coherent;
• encourage the eye to compare different pieces of data;
• reveal and distinguish the data at several levels of detail, from a broad

overview to the fine structure;
• serve a reasonably clear purpose: description, exploration, and so on;
• be closely integrated with the meaning of the data set.

Graphical elegance is often found in simplicity of design and complexity of
data. Design is choice. The theory of the visual display of quantitative
information consist of principles that generate design options and that guide
choices among options. The principles should not be applied rigidly or in a
peevish spirit; they are not logically or mathematically certain; and it is better to
violate any principle than to place graceless or inelegant marks on screen or
paper. Most principles of design should be greeted with some skepticism, for
word authority can dominate our vision, and we may come to see only through
the lenses of word authority rather than with our own eyes.

What is to be sought in designs for the display of information is the clear
portrayal of complexity. Not the complication of the simple; rather the task of
the designer is to give visual access to the subtle and the difficult, that is the
revelation of the complex.

 43

4 Computational Grids and Desktop Grids

4.1 Distributed and Parallel Computing
Distributed computing arises as soon as one has to solve a problem in terms of
processes that individually have only a partial knowledge of the several
parameters associated with the problem. Thus, distributed computing appears
both in computer world and in real world, and is at the heart of lots of
applications. Whereas parallel computing is mainly concerned with efficiency,
distributed computing addresses uncertainty generated by the multiplicity of
control flows, the absence of shared memory and global time, and the
occurrence of failures.

Distributed systems can be defined as computer systems that contain
multiple processors connected by a communication network. The processors
communicate with each other using messages that are sent over the network.
Such systems are increasingly available due to decrease of prices of computer
processors and the availability of high-bandwidth links to connect them.
However, despite the availability of hardware for distributed systems, there are
only few software applications that exploit that hardware. One important
reason is that distributed software requires a different set of tools and
techniques than that required by the traditional sequential software. Although
distributed algorithms are often made up of only few lines, their behaviors can
be difficult to understand and their properties hard to state and prove.

A distinction has to be made between distributed systems and parallel
systems; the later ones consist of multiple processors that communicate with
each other using shared memory. This distinction is only at a logical level.
Given a physical system in which processors have shared memory, it is easy to
simulate messages. Conversely, given a physical system in which processors are
connected by a network, it is possible to simulate shared memory. Thus a
parallel hardware system may run distributed software and vice versa. This
distinction raises two important issues. One regards the question on which
hardware to build: parallel or distributed. The other refers to the way we write
applications, i.e. assuming shared memory or not. At the hardware level, we
would expect that the prevalent model would be multiprocessor workstations
connected by a network. Thus the system is both parallel and distributed.
Further, two questions need to be addressed. The first one is �Why would
the system not be completely parallel?� There are many reasons that follow
below (Garg, 2002):

Scalability. Distributed systems are inherently more scalable than
parallel systems. In parallel systems shared memory becomes a
bottleneck when the number of processors is increased;

 44

Modularity and heterogeneity. A distributed system is more flexible
because a single processor can be added or deleted easily. Furthermore,
this processor can be of a different type than the existing processors;

Data sharing. Distributed systems provide data sharing as in distributed
databases. Thus multiple organizations can share their data;

Resource sharing. Distributed systems provide resource sharing � e.g. an
expensive special purpose processor can be shared by organizations;

Geographical structure. The geographical structure of an application may
be inherently distributed. The low communication bandwidth may
force local processing. This is especially true for wireless networks;

Reliability: Distributed systems are more reliable than parallel systems
because the failure of a single computer does not affect others;

Low cost: Availability of high-bandwidth networks and inexpensive
workstations also favors distributed computing for economic reasons.

The other essential question is �Why would the system not be purely a
distributed one?� The reasons for keeping a parallel system at each node are
mainly of a technological nature. With the current technology it is faster to
update a shared memory location than to send a message to some other
processor. This is especially true when the new value of the variable must be
sent to multiple processors. Consequently, it is more efficient to get fine grain
parallelism from a parallel system than from a distributed system (Garg, 1996).

So far the argumentation has been at the hardware level. Nevertheless,
the interface provided to the programmer can actually be independent of the
underlying hardware. So which model the programmer should better use? At
the programming level, is expected that programs will be written using
multithreaded distributed objects. In this model, an application consists of
multiple heavyweight processes that communicate using messages (or remote
method invocations). Each heavyweight process consists of multiple
lightweight processes called threads. Threads communicate through the shared
memory. This software model mirrors the hardware that is expected to be
widely available. By assuming that there is at most one thread per process (or
by ignoring the parallelism within one process), we get the usual model of a
distributed system.

By restricting the focus to a single heavyweight process, we get the usual
model of a parallel system. Though, the system will have aspects of distributed
objects. The main reason is the logical simplicity of the distributed object model.
A distributed program is more object-oriented because data in a remote object
can only be accessed through an explicit message (or a remote procedure call).
Conversely, threads are also useful to provide efficient objects. For many
applications such as servers, it is useful to have a large shared data structure,
because it is a programming burden to split the data structure across multiple
heavyweight processes.

 45

Summing up, aspects of both parallel processing and distributed processing
will be seen both in hardware as well as software. To define the distributed
systems we can consider the following features (Garg, 2002):

• Absence of a shared clock - in a distributed system, it is not possible to
synchronize the clocks of different processors precisely because of
uncertainty in communication delays between them. Consequently, it
is rare to use physical clocks for synchronization. The concept of
causality can be used instead of time to tackle this problem;

• Absence of shared memory - in a distributed system, it is impossible for
any particular processor to know the global state of the system.
Therefore it is difficult to observe any global property of the system.
Though efficient algorithms can be developed for evaluating a
suitably restricted set of global properties;

• Absence of accurate failure detection - in an asynchronous distributed
system (a distributed system is asynchronous if there is no upper
bound on the message communication time), the distinction between
a slow processor and a failed processor cannot be done. This leads to
many difficulties in developing algorithms for consensus, election, etc.
Failure detectors can be built to alleviate some of these problems.

4.2 Computational Grids and Applications

4.2.1 A bit of Grid history
Similar to many momentous concepts and technologies that we now take for
granted, Grid ideas have been inspired by, and were first applied to, problems
faced by researchers tackling fundamental problems in science and engineering.
Starting with ideas first expounded in the 1960s and given concrete form by
Grid pioneers in the 1990s, the scientific community continues to lead the
development of Grid technologies that will act as a computational and data
management infrastructure that will be a key enabler for twenty-first-century
science and society.

The origins of the idea of a �Grid� to support scientific research can be
traced back to the Internet pioneer J. C. R. Licklider, who has began his career as
an experimental psychologist studying psychoacoustics - how the human ear
and brain convert air vibrations into the perception of sound. In the 1950s, he
was a human factor researcher on the famous SAGE project at MIT: an air
defense system designed to use real-time information on Soviet bombers.
Coming from this experience, Licklider has written a groundbreaking paper in
which he argued that computers should be developed to enable people and
computers to cooperate in making decisions and controlling complex situations
without inflexible dependence on predetermined programs (Waldrop, 2001).

Larry Roberts, the principal ARPANET architect, has recalled the
importance of Licklider's ideas: Lick had this concept of the intergalactic network

 46

which he believed was everybody could use computers anywhere and get at data
anywhere in the world. He didn't envision the number of computers we have today by
any means, but he had the same concept�all of the stuff linked together throughout the
world, that you can use a remote computer, get data from a remote computer, or use lots
of computers in your job. The vision was really Lick's originally. None of us can really
claim to have seen that before him nor can anybody in the world. Lick saw this vision in
the early sixties. He didn't have a clue how to build it. He didn't have any idea how to
make this happen. But he knew it was important, so he sat down with me and really
convinced me that it was important and convinced me into making it happen (Foster
and Kesselman, 2004).

Since the beginnings of the ARPANET very much has changed. The
Internet has become a reality, and e-mail and Web browsers have emerged as
killer applications. Moore's law has prevailed for more than 30 years, with the
result that computers are no longer rare, expensive resources. Nonetheless,
Licklider's vision of a global network of computers and data resources that can
be accessed seamlessly from anywhere in the world remains valid. The Grid is
our latest and most promising attempt to realize Licklider's vision.

4.2.2 Need for Computational Grid in Context
Constant exponential technology improvements, new collaborative modalities
enabled by the quasi-ubiquitous Internet, and the demands of increasingly
complex problems have, over recent decades, fueled a revolution in the practice
of science and engineering. Today's science is as much based on large-scale
numerical simulation, data analysis, and collaboration as it is on the efforts of
individual experimentalists and theorists. Further on we briefly review some of
the new modes of inquiry that more and more define twenty-first-century
science and engineering.

4.2.2.1 Data-Intensive Science
Impressive improvements in the capability and capacity of sensors, storage sys-
tems, computers, and networks are enabling the construction of data archives of
mammoth size and value. Multipetabyte (1015 bytes) archives will soon be in
place in fields as diverse as astronomy, biology, medicine, the environment,
engineering, and high energy physics. Analysis of these vast quantities of data
can yield profound new insights into the nature of matter, life, the environment,
or other aspects of the physical world.

The sources of these huge quantities of data span a broad spectrum. At
one extreme, we have individual, highly specialized, and expensive scientific
devices that generate large quantities of data at a single location. For example,
the worldwide particle physics community is planning an ambitious set of
experiments at the Large Hadron Collider (LHC) experimental facility under
construction at CERN in Geneva. The goal of this work is to find signs of the
Higgs boson, key to the generation of mass for both the vector bosons and the
fermions of the standard model of weak and electromagnetic interactions.

 47

Particle physicists are also hoping for indications of other new types of matter -
such as super symmetric particles - that may shed light on the �dark matter"
problem of cosmology. These LHC experiments are on a scale never before seen
in physics, with each experiment involving a collaboration of hundreds of
institutions and over 5,000 physicists around the globe (LHC, 2007).

When operational in 2008, each of the LHC experiments will generate
several petabytes of experimental data per year. This vast amount of data needs
to be preprocessed and distributed for further analysis by all members of the
consortia to search for signals betraying the presence of the Higgs boson or
other revelations. The physicists need to put in place an LHC Grid
infrastructure that will permit the transport and data mining of extremely large
and distributed datasets.

The creation of this infrastructure is being pursued in collaboration with
major Grid projects in the United States (NSF Grid Physics Network, DOE
Particle Physics Data Grid, NSF International Virtual Data Grid Laboratory)
and Europe (the EU DataGrid project and national Grid projects such as the UK
Grid PP, Italian INFN Grid, and NorduGrid). The Importance of transoceanic
bandwidth is recognized via the EU-funded DataTAG project for trans-Atlantic
networks and the U.S.-funded STAR-TAP and StarLight international
interconnection point (Foster and Kesselman, 2004).

Another significant source of immense quantities of data is the
monitoring of industrial equipment. For example, pressure, temperature, and
vibration sensors in each of the many thousands of Rolls-Royce engines
currently in service generate about a gigabyte of data per engine on each trans-
Atlantic flight, which translates to petabytes of data per year. The UK e-Science
Distributed Aircraft Maintenance Environment project is working to aggregate
these data so that they can be mined to detect indications of potential problems.
The objective is to transmit a subset of the primary data for analysis and
comparison with engine data stored in one of several data centers located
around the world. By identifying the early problems, Rolls-Royce hopes to be
able to lengthen the period between scheduled maintenance periods, thus
increasing profitability. Decisions need to be taken in real time as to how much
of the petabytes of data to analyze, how much to transmit for further analysis,
and how much to get archived (Foster and Kesselman, 2004).

Similar (or even larger) data volumes are being generated by other
high-throughput sensors in fields as varied as environmental and earth
observation, astronomy, and human health-care monitoring. For example, in
astronomy, individual �digital sky surveys� are creating data archives that will
scale from a maximum of 10 terabytes today to petabytes within the next
decade. It is estimated that the U.S. National Virtual Observatory project alone
has stored 500 terabytes per year from 2004. Similarly, the Laser Interferometer
Gravitational Observatory project is estimated to generate 250 terabytes per
year beginning with 2002. A new generation of astronomical surveys such as
the VISTA project in the visible and infrared regions will also contribute to the

 48

transformation of the data requirements of the astronomy community. The
VISTA telescope, which is operational since 2004 and will generate 250
gigabytes of raw data per night and around 10 terabytes of stored data per year.
There will be several petabytes of data in the VISTA archive within 10 years
(Foster and Kesselman, 1999).

Although these data volumes are impressive enough by themselves,
what has astronomers really eager is the prospect of federating many such
archives to create a uniformly accessible, globally distributed repository of
astronomical data spanning all wavelengths, from radio waves to X-rays. The
worldwide astronomy community is working to create such a globally
distributed, multiwavelength "virtual observatory�. For the time being,
astronomical data using different wavelengths are captured by different
telescopes and stored in a diversity of formats. The creation of such a
multiwavelength "data warehouse� for astronomical data will enable new types
of astrophysical studies.

Similar opportunities are arising in medicine, where all-digital scanning
technologies allow CT scans, mammograms, MRI scans, and other medical
images to be stored online rather than in film libraries. Multiterabyte databases
being assembled within hospitals and research laboratories are making it far
easier to compare images both across time for individuals and across
populations. The linking of these databases with advanced analytical tools
offers the potential for automated diagnosis in support of the individual
physician, while the federation of multiple databases - potentially on a national
or international scale - promises to enable epidemiological studies of
unprecedented scope and scale that will provide new insights into the impact of
environment and life cycle on disease.

The UK e-Diamond project is one project working to exploit these
opportunities. Others include the Biomedical Informatics Research Network,
the U.S. National Digital Mammography Archive, and the EU MammoGrid.
e-Diamond brings together medical image analysis expertise from Mirada
Solutions Ltd. and the MIAS Interdisciplinary Research Collaboration,
computer science expertise from IBM and the Oxford e-Science Center,
and clinical expertise from hospitals in London. Oxford, and Scotland.
The goal is to provide an exemplar of the dynamic, best-evidence-based
approach to diagnosis and treatment, which is made possible through a Grid
middleware infrastructure.

The scope of the project is broad, and includes distributed data
management and analysis, ontologies and metadata to describe both the
physics that support the imaging process and the key features within images, as
well as the capture of relevant demographic and clinical information.
Technologies for data compression and data transfer that allow rapid data
mining of the resulting large, federated databases of both metadata and images
are also a key research area. Security and privacy are of paramount importance,
and any grid infrastructure must be able to combine databases of information

 49

based in hospitals protected by firewalls. The creation of such a large federated
database of annotated, digitized, and standardized mammograms will provide
for new applications in teaching and aiding both detection and diagnosis.

4.2.2.2 Simulation-Based Science

Numerical simulation represents another new problem-solving methodology in
its own right, which continues to grow in importance The extensive use of
supercomputers (an important class of "central power plant� in a scientific
Grid) has been fundamental to scientific disciplines such as climatology and
astrophysics, in which physical experiments cannot easily be performed but
computational simulations are feasible. Indeed, supercomputers have emerged
as an important class of "extreme scientific instrumentation." For example, the
supercomputers can run numerical simulations of at a sustained rate of 400
teraflop/sec, and generating hundreds of terabytes of data in a single run.
Other extremely capable systems are being operated by the U.S. ASCI program,
DOE and NSF supercomputer centers in the United States, and supercomputer
centers in Europe and elsewhere.

These tremendous investments in high-end supercomputers are just one
indication of a broad phenomenon, which is that as a result of advances in
computer performance and computational techniques, computational
approaches are increasingly being applied even in fields long dominated by
detriment. For example, in chemistry, combinatorial methods provide new
opportunities for the generation, via computation rather than experiment, of
large amounts of new chemical knowledge. The UK Comb-e-Chem project is
illustrative of what is being done to exploit this opportunity. The goal of this
project is to synthesize large numbers of new compounds by
high-throughput combinatorial methods and then map their structure and
properties. Such a parallel synthetic approach creates hundreds of thousands of
new compounds at a time, leading to an explosive growth in the volume of data
generated. Each new compound needs to he screened for potential usefulness,
and properties and structure must be identified and recorded for promising
candidates. Thus, an extensive range of primary data needs to be accumulated,
integrated with information in existing databases, and enhanced with accurate
models of the various relationships and properties. Comb-e-Chem is
developing an integrated platform that combines existing
structure and property data sources within a Grid-based information- and
knowledge-sharing environment (Comb-e-Chem, 2005).

Similar transformations are occurring in the life sciences, as illustrated by
the U.S. Encyclopedia of Life (EOL) project, which seeks to produce a database
of reputed functional and 3D structure assignments for all known publicly
available complete or partial genomes. Considerable computational capacity is
required to update data as new genome sequences become available. This
computation converts the rather sparse information contained in the linear

 50

sequence of DNA bases into human-readable information that can be inferred
by conversion to the amino acid sequence. Each genome must be subjected
to a computation that is built up from loosely structured workflow,
with analysis performed by a collection of algorithms that build on information
in the EOL database.

4.2.2.3 Remote Access to Experimental Apparatus
The increasing prominence of simulation- and data-driven science does not
mean that experimental science has become less important. On the contrary, the
advance of technology is also producing revolutionary new experimental
apparatus, and the emergence of high-speed networks makes it feasible to
integrate those apparatus into the scientific problem-solving process in ways
not previously imaginable.

Thus, for instance, we see the earthquake engineering community
deploying telepresence capabilities that allow remote participants to design,
execute, and monitor experiments without traveling to experimental facilities.
The National Science Foundation's George E. Brown Jr. Network for
Earthquake Engineering Simulation (NEES) is an ambitious national program
whose purpose is to advance the study of earthquake engineering and to find
new ways to reduce the hazard earthquakes represent to life and property. Its
goal is to encourage the use of both physical and numerical simulation to
develop increasingly complex, comprehensive, and accurate models of how the
built infrastructure responds to earthquake loadings. NEESgrid is integrating
and deploying Grid technologies to link earthquake engineering researchers
across the United States with shared engineering research equipment, data
resources, and leading-edge computing resources.

The NEESgrid middleware infrastructure allows collaborative teams
(including remote participants) to plan, perform experiments, and publish and
share their data and results. Collaborative tools assist experiment planning and
allow engineers at remote sites to perform teleobservation and teleoperation of
experiments, and enable access to computational resources and open source
analytical tools for simulation and analysis of experimental data. The
middleware also supports the publishing of results in a curated data repository
using standard data and metadata vocabularies and formats.

Similar technologies have been applied successfully for some time to the
remote operation of specialized scientific instrumentation. Grid technologies
introduce the possibility of making these specialized usage scenarios routine.

4.2.2.4 Virtual Community Science
Besides the new modes of inquiry enabled by flexible and pervasive access to
massive amounts of data, large amounts of computation, and specialized
experimental apparatus, equally significant to 21st century�s science and
engineering is the increasingly collaborative and distributed nature of the
teams. Moreover, the collaborative nature of science is in many respects

 51

inseparable from the new capabilities. The most significant impact of grid
technologies on science will probably be global virtual communities of scientists
able to address the fundamental problems of today and tomorrow. Hopefully,
this will hold also for virtual communities of non-scholar users that will turn to
grid applications or opportunities to solve some of their day-to-day problems.

In data-driven science, the high scientific value of large data archives
means that they are, increasingly, viewed as major strategic assets by their user
communities, who devote considerable effort to establishing, managing,
controlling, and exploiting those archives. Similar to the Encyclopedia of Life
project mentioned previously, the UK eScience myGrid project is working to
design, develop, and demonstrate higher-level grid middleware to support the
use of complex distributed resources for bioinformatics, with particular
applications being the analysis of functional genomic data and the annotation of
a pattern database. The myGrid project is developing an e-Scientist's workbench
to support experimental investigation, evidence accumulation, and result
assimilation. The goal is to help scientists use community information (e.g.,
"gray literature") and enhance scientific collaboration by assisting the formation
of dynamic groupings to tackle emergent research problem (myGrid, 2007)

Personalization facilities relating to resource selection, data management,
and performing of processes provide for the dynamic creation of personal
datasets and personal views over repositories, as well as both the addition of
personal annotations to datasets and a personalized notification service about
changes in relevant databases. The myGrid project is also developing tools and
techniques to support the creation of personalized workflows that capture the
biologist's know-how and enable reuse of patterns of knowledge discovery.
These services can also associate base resources with the derived data, an aspect
of the important area of provenance. The project is developing mechanisms to
track the creation of knowledge, to automate the association of metadata with
the production of primary experimental data, and to develop ontologies that
facilitate automated reasoning about information from different communities.

Similar observations can be made about large-scale experimental and
simulation science, as increasingly large teams devote considerable effort to
establish and operate diverse apparatus, such as particle accelerators and
climate simulation codes. For example, both the fusion and high-energy physics
communities are planning future experimental facilities of unprecedented
international scope and scale, and featuring �distributed control rooms" that
will allow control of long-running experiments to be passed from one time zone
to another over the course of a day.

The Comb-e-Chem project presented previously illustrates some of these
issues. As much attention is given to the needs of the end-user community as to
basic computational issues. Thus, work on the collection of new data, addresses
support for both process and product data, and integrates electronic laboratory
and e-logbook facilities. Also, interfaces are being developed to provide the
user community with a unified view of resources and transparent access to data

 52

retrieval, online modeling, and experiment design tools. The Comb-e-Chem
service-based infrastructure extends to devices in the laboratory as well as to
databases and computational resources. An important component of the project
is the support of remote users of the UK National Criystallographic Service,
physically located in Southampton. The service extends both to the portal
access to the apparatus and to the support of resulting workflow.
This scientific workflow corresponds to the sequence of linked operations
necessary to get the desired result (use of the X-ray e-Laboratory),
access to structures� databases, and admission to computing facilities for
simulation and analysis in a specified sequence of operations. The goal is to
provide shared, secure access to all of these resources in a supportive
collaborative e-science environment.

The EOL project has similar goals. Information produced by
EOL software is stored in a data warehouse and offered to the public through
the EOL notebook, which accesses subservient, high-performance
MySQL data marts. The EOL notebook portal provides users with data-mining
capability that allows extensive, distributed data analyses. Users can gather
information with regard to protein function over a wide variety of species and
then run complex analysis applications on the combined dataset. An example
could be an analysis of variations in structure and function over the
evolutionary history of organisms. Such applications require high rates of data
transfer and access to a large amount of computation, and thus EOL is both
data- and compute-intensive. Because of the sheer number of current and future
genomes available and the need for constantly up-to-date and synthesized
information, EOL represents a growing class of applications for which a global
grid infrastructure could be critical to enabling new advances in biology.

4.2.2.5 Scenarios for grid use in the real-world
Further on some grid use scenarios will be presented in order to emphasize that
the need for grid systems go beyond the scientific world, to the people and their
daily problems (Foster and Kesselman, 2004).

Scenario 1. A holding that want to reach a decision on the placement of a
new industrial unit invokes a sophisticated financial forecasting model from an
Application Service Provider (ASP), providing it with access to appropriate
proprietary historical data from a corporate database on storage systems
operated by a storage service provider. During the decision-making meeting,
what-if scenarios are run collaboratively and interactively, even though the
division heads participating in the decision are located in different locations.
The ASP itself contracts with an on-demand cycle provider for additional
�power� during particularly demanding scenarios, requiring of course that
cycles meet desired security and performance requirements.

Scenario 2. An industrial consortium formed to develop a feasibility
study for a next-generation supersonic spacecraft undertakes a highly accurate
multidisciplinary simulation of the entire spacecraft. This simulation integrates

 53

proprietary software components developed by different participants, with
each component operating on that participant's computers and having access to
appropriate design databases and other data made available to the consortium
by its members.

Scenario 3. A crisis management team responds to a toxic waste accident
by using local weather and soil models to estimate the spread of the waste,
determining the impact based on population location and geographic features
such as rivers and water supplies, creating a short-term mitigation plan (based
on chemical reaction models), and tasking emergency response personnel by
planning and coordinating evacuation, notifying hospitals, and so on.

Scenario 4. A large-scale Internet game consists of many virtual worlds,
each with its own physical laws and consequences. Each world may have a
large number of inhabitants that interact with one another and move from one
world to another. Each virtual world may expand in an on-demand basis to
accommodate population growth, new simulation technology to model the
physical laws of the world will need to be added, and simulations need to be
coupled to determine what happens when worlds collide.

These scenarios differ in many aspects: the number and type of participants, the
types of activities, the duration and scale of the interaction, and the resources
being pooled. However, they also have much in common. In each case, the
participants who have varying degrees of prior relationship (perhaps none at
all) want to share resources in order to perform some real-world complex
problem within a powerful infrastructure.

4.3 Premises for Computational Grids
Computational approaches to solve various problems have proven their worth
in almost every field of human endeavor. Computers are used for modeling and
simulating complex scientific and engineering problems, diagnosing medical
conditions, controlling industrial equipment, forecasting the weather, managing
stock portfolios, and so on. However, although there are certainly challenging
problems that exceed our ability to solve them, computers are still used much
less extensively than they could be. For example, university researchers make
extensive use of computers when studying the impact of changes in land use on
biodiversity, but city planners selecting routes for new roads or planning new
zoning ordinances do not. Nevertheless, it is local decisions such as these ones
that, ultimately, shape our future.

4.3.1 Technical premises
There are a variety of reasons for this relative lack of use of computational
problem-solving methods, including lack of appropriate education and tools.
But one important factor is that the average computing environment remains
inadequate for such computationally sophisticated goals. Though, the
opportunity to provide users � whether city planners, engineers, or scientists �

 54

with substantially more computational power: an increase of three orders of
magnitude within five years, and five orders in a decade. These dramatic
increases will be achieved by innovations in a wide range of areas (Foster and
Kesselman, 1999):

• technology improvement: evolutionary changes in VLSI technology and
microprocessor architecture can be expected to result in a factor of 10
increase in computational capabilities in the next five years, and a
factor of 100 increase in the next ten;

• increase in demand-driven access to computational power: many
applications have only episodic requirements for substantial
computational resources. For instance, a medical diagnosis system
may be run only when a CT scan is performed, a stock market
simulation when a user re-computes some specific benefits, or a
seismic simulation when an earthquake is studied. If mechanisms are
available to allow reliable, instantaneous, and transparent access to
high-end resources, then from the perspective of these applications it
is as if those resources are dedicated to them. Given the existence of
multiteraFLOPS systems, an increase in apparent computational
power of three or more orders of magnitude is feasible;

• increased utilization of idle capacity - most low-end computers
(workstations or PCs) are often idle, various studies reporting that
around 30% of processor time is used in academic and commercial
environment. Utilization can be doubled, even for parallel programs,
without having a significant effect on productivity. The benefit to
individual users can be substantially greater: factors of 100 or 1000
increase in peak computational capacity have been reported;

• greater sharing of computational results � the daily weather forecast
involves probably 1014 numerical operations. If we assume that the
forecast is of benefit to 107 people, we have 1021 effective operations �
comparable to the computation performed each day on all the
world�s PCs. Few other computational results or facilities are shared
so effectively today, but they may be in the future as other scientific
communities adopt a �big science� approach to computation. The key
for more sharing could be the development of �collaboratories� i.e.
center(s) without walls, in which the researchers can do their research
without regard to geographical location � interacting with colleagues,
accessing instrumentation, sharing data and computational resources,
and accessing information in digital libraries;

• new problem-solving techniques and tools: a variety of approaches can
increase the efficiency with which computation is applied to problem
solving. For instance, network-enabled solvers allow users to invoke
advanced numerical solution methods without having to install
sophisticated software. Teleimmersion techniques facilitate the

 55

sharing of computational results by supporting collaborative steering
of simulation and exploration of data sets.

Underlying each of these advances is the synergistic use of high-performance
networking, computing, and advanced software to provide access to
sophisticated computational capabilities, regardless of the location of both
users and resources.

4.3.2 Financial premises
The new modes of inquiry and application scenarios presented in the preceding
sections will transform the practice of science and engineering. Nevertheless,
achieving these transformations requires major investments in physical
infrastructure (petabyte archival storage, terabit networks, sensor networks,
teraop supercomputers), software infrastructure (grid middleware,
collaboratories), and new application concepts and software. Governments are
realizing the importance of these investments its a means of enabling scientific
progress and enhancing national competitiveness. To this end, major initiatives
are under way worldwide, aimed variously at supporting major science and
research grid projects, establishing and enhancing national grid resources and
instruments, developing grid and middleware technologies, and/or
coordinating and facilitating grid technologies and activities.

John Taylor, Director General of the United Kingdom's Office of Science
and Technology, was an early proponent of this idea, coining in 1999 the term
e-science to denote a new field of endeavor, writing that �e-science is about
global collaboration in key areas of science and the next generation of
infrastructure that will enable it�. He was also successful in obtaining
significant funding to realize his concept. The first phase of the UK e-Science
programme, launched in 2001 with a budget of £120 M over three years, has
established projects spanning many areas of science and engineering. A key
feature of the program is the active engagement of early adopters from
industry: over 80 companies are contributing a total of £30 M in collaborative e-
science projects. The industries represented range from IT, pharmaceutical,
engineering, and petrochemical companies to financial modeling and media.
These projects define middleware infrastructure requirements that far exceed
the capability of present grid middleware. The UK e-Science Core Programme
is tasked with identifying the elements of a generic grid middleware stack that
will not only support UK science but also be of interest to industry. The UK
program revived in 2003 a second investment of about £120 M for a further
three years, till 2006 (eScience, 2007).

In the United Slates, a National Science Foundation (NSF) Blue-Ribbon
Advisory Panel was convened in 2001 to inventory and explore advances in
computational technology and to make strategic recommendations on the
nature and form of programs that the NSF should take in response to
converging technology trends. The Panel observed that digital computation,

 56

data, information, and networks are now increasingly replacing and extending
traditional methods of science and engineering research. In silico simulation
and modeling at new levels of resolution and fidelity arc providing a
complementary approach to scientific exploration to contrast with the
traditional theoretical/analytical and experimental/observational modes. The
Panel states that �a new age has dawned in scientific and engineering research,
pushed by continuing progress in computing, information and communication
technology, and pulled by the expanding complexity, scope, and scale of
today's challenges� and concludes that new technologies have progressed to the
extent that it is now possible to envisage creating a global "cyber infrastructure"
on which new types of scientific and engineering knowledge environments
and "virtual organizations' can be built The realization of such cyber
infrastructure would allow research to be pursued in new ways and with
increased efficiency. The blue-ribbon report recommends that NSF should lead
a large ($1 billion per year), interagency and internationally coordinated
Advanced Cyber infrastructure Program (ACP) to "create, deploy, and apply
cyber infrastructure in ways that radically empower all scientific and
engineering research and allied education.

The European Union's 6th and 7th Framework Programmes (FP6, FP7)
also devote substantial sums to research infrastructure and grid computing,
through their specific programmes, which aim to �to optimize the use and
development of the best research infrastructures existing in Europe.
Furthermore, it aims to help to create new research infrastructures of pan-
European interest in all fields of science and technology. The European
scientific community needs these to remain at the forefront of the advancement
of research, and they will help industry to strengthen its base of knowledge and
technological know how�. In the case of FP7, the specific program is called
�Research Infrastructure� and the budget is � 1.8 billion for funding this theme
over the duration of FP7 (2007-2013) (FP7, 2007).

Within the scope of this European Community action, the term �research
infrastructures� refers to facilities or resources that provide essential services to
the scientific community for basic or applied research in all scientific and
technological fields. Such research infrastructures may be �single-sited� or
distributed (a network of resources). Including the associated human resources,
this definition covers:

! major equipment or sets of instruments used for research purposes;
! knowledge-based resources such as collections, archives, structures

information or systems related to data management, used in research;
! enabling Information and Communication Technology-based

infrastructures such as Grid, computing, software and
communications;

! any other entity of a unique nature that is used for scientific research.

 57

The optimization, or emergence, of research infrastructures with a clear
European dimension and added value in terms of performance and access will
be considered for support. These infrastructures must contribute significantly to
the development of European research capacities. The activities to be supported
are identified under three main lines of action as described below:

1. Optimizing the utilization of existing research infrastructures and
improving their performance. The objective is to strengthen European
capacities and performance of specific research infrastructures, and
increase user communities' involvement in opportunities offered by
research infrastructures and their commitment towards investment in
top-level research. This line of action represents the majority of the
efforts (more than 60% of the operational funds) to be carried out
under this part of the Specific Programme 'Capacities'. Support will
be provided for integrating activities to structure better, on a
European scale, the way research infrastructures operate in a given
field, to foster their joint development in terms of capacity and
performance and to promote their coherent and cross-disciplinary
use. Emphasis should be given to the efficient and coordinated
implementation of trans-national access and service activities, to
ensure that European researchers, including researchers from
industry and SMEs, may have access to the best research
infrastructures to conduct their research, irrespective of their location.
This action is both a bottom-up and a targeted approach:
- bottom-up to respond to the needs of the scientific community in

all fields of science and technology, without any preference for
one field over another;

- targeted to respond to the strategic research needs of the thematic
priority areas and thereby strengthen the consistency of actions
within the FP7.

2. Strengthening research e-infrastructures by fostering further development
and global connectivity of high-capacity and high-performance
communication and grid-empowered infrastructures, and by reinforcing
distributed supercomputing and data storage facilities. The aim is to
develop a new research environment, building upon the capabilities
of GÉANT, the multi-gigabit pan-European data communications
network reserved specifically for research and education and existing
grid infrastructures, in which all scientists have easy-to-use,
controlled access, regardless of their location in the world. It will be
necessary to support, in a coordinated way, digital libraries, archives,
data storage and curation activities and the essential pooling of
resources at European level. Finally, the activities aim at fostering the
adoption of e-infrastructures by user communities where
appropriate, enhancing their global relevance and increasing the level
of trust and confidence. The development of new research

 58

infrastructures of pan-European interest, will build primarily on the
work of the 'European strategy forum on research infrastructures'
(ESFRI), which aims to promote the creation of new research
infrastructures with a crucial and pan-European impact for the
development of relevant scientific fields of science and technology,
and to be able to help industry to strengthen its knowledge base and
technological know-how. This action will also examine the
opportunities for exploiting the potential of scientific excellence of the
converging and outermost regions through new infrastructures. This
line of action represents about one third of the total financial
resources available for in this part of the Specific Programme
'Capacities'. Support will be provided for designs investigated for
new research infrastructures that demonstrate a clear European
dimension and interest, through a bottom-up approach of 'calls for
proposals' and construction of critical new research infrastructures,
building upon the work conducted by the ESFRI on the development
of a European roadmap for new research infrastructures. This activity
will follow a two-stage approach. The first phase will involve the
preparation of the detailed construction plans, of the legal
organization, of the management and multi-annual financial planning
and the final agreement between stakeholders. In the second stage,
the construction plans will be implemented with the possible
involvement of private financial institutions, building on the
achieved technical, legal and financial agreements.

3. Support measures for policy development and programme implementation,
including support for emerging needs. Strong coordination within the EU
in formulating and adopting a European policy on research
infrastructures is the key to the success of this activity. Throughout
the whole programme there will be measures to enhance the
effectiveness and coherence of national and Community research
policies and the development of international co-operation.

These activities will be carried out mainly following periodic 'calls for
proposals' that aim to stimulate the coordination of national programmes
through ERA-NET actions and support the work of ESFRI and 'e-infrastructure
reflection group' (eIRG). In the context of international co-operation, they will
also allow the identification of the needs of specific third countries and mutual
interests on which specific co-operation actions could be based and, on the basis
of targeted calls, the development of cross-links between key research
infrastructures in third countries and those within the European Research Area
(ERA) (FP7, 2007).

 59

4.3.3 Experiencing premises
For the time being, there are some remarkable American and European
experiences in development of grid computing solutions that will be presented
further on. Similar initiatives are underway in Japan, Singapore, and China.
Although active research on grid technology has been conducted
among various countries, mainly in European countries and USA, research in
Japan is rather behind compared with these countries. Though, in the meantime
the interest of the people in Japan is rapidly getting higher, and it is
commonly and basically recognized that it is necessary to accelerate the grid
research (JPGRID, 2007).

Through developing corresponding grid middleware and cooperating
with the application of Network Computer, ChinaGrid aims to
integrate heterogeneous mass resources distributed in the China Education and
Research Network (CERNET), shares those resources in the CERNET
environment effectively and avoids the resource islands, provides
useful services, finally forms the public platform for research and education
in China (ChinaGRID, 2007).

gLite is the next generation lightweight middleware for grid computing.
Born from the collaborative efforts of more than 80 people in 12 different
academic and industrial research centers as part of the EGEE Project, gLite
provides a framework for building grid applications tapping into the power of
distributed computing and storage resources across the Internet (gLite, 2008).
gLite middleware is currently deployed on hundreds of sites as part of the
EGEE project and enables global science in a number of disciplines, notably
serving the LCG project (LCG, 2008). The EGEE project brings together experts
from over 27 countries with the common aim of building on recent advances in
Grid technology and developing a service Grid infrastructure which is available
to scientists 24 hours-a-day. The project aims to provide researchers in
academia and industry with access to major computing resources, independent
of their geographic location. The EGEE project will also focus on attracting a
wide range of new users to the Grid. The project primarily concentrates on
three core areas (EGEE, 2008):

• The first area is to build a consistent, robust and secure Grid network
that will attract additional computing resources.

• The second area is to continuously improve and maintain the
middleware in order to deliver a reliable service to users.

• The third area is to attract new users from industry as well as science and
ensure they receive the high standard of training and support they need.

The EGEE Grid is being built on the EU Research Network GÉANT and exploit
Grid expertise generated by many EU, national and international Grid projects
to date. Funded by the European Commission, the EGEE project community
has been divided into 12 partner federations, consisting of over 70 contractors

 60

and over 30 non-contacting participants covering a wide-range of both scientific
and industrial applications.

The work being carried out in the project is organized into 11 activities.
Two pilot application domains were selected to guide the implementation and
certify the performance and functionality of the evolving infrastructure. One is
the Large Hadron Collider Computing Grid supporting physics experiments
and the other is Biomedical Grids, where several communities are facing
equally daunting challenges to cope with the flood of bioinformatics and
healthcare data. With funding of over 30 million Euro from the European
Commission, the project is one of the largest of its kind. EGEE is a two-year
project conceived as part of a four-year programme (2004-2008), where the
results of the first two years will provide the basis for assessing subsequent
objectives and funding needs.

NorduGrid/ARC is a Grid Research and Development collaboration
aiming at development, maintenance and support of the free Grid middleware,
known as the Advance Resource Connector (ARC). The NorduGrid
collaborative activity is based on the success of the project known as the
"Nordic Testbed for Wide Area Computing and Data Handling", and aims at
continuation and development of its achievements. That project was launched
in May 2001, aiming to build a Grid infrastructure suitable for production-level
research tasks. The project developers came up with an original architecture
and implementation, which allowed the testbed to be set up accordingly in May
2002, and remain in continuous operation and development since August 2002.
The aim of the NorduGrid collaboration is to deliver a robust, scalable, portable
and fully featured solution for a global computational and data Grid system.
NorduGrid develops and deploys a set of tools and services � the so-called ARC
middleware, which is a free software. The goals are (NorduGrid, 2008):

• Develop and support the ARC middleware.
• Coordinate contributions to the ARC code.
• Define strategical directions for development of the ARC middleware

following latest tendencies in the Grid technologies.
• Promote ARC middleware solutions in such areas as Grid development,

deployment and usage.
• Contribute to development of Grid standards, e.g. via GGF.

UNICORE (Uniform Interface to Computing Resources) offers a ready-to-run
Grid system including client and server software. UNICORE makes distributed
computing and data resources available in a seamless and secure way in
intranets and the Internet. UNICORE has special characteristics that make it
unique among Grid middleware systems. The UNICORE design is based on
several guiding principles that serve as key objectives for further enhancements
(UNICORE, 2008):

http://www.nordugrid.org/middleware
http://www.nordugrid.org/documents/nordugrid-final.pdf
http://www.nordugrid.org/middleware/
http://www.nordugrid.org/middleware/
http://www.ggf.org/

 61

• Abstraction: UNICORE users need not know details about the system that
they use. UNICORE provides abstractions for concepts such as
application software and storage locations. Thus, UNICORE allows
seamless access to heterogeneous environments;

• Security: UNICORE offers strong security based on industry standards
such as the X.509 PKI. Communication over the Internet is protected by
mutual authentication;

• Site autonomy: when making resources available on the Grid,
administrators keep fine-grained control about their resources. Local
policies are respected;

• Ease of use: A powerful GUI client covers the most common usage
scenarios, e.g application execution and multi-step, multi-site workflows;

• Ease of installation: UNICORE is simple to install, with minimal external
dependencies. Quick start bundles exist that allow getting
up-and-running quickly.

The development of the UNICORE system was initiated in 1997 to enable
German supercomputer centers to provide their users with a seamless, secure,
and intuitive access to their heterogeneous computing resources. As in the case
of the Globus Toolkit, UNICORE was started before �Grid computing�
became the accepted new paradigm for distributed computing (Foster and
Kesselman, 1999). The UNICORE vision was proposed to the German Ministry
for Education and Research (BMBF) and received funding. A first prototype
was developed in the "UNICORE" project. The foundations for the current
production version were laid in the follow-up project "UNICORE Plus", which
was successfully completed in 2002. In recent years, UNICORE has undergone a
major restructuring and re-implementation of core components. This has been
done in the European UniGrids project. Now, UNICORE is based on Web
Services as proposed by the Open Grid Services Architecture maintained by the
Open Grid Forum. In fact, UNICORE 6 is the most up-to-date implementation
of the core specifications (such as WS-RF).

MiG - Minimum intrusion Grid is an attempt to design a new platform
for Grid computing which is driven by a stand-alone approach to Grid, rather
than integration with existing systems. The goal of the MiG project is to provide
Grid infrastructure where the requirements on users and resources alike is as
small as possible (minimum intrusion). MiG strives for minimum intrusion but
will seek to provide a feature rich and dependable Grid solution (MiG, 2008).

MiG's main features (when fully implemented) will be as follows:
minimum intrusion on user and resource, few dependencies on user and
resource, scalable, autonomous - updating grid without user/resource software,
anonymous - users and resources can't see identity of each other if desired, fault
tolerance, load balancing, firewall compliant, strong scheduling (grid level),
simple implementation, cooperative support (user-defined data-structures), and
banking/accounting. MiG sandboxes make it easy to donate the spare

 62

computing power in your computer to scientific research. Sandboxes provides a
secure execution environment, which ensures that your computer is in no
danger for being exposed for virus or other malware from the work it performs
for the Grid. The sandbox also makes sure that both the personal files and other
information cannot be seen by the Grid. Thus the name sandbox, the Grid really
cannot see or access anything outside the sandbox. In MiG, there are 3 ways to
contribute to the researchers work and still be fully protected by the sandboxes:
One-Click, MiG-SSS, and MiG-PS3.

WebCom-G is a fledgling Grid Operating System, designed to provide
independent service access through interoperability with existing middlewares
(Morrison et al., 2004). Metacomputing systems were developed to harness the
power of geographically distributed computing resources. Such resources
generally consisted of machines connected to intranets, the Internet and World
Wide Web. WebCom separates the application and execution environments by
providing both an execution platform, and a development platform. The
independence provided by separating these two environments facilitates
computation in heterogeneous environments. WebCom uses a server/client
model for task distribution. Clients consist of Abstract Machines (AM�s) that
can be either pre-installed or downloaded dynamically form a WebCom server.
AM�s are uniquely comprised of both volunteers and conscripts.

Volunteers donate compute cycles by instantiating a web-based
connection to a WebCom server and dynamically downloading the client
abstract machine. These clients, constrained to run in the browsers� sandbox,
will execute tasks on behalf of the server. Task communication is carried out
over dedicated sockets. Pre-installed clients, also communicate over dedicated
sockets. Upon receipt of a task representing a Condensed Graph (the task can
be partitioned for further distributed execution), such clients are promoted to
act as other WebCom servers. The returning of a result causes a promoted AM
to be demoted, and act as a simple client once more. The execution platform
consists of a network of dynamically managed machines, each running
WebCom. WebCom can assume a traditional client server connection model or
the more contemporary peer-to-peer model. WebCom sees each abstract
machine as a �unit�. Each unit contains a number of modules. The modules
include an execution engine module and others for communication, load
balancing, fault tolerance, scheduling and security. These modules are plugins
to a backplane. Communications between WebCom units use a messaging
system. Plugins can send messages between themselves on the local unit or to
any plugin on other connected units. The default engine module is capable of
executing Condensed Graphs applications.

By using WebCom, a whole grid can be viewed as a single WebCom unit
with a specific computation engine plugin. This evolution of WebCom is the
first step of producing a grid-enabled middleware: WebCom-G. Multiple grids
are themselves viewed as independent WebCom-G units. When an instruction
is sent to WebCom-G all the information is supplied to either dynamically

 63

create or invoke an RSL script or to execute the job directly. When a WebCom-G
unit receives an instruction it is passed to the grid engine module. This module
unwraps the instruction, creates the RSL script and directs the gatekeeper to
execute it. Once the Gatekeeper has completed execution, the result is passed
back to the unit that generated the instruction. As WebCom-G uses the
underlying grid architectures, failures are detected only at the higher level. In
this case WebCom-G�s fault tolerance will cause the complete job to be re
scheduled. A WebCom compute engine plugin is implemented as a module
that interacts with WebCom via a well-defined interface. This gives a platform
independent grid compute engine. Although a Condensed Graph may be
developed on a platform that is not grid enabled, the execution of grid
operations will be targeted to grid-enabled platforms. The WebCom-G
Operating System is proposed as a Grid Operating System. It is modular and
constructed around a WebCom kernel, offering a rich suite of features to enable
the Grid. It will utilize the tested benefits of the WebCom metacomputer and
will leverage existing grid technologies such as Globus and MPI. The aim of the
WebCom-G OS is to hide the low level details from the programmer while
providing the benefits of distributed computing.

Office Grid relies on the fact that the concept of grids of office
computers is especially desirable for many enterprises. One can look at a
department or division in a corporation as a computational unit. The structure
of today�s businesses implies a heterogeneous setup and machine park, and
centralized management. In addition the internal network of computers in an
office is normally trusted and thought of as secure. The centralized
management and the trusted status of the computers make the task of joining
the power of the office computers more manageable, while the heterogeneous
nature of the network is an obstacle. The vision of Office Grid is to allow for the
constructive use of these hours of wasted time. OfficeGRID glues this pool of
unused computational power together, thus making in possible to utilize the
unused 75% (or more) computer time. OfficeGRID contains a system that allows
the user to start jobs that run on many computers with a single OfficeGRID
command and collect the results on his local computer, thereby giving him an
easy way to use the grid of office computers as a supercomputer.

OfficeGRID can be run explicitly at any time or it can be limited to run
when the screen saver on a given computer is running - that is, when the user is
not using it. This gives the possibility to ensure that OfficeGRID will not bother
the user, while still running more than 75% of the time. OfficeGRID BLAST is
an OfficeGRID application, which has been developed by using the OfficeGRID
Development Package. BLAST is an algorithm that is used to compare
biological sequences, such as DNA sequences of different genes or the amino-
acid sequence of different proteins. Several computer programs that implement
the BLAST algorithm has been created, but generally these BLAST
implementations are not built to run in parallel on several computational hosts.
This is a problem because BLAST normally has a very long running time and

 64

requires a lot of memory to run efficiently. OfficeGRID BLAST is a
parallellization of NCBI BLAST, which is developed by the U.S. National Center
for Biotechnology Information. There is both a Windows and a Linux version
of the OfficeGRID Development Package available and complete
interoperability of the two is possible. This makes it possible to develop
OfficeGRID applications that will run on both the Windows and the Linux
operating system as well as a mix of them. It could be used also for Mac OSX or
Solaris (Office Grid, 2008).

The Globus Toolkit is an open source software toolkit used for building
Grid systems and applications. The Globus Alliance and many others all over
the world are developing it. A growing number of projects and companies are
using the Globus Toolkit to unlock the potential of grids for their cause.
The Globus Alliance is a community of organizations and individuals developing
fundamental technologies behind the "Grid," which lets people share
computing power, databases, instruments, and other on-line tools securely
across corporate, institutional, and geographic boundaries without sacrificing
local autonomy. The Globus Alliance is an active member in the community of
Grid Software developers. As partners in e-Science and e-Business projects,
they have built Grid Solutions for a variety of challenges that come up when
people share resources. The open source Globus Toolkit is a fundamental
enabling technology for the "Grid," letting people share computing power,
databases, and other tools securely online across corporate, institutional, and
geographic boundaries without sacrificing local autonomy. The toolkit includes
software services and libraries for resource monitoring, discovery, and
management, plus security and file management. In addition to being a central
part of science and engineering projects that total nearly a half-billion dollars
internationally, the Globus Toolkit is a substrate on which leading IT companies
are building significant commercial Grid products.

The toolkit includes software for security, information infrastructure,
resource management, data management, communication, fault detection, and
portability. It is packaged as a set of components that can be used either
independently or together to develop applications. Every organization has
unique modes of operation, and collaboration between multiple organizations
is hindered by incompatibility of resources such as data archives, computers,
and networks. The Globus Toolkit was conceived to remove obstacles that
prevent seamless collaboration. Its core services, interfaces and protocols allow
users to access remote resources as if they were located within their own
machine room while simultaneously preserving local control over who can use
resources and when. The Globus Toolkit has grown through an open-source
strategy similar to the Linux OS, and distinct from proprietary attempts at
resource-sharing software. This encourages broader, more rapid adoption and
leads to greater technical innovation, as the open-source community provides
continual enhancements to the product.

http://www.globus.org/toolkit/

 65

The Globus Alliance and the Globus Toolkit have enabled many exciting new
scientific and business applications, as it is presented further on (Globus, 2007).
Computational scientists at Brown University are using the Globus Toolkit and
MPICH-G2 to simulate the flow of blood through human arteries. Globus
Toolkit-driven Grid computing is central to management of large datasets
generated by colliders such as those at CERN (LCH, 2007). The Southern
California Earthquake Center uses Globus software to visualize earthquake
simulation data. Scientists simulate earthquakes by calculating the effect of
shock waves as they propagate through various layers of a geological model.
SCEC simulations cover a very large space with very high resolution and can
generate up to 40TB of data per simulation run. Scientists in the National
Fusion Collaboratory are learning to use the Access Grid and Globus Web
services to participate remotely in pulsed plasma fusion experiments. The
remote interface provides sensor readings, data analysis, audio, and video
available in the control room and allows the team to discuss what is happening.
The Access Grid is integrated with Grid services and applications using the
Globus Toolkit's security and communication libraries.

Physicists used the Globus Toolkit and MPICH-G2 to harness the power
of multiple supercomputers to simulate the gravitational effects of black hole
collisions. The team, which included researchers from Argonne National
Laboratory, the University of Chicago, Northern Illinois University, and the
Max Planck Institute for Gravitational Physics in Germany, was awarded a
prestigious Gordon Bell prize for its work. Scientists in the Earth System Grid
(ESG) are producing, archiving, and providing access to climate data that
advances our understanding of global climate change. ESG uses Globus
software for security, data movement, and system monitoring.

4.4 Computational Grid Definition

The current status of computation is analogous in some respects to that of
electricity at its beginnings. At that early time (around 1910), electric power
generation was possible, and new devices that depended on electric power
were becoming available, but the need for each user to build and operate a new
generator hindered use. The truly revolutionary achievement has not been, in
fact, electricity, but the electric power grid and the associated transmission and
distribution technologies. Together, these revolutionary developments
provided reliable, low-cost access to a standardized service, with the result that
power that, for most of the human history has been accessible only in non-
portable forms (human effort, horses, steam engines, water power etc.), has
become universally accessible. By permitting both individuals and industries to
take for granted the accessibility of cheap, reliable power, the electric power
grid has made possible both new devices and the new industries that
manufactured them.

http://www.niu.edu/mpi/
http://www.scec.org/
http://www.scec.org/
http://www.fusiongrid.org/
http://www.fusiongrid.org/
http://www.accessgrid.org/
http://www-unix.mcs.anl.gov/~pieper/SUCCESS/gordon01.html
http://www.earthsystemgrid.org/
http://www.earthsystemgrid.org/
http://www-unix.globus.org/solutions/purse/
http://www-unix.globus.org/solutions/system_monitoring/

 66

Analogously, the term of computational grid can be adopted for the
infrastructure that will enable the increases of computation presented above.
An early attempt to define a computational grid states that is a hardware and
software infrastructure that provides dependable, consistent, pervasive, and inexpensive
access to high-end computational capabilities (Foster and Kesselman, 1999).
Infrastructure is needed because the computational grid is concerned, above all,
with large-scale pooling of resources, whether compute cycles, data, sensors
and people. Such performant pooling requires significant hardware
infrastructure to get hold of the necessary interconnections and software
infrastructure to monitor and control the resulting assembly.

The requirement for dependable service is fundamental. Users need
assurances that they will receive predictable, sustained, and high levels of
performance from the various components that constitute the grid. In the
absence of these guarantees, application will not be written or used. The
performance characteristics that are of interest will vary widely from
application to application, but may include network bandwidth, latency, jitter,
computer power, software services, reliability and security.

The need for consistency of service is an essential concern as well.
As with electric power, we need standard services, which are accessible via
standard interfaces, and operating within standard parameters. Without such
standards, pervasive use and application development are unrealistic. A
significant challenge when developing standards is to encapsulate
heterogeneity without compromising high performance execution.

Pervasive access provides services that are always available, within
whatever environment we expect to move. Pervasiveness does not, of course,
imply that resources are everywhere or are universally accessible. Similar to
electricity services, computational grids will have circumscribed availability
and access. Finally, the grid must offer inexpensive access if it is to be broadly
accepted and used.

It is the combination of dependability, consistency and pervasiveness
that will cause computational grids to have a transforming effect on how
computation is performed and used. By increasing the set of capabilities that
can be taken for granted to the extent that they are noticed only by their
absence, grids allow new tools to be developed and widely deployed.
Computational grids have the potential to change fundamentally the way we
think about and relate to computation and resources.

The term "the Grid" was coined in the mid-1990s to denote a (then)
proposed distributed computing infrastructure for advanced science and
engineering. Much progress has since been made, on the construction of such
an infrastructure and on its extension and application to commercial computing
problems. And while, the term �Grid� has also been on occasion conflated to
embrace everything from advanced networking and computing clusters to
artificial intelligence, there has also emerged a good understanding of the

 67

problems that grid technologies address, and at least a first set of applications
for which they are suited (Foster and Kesselman, 1999).

Grid concepts and technologies were originally developed to enable
resource sharing within scientific collaborations, first within early gigabit/sec
testbeds and then on increasingly larger scales. Applications in this context
include distributed computing for computationally demanding data analyses
(pooling of compute power and storage), the federation of diverse distributed
datasets, collaborative visualization of large scientific datasets (pooling of
expertise), and coupling of scientific instruments with remote computers and
archives (increasing functionality as well as availability). A common theme
underlying these different usage modalities is a need for coordinated resource
sharing and problem solving in dynamic, multi-institutional virtual
organizations. More recently, it has become clear that similar requirements arise
in commercial settings, not only for scientific and technical computing
applications but also for commercial distributed computing applications,
including enterprise application integration and business-to-business partner
collaboration over the Internet.

A more recent definition of Grid states it is a system that coordinates
distributed resources using standard, open, general-purpose protocols and
interfaces to deliver nontrivial qualities of service. Let us examine the key
elements of this definition (Foster and Kesselman, 2004):

• Coordinates distributed resources - a Grid integrates and coordinates
resources and users that live within different control domains - for
example, the user's desktop versus central computing, different
administrative units of the same company, and/or different
companies - and addresses the issues of security, policy, payment,
membership, and so forth that arise in these settings. Otherwise, we
are dealing with a local management system;

• Using standard, open, general-purpose protocols and interfaces - a Grid is
built from multipurpose protocols and interfaces that address such
fundamental issues as authentication, authorization, resource
discovery, and resource access. As we discuss in material to follow,
it is important that these protocols and interfaces be standard and
open. Otherwise, we are dealing with an application-specific system;

• To deliver nontrivial qualities of service - a Grid allows its constituent
resources to be used in a coordinated fashion to deliver various
qualities of service, relating, for example, to response time,
throughput, availability, and security - and/or co-allocation of
multiple resource types to meet complex user demands, so that the
utility of the combined system is significantly greater than that of the
sum of its parts.

 68

The second point is of particular importance. Standard protocols (and interfaces
and policies) allow us to establish resource-sharing arrangements dynamically
with any interested party and thus to create something more than a plethora of
balkanized, incompatible, non-interoperable distributed systems. Relevant
standards are being developed rapidly within the Global Grid forum and other
bodies (Globus, 2007). For an entity to be part of the Grid it must implement
these inter-Grid protocols, just as to be part of the Internet an entity must speak
IP (among other things).

Both open source and commercial products can interoperate effectively
in this heterogeneous, multivendor Grid world, thus providing the pervasive
infrastructure that will enable successful Grid applications. In the Internet, it is
not uncommon that a specific set of hosts is disconnected from other hosts
within an Intranet. However, this partitioning occurs as a result of policy and
not because of implementation. In general, all networked computers use
TCP/IP and its associated protocols; and despite these policy restrictions, we
still talk about a single Internet.

Similarly, we speak about the Grid as a single entity, even though
different organizations and communities use Grid protocols to create
disconnected Grids for specific purposes. As with the Internet, it is policy issues
(e.g., security, cost, operational mode), not implementation issues that prevent a
service or resource from being accessible. The success of the Grid to date owes
much to the relatively early emergence of clean architectural principles, de facto
standard software, aggressive early adopters with challenging application
problems, and a vibrant international community of developers and users.

4.5 Short Taxonomy of Grid Applications
The history of network computing shows that orders-of-magnitude
improvements in underlying technology, invariably enable revolutionary, often
unanticipated applications of that technology, which in turn motivate further
technological improvements. The integrated computational grids are expected
to provide dependable and pervasive computational capabilities and consistent
interfaces. The applications will follow this revolutionary path. There are
several major classes of grid applications: high-throughput computing,
distributed supercomputing, on-demand computing, data intensive computing
and collaborative computing (Foster and Kesselman, 1999).

In high-throughput computing (desktop grid computing) the grid is used to
schedule large numbers of loosely coupled or independent tasks with the goal
of putting unused processor cycles to work, much often those cycles coming
from idle workstations. The result may be, as in distributed supercomputing,
the focusing of available resources on a single problem. The quasi-independent
nature of the involved tasks leads to very different types of problems and
problem-solving methods. Such a system is Condor from the University of
Wisconsin, which is used to manage pools of hundreds of workstations at

 69

universities around the world. These resources have been used for studies as
diverse as ground-penetrating radar, design of diesel engines or various
molecular simulations of liquid crystals. Cryptographic problems or design of
the processors are other common applications.

Distributed supercomputing applications use grids to aggregate substantial
computational resources in order to tackle problems that cannot be solved on a
single system. Depending on the grid on which one works, these aggregated
resources might include the majority of supercomputers in a country or simply
all of the workstations within a company. Some examples include distributed
interactive or complex physical processes simulations. Distributed interactive
simulation is a technique used for training and planning in the military.
Realistic scenarios may involve hundreds of thousands of entities, each having
potentially complex behavior patterns. Complex physical processes require
high spatial and temporal resolution in order to resolve fine-scale detail.
Although high latencies can pose significant difficulties, coupled
supercomputers have been used successfully in climate modeling, cosmology,
and high-resolution computational chemistry applications.

On-demand applications need grid capabilities to meet short-term
requirements for resources (software, data repositories, sensors, and so on) that
cannot be cost-effectively or conveniently positioned locally. In contrast to
distributed supercomputing, these applications are often driven by cost-
efficiency concerns rather than absolute performance. Such applications include
a system developed at the Aerospace Corporation for processing of data from
meteorological satellites that uses dynamically acquired supercomputer
resources to deliver the result of a cloud detection algorithm to remote
meteorologists in quasi real time. The NEOS and NetSolve network-enhanced
numerical solver systems allow users to couple remote software and resources
into desktop applications, dispatching to remote servers calculations that are
computationally demanding or that require specialized software. A computer-
enhanced MRI machine and scanning tunneling microscope developed at the
National Center for Supercomputing Applications use supercomputers to
achieve real-time image processing.

In data-intensive applications, the spotlight is on synthesizing new
information from data that is maintained in geographically distributed
repositories, digital libraries and databases. The synthesis process is habitually
computationally and communication intensive as well. Future high-energy
physics experiments will generate terabytes of data per day, or around a
petabyte per year. The complex queries that are used to detect attention-
grabbing events may need to access large fractions of this data. The scientific
collaborators who will access this data are widely distributed, and hence the
data systems in which data is placed are likely to be distributed as well. Modern
meteorological forecasting systems make extensive use of data assimilation to
incorporate remote satellite observations. The process involves the movement
and processing of many gigabytes of data. The Digital Sky Survey will make

 70

also many terabytes of astronomical photographic data, which will be available
in numerous network-accessible databases. This facility provides for new
approaches to astronomical research that are based on distributed analysis,
assuming that suitable computational grid facilities exist.

Collaborative computing applications are concerned primarily with enabling
and enhancing human-to-human interactions and sharing. Such applications
are often structured in terms of a virtual shared space. Many collaborative
applications are concerned with making possible the shared use of
computational resources such as data archives and simulations. Moreover, such
applications have common features with other application classes, which are
presented above. For example, the CAVE5D system supports both remote,
collaborative exploration of large geophysical data sets and the models that
generate them. The BoilerMaker system developed at Argonne National
Laboratory allows multiple users to cooperate on the design of emission control
systems in industrial incinerators. The different users interact with each other
and with a simulation of the incinerator. The NICE system from University of
Illinois at Chicago permits children to participate in the creation and
maintenance of realistic virtual worlds, for entertainment and education. The
grid use scenarios are also included in this class of applications.

Sharing is not simply document exchange, it can rather involve direct
access to remote software, computers, data, sensors, and other resources. For
example, members of a consortium may provide access to specialized software
and data and/or share their computational resources. More abstractly, what
these collaborative application domains have in common is a need for
coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations.

The sharing that Grid is concerned with is direct access to computers,
software, data, and other resources, as it is required by a range of collaborative
problem-solving and resource-brokering strategies emerging in industry,
science, and engineering. This sharing is highly controlled, with resource
providers and consumers defining clearly and carefully just what is shared,
who is allowed to share, and the conditions under which sharing occurs.

A set of individuals and/or institutions defined by such sharing rules
form what we call a Virtual Organization (VO), a concept that is becoming
fundamental to modern computing world. VOs enable disparate groups of
organizations and/or individuals to share resources in a controlled fashion, so
that members may collaborate to achieve a shared goal. As the examples show,
VOs can vary greatly in their purpose, scope, size, duration, structure,
community, and sociology (Foster and Kesselman, 2004). Nevertheless, a broad
set of common concerns and technology requirements can be identified.

In particular, we see a need for highly flexible sharing relationships,
ranging from client-server to peer-to-peer; for sophisticated and precise levels
of control over how shared resources are used, including fine-grained and
multistakeholder access control, delegation, and application of local and global

 71

policies; for sharing of varied resources, ranging from programs, files, and data
to computers, sensors, and networks; for virtualization of resources as services,
so that diverse capabilities can be delivered in standard ways, without regard to
physical location and implementation; and for diverse usage modes, ranging
from single-user to multi-user and from performance-sensitive to cost-sensitive
and hence embracing issues of quality of service, scheduling, co-allocation, etc.

To conclude this sections three remarks are necessary: first, we should
notice that a large variety of successful grid applications exists already and that
has been possible despite of the significant difficulties faced by developers of
grid applications, in the absence of a mature grid infrastructure. As this will
evolve, the range and sophistication of applications is expected to increase
tremendously. Secondly, we must point out that almost all of the previous
presented applications crave for computational resources that will not be
provided by expected growth in single-system performance. This emphasizes
the importance of grid technologies which will allow sharing of computation,
data access and communication medium. Finally, we notice that many of the
above applications are interactive, or dependable on tight synchronization with
computational component. Therefore, the grid infrastructure is expected to
provide for robust performance guarantees.

4.6 Grid�s Integrability, Efficiency and Quality of Services
The plethora of powerful technologies emanating from the industry's
laboratories will let us do new and great things, but realizing that potential
depends on our ability to integrate these technologies. Such integration will
grow increasingly easier as open standards become more and more common.
Historically, the success of most technologies has depended on the availability
of a small number of commonly agreed-upon standards. IT today is moving in
the same way, especially with the increase of open standards and the growing
trend toward open source software -be it Linux, Grid protocols or Web services.
Standardization has the feel of historical inevitability, because it is the only way
to integrate that incredibly diverse abundance of technologies. Standards bring
the kind of flexibility and modularity that allow technology to be absorbed and
managed smoothly, that make it commonplace and unremarkable and permit
people to pay attention to what it does, rather then what it is.

The cause of Grid standards took a major step forward in 2002, as open
Grid protocols were brought together with Web services in the Open Grid
Services Architecture (OGSA), which represents an evolution towards a Grid
system architecture based on Web services concepts and technologies and is
provided by GLOBUS (Globus, 2007). The Grid allows people share computing
power, databases, and other on-line tools securely across corporate,
institutional, and geographic boundaries without sacrificing local autonomy.
Web services' XML-based technologies, such as WSDL, UDDI, and SOAP, can
now be used as the language in which to express Grid protocols. Clearly, this

 72

development indicates levels of integration inconceivable just a few years ago,
integration at every level that is increasingly dynamic. Such integration will be
a major step forward for e-enterprises of any kind. Organizations, universities,
departments, divisions, people, and processes will be united as never before.
Together, they will be capable of prompt action and reaction, of quickly
forming alliances with other organizations, companies or individuals in search
of common interests. Standardization and integration, however, are not
synonymous with simplicity. The ever-growing volume of technology and the
constant spreading out of a heterogeneous infrastructure, no matter how
smoothly integrated, lead to profound levels of complexity. And while, the
availability of technology and growing standardization continue to push IT
toward mass adoption in a post-technology era, the industry must find ways to
deal with that complexity, keep it from intruding on the user, and make the
infrastructure perform efficiently.

Efficiency poses the same challenge, on a smaller scale, that the IT
industry faced in earlier times, when systems like mainframes addressed one
job at a time and operating systems were relatively simple. However,
computers and their applications eventually had to be shared among many
users, and with sharing the efficient allocation of physical resources became
extremely tricky. The solution to this problem stands as one of the more
influential breakthroughs in the history of computer science. It was the notion
of virtualization that, fueled by increasingly powerful and sophisticated
operating systems, provided people with their own machines - virtual systems,
consisting of virtual I/O, virtual memory, and virtual storage. Virtualization
has enabled people to share an expensive and complex resource, as well as the
applications and data they were all working with, without worrying about
what was there physically, how it did what it did, or even where it was.
Increasingly sophisticated operating systems allowed users to invoke a service
that then provided and managed the resources needed by these users.

Thirty or so years ago, virtualization within a single system capitalized
on a very expensive resource by making it available to users without their
needing a deep knowledge of programming in order to use it. Today, the
challenge is to virtualize computing re-sources over the Internet. This is the
essence of Grid computing, and applying a layer of open Grid protocols to
every local operating system, for example, Linux, Windows, AIX, Solaris, and
z/OS are accomplishing it. Thus, we will make the sharing of resources over the
Internet (or through a private intranet) a reality, while also hiding the vast,
complex, global Infrastructure supporting the user.

That transparency is essential to accelerate the move to the post-
technology era while enabling businesses and other institutions to make the
most of substantial investments in heterogeneous systems. Moreover, since
grids bring to bear not just the resources immediately at hand but also those
that are distributed all over the world, users on become more productive,
paying further dividends on an enterprise's investment in people and

 73

technology. Increased efficiency is the reason so many are turning to open grid
protocols to share resources.

In addition to a much more integrated environment and marked
increases in efficiency attributable to a shared infrastructure, we can expect
considerable, though gradual, gains in the quality of service provided to the
enterprise. This will be due primarily to the increasingly autonomic
characteristics that will characterize the infrastructure. For the colossal volumes
of technology being produced every year to be useful to a human activity or
undertaking, all this new, sophisticated technology must be integrable, efficient
and manageable. It must get to its users smoothly and quietly, almost unnoticed
because it is delivered with a superb quality of service. Grids, because their
open standards are running on every system in the infrastructure, will enable
increasingly sophisticated levels of integration and management for distributed
resources, and the delivery of a great quality-of-service.

Certainly, the level of management today leaves much to be desired,
especially in the world of distributed computing and the Internet. In fact, it is a
grand challenge for the industry, which must bring to bear more and more
sophisticated technologies to provide a very high quality of service at an
affordable price. The answer lies in creating highly sophisticated, end-to-end
resource management. The system itself should be able to schedule not just one
computer at a time but also multiple computers along the path of a particular
transaction, enabling truly global collaboration.

For the different nodes to collaborate (whether for availability,
scheduling, or anything else), they must exchange information. All the nodes in
the infrastructure must be addressed as if by a single operating system
managing the resources under its control, the difference being that unlike the
resources addressed by a conventional operating system, these are distributed
and heterogeneous. They come from different vendors, are the products of
different architectures, and are totally reliant on a common set of open
protocols to feed back information about the state of the system. All that should
take part in an open architecture for grid services. That will work as a virtual
operating system working on top of all the local operating systems and
permitting the resources of the entire aggregation of heterogeneous
architectures to be managed in an automated fashion. Its open protocols will
allow management to become more autonomic in nature and be carried out
much the way biological systems regulate themselves - unconsciously and
autonomically. It will configure, optimize, heal, and protect itself with minimal
human intervention. In short, it will be self-managing.

Greater integration, efficiency, and a far higher quality of service are
some of the more significant ways in which e-activities or e-undertakings will
benefit from grid computing. They are the direct result of the Grid's ability to
balance infrastructure needs and costs and to deliver a quality of service that
truly unlocks the substantial, unrealized value of the infrastructure. These vast

 74

new levels of integration, efficiency, and resiliency will combine to bring a new,
far more flexible computing model to various human e-endeavors.

4.7 Desktop Grid Computing
Distributed computing systems are constructed by integrating diverse end
systems, and therefore it is important to understand key characteristics of these
systems with respect to both current and expected future capabilities. This
section presents briefly Simple Composite Elements (SCEs) (Foster and Kesselman,
1999), (Foster and Kesselman, 2004). They are important, because, in fact, the
similarity between a national-scale Grid and simple composite elements reflects
the "fractal nature" of Grids. Simple composite elements are collections of basic
elements, aggregated with software and sometimes, special hardware, to
provide a qualitatively different interface and capability. Examples of simple
composite elements include high-throughput, high-reliability, dedicated high-
performance, and shared controllable system components. These composite
elements can be employed in functions suited to their capabilities.

The capabilities of basic elements, the building blocks for all computing
systems, have improved at geometric rates for the past three decides. Such
rapid change produces not only tremendous quantitative changes in capability
(1,000-10,000 times) but also, even more important, qualitative changes.
Computer systems were once of the size of a small building and now are
wristwatch-sized gadgets. Multiplying the revolutionary changes enabled by
size reductions are equally dramatic increases in storage, compute power, and
networking capability.

Simple composite elements are richly connected, relatively homogeneous
collections of basic system elements (compute, memory, communication, and
storage). They are often housed within single administrative domains and in
many cases are already thought of as a single system. SCEs are building blocks
for wide-area, national, and international Grids. SCEs are worthy of particular
study far several reasons. First, local grid technologies can reduce the number
of problems higher-level grids must solve. Second, local grids use resources and
software to implement the external properties of the composite element
affecting its utility or integration into larger grids. And, finally, local grids form
the basis for larger grids. Thus, their evolution is an integral part of the
challenges in building larger grids.

Together, these integral relationships make understanding technologies
for SCEs and their capabilities a crucial element of understanding issues in
building grids. For example, in a national Grid, reliable composite elements can
be used to provide management (access control and scheduling) and basic
services (naming and routing). Other composite elements can provide resource
pools with distinct computation power. Composing two SCEs together may be
challenging however, if they correspond to different administrative domains or
employ distinct data representations or different network protocols. Further on,

 75

we first describe the two key distinguishing features of SCEs: their external
interfaces and guarantees and their hardware requirements.
External interfaces and guarantees affect the use and utility of SCEs in the
larger grid context. Hardware requirements determine the SCE capabilities that
can be exploited for building grids. Then we describe a series of state-of-the-art
SCEs and technologies: high-throughput clusters, reliable clusters, dedicated
high-performance clusters, and shared controllable-performance clusters.

4.7.1 SCEs� Capabilities and Requirements
SCEs can be defined by their external interfaces and guarantees, by their
internal hardware requirements, and by their ability to deliver efficient, flexible
use of their internal capabilities to applications. The focus here is on classifying
these interfaces and guarantees. In addition, because an SCE technology's
internal hardware requirements and capabilities are integrally related to its
applicability, we also provide a classification of hardware requirements.
Together, the two classifications delineate both current-day SCE systems and
many other systems under development.

External interfaces and guarantees define how SCE are used by
applications and how they can be integrated into larger Grids. Five attributes
capture the important distinctions among a wide range of SCEs: capacity,
aggregate performance, reliability, predictability, and sharability. Capacity
corresponds to the total throughput of the SCE in dimensions of compute,
memory, communication, and storage. Aggregate performance corresponds to the
SCE's ability to deliver compute, memory, communication, and storage
performance. Reliability reflects the likelihood of unavailability of resource or
unavailability (or loss) of data. Predictability captures an application's ability to
predict the delivered capacity or performance. Sharability refers to whether the
SCE can be shared, integrating a number of computations on one resource for
tighter coupling or simply multitasking.

Hardware requirements and capabilities distinguish the range and
capability of the technologies used to build an SCE. These constrain the range of
an SCE and distinguish it from higher-level grids. Five attributes capture many
important distinctions in applicability: heterogeneity, networking requirements,
distributed resources, changes in constituent systems, and scalability.
Heterogeneity in compute, networking, and storage elements influences the
inclusiveness of an SCE environment and its ability to encompass both legacy
and new systems. Networking requirements, as special hardware, link length
limited, high bandwidth, and so on, all limit the locales and cost constraints
under which an SCE technology can be deployed.

Whether an SCE technology can exploit distributed resources (links tens
of meters or thousands of kilometers) limits the geographical extent of the SCE.
Whether an SCE technology requires changes in its constituent systems has a
significant effect on the deployment requirements and technology insertion

 76

cost, and therefore on deployability of a technology. Scalability of a system
influences the number of nodes that can be deployed and the SCE's ability to
manage and deliver their performance.

In the following, we use a two-part framework, external interfaces and
hardware requirements, to understand and distinguish the wide range of
cluster systems and systems that have been built by both researchers and
commercial vendors. Each type has distinct capabilities and provides different
challenges and advantages for integration into a Grid. They include high-
throughput, high-reliability, and dedicated high-performance SCEs.

4.7.2 High-Throughput SCEs or Desktop Grids
In high-throughput computing or desktop grid systems, pooled resources are
used to achieve high throughput on a set of compute jobs. Such systems allow
large numbers of machines to be added as a single resource in a higher-level
grid system, achieving significant benefits in reduced management effort and
grid complexity. Systems such as BOINC, Condor, and LSF manage clusters of
workstations as pooled resource servers, with the primary application being
compute-bound sequential jobs. Although all three systems provide cluster
access and resource management facilities, Entropia and Condor also increase
the pool of available resources by allowing desktop machines to be added as
resources and by ensuring that those resources can be gathered without
interfering with the desktop users. Whereas early definitions of high
throughput involved only long-running (multiday) jobs, more recent systems
such as Entropia have focused on achieving rapid turnaround to enhance
scientific or engineering productivity.

Desktop Grids (DGs) evolve in two major directions: institution- or
enterprise-wide desktop grid computing environment and volunteer computing. The
former, usually called simply desktop grid, refers to a grid infrastructure that is
confined to an institutional boundary, where the spare processing capacity of
an enterprise�s desktop PCs are used to support the execution of the
enterprise�s applications. User participation in such a grid is not usually
voluntary and is governed by enterprise policy. Applications like CONDOR,
Platform LSF, DCGrid and GridMP are all such examples. Unlike the PRC
model these applications usually allow users to submit jobs for processing.

The later is an arrangement in which volunteers provide computing
resources to projects, which use the resources to do distributed computing
and/or storage. Volunteers are typically members of the general public who
own Internet-connected PCs. Organizations such as schools and businesses may
also volunteer the use of their computers. Projects are typically academic
(university-based) and do scientific research. But there are exceptions, e.g.
GIMPS and distributed.net (two major projects) are not academic. Several
aspects of the project/volunteer relationship are worth noting (BOINC, 2006):

 77

volunteers are effectively anonymous; although they may be required
to register and supply email address or other information, there is no
way for a project to link them to a real-world identity;

due to their anonymity, volunteers are not accountable to projects.
If a volunteer misbehaves in some way (for example, by intentionally
returning incorrect computational results) the project cannot prosecute
or discipline the volunteer;

volunteers must trust projects in several ways: 1) the volunteer trusts
the project to provide applications that don't damage their computer or
invade their privacy; 2) the volunteer trusts that the project is truthful
about what work is being done by its applications, and how the
resulting intellectual property will be used; 3) the volunteer trusts the
project to follow proper security practices, so that hackers cannot use
the project as a vehicle for malicious activities.

The first volunteer computing project was GIMPS (Great Internet Mersenne
Prime Search), which started in 1995. Other early projects include
distributed.net, SETI@home, and Folding@home. Today there are at least 50
active projects. Desktop grid differs from volunteer computing in several ways
(BOINC, 2006):

• The computing resources can be trusted; i.e. one can assume that the
PCs don't return results that are wrong either intentionally or due to
hardware malfunction, and that they don't falsify credit. Hence there
is typically no need for redundant computing;

• There is no need for using screensaver graphics whatsoever; in fact it
may be desirable to have the computation be completely invisible and
out of the control of the PCs� users;

• Client deployment is typically automated.

4.7.2.1 Key Components for Desktop Grids
The key elements in a desktop grid system include physical node management,
resource scheduling, and job scheduling. In addition, systems that also support
data-intensive computations include facilities for data management.

Physical node management. The desktop environment presents several unique
challenges to reliable computing. Individual client machines are under the
control of the desktop user or IT manager. As such, they can be at any time shut
down, rebooted, reconfigured, and disconnected from the network. Laptops
may be offline or just off for long periods of time. The physical node
management layer is supposed to manage these and other low-level reliability
issues. It is also expected to provide naming, communication, resource
management, application control, and security. The resource management
services capture a large amount of node information (e.g., physical memory,
CPU, disk size and free space, software version, data cached) and collect it in

 78

the system manager. This layer also should provide basic facilities for process
management including file staging, application initiation and termination, and
error reporting. In addition, the physical node management layer must ensure
node recovery, terminating runaway and poorly behaving applications.

The security services employ a range of encryption and technologies to
protect both distributed computing applications and the underlying physical
node. Application communications and data are protected with high-quality
cryptographic techniques. The control of the operations and resources visible to
distributed applications on the physical nodes is necessary in order to protect
the software and hardware of the underlying machine. At this level regulation
of the usage of resources by the distributed computing application is also
expected. This ensures that the application does not interfere with the primary
users of the system - it is unobtrusive - without requiring a rewrite of the
application for good behavior.

Resource scheduling. A DG system consists of resources with a broad diversity of
configurations and capabilities. The resource-scheduling layer accepts units of
computation from the user or job management system, matches them to
appropriate client resources, and schedules them for execution. Despite the
resource conditioning provided by the physical node management layer, the
resources may still be unreliable (e.g. the application software itself may be
unreliable). Therefore, the resource-scheduling layer must adapt to all kind of
changes in resource status and availability, and also to high failure rates. To
meet these challenging requirements, multiple instances of heterogeneous
schedulers can be supported. This layer also provides simple abstractions for IT
administrators, abstractions that automate the majority of administration tasks
with reasonable defaults but allow detailed control as desired.

Job management. Distributed computing applications often involve large overall
computation (thousands to millions of CPU hours) submitted as a single large
job. These jobs consist of thousands to millions of smaller computations and
often arise from statistical studies (e.g., genetic algorithms or statistical
simulations), parameter sweeps, or database searches (bioinformatics,
combinatorial chemistry, Google search etc.). Because so many computations
are involved, tools to manage the progress and status of each piece - in addition
to the performance of the aggregate job in order to provide short, predictable
turnaround times - are provided by the job management layer. The job manager
provides simple abstractions for users, delivering a high degree of usability in
an environment where it is easy to drown in the data, computation, and the vast
number of activities.

 79

4.7.2.2 Requirements for Desktop Grids
Desktop Grid (DG) systems aggregate large numbers of machines (tens of
thousands to millions) into a single high-throughput SCE. Such systems allow
the desktop systems to be incorporated into a larger grid at a low management
effort. Desktop grid systems begin with a collection of computing resources -
heterogeneous in hardware and software configuration, distributed throughout
a corporate network and subject to varied management and use regimens - and
aggregate them into an easily manageable and usable single resource.
Furthermore, a desktop grid system must do this in a fashion that ensures there
is little or no detectable impact on the use of the computing resources for other
purposes. For end users of distributed computing and higher-level grids, the
aggregated resources must be presented as a simple-to-use, robust resource that
can be easily integrated into larger-scale Grids. A matrix of key requirements
for desktop Grids is shown in next table (Foster and Kesselman, 2004), (Browne
et al., 2004), (Domingues et al., 2007):

Requirement Brief description
Efficient A DG should harvest virtually all of the idle resources available

Robust

Computational jobs must complete with predictable
performance, masking underlying resource failures. DGs must
tolerate job, machine, and network failures and includes a
variety of mechanisms for ensuring timely completion of a
larger job in the presence of such failures

Secure

The system must protect the integrity of the distributed
computation (tampering with or disclosure of the application
data and program must be prevented). In addition, the DG
must protect the integrity of the desktops, preventing
applications from accessing or modifying desktop data

Scalable

DGs must scale to the 1,000s, 10,000s, and even 100,000s of
desktop PCs deployed in enterprise networks. Systems must
scale both upward and downward, performing well with
reasonable effort at a variety of system scales

Manageable

With thousands to hundreds of thousands of computing
resources, management and administration effort in a DG
cannot scale up with the number of resources. DGs systems
must achieve manageability that requires no incremental
human effort as clients are added to the system. A key leverage
for including DGs as single entities in larger grids is to reduce
the management effort

Unobtrusive DGs share resources (computing, storage, and network
resources) with other usage in the corporate IT environment.

 80

The DG's use of these resources should be unobtrusive, so as
not to interfere with the primary use of desktops by their
primary owners and networks by other activities

Communicative
DGs effectively execute iterative parallel computations
requiring communication among hosts that is anonymous,
scalable and fault-tolerant.

Open/Easy to
integrate
applications

DG software is a platform that supports applications that in
turn provide value to the end users. Distributed computing
systems must support applications developed with varied
programming languages, models, and tools - all with minimal
development effort

Multiple-
project
participation

The rationale for promoting multiple projects, which from the
individual point of view of a project might seem
counterproductive since the project loses exclusivity of
resources, lies in the fact that many projects have downtime (for
hardware and software maintenance and reparation of the
server infrastructure), and shortage of tasks (for instance, when
transitioning from one stage to another). Thus, participation in
multiple projects helps to cope with a particular project
downtime, besides permitting the volunteers to donate
resources for several causes they might find worthy

Table 4.1 Requirements for Desktop Grids

More on robustness issues. Desktop grids, which harvest volunteer or enterprise
computing resources, have gained tremendous momentum in recent years
attracting hundreds of thousand of enlistees. Currently, more than a dozen
large-scale projects exist, and new ones are being created regularly. The advent
of open source and easy-to-setup middleware frameworks like have lowered
the requirements and skills needed to exploit volunteered resources.
To encourage volunteers, projects publish online rankings of contributed work.
Interestingly, these rankings cause fierce competition, and attract even more
dedicated enlistees.

Although desktop grids have a high return-on-investment, they also
have major limitations, namely resource volatility and result correctness. The
volatility of desktop grids is caused not only by hardware and software faults of
computing systems, but also by resource owners who retain full priority in
accessing and managing their desktops. Thus, owners reclaiming their
resources might force hosted applications to be interrupted. Checkpointing is a
common solution to cope with volatility, and some support exists for
application-level checkpointing in existing desktop grid middleware. It consists
in periodically saving the state of the executing task to stable storage, usually
the executing machine's local disk. Whenever, the execution recovers from a
failure, the last stable checkpoint (a checkpoint can get corrupted, for instance,

 81

if a failure occurs during checkpointing) can be used to resume the execution,
reducing the prejudices of the failure.

Two main types of checkpoint exist: system-level and user-level. The
former relies on operating system mechanisms to take a full snapshot of the
target process. While it is transparent to the user, it usually generates huge
checkpoint files since the whole process image needs to be saved. It also
requires support from the operating system (a support that does not exist for
instance on Windows) and saved checkpoints are non-portable across operating
systems and platforms. On the other hand, user-level checkpointing is
application specific and is non-transparent since it requires the involvement of
the application programmer. However, the application programmer can select
only the data and states deemed relevant, yielding a much lighter checkpoint.

Moreover, if appropriate care is taken in data representation, checkpoints
can be used to resume applications across heterogeneous platforms. Apart from
Condor which supports system level checkpoint desktop grids middleware like
BOINC and XtremWeb resort to user-level checkpoint. A usual limitation of
volunteer computing is that checkpoints are private, i.e. a checkpoint taken in a
given machine will only be used to resume the application in that machine.
Sharing checkpoints in a desktop grid environment for the purpose of
optimizing turnaround time could be useful. Under this approach, portable
checkpoints are saved in a central storage and can be used for restoring, moving
or replicating tasks to other machines (Domingues et al., 2006).

Result correctness of computations performed on volunteer resources is
an important issue, since interpreting incorrect results as correct can be worse
than no results at all. A major source of result incorrectness is faulty hardware.
Often overclocking is a significant cause of faulty computations in projects that
resort to the BOINC framework. The fierce competition and rivalry among
volunteers sometimes may also cause unhealthy behavior. Some users try to
increase, not always by honest means, their credits. In some extreme cases,
users resort to dishonest tricks to collect undue credits, like fabricating results
that require much less computation than the real ones. These users are known
as lazy cheaters. Finally, another type of malicious user, the saboteur, might
simply act for the sole purpose of ruining the computation, without concern for
credits. In contrast to lazy cheaters, saboteurs may be difficult to counter since
they may be resourceful and committed to perform everything they can to
disrupt the computation (Domingues et al., 2006)

More on security issues. The verification of results is an important issue that
needs to be addressed in any volunteer computation. Indeed, hardware and
software mishaps as well as malicious volunteers can falsify the outcome of
computations, rendering the results useless. Thus, a major concern of
middleware tools supporting volunteer computation is to provide results
validation and sabotage tolerance mechanisms. Since computations are run in
open and non-trustable environments, it is necessary to protect the integrity of

 82

data and to validate the computation results. Without a sabotage detection
mechanism, a malicious user can potentially undermine a computation that
may have been executing for weeks or even months. Therefore, it is no surprise
that users with computationally demanding applications do not easily trust
open environments, rather preferring to have their applications executed over
more controlled clusters which offer some reliability and trustability. This
means that sabotage-tolerance is a mandatory issue in desktop grids in order to
make them trustable and dependable.

Along with sabotage-tolerance techniques, it is crucial to devise
protocols for trust management in desktop grids. For this purpose, low-level
techniques are employed to gather valuable information for the creation and
maintenance of local reputation lists. On top of that, higher level protocols are
needed for globally sharing and maintaining an updated view of the
participants� reputation. Some trust management systems have already been
proposed in the area of Grid, like the Grid EigenTrust framework and the
EigenTrust system for P2P networks, among some other proposals. However,
these trust management systems do not properly exploit the computational
paradigm of desktop-based computing.

Sabotage-tolerance techniques The master�worker model is the common
paradigm for computing over desktop grids. Under this model, an application
is broken into a large set of individual tasks, with tasks being distributed for
computation by the master (also referred to as the supervisor) to request
workers. After having processed a task, a worker sends the computed results to
the supervisor. In an open environment like the Internet, it is necessary to
assess the integrity and correctness of the results, since any host can run a
worker. The taxonomy of the sabotage-tolerance techniques can be classified in
three distinct groups: replication and voting; sampling; and checkpoint-based
techniques (Domingues et al., 2007).

Replication and voting (also known as double-check or as majority voting)
was first deployed on a wide-scale by the SETI@home project to cope with
erroneous results provoked by faulty hardware and malicious users eager to
claim credits for work not performed. The technique is based on the replication
of individual tasks to different and preferably non-related workers. When
completed, the results of the N replicas are compared and a majority voting is
applied. The results that do not agree with the majority are marked as
erroneous. If no majority can be determined (e.g. all results disagree), results
are classified as erroneous and the task needs to be re-executed. N corresponds
to the replication factor, and should be at least equal to two. The error rate of
the replication method is determined by the replication factor N and by the
percentage of erroneous/malicious volunteers. High levels of redundancy
augment the resiliency at the cost of higher impact in the overall performance.
For instance, the Einstein@home project diminished its replication factor from 3
to 2 when it switched to a more computational demanding stage (S5), and
evidence that replication can significantly consume computing resources.

 83

The main benefits of the replication approach are its support for generic
computation and its simplicity, which eases its implementation � the technique
is supported by the main desktop grid middleware, and employed by all major
public computing projects. On the contrary, a major weakness lies in the
wasting of resources, since to complete a task, at least N instances need to be
effectively computed. Furthermore, in computations that produce results
sensible to hardware and software specificities, some further restrictions might
be needed to support replication. For instance, some applications are extremely
susceptible to floating-point implementations, and the same task run over
different machines can yield different numerical results.

A viable workaround is homogeneous redundancy, upon which replicas
of a task are only assigned to homogeneous systems. Regarding sabotage, smart
colluding saboteurs can bypass the replication technique as long as they
manage to control a majority of replicas of a task. A more subtle limitation of
replication-based validation for public computing environments is the
potentially long interval that might elapse between the completion of the first
result and the existence of enough results for majority voting. This is relevant in
credit-based projects, where the effort of volunteers is rewarded through virtual
credits. Indeed, credit assignment for a given task is only performed after the
result has been validated, that is, after a majority of results matched and a so-
called canonical result exists. This means that the worker of the first result
might wait a significant amount of time for receiving its due credits. Although
this might be perceived as an irrelevant issue, credits and the associated tops,
where users are ranked according to their earned credits, are major motivation
factors for volunteers to participate in projects and thus everything related to
credits should be treated carefully to avoid disgruntled volunteers.

Sampling techniques were developed to overcome the limitations of
replication, namely its inefficient usage of resources. Sampling techniques are
proposed under four different approaches: naive; quizzes; spot checks with black
lists; and ringers (Domingues et al., 2007). The naive sample is a simple technique,
which uses probes to test the trustworthiness of participants. Basically, the
supervisor sends some test samples to the participants and then checks the
results sent back by the assessed workers. However, malicious workers can
easily compromise the technique if they are able to distinguish test samples
from real application tasks. Indeed, a malicious worker can compute correctly
the test samples, only faking application tasks, with its dual behavior possibly
going unnoticed. The fact that test samples are computationally less demanding
than real tasks makes the identification of test samples relatively easy and thus
seriously compromises the usefulness of the technique.

Further, if the test samples are sent separately from the batch of real
tasks, the detection of samples is even easier and the technique becomes almost
useless in a hostile environment, as occurred in early versions of SETI@home.
The naive sample technique can be extended by proposing the Commitment-
Based Sampling (CBS) approach for strictly one-way functions f(x). Their goal is

 84

to hide the test samples, making them indistinguishable from real tasks. CBS
requires that a host, which computes f (x) in the domain of D, saves all the
intermediate results of its computation and builds a Merkle tree to prove that it
effectively computed every input x. A Merkle tree is a hash-indexed binary tree,
where data is kept on leafs and sibling nodes are built through a hash function.
The CBS method involves the following four steps: (1) a participant computes
its assigned tasks, locally building a Merkle tree which holds the intermediate
results of the computation; (2) the supervisor sends a set of selected samples to
the participant; (3) the participant proves its honesty by returning, along with
the computed results, the Merkle tree�s path up to the leaf; (4) the supervisor
verifies the results to check whether the participant is cheating or not. For that
purpose, the supervisor reconstructs the Merkle tree. If the hash root node
differs from the one reported by the participant, the participant is labeled as a
cheater. The main drawbacks of the CBS method are its limited applicability to
one-way functions and the requirement that every worker builds and holds a
possibly huge Merkle tree. Additionally, it induces a severe computational
overhead on the supervisor due to the reconstruction of the Merkle tree.

Quizzes. The naïve sample method can be further extended by hardening
the detection of samples. For that purpose, quizzes are mixed along with tasks.
When a batch of tasks is finished, the supervisor checks the results related to the
quizzes and accepts the results if all quizzes are correct. Otherwise, the results
are discarded and the tasks rescheduled for another execution. This method is
resilient to collusion and presents the advantage that the samples� outcome can
be verified before the end of a task. However, no efficient method exists for
generating quizzes in an automatic way, therefore preventing the use of this
technique in wide-scale projects.

Spot checks with blacklists were proposed by Sarmenta (Sarmenta, 2001).
This technique works similarly to quizzes. The main novelty is the tight
integration of the technique with blacklists, which helps to filter out malicious
users over time. When a participant is caught cheating, all her contributions
until then are invalidated, and the participant is blacklisted and will be left out
of any further computations. The implementation of spot-checking with
blacklists faces some subtle problems, mainly the requirement of uniquely
identifying participants over time. In fact, identification through email
addresses, as it is commonly used by most volunteer projects is unreliable, since
a malicious participant can easily and quickly obtain new email addresses.

Ringers. Ringers were introduced to protect against coalitions of lazy
cheaters assuming that all computational tasks involve the inversion of a strictly
one-way function, f(x), for a given value y. An example of the applicability of
one-way functions is the attempt to break cryptographic functions through a
brute-force approach, as is undertaken by Distributed.net (distributed.net,
2004). Under the ringer approach, the supervisor creates individual tasks, each
one involving a part Di of the whole domain D. Before assigning a task, the
supervisor adds to Di a set of test samples (ringers) yi, which are inverted

 85

values of D, computed through yi = f (xi). Each task is then assigned to a
worker wi, which computes f (x) for all x in its sub-domain Di. A ringer yi yields
xi, since f(f(xi)) = xi . Thus, to check the integrity of results, the supervisor just
has to assess the xi , which should correspond to the sent ringers yi.

Two ringer-based versions have been proposed: basic and bogus. In the
basic approach, when the supervisor assigns work to the participants, it
includes a list of input values, for which it already knows the outcome, to be
computed along with ringers. Each participant must then return the results
yielded by the computation of input values and ringers, receiving credit only if
all the ringers are effectively committed to the supervisor. A feebleness of this
method is that the participant knows the number of ringers. Therefore, a
malicious participant can halt computation and return faked results as soon as
all ringers of a task have been found. The bogus ringer version surmounts the
limitations of the basic version by concealing the real number of ringers from
the worker. For this purpose, a randomly chosen number of ringers whose
results are of no interest (�bogus�) are inserted in the computation set.

Szajda et al. tried to extend the ringers technique to generic
computations, overcoming the one-way function limitation. In their approach,
the supervisor plants ringers on the domain of values to be checked, with
participants computing the values in the domain and the inserted ringers.
Though, their approach is hardly feasible due to the hardness of generating an
automatic method for creating the indistinguishable ringers (Szajda et al., 2003).

Checkpoint-based verification proposes the (a) basic checkpoint verification
and the (b) distributed checkpoint verification. Both schemes are checkpoint
based techniques for sabotage-tolerance and address sequential computations
that can be broken into multiple temporal segments (St1 , ... , Sti , ... , Stn). At the
end of each segment, a checkpoint C(Sti) of the task can be committed to stable
storage. Next, a brief review of both techniques is given.

Basic checkpoint verification. Under this technique, each worker
periodically saves the state of its task in a checkpoint, computes its hash code
and submits it to the supervisor. The supervisor randomly chooses a
checkpoint-time Sti and requests the corresponding checkpoint C(Sti) from the
worker. Then, the supervisor computes the partial execution of the task, from Sti
up to the next checkpoint C(Sti+1). Finally, the hash code of C(Sti+1), that is,
H(C(Sti+1)), is compared with the corresponding hash code sent by the worker.
The error rate of the basic checkpoint method depends on the number of
checkpoints verified by the supervisor: a high percentage of verified
checkpoints yields a low error rate at the cost of increased computation (for the
partial computation of the task) and bandwidth (for having the checkpoint Sti

transferred from the worker to the supervisor). Since, the entire overhead
(computation and bandwidth) needs to be supported by the supervisor, this
technique might induce an unbearable overhead to the supervisor, especially in
wide-scale systems.

 86

Distributed checkpoint verification extends the basic verification technique by
distributing the partial computation over workers, in six steps. Firstly, (1) the
supervisor sends a task to the participant. (2) The worker then computes the
results along with a list of the partial checkpoint hashes, sending both to the
supervisor. (3) The supervisor stores the received hash list and selects a worker
(henceforth the verifier) to verify it. The supervisor identifies the partial
execution to be computed by the verifier and sends to the verifier the necessary
data, namely how to contact the worker being scrutinized, so that it can obtain
the checkpoint to load for the partial execution. (4) The verifier requests the
initial checkpoint from the original participant, and then it (5) computes the
partial task up to the next checkpoint, taking a hash code of this new
checkpoint. Finally, (6) this hash code is sent to the supervisor, which compares
it with the one it received from the worker under assessment.

The distributed checkpoint verification method allows the verifications
without overloading the supervisor. The intermediate steps can also be
checked, allowing for the detection of a malicious worker before the completion
of a task. The price for this technique is the redundancy required for checkpoint
comparison, the cost of communications and the capability of participants to
communicate directly with each other, a requirement that can be difficult to
achieve when connectivity of hosts is restricted by firewalls and Network
Address Translation (NAT) schemes. Even if both machines can contact with
each other, promoting direct contact between worker and verifier might create
opportunities for collusion by the supervisor, this technique might induce an
unbearable overhead to the supervisor, especially in wide-scale systems.

A combination of replication with checkpoint based comparison to
promote early detection and finer localization of errors in volunteer
computations has been proposed (Domingues et al., 2007). Specifically, they
proposed the compare replicated checkpoint hashes technique, and
complemented it with trickle messaging to permit early detection of divergent
computations. They targeted public computing projects, assuming that a N-
level replication is used for results validation.

Under the compare replicated checkpoint hashes (CRCH) approach, a worker
is requested to return, along with the results of its task, a selected set of hashes
of the checkpoints saved along the computation. The list of checkpoints whose
hashes are requested is defined at task creation time, so that redundant
instances of a task share the same set of requested checkpoint hashes. When a
majority of replicated executions are completed, and thus the supervisor holds
enough results for meaningful comparisons, the hashes from equivalent
checkpoints are compared to each other. If a divergence occurs, the execution
point where the differences were detected is marked as suspicious.
Comparatively to the result comparisons detection level, since an erroneous
computation can be detected right after the first divergent checkpoint. For
deterministic errors this might speed up the debugging process, since the

 87

temporal location of the fault is known with some precision, permitting a faster
reproduction on of the error.

Relatively to the basic checkpoint and to the distributed checkpoint
techniques, CRCH requires no extra communications since the lightweight
hashes can be sent to the supervisor along with the results. Additionally, the
traditional communication model is not disrupted, since no contact is required
between workers, contrary to the distributed checkpoint verification technique.
Selective checkpoint hashing is also much less demanding for the supervisor,
since no task computation (partial or complete) needs to be performed by the
supervisor. Although the CRCH strategy allows for result verification with
practically no overhead at the server-side, and permits a more precise location
of error occurrence, it does not speed up the detection of incorrect
computations, since error detection can only occur after, at least, two replicas of
the task have terminated. A more proactive variant is to have workers returning
available checkpoint hashes during the computation. Ideally, from detection
point-of-view, the worker should send to the supervisor a hash immediately
after its computation. However, such an attitude would increase the number of
messages and consequently stress the supervisor network, possibly disturbing
the whole system performance.

A more realistic approach is to use the so-called trickle messages to send
checkpoint digests to the supervisor. A trickle message is sent by a worker to
the supervisor and provides some status information about the worker. The
trickle notification mechanism is used by projects like climateprediction.net,
which have lengthy tasks (weeks or months long). It permits workers to update
their progression status and to claim pending credits. Although the trickle
designation covers a BOINC specific characteristic, the importance of this
feedback mechanism for projects with long running tasks renders it mandatory
for any serious desktop grid middleware.

Thus, an improvement to the CRCH is to take advantage of the trickle
messages, which are already sent by workers to report status, for sending the
hashes of the selected checkpoints without additional communication costs.
This way, the supervisor can spot an error as soon as a majority of checkpoint
digests is available for the considered execution point. Thus, upon detection of
a divergent computation, the supervisor can immediately trigger corrective
measures. For instance, an additional instance of the task can be scheduled to
replace the faulty task. Additionally, the thought-to-be faulty worker can be
marked as suspect and further probed to assess its computational honesty, or, if
repeating a faulty behavior, can be back listed altogether.

Human-based trusting emphasizes the importance of human factors in
security and trust management (Domingues et al., 2007). They point out that the
auction site eBay is a live example of the importance of reputation systems to
promote transactions among individuals that do not know each other. Indeed,
reputation systems are important because they collect, distribute and aggregate
feedback about participant�s behavior and help to decide whom to trust,

 88

implicitly encouraging trustworthy behaviors. Further they propose the
Volunteer Invitation-based System (VIS) for trust management targeted at
volunteer DGs. The protocol establishes and updates the reputation of the
participants according to their relationship in the volunteer chain, using
underlying sabotage-tolerance mechanisms to detect sabotage attempts to
undermine the computations, or simply, computation errors due to faulty
hardware. This system aims at building trustable networks of volunteers
resorting to invitations. The invitation-based system can be extended so that it
supports recommendations of participants across multiple volunteer projects.
The basic goal is to permit a volunteer who is already participating in a public
project (or has participated in the past), to apply for an invitation in another
project (from which the volunteer does not know anyone to ask directly for an
invitation), presenting as references a virtual certificate provided by the
project(s) s/he is currently participating in or has participated in the past. This
virtual certificate would include the worker performance and trustability
metrics, such as the ratio of successful tasks completed, earned credits, and
errors. Note that a certificate-based scheme could attenuate the possibly slow
growth endured by a VIS-based system in its early stage, when the number of
volunteers with invitation cards is still small.

More on communications requirements. Desktop grids have been by now very
successful in cost effective computation of fully partitionable computations. But
is also clear that desktop grids cannot be applied to general parallel
computations as long as communication is restricted to the master-slave model
of parallelism and communication and current parallel computational
infrastructures, which for the most part rely on synchronous algorithms,
executing in a fully reliable resource environment. The requirements for
desktop grids which can effectively execute iterative parallel computations
requiring communication are anonymous, scalable and fault-tolerant
communication among the hosts of a scalable desktop grid systems and fault-
tolerant computational algorithms, which are insensitive to heterogeneity in
processing power of hosts and communication speeds among hosts. The
requirements on the computational algorithms are obvious from the nature of
desktop grids as are the requirements for scalable and fault-tolerant
communication. Anonymity is required of the communication mechanism
among the hosts in a desktop grid because the software executed on hosts is
written by users and poses security and privacy risks even when encapsulated
by desktop grid client agents. Anonymity among the desktop resources
minimizes security and privacy violation (Browne et al., 2004).

Multiple-project participation. The participation of a volunteer in multiple projects
is not a novelty, and is actually promoted by the BOINC platform, which
permits that a volunteer donates resources to several projects, specifying the
CPU time distribution to be allocated to each project. The rationale for

 89

promoting multiple projects, which from the individual point of view of a
project might seem counterproductive since the project loses exclusivity of
resources, lies in the fact that many projects have downtime (for hardware and
software maintenance and reparation of the server infrastructure), and shortage
of tasks (for instance, when transitioning from one stage to another). Thus,
participation in multiple projects helps to cope with a particular project
downtime, besides permitting the volunteers to donate resources for several
causes they might find worthy (Domingues et al., 2007).

4.7.2.3 External Interfaces and Guarantees
A high-throughput cluster provides high computational capacity and is,
obviously, a sharable resource. The job manager or resource scheduler might
present its interface in the Entropia system. In fact, most such systems share
resources with interactive users, and some include elaborate mechanisms for
ensuring good interactive response. While these systems provide: no special
support for aggregate performance, interfaces for loosely coupled parallel
computing such as PVM (Sunderam, 1990) are now becoming available. No
special support for reliability or predictability is provided.

4.7.2.4 Hardware Requirements
High-throughput SCEs have minimal hardware requirements, running on a
wide range of processor and network environments and tolerating both
processor and network heterogeneity in type and speed. High-throughput
systems are also used on widely distributed resources, such as for pooling
workstation resources across the worldwide sites for a corporation. In addition,
high-throughput SCEs do not require significant change to the underlying
systems (depending only on some common job controls and special system
libraries) and can scale to larger numbers of processors (hundreds lo
thousands) with little difficulty.

4.7.2.5 High-Throughput SCEs in Grids

High-throughput SCEs are flexible, powerful systems for achieving high
throughput on large numbers of sequential jobs. Thus, they are very suitable
grid elements for such tasks. These SCEs manage a wide range of heterogeneity
automatically (instruction set, memory configuration, network, etc.) and
schedule compute resources efficiently to reduce turnaround title for jobs. In
addition, effective sharing of resources with interactive users increases the pool
of resources available to the SCE dramatically. The primary benefit of using
DGs to organize large numbers of small resources is that the complexity of the
higher-level grid is reduced (dramatically fewer SCEs), and the usability of the
small resources is enhanced through the sophisticated management that the
high-throughput SCE software provides.

 90

 However, because high-throughput SCEs primarily focus on processing large
numbers of small but compute-bound jobs, such SCEs do little to efficiently
aggregate resources for larger computations, enhance reliability, or improve
performance predictability. Each of these issues is addressed by at least one of
the other types of SCEs described next.

4.7.3 High-Reliability SCEs
High-reliability SCEs provide computational resources with extremely low
probability of service interruption and data loss. In high-reliability SCEs,
commonly called reliable clusters, additional computing resources are deployed
to replicate the state of an application, and responsibility for the computation is
'failed over' automatically in the case of software, hardware, or any other
failure. Failover transfers responsibility for the computation to the additional
hardware, which takes up the task seamlessly, so clients see no interruption of
service. This approach, typified by Tandem's Guardian system, has been
adopted by a wide variety of vendors for highly available systems.

4.7.3.1 External Interfaces and Guarantees
Reliable clusters use replication for reliability but can also add resources for
scalability for many kinds of applications. With the exception of a few large
data manipulation applications, however, the scalability is generally used to
increase system capacity, not to scale to support large jobs. Of course, reliable
clusters provide a reliability guarantee to applications and are generally
sharable resources. Because of failover delays and dynamic load sharing, most
reliable systems do not provide strong guarantees of predictable response.

4.7.3.2 Hardware Requirements
Reliable clusters generally prefer compatible hardware to enable failover, data
sharing, and convenient restoration from checkpoints. For cold standbys,
however, less powerful configurations can be deployed to reduce cost,
provided lower performance is tolerable in a failover situation. Custom
networking is employed among cluster nodes and between primaries and
standbys to ensure fault detection and isolation at the earliest possible time.
Reliable clusters can be physically localized or distributed over a
wide area network. Traditionally, reliable systems use special operating
systems (e.g.. Tandem NonStop kernel), but many recent systems have been
implemented as a middleware layer, so a specialized operating system is no
longer required. Finally, reliable dusters can also include multiple nodes for
scalability in capacity.

4.7.3.3 High-Reliability SCEs in Grids
High-reliability elements are a natural choice for simple composite elements.
The internal substructure of such elements is encapsulated, allowing them to be

 91

viewed as reliable, high-capacity systems. Such systems can provide a wealth of
important grid services reliably, facilitating rigorous reasoning about operation,
bootstrap procedures, reconfiguration, failure modes, and so on.

4.7.4 Dedicated High-Performance SCEs
Dedicated high-performance SCEs merge basic computing elements into a
single resource pool for computing, memory, and storage, allowing these
resources to be applied to a single computational application. Since
microprocessors have become the fastest processors available, collections of
microprocessors (especially parallel processors) or entire systems (scalable
clusters or networks of workstations) have become an attractive and cost-
effective way to achieve very high performance.

By employing standard workstation or PC building blocks and scalable
networks, these dedicated high-performance clusters can be scaled to arbitrarily
large and complex configurations. These systems were initially applied to
supercomputing tasks and were operated as dedicated systems, with space
sharing used to run two or more applications simultaneously. To connect
hundreds or thousands of nodes together with high efficiency, dedicated high-
performance systems employ high-speed custom networks with limited
physical extent (tens of meters). These networks employ parallel data links and
custom signaling to deliver high performance, as with the custom cluster
networks described in a previous section.

In case of the IBM Blue Horizon machine, it uses high-volume
microprocessors as their basic computation engines. It employs 8-processor
SMP servers as the basic building blocks, with custom interconnects delivering
~350 megabit/sec of network bandwidth to each node in the system and
latencies as low as 20 microseconds. This system uses a standard AIX (IBM's
UNIX) workstation operating system and a collection of middleware to
provide, job scheduling, program loading, file input/output, and so on (Foster
and Kesselman, 2004). Allowing a single job on each node enables high
performance on dedicated jobs-direct access to networks, management of local
memory, and so on. Operating system services such as file access and external
network input/output are hosted on system service nodes.

The main programming model on these systems is explicit message
passing, typically via a standard interface as MPI. This model enables the
achievement of high performance at the price of explicit programmer
management of naming and data movement. Higher-level interfaces, such as
HPF and distributed shared memory, are used to a lesser degree. For a large
number of applications, high-performance MPI implementations have been
built, and therefore for these applications, dedicated high-performance SCEs
can effectively aggregate their compute performance.

These systems provide single-system image (uniform monitoring,
resource usage, file system access, etc.). Distributed shared-memory systems

 92

have demonstrated techniques for efficient memory pooling, although
significant issues remain about how to manage and share such pools as well as
how to best implement virtual memory in such an environment. Efficient
scheduling remains a difficult challenge, as schedulers typically focus
disappointingly on processors, utilizing memory, network, disk, and other
resources (Foster and Kesselman, 2004).

4.7.4.1 Beowulf Clusters
An increasingly popular dedicated high-performance SCE is a PC cluster,
commonly known as a Beowulf cluster (Sterling 1999), which consists of high-
volume products such as dual-processor desktop or server systems, networked
by low-cost, commodity fast Ethernet or gigabit Ethernet networking. These
systems are predominantly Linux based (Redhat, Debian, and Suse being
popular) and there are a wide variety of both commercial and research or
academic software systems for assembling and managing such cluster systems.

Commercial systems include Scyld, Scali, Platform Computing, VA
Cluster, and Score. Research and academic systems include Oscar and NPACI
Rocks. Although the functionality in these systems varies generally, they all
address elements of the key challenges in building dedicated high-performance
elements from commodity components: configuration management,
scheduling, single-system image, and a shared file system. These software
packages allow a Beowulf cluster to be viewed as an aggregate resource with a
single point of access for inclusion as a dedicated, high-performance SCE into
the Grid. Typical Beowulf cluster systems are anywhere from 8 to about 128
nodes, with the majority of the systems being in the range of 16 to 64 nodes.
Above 64 nodes, the complexity of physical machine maintenance,
configuration management, and even network wiring becomes significant, and
the advantages of custom-engineered systems are more pronounced. Even at
64 nodes, however, Beowulf systems can have substantial compute, memory,
and storage capabilities.

4.7.4.2 Commercial Resource Virtualization Systems
Lately, a number of commercial vendors have introduced resource virtualiza-
tion systems that increase the manageability of resources and the applications
deployed on them. Examples of such commercial systems include IBM's
Oceano, Hewlett-Packard's Utility Data Center, and Sun Microsystem's N1.
Although public information on these systems is limited at present, each of
these systems purports to support "wire once" approaches to hardware in large
server complexes, automated deployment of applications, monitoring,
provisioning, and evolution as application needs evolve. Many of these systems
are advertised as providing a single-system view of an entire data center, much
as cluster software packages provide a single-system view of a cluster. As the
commercial virtualization systems become more widespread, they will not only

 93

support dedicated high-performance SCEs as grid elements but will also extend
their capabilities to include dynamic deployment of applications.

4.7.4.3 External Interfaces and Guarantees
Dedicated high-performance SCEs aggregate resources to speed up individual
computational applications and are scalable to hundreds or thousands of nodes.
Hence, they provide both pooled capacity for sequential jobs and high
performance for parallel computations. In fact, many scheduling systems such
as Sun's Grid Engine, IBM's LoadLeveler, and Platform Computing's LSF will
schedule in combination both uniprocessor and dedicated parallel jobs. Because
they focus on highest single job performance (supercomputing), however,
dedicated SCEs have not delivered reliability or predictability and are not
generally sharable (other than via space partitioning) (Foster and Kesselman,
2004). More, many commercial reliable cluster products have an element of
scalability but generally do not deliver the levels of performance described for
dedicated high-performance SCEs.

4.7.4.4 Hardware Requirements
In dedicated high-performance SCEs, aggregate performance is the primary
objective, so scalability to hundreds or thousands of nodes is a must. Hardware
attributes (e.g., heterogeneity) that degrade performance are not generally
included. Software features (e.g., process pairing for reliability) that reduce
performance are not included either. Further, because the SCE is viewed as a
single system, changes to the underlying systems (operating system and
motherboard) are sometimes required. Networks and interfaces are virtually
always customized. Recently, under pressure from low-cost, high-volume
products, many vendors have chosen to use unmodified workstations and
operating systems, differentiating only with modest scheduling and
middleware software.

4.7.4.5 Dedicated High-Performance SCEs in Grids
Dedicated high-performance SCEs can be real assets in a grid environment.
Indeed, many such systems are deployed in production grids nowadays.
However, their dedicated-use model significantly reduces their effectiveness.
This observation provides a major impulsion for the development of shared
controllable-performance systems. For the future, broadening the model of use
is essential both for improving resource utilization and for supporting a
broader class of resource-intensive online and interactive applications.

4.7.5 Concluding comments
In this section, we focused on the capabilities of basic elements and SCEs.
The capabilities of basic computation, communication, and storage elements
continue to improve geometrically, producing a grid wealthy in resources and

 94

capable of substantial sharing because of the availability of high-bandwidth
links. SCEs provide both aggregate capabilities and qualitatively different
capabilities, such as reliability. Thus, high-throughput SCEs (desktop grids) are
scalable, non-aggregatable, partially reliable, non-predictable and sharable.
Reliable SCEs have limited scalability, are reliable and sharable, but non-
aggregatable and non-predictable. Finally, dedicated high-performance SCEs
are scalable and aggregatable, but non reliable, predictable or sharable. These
capabilities will determine their role and contribution to larger grids.

Grids based on tile Globus Toolkit are now moving from a resource to a
services model in which all capabilities are presented as network grid services.
In such a model, SCEs can provide compute resources, data/storage resources,
and application services. As compute resources, they will form dynamic grid
application servers, allowing compute-oriented applications to be dynamically
instantiated and provide grid compute application services. As data/storage
resources, they will provide a wealth of data Grid services. As these capabilities
are combined with the increasingly popular commercial resource virtualization
systems, applications will increasingly be expressed in a fashion independent of
the detailed platform environment. That is, if they do not need the greatest
possible performance or access to unique services, they can be expressed
against a virtualized interface. Such an approach will further increase the
liquidity of applications and their flexible deployment, enabling further
progress in achieving the grid vision of computing and application services as a
fungible resource (Foster and Kesselman, 2004) (Globus, 2007).

A number of important challenges arise in building bridges from useful
SCEs to large-scale grids. Three major elements of these challenges are
composition (interfacing), performance guarantees, and security and data
integrity. Composing both basic elements and SCEs into larger grids is a
complex challenge, which requires directory services, protocols, compatible
services and data representations, and conversion. Although a general solution
must involve all element types, special problems are raised here by simple
composite elements. They include interfaces, semantics, scheduling, and
management lot aggregated memory resources, aggregated persistent storage
resources, aggregated communication resources, and migration/interoperation.
The distinct challenges for SCEs here include developing interfaces to aggregate
resources that provide simple semantics and high performance and still reflect
the fact that, even within an SCE, the hardware elements come and go
dynamically. A number of lower-level issues are also critical: how to map
aggregated resources to the disjoint basic elements within an SCE (e.g., where
do the I/O requests and computations go?), whether such mappings are static
or dynamic, and how users can manage their usage of the resources.

Another important challenge with SCEs is allowing grid computations to
achieve reasonable overall performance. In most current approaches, this is
predicated on some ability to guarantee performance from grid elements.
Nevertheless, such techniques must be reconciled with local resource

 95

management policies designed to achieve local resource and computational
efficiency. Therefore, challenge for SCEs in grids include the following (Foster
and Kesselman, 2004):

• Mechanisms to ensure predictable performance for memory,
computation, and storage both for basic and for aggregated resources;

• Techniques for coordinated scheduling across basic (within an SCE)
and global memory, computation, and storage resources;

• Policies for predictable performance, which manage the needs of
global and local computations against available resources.

After all, if users are to achieve high productivity in a computing environment
spanning numerous physical resources and administrative domains, they must
be shielded from a wealth of security and data integrity concerns, for example,
users may wish to use remote storage facilities for performance or even cost
advantages. Conversely, if we have them worry about unauthorized data
disclosure or unexpected loss of data, it is very likely that they will be rare.
Thus, important challenges for SCEs in grids include both providing safe access
to resources and data security for participating computational applications and
providing data integrity guarantees for data, independent of availability or
failure of any individual data repository.

 96

 97

5 Overview and Taxonomy of Desktop Grid Systems
Desktop Grid (DG) has recently received the rapidly growing interest and
attraction because of the success of the most popular examples such as
SETI@Home and distributed.net. SETI@home is one of the most successful
projects that use such a model. One of the reasons for this success is its
simplicity in enabling contributors to donate computational resources�when
the computer screensaver is activated the application starts by making a request
to a remote server to download tasks to be processed. Another reason is its
support for Windows operating system, since the majority of the desktop
machines around the world run Windows. Based on the same concept, there are
other @home projects: FightAIDS@home, Folding@home, evolution@home, etc.
All of these projects are primarily targeted for applications that can be
expressed as parameter-sweep applications. They have no or lack of support for
creating applications consisting of tasks that need to communicate and
coordinate their activities by exchanging messages among themselves
(distributedcomputing.info, 2007). In this section we will present first an
overview of some of the most well-known and used desktop grid systems, and
will conclude with a taxonomy of these systems.

5.1 Overview of Desktop Grid Systems

5.1.1 SETI@home - BOINC
SETI, or the Search for Extraterrestrial Intelligence, is a scientific effort seeking
to determine if there is intelligent life outside Earth. One popular method SETI
researchers use is radio SETI, which involves listening for artificial radio signals
coming from other stars. Previous radio SETI projects have used special-
purpose supercomputers, located at the telescope, to do the bulk of the data
analysis. In 1995, a new idea was proposed to do radio SETI using a virtual
supercomputer composed of large numbers of Internet-connected computers.

SETI@home, developed at the University of California in Berkley, is a
radio SETI project that lets anyone with a computer and an Internet connection
participate. The method they use to do this is with a screen saver that can go get
a chunk of data from a central server over the Internet, analyze that data, and
then report the results back. When the computer is needed back, the screen
saver instantly gets out of the way and only continues it's analysis when the
computer is not anymore used. The program that runs on each client computer
looks and behaves like a captivating screen saver. It runs only when the
machine is idle, and the user can choose from several different colorful and
dynamic "visualizations" of the SETI process. Some of these visualizations will
look technical, some will look abstract, and some will look decidedly artistic, as
it can be seen in the screenshot from Figure 5.1.

 98

Figure 5.1 SETI@home screenshot

The data analysis task can be easily broken up into little pieces that can all be
worked on separately and in parallel. None of the pieces depends on the other
pieces, which makes large deployment of clients and computations very easy
over the Internet. SETI@home needs network connection only when
transferring data. This occurs only when the screen saver has finished analyzing
the work-unit and wants to send back the results. Each work unit is sent
multiple times to different users in order to make sure that the data is processed
correctly. The system architecture is depicted in Figure 5.2.

Figure 5.2 SETI@home architecture

While the "screen saver" is running, the client would be processing the
quarter-megabyte data block (work-unit), which would contain 50 seconds
within a 20-kilohertz range. The algorithm examines this data for strong signals

 99

or "chirps" while taking Doppler shifting into account. False alarms would be
prevented by tests for terrestrial interference. Once a block was processed, it
would be returned to a centralized SETI@home computer where the results
would be stored and organized. This process, when replicated tens or hundreds
of thousands of times, has the capacity to analyze the data much more closely
than before, perhaps noticing subtle patterns that real-time signal processing
missed. The overall results of the search would appear on the SETI@home web
site, making the findings immediately available to the public and to the
participants. SETI@home is the largest public distributed computing project in
terms of computing power: on September 26, 2001 it reached the ZettaFLOP
(1021 floating point operations) mark, a new world record, performing
calculations at an average of 71 TeraFLOPs/second. For comparison, the fastest
individual computer at that time in the world was IBM's ASCI White, which
runs at 12.3 TeraFLOPs/second. On June 1, 2002, the project completed over 1
million CPU years of computation.

SETI@home was not without problems. For all the media attention and
public interest, funding has not been forthcoming. Developing new software to
run the distributed system and to perform the analysis on the client side is a
difficult and expensive process. The SETI@home project has been delayed
repeatedly due to lack of corporate sponsorship. "People time", rather than
computer power, has proven to be hard to come by, and in the end it seems that
expense - the very thing that SETI@home and distributed computing are meant
to escape - may be a force as inexorable as gravity. The SETI@home project is for
a very specific problem, as described above. There was no general framework
for the system, which can be used by other types of applications, and it became
SETI@home Classic. Then new funding came for the BOINC project and
SETI@home was rewritten for the new framework and it became SETI@home II
in 2005. BOINC is open-source software for volunteer computing and desktop
grid computing. It includes the following features: project autonomy, volunteer
flexibility: flexible application framework, security, server performance and
scalability, source code availability, support for large data, multiple participant
platforms, open, extensible software architecture, and volunteer community
features. BOINC is designed to support applications that have large
computation requirements, storage requirements, or both. The main
requirement of the application is that it be divisible into a large number
(thousands or millions) of jobs that can be done independently. If the project is
going to use volunteered resources, there are additional requirements as public
appeal and low data/compute ratio (BOINC, 2006).

5.1.2 distributed.net
A very similar project is the distributed.net project (distributed.net, 2008). It takes
up challenges and run projects which require a lot of computing power.
Utilizing the combined idle processing cycles of the members� computers solves

http://boinc.berkeley.edu/volunteer.php
http://boinc.berkeley.edu/dg.php
http://boinc.berkeley.edu/dg.php

 100

these. The collective-computing projects that have attracted the most
participants have been attempts to decipher encrypted messages. RSA Security
(RSA, 2005) a commercial company has posted a number of cryptographic
puzzles, with cash prizes for those who solve them. The company's aim is to
test the security of their own products and to demonstrate the vulnerability of
encryption schemes they consider inadequate. The focus of the distributed.net
project is on very few specialized computing challenges. Furthermore, the
project releases only binary code of the clients and no server code, making
impossible the adaptation of this to other types of projects.

Typical RSA challenges could either involve factoring, or call for a more
direct attack on an encrypted text. In one challenge the message was encoded
with DES, the Data Encryption Standard, a cipher developed in the 1970s under
U.S. government sponsorship. The key that unlocks a DES message is a binary
number of 56 bits (or larger: 64, 72 bits). In general the only way to crack the
code is to try all possible keys, of which there are 256, or about 7 * 1016.
Another RSA challenge also employed a 56-bit key, but with an encryption
algorithm called RC5. Compared with earlier distributed-computing projects,
the RC5 efforts were not only technically sophisticated but also reached a new
level of promotional and motivational slickness.

For example, they kept statistics on the contributions of individuals and
teams, adding an element of competition between teams, as it can be seen in
Figure 5.3. The RSA Challenge numbers are the kind, which are believed to be
the hardest to factor; these numbers should be particularly challenging. These
are the kind of numbers used in devising secure RSA cryptosystems. The
challenges are an effort to learn about the actual difficulty of factoring large
numbers of the type used in RSA keys.

Another type of project, which involves a lot of computing power, is the
optimal Golomb Ruler (OGL) (Gardner, 1972). Essentially, a Golomb Ruler is a
mathematical term given to a set of whole numbers where no two pairs of
numbers have the same difference. An Optimal Golomb Ruler is just like an
everyday ruler, except that the marks are placed so that no two pairs of marks
measure the same distance. OGRs have many uses in the real world, including
sensor placements for X-ray crystallography and radio astronomy. Golomb
rulers can also play a significant role in combinatorics, coding theory and
communications. The search for OGRs becomes exponentially more difficult as
the number of marks increases ("NP complete" problem).

5.1.3 Considerations on parallelism for SETI@home - distributed.net
None of these two systems provide support for parallel application, when
communication between programs running on different computers is necessary
during the computation. This makes difficult to use such systems for our
purpose, where more than one desktop computer are needed to solve a certain
problem. Tasks with independent parallelism are suited for this type of

 101

computing. In SETI@home, work unit computations are independent, so
participant computers never have to wait for or communicate with one another.
If a computer fails while processing a work unit, the work unit is eventually
sent to another computer. Public-resource computing, with its frequent
computer outages and network disconnections, seems ill-suited to parallel
applications that require frequent synchronization and communication between
nodes. However, scheduling mechanisms that find and exploit groups of LAN-
connected machines may eliminate these difficulties.

Figure 5.3 distributed.net statistics screen

5.1.4 PVM
PVM (Parallel Virtual Machine) is a portable message-passing programming
system, designed to link separate host machines to form a virtual machine,
which is a single, manageable computing resource. The virtual machine can be
composed of hosts of varying types. The general goals of this project are to
investigate issues in, and develop solutions for, heterogeneous concurrent
computing. PVM is an integrated set of software tools and libraries that
emulates a general-purpose, flexible, heterogeneous concurrent computing
framework on interconnected computers of varied architecture. The overall
objective of the PVM system is to enable such a collection of computers to be
used cooperatively for concurrent or parallel computation.

Applications can be composed of any number of separate processes and
are provided access to PVM through the use of calls to PVM library routines for

 102

functions such as process initiation, message transmission and reception, and
synchronization via barriers or rendezvous. PVM is effective for heterogeneous
applications that exploit specific strengths of individual machines on a network.

The PVM system is composed of two parts. The first part is a daemon
(called pvmd) that resides on all the computers making up the virtual machine.
This is designed in such a way that any user with a valid login can install this
daemon on a machine. When a user wishes to run a PVM application, he first
creates a virtual machine by starting up PVM. Multiple users can configure
overlapping virtual machines, and each user can execute several PVM
applications simultaneously.

The second part of the system is a library of PVM interface routines. It
contains a functionally complete repertoire of primitives that are needed for
cooperation between tasks of an application. This library contains user-callable
routines for message passing, spawning processes, coordinating tasks, and
modifying the virtual machine.

The PVM computing model described in Figure 5.4 is based on the
notion that an application consists of several tasks. Each task is responsible for a
part of the application's computational workload. Sometimes an application is
parallelized along its functions; that is, each task performs a different function,
for example, input, problem setup, solution, output, and display. This process is
often called functional (task) parallelism. A more common method of
parallelizing an application is called data parallelism. In this method all the
tasks are the same, but each one only knows and solves a small part of the data.
This is also referred to as the SPMD (single-program multiple-data) model of
computing. PVM supports either or a mixture of these methods. Depending on
their functions, tasks may execute in parallel and may need to synchronize or
exchange data, although this is not always the case.

The general paradigm for application programming with PVM is as
follows. A user writes one or more sequential programs in C/C++, or Fortran
77 that contain embedded calls to the PVM library. Each program corresponds
to a task making up the application. These programs are compiled for each
architecture in the host pool, and the resulting object files are placed at a
location accessible from machines in the host pool. To execute an application, a
user typically starts one copy of one task (usually the "master" or "initiating"
task) by hand from a machine within the host pool.

This process subsequently starts other PVM tasks, eventually resulting in
a collection of active tasks that then compute locally and exchange messages
with each other to solve the problem. Note that while the above is a typical
scenario, as many tasks as appropriate may be started manually. Tasks interact
through explicit message passing, identifying each other with a system-
assigned, opaque task identifier. PVM support both task- and data-parallelism.
An advantage of the PVM system is that it is quite popular today and has
become a de-facto standard for message passing. There are many algorithms
implemented using PVM, and there is a large body of experience in using it.

 103

It is well known and accepted in the academic environment, due to its easiness
of use and the availability of source code from the public domain. However, it
is not very widespread in industry.

 Figure 5.4 PVM Computing Model

Alas, PVM provides only the parallel programming environment and
does not offer resource management. This means that the system could not
prevent access of different users to the same computing resource. Two or more
users could share the same CPU without even knowing that. Such sharing of
CPU could result in an inefficient use of resources, especially when running a
data-parallel application with uniform computational requirements per task.
Further job/resource scheduling systems are required to provide exclusive
access to CPU resources in a PVM environment.

Another disadvantage of the PVM system is that the user needs to have
'login' access to each of the computers involved in a computation. From the
user's point of view this is done in a transparent way, by automatically using
remote login (usually Rush or ssh) to start the application on each computer.
There are certain problems with this, which limits a large-scale deployment of
the system in many situations. One is that in a completely heterogeneous
environment, consisting of operating systems with different types of user
authentication (e.g. Unix, Windows and Mac), allowing users' login access to
each computer on the network can be extremely difficult to set up and later
maintain it. This could also easily be the cause of a potential security problem.
For this reason, in many real-life situations, users are not allow to remotely
login to the computers in the network, or if so, to only a very few servers. It has
also been found to be difficult to install PVM for recent versions of Windows,
making it very hard to deploy and use in a today's typical large-scale corporate
network, where desktop machines running different operating systems are
usually available. So PVM need 'more' heterogeneity than just Unix systems.

 104

5.1.5 Entropia
DCGrid, developed by the company called Entropia, was a PC grid computing
platform that provides high performance computing capabilities by aggregating
the unused processing cycles of networks of existing Windows-based PCs. The
system is no longer used due to the fact that the system was thought in the first
place as being commercial. We have chosen to still present it since it was a
major desktop grid system, which has had significant contributions to the field.

Existing proprietary and third party applications could be deployed on
the DCGrid platform quickly and easily using DCGrid's rapid integration
features, which allow enterprises to achieve business objectives faster, with
higher throughput, increased precision and more meaningful results in less
time than previously possible. DCGrid solutions enabled new and more
difficult problems to be solved. Unused PC resources are harvested based on
user and organization policies, with settings centrally monitored and managed
with a web-based grid management interface. Work is scheduled to PCs based
on application resource requirements, and is monitored and rescheduled as
necessary if there are system disruptions or resource unavailability. Any native
Win32 application could be deployed and executed on the DCGrid platform,
and applications are enabled for the platform at the binary code level.

DCGrid contained an isolation technology, which provides full and
unobtrusive protection for the grid as well as the underlying resources. DCGrid
protected the desktop configuration, programs, and data from corruption by
grid application errors as well as the privacy of desktop users from snooping.
The grid application could not accidentally or intentionally access or modify the
PC configuration or data files. Unlike other error-prone approaches, DCGrid
presented a cleanly isolated, corruption-free environment. DCGrid shielded
applications, proprietary data, and resources distributed to the desktop PCs by
using encryption and tamper detection. Proprietary data and research sent out
to hundreds of PCs in an enterprise could be protected from desktop user
inspection or malicious corruption. DCGrid automatically monitored and
limited grid work so it does not intrude on the PC user. DCGrid remained
invisible at all times, never demanding inputs or responses from the desktop
user, and never impacting the user's performance.

The approach is to automatically wrap an application in a virtual
machine technology (Figure 5.5). When an application program is registered or
submitted to the Entropia system, it is automatically wrapped inside the virtual
machine. This isolation is called sandboxing. The application is contained
within a sandbox and is not allowed to modify resources outside the sandbox.
The application is fully unaware of being running within a sandbox, since its
interaction with the OS is automatically controlled by the virtual machine. The
virtual machine intercepts system calls the application makes. This ensures that
the virtual machine has complete control over the applications� interaction with
the operating system and access to the desktop resources.

 105

Figure 5.5 Entropia Sandbox Model

The Entropia system architecture consisted of three layers: physical manage-
ment, scheduling, and job management. The physical node management layer,
provided basic communication and naming, security, resource management,
and application control. The second layer was resource scheduling, providing
resource matching, scheduling, and fault tolerance. Users could interact directly
with the resource-scheduling layer through the available APIs or alternatively
through the third layer management, which provides management facilities for
handling large numbers of computations and files. Entropia provided a job
management system, but existing job management systems can also be used.

The physical node management layer of the Entropia system managed
these and other low-level reliability issues. The physical node management
layer provided naming, communication, resource management, application
control, and security. The resource management services captured a wealth of
node information (e.g., physical memory, CPU, disk size and free space,
software version, data cached) and collected it in the system manager. This
layer also provided basic facilities for process management including file
staging, application initiation and termination, and error reporting. In addition,
the physical node management layer ensures node recovery, terminating
runaway and poorly behaving applications.

The security services employed a range of encryption and binary
sandboxing technologies to protect both distributed computing applications
and the underlying physical node. Application communications and data were
protected with high-quality cryptographic techniques. A binary sandbox
controlled the operations and resources visible to distributed applications on
the physical nodes in order to protect the software and hardware of the
underlying machine. The binary sandbox also regulated the usage of resources
by the distributed computing application. This ensured that the application did
not interfere with the primary users of the system without requiring a rewrite of
the application for good behavior (Foster and Kesselman, 2004).

The resource-scheduling layer of Entropia accepted units of computation
from the user or job management system, matched them to appropriate client
resources, and scheduled them for execution. The resource-scheduling layer
adapted to changes in resource status and availability and to high failure rates.
To meet these challenging requirements, the Entropia system supported

 106

multiple instances of heterogeneous schedulers. This layer also provided simple
abstractions for IT administrators, abstractions that automate the majority of
admins� tasks with reasonable defaults but allow detailed control as desired.

Entropia's three-layer architecture provided a wealth of benefits in
system capability, ease of use by users and IT administrators, and internal
implementation. The physical node layer managed many of the complexities of
the communication, security, and management, allowing the layers above to
operate with simpler abstractions. The resource-scheduling layer dealt with
unique challenges of the breadth and diversity of resources but need not deal
with a wide range of lower-level issues. Above the resource-scheduling layer,
the job management layer dealt with mostly conventional job management
issues. Finally, the higher-level abstractions presented by each layer did
simplify application development. One disadvantage of the Entropia system
was that it did not support heterogeneous systems. The only platform was
Windows that limited the usability of this system in a research environment.

5.1.6 Condor
Condor, developed at the department of Computer Science, University of
Wisconsin, Madison, is a High Throughput Computing (HTC) environment
that can manage very large collections of distributive owned workstations
(Litzkow and Mutka, 1998). This is a computing environment that delivers large
amounts of computational power over a long period of time, usually weeks or
months. In contrast, High Performance Computing (HPC) environments deliver
a tremendous amount of compute power over a short period of time. In a high
throughput environment, researchers are more interested in how many jobs
they can complete over a long period of time instead of how fast an individual
job can complete. HTC is more concerned to efficiently harness the use of all
available resources.

The Condor environment is based on a layered architecture that enables
it to provide a powerful and flexible suite of resource management services to
sequential and parallel applications. Condor is a specialized workload
management system for compute-intensive jobs. Like other full-featured batch
systems, Condor provides a job queuing mechanism, scheduling policy, priority
scheme, resource monitoring, and resource management. Users submit their
serial or parallel jobs to Condor, Condor places them into a queue, chooses
when and where to run the jobs based upon a policy, carefully monitors their
progress, and ultimately informs the user upon completion.

Condor provides a powerful resource management by match-making
resource owners with resource consumers. This is the cornerstone of a
successful HTC environment. Other compute cluster resource management
systems attach properties to the job queues themselves, resulting in user
confusion over which queue to use as well as administrative hassle in
constantly adding and editing queue properties to satisfy user demands.

 107

Condor implements ClassAds, which simplifies the user's submission of jobs.
ClassAds work in a fashion similar to the newspaper classified advertising
want-ads. All machines in the Condor pool advertise their resource properties,
both static and dynamic, such as available RAM memory, CPU type, CPU
speed, virtual memory size, physical location, and current load average, in a
resource offer ad. A user specifies a resource request ad when submitting a
job. The request defines both the required and a desired set of properties of the
resource to run the job. Condor acts as a broker by matching and ranking
resource offer ads with resource request ads, making certain that all
requirements in both ads are satisfied. During this match-making process,
Condor also considers several layers of priority values: the priority the user
assigned to the resource request ad, the priority of the user which submitted the
ad, and desire of machines in the pool to accept certain types of ads over others.

5.2 Hierarchical Taxonomy
In this section we introduce our three-level hierarchical taxonomy on desktop
grid systems. The first level refers to infrastructure and includes resource type,
the platform that runs at the provider, scalability and security issues. The
second one includes conceptual model, architecture and data model, under the
umbrella of models. The last level concerns aspects related to software:
application type, architecture of the support operating system, the need for
administrator privileges, and whether a license is needed or not. At the end of
this section, a table with the classification of the main desktop grid systems
according to this taxonomy will be provided.

5.2.1 Level 1, Infrastructure: resource, platform, scalability, security
Resource type specifies how resources are provided to the system. There are
two main trends: volunteer and enterprise resources. Volunteer desktop grid is
based on voluntary participants, while enterprise desktop grid is based on non-
voluntary participants usually within a corporation, research lab or university.
Mostly, volunteer desktop grid is Internet-based, while enterprise desktop grid
is LAN-based. Volunteer DG is more volatile, malicious, and faulty, whereas
enterprise DG is more controllable because its resource providers are located in
the same administrative domain. Typical examples of volunteer DG are
SETI@home, BOINC, XtremWeb (XtremWeb, 2008), and Bayanihan (Bayanihan,
2008). Enterprise DG examples can be Entropia (Entropia, 2003) and Condor.

Desktop grids are classified based on the platform running on the
resource provider. This can be web-based, where the applications are run into the
web browser (can be Java applets or ActiveX controls), or middleware based,
where the user must install a specific middleware application, that provides the
functionality and services required to later execute computing applications on
the provider�s resource. In the web-based situation, the users only need to load

 108

a specific web page, containing an applet, which is automatically downloaded
and executed by the resource provider. Typical examples of such web-based
systems are Bayanihan, Javelin, while middleware-based systems are
SETI@home, BOINC, XtremWeb, Entropia and Condor.

Scalability divides desktop grids into two groups: Internet-based and
LAN-based. Internet based desktop grids are characterized by anonymous
resource providers, connectivity issues (firewall, NAT, dynamic addressing,
possibly poor bandwidth and unreliable connection), possibly malicious
resources, high security risks. In contrast, LAN-based desktop grids are
characterized by more constant and reliable connectivity, lower security risks or
under certain degree of control. Mainly, volunteer desktop grids fall in the first
group, and enterprise desktop grids in to the second one.

Security in desktop grids deals with aspects of access to the
computational resources by using some form of authentication and
authorization; and access to the computational data, input and results, by
providing data integrity and encryption. The verification of results is also an
important issue that needs to be addressed in any volunteer computation.
Hardware and software mishaps as well as malicious volunteers can falsify the
outcome of computations, rendering the results useless. Thus, a major concern
of middleware tools supporting volunteer computation is to provide results
validation and sabotage tolerance mechanisms. Since computations are run in
open and non-trustable environments, it is necessary to protect the integrity of
data and to validate the computation results. Without a sabotage detection
mechanism, a malicious user can potentially undermine a computation that
may have been executing for weeks or even months. In contrast, applications
executed over more controlled clusters offer some reliability and trustability.

5.2.2 Level 2, Models: computing model, architecture, data model
According to the computing model we can group desktop grids into two main
categories: one is the typical, master-worker computing model, consisting of
independent tasks, and the other one involves parallel paradigms with
communication between the tasks. The master-worker (M-W) model includes a
master (server) process which sends tasks to a set of worker processes, then
each worker makes some kind of computation on some tasks, a computation
that generally requires a variable and unpredictable time. The master then waits
for the answer from each individual worker before sending a new task to that
worker. This is a typical form of embarrassingly parallel pattern, where tasks
are mutually independent, and can be executed in parallel. The other category
involves tasks which depend on each other: there is either an execution flow
between the tasks, such that one task needs to be executed only after other tasks
are finished (typically accomplished using some sort of task-dependency

 109

graph), or the tasks are run in parallel, with data communication between each
task (typical paradigms involved are PVM, MPI, BSP).

Desktop grids can be categorized into centralized, hierarchical and peer-to-
peer (distributed) according to the architecture of the components of each
system. A centralized DG consists of a central server, where resource providers
donate computing resources during their idle time, and job submitters send
their computing requests (jobs). Usually a job is divided into smaller,
independent computing units, called tasks, with their own input data. The
server distributes these tasks to the available resources, based on some
scheduling algorithm. Typical examples are BOINC, XtremWeb, and Entropia
etc. In a hierarchical DG, desktop grids on the lower level can ask for work from
higher level, or vice versa, desktop grids on the higher level can send work to
the lower levels. The control of work at the higher level can be realized with
priority handling at the lower level. A basic DG can be configured to participate
in a hierarchy, that is, to connect to a higher-level instance of DG (parent node
in the tree of the hierarchy). When the child node (a stand-alone desktop grid)
has less work than resources available, it asks for work from the parent. The
parent node can see the child as one powerful client. An example of such
hierarchical DG is the SZTAKI Desktop Grid (SZTAKI, 2008).

In a peer-to-peer DG, there is no central server, in contrast with the
centralized type. Resource providers have only partial information of other
providers. They are also responsible for constructing the computational overlay
network and for scheduling a job in a distributed way, according to each other�s
capability, availability, reputation or trust. The reliability and performance of
such P2P systems depend on how the overlay network is constructed, because
there is no reliable central server. Examples of such systems are CCOF, Messor,
Paradropper, and Organic Grid.

Data model concerns classifying of desktop grids based on how
computational data (both input and output data) is transferred between the
components of the DG. We are concerned here with data communication
between job submitter and resource provider on one hand, and between
different resource providers on the other hand, in the situation when
communication between running tasks is required (parallel models).
We identified three data model types: middleware, data servers, and direct
communication. In the first situation, using the middleware, which connects the
two components, transfers data. This could be the master (server) in a
centralized configuration, or all the involved nodes in a P2P configuration. The
downside of this approach is that there could be a bottleneck in the case of large
data sets involved, which could affect other communication between the
components (control, discovery, status, etc.).

In the data server model, all the data is transferred using another type of
component in the system: a data server, which is a repository of both input and
output data. In this case, the job submitter is responsible for uploading the
input data to the data server, and for retrieving the results, while the job

 110

running on the resource provider�s computer is responsible for downloading
the input data and storing the results on the server after finishing the job. This
model has the advantage of moving the burden of data transfer wrt
communication and complexity from the central node to a more dedicated, and
optimized component. However, there is a complexity added in maintaining
such a data server, which in some situations might not be necessary.

The third data model involves direct data communication between the
components. This could be done either by using a common network file system,
where each component has access to it, by using a distributed file sharing
mechanism (P2P Bittorrent), or by using lower lever network based
communication for data transfer. The type of direct data communication could
be chosen based on the amount of data transferred, and the frequency with
which data transfers occur. We can also have the situation when the submitted
job contains also the input data for the computation.

5.2.3 Level 3, SW.: application, architecture, administration, license
SW applications to be run on desktop grids can be of different types: legacy
applications that already exist and are inherited from languages, platforms, and
techniques earlier than current technology. Most enterprises that use computers
have legacy applications that serve critical business needs. In order to run such
application, some kind of virtualization could be necessary, depending on the
complexity of the application and the resources it needs (third party
applications or libraries, file system access, specific operating system, etc.). This
could range from simple, virtual file systems, to more complex virtual
environments (virtual machines emulating an operating system).

Another class includes applications written in a high level or interpreted
programming language, like Lisp, Perl, Java, where in order to run the
program, a specific run-time environment should be present. The computing
jobs must be distributed according to each processing resource�s capabilities,
and provide the appropriate starting mechanism. Web-based and Java-based
systems have their own drawbacks, e.g. the historically slow execution speed of
the Java Virtual Machine (JVM) that executes the platform-independent
bytecode. Another problem comes from the security restrictions imposed on
Java applets that prevent them to access local storage space or communicating
with machines other than the host from which they came. Together, these two
problems may limit the performance and scalability of Java-based systems.

A whole class of application includes those where the programs could be
compiled in a programming language (C/C++, Fortran), and where additional
support for desktop grids could be included. This allows fine tuning the
application in term of computing performance, but requires an API from the
DG to be provided. This includes also parallel applications, where different
communication paradigms are required (message passing, shared memory,

 111

etc.). A last type of applications concerns lightweight programs that are highly
optimized for performance and DG specific. For example, computational
applications could be made in form of plugins (or shared libraries), which
contains only the computational problem, the rest of the communication, file
access, and other access to resources are handled by the supporting middle
layer application running on the resource provider. In this case, more complex
abstraction and API are needed from the underlying DG system.

SW architecture in desktop grids concerns with the operating system of
different components of the system. This could be Linux, or other Unix versions
(BSD, IRIX, etc.) when resource providers are nodes from a cluster, or Linux,
Windows, Mac if resource providers are desktop computers. Thus, a desktop
grid system should have support for the different operating systems. Many
desktop grid systems are based on Java for portability.

SW administration - during the QADPZ development, we have learned
that another restriction of existing systems, especially middleware based, is that
each resource provider needs to install a runtime module as administrator. This
poses some issues regarding data integrity and accessibility on providers�
computers. QADPZ tries to overcome this by allowing the middleware module
to run as a non-priviledged user to the local system.

SW license can be necessary if the desktop grid system is a commercial
one or not, in case of open source software systems. Beneath a table with the
classification of the main desktop grid systems according to the above-
introduced taxonomy is presented (Table 5.1).

 Infrastructure Models Software

DG system

Resource
Platform
Scalability
Security

Computing model
Architecture
Data comm.. model

SW application
SW platform
SW administration
SW license

distributed.net

- volunteer
- middleware
- Internet
- trust

- master-worker (M-W)
- centralized
- data server

- set of dedicated only
- all OS
- non admin
- closed

Entropia

- volunteer
- middleware
- Internet
- trust

- master-worker
- centralized
- data server

- set of dedicated only
- Windows
- non admin
- closed

SETI@home

- volunteer
- middleware
- Internet
- trust

- master-worker
- centralized
- data server

- set of dedicated only
- Linux, Win, Mac
- non admin
- closed

Bayanihan

- volunteer
- web-based
- Internet
- Java sandbox

- master-worker
- centralized
- middleware

- Java applet
- all OS (Java)
- non admin
- open source

 112

Condor

- enterprise
- middleware
- LAN, Internet
- authentication

- M-W, PVM, MPI
- centralized, (hierarchical)
- file system

- legacy, script, compiled
- Linux, Win, Mac
- admin
- license

XtremWeb

- enterprise
- middleware
- LAN, Internet?
- authentication

- M-W, MPI
- centralized, (hierarchical)
- middleware

- Java applet
- all OS (Java)
- admin?
- open source

QADPZ

- enterprise
- middleware
- LAN, Internet
- authentication

- M-W, MPI, PVM
- centralized
- file system, data server

- legacy,script,compiled,
lightweight

- Linux,Win,Mac,Unix
- non admin, admin
- open source

BOINC

- enterprise
- middleware
- LAN, Internet
- authentication

- M-W
- centralized
- data server

- legacy, script, compiled
- Linux,Win,Mac,Solars
- admin
- open source

SZTAKI
LDG
(BOINC
based)

- enterprise
- middleware
- LAN, Internet
- authentication

- M-W
- hierarchical
- data server

- legacy, script, compiled
-Linux,Win, Mac, Solaris
- admin
- open source

Javelin
Javelin++

- volunteer
- web-based
- Internet
- Java sandbox

- M-W
- centralized
- middleware

- Java applet
- all OS (Java)
- non admin
- open source

Table 5.1. Classification of the main DG systems according to the taxonomy

Hints to choose the most suitable DG for a given problem: if we consider the four
scenarios that have been presented in Section 4.2.2.5 and try to decide what is
the best DG for each scenario, we first look at the first column, first entry
(resource) and if the project is requested to have robustness and reliability
(major issue for first 3 scenarios) we would better choose the enterprise DG as it
overcome the volatility of volunteer computing. More, it has accountability and,
depending on the type of the organization, lacks anonymity (except for
universities or alike organizations). On the second choice (middleware vs. web-
based), if the ensuring of control and security is crucial we should go for
middleware platform (first 3 scenarios), while for the 4th scenario we could use
both. Though, we must remind that the enterprise desktop grid is limited in
power, and the volunteer computing has virtually unlimited resources.

As for the scale and security, probably the best option for the first two
problems is the LAN solution as it ensures privacy and keeps the secrets of the
application away from un-authorized eyes. The last two, on the other hand can
go both ways. The models from the second column are strongly influenced by
the nature and complexity of the application. One choice would be suitable in
the case of an application that can be broken in small tasks that can run parallel,
with no communication between them (master-worker), and another for a

 113

different type of application, in which tasks can communicate with each other
(Message Passing Interface - MPI). Moreover, if the application needs a huge
computational power, we would probably prefer a hierarchical DG, as it can
borrow power from third parties.

As for the data communication model, one has to consider the difficulty
of developing the software that will manipulate the data and the technical
limitations (within a virtual file system vs. �back and forth� from a data server).
The main difference in the usage of institutional DGs relatively to public ones
lies in the dimension of the application that can be tackled. In fact, while public
projects usually embrace massive applications made up of an enormous
number of tasks, institutional DGs (much more limited in resources) are better
matched for small size applications. So, whereas in public volunteer projects
importance is on the number of tasks carried out per time unit (throughput),
users of institutional desktop grids are normally more interested in a fast
execution of their applications, seeking fast turnaround time.

The last column is easier to work with as many of the issues involved
here are known before starting to solve a given problem: we have our own
application or we want to run a pre-defined one, if we have our own, which
kind it is (Java applet, legacy, script etc.), what platform we use (Linux,
Windows, Mac etc.), what are the needed administration privileges (admin or
user), whether we are interested in access to the source code or not, and finally
if we need a desktop grid for which a commercial license is requested.

 114

 115

6 Conceptual Model

6.1 Introduction
This chapter describes the framework that was developed with the purpose of
using distributed computing for large-scale Scientific Computing and
Visualization. The framework is based on the master-worker paradigm, where
worker nodes download small tasks from a central master node, execute them,
and send back the results to the master. Some of the disadvantages in using this
model in a heterogeneous and dynamic environment are described, together
with some problems in using it for visualization purposes. Improvements to
this model are presented, which are meant to increase the performance and
efficiency. The idea of using dynamic creation of subtasks is presented.
Subtasks are generated according to the problem�s requirements, taking into
consideration the available performance parameters of the system (network
bandwidth, latency, CPU availability and performance).

6.2 The Master-Worker Model
Our conceptual model is based on the master-worker paradigm.
The master-worker computing paradigm also called replicated worker computing
is built on the observation that many computational problems can be broken
into smaller pieces that can be computed by one or more processes in parallel.
That is, the computations are fairly simple consisting of a loop over a common,
usually compute-intensive, region of code. The size of this loop is usually
considered to be long. In this model, a number of worker processes are
available, each capable of performing any one of the steps in a particular
computation. The computation is divided into a set of mutually independent
work units by a master node, as it can be seen in Figure 6.1. Worker nodes then
execute these work units in parallel. A worker repeatedly gets a work unit from
its master, carries it out and sends back the result. The master keeps a record of
all the work units of the computation it is designed to perform.

 Figure 6.1 Master-Worker model

 116

As each work unit is completed by one of the workers, the master records the
result. Finally when all the work units have been completed, the master
produces the complete result. The program works in the same way irrespective
of the number of workers available - the master just gives out a new work unit
to any worker who has completed the previous one.

Whereas the master worker model is easily programmed to run on a
single parallel platform, running such a model for a single application across
distributed machines presents interesting challenges. On a parallel platform, the
processors are always considered identical in performance. In a distributed
environment, and especially in a heterogeneous one, processors usually have
different types and performance. This raises the problem of load balancing of
work-units between the workers in such a way to minimize the total computing
time of the application.

The ideal application is coarse-grain and embarrassingly parallel.
Granularity is defined as the computation-to-communication ratio, with coarse
grain applications involving small communication time compared to
computation time, and fine grained application requiring much more time for
communication than computation. Coarse-grain applications are ideal for
desktop grid computing because most such computing systems employ
commodity network links, which have limited bandwidth and high latencies.
Embarrassingly parallel applications are those problems that easily decompose
into a collection of completely independent tasks. Examples of such scientific
problems are: genetic and evolutionary algorithms, Monte Carlo simulations,
distributed web crawling, image processing, image rendering.

In a heterogeneous environment, scheduling that includes both problem
decomposition and work-unit distribution (placement to workers), has a
dramatic effect on the program's performance. An inappropriate decomposition
or distribution decision can result in poor performance due to load imbalance.
Effective scheduling in such heterogeneous environments is difficult. We will
show that this problem can be overcome using relatively simple heuristics if
appropriate mechanisms are provided to the scheduler in order to determine
the computation and communication complexity of the problem. This
information is then used to decompose the problem and schedule the work-
units in a way that provides good load balance, and thus good performance.

6.2.1 Decomposition and Distribution of Work-units
The most important part of parallel programming is to map out a particular
problem on a multiprocessor environment. The problem must be broken down
into a set of tasks that can be solved concurrently. The choice of an approach to
the problem decomposition depends on the computational scheme. A parallel
program is only useful if it scales efficiently with the number of processing
elements, in terms of reduced runtime. For the problem's decomposition, this
means enough tasks are needed to keep all the processing elements busy with

 117

enough work per task to compensate for overhead incurred to manage
dependencies and communication. The drive for efficiency can lead to complex
decompositions that lack flexibility. There are two different ways of
decomposing a parallel problem, based on the way and time when the work-
units are created: static and dynamic.

Figure 6.2 Decomposition and Distribution of Work-units

Static decomposition - the master generates all the work-units in the beginning of
the computation, as it is shown in Figure 6.3.

Figure 6.3 Static decomposition strategy

Dynamic decomposition - not all work-units can be generated in the beginning;
instead, the computation starts with a small number of work-units, and later
new work-units are created, depending on the results of already executed
work-units; the master can create or delete dynamically work-units.

 118

Figure.6.4 Dynamic decomposition strategy

There are applications where an easy, static decomposition is not possible, and
a more complicated dynamic decomposition is necessary. This could lead to
complex decomposition schemes that lack flexibility. The decomposition needs
to be complex enough to get the job done, but sufficiently simple to allow easy
maintenance of the application. After decomposing the problem, the work-units
need to be distributed to the work-units, or scheduled for execution. The key to
making a parallel program work well is to schedule their execution so that the
load is balanced between the processing elements. Distribution of work-units to
the workers can be of two types:

Static distribution - the master processor decides on the distribution of
work at the start of the computation, by assigning the work-units to the
workers; this is suitable in those situations where the relative amount of time
required for each work-unit is known and the workers have a well known and
stable load. This method works when it is possible to statically determine how
many work-units to assign per worker in order to achieve a balanced load.

Dynamic distribution - the distribution of work-units varies between
workers as the computation proceeds; this is a good strategy when the
execution time of each work-unit is unpredictable, especially when the
processing elements are different or when the amount of load that can be
supported by each worker is unknown and possibly changing. The most
common approach used for this is to use a queue of work-units at the master;
after execution, each work-unit is removed from the queue.
Workers which are faster or which receive work-units with shorter execution
times will get more work-units.

The static distribution approach is more suited to homogeneous
environments, where all processing elements are the same, and the work-units
have a similar execution time. In contrast, dynamic distribution is most suited
to heterogeneous environments, with applications where each individual work-
unit can have a different execution time. This strategy works also in the case
where the number of workers is changing during the computation.

 119

6.2.1.1 Static decomposition, static distribution
We describe first the simplest master-worker algorithm. We consider a fixed,
known from the beginning, number of workers. The problem is decomposed
into a fixed number or work-units, usually dependent on workers� number
(Figure 6.5). The decomposition is made considering that each worker has the
same processing power and that each work-unit requires the same computing
time. All work-units are handed out to the workers at the beginning of the
overall computation. The workers start executing work-units, and will contact
the master each time when finish execution of a individual work-unit, to send
back the results of the computation. The master will assemble all partial results
received from the workers into the final result of the application. The algorithm
is described in the pseudo-code below.

Figure 6.5 Computation times on workers:
static decomp-static distrib

Master - static decomposition, static distribution
read data
create all work-units
assume fixed number of workers
assign equally work-units to workers
FOR each worker

send all assigned work-units to worker
ENDFOR
WHILE not all results received

receive result from worker
process result

ENDWHILE
assemble final result

Worker - static decomposition, static distribution
receive all work-units from master

FOR each work-unit
execute work-unit
send result to master

ENDFOR

 120

The simplicity of the algorithm makes it very easy to implement. Each worker
knows at the beginning exactly what it needs to compute, and doesn't require
additional communication with the master to get new work-units. This makes
the algorithm very efficient, by minimizing the time spent in communication
and maximizing the total time spent on doing computation at the workers.
Unfortunately, the algorithm works only for a limited number of applications
and cannot be used in many situations. The algorithm is not very flexible,
especially in a heterogeneous environment, where different processors can have
very different computing power, such that the same work-unit can take
different amounts of time to compute on different workers. Quite often, in
many applications, work-units have different computing time, even on the
same processor. This could result in a large imbalance in the computation time
spent by different workers. Another disadvantage of the static algorithm is that
it cannot handle a dynamic pool of workers. This situation can occur when
computing power is harvested from the idle CPU cycles of desktop computers.
Available workers can appear and/or disappear, thus the total number of
workers, which can be used, is varying over time.

Visualization algorithms that can use this type of master-worker are
those, which are easily decomposed into independent tasks. Here, we can
mention ray tracing and volume visualization. Ray tracing is a widely used
technique to generate realistic looking images on a computer, and is recognized
as a powerful technique. Rays are reflected and refracted according to the
reflectivity and transparency of the surfaces. The process is repeated recursively
with the reflected or refracted rays changing the light intensity at all
intersection points. However, the ray tracing techniques require heavy
computing power, since they deal with a large number of floating-point
calculations for the movement of millions of rays. The required computing
power increases especially sharply when many objects are needed to be
rendered. Parallelism inside a ray tracing algorithm is observed in computing
individual rays. The goal is to distribute all pixels into a number of processors
in an efficient manner.

6.2.1.2 Dynamic decomposition, static distribution
A more advanced master-worker algorithm is needed in the case of dynamic
decomposition of the problem. We still consider a fixed number of workers,
known from the beginning. The problem however is considered as not possible
to be decomposed into all work-units from the beginning. This can either
because not all the work-units are known from the beginning, or because there
are too many of them, and would be inefficient to store them in memory at
once. Instead, only a smaller subset of work-units is generated, based on the
number of available workers. The master starts by sending out one work-unit
for each worker, then waits for the results. Once a worker finishes its work-unit,
it sends the results back to the master and requests a new work-unit. The
master receives the result and sends a new work-unit to the worker (Figure 6.6).

 121

Figure 6.6 Computation times on workers: dyn. decomp-static distrib

Based on this result, the master can also generate new work-units or delete
existing ones. After the workers execute all work-units, the master assembles
the final result and notifies all the workers about the termination of the
application. The algorithm is described in pseudocode below:

Master - dynamic decomposition, static distribution
read data
create a set of work-units
assume fixed number of workers
FOR each worker

send one work-unit to worker
ENDFOR
WHILE not all results received for existing work-units

receive message from worker
IF message is request

send one work-unit to worker
ELSIF message is result

process result
IF necessary

create new work-units
ENDIF

ENDIF
ENDWHILE
FOR each worker

send stop message to worker
ENDFOR
assemble final result

Worker - static decomposition, static distribution
REPEAT

send request for work-unit to master
receive message from master
IF message is work-unit

 122

execute work-unit
send result to master
ENDIF

UNTIL message is stop

Work units are handed out to the workers upon request. Each time a worker is
idle, it sends a request for new work-unit to the master. The master answers by
sending a work-unit from the pool. When receiving the results back from the
workers, the master can create new work-units, or delete existing ones. The
master will give work-units to the workers until all are solved and no more new
work-units are created. The master assembles the final result and notifies all
workers to stop. The advantage of this algorithm is that it provides certain
amount of load balancing. Each time a worker is idle, it requests a new work-
unit. This way the workers are doing computation most of the time. However,
there is a waiting period of time before starting each work-unit, after the
request is sent to the master. This waiting time depends on many variables, for
example how busy the master is, how large the work-unit messages are, etc.
The algorithm is more complex than the previous one, however many more
applications are suitable for this model. Visualization algorithms that can use
this type of master-worker are for example line integral convolution.

6.2.1.3 Dynamic decomposition, dynamic distribution
We consider now the situation where the number of workers is changing
during the computation. Often, when using idle computational power of
desktop computers, the availability of individual computers can vary over time.
In our master-worker model it means that new workers can appear in the
system and/or other workers can disappear. This can happen for example
when the owners are using computers, or when computers are started or
stopped. The algorithm is described in pseudocode that is presented beneath.

Master - dynamic decomposition, dynamic distribution
read data
create a set of work-units in state "new"
WHILE not all results received for existing work-units

t = time interval to next timeout
wait(t) for message from worker
IF timeout from wait

change all timed-out work-units from state "exec" to state
"new"
ELSE IF message is requested

send one "new" work-unit to worker
change work-unit to state "exec" and set timeout interval
ELSIF message is result

 123

process result
remove work-unit
IF necessary

create new work-units
ENDIF

ENDIF
ENDIF

ENDWHILE
FOR each worker

send stop message to worker
ENDFOR
assemble final result

Worker - dynamic decomposition, dynamic distribution
REPEAT

send request for work-unit to master
receive message from master
IF message is work-unit

execute work-unit
send result to master

ENDIF
UNTIL message is stop

The algorithm is an extension of the one presented in the previous section, with
static distribution of work-units. The problem is split up into work-units
dynamically, by generating a few work-units at the beginning and more during
the processing. Work-units are sent to each worker upon request, when these
are available for computation. The algorithm takes into account the fact that
workers can become available during the computation. This can happen either
after a work-unit has been successfully processed, or in the middle of its
computation. In order to be able to deal with this situation, the master assigns
to each work-unit a timeout interval for processing. This is done when it is sent
to a worker. If the master doesn't receive the result from the worker after this
timeout interval, the work-unit is resent to another worker.

The work-units can have two possible states:
• new - a work-unit has the state new when it is created or when it is

timed-out (i.e. it was sent to a worker, but the result was not received
in the specified amount of time);

• exec - a work-unit has the state exec when it is sent to a worker
for processing; the work-unit gets also associated a timeout interval
for processing.

 124

The algorithm is able to handle the situation of having a variable number of
workers available. This is very useful when workers are ordinary desktop
computers. The algorithm is assigning a timeout interval to each work-unit
when sent to a worker, which has to complete the computation within this
interval. The problem, which arises here, is in deciding the value of this
timeout. The simplest solution is to use a fixed, predetermined interval, based
on an estimation of computation time on the worker. This, however, is not
always possible. A special case is when having a heterogeneous environment,
with workers having different processing power. Assigning the same timeout
interval to work-units assigned to slower and faster workers is not a good
choice. The master needs to detect in time that a worker has failed to compute a
work-unit, so that it can send it to another worker (Figure 6.7).

Figure 6.7 Computation times on workers:
dyn. decomp-dyn. distrib

A disadvantage of the algorithm consists in its increased complexity on the
master side. The master has to keep track of each work-unit, its completion or
failure. This might increase the CPU time used by the master itself for
managing the work-units, creating a possible bottleneck in the system.
Optimized data structures are required for an efficient implementation.

6.3 Improved Master-Worker Model
We present further an improved version of the master-worker model. The
model is based on the algorithm with dynamic decomposition of the problem
and dynamic number of workers. The improvements concern increasing the
performance of the original model, by increasing the time workers are doing
computations, and decreasing the time used for communication delays. This is
achieved by using different techniques, such as pipelining of the work-units at
the worker, redundant computation of the last work-units to decrease the time
to finish, overlapped communication and computation at the workers and the
master, use of compression to reduce the size of messages. We will describe in
the following subsections each of these techniques.

 125

We define the efficiency of a worker as being the ratio between the amount of
time the worker spends doing computation and the amount of time the worker
is available for doing any work:

communicexec

exec

available

exec

tt
t

t
t

E
+

==

We will use the efficiency as a measure to compare the improved
master-worker model with the original master-worker model. The new model
tries to improve the efficiency of the workers.

6.3.1 Pull vs. Push for work-units
In the original master-worker model, each time a worker finishes a work-unit, it
has to wait until it receives the next work-unit for processing. In situations
where this communication time is comparable with the time needed for
executing a work-unit, the efficiency of the worker is reduced very much. The
time intervals used for communication and computation (processing) are
described in Figure 6.8.

Figure 6.8 Worker timeline in execution

The master-worker model is using the pull technology, which is based on the
request/response paradigm. This is typically used to perform data polling.
The user (in our case the worker) is requesting data from the publisher (in our
case the master). The user is the initiator of the transaction. In contrast,
a push technology is using a different approach, which relies on the
publish/subscribe/distribute paradigm. The user subscribes once to the publisher,
and the publisher will initiate all further data transfers to the user. This is better
suited in certain situations. We first extend the master-worker model by
replacing the pull technology with the push technology, as it is illustrated in
Figure 6.9. In this model, the worker doesn't send any more requests for work-
units. Instead, it first announces its availability to the master when it starts, and

 126

the master is responsible for sending further work-units. The workers just wait
for work-units, and process them when received. At the end of each work-unit,
it sends back the results to the master. The master will further send more work-
units to the worker. This moves all decisions about initiating work-units
transfers to the master, allowing a better control and monitoring of the overall
computation. The use of the push technology also allows further improvements
to the master-worker model and will be detailed in the following sections.

Figure 6.9 Pull vs. Push technology

6.3.2 Pipelining of work-units
Reducing the total time spent in waiting for communication can increase the
efficiency of the worker. One method to do that is to use work-units pipelining
at the worker, thus making sure that the worker has a new work-unit available
when it finishes the processing of the current work-unit. Pipelining is achieved
by sending more that one work-unit to the workers, as shown in Figure 6.10.

Figure 6.10 Pipelining of worker tasks

Each worker will have at least one more work-unit in addition to the one being
processed at that worker. This is done so that the worker, after finishing a
work-unit, will have ready the next one for processing. In the beginning, the
master sends more than one work-units to the worker, then after each received
result, sends another work-unit to be queued on the worker. The worker does

 127

not need to wait again for a new work-unit from the master after sending the
result, the next work-unit being already available for processing.

The immediate advantage of pipelining is that the waiting time for a new
work-unit is eliminated. This is described in Figure 6.11. While the worker is
processing the next work-unit, a new work-unit is sent by the master and is
queued in the operating system. When using non-blocking communication, the
waiting time for sending the result to the master after finishing a computation
can be also eliminated.

Figure 6.11 Worker timeline for unit pipeline

Keeping one new work-unit available at the worker seems to be enough to
reduce the waiting time for communication. However, there is a situation when
this is not adequate. It can happen that the execution time of a work-unit is
much shorter than the communication time (consisting of sending back the
result and receiving the new work-unit). In this case, the worker finishes the
current work-unit, but the new one is not yet received. Thus, a certain waiting
time is involved for receiving it (see Figure 6.12).

Figure 6.12 Unit pipeline - worst case

If there are many work-units with short execution times, than the overall
waiting time can increase significantly, reducing the efficiency of the worker.
The condition for this not to happen is the following:

 128

 execreswu ttt ≤+ for the average time values, or

 ()∑ ∑
− −

≤+
unitswork unitswork

execreswu ttt for the individual time values.

This situation can be improved by pipelining more than two work-units at the
worker, thus using a larger pipeline. The master starts by sending out a number
of work-units to the worker to fill the pipeline. Each time a result is received
back from the worker, the master sends a new work-unit, thus keeping the
pipeline full. This algorithm works as long as the average execution time for a
work-unit is larger than the average communication time for sending a result
and a new work-unit between the worker and the master. If the communication
time is too large, the pipeline will eventually become empty and the worker
will need to wait for new work-units.

6.3.3 Sending more work-units at a time
To overcome this situation, the master needs to send more than one work-units
per each message. The master starts by sending a message containing more than
one work-unit, and then keeps sending them as long as the pipeline is not full.
Each time it receives a result, it sends another work-unit, to compensate the
decreasing number of work-units from the pipe. If the worker sends only one
result per message back to the master, and this only one new work-unit, then
eventually the pipeline will become empty. In order to prevent that, the worker
will need to send back more results at a time.

Figure 6.13 More results at a time

We could consider, for example, that the number of results per message is equal
to the number of work-units per message sent from the master. In this case, all
results from the work-units, which came in one message, are sent back to the
master the same way in one message after all of them were successfully
computed. This would solve the previous problem if the time to send a larger
message (with more work-units) is much smaller than the time to send the

 129

individual messages (for each work-unit). This is usually possible if the data
required to describe one work-unit is small enough, so the messages are kept
short. However, it could still happen that communication time is larger than the
execution time, so that the worker will end up waiting for new work-units. The
condition for this not to happen is the following:

nexecmresnwu ttt ,,, ≤+ for the average time values of multiple work-units
per message and execution.

6.3.4 Adaptive number of workers
As mentioned before, in a heterogeneous environment based on idle desktop
computers, the total number of workers available could be changing during the
computation. New workers can register to the master, and other can become
temporarily unavailable. The master controls the total number of workers used
for computation, since he is the one sending out work-units to the workers. If
necessary, the master can choose not to use all the available workers for
computation, only a few of them. This might be for different reasons, as
described further. In the master-worker model, the master can become a
bottleneck, especially when there are a lot of workers, which are connecting to
get work-units and send results back. Overloading the master could cause the
bottleneck. Because the master has also to do a small amount of processing each
time when it receives results from the workers, if too many workers connect to
the master, the processing resource available might not be enough and the
request will be delayed. There is an upper limit on the number of workers,
which can connect to the master without overloading it. Finding out this
number is not easy at all, and it depends on a variety of parameters from the
entire system: computational capabilities of the workers and the master,
communication delays, the amount of processing involved for each results, etc.

Another bottleneck in the system could be caused by too much
communication. Considering that there is enough computational power on the
master to serve a large number of workers, it could happened that there are too
many messages exchanged between the master and workers, thus
communication delays can occur. This might happen either because there are
too many messages per time unit, or because the amount of data transferred is
too high, exceeding thus the available network bandwidth. On the contrary, if
there is too few workers used, then the total execution time of the computation
will be too large, not exploiting all the resources available. This suggests that
there is some optimum for the number of workers, which can increase the
overall efficiency of the whole computation, and reduce the time to complete it.
We define the overall efficiency of the computation as being the ratio between
the total amount of time since the beginning of the computation and the sum of
execution times for all completed work-units on all workers:

 130

∑
−

==

unitswork
exec

total

serial

parallel
system t

t
t

t
E

We propose an adaptive algorithm for the number of workers, based on
performance measures and estimates of execution times for work-units and
communication times for sending/receiving messages. The number of workers
used is automatically reduced if the efficiency of the computation decreases. We
employ a heuristic-based method that uses historical data about the behavior of
the application. It dynamically collects statistical data about the average
execution times on each worker.

6.3.5 Adaptive timeout interval for work-units
In the master-worker algorithm described for the dynamic number of workers
in pseudocode, the suggested approach for selecting the timeout interval for the
work-units was to fix it in the beginning of the computation for each worker.
We propose here an adaptive algorithm for changing dynamically this timeout
value for each individual worker. Each new timeout value is based on the
average processing times for the last work-units at that worker.

The processing time for each work-unit is the time interval from the
point the work-unit is sent out to the worker and until the result is received
back. It consists of the communication times used for sending the work-unit
and receiving back the result, plus the execution time of that work-unit. The
timeout is recalculated each time a new result is received from the worker. Each
result message will carry in addition the effective execution time for that work-
unit on that particular worker.

Figure.6.14 Model timeout history

 131

6.3.6 Use of multithreading
The multithreaded programming paradigm allows the programmer to indicate
to the run-time system, which portions of an application can occur
concurrently. Synchronization variables control the access to shared resources
and allow different threads to coordinate during execution. The paradigm has
been successfully used to introduce latency hiding in distributed systems or in a
single system where different components operate at different speeds.

The paradigm of programming with multiple threads of execution can
provide many benefits for the applications. In our situation, it can provide good
runtime concurrency, while parallel programming techniques can be easier
implemented. The most interesting and probably most important advantages
are performance gains and reduced resource consumption. Operating system
kernels supporting multithreaded application perform thread switching to keep
the system reactive while waiting on slow I/O services, including networks. In
this way, the system continues to perform useful work while the network or
other hardware is transmitting or receiving information at a relatively slow rate.

Another benefit of multithreaded programming is in the simplification of
the application structure. Threads can be used to simplify the structure of
complex, server-type applications. Simple routines can be written for each
activity (thread), making complex programs easier to design and code, and
more adaptive to a wide variation in user demands. This has further
advantages in the maintainability of the application and future extensions. The
multithreaded paradigm can also improve server responsiveness. Complex
requests or slow clients don't block other requests for service, the overall
throughput of the server being increased.

6.4 Resource Estimation
The user of the desktop grid systems needs to know what resources are
available in the grid, so that it can formulate more efficiently the requirements
for the actual computing job. The system should be able to provide an accurate
overview of the available resources. Compared with a classic parallel system, or
a dedicated computer cluster, where the available resources are well known, in
a desktop grid, their availability is very dynamic: new users can join to the
system, other users might use their desktop, making unavailable computing
resources, network resources can change, due to different, uncontrollable traffic
on the net and so on. We are mainly concerned with two types of resources in
the system: network and computing.

6.4.1 Network Performance
Distributed systems are becoming increasingly dependent on network
estimation: the ability to determine performance along one or more network
paths. These include both estimates of network latency and bandwidth.
Producing such quality estimates is challenging because network observations

 132

in distributed systems are noisy, and could be influenced by other
communication. The master can measure to the latency and bandwidth between
it and the workers by observing the exchanges with them. This can be done in
an active way, where the master generates benchmark traffic to the workers and
measures the parameters. This can be done with simple ping-like messages to
measure the roundtrip time, and implicitly the latency, or with more complex
data traffic to estimate the bandwidth.

The other way of measuring is the passive way, where the master
measures different times during the real execution of the job. The master
measures the elapsed time between submitting a task and receiving an
acknowledge response. The worker responds also with the time spent between
receiving the request and issuing the response, i.e. the service time. This allows
the master to consider networking costs separately from other delays. This
method provides insight to the master about possible bottlenecks in the
communication, and can decide for example not to send anymore tasks to
workers having large communication delays.

6.4.2 Computing Power
We need also to estimate the computing power of each worker that might be
used for computation. This is needed only if different types of workers are
involved in a job (distributed computation). If all the workers have the same
hardware and software architecture, then most likely their performance is
identical. A very simple, rough estimate could be based on the clock frequency
of the worker's CPU. This, however, does not take into consideration the
different CPU architectures, different clock speed, or different cache memories.
A more realistic estimate would be to run a standardized CPU benchmark on
each worker in order to have an estimate of the workers� potential. In reality,
different benchmarks can give different results when comparing two
processors, depending on which algorithms each benchmark is using. It also
depends on what optimizations are possible for each processor type for the
given benchmark. The situation where a certain benchmark is favoring one type
or architecture can occur. Thus, choosing the right benchmark is essential to
obtain a good estimate of the performance for comparing different workers.

We propose a more realistic approach for estimating the computing
power of each worker: at the beginning of each job, the master sends to each
worker the same, initial task. Based on the computing time of each worker for
this task, the master can have a much better overview of the real computing
capabilities of each worker. The size of the initial should be relatively small,
such that not too much time is wasted for the benchmark, and also, it should be
based on the same algorithm as the rest of the tasks from the job to be run. The
advantage of this approach in comparison with a standardized benchmark is
that we have a much better, problem dependent benchmark, which is more
relevant in comparing the different workers. The master can make a better
comparison of the computing performance of each worker for the given job.

 133

There is however a slight increase in the computational time of each job, due to
the initial benchmark. Another disadvantage is that the job submitter (user)
should provide a smaller initial task. This can be done either explicitly by the
user, in the job description, when submitting the job, or the decision of selecting
the initial task could be done by the master. The master can simply choose the
first task from the job to be submitted as the initial benchmark task to each
worker, or it can choose a random task from the job description.

Based on the results of the benchmark, the master can make different
decisions to improve the overall throughput of the job to be submitted. For
example, it can discard very slow workers from taking part in the job. In case of
a parallel job, where tasks submitted to each worker are relatively similar in
size, the master could choose similar workers in terms of computing
performance. This can minimize the wasted computing power when tasks of
similar size are executed and the more powerful workers are waiting results
from the slower workers. The user can provide such information about the jobs
in the task to the master, in the job description.

6.5 Resource Monitoring
To address efficient usage of networked resources, like computing, storage, and
communication resources, it is compulsory to know the availability and usage
of the resources in a continuous way, rather than isolated. Monitoring and
profiling would provide detailed information with an unobtrusive, continuous,
and application independent view for the monitored nodes. In desktop grid
environments this is particularly challenging because the desktop PCs are
volatile, frequently leaving and joining the system, thus making it difficult to
locate all the monitored nodes at any time. The knowledge of dynamic resource
properties is vital for improving application performance.

In our approach, the resources under investigation for monitoring are:
computing (CPU, memory) and networking. For each such resource we have
identified a set of metrics to capture the dynamics of resources: (1) CPU: idle
time, user time, system time, number of processes, load; (2) memory: available,
max. used by processes, cache, page faults; and (3) network: bandwidth,
packets transferred, bytes transferred, packets dropped. Periodically, the
metrics for these parameters are sampled and the resulting values are
centralized and made available to the user in a friendly way. Depending of the
usage of resources, some parameters are updated more often then the others.

The required network communication for transmission of monitoring
parameters should interfere as little as possible with the rest of the job
communications. This is especially important in the case of fine-grain parallel
applications, where communication is crucial. Monitoring data packets should
be small, and the frequency with which they are transmitted should depend on
the usage of the resources. It is also possible to send such information after jobs
are finished, and before others are started, minimizing the interference.

 134

We need to maximize the time spend for computation and minimize the time
spent for communication, by using some of the techniques that are beneath:
$ overlap computation with the communication on the worker by using

separate threads for them (both send and receive);
$ minimize time spent doing communication by reducing the size of the

transferred messages: efficient packing of information, use of compression;
$ pipeline work-units on the worker - minimize the time a worker has to wait

for getting a new work-unit;
$ make workers inter-communicate - if this reduces redundant computations.

6.6 Scheduling
In this section we present the scheduling problem adopted in this work and we
present also our proposed policy to solve it. Efficient scheduling of a master-
worker application in a cluster of distributive owned resources should provide
answers to the following questions:
o How many workers should be allocated to the application? A simple approach
would consist of allocating as many workers as tasks are generated by the
application at each iteration. However, this policy will result, in general, in poor
resource utilization because some workers may be idle if they are assigned a
short task while other workers may be busy if they are assigned long tasks;
o How should tasks be assigned to the workers? When the execution time incurred
by the tasks of a single iteration is not the same, the total time for completing a
batch of tasks depends on the order in which tasks are assigned to workers.
The problem of scheduling master-worker applications on cluster environments
has been investigated recently in the framework of middleware environments
that allow the development of adaptive parallel applications running on
distributed clusters. They include NetSolve, Nimrod and AppLeS. NetSolve
and Nimrod provide APIs for creating task farms that can only be decomposed
by a single bag of tasks. Therefore, no historical data can be used to allocate
workers. The AppLeS (Application-Level Scheduling) system focuses on the
development of scheduling agents for parallel applications but in a case-by-case
basis, taking into account the requirements of the application and the predicted
load and availability of the system resources at scheduling time.

There are other works in the literature that have studied the use of
parallel application characteristics by processor schedulers of multi-
programmed multiprocessor systems, typically with the goal of minimizing
average response time. The results from these studies are not directly applicable
in our case because they were focused on the allocation of jobs in shared
memory multiprocessors without considering the problem of task scheduling
within a fixed number of processors. However, their experimental results also
confirm that iterative parallel applications usually exhibit regular behaviors
that can be used by an adaptive scheduler.

 135

7 The QADPZ System
This chapter describes the QADPZ ['kwod 'pi: 'si:] system, a desktop grid
environment for running compute-intensive tasks in a distributed way, using
the computational resources from already existing desktop-class machines from
an Intranet (corporate-wide) or from the Internet (worldwide). Although the
idea of using idle computational resources from existing computers is not new,
few systems exist today which could easily provide the necessary support for
our Scientific Computing and Visualization needs. Besides the distributed
capabilities, the system provides for parallel computing as well. The reasons for
building a new such system are described. Furthermore, the chapter describes
the design and implementation of the QADPZ system, with details of the
requirements, architecture, communication, security and user interface. We
explain how this system supports the conceptual model described, and present
some of the more advanced features of the system. The system described is not
limited to Scientific Computing and Visualization, and it can be used for other
types of computational intensive applications.

7.1 Description
QADPZ (Quite Advanced Distributed Parallel Zystem) is a system for
heterogeneous desktop grid computing. The system allows a centralized
management and use of the computational power of idle computers from a
network of desktop computers. Users of the system can submit compute-
intensive applications to the system, which are then automatically scheduled
for execution. The scheduling is made based on the hardware and software
requirements of the application. Users can later monitor and control the
execution of the applications. Each application consists of one or more tasks, the
smallest execution unit of the system. Applications can be independent, when
the composing tasks do not require any interaction. They can also be parallel,
when the tasks communicate between each other during the computation.
Parallel communication is done using a subset of the widely used MPI
standard. Thus, the system provides for both task- and data-parallelism.
QADPZ can operate both in conditions of an open Internet environment and of
a closed local network which supports the family of TCP/IP protocols.

7.2 Justification for a New Desktop Grid System
Although the idea of using the idle computational resources from existing
desktop computers is not new, the use of such distributed systems, especially in
a research environment, has been limited, however, due to a lack of supporting
applications, and because of security, management, and standardization
challenges. Existing systems that were available in July, 2001, the date of first
QADPZ release, were specialized towards a very limited number of

 136

computational intensive problems, or too general to provide the necessary
support for specific type of applications. For the purpose of this thesis, a flexible
tool was needed to conduct experiments that concern Scientific Computing and
Visualization. Also, at the time QADPZ has been developed, most of the
existing systems have had very restrictive licenses, which had not permitted
adaptation of the code to different requirements.

More, the majority of the existing desktop grid systems, as it has been
shown in the previous chapter, provide no support for parallel application,
when communication between programs running on different computers is
necessary during the computation. This makes difficult to use such systems for
our purpose, where more than one desktop computer are needed to solve a
certain problem. Tasks with independent parallelism are suited for this type of
computing. For example, in SETI@home, work unit computations are
independent, so participant computers never have to wait for or communicate
with one another. If a computer fails while processing a work unit, the work
unit is eventually sent to another computer. Public-resource computing, with its
frequent computer outages and network disconnections, seems ill-suited to
parallel applications that require frequent synchronization and communication
between nodes. However, scheduling mechanisms that find and exploit groups
of LAN-connected machines may eliminate these difficulties.

To summarize, the need to develop the QADPZ desktop grid system has
arisen from the following main reasons:

$ many existing systems tended to be highly specialized towards a very
limited number of computationally challenging problems, and hence did
not allow the degree of flexibility that was desired;

$ source code was generally not available, hence making any novel non-
standard applications, extensions and analyzes difficult;

$ very few of the existing systems allowed specific considerations to be
made wrt the challenges of scientific computing and visualization;

$ most of the existing systems usually have a complicated deployment
procedure, requiring high-level, privileged access to the desktop
computers; this makes very hard to use such systems on a larger scale,
and also makes further maintenance of the computers more complicated;

$ the front-ends of most existing systems did not match up to current
expectations of user-friendliness, which limits very much the possibility
of using these systems on a day by day basis;

$ many of today's networks of desktop computers are heterogeneous, thus
requiring a distributed computing system with support for different
architectures and different kind of operating systems.

All these reasons have lead to the development of a new tool for desktop grid
computing: the QADPZ system.

 137

7.3 Design and Implementation

7.3.1 Requirements
Based on the reasons mentioned earlier, we have set up a set of requirements
that a successful desktop grid computing system should satisfy in order to
support applications in Scientific Computing and Visualization. The overall
goal of the system was to be friendly, flexible and tailorable to many different
requirements. The main prerequisite is therefore an open architecture that can
evolve in pace with the need and challenges of the real world.

We specify two sets of requirements for the system, as it can be seen
from Figure 7.1- one for the whole system, mostly from a functionally point of
view, and another set for the interface of the system. The interface of the system
covers both user interfaces and programming interfaces. Additionally, we
describe a set of non-functional requirements, concerning more the
development of the system itself.

 Figure 7.1 QADPZ requirements

7.3.1.1 System Requirements
System requirements are related to the core of the system and are concerning
mainly with the sharing and management of resources and application jobs in a
heterogeneous environment, but also involve performance and usability of the
system as required by our conceptual model (see Figure 7.2).

Figure 7.2 QADPZ system requirements

 138

These requirements are listed further on:
$ resource sharing: the most important resources that need to be shared are

the idle computational cycles of the desktop machines which contribute
to the system; it should also be possible to share other kind of resources
from the computers, like for example storage space;

$ resource management: the system should be able to manage efficiently the
available shared resources; furthermore, owners of desktop computers
which are sharing resources should keep control of them, by allowing
owners to define use policies and retract the resources if they want that;

$ job management: the user should be able to submit computational jobs to
the system, which will be executed using the shared computational
cycles; it should be possible to monitor and control job executions;

$ heterogeneity: the system should be possible to deploy on a network of
heterogeneous desktop computers, with different architectures (Intel,
RISC, etc.) and different operating systems (UNIX type, Windows, Mac
OS); it is the responsibility of the user submitting the jobs to provide the
appropriate binary files for execution on the different platforms;

$ simple installation and maintenance: the system should be easy to install on
a large number of computers in a network, and further maintenance of
the installed programs should be minimal;

$ parallel programming support: the system should support different kind of
parallel programming paradigms, for example both task- and data-
parallelism; it should be preferable to use well known standards for this;
MPI is an example of parallel programming standard;

$ network support: the system should work in a LAN environment, but it
should also allow the possibility to be used over the Internet; the higher
level communication protocol used between different components of the
system should be based on both TCP/IP and UDP/IP families of
protocols. The reasoning for this dual support will be given later;

$ autonomous features: the system should be able to deal with its own
complexity, by supporting different autonomic features: self-healing,
self-management, self-knowledge, self-configuration, self-optimization;

$ provide performance measurements: the system should be able to provide to
the user some information about the performance of the system, which
could be used for better usage of the available resources;

$ multi-project use: many projects have downtime and shortage of tasks.
Participation in multiple projects helps to cope with projects� downtime;

$ on-line/off-line support: the system should provide support for both batch
and interactive type of applications; in a batch setting, the user submits
jobs which will be executed at a later time, when resources become
available; in contrast, interactive jobs provide real-time feedback of the
execution; the user can inspect the partial result and interact with the
execution of the application.

 139

7.3.1.2 Interface Requirements
The interface requirements of the QADPZ system can be split up into two parts.
One is for the user interface, concerned with the graphical interface by which the
human user accesses the system. With this interface, the user can either
monitor, or control the behavior of the system. The other interface is the
programming interface (API), which allows different user applications to interact
with the QADPZ system (see Figure 7.3).

Figure 7.3 QADPZ interface requirements

All of these requirements are enlisted beneath:

$ personalization: the system should provide different levels of access to the
users, according to their skills and personal preferences; users without
strong programming skills should be able to use the system without
difficulty, even if only for easy tasks; more advanced users should be
provided with a programming API to interface more efficiently with the
system and use the full capabilities of it;

$ job management interface: there should be a simple, preferably platform
independent graphical user interface, to allow submission, monitoring
and control of the different computational jobs in the system;

$ resource sharing interface: the owner of a desktop computer should be
provided with a simple and intuitive graphical user interface that allows
her to control the sharing of his computational and storage resources;

7.3.1.3 Non-functional Requirements
Non-functional requirements of the system are constraints on various attributes
of these functions of the system (see Figure 7.4). The software tools have been
developed as free/open source software, which is a natural choice for modern
research - it encourages integration, cooperation and boosting of new ideas, in a
very effective way. We have decided to build QADPZ using C/C++, both for
reasons of high performance and object-orientedness of the language.

 140

High performance was required by the nature of Scientific Computing and
Visualization, especially when handling large data sets. The object-oriented
features provided by the C++ language were fully employed, together with
suitable advanced object oriented design patterns. This promoted software
component reuse and significantly contributed to the maintainability, flexibility
and extensibility of the system, all very important requirements of such a
distributed and heterogeneous system.

Figure 7.4 QADPZ non-functional requirements

Modularity of the system was another significant requirement. This provided for
the source code for an object to be written and maintained independently of the
source code for other objects. It also allowed an object to be easily passed
around in the system. Important was also simplicity: software objects were
design to model real world objects, so the complexity of the system has been
reduced and the structure has become much more clear.

7.3.2 Architecture
The QADPZ system has a centralized architecture, based on the client-server
model, which is the most common paradigm used in distributed computing.
The paradigm describes an asymmetric relationship between two processes, of
which one is the client, and the other is the server. Almost all applications based
on this paradigm involve multiple clients, however they can involve one or
multiple servers. In our case, the server manages the computational resources
available from the desktop computers. Offering a service, which can be used by
other processes, does this. The client is a process that needs the service in order
to accomplish a certain work. It sends a request to the server, in which it asks
for the execution of a concrete task that is covered by the service. Usually, the
server carries out the task and sends back the result to the client.

In our situation, the server has two parts: a single master that accepts
new requests from the clients, and multiple slaves, which handle those requests.
The system consists of three types of entities: master, client, and slave (Figure
7.5). Each computer contributing with computing power to the system is called
a slave, and is running a small background process in the form of a UNIX
daemon or a Windows system service. The process can be run with the
privileges of an ordinary user, it doesn't need to be run with administrative

 141

rights. This process is responsible for reporting the computer's resources and
status to a central server, the master. It also accepts computational requests from
the master, downloads the corresponding binaries and data files for the tasks,
executes the task, and then uploads the result files when finished. The slave also
downloads the task to be executed together with the input data, and starts the
computation. The presence of a user logging into a slave computer is
automatically detected and the task is killed or moved to another slave to
minimize the disturbance of the regular computer users.

Figure 7.5 QADPZ coarse architecture

The main role of the master is to maintain the current availability status of the
slaves, and to start and control the tasks. The master knows about all the
resources and jobs in the system. The master is responsible for managing the
available resources, keeping track of the available slaves, their capabilities and
configuration. It also schedules the computational tasks submitted by any
authorized user of the system, according to the required resources. Tasks can be
started, stopped, or rescheduled by the master. There are two ways of doing
this: a batch mode, and an interactive mode. In the batch mode, which is using our
universal client, a project file, specifying the required resources and how to start
the tasks, describes tasks. This information is then sent to the master, which is
responsible for scheduling it. In the interactive mode, the client has much more
freedom over the creation and controlling of new tasks. It can have also direct
feedback from the running tasks, either through the master node, or
communicating directly with the slaves. This is more suited for applications
where interactivity with the running computation is required.

The client is the interface by which a user interacts with the system. Its
main purpose is to allow the human user to create new computational jobs in
the system. It allows also monitoring them, and controlling their execution.
A client does not communicate with the slaves directly, instead it sends all its
requests to the master. A more detailed architecture of the system is described
in Figure 7.6. The control and data flow in the system are separated. Data files,
represented by binary, input, and output files, needed to run the applications
are not sent to the master. They are stored on one or more data servers. An even
more comprehensive view of the architecture is presented in Figure. 7.7.

 142

Figure 7.6 QADPZ detailed architecture
Multiple tasks can be grouped into jobs, for an easier management. Different
types of jobs can be submitted to the system. A job can consist of independent
tasks, which do not require any kind of communication between each other.
This is usually referred to as task parallelism. Jobs can also consist of parallel
tasks, where different tasks running on different computers can communicate
with each other. Inter-slave communication is accomplished using a subset of
the MPI standard. The current implementation of the system is made
considering only one central master node. This can be an inconvenience in
certain situations, where computers located in different networks are used
together. However, our high level communication protocol between the entities,
especially between the client and master, allows a master to act as a client to
another master, thus making possible to create some sort of virtual master,
consisting of independent master nodes, which communicate with each other.

7.3.2.1 Job-view of the system
The users of the QADPZ system can submit, monitor, and control computing
applications to be executed on the computers sharing computational resources
(Figure 7.9, Table 7.1). The smallest independent execution unit is called a task.
Tasks are binary programs, which can run on any of the platforms sharing
computing resources. A task comes in the form of an executable program,
compiled for a specific architecture and OS. When better performance is
required, a task can be also in the form of a shared (dynamic) library, which can
be more efficiently loaded by the slave program running on a computer sharing
resources. As an alternative to native binary programs for a specific platform, a
task can also be an interpreted or precompiled program. For example, it can be
a compiled Java application, which further needs a Java Virtual Machine on the
host computer; it can also be an interpreted program (e.g. Perl, Python), but
then an interpreter for that specific language is required on the host computer.

 143

Figure 7.7 QADPZ close-up architecture

A simplified UML Diagram of QADPZ�s architecture is depicted in Figure 7.8.

Figure 7.8 Simplified UML Diagram of QADPZ�s architecture
Multiple tasks, which are related to each other, can be grouped into a so-called
job. This is actually what a user submits to the system. A job can be composed of
one or more tasks, and allows an easier structuring and management of the
computational applications, both from the user's and the system's point of view.
Each job is assigned uniquely to one user; however, a user can have multiple

 144

jobs submitted at the same time to QADPZ. The tasks part of a job can be either
independent from each other, or they can depend on each other at execution
time. Tasks can further be divided into subtasks, consisting of finer work units
executed within a task. A task can contain different types of subtasks. Subtasks
are used for interactive applications, which require permanent connection
between a client and the slaves. They are usually generated at the client and
send for execution to an already running task, which can solve it. The main
reason for having subtasks is to improve the efficiency of smaller executional
units without having the overhead of starting a new task each time.

Figure 7.9 QADPZ job life

Operation Where Description
Create job Client the user creates a job
Submit job Client the job is submitted to the master
Queue job Master the job is queued for execution
Schedule job Master the job is scheduled for execution
Execute tasks Slave component tasks of the job are executed
Finish job Master informs client about job completion

Table 7.1. - The life of a job

7.3.2.2 Slave
The slave component of the system has two roles. On one hand it has to report
to the configured master node the resources shared. These are mainly
computational resources (CPU cycles), but can also be for example storage
space. The slave sends information about the system periodically to the master.
The information (see Figure 7.10) describes the hardware architecture of the
slave (cpu type, cpu speed, physical memory, etc.), the software environment
available on that architecture (operating system, different application or
libraries available), and the resources available on that slave.

 145

 Figure 7.10 QADPZ slave info user interface

On the other hand, the slave can accept computational jobs from the master.
This is done only when the slave is free, and any interactive, local user does not
use resources. The slave decides for itself if it should accept or not a
computational job to be run by setting some configuration parameters. The user
can configure different times of day when the slave can accept computational
jobs. It can also disable the slave at any time. The slave component runs as a
small background process on the user's desktop. It starts automatically when
the system starts. The program does not need any special privileges to run,
which makes it very easy to install and control by any ordinary user.

7.3.2.3 Master
The master is responsible for managing the available resources, keeping track of
the available slaves, their capabilities and configuration. It has always an up-to-
date overview of the resources. Basically it knows which slaves can accept jobs
for execution and how to contact them. The master is also responsible for
scheduling the computational tasks submitted by any authorized user of the
system. Jobs are sent to the appropriate slave based on the hardware and
software requirements from the jobs' description. Tasks can be started, stopped,
or rescheduled by the master. Tasks are created by users, who can submit them
to the master by means of the client as an interface to the QADPZ system. For
this, the master needs also to keep a database of authorized users.

 146

7.3.2.4 Client
The client represents the interface for submitting jobs in the system. There are
two execution modes for the client: a batch mode and an interactive mode. In
the batch mode, which can be done using the universal client, a project file,
specifying the required resources and how to start the tasks, describes tasks.
This information is then sent to the master, which is responsible for scheduling
the tasks. The client can detach from the master and connect later for the results.
Each project is described by using the XML language, as it will be seen in some
examples later in this chapter. In the interactive mode, the client stays
connected to the master for the entire time of the execution of the job. The client
can also get direct connection to each of the slaves involved in the computation.
The client has much more freedom over the creation and controlling of new
tasks: it can dynamically create new tasks, send messages to already executing
tasks, and can receive feedback from the running tasks, either through the
master node, or communicating directly with the slaves running the respective
tasks. This execution mode is more suited for applications where interactivity
with the running computation is required.

7.3.2.5 User Interface
The purpose of the user interface in QADPZ is to give a user-friendly
environment in which the user can interact with the system. This mainly
involves submission, monitoring, and management of submitted computational
applications. It also involves resource monitoring and controlling. The first
interface is the job monitoring interface, described in Figure 7.11.

 Figure 7.11 QADPZ job monitoring web-interface

 147

It is a web-based interface, which provides detailed information about all
existing jobs in the system. The user can browse through each of the jobs, and
see their status, and the tasks, which are part of the jobs. It can also easily create
new jobs and tasks. Each job can be stopped or deleted by using this interface.
The second interface is also web based and provides information related to the
resources in the system. Basically it gives a list of the slaves registered in the
system and their current status (see
Figure 7.12).

Figure 7.12 QADPZ resource monitoring web-interface

The owner of a desktop computer running a slave is given an interactive
application, which permits easy configuration of the slave (Figure 7.13).
It allows the user to specify which time of day the slave should accept jobs for
execution, and also other configuration parameters. The user has complete
control over the slave running on his computer.

7.3.3 Communication
The various components of the QADPZ system (master, slaves, clients) must
communicate with one-another using IP connections over a LAN or WAN,
depending on the deployment of the components. Single-stream TCP
performance on the WAN is often disappointing. Even with aggressive tuning

 148

of the TCP window size, buffer sizes, and chunking of transfers, typical
performance is still a fraction of the available bandwidth on the WAN on OC-12
or faster links. While there are a number of factors involved, the behavior of the
TCP congestion avoidance algorithm has been implicated as a leading cause of
this performance deficit.

 Figure 7.13 QADPZ slave configuration interface
TCP congestion avoidance algorithms assume that any packet loss is due to
congestion, which we define to be over subscription of bandwidth on any
switch or link along the path the packet stream takes on the WAN. However, it
is increasingly the case that packet loss is caused by events that are unrelated to
congestion. The sensitivity of TCP to loss is further exacerbated as the
bandwidth of the network is increased, so solutions to remedy poor TCP
performance will be increasingly important to distributed computing
applications on the WAN. Simulations of the TCP protocol performed by
Jacobson and Floyd show a high sensitivity to loss, but also demonstrate the
fact that from a control theory standpoint, that the TCP congestion avoidance
algorithm results in periodic fluctuations that resonate with the deterministic
control mechanisms of switching fabric in a highly non-linear and unstable
fashion. The default �taildropping� behavior of packet switch input-queues
leads to significant degradation in performance.

The conclusion is that TCP congestion control, while adequate for the
10megabit networks it was originally designed for, is failing completely on
today�s multiple gigabit networks and multiple efforts are underway to work
around these problems. Loss-tolerant UDP-based protocols will play an
increasingly important role in high throughput network applications of the near
future. With custom tools, it is possible to find out that UDP packet loss rates
are consistently low until you reach a critical limit, which is the available

 149

bandwidth of the slowest/most congested link in the network path. At the
critical point, when the slowest link in the path across the WAN becomes
congested, the loss rate climbs almost linearly in proportion to the increase in
output rate. It is interesting to note that frame loss rates, even at low data rates,
exhibit some background loss. This is counterintuitive, as switches should be
less congested when exposed to the slower stream, based on the models of
network loss assumed by TCP congestion avoidance algorithm.

For data transfer and replication, file integrity is paramount. Response
time and performance is of comparable importance to file integrity for
visualizations. Visualization tools almost invariably use reliable transport
protocols to connect distributed components, since there is a general concern
that lifting the guarantee of data integrity would compromise the effectiveness
of the data analysis. However, visualization researchers find acceptable other
forms of lossy data compression like JPEG, wavelet compression and even data
resampling. Acceptance may be due to the fact that degradation in visual
quality is well behaved in these cases. Therefore, an unreliable transport
mechanism that deals with packet loss gracefully and doesn�t exhibit extreme
visual artifacts will compete well with other well-accepted data reduction
techniques. Furthermore, when tuned to fit within the available bandwidth of a
dedicated network connection, the loss rates for unreliable transport are
extremely small - a few tenths of a percent of all packets sent if the packets are
paced to stay within the limits of the slowest link in the network path.

In QADPZ, messages exchanged between entities in the system are in
XML format, in accordance with a strictly defined communication protocol
between client and master, and between master and slave (the QADPZ
protocol). For our current implementation, the low level communication is
based on both TCP (Transmission Control Protocol) and UDP (User Datagram
Protocol). We have chosen to implement both protocols to be able to make
performance measurements and comparisons. Nevertheless, for the above
reasons, UDP is our first option for the low-level communication protocol.

As shown previously, the UDP is an unreliable communication protocol,
in which packets are not guaranteed to arrive and if they do, they may arrive
out of order. We have outcome this by adding a new layer that ensures reliable
communication with UDP. Our higher-level communication abstraction
implements a reliable, confirmation based message exchange protocol.
Messages are represented in an XML format for easier extensibility and
interconnection with other potential systems.

The advantage of UDP over TCP/IP is that UDP is fast, reducing the
connection setup and tear-down overhead, and is connectionless, making the
scalability of the system much easier. The higher-level protocol is message
based, and the messages exchanged between the components of the system are
of a small size. Also, messages are exchanged only for control purposes.

Because of the unreliable nature of the UDP protocol, an additional,
more reliable level of communication is needed (see Figure 7.14). This is based

 150

on message confirmation. Each message contains a sequence number, and each
time it is sent, it is followed by an acknowledgment from the receiver. Each sent
or received message is accounted, together with the corresponding
acknowledge, and in case of not receiving an acknowledgment, the message is
resent a few more times. An acknowledge and a normal message can be
combined into one message to reduce the network traffic.

 Figure 7.14 QADPZ communication layers

The abstraction used in our reliable communication layer (Figure 7.15). is
similar in functionality with the real life postal service. It delivers and receives
high level messages. We use two types of high level messages: an XML format
for control messages between entities in the system, and a plain binary format,
used for any kind of data transfer, for example when slaves inter-communicate.

 Figure 7.15 Reliable UDP communication

The PostOffice module supports both blocking and non-blocking delivery of
messages. Messages have a source and a destination address. Received
messages can be kept by the PostOffice as long as needed, the upper layers in

 151

the system having the possibility to retrieve only certain messages, based on the
sender's address. This layer provides also support for encryption of messages,
providing a certain amount of security to the system. Another feature provided
is the possibility of using compression, this way reducing the size of the
messages by using some more CPU power.

The PostOffice module is using the capabilities of the UDPConfirm layer
for sending and receiving messages. This layer is responsible for resending any
previously sent and unconfirmed messages. A separate thread is checking
periodically these messages. It provides both blocking and non-blocking
message sending. The lowest level module is called UDPSocket, and is
responsible for hiding operating system specific function calls, making a more
general interface for UDP socket communication.

7.3.4 Parallel Computing
The Message Passing Interface implemented is based on the previously
described reliable UDP communication mechanism, and is shown in Figure
7.16. It is using the same message based protocol as the one used for the
communication between the entities in the system. The PostOffice abstraction
provides a way to send/receive messages in a blocking or non-blocking mode.
This provides an easy way to implement the different types of MPI_send() and
MPI_recv() functions from the MPI standard, and the MPI_wait().

 Figure 7.16 MPI communication

The initialization of the MPI communication between slaves is done with the
help of the master node: when executing the MPI_Init() routine, each slave
sends a message to the master, specifying the address and port of its UDP
socket used for sending and receiving messages. The master waits for this
message from all of the slaves, then gives each slave a rank and distributes a list
of all MPI nodes to each of the slaves. Our current implementation does not
support collective communication, only the MPI_COMM_WORLD
communicator. However, a complete library of the collective communication
routines can be written entirely using the point-to-point communication
functions and a few auxiliary functions. The implementation provided is
limited to a small subset of the MPI. It contains only the most used functions,

 152

and is intended only for testing purposes and evaluation of the parallel
communication. More complete implementation based on existing libraries is
possible, but is outside the scope of this thesis. The MPI functions implemented
provide sufficient features for our parallel experiments.

7.3.5 Interplatform operability
The pool of computers in a network that can run different operating systems
and have different hardware architectures achieves inter-platform operability.
QADPZ handles task submissions with platform specifications, and the
appropriate library or executable is automatically used. It was compiled and
tested on many different platforms: Linux, Windows, FreeBSD, MacOS X, IRIX,
and SunOS. Our current installation runs on a pool of computers consisting of
80 Pentium III computers from one of our labs, and the nodes of VI a Beowulf
cluster of 40 Athlon computers. Currently, we use a daemon process on Unix
environments, or a system service on Windows. At the time of writing, we have
successfully tested the system on the following hardware
platforms: Linux/iX86,sparc,sparc64, FreeBSD/iX86, SunOS/sun4m,sun4u,
IRIX64/IP27, and Win32/x86,x86_64. Most of the code is ANSI C++ and
POSIX.1 compliant and therefore porting to a new platform does not require too
much efforts. We use the POSIX threads API.

7.3.6 Security
Because of the unreliability of the UDP protocol, it is not guaranteed that the
executional tasks arriving to the slave computers are undoubtedly sent by
master. This is a serious security threat since it allows for a malicious hacker to
submit any piece of code to the slave nodes (IPspoofing). For that reason, and
on the cost of a decreased performance, all communication from clients to
master and from master to slaves is crypted or signed. Particularly, the data
flow from client to master has to be authorized by a QADPZ user name and
password and crypted by a master public key. A master private key signs the
data flow from master to slaves and the authenticity is verified by master public
key on slave nodes.

It is important to note that the data flow from slaves to master and from
master to clients is not crypted nor signed, which means that a malicious hacker
can monitor (packet sniffing) or alter (IPspoofing) the data or control
information arriving back to master or client nodes and thus: put the slave
nodes out of operation, put the master node out of operation, modify the result
data submitted by slaves, or do any other kind of harm to the computational
process. In other words, the current QADPZ security scheme is designed to
protect the security of the computers in the network, i.e. a malicious hacker
cannot submit an alien piece of code to be executed instead of a user
computational task. However, this scheme doesn't protect the QADPZ user
data. We are considering allowing optional data integrity in the future versions

 153

of the QADPZ system.
Security of the system is handled in two ways. On one hand, only users
registered to the QADPZ system are allowed to submit applications for
execution. This is done by using a user/password scheme, and allows a simple
access control to the computational resources. The QADPZ system manages its
own user database, completely independent of any of the underlying operating
systems, thus simplifying users' access to the system. The QADPZ system
administrator creates new users by maintaining this user database. Tools are
provided to minimize the effort in doing this. The other type of security used by
the system involves the encryption of messages exchanged between
components of the QADPZ system. This is done using public key encryption,
and provides an additional level of protection against malicious attacks.

7.3.7 Autonomic Computing Features
IBM�s manifesto on autonomic computing (Kephart and Chess, 2003) points out
that the difficulty of managing today�s computing systems is not only because
of the administration of individual software environments, but also because of
the need to integrate multiple heterogeneous environments, and to extend
beyond company boundaries into the Internet. All these factors contribute to
increased levels of complexity in computing systems. Installing, configuring,
and maintaining such large systems is becoming an increased challenge even
for experts. A possible solution to this problem is to embed the complexity in
the system infrastructure itself (both hardware and software), then automating
its management. This is in a way similar to the human system, with its
autonomic nervous system, which provides automatic, involuntary regulation
of the major physiological functions. The essence of autonomic computing
systems is self-management, the intent of which is to free system administrators
from the details of system operation and maintenance. In a similar way to the
biological systems, autonomic systems will maintain and adjust their operation
in the face of changing components, demands, workloads, and external
conditions, and also will be able to handle hardware or software failures.
Such systems will be able to monitor their use and interact with other systems.
The following is a list of defining characteristics for an autonomic computing
system, according to the IBM manifesto (IBM, 2001):

know itself: the system should have detailed knowledge of its
components, status, capacity, and connections with other systems; it
will need to know the extent of its owned resources, those it can lend,
and those that can be shared or should be isolated.

configure itself: the system configuration should be done automatically,
as must dynamic adjustments to that configuration to handle changing
environments.

 154

optimize itself: the system should monitor its components and look for
ways to optimize its working, like resource allocations, load balancing,
different network traffic optimizations.

heal itself: the system should be able to recover from faults that might
cause some parts of it to malfunction.

protect itself: the system should be capable of detecting and protecting
resources from both internal and external attacks, thus maintaining
overall system integrity.

adapt itself: the system should be aware of its environment and the
context surrounding its activity, and act accordingly, by finding rules
for how best to interact with neighboring systems.

open standards: the system should work in a heterogeneous environment
and implement open standards; it cannot be a proprietary solution.

anticipatory: an autonomic computing system will anticipate the
optimized resources needed while keeping its complexity hidden; both
the users and applications in the system should be unaware of the
presence of the technology used to perform their functions.

Further on, we will describe how the different component types of the QADPZ
system manifest autonomic characteristics (Constantinescu, 2003).

7.3.7.1 Self-knowledge
First, the system must have detailed knowledge about itself. In QADPZ this is
accomplished by detecting all available computing resources and their current
status. Each slave knows about its own local resources, while the master knows
about all the available resources provided by the slaves contributing to the
system. When the slave background application is started on one of the
computers in the network, it automatically detects the hardware and software
resources available on that computer. Hardware resources are, for example,
system architecture, CPU type and speed, available physical memory, and
available disk space. These characteristics of the computer can be obtained in
different ways: by inquiring the operating system (e.g. the available memory
and disk space), or by running some benchmark tests (e.g. CPU speed). Each
operating system has its own way of providing such information, so that this
auto-detection feature of the slave is dependent on the operating system.

However, it is a small part of the code and can be easily adapted for a
new system. Software resources can be, for example, the operating system type
and version, different shared system libraries and software applications
available on the system. The slave is pre-configured to detect if certain software
applications (e.g. compilers, interpreters, etc.) are available, and determines the
installed version on that computer. Using this information, the slave service is
creating a description of the computer and registers it to the master. In this way,
the master will collect detailed information about each of the slaves

 155

participating in the QADPZ system, keeping an overall knowledge about the
whole system's resources, thus creating knowledge about itself.

7.3.7.2 Self-configuration
The software running on each slave computer is capable of upgrading itself
whenever there is a new version of the software. This is done automatically on
the slave side, without any user intervention, or system restart. The user only
needs to specify to the master the new version of the slave program and its
location for the different operating systems. The master will notify the slaves
about the availability of a new version. Each slave will upgrade itself if it has an
older version. However, the upgrade can be delayed if a specific slave is
running a task, until the computation is finished. Any additional new slave,
which connects to master will also be notified about a possible upgrade.

7.3.7.3 Self-optimization
The slave is also responsible for detecting if the computer is in use by any
interactive user, or if the CPU resource is used by other applications. The first
situation is detected by monitoring if there is an interactive session started on
the computer: in Windows this is done by checking if the explorer application is
running, while in Unix by checking for an X-Windows session. The second
situation is detected by measuring the CPU load over a longer period of time
(seconds, a few minutes). In any of these situations, the slave is considered
unavailable, and will not be scheduled for executing computational tasks. Once
the computer becomes available, its new status is reported to the master and
scheduling of tasks becomes possible. This monitoring feature of the slaves is
the first step in gathering information about resource utilization for the purpose
of self-optimization of the system. The information is used by the master for
scheduling the distribution of tasks to the slaves.

7.3.7.4 Self-healing
When a task is scheduled on one of the slaves, that slave receives a description
of the task, which contains all the information needed to start it: the download
addresses for the task to be executed and all the input files needed. All the files
are downloaded locally on the slave and the computation is started. When the
task is finished, the results are uploaded, every temporary files are removed
and the master is notified about the end of the computation.

There are however certain situations when the execution of the task is
interrupted, and which requires some kind self-healing mechanisms. One such
situation is when the task started by the slave is crashing, due to a software
problem in the executed program. The slave will detect such failure, then it will
clean up any local temporary files, and notify the master about this. The master
can either notify the user about the situation, or try to execute the task on a
different platform slave, if possible.

 156

Another situation is when a task is running and a user is starting an interactive
session on that slave computer. Since interactive users have priority over any
executing tasks, the running task will be interrupted. The task can be migrated
to a different slave, or restarted, if migration is not possible, on a different slave.
Migration can be done if the task program can provide the means to save the
current state of the program and continue the execution from this point on a
different computer. This has to be done inside each task. A future extension we
are investigating now is to use check-pointing techniques. When the task needs
to be interrupted, it is first check-pointed, the resulting memory footprint is
transferred on the new slave, where the computation is resumed. Another self-
healing situation is necessary when a task is running for too long and the local
slave will stop the execution and notify this to the master.

The current implementation considers only one central master node. This
can be a shortcoming in certain situations, where computers located in different
networks are used together. The master node can also be subject to failures,
software or hardware. A more decentralized approach is needed in this case.
Currently, our high-level communication protocol between the entities,
especially between the client and master, allows a master to act as a client to
another master, thus making possible to create a distributed master, consisting of
independent master nodes, which inter-communicate. Ideas from peer-to-peer
computing will be used for implementing such a decentralized approach.

7.4 Get Started with QADPZ
In QADPZ, a small software program (slave service) runs on each desktop
workstation. As long as the workstation is not being utilized, the slave service
accepts tasks sent by the server (master). The available computational power is
used for executing a task. Human system administration required for the whole
system is minimal. We will now describe the features in detail.

7.4.1 User modes
Each installation of the system requires a local administrator, who is
responsible for configuring the system and installing the slave service on desktop
computers, and the universal client on user computers. Individual users,
however, do not need to have any knowledge about the system internals. On
the contrary, they are able to simply submit their executable or interpreted
(such as Lisp or Java) program from a menu-driven command-line application,
where they can specify:
$ number of runs of the application;
$ file path to the executable and command line arguments;
$ input and output files (their names are automatically generated from the run

number) either for all runs or for specified subset of runs;
$ directories where the files reside;

 157

$ utilities to be run after individual tasks (typically to process the output files
before another task is started);

$ maximum time allowed for a task to execute;
$ in what order ought the task groups be executed;
$ hardware (disk, memory, CPU type and speed) and software (operating

system, and installed programs) requirements of the application.

These project configuration parameters are saved into XML-structured file.
The executable can be taken from a local disk or downloaded from any
URL-specified address. The input and output data files are automatically
transferred to slaves using a dedicated data www-server. The progress of
execution can be viewed in any web browser. Each run corresponds to a task �
the smallest computational unit in QADPZ. Tasks are grouped into jobs �
identified by a group name and a job number. System allows control operations
on the level of tasks, jobs, job groups, or users. If preferred by advanced users,
the project file may be edited manually or generated automatically, see the
example 1 and 2 below.

Example1: Simple library-type
project file.

Example 2: Simple executable-type project file.

<Job Name="example">
<Task ID="1" Type="Library">
<RunCount>1</RunCount>
<TaskInfo>
<Memory
Unit="MB">64</Memory>
<Disk Unit="MB">5</Disk>
<TimeOut>3600</TimeOut>
<OS>Linux</OS>
<CPU>i386</CPU>
<URL>http://server/lib-
example.so</URL>
</TaskInfo>
</Task>
</Job>

<Job Name="brick">
<Task ID="1" Type="Executable">
<RunCount>15</RunCount>
<FilesURL>http://server/cgi-bin/</FilesURL>
<TaskInfo>
<TimeOut>7200</TimeOut>
<OS>Win32</OS>
<CPU Speed="500">i386</CPU>
<Memory>64</Memory>
<Disk>5</Disk>
<URL>http://server/slave_app.dll</URL>
<Executable Type="File">../bin/evolve_layer.exe
</Executable>
<CmdLine>sphere.prj 2 50</CmdLine>
</TaskInfo>
<InputFile Constant="Yes">sphere.prj</InputFile>
<OutputFile>sph/layout/layout.2</OutputFile>
<InputFile Constant="Yes">sph/sphere.1</InputFile>
<InputFile Constant="Yes">sph/sphere.2</InputFile>
<InputFile Constant="Yes">sph/sphere.3</InputFile>
<OutputFile>sph/logs/evolve_layer.log.2
</OutputFile>
<InputFile>sph/layout/layout.1</InputFile>
</Task>
</Job>

 158

More advanced users can write their own client application that communicates
directly with the master using API of the client service library. This allows
submitting tasks with appropriate data dynamically. Finally, advanced users
can write their own slave libraries that are relatively faster than executable
programs and very suitable for applications with many short-term small-size
tasks, i.e. with a high degree of parallelism. The communication between the
system components is in human readable XML format and can optionally be
saved into log-files, so that all the activity and possible failures can be traced.
Extensive debug logs can be produced as well. The system provides basic
statistics information on usage accounting.

7.4.2 Installation and maintenance features
All three main components of the system � client, master, and slave have their
configuration files, which are well-documented and pre-configured for normal
operation (only the IP address of the master needs to be modified). Each user of
the system is authorized by user name and password and a special
administration utility for their maintenance is provided. Manual configuration
of the data www-server and master automatic startup is currently required,
however automatic installation of the slave service on multiple PC workstations
is solved for Win32/iX86 platform and is easy to setup for UNIX platforms.

Upgrade of the slave service is automatic, it is started by administration
utility program � a new version is downloaded and started by each slave
service. This allows large number of network computers to be easily integrated.
The computers submitting jobs (the clients) can be offline while their tasks are
running on slave machines. The master keeps track of the jobs and caches
computation results when needed. In addition to a flexible storage place for the
pre- or post-computational data, computational nodes can use common Internet
protocols for data transfer to or from any other computer, including those not
involved in the QADPZ system. Tasks are automatically stopped or moved to
another slave when a user logs on to one of the slave workstations. The system
does not support job checkpointing yet and does not handle restart of master
computer. Adding these features has high priority. However, tasks can be
moved from one slave to another at the request of the running task. This is
equivalent to resubmitting a task with the addition that initial input data can be
different from the original task.

The system installation, administration and use, and system internals are
documented in the manual that is available from the project webpage.

7.4.3 Security
There are two conceptually different parts about security: system integrity and
data integrity. In QADPZ we have primarily focused on system integrity, i.e. it
should not be possible to use the system to gain access to any of the machines
involved. Based on this we have the following requirements: only registered

 159

users should be able to upload code to the slave machines, and slave code has
limited access to the host environment.
In order to reach the first requirement, the master is fitted with a private/public
key pair using the OpenSSL library (OpenSSL, 2007). All commands from
clients to the master are signed with a username/password pair, so that only
registered users can submit work. The passwords are saved in an encrypted
form on the master host system.

The transmission of the username with password is always encrypted.
Likewise, all commands from the master to the slaves are signed using the
master�s private key. The key-pair is defined at install-time. Slave code access to
the system is defined by the owner of the system hosting the slave, and is thus
outside QADPZ�s control. The slave can be requested to download codeblocks
from other locations. These locations are also outside the control of QADPZ.
This means that if the system administrators of slave hosts give the software
unnecessary system access, these computers will be vulnerable to unlawful
users and to users ignorant of security issues. We pay this price for flexibility. In
our setup, the slave is started under separate network user that has the disk
read and write access only in a special temporary directory.

7.4.4 Architecture
The system consists of a central process called �master�, a variable (high)
number of computing processes on different computers in the network called
�slaves�, and a number of �client� processes, user applications, which generate
tasks grouped in jobs. Slave component is run as a daemon or Windows service.
Its first role is to notify the central master about its status and the available
resources. These include: operating system type, processor information, CPU
type, CPU speed nodes, physical memory available, local disk available, and
existing software on the local system. An example of slave status message is
shown beneath. Slave status message is sent from all computational nodes at
regular intervals.

<Message Type="M_SLAVE_STATUS">
<Status>Ready</Status>
<SlaveInfo>
<Version>0.5</Version>
<OS>Win32</OS>
<CPU Speed="500">i386</CPU>
<Memory Unit="MB">32</Memory>
<Disk Unit="MB">32</Disk>
<Software Version="1.3.0">JDK</Software>
<Software Version="2.95.2">GCC</Software>
<Address>129.241.102.126:9001</Address>
</SlaveInfo>
</Message>

 160

Another role of the slave is to launch an application (task) as a consequence of
master�s request. The application, in form of a library, executable, or interpreted
program, is transferred from a server according to the description of the task,
then it is launched with the arguments from the same task description. In case
of executable and interpreted tasks, universal slave library is used. After the slave
service library launches it, it first downloads the executable or interpreted
program, either from an automatic data store (now implemented on top of
www-server in Perl), or from a specified URL location. The universal library
proceeds with downloading and preparing all the required input files. After the
executable or interpreted program terminates, the generated output files are
uploaded to the data store to be picked up later by the universal client, which
originated the task. On Win32 platform, the user (or universal) slave libraries
come in form of DLL module, while on UNIX platform they are dynamic
libraries (this makes it difficult to port the application for example to
Darwin/Mac OS, which doesn�t support dynamic libraries).

The master is listening to all the slaves. This way, it has an overview of
all the resources available in the system, similar to a centralized information
resource center. It accepts requests for tasks from clients and assigns the most
suitable computational nodes (slaves) to them. The matching is based on task
and slave specifications and the history of slave availability. In addition, master
accepts reservations for serial or parallel groups of computational nodes: clients
are notified after resources become available. Master generates a report on
current status of the system either directly on a text console � possibly
redirected to a (special) file, or in form of an HTML document.

The client consists of the service library and a client user application or
the universal client application. The client service library provides a convenient
C++ API for a communication with the master, allowing controlling and
starting jobs and tasks and retrieving the results. Users can either use this API
directly from their application or utilize the universal client, which submits and
controls the tasks based on an XML-formatted project file. In version 0.6 of the
system, each job needs a different client process, although we are working on
extending the client functionality to allow single instance of client to optionally
connect to multiple masters and handle multiple jobs.

Communication in QADPZ is based on TCP/UDP, an unreliable
communication protocol, in which packets are not guaranteed to arrive and if
they do, they may arrive out of order. The advantage of UDP/IP over TCP/IP
is that UDP is fast, reducing the connection setup and teardown overhead, and
is connectionless, making the scalability of the system easier. The higher-level
protocol is message based, and the size of the messages exchanged between the
components of the system is small. Also, messages are exchanged only for
control purposes. This makes UDP a very good option for our low-level
communication protocol.

This layer, called UDPSocket, is also responsible for hiding operating
system specific function calls, and making a more general interface for

 161

communication. Because of the unreliable nature of the UDP protocol, an
additional, more reliable level of communication is needed. This is based on
message confirmation. Each message contains a sequence number, and each
time it is sent, it is followed by an acknowledgement from the receiver. Each
sent or received message is accounted, together with the corresponding
acknowledge, and in case of not receiving an acknowledgement, the message is
resent a few more times. An acknowledge and a normal message can be
combined into one message to reduce the network traffic. This layer is called
UDPConfirm, and permits both synchronous and asynchronous message
sending. The next communication layer, PostOffice, has a similar functionality as
the real life post office service. It delivers and receives high level messages �
XML elements represented as instances of XMLData class. Both blocking and
non-blocking modes are supported. Messages have a source and a destination
address. Received messages can be kept by the PostOffice as long as needed, the
upper layers in the system having the possibility to retrieve only certain
messages, based on the sender�s address. The PostOffice is also responsible for
the encryption and decryption of messages, if necessary.

Messages exchanged are in XML format, in accordance with a strictly
defined communication protocol between client and master, and between
master and slave. Each message is represented as an XML element <Message
Type="message_type">, see the example 3. XML elements are internally stored
as objects of class XMLData, which in turn contain their sub-elements � other
XMLData objects. Element attributes are instances of XMLAttrib class. These
classes provide extensive functionality for manipulation with XML elements
including input/output string and stream operations. When the data for slave
user library are sent in the message, they are encapsulated inside of standard
<![CDATA[]]> XML elements. We chose to implement our own lightweight
class in order to achieve flexibility and easy extensibility of its functionality.
Message based communication is used only for controlling the entities in the
system. Shared libraries and executable files for task execution on the slaves, as
well as data files for the computations are transferred using standard Internet
protocols, like for example http, ftp, ldap, etc. For this, we are using the open
source library �cURL� (cURL, 2007). Currently, the slave is using http to
download files from a server (which can be the master itself, or another,
specialized data server), but this can easily be changed to a different protocol.

 162

 163

8 The QADPZ usage on sourceforge.net
In this section, we present briefly the �history� of the QADPZ system since it
has been uploaded to sourceforge.net (July, 2001), as well as its users� feedback
and some other interesting reactions to this open source system. Within the
appendix of this thesis, some raw feedback and reactions to the system are
listed. These can be categorized into four main categories: feedback and support
requests from users who use QADPZ for their research and development tasks,
forum discussions, citations in papers, and working assignments, based on
QADPZ features, for students from some universities. Links to the QADPZ
system can be found also in distributed computing directories
on the web and in several blogs.

SourceForge.net is the world's largest Open Source software
development web site. SourceForge.net provides free hosting to Open Source
software development projects with a centralized resource for managing
projects, issues, communications, and code. SourceForge.net is a centralized
location for software developers to control and manage open source software
development, and acts as a source code repository. Furthermore, SourceForge is
a collaborative revision control and software development management system.
It provides a front-end to a range of software development lifecycle services
and integrates with a number of free software/open source software
applications (such as PostgreSQL and Subversion).

SourceForge.net has offered free access to hosting and tools for
developers of free software/open source software for several years, and has
become well-known within such development communities for these services.
Just as important, SourceForge is the place to �see and be seen� for up and
coming open source projects. Here, developers are chatting, sharing, rubbing
elbows, strutting their stuff with other developers or watching each other build.
It�s a global community of coder geeks, just jonesing to give birth to that next
line of Java or PHP or Perl.

SourceForge.net is operated by Sourceforge, Inc. (formerly VA Software)
and runs a version of the SourceForge software, forked from the last open-
source version available. A large number of open source projects are hosted on
the site (it had reached 155,585 projects and 1,658,777 registered users as of
August 2007), although it does contain many dormant or single-user projects.

When the site opened in November 1999, growth was respectable, if
modest. At the time, only those with a deep technical background knew the
term �open source�. Though the site offered myriad free tools, only a small
crowd of projects registered by the end of the year. That soon changed. By the
end of 2000, SourceForge had thousands of projects registered; by the end of
2001, almost 30,000 were coding away. And the following year, the flood
commenced. Since 2002, they claim that a hundred projects a day are added.
Fast forward to 2007 and SourceForge is now home to a sprawling universe of

http://en.wikipedia.org/wiki/Source_code_repository
http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Sourceforge%2C_Inc.
http://en.wikipedia.org/wiki/SourceForge
http://en.wikipedia.org/wiki/Fork_%28software_development%29
http://en.wikipedia.org/wiki/As_of_2007
http://en.wikipedia.org/wiki/As_of_2007

 164

open source developers. It�s an intense hive of software creators. Some 150,000
projects � and growing � reside there, covering every conceivable computing
function. In the Figure 8.1, a sourceforge sample page on distributed computing
projects can be seen.

Figure 8.1 QADPZ in Distributed Computing projects

The QADPZ system had registered on sourceforge.net on July 2001, and
uploaded its first public version (v 0.4) in September 2001. The QADPZ system
is one of the first projects on desktop grid computing that have been registered
on the sourceforge site. On the site there are available the source code files, user
and developer manual, system documentation and papers about the system.
The main page of the project on the sourceforge.net website is presented below
(Figure 8.2).

 165

Figure 8.2 QADPZ home page

A summary on the QADPZ system can be seen also on the sourceforge.net
website, as it is illustrated with the screenshot underneath (Figure 8.3):

Figure 8.3 QADPZ project summary

 166

Some statistics with source code that have been downloaded since project�s
registration time on sourceforge.net are presented in Figure 8.4
(December, 2007):

Figure 8.4 QADPZ download statistics

Each version of the program have been downloaded several times, as it can be
seen in the following Figure 8.5.

Figure 8.5 QADPZ downloads

 167

And, finally, we can see beneath some statistics with project�s webhits since
QADPZ project has been registries on sourceforge.net.

Figure 8.6 QADPZ webhits statistics

In this chapter we presented briefly the �history� of the QADPZ system since it
has been uploaded to sourceforge.net. Within the appendix of this thesis users�
feedback and some other interesting reactions to this open source system are
listed. These can be categorized into four main categories: feedback and support
requests from users who use QADPZ for their research and development tasks,
forum discussions, citations in papers, and working assignments for students
from some universities, based on QADPZ features.

To conclude we should mention that from interaction with the system
users, we have gained insight in their perspective and needs, and we have used
that feedback to improve our conceptual model, design and implementation
of the QADPZ system.

 168

 169

9 Scientific Computing and Visualization Experiments

9.1 Computational Resource Monitoring
Several desktop grid systems have been successfully used for many high
throughput applications. Yet, in an organization or enterprise setup there has
been little insight into the temporal structure of resource availability. We
present some of our observations regarding our desktop grid�s availability of
computing resources. The results are from an undergraduate student laboratory
of 70 personal computers from the university. It is well known that the highest
availability of computers is during night, when few of the students are using
lab computers. We are more concerned about resource availability during work
hours, with the idea of using desktop grid resources for interactive tasks, like
group visualizations or interactive presentations, where a group of researchers
and students are working together.

We present our observations between 08:00 in the morning and 20:00 in
the evening during several days, when computers from labs are actually used
intensively (e.g. project deadlines, homeworks, lab hours). The results from the
following plots show the actual number of computers available for
computations from the running desktop grid. From a rough estimate, we can
say that computers are available for computations about 50-60% of the time
during week-days, between 08:00 and 20:00. During the night, the availability is
close to 95-100%. This amounts to approximately 75-80% availability of
computers during a 24hours interval of a working day, growing to 90-95%
during weekends. As a conclusion, we can say that, based on our available
measurements, we can say that there is a lot of computing power available in
such laboratories, which can easily be used for scientific experiments, provided
that an appropriate resource-harvesting framework is available.

0

10

20

30

40

50

60

70

80

08:00 10:00 12:00 14:00 16:00 18:00 20:00
22:00

total number
available

Figure 9.1 Available desktop computers in laboratory (day 1)

 170

0

10

20

30

40

50

60

70

80

0 8 :0 0 10 :0 0 12 :0 0 14 :0 0 16 :0 0 18 :0 0 2 0 :0 0
2 2 :0 0

total number
available

Figure 9.2 Available desktop computers in laboratory (day 2)

0

10

20

30

40

50

60

70

80

08:00 10:00 12:00 14:00 16:00 18:00 20:00

available
total number

Figure 9.3 Available desktop computers in laboratory (day 3)

 171

0

10

20

30

40

50

60

70

80

08:00 10:00 12:00 14:00 16:00 18:00 20:00

total number
available

Figure 9.4 Available desktop computers in laboratory (day 4)

0

10

20

30

40

50

60

70

80

08:00 10:00 12:00 14:00 16:00 18:00 20:00

available
total number

Figure 9.5 Available desktop computers in laboratory (day 5)

0

10

20

30

40

50

60

70

80

08:00 10:00 12:00 14:00 16:00 18:00 20:00

available
total number

Figure 9.6 Available desktop computers in laboratory (day 6)

 172

9.2 Real word problem - Trondheim fjord

Figure 9.7 Maps of the Trondheim fjord

Geophysical circulation modeling is an increasingly important area for several
reasons. One is the growing concern for environmental and ecological issues.
This relates to problems of different scales, from global issues to more local
questions about water pollution in coastal areas, estuaries, fjords, lakes, etc. To
analyze such problems, there is a need to predict the flow circulation and
transport of different materials, either suspended in water or moving along the
free surface or bottom. The numerical model is based on a finite element
formulation. It is believed that the finite element flexibility is advantageous for
applications in restricted waters, where the topography is usually complex. The
basic mathematical formulation is given by the Navier-Stokes equations. (Utnes
and Brors, 1993). The figures above show a map of Trondheimsfjorden, a typical
Norwegian fjord that is located on the coast of central Norway. Detailed
topographical data are used to interpolate the depth data to the element mesh.
Figure 9.7 illustrates the topography of the actual domain. The horizontal
element mesh is shown in Figure 9.8. It consists of 813 biquadratic elements
with 3683 nodes, and there are 17 levels in the vertical direction with fine
grading close to the bottom boundary. This grid is assumed to be detailed
enough to describe the main flow field of the fjord.

Shading the discretized cells according to the value of the scalar data
field performs color coding. For better appreciation of continuum data the color
allocation is linearly graduated. Using directed arrows also represents the
velocity vector field. Large vector fields, vector fields with wide dynamic
ranges in magnitude, and vector fields representing turbulent flows can be
difficult to visualize effectively using common techniques such as drawing
arrows or other icons at each data point or drawing streamlines. Drawing
arrows of length proportional to vector magnitude at every data point can
produce cluttered and confusing images. In areas of turbulence, arrows and
streamlines can be difficult to interpret. Line Integral Convolution (LIC) (Cabral
and Leedom, 1993) is a powerful technique for imaging and animating vector

 173

fields. The image is created beginning with a white noise that is then
convoluted along integral lines of the given vector field. That creates a visible
correlation between image pixels that lie on the same integral line. The local
nature of the LIC algorithm suggests a parallel implementation, which could, in
principle, compute all pixels simultaneously. This would allow for interactive
generation of periodic motion animations and special effects.

Figure 9.8 Trondheim fjord (left: topography, right: grid)

Figure 9.9 Grid colored by salinity concentration

Note. Grid colored by salinity concentration; Max 34 ppt - parts per thousand (mg/l)

 174

Figure 9.10 Trondheim fjord model

Note. Color by salinity concentration - 3D model representation with isosurface representation.

Figure 9.11 Velocity vector field -

LIC representation

Figure 9.12 3D representation

surface- vector field top layer

9.3 Fluid flow around a cylinder - simulation
We present some experiences with running a typical Computational Fluid
Dynamics problem in QADPZ environment. The numerical method for solving
the incompressible Navier�Stokes equations is used in a test case for the system.
An evaluation of the performance of the system is presented, by comparing it
with running the same simulation on a typical dedicated cluster environment.

To solve the incompressible Navier�Stokes equations we use a version
the well�known projection method, in which equations for the velocity

 175

components and pressure are solved sequentially at each time step. Solving the
discretized, fully coupled equations can be very expensive due to the nested
iterations, and this decoupling procedure is found to be computationally
efficient for transient problems, particularly for higher Reynolds numbers. In
general, the separation of pressure and velocity can be performed on both the
continuous equations and the discretized equations. While the latter is
attractive due to the straightforward interpretation of boundary conditions,
these methods give a significantly more complicated pressure equation and we
therefore prefer a splitting at the differential level. The Galerkin finite element
method is used to discretize in space. The pressure is fixed in one node to
ensure a unique solution, and has homogeneous Neumann conditions on all
boundaries. Implementation of the flow solver was done is C++ using the object
oriented numerical library Diffpack. A parallel version of Diffpack (Langtangen
et al., 2000) was used, which is based on a standard Message Passing Interface
(MPI) for communication. We used Linux as a development platform. An MPI
library with a subset of the most used MPI calls was implemented on top of
QADPZ�s communication protocol. This QADPZ-MPI library allows us to use
QADPZ as a straightforward replacement communication system for the MPI
based Diffpack library (Karniadakis and Kirby, 2003).

A series of tests were performed on a dedicated cluster of 40 PCs, with
Athlon XP 1.46GHz CPU, 1 GByte memory, and 100 MBps network
interconnection between nodes, running a Linux distribution. First, we used the
original implementation of the solver software, which is using MPICH as a
parallel communication protocol, to run the cluster version of the simulation.
Second, we recompiled the solver using the QADPZ-MPI library to create the
distributed computing version of the simulation. The solver was run using
exactly the same computers from the cluster (i.e. identical hardware setup). A
third test case was using a pool of 8 computers with similar hardware
specifications. These computers were ordinary desktop PCs from our labs,
connected to our LAN, together with other computers. Simulations were done
in two different times of the day: during the night, when network traffic in the
LAN is minimal, and during working hours, when LAN traffic is much higher.

The first set of results is from simulating some time steps of an oscillating
flow around a fixed cylinder in three dimensions. The grid has 81600 nodes and
is made of 8-node isoparametric elements, while the coarse mesh (used for
pressure preconditiong) has approximately 2000 nodes. Results of the execution
times are presented in Figure 9.13. We run the same simulation in three
different parallel settings for the underlying MPI library:
• the MPICH library from Argone National Laboratory (Gropp and Lusk,

1996, Gropp et al., 1996),
• the QADPZ MPI library using LZO based compression for communication,
• the QADPZ MPI library using bzip2 based compression for communication.

 176

NS equation

0

200

400

600

800

1000

1200

1400

1600

1800

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16CPUs

tim
e

[s
ec

]

MPICH
QADPZ bzip2
QADPZ lzo

 Figure 9.13 Execution times for the solver

A second set of results presented is from simulating some time steps of an
oscillating flow around a fixed cylinder in three dimensions. The grid has
307296 nodes and is made of 294912 elements (8- node isoparametric). A coarse
grid was used for pressure preconditioning, which had 2184 nodes and 1728
elements. Three sets of simulations were done, using MPICH, PVM and
QADPZ-MPI as communication libraries. For each set of simulation, a
maximum of 16 processors (Athlon AMD 1.466 GHz) were used. Running times
were between around 240 minutes (1 processor) and 18 minutes (16 processors).
Speedup results from these simulations, presented in figure 2, show that the
performance of our system is comparable to other similar systems based on the
message-passing interface. The advantages of our system are as follow: The
installation of the slave on the computational nodes is extremely easy, only one
executable and one config file being needed, and no root/admin access is
necessary. Upgrade of the slaves is done automatically from the master,
without any administrator intervention. Also, there is no need for a shared file
system, since each of the slaves is downloading by itself the needed files. The
slaves systems can have different operating systems, and there is no need for
remote access to them (using rsh/ssh type of protocols).

 177

Navier-Stokes eq. (large)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

CPUs

Speedup

S - ideal 1.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

S - mpich 1.00 1.28 3.27 5.24 6.74 7.88 10.14 12.24 13.39

S - pvm 1.00 1.24 3.32 4.95 6.54 7.36 9.99 12.29 13.18

S - qadpz 1.00 1.28 3.22 5.20 6.63 7.68 9.96 11.84 12.89

1 2 4 6 8 10 12 14 16

 Figure 9.14 Speedup for the simulation

9.4 Fluid flow around a cylinder - visualization
The results are from simulating some time steps of an oscillating flow around a
fixed cylinder in three dimensions. The second experiment is with three
cylinders. The grid has 81600 nodes and is made of 8-node isoparametric
elements, while the coarse mesh (used for pressure preconditiong) has
approximately 2000 nodes. As in the previous case, numerical simulation is
done using the Navier Stokes equations.

 Figure 9.15 Flow around cylinder grid

In the above figure the 2D domain grid is represented using triangular
elements, and the coloring is done using the pressure scalar field.

 178

Figure 9.16 Flow around cylinder (measurement and simulation)

The left figure is a real life experimental image for Re=26 (Van Dyke, An Album
of Fluid Motion), and the right is a simulation image using LIC vector field
representation for Re=20.

Note. Simulation experiment for Re=100 at different time steps.

t=4

t=12

t=27

t=32

t=35

t=40

t=80

t=360

t=400

 179

Figure 9.17 Streamline

Figure 9.18 Streakline

Streamlines are a family of curves that are instantaneously tangent to the
velocity vector of the flow. This means that if a point is picked then at that point
the flow moves in a certain direction. Moving a small distance along this
direction and then finding out where the flow now points would draw out a
streamline.

Streaklines are the locus of points of all the fluid particles that have passed
continuously through a particular spatial point in the past. This can be found
experimentally by releasing dye into the fluid in a time period at a fixed point
and then at a later time finding out where the dye was.

Note. Simulation experiment for Re=100 at different time steps, with 3
cylinders.

t=6

t=16

t=26

t=36

t=41

t=51

Figure 9.19 Flow around 3 cylinders

 180

9.5 Utilizing QADPZ for Evolutionary Computation
To evaluate the system, the version 0.6 of the system in artificial evolution of
layers of 3D LEGO models has been used (Petrovic, 2007). A 3D model was
decomposed into individual layers. The layout of each layer, i.e. the placement
of LEGO bricks was evolved by a separate task. The input and output files were
automatically transferred by the universal client. To obtain statistically
significant data, tens of independent runs were required. QADPZ installation
included 70 high-performance PentiumIII 733MHz workstations located in a
student laboratory. Their status can be on or idle during the night, and except of
the exercise deadline season approximately 30-50% idle also during the day.

They received results worth many weeks of single computational time
within approximately 3 days time with no configuration overhead, by simply
submitting their executable to QADPZ. Evolutionary Algorithms (EA) are
highly parallel stochastic search methods for finding approximate solutions
useful when no deterministic algorithm generating good solutions is known.
They are inspired by the Darwinian natural evolution principles, and work with
a population (a set) of solutions that survive, mate and get mutated from
generation to generation based on their performance (fitness). In each
generation, all individuals in the population have to be evaluated
independently. That is where it is natural to parallelize the execution of the
evolutionary algorithms. Some flavors of EA work on multiple populations that
evolve independently (island models) � and for them another natural place for
parallelizing is allocating one (or several CPUs) for each sub-population.
Alternately, evaluating a single individual can also be performed in parallel on
several CPUs, if the objective function is suitable for parallelizing.

When setting up a distributed EA, one typically uses a combination of a
package for distributed computation and a package for EA. The distributed
computation package will be responsible for delivering the inputs/outputs
to/from the computational nodes, and submitting the tasks to the nodes
automatically. The user has to configure which code and data have to be
processed. Usually the user specifies at how many nodes he runs a particular
application, or optionally what would be the topology of the parallel virtual
computer. The user can implement the communication between the
computational nodes either through the shared file system, message-passing, or
sockets, or simply rely on the parallelization features provided by the chosen
EA package. In our case, the evolutionary robotics experiment was based on the
GaLib package, which does not support parallelization, and thus we needed a
distributed computing package.

9.6 Adaptive Compression for Remote Visualization
In order to understand better the issues from Scientific Visualization and to
match them with the capabilities provided by QADPZ we did make an

 181

experiment of remote visualization. Remote visualization using client-server
environments allow users to access large datasets. One possible solution for that
is the use of compression techniques, where images are generated and
compressed at the servers� side, then the encoded images are transferred over a
data network, decompressed and displayed at the clients side. One of the
problems in remote visualization is to increase the frame rate for the user.

A possible solution is to reduce the amount of data transferred over the
network, in our case to choose an efficient compression algorithm. However,
the better a compression algorithm is, the more computing is necessary for both
compression and decompression, increasing the time needed to process the
image. The choice of the most efficient compression depends also on the content
of the image. Therefore we have proposed an innovative intelligent adaptive
compression method for selecting different image compression algorithms for
remote visualization. The selection is made based on the performance of
previously compressed frames and network transfer delays. We have used a
reinforcement learning technique to select the compression algorithm for each
individual frame. The algorithm was tested using SGI OpenGL Vizserver, but it
can be easily adapted to other remote visualization systems (Vizserver, 2004).

Transferring the full data set to the researcher�s desktop for visualization
purposes is most of the time impossible, due to the lack of memory and storage
space of local desktop computers. Scientific Visualization research applies a
client-server approach to this problem. Remote visualization can be done using
different strategies. In a first scenario, the server renders the images and
streams them to the client. In a second scenario, the server is doing some of the
rendering calculations, such as geometry transformations or visibility
determination, while the client is doing the final rendering. Another scenario is
where the client is doing all the rendering computations.

Each of these scenarios has tradeoffs. For example, performing the
rendering completely on the client side requires high-end desktop computers,
not always available to researchers. Performing some of the rendering on the
server can greatly improve the visualization, however the low-end client
resources may not provide sufficient power to finish the rendering in time.
In the rest of the article we consider only the first scenario, where the server is
doing all the computations including the rendering, and the client is responsible
only with the display of the final image. Image streaming makes possible
remote visualization using low-end desktop computers (thin clients), and can
be made independently from any visualization algorithm used.

However, image streaming can require significant network bandwidth.
For example, if we consider that the resolution of displayed image is 640x512
pixels with 4 bytes for the RGB colors and the alpha channel, then the size of
such an image is 1.25 MBytes. The maximum theoretical frame rate that can be
obtained using a 100 MBps bandwidth network, is 10 frames per second, if the
full bandwidth could be used. If we consider remote visualization over a wide
area network, then the achievable frame rate will be much lower.

 182

One possible solution to this problem, when using image streaming over the
network, is to use compression algorithms. The server renders the image, then
compresses that image and sends it over the network. The client is then
responsible for decompressing the encoded image and displaying it. Using
different compression techniques for the images, the amount of data transferred
over the network can be significantly reduced. How much an image can be
compressed depends essentially on the image content. This means that by using
different compression algorithm for the same image, different compression
rates can be obtained. The problem is to find an automatic way of selecting the
right compression algorithm. Different methods based on analyzing the image
and using the compression algorithm that gives the best compressed size are
presented in the literature. However, most of these methods can be used only
for certain types of images. In this work we present an algorithm for selecting
the compression methods during a remote visualization session without
analyzing the content of the image.

We propose an adaptive algorithm for dynamically selecting one of the
compression algorithms to be used for each individual frame. The selection is
done using a reinforcement-learning algorithm, and it is based on different
performance measures from the environment: past and present frame rates,
compressed image sizes, compression times, estimated bandwidth. The
compression method, which increases the overall frame rate, is chosen.
However, from time to time, other compression methods are also used for short
periods of time, in order to estimate the potential benefit of selecting them.

Reinforcement learning is a computational approach to learning whereby
an agent tries to maximize the total amount of reward (the frame rate in our
situation) it receives when acting with a complex, uncertain environment.
As opposed to other machine learning methods, in this method the learner is
not told which actions to take, but instead must discover which actions yield
the most reward by trying them. In many cases, the actions may affect not only
the immediate reward, but also the next situation and, through that, all
subsequent rewards.

Figure.9.20 Remote visualization

 183

Related work. Renderer implementations exploiting image compression have
mostly adopted relatively simple lossless schemes, which rely on frame
differencing and run-length encoding. While these techniques can deliver
acceptable frame rates over local area networks, their compression ratios are
highly dependent on image content, and are insufficient in slower networks.
SGI OpenGL Vizserver is a product developed by Silicon Graphics, Inc., to
enable remote-visualization applications. Specifically, OpenGL Vizserver is
designed to provide users remote access to graphics pipelines of Onyx2 Infinite
Reality machines so that they may view rendered output from visualization
applications at geographically remote locations while utilizing the powerful
pipeline and memory of an Onyx2 machine located at some centralized place.
OpenGL Vizserver uses programmable compression modules to compress and
decompress frames of the rendered scene. It comes with five standard modules
(CCC, ICC, SCC, SICC, LCC) and an API that provides the capability to develop
new modules with user defined functionality.

Each compression module has the capability of taking advantage of
frame-to-frame coherency inherent in most visualizations, by implementing an
inter-frame compression scheme where only the changing portions of each
frame are compressed and sent to the clients. The CCC, ICC, SCC, and SICC
compression modules implement lossy compression algorithms. These four
schemes are derived from the Block Truncation Coding (BTC) algorithm that
compresses a 4x4 pixel block down to two colors plus a 4x4 pixel mask. In
addition to lossy compressors, there is also a lossless compression module
called LCC. This preserves the original image quality while still saving
bandwidth. In many cases the savings are as high as 4x without any reduction
in image quality. A similar framework exists which provides remote control to
Open Inventor or Cosmo3D based visualization applications (Engel et al., 2000).
It allows transparent access to remote visualization capabilities and allows
sharing of expensive resources. A visualization server distributes a
visualization session to Java based clients by transmitting compressed images
from the server frame buffer. Visualization parameters and GUI events from the
clients are applied to the server application by sending CORBA requests.

Both of these two solutions require the user to explicitly select the
compression algorithm to be used. In most of the situations, the user does not
have any knowledge about the compression algorithm. An adaptive
compression algorithm for medical images was presented in (Hludov et al.
1998). The adaptive algorithm presented is based on a classification of digital
images into three classes and followed by the compression of the image by a
suitable compression algorithm. The content of the image is analyses based on a
validation of the relative number and absolute values of the wavelet
coefficients. A comparison between the original image and the decoded image
will be done by a difference criteria calculated by the wavelet coefficients of the
original image and the decoded of the first and second iteration step of the
wavelet transform. Compression of images was used in (Ma et al., 2000) for

 184

visualizing time varying volume data over a wide area network. The rendering
was done on a remote parallel computer and compression of the images was
used for significantly reducing the cost of transferring output images from the
parallel computer to the local display. They used lossy compression methods
combined with lossless compression methods, which were capable of providing
acceptable image quality for many applications, while retaining desirable
properties such as efficient parallel compression and fast decompression. They
experimented with different combinations of the JPEG, BZIP and LZO
compression algorithms, and then selected the combination of JPEG and LZO as
giving the best frame rates for their system.

Image compression. The use of image compression algorithms can
significantly improve the amount of data transmitted over the network. All
compression algorithms are based on the same principle: compressing data by
removing redundancy from the original data. Any nonrandom collection data
has some structure, and this structure can be exploited to achieve a smaller
representation of the data, where no structure is discernible. This is the case of
using lossless compression algorithms. An important feature of image
compression is that in many situations it can be lossy, being acceptable to lose
image features to which the human eye is not sensitive. Images can be loss
compressed by removing irrelevant information even if the original image does
not have any redundancy. Different image compression algorithms can be used
for different types of images. Each type of image may feature redundancy, but
they are redundant in different way. This is why any given compression
method may not perform well for all images, and why different methods are
needed to compress the different image types. The choice of the best algorithm
is not trivial, most of the time requiring a certain experience with the
algorithms. During a visualization session, the type of image can also change,
making even more difficult to choose the appropriate algorithm. One important
factor, which is important in choosing the compression algorithm, is the
amount of computation needed for both compressing and decompressing the
image. More efficient algorithms, capable of generating smaller compressed
images are usually requiring more CPU power. This becomes very critical,
especially for high-resolution images. There is a tradeoff between the amount of
computation time needed to generate the compressed image and the amount of
time used to transfer it over the network.

There are cases when an investment in a more efficient compression
algorithm can result in a higher frame rate, especially when the remote
visualization is done over low bandwidth networks. In many situations, the
actual network bandwidth available, which can be used, is less that the
maximum bandwidth. This is the case when the remote visualization is done
without having a dedicated network connection between the visualization
server and client, especially when using wide area networks for visualization
over long distance. An additional problem is that this available network
bandwidth can change significantly during a remote visualization session. This

 185

can be due to other data traffic in the network.
For our study, we used four lossless compression algorithms. The choice

was mainly made based on the performance of these algorithms for general
image compression and the availability of optimal implementations as software
libraries. The first algorithm (ZLIB) is the so-called �deflation� algorithm, which
is used in the popular programs zip and gzip. This is a dictionary based
compression method: it selects strings of symbols and encodes each string as a
token using a dictionary. It is based on the LZ77 compression method combined
with static Huffman encoding. The compression time and image sizes are pretty
good, however for certain image type compression can be very poor.

The second algorithm called Lempel-Ziv-Oberhumer (LZO), an
optimized dictionary based method, which is more suited for real-time
compression-decompression. It offers pretty fast compression and very fast
decompression, however it favors speed over compression ratio. The resulting
compressed images can be very large, thus increasing the transfer time over the
network. The third algorithm used (BZIP2) is based on the Burrows-Wheeler
method, which is a compression method using block sorting. The input stream
is read block by block and each block is encoded separately as one string. The
main idea is to start with a string S of n symbols and to scramble (permute)
them into another string L, which satisfies: (1) any area of L will tend to have a
concentration of just a few symbols; (2) it is possible to reconstruct the original
string S from L. The method is a general-purpose method, which works well on
images and can achieve very high compression ratios.

The disadvantage of this algorithm is that it requires a lot of computing,
both compression and decompression being slow. Since the algorithm is
compressing individual blocks independently, it is possible to use a parallel
version of the compression to reduce the time. The last algorithm we used is a
simple Run Length Encoder (RLE). The idea behind this approach is the
following: if a data item d occurs n consecutive times in the input stream,
replace the n occurrences with the single pair nd. This is well suited for certain
types of images, with large areas containing the same pixel value. The size of
the compressed stream depends on the complexity of the image. The more
detail we have, the worse the compression is. The algorithm being extremely
simple, very efficient implementations could be implemented. It is also well
suited for a parallel encoding.

Reinforcement learning (Sutton and Barto, 1998) is a computational
approach for goal directed learning from interaction. The learner is not told
which actions to take, but instead must discover which actions yield the most
reward by trying them. Reinforcement learning is different from supervised
learning, the kind of learning from examples provided by a knowledgeable
external supervisor. In interactive problems it is often impractical to obtain
examples of desired behavior that are both correct and representative of all the
situations. In uncharted situations, where one would expect learning to be most
beneficial, an agent must be able to learn from its own experience.

 186

Figure.9.21 The agent-environment interaction.

In reinforcement learning, the learner and decision maker is called the agent.
The thing it interacts with, comprising everything outside the agent, is called
the environment. These interact continually, the agent selecting actions and the
environment responding to those actions and presenting new situations to the
agent. The environment also gives rise to rewards, special numerical values that
the agent tries to maximize over time. More specifically, the agent and
environment interact at each of a sequence of discrete time steps, t. At each time
step t, the agent receives some representation of the environment�s state, st, and
on that basis selects an action, at. One time step later, in part as a consequence
of its action, the agent receives a numerical reward, rt+1, and finds itself in a
new state, st+1. At each time step, the agent implements a mapping from states
to probabilities of selecting each possible action.

This mapping is called the agent�s policy. Reinforcement learning
methods specify how the agent changes its policy as a result of its experience.
The agent�s goal, roughly speaking, is to maximize the total amount of reward
it receives over the long run. One of the challenges that arise in reinforcement
learning is the trade-off between exploration and exploitation. To obtain a lot of
reward, a reinforcement agent must prefer actions that it has tried in the past
and found to be effective in producing reward. But to discover such actions, it
has to try actions that it has not selected before. The agent has to exploit what it
already knows in order to obtain reward, but it also has to explore in order to
make better action selections in the future. The agent must try a variety of
actions and progressively favor those that appear to be best.

Another key feature of reinforcement learning is that it explicitly
considers the whole problem of a goal-directed agent interacting with an
uncertain environment. All reinforcement-learning agents have explicit goals,
can sense aspects of their environments, and can choose actions to influence
their environments. It is usually assumed that the agent has to operate despite
significant uncertainty about the environment it faces.

Adaptive compression. The adaptive compression algorithm we are
proposing is using a reinforcement algorithm as presented in the previous
section. We consider the frame rates as the rewards for each time step. An
example of frame rate variation during a typical visualization session is
presented in figure 3. The figure shows the current and average frame rates
obtained by using the RLE (Run Length Encoding) compression algorithm for

 187

two situations: one 100 MBps and one 10 MBps network connection of the client
to the LAN. There are large variations in the current frame rate, especially when
there is enough available network bandwidth (in the left and right regions of
the figure). The average is done using the last ten frame rates.

Figure.9.22 Frame rate variations and average

Due to these large variations, the algorithm is making the selection of the
compression algorithm based on these average values. For each selected
compression method, at least 10 frames will be rendered using this method,
providing this way a better estimate of performance of the algorithm. The
adaptive algorithm works as follows: it starts with one of the compression
methods (LZO in our case) and it uses it for the next 10 frames to get an
estimate of its performance. After that, it is trying in a similar way the other
compression methods, and when all the methods are tested it is choosing the
best of the algorithms. From time to time, another compression method,
different from the current one, is selected randomly and evaluated. If the new
method is providing a better performance, i.e. increased frame rate, then it is
selected as the next compression method. We used an interval of 50 frames
between trying another compression method.

 188

Figure.9.23 The adaptive algorithm

Experimental results. We conducted tests using an SGI Onyx2 2400 parallel
computer as the remote visualization server. This computer consists of 32
R12000 RISC processors at 300 MHz, with a total memory of 16 GBytes and two
Infinite Reality3 graphic pipelines. For the local visualization client we used a
desktop PC with a Pentium 3 processor, running at 500 MHz, with 256 MBytes
of memory. The operating system used was Linux with a 2.4.19 kernel. As a
remote visualization system, we used the SGI OpenGL Vizserver software. This
software allows remote rendering of the images on the SGI server, which are
then compressed and sent over the network to the client for display. The SGI
Vizserver offers an API for writing additional compression modules to be used.

Figure.9.24 Vizserver architecture

We implemented four compression modules using the four lossless methods
described above. These modules are basically wrappers for existing software
libraries, which implement the compression methods. The modules give a
simple interface to both the compression and decompression, which is used by
the adaptive algorithm. This is implemented as a compression module for the
SGI Vizserver using the development API provided with the software. The
adaptive algorithm was implemented using the C++ programming language.

We chose the SGI Vizserver for several reasons. First because we had
access to an SGI parallel visualization server which had it available, and second,
because the API used for the compression modules is very simple, making it
very easy the implementation of different compression techniques. Another
reason was that the use of the Vizserver is transparent to the applications used.

 189

There was however some problems we experienced. One of them is that the
version we were using (3.1 beta) was quite unstable. We had to go through
many crashes of the server software while developing and experimenting with
different compression algorithms. One of the disadvantages in using SGI
Vizserver is that the server hardware must be an SGI computer. However, the
algorithm we implemented for the adaptive compression, together with the
four compression modules are very easy to adapt to other similar remote
visualization systems, due to the modular of implementation.

One possible useful parameter we did not have access to while using the
SGI Vizserver framework was the effective time required for sending each of
the compressed frames over the network. The only available parameters we
could use were the compression time for the frames and the time between two
consecutive calls for the frame compression algorithm.

In our experiment, the size of each frame was 640x512 pixels with 4 bytes
per pixel (RGB plus alpha channels). We used the Volview program for
visualizing a volume data set of 256x256x77 voxels of a CT scan. The Volview is
part of the SGI Volumizer2 software, and uses hardware accelerated 3D
texturing for volume visualization. This is a direct data visualization technique
that uses textured data slices, which are combined, is a specific order using a
blending operator. This technique takes advantage of graphics hardware and
resources by using OpenGL 3D-texture rendering, allowing applications to
obtain high interactive performances.

The experiments were conducted using two different network
connections between the client and the 100 MBps LAN containing the server. In
the first situation, we connected the client using a 100 MBps network card to the
LAN. In the second situation, we used a 10 MBps network card for connecting
the client. Using a modified version of the Volview program, we recorded the
translation and rotation vectors of the volume data for each frame generated
during a typical interactive visualization session. We then played back the same
session using the four different compression methods and then the adaptive
algorithm. Frame rate averages for all five situations are presented in
Figure.9.25 and Figure.9.26, for the two network connection situations.

In both situations, the adaptive algorithm is searching for the best
algorithm in the beginning, thus giving low frame rates. However, when it
finds the best algorithm, it keeps it for the rest of the visualization session.

 190

Figure.9.25 Average frame rate - 100 MBps network

Figure.9.26 Average frame rate - 100 MBps network.

 191

Conclusions. As the amount and size of scientific data continues to increase, the
demand for high-resolution imaging will also increase. Remote visualization is
one solution for making accessible remote data sets to users with low capability
desktop machines. Use of image compression techniques permits remote
visualization of larger resolution images or over lower bandwidth networks.
There are different compression methods for different kind of images. Some of
the methods give very good compression rates but only for a certain types of
images, while for other types of images the compression is poor. The selection
of the best compression algorithm is still a matter of experience. One other
problem is that in most cases a better compression method also requires much
more computational power. There is a tradeoff between the size of the
compressed image and the amount of computation used in order to obtain the
optimal frame rate using remote visualization.

In this experiment we presented an adaptive algorithm based on
reinforcement learning for choosing one of the available compression methods
in order to maximize the frame rate. Our experiments show that such an
algorithm can work in a dynamic and uncertain environment, consisting of a
visualization server, a visualization client, and a network for transferring the
compressed images between the server and the client. One of the problems we
experience with the current algorithm is that, in certain situations, one of the
compression methods, which are evaluated by the adaptive algorithm, is giving
really poor frame rates. This affects the interactive responsiveness of the
application. One possible improvement of the algorithm would be to use a
different selection algorithm for evaluating the next possible method, by
making actions, which give small rewards to be less likely to occur. In this way,
compression methods, which give poor frame rates, will be less probable to be
selected in the future.

The modules for the compression methods and the adaptive algorithm
are available for download, both as source code and binary at the following
web site: http://www.idi.ntnu.no/�zoran/vizserver.

 192

 193

10 Conclusions and Future Work
Continued exponential technology improvements, new collaborative modalities
enabled by the quasi-ubiquitous Internet, and the demands of increasingly
complex problems have, over recent decades, fuelled a revolution in the
practice of science and engineering. Today's science is as much based on large-
scale numerical simulation, data analysis, and collaboration as it is on the
efforts of individual experimentalists and theorists. Licklider's vision of man-
machine symbiosis and a global communication network came from the
scientific community. Today, this community still leads the way, as early
attempts in Grid computing evolve to the more sophisticated and ubiquitous
virtual organization concept, in which Grid middleware enables "coordinated
resource sharing and problem solving in dynamic, multi-institutional
organizations�. The scientific community recognizes that following a decade of
pioneering work in computational science, data technologies, supercomputing,
and networking linked with Grid technologies, �computational and data
management infrastructure has become a global phenomenon that is poised to
evolve as a key enabler for science and society� (Foster and Kesselman, 2004).

The new modes of inquiry outlined here constitute an ambitious vision
for the future of science and engineering. The realization of this vision will
require long-term investments of financial resources by governments and of
intellectual resources by those who must build and apply the necessary global
information infrastructure. We should not underestimate the difficulty of the
technical challenges that must be overcome before we can fully realize the
vision of a robust middleware infrastructure capable of supporting true virtual
organizations. We hope that we have emphasized just how critically important
the realization of this goal is for the future of science and engineering.

With the rapid and simultaneous advances in software and computer
technology, especially commodity computing, supercomputing and grid
computing, every scientist and engineer will have on his or her desk an
advanced simulation kit of tools that will make analysis, product development,
and design more optimal and cost effective. Through the availability of
increasingly powerful computers with increasing amounts of internal and
external memory, it is possible to investigate incredibly complex dynamics by
means of ever more realistic simulations. However, this brings with it vast
amounts of data. To analyze these data it is imperative to have software tools,
which can visualize these multi-dimensional data sets. Comparing this with
experiment and theory it becomes clear that visualization of scientific data is
useful yet difficult. For complicated, time-dependent simulations, the running
of the simulation may involve the calculation of many time steps, which
requires a substantial amount of CPU time, and memory resources are still
limited, one cannot save the results of every time step. Hence, it will be
necessary to visualize and store the results selectively in real time so that we do

 194

not have to recompute the dynamics if we want to see the same scene again.
Real time means that the selected time step will be visualized as soon as it has
been calculated. Scientific breakthroughs depend on insight. In our collective
experience, better visualization of a problem leads to a better understanding of
the underlying science, and often to an appreciation of something profoundly
new and unexpected. Advanced capabilities for visualization may prove to be
as critical as the existence of the supercomputers themselves for scientists and
engineers, and also for specialists in other domains. Better visualization tools
would enhance human productivity and improve efficiency in several areas of
science, industry, business, medicine and government. The most exciting
potential of widespread availability of visualization is the insight gained and
the mistakes caught by spotting visual anomalies while computing.
Visualization will put the scientist into the computing loop and change the way
the science is done (McCormick, 1988)

Visualization as a human activity precedes computing by hundreds of
years, possibly thousands if we include cave paintings as examples of Human�s
attempts to convey mental imagery to his fellows. Visualization specifically in
the service of science has a rather shorter but distinguished history of its own,
with graphs and models produced by hand all having been used to explain
observations, make predictions, and understand theories. The current era of
visualization, however, is different in its pace and spread, and both can be
attributed to the modern invention of the computer. Today, we are bombarded
with visual imagery, no news report is considered complete without flying in
graphs of statistics: the weather report can be seen to animate rain-drop by rain-
drop, our banks send as plots of our incomings, and outgoings in an attempt to
persuade us to manage our finances more responsibly (Wright, 2007).

Moreover, everyone can now produce their own computer graphics,
with easy-to-use software integrated into word-processors that makes charts
and plots an obligatory element of any report or proposal. More specialist
packages in turn offer complex techniques for higher dimensional data. These
used to be the domain of experts, but without the expert on hand to advise on
their usage we run the risk of using the computer to make clever rubbish.
Visualization has thus become ubiquitous. As a tool it is powerful but not
infallible. Scientists are becoming familiar with desktop programs capable of
presenting interactive models molecules and microbiological. The field of
bioinformatics and the field of cheminformatics make a heavy use of these
visualization engines for interpreting lab data and for training purposes.
Medical imaging is a huge application domain for Scientific Visualization with
an emphasis on enhancing imaging results graphically, e.g. using pseudo-
coloring or overlaying of plots. Real-time visualization can serve to
simultaneously image analysis results within or beside an analyzed (e.g.
segmented) scan. Data visualization techniques are now commonly used to
provide business intelligence. Performance metrics and key performance
indicators are displayed on an interactive digital dashboard. Business

http://en.wikipedia.org/wiki/Imaging
http://en.wikipedia.org/wiki/Image_segmentation

 195

executives use these software applications to monitor the status of business
results and activities.

All users of Scientific Computing and Visualization have an interest in
better hardware, software and integrated systems, and much of what has being
developed was shared by a number of scientific and engineering disciplines up
to a point, but with very large costs that were accessible only to large research
facilities (e.g. SGI visualization servers and large PC clusters). Then the gaming
industry has made a breakthrough under the pressure of the gamers, who did
require more and more graphical power, by developing very high performance
graphics cards, at very low costs (commodity hardware). The visualization
community has shifted to using these low-priced resources for their
visualization tasks and progressively more PC-based visualization results have
been obtained. However, gaming graphics hardware is not well suited for
Scientific Visualization, leading to a fundamental rethinking of how high-end
systems are built as designers attempt to apply to large scale (interactive)
rendering the clustered computing techniques that have revolutionized HPC.

The remarkable performance figures of the major volunteer computing
projects, such as SETI@home, self-credited with more than 65 TFlops, as of
September 2005, clearly demonstrate the usefulness of harvesting cycles over
the internet. The attractiveness of exploiting desktop grid systems is further
reinforced by the fact that costs are highly distributed: every volunteer supports
his or her resources (hardware, power costs and internet connections) while the
benefited entity provides management infrastructures, namely network
bandwidth, servers and management services, receiving in exchange a massive
and otherwise unaffordable computing power. Fortunately, the usefulness of
desktop grid computing is not limited to major high throughput public
computing projects. Many institutions, ranging from academics to enterprises,
hold vast number of desktop machines and could benefit from exploiting the
idle cycles of their local machines.

Also, the availability of several desktop grid platforms have smoothened
the setup, management and exploitation of desktop grid systems. Indeed, the
potential gains of harvesting idle resources have fostered the development of
desktop grid middleware. Currently, several platforms exist ranging from
academic projects such as BOINC, XtremWeb, MiG, and Alchemi, to
commercial solutions like Unicore, United Devices and OfficeGrid. This
plethora of desktop grid and volunteer computing platforms has contributed to
the explosion of new desktop grids and related projects, not only over the
internet but also at an institutional level, like in the case of a university campus.
The typical and most appropriate application for desktop grid is comprised of
independent tasks (with no communication between tasks) with a high
computation to communication ratio. The execution of the application is
orchestrated by a central scheduler node, which distributes the tasks amongst
the worker nodes and awaits workers� results. It is important to note that an
application only finishes when all tasks have been completed.

 196

The main difference in the usage of institutional desktop grids relatively to
public ones lies in the dimension of the application that can be tackled.
In fact, while public projects usually embrace massive applications made up of
an enormous number of tasks, institutional desktop grids (much more limited
in resources) are better matched for small size applications. So, whereas in
public volunteer projects importance is on the number of tasks carried out per
time unit (throughput), users of institutional desktop grids are normally more
interested in a fast execution of their applications, seeking fast turnaround time.

Because of the huge number of PCs in the world, desktop grid and
volunteer computing can (and do) supply more computing power to science
than does any other type of computing. This computing power enables
scientific research that could not be done otherwise. This advantage will
increase over time, because the laws of economics dictate that consumer
electronics (PCs and game consoles) will advance faster than more specialized
products, and that there will simply be more of them. Volunteer computing
power cannot be bought; it must be earned. A research project that has limited
funding but large public appeal (such as SETI@home) can get huge computing
power. In contrast, traditional supercomputers are extremely expensive, and are
available only for applications that can afford them (for example, nuclear
weapon design and espionage). Desktop grid and volunteer computing
encourage public interest in science, and provides the public with voice in
determining the directions of scientific research.

Desktop grid and volunteer computing are not to evolve outside the
Grid, but connected intimately with it, inside it. Though there are some notable
differences. First, within the Grid, each organization can act as either producer
or consumer of resources (hence the analogy with the electrical power grid, in
which electric companies can buy and sell power to/from other companies,
according to fluctuating demand). Second, the organizations are mutually
accountable. If one organization misbehaves, the others can respond by suing
them or refusing to share resources with them. This is different from volunteer
computing or desktop grid computing in some sort of institutions, like
universities, where is practically impossible to track down each user of a
resource at some point in time. On the other hand, desktop grid computing,
which uses desktop PCs within a more formal organization, is superficially
similar to volunteer computing, but because it has accountability and lacks
anonymity, it is significantly different.

Internet standards made possible the Web, which enabled the near-
global access to and sharing of content. Open Grid protocols hold the promise
of fostering unprecedented integration of technologies, applications, files, and
just about any other IT resource, enabling global sharing of these resources
beyond what has been possible with the Web. The same protocols will also
virtualize those resources, shielding users from their complexity and allowing
them to focus on what they wish to do, rather than how the technology can get
it done. Likewise, they will permit management tools to range over that vast

 197

heterogeneous infrastructure, rendering it tractable and delivering a quality of
service consistent with mass adoption. Finally, having standardized the
infrastructure, open Grid protocols (like OGSA) will permit the delivery of
computing services when and where needed, on-demand. In enabling all these
capabilities, Grid computing is establishing the necessary conditions for IT to
approach mass adoption, or what can be called a post-technology era (Foster
and Kesselman, 2004). Nevertheless, Desktop Grid computing is still under
heavy conceptualization, research and development. There are still many
aspects to clarify and solve: security issues, scheduling, volatile environment,
sabotage-tolerance, integration with Grid, decentralization etc.

The core idea of the work presented in this thesis has been to provide a
desktop grid computing framework and to prove its viability by testing it in
some Scientific Computing and Visualization experiments. We presented here
QADPZ, an open source system for desktop grid computing, which enables
users from a local network or even Internet to share their resources. It is a
multi-platform, heterogeneous system, where different computing resources
from inside an organization can be used. It can also be used for volunteer
computing, where the communication infrastructure is the Internet. QADPZ
supports the following native operating systems: Linux, Windows, MacOS and
Unix variants, as opposed to some other similar systems that usually are limited
to only one (Unix or Windows). Consequently, that kind of limitation restricts
very much the usability of desktop grid computing in real life situations.

QADPZ provides a flexible object-oriented software framework that
makes it easy for programmers to develop various applications, and for
researchers to address issues such as adaptive parallelism, fault-tolerance, and
scalability. The system supports also the execution of legacy applications, which
for different reasons could not be rewritten, and that makes it also suitable for
other domains as business. It also supports either low-level programming
languages as C and C++ or high-level language applications, like for example
Lisp, Python, and Java, providing the necessary mechanisms to use such
applications in a computation. Therefore users with various backgrounds can
benefit from using QADPZ. The flexible, object oriented structure and the
modularity of the system allows improvements and further extensions to other
programming languages to be made easily.

We have developed a general-purpose runtime and an API to support
new kind of high performance computing applications, and therefore to benefit
from the advantages offered by desktop grid computing. We show how
distributed computing grid extends beyond the master-worker paradigm,
typical for such systems, and provide QADPZ with an extended API which
supports in addition lightweight tasks creation and parallel computing, using
the message passing paradigm (MPI). The API directly supports the C/C++
programming language. QADPZ supports parallel programs running on the
desktop grid, by providing and API in the C/C++ language, which implements
a subset of the MPI standard. This extends the range of applications that can be

 198

used in the system to already existing MPI based applications, like for example
parallel numerical solvers, from computational science, or parallel visualization
algorithms. Another restriction of existing systems, especially middleware
based, is that each resource provider needs to install a runtime module with
administrator privileges. This poses some issues regarding data integrity and
accessibility on providers� computers. The QADPZ system tries to prevail this
by allowing the middleware module to run as a non-privileged user, even with
restricted access, to the local system.

QADPZ provides for low-level optimizations, such as on-the-fly
compression and encryption for communication. The user can pick out from
different algorithms, depending on the application, improving both the
communication overhead imposed by large data transfers and keeping privacy
of the data. The system goes further, by providing an experimental, adaptive
compression algorithm, which can transparently choose different algorithms to
improve the application. QADPZ support two different protocols (UDP and
TCP/IP) in order to improve the efficiency of communication.

Free availability of the source code allows its flexible installations and
modifications based on the individual needs of research projects and
institutions. In addition to being a very powerful tool for computationally-
intensive research, the open-sourceness makes QADPZ a flexible educational
platform for numerous small-size student projects in the areas of operating
systems, distributed systems, mobile agents, parallel algorithms, and others.
More, free software is a natural choice for modern research, as well, because it
encourages effectively integration, cooperation and boosting of new ideas.
We offered the QADPZ system as open source from the beginning, at a time
when very few such solution were free, with all the positive implications of this
for research and other computationally intensive applications.

Beside the extended master-worker conceptual model (which makes
contributions in several directions - pull vs. push work-units, pipelining of
work-units, more work-units sent at a time, adaptive number of workers,
adaptive time-out interval for work-units, multithreading, resource estimation
and monitoring, scheduling) and the QADPZ desktop grid system, this thesis
make contributions in form of a hierarchical taxonomy of the main existing
desktop grids, and of an adaptive compression algorithm for remote
visualization. We have also been trying to demonstrate that the use of desktop
grid computing should not be limited to only master-worker type of
application, but can be used also for more fine-grained parallel applications, in
the field of Scientific Computing and Visualization, by performing some
experiments in those domains. The system is currently used for research tasks
in the areas of large-scale Scientific Visualization, evolutionary computation,
simulation of complex neural network models, and other computationally
intensive applications. It is worth to mention that to the present, the QADPZ
has over a thousand downloads, from users who use it for their tasks, as it can
be seen in the appendix.

 199

The work on QADPZ system and its conceptual model has been done in
collaboration with my colleague Pavel Petrovič from NTNU-IDI, who has had
major contributions mostly on the slave side and on job descriptions in XML
(XML parser included), and on a number of specific requirements, coming from
his research interests. Some of the work he has done on the slave side has been
later rewritten for better modeling or efficiency purposes. The job description
and the parser have remained the same as he has developed. The final master
worker model that has been implemented in QADPZ meets his requirements.

Some of the results of this thesis have already been published (they are
listed in the references) and some are in course of publication. Thus,
contributions that are already published concern: the QADPZ system
(Constantinescu and Petrovic, 2002) and (Constantinescu et al., 2002), QADPZ
proven to be useful in Scientific Computing � example of using it to solve the
Navier Stokes equation for fluid dynamics (Constantinescu, 2003), QADPZ as
an autonomic distributed computing system (Constantinescu, 2003), and the
hierarchical taxonomy of desktop grid systems built from users� perspective
(Constantinescu and Vladoiu, 2008). The paper on QADPZ�s autonomicity has
been highly cited since it has been published and considered as pioneering this
approach in desktop grids, as it can be seen in the appendix. The results on
QADPZ, as a viable desktop grid/volunteer computing open solution, which
can also use parallel computing techniques using the MPI layer - this is a novel
approach in desktop grid, on the improved master worker model, on the
adaptive compression algorithm for remote visualization, on master
virtualization, on QADPZ testing in some experimental scientific visualizations,
and on QADPZ development journey are in course of publication.

It is worth to reconsider here briefly the Desktop Grid requirements
(which have been presented in section 4.7.2.2) that were not yet synthesized at
QADPZ�s development time, and to try to match them against the QADPZ
requirements that have been implemented in the system. With respect to these
requirements we may say that QADPZ was expected to manage available
resources efficiently (efficiency), to enforce program security (security), to be easy
maintainable, flexible, and extensible (scalable, manageable), to provide for job
management (open/easy to integrate applications), to offer proper resource and job
management (manageable, unobtrusive), to handle multiple-projects (multiple-
project participation) and to support parallel programming (communicative). What
QADPZ misses is full robustness and data security that are in our future work
plans. The robustness is accomplished simplistically in QADPZ: if one job fails
due to one or more of task failures, for various reasons, the job is started over.
But QADPZ had some other rewarding requirements such as providing
performance measurements, on-line/off-line support for batch and interactive
applications, personalization and simplicity. Moreover, QADPZ has pioneered
autonomic features requirements for desktop grids.

Further on we present some future work ideas that aim to improve both
the conceptual model and the QADPZ system. First, at this time the system

 200

does not support job checkpointing and does not handle restart of master
computer. Adding these features has high priority. In the current version of the
system, each job needs a different client process, although we are working on
extending the client functionality to allow single instance of client to optionally
connect to multiple masters and handle multiple jobs. Future development of
the system will include improved support for user data security. Computation
results data can be encrypted and/or signed so that the user of the system can
be sure the received data is correct. We are considering allowing optional data
integrity in the future versions of QADPZ. This is especially useful if the system
is used in an open environment, for example over the Internet. For faster
performance, slave libraries will be cached at slave computers � in the current
version, they are downloaded before each task is started. Slave computers will
provide a flexible data storage available to other computers in QADPZ. The
scheduling algorithm of the master needs improvements. We plan to support
more hardware platforms and operating systems.

Our current implementation does not support collective communication,
only the MPI_COMM_WORLD communicator. However, a complete library of
the collective communication routines can be written entirely using the point-
to-point communication functions and a few auxiliary functions. QADPZ�s
implementation is limited to a small subset of the MPI. It contains only the most
used functions, and is intended only for testing purposes and evaluation of the
parallel communication. More complete implementation based on existing
libraries is possible, but it was outside the scope of this thesis. The MPI
functions implemented provide sufficient features for our parallel experiments.
The current user interface to the system is based on C++. Possible extensions of
the system would be different interfaces for other languages, e.g. Java, Perl, Tcl
or Python. This can easily be done, since the message exchanges between
different components of the system are based on an open XML specification.

The current implementation of the system is made considering only one
central master node. This can be an inconvenience in certain situations, where
computers located in different networks are used together. The master node can
also be subject to failures, software or hardware. A more decentralized
approach is needed in this case. However, our high-level communication
protocol between the entities, especially between the client and master, allows a
master to act as a client to another master, thus making possible to create a
distributed master, consisting of independent master nodes, which
communicate with each other i.e. some sort of virtual master. Ideas from peer-to-
peer computing will be used for implementing such a decentralized approach.

Future desktop grid infrastructure must be decentralized, robust, highly
available, and scalable, while efficiently mapping application instances to
available resources in the system. However, current desktop grid computing
platforms are typically based on a client-server architecture, which has inherent
shortcomings with respect to robustness, reliability and scalability. Fortunately,
these problems can be addressed through the capabilities promised by new

 201

techniques and approaches in P2P systems. By employing P2P services, our
system could allow users to submit jobs to be run in the system and to run jobs
submitted by other users on any resources available in the system, essentially
allowing a group of users to form an ad-hoc set of shared resources.

Another future work idea is to add a set of transparent profiling tools for
evaluating the performance of the different components. This is an important
issue, especially when running parallel applications. Dynamic balancing of the
workload can be used. We plan to introduce more autonomic features in the
system. Other possible extensions of the system are currently considered, for
example interconnection with a grid computing environment.

We invite the interested developers in the open-source community to
join our development team and we appreciate any kind of feedback.

Viewed from a historical perspective, Information Technology has clearly been
in the developmental stage of its evolution. IT began with mainframes and
supercomputers sheltered in the "glass house." Expensive and complex, these
early systems yielded results only to highly trained specialists steeped in the
mysteries of programming. With the advent of personal computers and local
area networks, millions of people began to use the technology, and since the
emergence of network computing and the Internet, hundreds of millions more
have come to use it. Information Technology, like electricity and automobiles
before it, is last approaching its own post-technology phase - a time when the
application will be dominant and the technology will gradually sink into the
background of our lives and be integrated into society. The signs are all there.
One of the major heralds of this new phase is the increasing commoditization of
information technologies. Microprocessors, storage, DRAMs, bandwidth, and
all sorts of other information technologies, year in and year out, are improving
by 50, 60, even 70%, becoming much less expensive, with much more power
packed into a smaller unit. Obviously, powerful technologies that are less
expensive and smaller are more easily hidden in the environment.
Commodity IT, therefore, is potentially ubiquitous, like the little electric motors
found throughout our homes and in our cars.

Another indication that IT is headed toward mass adoption is the
never-ending and incredible increase in the power of systems.
That same inexpensive commodity technology is being aggregated into larger
and more powerful computers. Soon blades-servers on inch-thick cards will let
us cluster systems by the thousands. In the not-so-distant future, we will see
systems with tens of thousands, eventually even hundreds of thousands, of
blades or similar small components, all collaborating, all solving unimaginably
sophisticated problems, all supporting hundreds of millions of users. In sum,
technologies are becoming commoditized to such a degree that we can afford to
have billions of them in the environment, while systems are growing so
incredibly potent that we can build a commensurately powerful and connected
infrastructure to support them.

 202

Properly handled, this rich layer promises a brilliant future. What will it look
like? For one, it will be thoroughly integrated: systems, business processes,
organizations, people - everything required for a smoothly functioning whole -
will be in close dynamic communication. In addition, the infrastructure
will reach much advanced levels of efficiency, with all the enterprise's resources
fully employed rather than the current spotty, uneven, piecemeal application of
these costly assets. The quality of services will be vastly improved, as
the infrastructure becomes more autonomous and has capabilities as
self-configuring, sell-optimizing, self-healing, and self-protecting. Finally,
much greater degrees of flexibility will emerge, leaving people free to
make technology choices based on their needs rather than on some
architectural issues.

However, the planets are aligning: open standards are becoming more
prevalent. Grids are evolving in the research community and making their way
swiftly into many other areas of life. It is only a matter of time before
information technology achieves the kind of productive anonymity that
electricity did when standards made it ubiquitous and routine. Arthur Clarke
may have been right. As we become capable of doing more and more with our
advanced technologies and as we hide those technologies and their
complexities from users, the result will indeed seem like magic. Making that
magic convincing is one of the most complex and exciting challenges facing our
community, as we move IT into its post-technology phase.

 203

Selective Bibliography

ALCHEMI (2004) Alchemi Plug&Play Desktop Grid - http://www.alchemi.net/.

ANDERSON, D. P. et al., 2002, SETI@home: an experiment in public-resource computing.
Commun. ACM 45, 11 (Nov. 2002), pp. 56-61.

ANSHUS O., ELSTER A., VINTER B., 2003, Cluster Computing as a Teaching Tool, in Proc.
of Parallel Computing 2003 (ParCo 2003), Dresden, Germany

BAKER, C. W., 2000, Scientific Visualization: the new eyes of science, Brookfield, Conn.,
Millbrook Press.

BAYANIHAN (2006) Bayanihan Computing Group - http://bayanihancomputing.net/.

BEDERSON, B., SHNEIDERMAN, B., 2003, The craft of information visualization: readings
and reflections, Boston, Morgan Kaufmann.

BERMAN, F., FOX, G., HEY, A. J. G., 2003, Grid computing: making the global
infrastructure a reality, New York, J. Wiley.

BOINC (2006) BOINC - open source software for volunteer computing and grid computing-
http://boinc.berkeley.edu/.

BONNEAU, G.-P., ERTL, T., NIELSON, G. M., 2006, Scientific Visualization: the visual
extraction of knowledge from data, Berlin, Springer-Verlag.

BROWNE, J. C. et al., 2004, General parallel computations on desktop grid and P2P systems.
Proc. of the 7th workshop on Workshop on languages, compilers, and run-time support
for scalable systems, Houston, Texas, ACM Int. Conference Proceeding Series, Vol. 81.

CASSENS, J., CONSTANTINESCU , Z., 2003, Free Software: An Adequate Form of Software
for Research and Education in Informatics? LinuxTag 2003 Conf., Karlsruhe, Germany.

CASSENS, J., CONSTANTINESCU, Z., 2003, It's Magic: SourceMage GNU/Linux as a High
Performance Cluster OS, LinuxTag 2003 Conf., Karlsruhe, Germany.

CHINAGRID (2007) ChinaGRID - http://www.chinagrid.edu.cn/.

CHOI, S. et al., C., 2007 Characterizing and Classifying Desktop Grid, 7th IEEE International
Symposium on Cluster Computing and the Grid (CCGRID 2007), pp. 743-748.

COMB-E-CHEM (2005) http://www.it-innovation.soton.ac.uk/projects/comb-e-chem/.

CONSTANTINESCU, Z., 2000, Levels of Detail: An Overview. The Journal of LANA, No 5.

CONSTANTINESCU, Z., 2003, Towards an autonomic distributed computing environment, in
Proc. of 14th Database and Expert Systems Applications Workshops, September 2003,
Prague, Czech Republic

CONSTANTINESCU, Z., HOLMEN, J., PETROVIC, P., 2003, Using Distributed Computing
in Computational Fluid Dynamics, ParCFD 2003 Conference, Moscow, Russia.

CONSTANTINESCU, Z. & PETROVIC, P., 2002, Q2ADPZ* an open source, multi-platform
system for distributed computing, ACM Crossroads, Vol. 9, pp. 13-20.

CONSTANTINESCU, Z., PETROVIC, P., PEDERSEN, A., 2002, Q2ADPZ* An Open system
for distributed computing, NordU2002 Conference, Helsinki, Finland.

 204

CONSTANTINESCU Z., VLADOIU M., 2008, Desktop Grid Experiments for Computational
Science and Engineering, 9th International Workshop on State-of-the-Art in Scientific
and Parallel Computing, Trondheim, Norway

CONSTANTINESCU Z., VLADOIU M., 2008, A Taxonomy for Desktop Grids from Users'
Perspective, in Proc. of Int. Conf. on Parallel and Distributed Computing, World
Congress on Engineering (WCE 2008), London, UK

CONSTANTINESCU Z., VLADOIU M., 2008, An Extended Master Worker Model for a
Desktop Grid Computing Platform (QADPZ), submitted to 3rd Int. Conf. on Software
and Data Technologies (ICSOFT 2008), Porto, Portugal

CONSTANTINESCU Z., VLADOIU M., 2008, The Development Journey of QADPZ - a
Desktop Grid Computing Platform, submitted to 3rd Int. Conf. on Software and Data
Technologies (ICSOFT 2008), Porto, Portugal

CUMMINGS, M. P. (2007) Grid Computing - http://serine.umiacs.umd.edu/research/grid.php.

cURL (2007) cURL groks URLs - http://curl.haxx.se/.

DAVID, P. A., et al., 2002, SETI@home: an experiment in public-resource computing,
Communications of ACM, 45, pp. 56-61.

DISTRIBUTED.NET (2004) distributed.net project - http://distributed.net/.

DISTRIBUTEDCOMPUTING.INFO (2007) - http://distributedcomputing.info.

DOMINGUES, P., MARQUES, P., SILVA, L., 2005, Resource usage of Windows computer
laboratories, in MARQUES, P., Ed., Int. Conf. on Parallel Processing Workshops
(ICPP 2005), Leiria, Portugal

DOMINGUES, P., SILVA, J. G., SILVA, L., 2006, Sharing checkpoints to improve turnaround
time in desktop grid computing, in SILVA, J. G., Ed., 20th Int. Conf. on Advanced
Information Networking and Applications (AINA 2006), Viena, Austria.

DOMINGUES, P., SOUSA, B., SILVA, L. M., 2007, Sabotage-tolerance and trust management
in desktop grid computing, Future Generation Computing Systems, 23, pp. 904-912.

ELSTER A.C., 2002, High-Performance Computing: Past, Present and Future, PARA 2002,
Espoo, Finland.

EGEE (2008) Enabling Grids for E-SciencE http://www.eu-egee.org/

eSCIENCE (2007) eScience - http://www.rcuk.ac.uk/escience/default.htm.

FORSSELL, L. K., COHEN, S. D., 1995, Using line integral convolution for flow visualization:
curvilinear grids, variable-speed animation, and unsteady flows, Transactions on
Visualization and Computer Graphics, 1, pp. 133-141.

FOSTER, I., KESSELMAN, C., 1999, The grid: blueprint for a new computing infrastructure,
San Francisco, Morgan Kaufmann Publishers.

FOSTER, I., KESSELMAN, C., 2004, The grid: blueprint for a new computing infrastructure,
Boston, Morgan Kaufmann Publishers.

FP7 (2007) Framework Programme 7 - http://cordis.europa.eu/fp7/home_en.html.

FRIEDHOFF, R. M., PEERCY, M. S., 2000, Visual Comp., Scientific American Library, NY.

FUNKHOUSER, T. A., SÉQUIN, C. H., 1993, Adaptive Display Algorithm for Interactive
Frame Rates During Visualization of Complex Virtual Environments, Proc.
SIGGRAPH '93, Anaheim, California, USA

 205

GARG, V. K., 1996, Principles of distributed systems, Boston, Kluwer Academic Pub.

GARG,V. K., 2002, Elements of distributed computing, New York, Wiley-Interscience.

gLite (2008), LightWeight Middleware for Grid Computing - http://glite.web.cern.ch/glite/

GLOBUS (2007) The Globus Alliance - http://www.globus.org/.

GOLUB, G. H., 1997, Proceedings of the Workshop on Scientific Computing, Hong Kong,
March, 1997, New York, Springer.

GOLUB, G. H., ORTEGA, J. M., 1993, Scientific Computing: an introduction with parallel
computing, Boston, Academic Press.

GROPP, W. et al., 1996, A high-performance, portable implementation of the MPI message
passing interface standard, Parallel Computing, 22, pp. 789-828.

GROPP, W. D., LUSK, E., 1996, User's Guide for MPICH, a Portable Implementation of MPI,
Mathematics and Computer Science Division, Argonne National Laboratory.

HAMSCHER, V. et al., 2000, Evaluation of job-scheduling strategies for grid computing, in
Proc. of the 1st IEEE/ACM Int. Workshop on Grid Computing (Grid 2000), LNCS
1971, Springer-Verlag, Bangalore, India, pp. 191-202.

HANSEN, C. D., JOHNSON, C. R., 2005, The visualization handbook, Boston,
Elsevier-Butterworth Heinemann.

HEAP, D. G., 2003, Taurus - A Taxonomy of Actual Utilization of Real UNIX and Windows
Servers, IBM White Paper.

HEATH, M. T., 1997, Scientific Computing: an introductory survey, NY, McGraw-Hill.

HEATH, M.T., 2002, Scientific Computing: an introductory survey, Boston, McGraw-Hill.

KRAUTER K., BUYYA R., MAHESWARAN M., 2002, A taxonomy and survey of grid
resource management systems for distributed computing, in Software � Practice and
Experience, 2002, 32, pp. 135�164

IBM, 2001, Autonomic Computing: IBM's Perspective on the State of Information Technology,
IMB Manifesto on Autonomic Computing.

JOHN, P. M., JAMES, J. K., DAVID, A. P., 2001, WebCom: A Web Based Volunteer
Computer, Journal of Supercomputing, 18, pp. 47-61.

JPGRID (2007) JPGRID - http://www.jpgrid.org/.

JUHASZ Z., KACSUK P., KRANZLMULLER D., 2004, Distributed and Parallel Systems:
Cluster and Grid Computing, New York, Springer

JUOZAPAVICIUS A., BLAKE R.E., 1999, Indices and Data Structures in Information
Systems, Informatica, Lithuanian Academy of Science 10(1), pp. 71-88

JUOZAPAVICIUS A., MAZEIKA D., The Lithuanian National Grid Initiative: LitGrid -
http://www.ebaltics.com/01004600

KARNIADAKIS, G., KIRBY, R. M., 2003, Parallel Scientific Computing in C++ and MPI: a
seamless approach to parallel algorithms and their implementation, New York,
Cambridge University Press.

KAUFMAN, A., NIELSON, G. M., Visualization '92: proceedings, October, 1992, Boston,
Massachusetts, IEEE Computer Society Press.

KEPHART, J. O., CHESS, D. M., 2003, The vision of autonomic comp., Computer, 36, 41-50.

http://www.jpgrid.org/

 206

KONDO, D. et al., 2004 Characterizing and evaluating desktop grids - An empirical study, in
Proc. of 18th IEEE/ACM International Parallel & Distributed Processing Symposium
(IPDPS2004), SanteFe, New Mexico.

LANGTANGEN, H. P., 2003, Computational partial differential equations: numerical methods
and Diffpack programming, Berlin, New York, Springer.

LANGTANGEN, H. P., BRUASET, A. M. & QUAK, E., 2000, Advances in software tools for
Scientific Computing, Berlin, New York, Springer.

LANGTANGEN, H. P., TVEITO, A., 2003, Advanced topics in computational partial
differential equations: numerical methods and Diffpack programming, Berlin, Springer.

LCG (2008) Worldwide LHC Computing Grid - http://lcg.web.cern.ch/LCG/

LEOPOLD, C., 2001, Parallel and distributed computing: a survey of models, paradigms, and
approaches, New York, Wiley.

LHC (2007) LHC - the Large Hadron Collider - http://lhc.web.cern.ch/lhc/.

LITZKOW, M. L., MUTKA M. W., 1988, Condor - A Hunter of Idle Workstations, Proc. of the
8th International Conference of Distributed Computing Systems (ICDCS1988).

MAGNENAT-THALMANN, N., THALMANN, D., 1991, New trends in animation and
visualization, Chichester, New York, Wiley.

MA�EIKA D., JUOZAPAVIČIUS A., Grid Computing Infrastructure, Problems and
Perspectives in Lithuania, Informacines technologijos 2006 Konferencijos pranesimu
medziaga, Kaunas, Lithuania.

MCCONNELL, J. J., 2002, Computer Graphics Companion, Nature Publishing Group.

MCCORMICK, B. H., 1988, Visualization in Scientific Comp., SIGBIO Newsletter, 10, 15-21.

MCCORMICK, B. H., DEFANTI, T. A., BROWN, M. D., 1987, Visualization in Scientific
Computing - A Synopsis, IEEE Computer Graphics and Applications, 21, pp. 61-70.

MERZKIRCH, W., 1987, Flow visualization, Orlando, Academic Press.

MIG (2008) Minimum Intrusion Grid - http://mig-1.imada.sdu.dk/MiG/index.html

MORRISON, J. P., et al., 2004, Webcom-G: grid enabled metacomputing, Neural, Parallel
Scientific Computing, 12, 3 (Sep. 2004), pp. 419-438.

MUSTAFEE, N., TAYLOR, S. J. E., 2006, Using a desktop grid to support simulation
modelling, in TAYLOR, S. J. E., Ed., in Proc. of 28th International Conference on
Information Technology Interfaces (ITI 2006), Dubrovnik, Croatia.

myGRID (2007) myGrid - http://www.mygrid.org.uk/

NAGEL, R. N. (2006), Scientific Visualization versus Information Visualization -
http://www.hpc2n.umu.se/para06/papers/paper_213.pdf

NATVIG T., ELSTER A. C., Automatic and Transparent Optimization of an Application's MPI
Communication, PARA'06, Umeå, Sweden, June 2006.

NIELSON, G. M., 1991, Visualization in Scientific and Engineering Computing, Computer, 21,
pp. 58-66.

NIELSON, G. M., BERGERON, D., 1993, Visualization '93: proceedings, San Jose, California,
IEEE Computer Society Press.

 207

NIELSON, G. M., HAGEN, H. & MÜLLER, H., 1997, Scientific Visualization: overviews,
methodologies, and techniques, Los Alamitos, California, IEEE Computer Society.

NIELSON, G. M., ROSENBLUM, L. J., Visualization '91: proceedings, San Diego, California,
Los Alamitos, California, IEEE Computer Society Press.

NorduGrid (2008) Grid Solution for Wide Area Computing and Data Handling
http://www.nordugrid.org/

Office Grid (2008), Office Grid - http://www.meshtechnologies.com

OPENSSL (2007) OpenSSL - http://www.openssl.org/.

OXFORD, 2002, Oxford English Dictionary, Oxford University Press.

PANG, A., 1995, A Syllabus for Scientific Visualization, in THOMAS, D. A., Ed., Scientific
Visualization in Mathematics and Science Teaching, Charlottesville, Association for the
Advancement of Computing in Education.

PATRIKALAKIS, N. M., 1991, Scientific Visualization of physical phenomena, Tokyo, New
York, Springer-Verlag.

PETROVIC, P., 2007, Incremental Evolutionary Methods for Automatic Programming of Robot
Controllers, PhD Thesis, Norwegian University of Science and Technology,
Trondheim, Norway.

QADPZ (2007) QADPZ - Quite Advanced Distributed Parallel Zystem -
http://qadpz.sourceforge.net.

ROSENVINGE E. R., ELSTER A. C., BANINO C., 2004, Exp. with Scheduling Strategies for
Data-Parallel MPI Applications on Clusters, PARA 2004, Lyngby, Denmark.

RSA (2005) RSA - http://www.rsa.com/.

SARMENTA, L. F. G., 2001, Sabotage-tolerance mechanisms for volunteer computing systems,
in Proc. of 1st IEEE/ACM International Symposium on Cluster Computing and the Grid
2001 (CCGrid 2001), Brisbane, Australia.

SARMENTA, L.F.G., 2001, Volunteer computing, Ph.D. thesis, MIT, Cambridge, USA.

SAGEPUB (2008) A practical evaluation taxonomy - www.sagepub.com/upm-
data/5047_Chen_Chapter_3.pdf

SETI@HOME (2008) SETI@home - http://setiathome.ssl.berkeley.edu/.

SMITS, A. J., LIM, T. T., 2000, Flow visualization: techniques and examples, River Edge, NJ,
Imperial College Press, World Scientific Publishers.

STERLING, T., BECKER, D. J., Salmon, J., Savarese, D. F., 1999, How to Build a Beowulf. A
Guide to Implementation and Application of PC Clusters, The MIT Press.

SUNDERAM, V. S., 1990, PVM: a framework for parallel distributed computing,
Concurrency: Practice and Experience, 2, pp. 315-339.

SUTTON, R. S., BARTO, A. G., 1998, Reinforcement learning: an introduction, Cambridge,
Mass., MIT Press.

SZAJDA, D., LAWSON, B., OWEN, J., 2003, Hardening functions for large scale distributed
computations, in LAWSON, B., Ed., Proceedings of Symposium on Security and
Privacy, 2003, Oakland, California, USA.

THALMANN, D., 1990, Scientific Visualization and graphics simulation, Chichester England,
New York, Wiley.

http://www.nordugrid.org/
http://qadpz.sourceforge.net/

 208

TOP500 (2007) Top500 Supercomputer sites - http://www.top500.org/.

TUFTE, E.R., 1997, Visual explanations images and quantities, evidence and narrative,
Cheshire, Conn., Graphics Press.

TUFTE, E. R., 2001, The visual display of quantitative information, Cheshire, Connecticut,
Graphics Press.

UNICORE (2008) Uniform Interface to Computing Resources - http://www.unicore.eu/

UTNES, T., BRORS, B., 1993, Numerical modelling of 3-D circulation in restricted waters,
Applied Mathematics Modeling, 17, pp. 522-535.

VAHID, G., LIONEL, C.B., YVAN, L., 2006, Traffic-aware stress testing of distributed
systems based on UML models, Proceeding of the 28th ACM International Conference
on Software Engineering, Shanghai, China.

VENUGOPAL, S., BUYYA, R., RAMAMOHANARAO, K., 2006, A taxonomy of data grids
for distributed data sharing, management and processing, ACM Computing Surveys 38,
1 (Mar.), pp. 1-53.

VINTER B. et al., 2004, A Comparison of Three MPI Implementations, in Proc. of
Communicating Process Architectures (CPA 2004), Oxford, UK

VizServer, (2004), SGI OpenGL Vizserver www.sgi.com/products/software/vizserver/

WALDROP M. M., 2001, The Dream Machine: J.C.R. Licklider and the Revolution That Made
Computing Personal, Viking Adult, New York

WARE, C., 2004, Information visualization: perception for design, San Francisco, California,
Morgan Kaufman.

WEBSTER, 1998, Merriam-Webster's Collegiate Dictionary, Merriam-Webster, Inc.

WEICKERT, J., HAGEN, H., 2006, Visualization and processing of tensor fields, Berlin,
Springer-Verlag.

WEISKOPF, D., 2006, GPU-based interactive visualization techniques, New York, Springer.

WRIGHT, H., 2007, Introduction to Scientific Visualization, New York, Springer.

XtremWeb (2005) XtremWeb - http://www.lri.fr/~fedak/XtremWeb/.

YANG, W.-J., 2001, Handbook of flow visualization, New York, Taylor & Francis.

YEO, C., BUYYA, R., 2006, A taxonomy of market-based resource management systems for
utility-driven cluster computing, Software: Practice and Experience 36, 13, 1381-1419.

YU, J., BUYYA, R., 2005, A taxonomy of scientific workflow systems for grid computing,
SIGMOD Record, Sp. Issue on Scientific Workflows 34, 3, pp. 44-49.

ZOMAYA, A. Y., 1996, Parallel and Distributed Computing Handbook, New York,
McGraw-Hill.

 209

Appendix 1. Feedback and reactions to QADPZ

Within this appendix, the raw feedback and reactions to the system are listed. These can
be categorized into four main categories: feedback and support requests from users who
use QADPZ for their research and development tasks, forum discussions, citations in
papers, and working assignments, based on QADPZ features, for students from some
universities. Each item is preceded by a word, which indicates in which category it falls:
feedback, forum, citation or assignment.

1. Assignment:
http://diplab.snu.ac.kr/courses/2007f/dip/Homework/assignment_3.pdf
4541.662A Distributed Information Processing Handout 4 (2007 Fall)
Mobile Embedded Software Lab, CSE, SNU - Assignment 3
Add encryption and decryption steps that use the following cryptographic algorithms, to
the client program that you have written as part of your Assignment 2 work.
Miscellaneous Links: QADPZ Documentation by the QADPZ Team at the Norwegian
University of Science and Technology
RSA: http://qadpz.idi.ntnu.no/doxy/html/RSAcrypter_8cpp-source.html

2. Assignment:
http://www.eecg.toronto.edu/~ashvin/courses/ece1746/2003/project-suggestions.html
ECE 1746, Fall 2003, Project Suggestions
Implement a fault-tolerant large-scale distributed computation. Implement a large-scale
distributed, perhaps scientific, algorithm of your choice. You can use an infrastructure
such as QADPZ - Quite Advanced Distributed Parallel Zystem. Test the fault-tolerant
behavior of your application, e.g., does the algorithm degrade gracefully if one node
crashes. Modify your algorithm so that it is fault-tolerant in the face of node failure.
One method of evaluation could be in terms of progress made by the application after
node crashes, e.g., does the application make progress proportional to the number of
surviving nodes in the system.

3. Feedback:
http://ibalita.msuiit.edu.ph/modules.php?name=Forums&file=viewtopic&p=11976
Since we don�t have a cluster here, where students interested in distributed computing,
can have access to, I am planning to build one for IIT, something similar to SETI, where
IDLE CPUs of ordinary desktop PCs can be utilized [CPUs in our offices]. I�m
currently experimenting with QADPZ (http://qadpz.sourceforge.net/). Pag ok na, I�ll ask
for the admin�s approval to install the clients in the different offices.

4. Citation:
http://www.comp.leeds.ac.uk/kwb/publication_repository/2005/cgf_006.pdf
http://www-compsci.swan.ac.uk/~csmark/PDFS/visualsupercomputing.pdf
�Visual Supercomputing: Technologies, Applications and Challenges�
A noticeable amount of research effort in autonomic computing has been placed on the
self-management of system infrastructure and business services. Examples of this
include self-configuration in patching management [135] and Grid service composition

http://diplab.snu.ac.kr/courses/2007f/dip/Homework/assignment_3.pdf
http://qadpz.idi.ntnu.no/doxy/html/RSAcrypter_8cpp-source.html
http://www.eecg.toronto.edu/~ashvin/courses/ece1746/2003/project-suggestions.html
http://ibalita.msuiit.edu.ph/modules.php?name=Forums&file=viewtopic&p=11976
http://qadpz.sourceforge.net/
http://www.comp.leeds.ac.uk/kwb/publication_repository/2005/cgf_006.pdf
http://www-compsci.swan.ac.uk/~csmark/PDFS/visualsupercomputing.pdf

 210

[136], self-optimization in power management [137], business objectives management
[138], and network resource management [139], and self-healing in online service
management [140] and distributed software systems [141]. Efforts have also been made
to broaden the scope of autonomic computing, addressing a wide range of related
research issues, such as economic models [142], physiological models [143], interaction
law [144], preference specification [145], ontology [146,147], human-computer
interaction [148], and so forth. Though the development of generic software
environments for autonomic applications is still in its infancy, several attempts were
made, which include projects such as QADPZ [149], AUTONOMIA [150] and
Almaden Optimal-Grid [151]. QADPZ [149] provides an open source framework for
managing heterogeneous distributed computation in a network of desktop computers
using autonomic principles. In QADPZ, the system complexity is hidden in the
middleware layer, facilitating self-knowledge, self-configuration, self-optimization and
self-healing.

5. Citation:
http://arxiv.org/pdf/cs/0607061
On Some Peculiarities of Dynamic Switch between Component Implementations in an
Autonomic Computing System
The success of an autonomic system behavior is essentially determined by ability to
detect or predict overall performance that is actually the ground for management of
autonomic components, in particular, for activation of an appropriate component
implementation. For this, establishing of mathematical abstractions and models giving
criteria governing the sequence of switches between component implementations is an
important point of autonomic computing [2-5].

6. Citation:
http://www.scientificjournals.org/journals2007/articles/1198.pdf
There is no full fledged autonomic system either in the business domain or in the
research domain that the author is aware of [83]. Most of the autonomic systems so far
are actually prototypes or provide a limited amount of required functionality [58, 106]
of an autonomic system. The most important aspect that is missing in all these systems
is that the authors do not actually describe how to write programs in such systems or
how to utilize such a system in a simpler fashion. They either introduce new metaphors
or provide a completely new approach to autonomic computing that adds additional
complexity and a steep learning curve to the programmer. The goal of this research is to
make the resultant system simple to use, by making the underlying autonomic
framework transparent. None of the following systems match this goal.
QADPZ [19] provides an open source framework that allows the management and use
of the computational power of idle computers in the network using autonomic
principles. QADPZ is implemented in C++ and uses MPI as its communication
protocol, which restricts this system to a certain class of architectures. It also deploys a
masterslave pattern for task distribution, which actually does not follow the autonomic
system architecture and it does not take any measure to overcome a single point of
failure, e.g. the master node. The clients and the slaves (which do the actual work on
behalf of the client) talk to each other by the use of a shared disk space, which is
certainly a performance bottleneck and requires costly synchronization.

http://arxiv.org/pdf/cs/0607061
http://www.scientificjournals.org/journals2007/articles/1198.pdf

 211

7. Citation:
http://www.thevantagepoint.com/resources/articles/Mining%20Conference%20Proceedi
ngs%20for%20Corporate%20Technology%20KnowledgeManagement.pdf
Mining Conference Proceedings for Corporate Technology Knowledge Management
Let�s explore Figure 4 further. The term �autonomic computing� appears in two factor
groups. Autonomic computing occurred first in 2003 in 7 abstracts and then in 4
abstracts in 2004. In a 2003 paper, Constantinescu states �Systems which are
autonomic, capable of managing themselves are required� in �Towards an Autonomic
Distributed Computing System.� In a 2003 paper, Sterritt et al. claim autonomic
computing aims to (i) increase reliability by designing systems to be self-protecting and
self-healing; and (ii) increase autonomy and performance by enabling systems to adapt
to changing circumstances, using self-configuring and self-optimizing mechanisms.
This field, autonomic computing, appears to fit the definition of an emerging area of
research.

8. Assignment:
http://buscatextual.cnpq.br/buscatextual/visualizacv.jsp?id=K4792170D6
TONIN, Neilor Avelino; GIORDANI, Luis Otávio; ADÁRIO, A. M. S..
Participação em banca de Carlos Alberto Ferrari.
Um Estudo Sobre o Sistema de Computação Distribuída Q2ADPZ. 2004.
Trabalho de Conclusão de Curso (Graduação em Informática) �
Universidade Regional Integrada do Alto Uruguai e das Missões.

9. Citation:
http://staff.science.uva.nl/~emeij/publications/OSIR2006_Edgar_Meij.pdf
http://www.emse.fr/OSIR06/2006-osir-p25-meij.pdf
Deploying Lucene on the Grid, Edgar Meij and M. de Rijke. In: Proceedings SIGIR
2006 workshop on Open Source Information Retrieval (OSIR2006), 2006 [PDF]
A grid enables the integrated use of resources, which are typically owned by multiple
organizations and/or individuals and is in fact a system consisting of distributed, but
connected resources [12]. It also encompasses software and/or hardware that provides
and manages logically seamless access to those resources [13, 24]. Grids can be roughly
classified in two categories: institutional grids (IG�s) and global computing or P2P
(GCP) systems [3, 23, 11]. GCP systems typically harvest the computing power
provided by individual computers, using otherwise unused bandwidth and computing
cycles in order to run very large and distributed applications [22, 15]. Some examples
include SETI@home [38], LookSmart�s Grub [28] (a voluntary initiave to crawl the
Internet in a distributed fashion), and Zeta- Grid [40]. ZetaGrid is an attempt to verify
Riemann�s Hypothesisusing grid technology, with a reported peak performance rate of
around 7000 GFLOPS. There are also (open source) packages such as XtremWeb [11],
and Q2ADPZ [30] which allow to setup, deploy and run GCP projects. BOINC (the
Berkeley Open Infrastructure for Network Computing) is another open source platform
for public-resource distributed computing [3] and currently the enabling system for
SETI@home, LHC@home, Einstein@home, Climateprediction. net, and many more.

http://www.thevantagepoint.com/resources/articles/Mining Conference Proceedings for Corporate Technology KnowledgeManagement.pdf
http://www.thevantagepoint.com/resources/articles/Mining Conference Proceedings for Corporate Technology KnowledgeManagement.pdf
http://buscatextual.cnpq.br/buscatextual/visualizacv.jsp?id=K4792170D6
http://staff.science.uva.nl/~emeij/publications/OSIR2006_Edgar_Meij.pdf
http://www.emse.fr/OSIR06/2006-osir-p25-meij.pdf

 212

10. Feedback:
http://grulic.org.ar/lurker/message/20040709.151501.e675f4be.es.html
[translation by babelfish]
Fecha: 2004-07-09 18:15 +300
A: sw, List of mail of the User group of Linux in Cordoba
Asunto: Re: [GRULIC] to cluster with mayusculas

Message mentioned by sw@,
>
> Pregunta....
> Hay people with desire to begin to see that she leaves, to see if it is possible?
> I suppose that if....pero that I can say to them?
> Single I am filosofando, and in fact single not much on nothing.
>
Surely that is people with desire to prove something...
Something but or less asi is QÀDPZ (Clears Advanced Distributed Parallel Zystem)
Segun its presentation...
[...]
A time ago I was proving it a pair of hours in the Intranet of my company and walks
enough good...
Basicamente consists of a group of three binary ones: Masters, slave and client.
The thing is thus:
- a PC is defined Masters that is the one who receives the orders and it delegates and it
controls the processes.
- they settle the enslaved soft in the PC with capacity of idle processing.
- they settle the soft client in the PC that �throws� processes to to cluster.
In individual it installs the Masters in a Network Hat 7,3 that I have of server the Dpto.
of development and in 3 PC installs the Slave and Client.
I made a simple rutinita of mathematical calculos with numeros (several cascade curls
for) that took the time from beginning and end of calculos and when it finished reduced
End to me - Beginning
Corri in a PC normally and soon in that PC with the soft client. The time gave
something me smaller, but nonmemory whatever...
Despues I did not have but time for tests...
If to somebody it interests to him to prove with something but great, I fall in love...
Greetings
Paschal Guillermo
Infrastructure IT
To integrate Solutions
It jumps 548 - It plants Discharge
Jesus Maria - Cordoba - X5220BGB
Tel/Fax: (03525) 421224
to www.integrarsoluciones.com.ar

http://grulic.org.ar/lurker/message/20040709.151501.e675f4be.es.html
http://www.integrarsoluciones.com.ar/

 213

11. Feedback:
Date: Fri, 28 Apr 2006 21:41:13 +0530
From: �premkumar srinivasan� <prem.srini@gmail.com>
To: zoran@idi.ntnu.no
Subject: Q2ADPZ
References: <3a3029120604280904p3de0b65fuad79cc6b1976425a@mail.gmail.com>
Hi Zoran,
 I reached http://qadpz.idi.ntnu.no/paper-Crossroads/qadpz.html#qadpz while
searching for available open-source distributed computing softwares.
I have downloaded q2adpz from http://sourceforge.net/projects/qadpz. While trying to
setup in windows, I couldn�t open two .dsp files (cli_flic and slv_flic). Can I please
know, from where can I download uncorrupted .dsp files? Also, where can we find
makefile with respect to building q2adz in windows environment. Can I also know what
are the other good open source softwares available for distributed computing in
windows environment? A little advice from you, can help me, to dwelve into the
amazing area of distributed computing.
Thanks Zoran!
--Prem.

From: Pavel Petrovic <Pavel.Petrovic@idi.ntnu.no>
Message-Id: <200605011604.k41G4w3k019849@furu.idi.ntnu.no>
Subject: Re: Q2ADPZ
To: premkumar srinivasan <prem.srini@gmail.com>
Date: Mon, 1 May 2006 18:04:22 +0200 (MEST)
Hi,
> Hi Pavel,
> Thanks for sending me the latest CVS snap-shot of q2adpz.
> I could download liblzo, libzlib, ssl libraries.
> But I am facing the following problems:
> 1) Where can I find flic.h in the code-base? Also, the make system requires
> flic_lib.lib. Where can I get this?
Good question. flic sample is maintained by Zoran. It relates to his research of
visualization of stream data with the help of clusters. flic is FastLIC (Fast LIC),
unfortunatelly, I do not have sources of FLIC. The search on the net tells me that FLIC
is a past project of ZIP, but from their page http://www.zib.de/Visual/projects/ it seems
that the project is no longer maintained. You can just ignore the FLIC sample unless
you get more info from Zoran.
> 2) Where can I get crypto.lib and curl.lib? > libcurl-7.15.3�s libcurl.lib isn�t matching,
it seems. I will try with some other version of curl.
I am using the libcurl3-dev 7.14.0-2ubuntu. Are you getting some compilation errors
with the newer version? For the start, it is better to not use libcrypto
(set HAVE_OPENSSL = 0 in Makefile.base).
Q^2ADPZ is an experimental research software, it is not [yet] a complete product.
Let me know if you have further questions.
Pavel.

mailto:prem.srini@gmail.com
mailto:zoran@idi.ntnu.no
mailto:3a3029120604280904p3de0b65fuad79cc6b1976425a@mail.gmail.com
http://qadpz.idi.ntnu.no/paper-Crossroads/qadpz.html#qadpz
http://sourceforge.net/projects/qadpz
mailto:Pavel.Petrovic@idi.ntnu.no
mailto:200605011604.k41G4w3k019849@furu.idi.ntnu.no
mailto:prem.srini@gmail.com
http://www.zib.de/Visual/projects/

 214

12. Feedback:
Subject: Question Regarding Using QADPZ w/ MPI (i.e. qadpz_mpirun)
Date: Mon, 8 May 2006 14:16:51 -0700
Message-ID:
<8AB7DFF4B7187C43B0C93FA2D55E5B8C05AF8383@xcgca210.northgrum.com>
From: �Carl, Andrew� <a.carl@ngc.com>
To: <zoran@idi.ntnu.no>
Cc: �Carl, Andrew� <a.carl@ngc.com>
Mr. Constantinescu,
 I am attempting to understand the implementation of the MPI w/QADPZ. Which
version did you use in your testing, and is there any documentation available? I have
contacted Mr. Petrovic, but he stated that you were the author of the MPI related
upgrades associated w/qadpz_mpirun.
Thanks,
 Andy Carl

13. Feedback:
Date: Fri, 26 Oct 2007 16:53:27 +0200
To: zoranc@users.sourceforge.net
From: �Marcus Dapp Survey-Admin (sg)� <swpat-floss@gess.ethz.ch>
Subject: Software patents and the �qadpz� project - A scientific survey (sg)
Message-ID: <8ff4bab879dea18739390188a343041d@www.swpat-floss.ethz.ch>
Dear zoranc!
There is considerable debating in the Free/Libre/Open Source Software communities
about software patents; but what do we really know? What are your own experiences
with software patents in the qadpz project? We are cordially inviting you to participate
in our global scientific survey on software patents and FLOSS projects.
Participation is by invitation only. Only a sample of project leaders/key developers of
active SF projects (August 2006) have been invited. So, it is important that your project
is represented as well. Please see the survey page for our privacy policy.
=> Start from here: http://www.swpat-
floss.ethz.ch/lv/index.php?sid=6&token=1566224118
As your participation is really important, we include everybody in a lottery who
completes the questionnaire. The prizes are nice, we think:
1st�A green �XO� (OLPC) laptop, sponsored by Google�s Open Source Program
Office[2]
2nd�A free �Neo1973� mobile phone, sponsored by OpenMoko/FIC[3]
3rd�Be surprised. We aim for similar �coolness� as the other prizes ;-)
There are only multiple choice questions, so answering will be straightforward. We
hope you find coming up with answers as exciting as we found coming up with
questions.
=> Start from here:
http://www.swpatfloss.ethz.ch/lv/index.php?sid=6&token=1566224118
Thanks for helping us by submitting your response ideally within the next days. If you
face technical problems, please email Marcus at swpat-floss@gess.ethz.ch with the
subject line: �bug-report-sg�.

mailto:8AB7DFF4B7187C43B0C93FA2D55E5B8C05AF8383@xcgca210.northgrum.com
mailto:a.carl@ngc.com
mailto:zoran@idi.ntnu.no
mailto:a.carl@ngc.com
mailto:zoranc@users.sourceforge.net
mailto:swpat-floss@gess.ethz.ch
mailto:8ff4bab879dea18739390188a343041d@www.swpat-floss.ethz.ch
http://www.swpat-floss.ethz.ch/lv/index.php?sid=6&token=1566224118
http://www.swpat-floss.ethz.ch/lv/index.php?sid=6&token=1566224118
http://www.swpat-floss.ethz.ch/lv/index.php?sid=6&token=1566224118
mailto:swpat-floss@gess.ethz.ch

 215

This is a joint project of the Center for Comparative and International Studies (CIS), the
Chair for Strategic Management and Innovation (SMI), and the Chair for
Law&Economics at ETH Zurich, Switzerland[1].
Thank you very much for your interest, time and invaluable contribution!
Professor Thomas Bernauer, http://www.cis.ethz.ch
Professor Georg von Krogh, http://www.smi.ethz.ch
Professor Gérard Hertig, http://www.hertig.ethz.ch
Marcus M. Dapp, PhD candidate
Marcus M. Dapp | WEC C 19 | ETH-Zentrum | CH-8092 Zurich | Switzerland

14. Citation:
http://www.cs.montana.edu/techreports/2007/MohammadFuad.pdf
AN AUTONOMIC SOFTWARE ARCHITECTURE FOR DISTRIBUTED APPLICATIONS
PhD by Mohammad Muztaba Fuad
QADPZ [19] provides an open source framework that allows the management and use
of the computational power of idle computers in the network using autonomic
principles. QADPZ is implemented in C++ and uses MPI as its communication
protocol, which restricts this system to a certain class of architectures. It also deploys a
masterslave pattern for task distribution, which actually does not follow the autonomic
system architecture and it does not take any measure to overcome a single point of
failure, e.g.
the master node. The clients and the slaves (which do the actual work on behalf of the
client) talk to each other by the use of a shared disk space, which is certainly a
performance bottleneck and requires costly synchronization.

15. Citation:
http://http://www.emse.fr/OSIR06/2006-osir-CONTENT.pdf

Grids can be roughly classi-fied in two categories: institutional grids (IG�s) and global
computing or P2P (GCP) systems [3, 23, 11]. GCP systems typically harvest the
computing power pro-vided by individual computers, using otherwise unused band-
width and computing cycles in order to run very large and distributed applications [22,
15]. [...] There are also (open source) packages such as XtremWeb [11], and Q2ADPZ
[30] which allow to setup, deploy and run GCP projects.

16. Forum:
http://tech.groups.yahoo.com/group/neat/message/2780
Re: NEAT Supervising NEAT
Ken,
First, I am counting attempting to achieve 80% benefit for 20% effort. And second, I
intend to use qadpz to achieve a discrete form of parallel processing.
The various experiments and their associated �.ne� parameter files reveal a limited
range for the various parameters. That being the case, could you make any suggestions
as to the max ranges which have been found to be stable and �play nicely� with neat
(i.e. not blow-up neat), based upon your experiences?
Thanks,
Andy

http://www.cis.ethz.ch/
http://www.smi.ethz.ch/
http://www.hertig.ethz.ch/
http://www.cs.montana.edu/techreports/2007/MohammadFuad.pdf
http://www.emse.fr/OSIR06/2006-osir-CONTENT.pdf
http://tech.groups.yahoo.com/group/neat/message/2780

 216

http://tech.groups.yahoo.com/group/neat/message/2772
Re: Parallel NEAT

Sidhant,
You might take a look at QADPZ at the following link:
http://qadpz.sourceforge.net/
, and incorporating your driver into the client �qadpz_run� source code. The master &
client can be incorporated onto the same machine if required.
By the way, I enjoyed reading your report in the files section!
AFC

>
> Hullo Joe
>
> That sounds like something I have been looking for. A client-server mechanism is
what I am thinking of at the moment, and not a multithreaded version of NEAT. You
are talking of something that can be executed on a cluster, right??
> It would be very nice if you could share some of your code.
Thanks a lot..
> Sidhant
>

17. Forum:
http://groups.google.com/group/microsoft.public.de.vc/browse_frm/thread/8a9837d851
3f9bce/21db1ad9d55bebc3?tvc=1&q=qadpz#21db1ad9d55bebc3
Newsgroups: microsoft.public.de.vc
From: �Lars Stegelitz� <lars.stegel...@t-online.de>
Date: Thu, 4 Dec 2003 20:52:07 +0100
Local: Thurs, Dec 4 2003 9:52 pm
Subject: Re: Wie CPU Speed herausfinden?

Sebastian Schwaiger wrote:
> Ich weiß, dass es nicht so schwer sein sollte, aber Google gibt zu CPU
> Speed algorithm nichts brauchbares her.
http://qadpz.idi.ntnu.no/doxy/html/cputicker_8cpp-source.html
sieht vielversprechend aus
MfG
Lars Stegelitz

Newsgroups: microsoft.public.de.vc
From: Hans J. Ude <hajue....@arcor.de>
Date: Fri, 05 Dec 2003 14:33:55 +0100
Local: Fri, Dec 5 2003 3:33 pm
Subject: Re: Wie CPU Speed herausfinden?
�Lars Stegelitz� <lars.stegel...@t-online.de> schrieb:

http://tech.groups.yahoo.com/group/neat/message/2772
http://qadpz.sourceforge.net/
http://groups.google.com/group/microsoft.public.de.vc/browse_frm/thread/8a9837d8513f9bce/21db1ad9d55bebc3?tvc=1&q=qadpz#21db1ad9d55bebc3
http://groups.google.com/group/microsoft.public.de.vc/browse_frm/thread/8a9837d8513f9bce/21db1ad9d55bebc3?tvc=1&q=qadpz#21db1ad9d55bebc3
http://microsoft.public.de.vc/
mailto:lars.stegel...@t-online.de
http://qadpz.idi.ntnu.no/doxy/html/cputicker_8cpp-source.html
http://microsoft.public.de.vc/
mailto:hajue....@arcor.de
mailto:lars.stegel...@t-online.de

 217

>Sebastian Schwaiger wrote:
>> Ich weiß, dass es nicht so schwer sein sollte, aber Google gibt zu CPU
>> Speed algorithm nichts brauchbares her.
>http://qadpz.idi.ntnu.no/doxy/html/cputicker_8cpp-source.html
>sieht vielversprechend aus

Sieht nicht nur vielversprechend aus, sondern hält das auch. Hat mir
schon sehr gute Dienste beim Profiling geleistet. Die Klasse kann
wesentlich mehr als nur die CPU Geschwindigkeit messen.
Hajü

18. Forum:
http://groups.google.com/group/fr.comp.os.unix/browse_thread/thread/c73eaa477f77f43
0/c512157d95c7f962?lnk=st&q=qadpz#c512157d95c7f962
Newsgroups: fr.comp.os.unix
From: William Wu <b...@no.spam>
Date: Fri, 10 Jan 2003 23:12:02 +0100
Local: Sat, Jan 11 2003 12:12 am
Subject: Re: b64encode.sh est-il dispo sous hpux?

On Fri, 10 Jan 2003 23:11:34 +0100, farid wrote:
> Bonjour à tous,
> je voulais savoir si le script b64encode.sh est censé être dispo sous hp
> ux, ou alors quelqu�un peut-il mele fournir.
tout dépends si le shell et les programmes sont aussi sur hppux, non ou bien je dis une
conn*r*e ?
sinon j�ai bien trouvé ça ce qui me semble pas spécialement pour une plateforme
particulière je sais pas si c�est ce que tu cherche ... tu n�as qu�à jeter un coup d�oeil :
http://qadpz.idi.ntnu.no/doxy/html/b64encode_8cpp-source.html
William.
comment ça mon mail marche pas ???
william.wu chez free.fr
Newsgroups: fr.comp.os.unix
From: « farid » <lfa...@free.fr>
Date: Sat, 11 Jan 2003 12:05:48 +0100
Local: Sat, Jan 11 2003 1:05 pm
Subject: Re: b64encode.sh est-il dispo sous hpux?
C�est exactement ce que je cherchais,
merci beaucoup William.
http://www.gridresources.info/
QADPZ - Quite Advanced Distributed Parallel Zystem
 http://qadpz.sourceforge.net/
http://www.erlang.org/pipermail/erlang-questions/2003-July/009383.html
Distributing computations
Vlad Dumitrescu <>

http://qadpz.idi.ntnu.no/doxy/html/cputicker_8cpp-source.html
http://groups.google.com/group/fr.comp.os.unix/browse_thread/thread/c73eaa477f77f430/c512157d95c7f962?lnk=st&q=qadpz#c512157d95c7f962
http://groups.google.com/group/fr.comp.os.unix/browse_thread/thread/c73eaa477f77f430/c512157d95c7f962?lnk=st&q=qadpz#c512157d95c7f962
mailto:b...@no.spam
http://qadpz.idi.ntnu.no/doxy/html/b64encode_8cpp-source.html
http://free.fr/
mailto:lfa...@free.fr
http://www.gridresources.info/
http://qadpz.sourceforge.net/
http://www.erlang.org/pipermail/erlang-questions/2003-July/009383.html

 218

Hi,
From: �Luke Gorrie� <>
> I�ve never done any of this stuff, but have been doing some reading
> and looking for an excuse to :-). You�re not getting any solid info
> out of me, but maybe some inspiring/entertaining/distracting links :-)
I don�t expect a solution, but just as you say - inspiration!
> It seems the main trick is to design an algorithm that can run in parallel.
Yes, that�s one thing that has to be tailored after the specific problem at hand.
> Then it seems a popular package today is Parallel Virtual Machine
> (PVM), http://www.csm.ornl.gov/pvm/pvm_home.html.
I was thinking about using Erlang as back-end :-)
I found some references at http://www.aspenleaf.com/distributed/distrib-devel.html, and
I think ideas from Q2ADPZ (at http://qadpz.idi.ntnu.no) could be reused with relative
ease. The fact is, ERTS does already a lot of the things that such a beast should do, and
better - probably except only the security aspects. And, hey!, it�s also a good oportunity
to use UBF, both -A and -B! :-) Thanks for the input. Regards,
Vlad

19. Citation:
http://www-compsci.swan.ac.uk/~csmark/PDFS/visualsupercomputing.pdf
Visual Supercomputing: Technologies, Applications and Challenges
COMPUTER GRAPHICS forum
Volume 24 (2005), number 2 pp. 217�245

20. Forum:
http://curl.haxx.se/mail/lib-2004-04/0366.html
Re: effects of removing curl_formparse?
From: Tor Arntsen <tor_at_spacetec.no>
Date: 2004-04-30
On Apr 30, 10:20, Daniel Stenberg wrote:
>Hi
>curl_formparse() been deprecated and adviced not to be used since 21 August 2001.
>Can anyone mention anything or anyone that would be affected if we removed it
>completely?
I asked google.. didn�t seem to be much out there (but a lot of references
to updates becuse curl_formparse() has been deprecated):
http://qadpz.idi.ntnu.no/doxy/html/GetURL_8cpp-source.html
http://www.seismo.unr.edu/ftp/pub/updates/bankert/php-4.0.4pl1/ext/curl/curl.c
The strange thing is that when I first searched I got more than 21 pages of references, a
moment later only 13, then just 10.. is curl_formparse() being purged all over the place
out there? :-) (there�s probably a more google-technical explanation for this I guess)
-Tor

21. Forum:
http://www.broadbandreports.com/forum/remark,8785738
franconia

http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.aspenleaf.com/distributed/distrib-devel.html
http://qadpz.idi.ntnu.no/
http://www-compsci.swan.ac.uk/~csmark/PDFS/visualsupercomputing.pdf
http://curl.haxx.se/mail/lib-2004-04/0366.html
http://qadpz.idi.ntnu.no/doxy/html/GetURL_8cpp-source.html
http://www.seismo.unr.edu/ftp/pub/updates/bankert/php-4.0.4pl1/ext/curl/curl.c
http://www.broadbandreports.com/forum/remark,8785738

 219

join:2001-07-04
Alexandria, VA
 Opinions on best DC development platform?

I am interested in developing a DC system to analyze a large dataset of atmospheric
measurements. Since the data and research area are rather mundane, I don�t foresee a lot
of internet community interest in this project. Nonetheless, capturing the unused cycles
on our LAN would be great.

Through Google I have run across a few DC backends, such as BOINC, FIDA, and
QADPZ. All these seem to run from Linux or BSD server systems. Does anybody who
developed a DC project have any software recommendations for me? Any familiarity
with the DC platforms listed above or others?
to forum · permalink · 2003-12-14 16:50:24 · (locked)

22. Citation:
http://www.iit.edu/~mummsat/wsrf/SATISH_K_%20MUMMADI.pdf
from CV
COMPUTER SKILLS:
Distributed Computing: Using Parabon Frontier SDK for Java applications, QADPZ
toolkit.

23. Forum:
http://hp.parallel.ru/parBB/viewtopic.php?p=4168
Ищу библиотеку для использования idle процессорного времени офиса (везде
WinXP).
Интересует возможность выполнять jobs, при этом должно использоваться только
idle время, компы могут перезагружаться, т.е. никто ничем не обязан. Нужна
система автоматического апдейта библиотек на агентах.
MPICH поэтому и не подходит.
Я нашел несколько библиотек:
http://www.alchemi.net/index.html - похоже, то что надо
http://qadpz.sourceforge.net/
http://ngrid.sourceforge.net/index.html
http://mygrid.sourceforge.net/

Кто нибудь имеет опыт работы с ними, или может что-то посоветовать?

24. Feedback:

Subject: QUADPZ
From: Manel Soria Guerrero <manel@labtie.mmt.upc.es>
To: Zoran Constantinescu-Fulop <zoran@idi.ntnu.no>
Message-Id: <1054202508.2900.5303.camel@congre.cttc.org>
Date: 29 May 2003 12:01:49 +0200

Zoran,

http://www.iit.edu/~mummsat/wsrf/SATISH_K_ MUMMADI.pdf
http://hp.parallel.ru/parBB/viewtopic.php?p=4168
http://www.alchemi.net/index.html
http://qadpz.sourceforge.net/
http://ngrid.sourceforge.net/index.html
http://mygrid.sourceforge.net/
mailto:manel@labtie.mmt.upc.es
mailto:zoran@idi.ntnu.no
mailto:1054202508.2900.5303.camel@congre.cttc.org

 220

I�ve been talking about QADPZ with Ramiro, our system administrator.
You can reach him at raq@labtie.mmt.upc.es
I�ll try to write a summary of our conversation :)
-He had problems with the binary and with the CVS versions of the code so he
downloaded and compiled the last stable version.
-He needs time to do more tests, but he likes the design of the code, the definition of the
needs with XML, the security, etc.
-It is our opinion that it would be a good idea to focus first on sequential jobs and when
they are closed, go for the parallel executions. In our case, parallel executions are
complex, they need lots of resources (RAM, disk, network), good load balance, etc and
we would prefer to run them on the cluster.
-We wonder if it would be possible for the end users to control the executions.
This is, the executions need a long time to be completed and it is normal that the
(research) programs fail to converge, so the executions must be stopped and resubmitted
with slightly different parameters. The codes write in one or several text files a
summary of how is the execution going, and from time to time, a rather large binary
file.
The users should be able to get this information as soon as it is generated and kill the
codes if necessary.

Hope this helps and I�ll write more when/if I have more information. Please contact
Ramiro if you are interested, maybe the problem with the last version is already fixed.

Best regards,
Manel

25. Feedback:
Subject: Re: QUADPZ
From: Ramiro Alba Queipo <raq@labtie.mmt.upc.es>
To: Zoran Constantinescu-Fulop <zoran@idi.ntnu.no>
Message-Id: <1054235109.5902.12.camel@mundo.cttc.org>
Date: 29 May 2003 21:05:09 +0200
On Thu, 2003-05-29 at 18:04, Zoran Constantinescu-Fulop wrote:
> Hi Ramiro,
> Manel told me to contact you about QADPZ. My name is Zoran and I am one of the
> developers. We are planing to make a new release with some of the new features we
> added. You had some problems with the binary and CVS versions... could you tell me
> more about > these problems? so that we can fix them for the new release :)
Where about libstdc++ (binary version) and something related with
MPI (not finding a source file). Anyway I must say that I did not try
very hard as I prefered going into installation step I know about
functionality. I will be more specific after trying better the
functionality from the user�s view.
> > I agree that we should start with the sequential type of jobs and see how it works.
The parallel code should be easier to test afterwards.
> > Regarding user control of the executions: after a job/task is
> started, the owner (i.e. user) can then control it, like for

mailto:raq@labtie.mmt.upc.es
mailto:raq@labtie.mmt.upc.es
mailto:zoran@idi.ntnu.no
mailto:1054235109.5902.12.camel@mundo.cttc.org

 221

> example send a special control-message or stop the task. For
> the data, input/output files are downloaded/uploaded from a
> web server (or any other type of server, like for example ftp).
> All input files are downloaded before the task starts, while
> the output files are uploaded after it finishes. We could change
> a bit the code to do the upload of some intermediary output
> files more often. For example every 5 minutes, or even catch
> the �fclose()� type system library calls and do an aditional
> upload there :) The later should be quite easy to do in Linux,
> though i�m not sure how to do it in Windows :)
>
I would need to make some aditional tests so as I can know a bit more,
so as I can ask you some questions. I will be a bit busy the next three
days, but I promise to contact you next week.

See you
Ramiro
> Cheers,
> --zoran

26. Feedback:
Subject: Re: QADPZ
From: Ramiro Alba Queipo <raq@labtie.mmt.upc.es>
To: Zoran Constantinescu-Fulop <zoran@idi.ntnu.no>
Message-Id: <1054297658.9201.1.camel@mundo.cttc.org>
Date: 30 May 2003 14:27:38 +0200

On Thu, 2003-05-29 at 21:31, Zoran Constantinescu-Fulop wrote:
> >> problems [...] > > Where about libstdc++ (binary version) [...]
> I compiled now a binary version which doesn�t need anymore a specific libstdc++. :)
> That was my intention also first time, but probably I�ve put the wrong archive on the
> web... :(There is also an SSL-enabled version on the web site:
> http://qadpz.idi.ntnu.no/download/bin/
Now it seems to be running. I will keep you informed. Thanks Zoran.
See you

27. Feedback
From: Manel Soria Guerrero <manel@labtie.mmt.upc.es>
To: Zoran Constantinescu-Fulop <zoran@idi.ntnu.no>
Message-Id: <1054541358.2899.5369.camel@congre.cttc.org>
Date: 02 Jun 2003 10:09:18 +0200
> > It would be really nice to be able to control a number of files (maybe
> > specified with that XML thing ??), as if they were on the local machine.
> > > i�m not sure i understant exactly what you mean...
When the programs run on the local machine, to see how are the programs

mailto:raq@labtie.mmt.upc.es
mailto:zoran@idi.ntnu.no
mailto:1054297658.9201.1.camel@mundo.cttc.org
http://qadpz.idi.ntnu.no/download/bin/
mailto:manel@labtie.mmt.upc.es
mailto:zoran@idi.ntnu.no
mailto:1054541358.2899.5369.camel@congre.cttc.org

 222

going, from time to time we usually:
-print the tail of one or more control files, that contain lots of numbers (ascii)
-gnuplot an ascii file
-use a visualization code to see a large binary file
It would be nice if QADPZ could allow to do that on some remote files just as if they
were at the local machine. Maybe a possibility could be to specify the files that must be
controlled, using the same XML file that contains the description of the job
requirements (if I understood correctly).

28. Feedback:
Subject: QADPZ: Got the first successful execution
From: Ramiro Alba Queipo <raq@labtie.mmt.upc.es>
To: zoran@idi.ntnu.no
Message-Id: <1054750909.2849.12.camel@mundo.cttc.org>
Date: 04 Jun 2003 20:21:50 +0200

Hi Zoran:
After some minor problems, I have got the first successful execution using the
simple.cpp example. I now can understand much better the way qadpz works and I also
already have some questions/suggestions, but I prefer to go on trying with our programs
so as to test real cases and then talk to you. I also compiled the last CVS version, but
with no MPI (deactivated). (In any case no matter at this moment), and played with
slv_app.cpp.
May be only two questions question: How can I send a job to execution and forget (not
waiting)? Can a slave decide that a job must be stopped? How?
See you,
Ramiro

29.Feedback:
Date: Wed, 6 Aug 2003 02:45:26 -0700 (PDT)
From: Devesh Singhal <deveshsinghal2003@yahoo.com>
Subject: Problem : in implementing QADPZ utility
To: zoranc@acm.org
Hello Mr. Zoran Constantinescu,
Sir,myself is Devesh Singhal and I have recently downloaded your 0.8beta version of
QADPZ utility. But there are some problems arrriving during execution,I am mentiong
here - [1]. As you have mentioned in article 5.3.4 of Q2ADPZ User & Developer
Manual , point 1 -> It is quite understandable and I have copied src/wscript/*.cgi (i.e. all
.cgi files) to /var/www/html/wscript
point 2 -> Statement � Set the location of these scripts in client.cfg and slave.cfg
files before installing them accordingly.�
But to which variables in client.cfg and slave.cfg, these scripts must be assigned.
[2]. I have renamed the Library libslv-app.so to libslv.so in this utility. But when I
execute ./qadpz_run at bin directory, an error occurs stating that error in loading
libslv.so to a new file (file has an rbitrary name) It creates this new file at destination
directory and return download Ok, but new file remains empty(size 0 bytes).

mailto:raq@labtie.mmt.upc.es
mailto:zoran@idi.ntnu.no
mailto:1054750909.2849.12.camel@mundo.cttc.org
mailto:deveshsinghal2003@yahoo.com
mailto:zoranc@acm.org

 223

Sir I am here attaching files for more acccurate information-
- output of ./qadpz_run command and status of master and slave.
- XML file simple2.xml.
- file slave.log.

Please respond it Sir.
Thanking you Sir.
Devesh Singhal

30. Feedback:
From: �Deraldo� <deraldo@veloxmail.com.br>
To: <zoran@idi.ntnu.no>
Subject: Qadpz
Date: Mon, 8 Sep 2003 18:29:24 -0300
Message-ID: <000001c37650$46a8e180$64c8a8c0@dedaserver>
Zoran!
Im trying to use the qadpz into a windows environment. We cant get it! Using the linux
env, we can connect the slave and the client. But this last one stops after requiring some
reserved slaves. Could you help us?
thanks in advance!

31. Feedback:
Date: Sun, 21 Sep 2003 21:00:46 +0200 (MEST)
From: Zoran Constantinescu <zoran@idi.ntnu.no>
To: =?ISO-8859-1?Q?Leif_Snorre_Sch=F8yen_Boasson?=
<Leif.Snorre.Schoyen.Boasson@idi.ntnu.no>
cc: Zoran Constantinescu-Fulop <zoran@idi.ntnu.no>
Subject: psim, mpi, compression
Message-ID: <Pine.GSO.4.51.0309212026130.17828@dionysus.idi.ntnu.no>
MIME-Version: 1.0
Hi,
As I told you, I was hacking a bit around with MPI and compression. I made a few tests
with your program and here are some results...

 grid 128x128 (one message size is 128 kBytes)
 particles 1048576
 time steps 100
 #nodes 8

MPI version | simul.time
-----------------------+-----------
MPICH | 53.7 sec
MPI-QADPZ no compress | 28.6 sec
MPI-QADPZ with LZO | 17.6 sec
MPI-QADPZ with ZLIB | 39.1 sec
MPI-QADPZ with BZIP2 | 87.2 sec

mailto:deraldo@veloxmail.com.br
mailto:zoran@idi.ntnu.no
mailto:zoran@idi.ntnu.no
mailto:Leif.Snorre.Schoyen.Boasson@idi.ntnu.no
mailto:zoran@idi.ntnu.no
mailto:Pine.GSO.4.51.0309212026130.17828@dionysus.idi.ntnu.no

 224

As you can see, it�s quite promissing... =D> :-) LZO, ZLIB, BZIP2 are different
compression algorithms. I ran each simulation two times, to be sure about the results ;).
See below the ouput of one of each simulation.

The small hack is made as part of the tiny MPI library on top of QADPZ, the distributed
computer project I�m working on (http://qadpz.sourceforge.net).

If you want, I can show you how to play with it, so that you can make more tests with it.

Cheers,
--zoran

MPICH

 No. of time-steps: 100
 Part_rho took : 7.02368 seconds
 Push_v took : 4.77408 seconds
 Push_loc took : 1.16180 seconds
 Solve took : 2.33222 seconds
 Field_grid took : 0.07043 seconds
 Simulation took : 53.47985 seconds
 MPI_Allreduce took : 37.41524 seconds
 Total simulation : 53.72704 seconds

MPI-QADPZ no compression

 No. of time-steps: 100
 Part_rho took : 4.41704 seconds
 Push_v took : 6.04893 seconds
 Push_loc took : 1.17400 seconds
 Solve took : 2.42634 seconds
 Field_grid took : 0.06443 seconds
 Simulation took : 28.59725 seconds
 MPI_Allreduce took : 10.00685 seconds
 Total simulation : 28.60410 seconds

MPI-QADPZ with LZO

 No. of time-steps: 100
 Part_rho took : 4.44002 seconds
 Push_v took : 5.16125 seconds
 Push_loc took : 0.93403 seconds
 Solve took : 2.50315 seconds
 Field_grid took : 0.06425 seconds
 Simulation took : 17.55874 seconds
 MPI_Allreduce took : 4.26227 seconds
 Total simulation : 17.56558 seconds

http://qadpz.sourceforge.net/

 225

MPI-QADPZ with ZLIB

 No. of time-steps: 100
 Part_rho took : 4.52847 seconds
 Push_v took : 6.56303 seconds
 Push_loc took : 1.27463 seconds
 Solve took : 2.67737 seconds
 Field_grid took : 0.06879 seconds
 Simulation took : 39.10445 seconds
 MPI_Allreduce took : 23.68118 seconds
 Total simulation : 39.11132 seconds

MPI-QADPZ with BZIP2

 Part_rho took : 5.24602 seconds
 Push_v took : 8.42995 seconds
 Push_loc took : 1.43487 seconds
 Solve took : 3.39705 seconds
 Field_grid took : 0.07894 seconds
 Simulation took : 87.14938 seconds
 MPI_Allreduce took : 67.71850 seconds
 Total simulation : 87.15621 seconds

32. Feedback�
Date: Tue, 30 Sep 2003 19:32:18 +0200 (MEST)
From: Cyril Banino <Cyril.Banino@idi.ntnu.no>
To: Zoran Constantinescu <zoran@idi.ntnu.no>
cc: Cyril Banino <Cyril.Banino@idi.ntnu.no>
Subject: Re: Q2ADPZ
> one idea, for example, would be to use QADPZ as a scheduler for ClustIS and, in
> addition to the 37 nodes we have now, we could add some more office-PCs with
> computing power available.
> we could talk more about this if you want...
> cheers,
> --zoran
I�d like that. Let�s take about it one day when you have time.
See you,
Cyril.

33. Feedback:
 Subject: Request for info on QADPZ systems
To: zoran@idi.ntnu.no
Message-ID: <OF526BB527.14345D7A-ON65256DCD.0013AAD1@interliant.com>
From: avijayakumar@frost.com
Date: Tue, 28 Oct 2003 10:09:53 +0530

mailto:Cyril.Banino@idi.ntnu.no
mailto:zoran@idi.ntnu.no
mailto:Cyril.Banino@idi.ntnu.no
mailto:zoran@idi.ntnu.no
mailto:OF526BB527.14345D7A-ON65256DCD.0013AAD1@interliant.com
mailto:avijayakumar@frost.com

 226

Dear Mr.Zoran Constantinescu,
 I would like to thank you for your kind and quick response. We had a long festival
weekend here in India,so I was not able to reply you immediately.As I mentioned
earlier,I am working on a research service which focusses on the technological
developments in the area of distributed systems.With respect to this I have few
questions in my mind,answers to which will give me insight into your work and about
the topic

1.Can you give a thorough description of your work which will be understood by a
person without any technical expertise.
2.What is the driving factor for your research?
3.What are the competing technologies and what are their deficiencies which
has been addressed in your systems?
4.What are the major challenges faced during your research in evolving to
the marketplace?How is it addressed?
5.How are the security issues dealt in such open source distributed systems?
6.What are the current and potential applications for the technology? When do you think
the potential applications will become commercial? Can you list those applications you
expect to have most impact and also comment on their degree of expected impact?
7.Is the technology available for licensing? Are you interested in partnering to further
develop the technology or applications? Are there patents on the technology? Can you
provide me with the patent titles and numbers?
8. In your opinion which do you think are the emerging technologies in the area of
distributed systems playing a key role in the market?

If you think there are any relevant documents related to this study which you can share
with us, kindly attach the same along with this mail.

Thank you for your time and cooperation.I look forward to hear from you soon.
Regards, Amreetha

Ms.Amreetha Vijayakumar
Research Analyst-Technical Insights, Frost & Sullivan
Chennai,India.
www.ti.frost.com

34. Feedback:
Ph : +91-44-24314263/5/6/7 Ext-299
Fax :+91-44-24314264
email : avijayakumar@frost.com

http://www.undergroundnews.com/forum/ubbthreads.php?ubb=showflat&Number=239
2
Re: distributed computing sinetific sinetific Offline
nobody
Registered: 03/02/02
Posts: 815

http://www.ti.frost.com/
mailto:avijayakumar@frost.com
http://www.undergroundnews.com/forum/ubbthreads.php?ubb=showflat&Number=2392
http://www.undergroundnews.com/forum/ubbthreads.php?ubb=showflat&Number=2392

 227

Loc: Ann Arbor
http://qadpz.sourceforge.net/
Platforms supported are Linux, Unix, Win32 and MacOS X.

Seems to be what you are looking for.
you specify master and slave computers the master sends the computing out to the
slaves.

I�ve actually beent thinking of trying something like this myself since i have a few
computers that dont really do a lot with their CPU cycles.

On Tue, 21 Oct 2003 avijayakumar@frost.com wrote:

> Hello Mr.Zoran Constantinescu,
>
> I read with interest about your research work on Quite Advanced Distributed Parallel
Zystem. I am an analyst with the Technical Insights division of Frost and Sullivan
(www.ti.frost.com). We publish several subscription services on topics such as
sensors, IT,microelectronics, and Advanced materials that are read by
researchers,engineers and executives at top companies worldwide. We specialize in
new developments with commercial promise. I am currently working on a research
service which focuses on Distributed systems,its applications and the core technologies
associated with it which are evolving into the market from the research labs.
>
> For this I would like to incorporate your latest developments in this field. I
wondered if you mind taking the time to answer a few questions for us. Please let me
the know if its appropriate sending them over to you.
> I look forward to hearing from you soon.Thank you for your time and cooperation.
>
> With Best Regards,
> Amreetha

35. Assigment:
http://www.idi.ntnu.no/~zoran/Hydro2/Velo10d-lic-anim.html
data /wrk_c4/hdb2/BACKUP/clustis/zoran/data/qadpz-log/1056737676

Test case: 3cyl
1. flow in a channel around 3 cylinders (2D, 26600 elems, 13567 nodes, 400 time steps)
2. LIC animation (small 25 MBytes)
3. LIC animation (large 125 MBytes)

36. Forum:
http://www.beowulfwindows-reserves.us/checkpoint-restart.htm

Simulation was done using the CPM Navier-Stokes solver developed at SINTEF. The
results were obtained by running a distributed computing simulation using 8 desktop
lab-computers (not a dedicated cluster!). The QADPZ distributed computing (desktop

http://qadpz.sourceforge.net/
mailto:avijayakumar@frost.com
http://www.ti.frost.com/
http://www.idi.ntnu.no/~zoran/Hydro2/Velo10d-lic-anim.html
http://www.beowulfwindows-reserves.us/checkpoint-restart.htm

 228

grid computing) system was used, developed as part of the CSE project. A lightweight
MPI library on top of QADPZ was used for communication purposes.

37. Forum:
http://ml.tietew.jp/cppll/cppll_novice/thread_articles/446

38. Forum:
http://www.mail-archive.com/expert@linux-mandrake.com/msg70236.html
[expert] Distributed computing package
Ezequiel Martín Cámara
Fri, 13 Jun 2003 05:06:37 -0700
What about integrating some distributed computing system into Mandrake?
There are a couple of open-source systems that generalize over the setup:
http://boinc.ssl.berkeley.edu
http://qadpz.sourceforge.net
I -and, I guess, many other users- would be happy to give my idle computing power -
and I have several Mandrake machines running most of the time- to Mandrake in
exchange of, say, Club membership, Mandrake packages. (Or cash)

Would it be very hard for Mandrake to sell all those petaflops commercially? I've been
Goggling around and I've found .15$/hour for a new Compac (http://www.tech-
report.com/onearticle.x/4467) and 7500$/year for a 400Mhz PII

 229

(http://www.mithral.com/pressroom/archive/2000-11-SciAm.html).

I mean, all of us want Mandrake (the company) to survive financially, but many aren't
ready to actually pay them. This would be a way to give back that would not actually
cost a penny to users(at least, for those users to whom the company/Daddy pay the
electric bill

Even if the cash cow is not feasible -and I can't think why not- it would be nice to have
some OS distributed computing effort integrated on Mandrake. That would mean *so*
much computing power...
-- Ezequiel Martín Cámara
http://www.geocities.com/ezequielmartin
http://www.radicalparty.org

39. Citation:
http://java.icmc.usp.br/dilvan/papers/2004-Webmedia/TanakaFinal.pdf
Um Sistema de Controle para Web Farms
Webmedia 2004

Para tal, é preciso que o projeto e a implementação dos sistemas de computação,
software, armazenamento e suporte exibam alguns fundamentos básicos, tais como [7]:
autonomia, flexibilidade, acessibilidade e transparência. A autonomia pode ainda ter as
seguintes propriedades [2][12]: auto-configuração, auto-otimização, auto-tratamento e
auto-proteção.
[12] Z. Constantinescu, �Towards an Autonomic Distributed Computing System�, Proc.
of the 14th Inter. Workshop on Database and Expert Systems Applications, IEEE
Computer Society, 2003, pp. 694-698.

40. Citation

www.netlab.hut.fi/opetus/s384030/k06/papers/SecuredRemoteTrackingOfCritical.pdf
Secured Remote Tracking Of Critical Autonomic Computing Applications 2004
��but also because of the need to integrate multiple heterogeneous environments,
and to extend beyond company boundaries into the Internet [1]�
[l] Zoran Constantinescu. �Towards an Autnnomic Distributed Computing System, �
Proceedings of rhe 14th International Workhop on Database and Expert Systems
Applications (DEXA �OS), 2003

41. Citation:
http://www.scientificjournals.org/journals2007/articles/1198.pdf
An Autonomic Software Architecture for Distributed Applications 2007

QADPZ [19] provides an open source framework that allows the management and use
of the computational power of idle computers in the network using autonomic
principles. QADPZ is implemented in C++ and uses MPI as its communication

 230

protocol, which restricts this system to a certain class of architectures. It also deploys a
masterslave pattern for task distribution, which actually does not follow the autonomic
system architecture and it does not take any measure to overcome a single point of
failure, e.g. the master node. The clients and the slaves (which do the actual work on
behalf of the client) talk to each other by the use of a shared disk space, which is
certainly a performance bottleneck and requires costly synchronization.
19. Constantinescu Z., �Towards an Autonomic Distributed Computing System�, 14th
International Workshop on Database and Expert Systems Applications, pp. 699-
703, 2003.

42. Citation:
http://www.comp.leeds.ac.uk/kwb/publication_repository/2005/cgf_006.pdf
Visual Supercomputing: Technologies, Applications and Challenges
Computer Graphics Forum 2005
Though the development of generic software environments for autonomic applications
is still in its infancy, several attempts were made, which include projects such as
QADPZ [149], AUTONOMIA [150] and Almaden Optimal- Grid [151]. QADPZ [149]
provides an open source framework for managing heterogeneous distributed
computation in a network of desktop computers using autonomic principles. In QADPZ,
the system complexity is hidden in the middleware layer, facilitating self-knowledge,
self-configuration, self-optimization and self-healing.
149. Z. Constantinescu. Towards an autonomic distributed computing environment.
Proc. 14th Int.Workshop on Database and Expert Systems Applications, pp. 699�703,
2003.

43. Citation
http://arxiv.org/pdf/cs/0607061
On Some Peculiarities of Dynamic Switch between Component Implementations in an
Autonomic Computing System
The success of an autonomic system behavior is essentially determined by ability to
detect or predict overall performance that is actually the ground for management of
autonomic components, in particular, for activation of an appropriate component
implementation. For this, establishing of mathematical abstractions and models giving
criteria governing the sequence of switches between component implementations is an
important point of autonomic computing [2-5].
5. Z. Constantinescu, Towards an Autonomic Distributed Computing System, Workshop
on "Autonomic Computing Systems", ACS�2003, September 1-5, Prague, Chech
Republic (2003).

	Introduction
	Problem description
	Research goals
	Results and contributions
	Outline of the thesis

	Scientific Computing
	What is Scientific Computing (all about)?
	Mathematical Modeling
	Modeling
	Validation

	The Process of Numerical Solution
	The Computational Environment

	Scientific Visualization
	Visualization
	Scientific Visualization
	Applications of Visualization
	Algorithms for Scientific Visualization
	Visualization Environments
	Graphical excellence guidelines

	Computational Grids and Desktop Grids
	Distributed and Parallel Computing
	Computational Grids and Applications
	A bit of Grid history
	Need for Computational Grid in Context
	Data-Intensive Science
	Simulation-Based Science
	Remote Access to Experimental Apparatus
	Virtual Community Science
	Scenarios for grid use in the real-world

	Premises for Computational Grids
	Technical premises
	Financial premises
	Experiencing premises

	Computational Grid Definition
	Short Taxonomy of Grid Applications
	Grid’s Integrability, Efficiency and Quality of Services
	Desktop Grid Computing
	SCEs’ Capabilities and Requirements
	High-Throughput SCEs or Desktop Grids
	Key Components for Desktop Grids
	Requirements for Desktop Grids
	External Interfaces and Guarantees
	Hardware Requirements
	High-Throughput SCEs in Grids

	High-Reliability SCEs
	External Interfaces and Guarantees
	Hardware Requirements
	High-Reliability SCEs in Grids

	Dedicated High-Performance SCEs
	Beowulf Clusters
	Commercial Resource Virtualization Systems
	External Interfaces and Guarantees
	Hardware Requirements
	Dedicated High-Performance SCEs in Grids

	Concluding comments

	Overview and Taxonomy of Desktop Grid Systems
	Overview of Desktop Grid Systems
	SETI@home - BOINC
	distributed.net
	Considerations on parallelism for SETI@home - distributed.ne
	PVM
	Entropia
	Condor

	Hierarchical Taxonomy
	Level 1, Infrastructure: resource, platform, scalability, se
	Level 2, Models: computing model, architecture, data model
	Level 3, SW.: application, architecture, administration, lic

	Conceptual Model
	Introduction
	The Master-Worker Model
	Decomposition and Distribution of Work-units
	Static decomposition, static distribution
	Dynamic decomposition, static distribution
	Dynamic decomposition, dynamic distribution

	Improved Master-Worker Model
	Pull vs. Push for work-units
	Pipelining of work-units
	Sending more work-units at a time
	Adaptive number of workers
	Adaptive timeout interval for work-units
	Use of multithreading

	Resource Estimation
	Network Performance
	Computing Power

	Resource Monitoring
	Scheduling

	The QADPZ System
	Description
	Justification for a New Desktop Grid System
	Design and Implementation
	Requirements
	System Requirements
	Interface Requirements
	Non-functional Requirements

	Architecture
	Job-view of the system
	Slave
	Master
	Client
	User Interface

	Communication
	Parallel Computing
	Interplatform operability
	Security
	Autonomic Computing Features
	Self-knowledge
	Self-configuration
	Self-optimization
	Self-healing

	Get Started with QADPZ
	User modes
	Installation and maintenance features
	Security
	Architecture

	The QADPZ usage on sourceforge.net
	Scientific Computing and Visualization Experiments
	Computational Resource Monitoring
	Real word problem - Trondheim fjord
	Fluid flow around a cylinder - simulation
	Fluid flow around a cylinder - visualization
	Utilizing QADPZ for Evolutionary Computation
	Adaptive Compression for Remote Visualization

	Conclusions and Future Work
	Selective Bibliography

