
Q2ADPZ: An Open System for Distributed Computing

Zoran Constantinescu
Pavel Petrovic

Atle Pedersen

Norwegian University of Science and Technology
zoran@idi.ntnu.no, petrovic@idi.ntnu.no, atlep@idi.ntnu.no

Abstract

The recent growth of computational power of desktop
computers calls for their efficient use in larger organi-
zations, especially those, which need to run computa-
tionally intensive tasks, such as universities and research
centers. We describeQ2ADPZ [’kwod ”pi: ’si:], a
modular, open source implementation in C++ of a multi-
user and multi-platform system for idle distributed com-
puting in a TCP/IP network. The computing power of
large number of idle desktop computers is utilized by
automatically scheduled tasks that are submitted, mon-
itored, and controlled by users. Flexibility of the sys-
tem is implied by several user application modes. Task
software and hardware requirements and input and out-
put files are handled automatically by the system. The
tasks can be mobile. Internal communication protocol
is based on optionally encrypted XML messages using
public/private keys, user names and passwords. We are
currently using the system for research tasks in the ar-
eas of large-scale scientific visualization, evolutionary
computation, and simulation of complex neural network
models.

1 Introduction

In many universities and research organizations, the fol-
lowing recent trends can be identified:

1. larger amounts of data are being accumulated and
manipulated;

2. hardware performance of desktop computers in-
creases dramatically;

3. new technological advancements stimulate use of
computing applications with extreme requirements
for computational power;

4. use of computing, simulations, visualizations, and
optimization in various research fields and practical
applications is accelerating, and leads to very high
demands on computing power;

5. the pace of development of high-performance ser-
vers hardly equals these trends, but for very high
financial costs.

Increasing hardware performance of desktop comput-
ers accounts for a low-cost high-performance computing
potential that is waiting to be efficiently put in use.

Distributed Computing harnesses the idle processing cy-
cles of the available workstations on the network and
makes them available for working on computationally
intensive problems that would otherwise require a super-
computer or a dedicated cluster of computers to solve.

A distributed computing application is divided to smaller
computing tasks, which are then distributed to the work-
stations to process in parallel. Results are sent back to
the server, where they are collected. The more PCs in
a network, the more processors available to process ap-
plications in parallel, and the faster the results are re-
turned. A network of a few thousand PCs can process
applications that otherwise can be run only on fast and
expensive supercomputers. This kind of computing can
transform a local network of workstations into a virtual
supercomputer.

Q2ADPZ is a research project developed by graduate
students in our department1. The main purpose is to
build a system that will be used for obtaining results
for the students’ and researchers’ projects by utilizing
idle computers in the student laboratories. As such, it is
developed open-source. Free availability of the source
code allows its flexible installations and modifications

1Department of Computer Science, Norwegian University of Sci-
ence and Technology (NTNU), Trondheim



based on the individual needs of research projects and
institutions. In addition to being a very powerful tool
for computationally-intensive research, the open-source
availability makes it a flexible educational platform for
numerous small-size student projects in the areas of op-
erating systems, distributed systems, mobile agents, par-
allel algorithms, and others.

In the remaining sections of this article, we will present a
short overview of similar distributed computing systems
as compared toQ2ADPZ, describe the features of our
system in detail, explain the architecture and implemen-
tation, show an example application and finally conclude
with ideas for future development.

2 Related Work

Several public systems for distributed computing ap-
peared [Pea]. Most of these systems however are either
focused on some specific problems, or they require ded-
icated hardware, or are proprietary, offering little flexi-
bility to developers.

Distributed.net [webb] is a very large network of users
all over the world, using their computers’ idle processing
cycles to run computational challenge projects, which
require a lot of computing power. Examples of projects
are RC5-64 secret-key, DES or CS-Cipher challenges.
Another similar project is Seti@home, [webe], a scien-
tific experiment that uses Internet- connected comput-
ers in the Search for Extraterrestrial Intelligence (SETI),
by analyzing radio telescope data. The user installs a
small, problem specific client program, which is either
in the form of an executable or a screen saver. This pro-
gram connects to the project’s server and downloads a
set of data for analysis. The result is later uploaded to
the server. The focus on very specific computational
problems, and the closed code of the client makes the
above mentioned systems difficult to use for our research
projects.

Entropia [webc] is a similar, but commercial version of
distributed computing over the Internet. They offer a ro-
bust technology and assistance with expertise in a seam-
less integration into existing network environments and
in a deployment of custom applications. However, many
of our academic research projects cannot afford such a
high cost.

Condor [Mic88] is a high throughput computing envi-
ronment that can manage very large collections of dis-
tributively owned workstations. The environment is
based on a layered architecture that enables it to pro-

vide a powerful and flexible suite of resource manage-
ment services to sequential and parallel applications.
The maturity of Condor makes it very appealing for our
projects, however the very restrictive license of the soft-
ware makes it almost impossible to adapt to our require-
ments.

A Beowulf cluster [Don95] is built out of commodity
hardware components, running a free-software operat-
ing system like Linux or FreeBSD, interconnected by a
privatehigh-speed network. It is a dedicated cluster for
running high-performance computing tasks. The nodes
in the cluster don’t sit on people’s desks, they are dedi-
cated to running cluster jobs.

3 Features

The design goals of theQ2ADPZ system are ease of
use at different user skill levels, inter-platform operabil-
ity, client-master-slave architecture using fast message-
based communication, modularity and modifiability, se-
curity of computers participating inQ2ADPZ, and easy
and automatic install and upgrade.

In Q2ADPZ, a small software program (slave service)
runs on each desktop workstation. As long as the work-
station is not being utilized, the slave service accepts
tasks sent by the server (master). The available com-
putational power is used for executing a task. Human
system administration required for the whole system is
minimal. We will now describe the features in detail.

3.1 User modes

Each installation of the system requires a local adminis-
trator, who is responsible for configuring the system and
installing theslave serviceon desktop computers, and
theuniversal clienton user computers. Individual users,
however, do not need to have any knowledge about the
system internals. On the contrary, they are able to sim-
ply submit their executable or interpreted (such as Lisp
or Java) program from a menu-driven command-line ap-
plication, where they can specify

� number of runs of the application,

� file path to the executable and command line argu-
ments,

� input and output files (their names are automati-
cally generated from the run number) – either for
all runs or for specified subset of runs,



<Job Name="example">
<Task ID="1" Type="Library">

<RunCount>1</RunCount>
<TaskInfo>

<Memory Unit="MB">64</Memory>
<Disk Unit="MB">5</Disk>
<TimeOut>3600</TimeOut>
<OS>Linux</OS>
<CPU>i386</CPU>
<URL>http://server/lib-example.so</URL>

</TaskInfo>
</Task>

</Job>

Figure 1: Simple library-type project file.

� directories where the files reside,

� utilities to be run after individual tasks (typically
to process the output files before another task is
started),

� maximum time allowed for a task to execute,

� in what order ought the task groups be executed,

� hardware (disk, memory, CPU type and speed)
and software (operating system, and installed pro-
grams) requirements of the application.

These project configuration parameters are saved into
XML-structured file. The executable can be taken from
a local disk or downloaded from any URL-specified ad-
dress. The input and output data files are automatically
transferred to slaves using a dedicated data www-server.
The progress of execution can be viewed in any www-
browser. (see the figure 6).

Each run corresponds to a task – the smallest computa-
tional unit inQ2ADPZ. Tasks are grouped into jobs
– identified by a group name and a job number. Sys-
tem allows control operations on the level of tasks, jobs,
job groups, or users. If preferred by advanced users, the
project file may be edited manually or generated auto-
matically, see the figure 1 and 2 for examples.

More advanced users can write their own client appli-
cation that communicates directly with the master using
API of theclient service library. This allows submitting
tasks with appropriate data dynamically.

Finally, advanced users can write their own slave li-
braries that are relatively faster than executable pro-
grams and very suitable for applications with many
short-term small-size tasks, i.e. with a high degree of
parallelism.

The communication between the system components is
in human readable XML format and can optionally be

<Job Name="brick">
<Task ID="1" Type="Executable">

<RunCount>15</RunCount>
<FilesURL>http://server/cgi-bin/</FilesURL>
<TaskInfo>

<TimeOut>7200</TimeOut>
<OS>Win32</OS>
<CPU Speed="500">i386</CPU>
<Memory>64</Memory>
<Disk>5</Disk>
<URL>http://server/slave_app.dll</URL>
<Executable Type="File">../bin/evolve_layer.exe

</Executable>
<CmdLine>sphere.prj 2 50</CmdLine>

</TaskInfo>
<InputFile Constant="Yes">sphere.prj</InputFile>
<OutputFile>sph/layout/layout.2</OutputFile>
<InputFile Constant="Yes">sph/sphere.1</InputFile>
<InputFile Constant="Yes">sph/sphere.2</InputFile>
<InputFile Constant="Yes">sph/sphere.3</InputFile>
<OutputFile>sph/logs/evolve_layer.log.2

</OutputFile>
<InputFile>sph/layout/layout.1</InputFile>

</Task>
</Job>

Figure 2: Simple executable-type project file.

saved into log-files, so that all the activity and possible
failures can be traced. Extensive debug logs can be pro-
duced as well. The system provides basic statistics in-
formation on usage accounting.

3.2 Interplatform operability

Inter-platform operability is achieved by the pool of
computers in a network that can run different oper-
ating systems and have different hardware architec-
tures. Q2ADPZ handles task submissions with plat-
form specifications, and the appropriate library or exe-
cutable is automatically used. Currently, we use a dae-
mon process on Unix environments, or a system ser-
vice on Windows. At the time of writing, we have suc-
cessfully tested the system on the following hardware
platforms: Linux/iX86,sparc,sparc64, FreeBSD/iX86,
SunOS/sun4m,sun4u, IRIX64/IP27, and Win32/iX86.
Most of the code is ANSI C++ and POSIX.1 compliant
and therefore porting to a new platform does not require
too much efforts. We use the POSIX threads API.

3.3 Installation and maintenance features

All three main components of the system – client, mas-
ter, and slave have their configuration files, which are
well-documented and pre-configured for normal opera-
tion (only the IP address of the master needs to be mod-
ified). Each user of the system is authorized by user



name and password and a special administration utility
for their maintenance is provided. Manual configuration
of the data www-server and master automatic startup is
currently required, however automatic installation of the
slave service on multiple PC workstations is solved for
Win32/iX86 platform and is easy to setup for UNIX plat-
forms.

Upgrade of the slave service is automatic, it is started by
administration utility program – a new version is down-
loaded and started by each slave service. This allows
large number of network computers to be easily inte-
grated.

The computers submitting jobs (the clients) can be off-
line while their tasks are running on slave machines. The
master keeps track of the jobs and caches computation
results when needed. In addition to a flexible storage
place for the pre- or post-computational data, computa-
tional nodes can use common Internet protocols for data
transfer to or from any other computer, including those
not involved in theQ2ADPZ system.

Tasks are automatically stopped or moved to another
slave when a user logs on to one of the slave work-
stations. The system does not support job checkpoint-
ing yet and does not handle restart of master computer.
Adding these features has high priority. However, tasks
can be moved from one slave to another at the request
of the running task. This is equivalent to resubmitting a
task with the addition that initial input data can be dif-
ferent from the original task.

The system installation, administration and use, as well
as system internals are documented in the manual that is
available from the project www-page.

4 Security

There are two conceptually different parts about secu-
rity: system integrity and data integrity. InQ2ADPZ,
we have primarily focused on system integrity, meaning
it should not be possible to use the system to gain access
to any of the machines involved. Based on this we have
the following requirements:

� only registered users should be able to upload code
to the slave machines

� slave code has limited access to the host environ-
ment

In order to reach the first requirement, the master is fitted
with a private/public key pair using the OpenSSL library
[webd]. All commands from clients to the master are
signed with a username/password pair, so that only reg-
istered users can submit work. The passwords are saved
in an encrypted form on the master host system.

The transmission of the username with password is al-
ways encrypted. Likewise, all commands from the mas-
ter to the slaves are signed using the master’s private key.
The key-pair is defined at install-time. Slave code access
to the system is defined by the owner of the system host-
ing the slave, and is thus outsideQ2ADPZ control.

The slave can be requested to download codeblocks from
other locations. These locations are also outside the con-
trol of Q2ADPZ. This means that if the system ad-
ministrators of slave hosts give the software unnecessary
system access, these computers will be vulnerable to un-
lawful users and to users ignorant of security issues. We
pay this price for flexibility. In our setup, the slave is
started under separate network user that has the disk read
and write access only in a special temporary directory.

5 Architecture

The system consists of a central process called ”master”,
a variable (high) number of computing processes on dif-
ferent computers in the network called ”slaves”, and a
number of ”client” processes, user applications, which
generate tasks grouped in jobs.

Slave component is run as a daemon or Windows ser-
vice. Its first role is to notify the central master about its
status and the available resources. These include:

� operating system type

� processor information: CPU type, CPU speed

<Message Type="M_SLAVE_STATUS">
<Status>Ready</Status>
<SlaveInfo>

<Version>0.5</Version>
<OS>Win32</OS>
<CPU Speed="500">i386</CPU>
<Memory Unit="MB">32</Memory>
<Disk Unit="MB">32</Disk>
<Software Version="1.3.0">JDK</Software>
<Software Version="2.95.2">GCC</Software>
<Address>129.241.102.126:9001</Address>

</SlaveInfo>
</Message>

Figure 3: Slave status message is sent from all computa-
tional nodes in regular intervals.



www data
server

output file
executable

input file

input file

www server

status

post office

slave service

slave library

universal

Executable

slave library

universal

interpreted
user program

interpreter

post office

slave service

slave library

universal

user slave
library

executable

www server

UDP socket

UDP confirm

users
database of

crypter

post office

slave service user slave
library

user client
application

post office

client
service library

post office

client
service library

universal
client

project file

manual
editor

universal
client

executable

input file

output file

OS networking (Win32/UNIX)

SLAVE 2

SLAVE 1

post office

MASTER

SLAVE M

CLIENT N

CLIENT 1

Figure 4:Q2ADPZ architecture.

� physical memory available

� local disk available

� existing software on the local system

An example of slave status message is shown at the fig-
ure 3.

Another role of the slave is to launch an application
(task) as a consequence of master’s request. The appli-
cation, in form of a library, executable, or interpreted
program, is transferred from a server according to the
description of the task, then it is launched with the argu-
ments from the same task description.

In case of executable and interpreted tasks,universal
slave library is used. After it is launched by the slave
service library, it first downloads the executable or in-
terpreted program, either from an automatic data store
(now implemented on top of www-server in Perl), or
from a specified URL location. The universal library
proceeds with downloading and preparing all the re-
quired input files. After the executable or interpreted
program terminates, the generated output files are up-
loaded to the data store to be picked up later by the uni-
versal client, which originated the task.

On Win32 platform, the user (or universal) slave li-
braries come in form of DLL module, while on UNIX
platform they are dynamic libraries (this makes it diffi-
cult to port the application for example to Darwin/Mac
OS, which doesn’t support dynamic libraries).

The master is listening to all the slaves. This way, it
has an overview of all the resources available in the sys-
tem, similar to a centralized information resource cen-
ter. It accepts requests for tasks from clients and assigns
the most suitable computational nodes (slaves) to them.
The matching is based on task and slave specifications
and the history of slave availability. In addition, mas-
ter accepts reservations for serial or parallel groups of
computational nodes: clients are notified after resources
become available. Master generates a report on current
status of the system either directly on a text console –
possibly redirected to a (special) file, or in form of an
HTML document.

The client consists of the client service library and a
client user application or the universal client applica-
tion. The client service library provides a convenient
C++ API for a communication with the master, allowing
controlling and starting jobs and tasks and retrieving the
results. Users can either use this API directly from their
application or utilize the universal client, which sub-



queue
outgoing

client service
library

slave service
library

OS OS

slave user library
or universal slave

client user application
or universal client

post office

UDPConfirm

UDPSocket

post office

UDPConfirm

UDPSocket

post office

UDPConfirm

UDPSocket

OS

protocol

Q ADPZ
2

user application protocol

or Q ADPZ universal service protocol2

Q ADPZ
2

protocol

queue
incoming 

launch lib/exe
upgrade slave
system info

master

Figure 5:Q2ADPZ communication layers.

mits and controls the tasks based on an XML-formatted
project file. In version 0.6 of the system, each job
needs a different client process, although we are working
on extending the client functionality to allow single in-
stance of client to optionally connect to multiple masters
and handle multiple jobs.

Communication inQ2ADPZ is based on TCP/UDP, an
unreliable communication protocol, in which packets are
not guaranteed to arrive and if they do, they may arrive
out of order. The advantage of UDP/IP over TCP/IP
is that UDP is fast, reducing the connection setup and
teardown overhead, and is connectionless, making the
scalability of the system easier. The higher-level proto-
col is message based, and the size of the messages ex-
changed between the components of the system is small.
Also, messages are exchanged only for control purposes.
This makes UDP a very good option for our low-level
communication protocol. This layer, calledUDPSocket,
is also responsible for hiding operating system specific
function calls, and making a more general interface for
communication.

Because of the unreliable nature of the UDP protocol,
an additional, more reliable level of communication is
needed. This is based on message confirmation. Each
message contains a sequence number, and each time it
is sent, it is followed by an acknowledgement from the
receiver. Each sent or received message is accounted, to-
gether with the corresponding acknowledge, and in case
of not receiving an acknowledgement, the message is re-
sent a few more times. An acknowledge and a normal

message can be combined into one message to reduce
the network traffic. This layer is calledUDPConfirm,
and permits both synchronous and asynchronous mes-
sage sending.

The next communication layer,PostOffice, has a similar
functionality as the real life post office service. It deliv-
ers and receives high level messages – XML elements
represented as instances of XMLData class. Both block-
ing and non-blocking modes are supported. Messages
have a source and a destination address. Received mes-
sages can be kept by the PostOffice as long as needed,
the upper layers in the system having the possibility to
retrieve only certain messages, based on the sender’s ad-
dress. The PostOffice is also responsible for the encryp-
tion and decryption of messages, if necessary.

Messages exchanged are in XML format, in accor-
dance with a strictly defined communication protocol
between client and master, and between master and
slave. Each message is represented as an XML element
<Message Type="message_type"> , see the fig-
ure 3. XML elements are internally stored as objects
of class XMLData, which in turn contain their sub-
elements – other XMLData objects. Element attributes
are instances of XMLAttrib class. These classes provide
extensive functionality for manipulation with XML el-
ements including input/output string and stream opera-
tions. When the data for slave user library are sent in
the message, they are encapsulated inside of standard
<![CDATA[]]> XML elements. We chose to imple-
ment our own lightweight class in order to achieve flex-



Figure 6: List of slaves – status information provided by master.

ibility and easy extensibility of its functionality.

Message based communication is used only for control-
ling the entities in the system. Shared libraries and ex-
ecutable files for task execution on the slaves, as well
as data files for the computations are transferred using
standard Internet protocols, like for example http, ftp,
ldap, etc. For this, we are using the open source library
“cURL” [weba]. Currently, the slave is using http to
download files from a server (which can be the master
itself, or another, specialized data server), but this can
easily be changed to a different protocol.

6 Evaluation

To evaluate the system, we employed the version 0.6
of the system in artificial evolution of layers of 3D
LEGO models [Pav01]. A 3D model was decomposed
into individual layers. The layout of each layer, i.e.
the placement of LEGO bricks was evolved by a sep-
arate task. The input and output files were automati-
cally transferred by the universal client as specified by
the project file shown at the the figure 2). To obtain
statistically significant data, tens of independent runs
were required.Q2ADPZ installation included 70 high-
performance PentiumIII/733MHz workstations located
in a student laboratory. Their status is on and idle dur-
ing the night, and except of the exercise deadline season
approximately 30-50% idle also during the day.

The figure 6 shows an example status of computational
progress. We received results worth many weeks of
single computational time within approximately 3 days
time with no configuration overhead, by simply submit-
ting our executable toQ2ADPZ.

The development of the system was done simultaneously
in UNIX and Windows environments. This made the in-
tegration of different platforms much easier and helped
us to find the flaws in the source code faster. The de-
signed was made with help of UML diagrams, and the
BSCW (Basic Support for Collaborative Work) system
from FIT and OrbiTeam Software for keeping track of
design documents and development discussion material.
We keep the development sources stored in a CVS sys-
tem.

7 Conclusions and Future Work

Q2ADPZ is a free, open-source, multi-platform system
with limited security for distributed computing in an IP
network. It allows users to submit tasks to be computed
on idle computers in the network.

Q2ADPZ design goals include user-friendliness, inter-
platform operability, client-master-slave architecture us-
ing XML message-based communication, modularity
and modifiability, and security of the computers partici-
pating inQ2ADPZ.



The latest version is in beta testing using a set of student
lab computers at the Department of Computer and In-
formation Science at Norwegian University of Science
and Technology with research projects in Visualization
and Evolutionary Algorithms. The structure of the im-
plementation of the system is modular and encourages
reuse of useful system components in other projects.

Future development of the system will include improved
support for user data security. Computation results data
can be encrypted and/or signed so that the user of the
system can be sure the received data is correct. This is
especially useful if the system is used in an open envi-
ronment, for example over the Internet.

For faster performance, slave libraries will be cached at
slave computers – in the current version, they are down-
loaded before each task is started. A flexible data stor-
age available to other computers inQ2ADPZ will be
provided by slave computers. The scheduling algorithm
of the master needs improvements. We plan to support
more hardware platforms and operating systems.

The current user interface to the system is based on
C++. Possible extensions of the system would be dif-
ferent interfaces for other languages, e.g. Java, Perl,
Tcl or Python. This can easily be done, since the
message exchanges between different components of
the system are based on an open XML specification.
We invite the interested developers in the open-source
community to join our development team and we ap-
preciate any kind of feedback. The current imple-
mentation is available from the project’s home page
http://www.idi.ntnu.no/qadpz .

8 Acknowledgments

This research was supported by the Research Council
of Norway and by the Norwegian University of Sci-
ence and Technology. We are grateful to all members
of theQ2ADPZ team for their work on the project. We
also thank our thesis advisors, Richard Blake and Keith
Downing, for their support.

References

[Bri98] Brian Hayes. Collective wisdom. InAmerican
Scientist, 1998.

[Don95] Donald J. Becker, Thomas Sterling, Daniel
Savarese, John E. Dorband, Udaya A.
Ranawak, Charles V. Packer. Beowulf: A par-

allel workstation for scientific computation. In
Proceedings of the 1995 International Confer-
ence on Parallel Processing (ICPP), pages 11–
14, 1995.

[Mic88] Michael Litzkow, Miron Livny, and Matt
Mutka. Condor - a hunter of idle worksta-
tions. InProceedings of the 8th International
Conference of Distributed Computing Systems,
pages 104–111, 1988.

[Pav01] Pavel Petrovic. Solving LEGO brick layout
problem using Evolutionary Algorithms. In
Norsk Informatikkonferanse NIK’2001, pages
87–97, 2001.

[Pea] Kirk Pearson. Internet Based Distributed
Computing Projects.
http://www.aspenleaf.com/distributed .

[Str97] Bjarne Stroupstrup.The C++ Programming
Language. Addison-Wesley, third edition,
1997.

[weba] cURL.
http://curl.haxx.se/ .

[webb] Distributed.net.
http://www.distributed.net/ .

[webc] Entropia.
http://setiathome.ssl.berkeley.edu/ .

[webd] OpenSSL.
http://www.openssl.org/ .

[webe] SETI@home.
http://setiathome.ssl.berkeley.edu/ .


