
Towards an Autonomic Distributed Computing System

Zoran Constantinescu
Norwegian University of Science and Technology
Department of Information and Computer Science
N-7491 Trondheim, Norway, zoran@idi.ntnu.no

Abstract

Increasing hardware performance of desktop computers
accounts for a low-cost computing potential that is waiting
to be efficiently used. However, the complexity of installa-
tion and maintenance of a large number of distributed het-
erogeneous computers is limiting the use of such systems
on a large scale. Systems which are autonomic, capable
of managing themselves are required. The architecture of
QADPZ (Quite Advanced Distributed Parallel Zystem), an
open source system for heterogeneous distributed comput-
ing is presented. The system allows the management and
use of the computational power of idle computers from a
network of PCs. Different autonomic computing features of
the system are described, together with possible extensions
of the system towards an autonomic distributed computing
system.

1 Introduction

Increasing desktop CPU power and communication
bandwidth are helping to make distributed computing a
more practical idea. We consider distributed computing as
an environment where it is possible to harness idle CPU
cycles and storage space of tens or hundreds of networked
computers to work together on a particularly computational
intensive application. We are interested more in comput-
ers from a local area network, or a campus environment,
and not computers connected over low-speed network con-
nections over the Internet. The growth of such distributed
systems has been limited, however, due to a lack of support-
ing applications, and because of security, management, and
standardization challenges. The number of real supporting
applications is still somewhat limited, and the above men-
tioned challenges are still significant.

We present QADPZ [’kwod ”pi: ’si:] (Quite Advanced
Distributed Parallel Zystem), an open source system for
heterogeneous distributed computing. The system allows

a centralized management and use of the computational
power of idle computers from a network of PCs. It is possi-
ble to run either independent applications, or parallel appli-
cations, which can communicate between each other using a
subset of the Message Passing Interface (MPI) standard. We
describe its current capabilities as an autonomic computing
system, together with our future extensions to improve its
autonomic capabilities. Different parts of the system sup-
port different aspects of a self-managed computing system,
mainly knowledge about its resources, self-configuration,
self-optimization, and self-healing.

2 Autonomic Computing

IBM’s manifesto on autonomic computing [5] points out
that the difficulty of managing today’s computing systems
is not only because of the administration of individual soft-
ware environments, but also because of the need to inte-
grate multiple heterogeneous environments, and to extend
beyond company boundaries into the Internet. All these fac-
tors contribute to increased levels of complexity in comput-
ing systems. Installing, configuring, and maintaining such
large systems is becoming an increased challenge even for
experts. A possible solution to this problem is to embed
the complexity in the system infrastructure itself (both hard-
ware and software), then automating its management. This
is in a way similar to the human system, with its autonomic
nervous system, which provides automatic, involuntary reg-
ulation of the major physiological functions.

The essence of autonomic computing systems is self-
management, the intent of which is to free system admin-
istrators from the details of system operation and mainte-
nance [6]. In a similar way to the biological systems, au-
tonomic systems will maintain and adjust their operation in
the face of changing components, demands, workloads, and
external conditions, and also will be able to handle hard-
ware or software failures. Such systems will be able to
monitor their use and interact with other systems.



The following is a list of defining characteristics for an
autonomic computing system [5]:

� know itself: the system should have detailed knowl-
edge of its components, status, capacity, and connec-
tions with other systems; it will need to know the
extent of its owned resources, those it can lend, and
those that can be shared or should be isolated.

� configure itself: the system configuration should be
done automatically, as must dynamic adjustments to
that configuration to handle changing environments.

� optimize itself: the system should monitor its compo-
nents and look for ways to optimize its working, like
resource allocations, load balancing, different net-
work traffic optimizations.

� heal itself: the system should be able to recover from
faults that might cause some parts of it to malfunc-
tion.

� protect itself: the system should be capable of detect-
ing and protecting resources from both internal and
external attacks, thus maintaining overall system in-
tegrity.

� adapt itself: the system should be aware of its envi-
ronment and the context surrounding its activity, and
act accordingly, by finding rules for how best to inter-
act with neighboring systems.

� open standards: the system should work in a hetero-
geneous environment and implement open standards;
it cannot be a proprietary solution.

� anticipatory: an autonomic computing system will
anticipate the optimized resources needed while
keeping its complexity hidden; both the users and
applications in the system should be unaware of the
presence of the technology used to perform their
functions.

3 The QADPZ System

3.1 Description

QADPZ is an open source, multi-platform system for
distributed computing in a TCP/IP network. Our goal was
to use computers from our labs for our CPU-intensive re-
search projects from the areas of large-scale scientific visu-
alization, evolutionary computation, scientific computing,
and simulation of complex neural network models. We had
available computers running many different operating sys-
tems: Linux, FreeBSD, MacOS X, Windows and Solaris,
and we needed an easy way to use those computers without

interfering with the normal administration of them. The de-
sign goals of the QADPZ system are ease of use at different
user skill levels, inter-platform operability, a client-master-
slave architecture using fast, message-based communica-
tion, modularity and extensibility, security of the comput-
ers participating in the system, and very easy and automatic
install and upgrade on the computing nodes.

The system allows the exploitation of the computational
power of idle computers in a network. The users can sub-
mit, monitor, and control computing tasks to be executed
on computers participating in the QADPZ system. We use
the notion of task to represent a basic computation. A task
can take the form of a dynamic shared library, a directly
executable program, a program executable by means of a
virtual machine (e.g. Java application), or any other inter-
preted program type (e.g. Perl, Lisp, Python). Multiple
tasks can be grouped into jobs, for an easier management
by the system. One job is uniquely associated with one user
of the system, who can then later monitor and control the
execution of the tasks from that job.

Different types of jobs can be submitted to the system.
A job can consist of independent tasks, which don’t require
any kind of communication between each other. This is usu-
ally referred to as task parallelism. Jobs can also consist
of parallel tasks, where different tasks running on different
computers can communicate with each other. Inter-slave
communication is accomplished by using a subset of the
most common functions from the Message Passing Inter-
face (MPI) standard.

The system delivers both the input and output data re-
quired by the tasks, and provides a shared disk space in the
form of a local data server. A web server, or any other ser-
vice (e.g. ftp) which supports file downloads and uploads
can be used as a data server.

3.2 Architecture

The QADPZ system can operate both in conditions of
an open Internet environment and of a closed local area
network which supports the family of TCP/IP protocols.
It was designed as an object-oriented system and imple-
mented using C++. Strong requirements of the system are
open source, multi-platform support for both Unix/Linux
and Windows systems, simple installation and later mainte-
nance, support for multiple users, security, and the possibil-
ity to easily extend the system by adding new features.

The system consists of three types of entities: master,
client, and slave. The architecture of the system is shown
in figure 1. Each computer contributing with computing
power to the system is called a slave, and is running a small
background process in the form of a UNIX daemon or a
Windows system service. The process can be run with the
privileges of an ordinary user, it doesn’t need to be run with



MPI
parallel

communication

client service

encryption

client service

encryption

service
slave

service
slave

service
slave

...
...

scheduling

universal
client

project file

executable

input files

output files

user slave lib

application
user client

encryption
users db

reservations
slavesjobs

data server
(www, ftp)

output file

input files
executable

universal slave lib

executable

user slave lib

user program

interpreter

universal slave lib

universal slave libMASTER

CLIENT 1

CLIENT N

SLAVE 1

SLAVE 2

SLAVE M

Figure 1. QADPZ architecture.

administrative rights. This process is responsible for report-
ing the computer’s resources and status to a central server,
the master. It also accepts computational requests from the
master, downloads the corresponding binaries and data files
for the tasks, executes the task, and then uploads the result
files when finished.

The master is responsible for managing the available re-
sources, keeping track of the available slaves, their capa-
bilities and configuration. It also schedules the computa-
tional tasks submitted by any authorized user of the system,
according to the required resources. Tasks can be started,
stopped, or rescheduled by the master. Tasks are created by
users, who can submit them to the master by means of a
client as an interface to the QADPZ system.

The client is the interface by which a user interacts with
the system. It allows the user to create jobs, monitor them,
and control their execution. There are two execution modes
for the client: a batch mode and an interactive mode. In the
batch mode, which can be done using the universal client,
tasks are described by a project file, specifying the required
resources and how to start the tasks. This information is
then sent to the master, which is responsible for scheduling
the tasks. The client can detach from the master and con-
nect later for the results. In the interactive mode, the client
has much more freedom over the creation and controlling
of new tasks: the user can dynamically create new tasks,
send messages to already executing tasks, and can receive
feedback from the running tasks, either through the master

node, or communicating directly with the slaves running the
respective tasks. This is more suited for applications where
interactivity with the running computation is required.

Communication between different components is mes-
sage based, using UDP as the underlying communication
protocol. This is an unreliable protocol, in which packets
are not guaranteed to arrive and if they do, they may ar-
rive out of order. The advantage of UDP over TCP/IP is
that UDP is faster, reducing the connection setup and tear-
down overhead, and is connectionless, making the scalabil-
ity of the system much easier. Our higher-level communica-
tion abstraction implements a reliable, confirmation based
message exchange protocol. Messages are represented in
an XML format for easier extensibility and interconnection
with other potential systems.

4 Autonomic Features

In this section we will describe how the different compo-
nent types of the QADPZ system manifest autonomic char-
acteristics.

4.1 Self-knowledge

First, the system must have detailed knowledge about it-
self. In QADPZ this is accomplished by detecting all avail-
able computing resources and their current status. Each
slave knows about its own local resources, while the mas-



ter knows about all the available resources provided by the
slaves contributing to the system.

When the slave background application is started on one
of the computers in the network, it automatically detects
the hardware and software resources available on that com-
puter. Hardware resources are, for example, system archi-
tecture, CPU type and speed, available physical memory,
available disk space. These characteristics of the computer
can be obtained in different ways: by inquiring the operat-
ing system (e.g. the available memory and disk space), or
by running some benchmark tests (e.g. CPU speed). Each
operating system has its own way of providing such infor-
mation, so that this auto-detection feature of the slave is
dependent on the operating system. However, it is a small
part of the code and can be easily adapted for a new system.

Software resources can be, for example, the operating
system type and version, different shared system libraries
and software applications available on the system. The
slave is pre-configured to detect if certain software appli-
cations (e.g. compilers, interpreters, etc.) are available, and
determines the installed version on that computer.

Using this information, the slave service is creating a
description of the computer and registers it to the master.
In this way, the master will collect detailed information
about each of the slaves participating in the QADPZ system,
keeping an overall knowledge about the whole system’s re-
sources, thus creating a knowledge about itself.

4.2 Self-configuration

The software running on each slave computer is capa-
ble of upgrading itself whenever there is a new version of
the software. This is done automatically on the slave side,
without any user intervention, or system restart. The user
only needs to specify to the master the new version of the
slave program and its location for the different operating
systems. The master will notify the slaves about the avail-
ability of a new version. Each slave will upgrade itself if it
has an older version. However, the upgrade can be delayed
if a specific slave is running a task, until the computation is
finished. Any additional new slave which connects to mas-
ter will also be notified about a possible upgrade.

4.3 Self-optimization

The slave is also responsible for detecting if the com-
puter is in use by any interactive user, or if the CPU resource
is used by other applications. The first situation is detected
by monitoring if there is an interactive session started on
the computer: in Windows this is done by checking if the
explorer application is running, while in Unix by check-
ing for an X-Windows session. The second situation is de-
tected by measuring the CPU load over a longer period of

time (seconds, a few minutes). In any of these situations,
the slave is considered unavailable, and will not be sched-
uled for executing computational tasks. Once the computer
becomes available, its new status is reported to the master
and scheduling of tasks becomes possible. This monitor-
ing feature of the slaves is the first step in gathering infor-
mation about resource utilization for the purpose of self-
optimization of the system. The information is used by the
master for scheduling the distribution of tasks to the slaves.

4.4 Self-healing

When a task is scheduled on one of the slaves, that slave
receives a description of the task, which contains all the in-
formation needed to start it: the download addresses for the
task to be executed and all the input files needed. All the
files are downloaded locally on the slave and the compu-
tation is started. When the task is finished, the results are
uploaded, every temporary files are removed and the master
is notified about the end of the computation.

There are however certain situations when the execution
of the task is interrupted, and which requires some kind self-
healing mechanisms. One such situation is when the task
started by the slave is crashing, due to a software problem
in the executed program. The slave will detect such fail-
ure, the it will clean up any local temporary files, and notify
the master about this. The master can either notify the user
about the situation, or try to execute the task on a different
platform slave, if possible.

Another situation is when a task is running and a user is
starting an interactive session on that slave computer. Since
interactive users have priority over any executing tasks, the
running task will be interrupted. The task can be migrated
to a different slave, or restarted, if migration is not possi-
ble, on a different slave. Migration can be done if the task
program can provide the means to save the current state of
the program and continue the execution from this point on
a different computer. This however has to be done inside
each task. A future extension we are investigating now is
to use checkpointing techniques. When the task needs to be
interrupted, it is first checkpointed, the the resulting mem-
ory footprint is transfered on the new slave computer, where
the computation is resumed.

Another self-healing situation is necessary when a task
is running for too long. In this case, the local slave will stop
the execution and notify this to the master.

The current implementation of the system is made con-
sidering only one central master node. This can be an in-
convenience in certain situations, where computers located
in different networks are used together. The master node
can also be subject to failures, software or hardware. A
more decentralized approach is needed in this case. Cur-
rently, our high level communication protocol between the



entities, especially between the client and master, allows a
master to act as a client to another master, thus making pos-
sible to create a distributed master, consisting of indepen-
dent master nodes which communicate between each other.
Ideas from peer-to-peer (P2P) computing will be used for
implementing such a decentralized approach.

5 Conclusion and Future Work

In this paper we presented an overview of the architec-
ture of the QADPZ distributed computing system, and its
autonomic features that simplify the management of the
system.

The use of already existing hardware resources, like for
example desktop PCs, in a distributed computing environ-
ment has a tremendous potential of providing a computing
platform on which different computationally demanding ap-
plications can be executed in a time comparable with su-
percomputers and dedicated clusters. This approach is also
a very affordable alternative, as investment costs and later
maintenance are minimal compared to other systems.

The QADPZ system is currently used for different kind
of computational projects and is installed in our department
on a cluster of 40 PCs running Linux, and on 80 desktop
computers in a lab running Windows and FreeBSD. Prob-
lems from the areas of large numerical simulations (paral-
lel computational fluid dynamics), evolutionary algorithms,

image processing and scientific visualizations are success-
fully solved on our installations.

Our future work will focus on studying the self optimiza-
tion of the system, by monitoring and evaluating the perfor-
mance of the different components. This is an important
issue, especially when running parallel applications. Dy-
namic balancing of the workload can be used.

Other possible extensions of the system are currently
considered, for example interconnection with a grid com-
puting environment and a more decentralized approach for
the master entity. Security is also an important issue, further
work being needed to improve the existing security features.

References

[1] QADPZ web site.
http://qadpz.sourceforge.net/.

[2] R. Buyya. High Performance Cluster Computing: Program-
ming and Applications. Prentice Hall, 1999.

[3] Z. Constantinescu, P. Petrovic, and A. Pedersen.
���������
	

*
An Open System for Distributed Computing. In NordU2002
Conference, Helsinki, Finland, 2002.

[4] V. K. Garg. Elements of Distributed Computing. John Wiley
& Sons, 2002.

[5] P. Horn. Autonomic Computing: IBM’s Perspective on the
State of Information Technology, IBM Corporation.
http://www.research.ibm.com/autonomic, Oct. 2001.

[6] J. O. Kephart and D. M. Chess. The Vision of Autonomic
Computing. Computer, January 2003.


