
���������
���	 
���� 
���� �����
��������������� 
�����

Zoran Constantinescu
zoran@idi.ntnu.no

http://qadpz.sourceforge.net 16-Jan-2003



2

need for
more CPU

supercomputers
clusters of PCs

distributed computing 
(grid computing)

existing systems ��������	
��


• description
• advantages
• architecture
• application domains
• current status
• future work

�������



3


������ ���

• larger and larger amounts of data are generated 
every day (simulations, measurements, etc.)

• software applications used for handling this data 
are requiring more and more CPU power

• simulation, visualization, data processing

• complex algorithms, e.g. evolutionary algorithms

• large populations, evaluations very time consuming

à need for parallel processing



4

• use parallel supercomputers
– access to tens/hundreds of CPUs

e.g. NOTUR/NTNU embla (512) + gridur (384)

– high speed interconnect, shared memory

– usually for batch mode processing

– very expensive (price, maintenance, upgrade)

– these CPUs are not so powerful anymore

e.g. 500 MHz RISC vs. 2.4 GHz Pentium4

���������



5

• use clusters of PCs (Beowulf)
– network of personal computers

– usually running Linux operating system

– powerful CPUs (Pentium3/4, Athlon)

– high speed networking (100 MBps, 1 GBps, Myrinet)

– much cheaper than supercomputers

– still quite expensive (upgrade, maintenance)

– trade higher availability and/or greater performance 
for lower cost 

���������



6

• use distributed computing
– using existing networks of workstations

(PCs connected by LAN from labs, offices, etc.)

– usually running Windows or Linux operating system

(also MacOS, Solaris, IRIX, etc.)

– powerful CPUs (Pentium3/4, Athlon)

– high speed networking (100 MBps)

– already installed computers – very cheap

– easy to have a network of tens/hundreds of computers

���������



7

• specialized client applications run on each 
individual computer

• they talk to one or more central servers

• download a task, solve it, and send back results

• more suited (easier) for task-parallel applications
(where the applic. can be decomposed into independent tasks)

• can also be used for data-parallel applications

• the number of available CPUs is more dynamic

������������
 �� 
�����



8

• seti@home
– search for extraterrestrial intelligence

– analysis of data from radio telescopes

– client application is very specialized

– using the Internet to connect clients to server, and to 
download/upload a task

– no framework for other applications

– no source code available

�!��������
���� �



9

• distributed.net
– one of the largest "computer" in the world (~20TFlops)

– used for solving computational challenges:

–RC5, Optimal Golomb ruler

– client application is very specialized

– using the Internet to connect clients to server

– no framework for other applications

– no source code available

�!��������
���� �



10

• Condor project (Univ.of Wisconsin)
– more research oriented computational projects

– more advanced features, user applications

– very difficult to install, problems with some OSes

(started from a Unix environment)

– restrictive license (closed system)

• other commercial projects
• Entropia, Parabon

�!��������
���� �



11

• QADPZ project (NTNU)
– initial application domains: large scale visualization, 

genetic algorithms, neural networks

– prototype in early 2001, but abandoned (too viz oriented)

– started in July 2001, first release v0.1 in Aug 2001

– we are now close to release v0.8 (Feb-Mar 2003)

– system independent of any specific application domain

– open source project on SourceForge.net

"���# ��
����



12

$"�
%&���� ������&���



13

• QADPZ project (NTNU)
– similar in many ways to Condor (submit computing 

tasks to idle computers running in a network)

– easy to install, use, and maintain

– modular and extensible

– open source project, implemented in C++

– support for many OSes (Linux, Windows, Unix, …)

– support for multiple users, encryption

– logging and statistics

������
��� ��
����



14

������
"� '��� ����

 ������à � "�����à ��"(�

�����


� ��
��

�����


�����

�
�����

�����

�

• management of slaves

• scheduling tasks

• monitoring tasks

• controlling tasks

• background process

• download tasks/data

• executing tasks

• user interface

• submit tasks/data



15


"�"�������

• task-parallelism ("coarse grain")
• multiple independent code segments/programs are 

run concurrently

• same initial data or different

• same code or different

• data-parallelism ("fine grain")
• same code runs concurrently on different data 

elements

• usually requires synchronization (better network)



16

�&�&��� "���
�� ������

�����


�����

�����

����� �����

����� �����

� ��
��

task-parallelism



17

�����


� ��
��

�����

�����

�����

�

���	��
	��

• external web server, ftp server

• internal lightweight web server

control flow
data flow �"�"



18

 �����

• can be automatic or manual (user)

• describe project file 

• prepares task code

• prepares input files

• submit the tasks

• either wait for the results (stay connected to master), 
or detach from the tasks and get results later (master 
will keep all messages)



19

 ������
����"� � ���

• basic level
• the user has an executable to be run on multiple comps

• uses our generic client to submit tasks

• intermediate level
• submission script (XML interface) is changed 

• advanced level
• user writes his own client application using our API

• hacker level
• modifies QADPZ source code for extra functionality

à ����� "��"�



20

)���*��"�+�*�����"�+�

• job:
• consists of groups of tasks executed sequentially or in 

parallel

• a task can consist of subtasks (same executable is run 
but with different input data) – for parallel tasks

• each task is submitted individually, the user specifies 
which OS and min. resource requirements (disk, mem)

• the master allocates the most suitable slave for 
executing the tasks and notifies the client

• when task is finished, results are stored as specified 
and the client is notified



21

�'���"�+�

• regular binary executable code
• no modifications required

• must be compiled for each of the platforms

• regular interpreted program
• shell script, Perl, Python

• Java program

• requires interpreter/VM on each slave

• dynamically loaded slave library (our API)
• better performance

• more flexibility



22

<Job Name="brick">

<Task ID="1" Type="Executable">

<RunCount>15</RunCount> 

<FilesURL>http://server/cgi-bin/</FilesURL> 

<TaskInfo> 

<TimeOut>7200</TimeOut> 

<OS>Win32</OS> 

<CPU Speed="500">i386</CPU> 

<Memory>64</Memory> 

<Disk>5</Disk> 

<URL>http://server/slave_app.dll</URL> 

<Executable Type="File">../bin/evolve.exe</Executable> 

<CmdLine>sphere.prj 2 50</CmdLine> 

</TaskInfo> 

<InputFile>sph/sphere.txt</InputFile> 

<OutputFile>sph/layout.txt</OutputFile>

</Task>

</Job> 

�&�&�)������ ��
����



23

�'��� "����

• keeps account of all existing slaves (status, specifications)

• usually one master is enough

• more can be used if there are too many slaves 
(communication protocol allows one master to act as 
another client, but not fully implemented yet)

• keeps account of all submitted jobs/tasks

• keeps a list of accepted users (based on username/passwd)

• gathers statistics about slaves, tasks

• can optionally run the internal web server for the 
repository



24

����"��"����

• one of our computer labs (Rose salen)
• ~80 PCs Pentium3, 733 MHz, 128 MBytes

• dual boot: Win2000 and FreeBSD

• running for several month

• when a student logs in into the computer, the slave 
running on that computer is set into disablemode 
(no new computing tasks are accepted, any current 
tasks in killed and/or restarted on another comp.)

• obtained results worth weeks of computation in 
just a couple of days



25

� "����



26

��"���



27

 �� � ��� "����

• layered communication protocol

• exchanged messages are in XML (w/ compress+encrypt)

• uses UDP with a reliable layer on top



28

	 	 �������



29

����"��"����

, �����
• qadpz_slave (daemon) + slave.cfg

, � ��
��
• qadpz_master (daemon) + master.cfg + 

• qadpz_admin + users.txt + privkey

, �����

• qadpz_run + client.cfg + pubkey 

Linux, Win32 (9x,2K,XP), SunOS, 
IRIX, FreeBSD, Darwin MacOSX



30

�������# ��+

• local caching of executables on the slaves

• different scheduling protocols on master

• web interface to the client
• creating jobs easier, with input data

• starting/stopping jobs

• monitoring execution of jobs

• easy access to the output of execution

• should decrease learning effort for using the system



31

�'����"�

• QADPZ =

• Atle Pedersen

• Diego Federici

• Pavel Petrovic

• Zoran Constantinescu

from the Division of Intelligent Systems (DIS)
http://www.idi.ntnu.no/seksjoner/dis



32

�'"�+�
��

?


