
UNIX VISION

An object oriented user interface for UNIX

Zoran Constantinescu
"Politehnica" University of Bucharest

<pr92044@ulise.cs.pub.ro>

Constantin Stanciu
"Politehnica" University of Bucharest

<pr92182@ulise.cs.pub.ro>

Abstract

The paper presents a project we started to work on. The main purpose followed is
the implementation of a friendly interface under the LINUX operating system. The general
objective of this interface is the UNIX and DOS portability, being written in C++ and
using the ncurses library.

UNIX VISION is indicated for text based applications that need high design
performance, flexibility, and consistent interactive user interface. It consists from a
complete object oriented library including multiple, resizeable, overlapping windows, pull-
down menus, dialog boxes, buttons, scroll bars, input lines, check boxes, radio buttons
etc. UNIX VISION allow development of complex applications which need object
management, easily implemented using the C++ language stream facilities.

Introduction

UNIX VISION is an application framework for windowing programs.
It is implemented as an object oriented user interface. Object orientation is
becoming increasingly popular in programming language domain, where it
helps to face up the growing complexity of software. Also it prompts to
design applications as a set of functional units interacting with each other
through well defined interfaces. So it makes partitioning of an application into
several modules easier, relieves the developer of having to know
implementation details of objects to access them. This application save an
enormous amount of unnecessary, repetitive work, and provide a proven
application framework you can trust.

UNIX VISION is a hierarchy, not just a disjoin box full of tools. If
you use any of it all, you should use all of it. There is a single architectural
vision behind every component of UNIX VISION , and they all work together
in many subtle, interlocking ways. You shouldn’t try to just “pull out” mouse
support and use it - the “pulling out” would be more work than writing your
own mouse binding from scratch.

Implementation

The idea of UNIX VISION interface is based on Turbo Vision , being
fully compatible with it. So, any DOS oriented Turbo Vision application, with
minor changes, can easily be ported to UNIX, keeping the same aspect. In
this mode, even a VT100 'dumb' terminal can display many windows on the
screen.

To have fully compatibility for screen operation on different UNIX
systems, we used the ncurses library. The ncurses library routines give the
user a terminal independent method of updating character screens with
reasonable optimization. The ncurses routines emulate the curses(3X)
library of System V Release 4 UNIX. From this package we used terminal
input, control over terminal, output options, color manipulation, terminfo
capabilities and access to low-level ncurses routines.

The UNIX VISION comes with full mouse support. It is activated
whenever you are running on an xterm terminal (it even works if you take a
telnet or rlogin connection to another machine from the xterm) or if you are
running on a Linux console and have the gpm mouse server running.

To compile the UNIX VISION we used the GNU C++ compiler
(version 2.6.3), which is designed to generate optimal assembly code and run
on almost every UNIX system.

With UNIX VISION any kind of files can be easily manipulated. To
do this we used GNU C++'s libg++ library (version 2.6.2) which includes the
iostream classes. The iostream classes implement most of the features of
AT&T version 2.0 iostream library classes, and most of the features of the
ANSI X3J16 library draft (which is based on the AT&T design).

Internal design

The object hierarchy of UNIX VISION is:

TMenu
TMenuItem TSubMenu
TStringCollection TResourceCollection
TNSCollection
 TCollection TSortedCollection
TStreamable
TStreamable opstream (friend)
TStreamable
 TStringList ipstream (friend)
 TStrListMaker

 TView TGroup TProgram TApplication
 TWindow TDialog TColorDialog
TObject THistoryWindow
 TBackground
 TButton
 TCluster TCheckboxes
 TRadioButtons
 TMonoSelector
 TColorDisplay
 TColorSelector
 TDeskTop
 TFrame
 TFileInfoPane
 THistory
 TInputLine TFileInputLine
 TListViewer TColorGroupList (TColorGroup)
 TColorItemList (TColorItem)
 THistoryViewer
 TListBox TDirListBox (TDirEntry)
 TSortedListBox TFileList
 TMenuView TMenuBar
 TMenuBox
 TScrollBar
 TScroller TTextDevice
 TTerminal
 TStatusLine (TStatusDef and TStatusItem)
 TStaticText TLabel
 TParamText

Any application based on UNIX VISION is a cooperating society of
views, events, and mute objects.

• Views - A view is any program element that is visible on the screen - and
all such elements are objects. In a UNIX VISION context, if you can see
it, it’s a view. Fields, field captions, window borders, scroll bars, menu
bars and dialog boxes are all views. Views can be combined to form more
complex elements like windows, and dialog boxes. These collective views
are called groups, and they operate together as though they were a single
view.

• Events - An event is some sort of occurrence to which an application must
respond. Event come from the keyboard, from the mouse, from other parts
of UNIX VISION , or from the kernel . For example. a keystroke is an
event, as is a click of a mouse button or a received signal. Event are
queued up by UNIX VISION ’s application skeleton as they occur, then
they are processed in order by an event handler. The TApplication object,
which is the body of an application, contains an event handle. Through a
mechanism, events that are not serviced by TApplication are passed along
to other views owned by the program until either a view is found to handle
the event, or an “abandoned event” error occurs.

 There are five types of events:
 - mouse events - an up or down click with either button, a change of

position, or an auto event when a button is hold down; all mouse events
include the position of the mouse, so an object that preceded the event
knows where the mouse was when it happened;

 - keyboard events - when a key is pressed;
 - message events - commands, broadcasts and user messages;
 - signal events - when the program receives any of the UNIX signals;
 - “nothing” event.

• Mute objects - Mute objects are any other objects in the program that are
not views. They are “mute” because they do not speak to the screen
themselves. They perform calculations, and generally do the work of the
application. When a mute object needs to display some output on the
screen, it must do so through the cooperation of a view.

At the heart of every view there is a loop that looks something like this:

{
 do {
 endState = 0;
 do {
 TEvent e;
 getEvent (e);
 handleEvent (e);
 if(e.what != evNothing)
 eventError(e);
 } while(endState == 0);
 } while(!valid(endState));
 return endState;
}

Every view inherits a handleEvent method that already knows how to
respond to much of the user’s input. If we need a view to do something
specific for the new application, we need to override its handleEvent and
teach the new one how to respond to the received events. Events go from one
object’s event handler to another until some handler is not found which can
process it. If the event is processed but not destroyed, it would be transmitted
to another handler and so on.

The curent modal view’s getEvent calls its owner’s getEvent and so
on, all the way back up the view tree to TApplication.getEvent. The main part
of this method, as we used at the beginning is given next:

void TProgram:: getEvent (TEvent& event)
{
 event. getKeyEvent ();
 if (event.what == evNothing)
 idle ();
}
void TEvent:: getKeyEvent ()
{
 int x;
 x= getch ();
 if (x==ERR)
 what = evNothing;
 else {
 what = evKeyDown;
 keyDown.keyCode = x;
 }
 return;
}

We used getch() from ncurses, setting first the terminal in nodelay
mode, causing getch() to be a non-blocking call - if no input is ready, getch()
will return ERR, and in nocbreak mode - characters typed are immediately
available to the program (doesn’t wait for newline). This method worked
very well, but had a great disadvantage: the application used a lot of CPU
time, generating many evNothing events, so executing the idle() method too
many times.

Next, we wanted to have mouse in the application, so we decided to
use LINUX’s gpm library. To get mouse events, there is a function called
Gpm_GetEvent(), which waits the mouse to generate some events, than
returns. The problem was how to get both mouse and keyboard events using
these functions.

The solution we found was to use the UNIX select() system call, that
allows device polling. This call causes the process to sleep until one of the
selected devices becomes available for reading, or until the time limit, set by
timeout, has elapsed. The resulting getEvent() was:

void TProgram:: getEvent (TEvent& event)
{

 FD_SET(stdin,&select_set);
 if (mouse)
 FD_SET(mouse,&select_set);
 :: select (FD_SETSIZE,&select_set,NULL,NULL,&timeout);
 if (FD_ISSET(mouse,&select_set))
 event. getMouseEvent ();
 else if (FD_ISSET(stdin,&select_set))
 event. getKeyEvent ();
 else { event.what=evNothing; idle (); }

}

Application development facilities

UNIX VISION has built-in tools that help you implement context-
sensitive help within your application. You can assign a help context number
to a view and whenever that view becomes focused, its help context number
will become the application’s current help context number. The THelpViewer
can read and display the proper help text.

Streams provide a simple, yet elegant, means of storing object data
outside the program. A stream is a generalized object for handling input and
output. TStreamable is the base abstract object providing polymorphic I/O to
and from a storage device. What you intend to send to a stream doesn’t have
to be determined at compile time. The streams know they are dealing with
objects, so as long as the object is a descendant of Tobject, the stream can
handle it. In fact, different objects can as easily be written to the same stream
as a group of identical objects. A resource file is a special kind of stream
where generic objects (“items”) can be indexed via string keys, and later
accessed with the appropriate key.

Conclusions and future work

The first version of UNIX VISION library is operational. It was
developed on LINUX and the results are very good. Further work will be
oriented toward developing a graphical interface for LINUX, using for
example de SVGA library and also porting it to other UNIX systems.

References

[1.] The GNU C++ library documentation
[2.] The ncurses library documentation
[3.] Maurice J. Bach - The Design of the UNIX Operating System

